
PLT MrEd: Graphical Toolbox Manual

Matthew Flatt
mflatt@cs.utah.edu

Robert Bruce Findler
robby@cs.rice.edu

Version 103
August 2000

Rice University
University of Utah

Copyright notice

Copyright c©1996-2000 PLT

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby
granted without fee, provided that the above copyright notice, author, and this permission notice appear in
all copies of this documentation.

wxWindows: Copyright c©1994 Artificial Intelligence Applications Institute, The University of Edinburgh.
All rights reserved.

The A List: Copyright c©1997-2000 Kyle Hammond.

Independent JPEG Group library: Copyright c©1991-1998, Thomas G. Lane. All rights reserved.

Send us your Web links

If you use any parts or all of the DrScheme package (software, lecture notes) for one of your courses, for
your research, or for your work, we would like to know about it. Furthermore, if you use it and publicize
the fact on some Web page, we would like to link to that page. Please drop us a line at scheme@cs.rice.edu.
Evidence of interest helps the DrScheme Project to maintain the necessary intellectual and financial support.
We appreciate your help.

Thanks

Thanks to Julian Smart for wxWindows and his help. Thanks also to Brent Benson for libscheme, and to
Hans Boehm for the conservative garbage collector and his help.

The geometry-management classes were originally developed by Richard Cobbe. Thanks also to Shri-
ram Krishnamurthi, Cormac Flanagan, Matthias Felleisen, Paul Steckler, Gann Bierner, Michael Sperber,
Dan Grossman, Stephanie Weirich, Sebastian Good, Johnathan Franklin, Mark Krentel, Corky Cartwright,
Michael Ernst, Kennis Koldewyn, Bruce Duba, and many others for feedback and help.

This manual was typest using LATEX and a patched version of latex2html. Some typesetting macros were
originally taken from Julian Smart’s Reference Manual for wxWindows 1.60: a portable C++ GUI toolkit.

Contents

1 Introduction 1

I Windowing Toolbox 2

2 Windowing Toolbox Overview 4

2.1 Core Windowing Classes . 5

2.2 Geometry Management . 8

2.2.1 Containees . 9

2.2.2 Containers . 10

2.2.3 Defining New Types of Containers . 11

2.3 Mouse and Keyboard Events . 12

2.4 Event Dispatching and Eventspaces . 13

2.4.1 Event Types and Priorities . 14

2.4.2 Eventspaces and Threads . 14

2.4.3 Creating and Setting the Eventspace . 14

2.4.4 Exceptions and Continuation Jumps . 15

3 Windowing Class Reference 17

3.1 Class Listing . 17

3.2 area<%> . 18

3.3 area-container<%> . 20

3.4 area-container-window<%> . 23

3.5 button% . 24

3.6 canvas<%> . 25

3.7 canvas% . 28

i

CONTENTS CONTENTS

3.8 check-box% . 32

3.9 checkable-menu-item% . 33

3.10 choice% . 34

3.11 clipboard<%> . 35

3.12 clipboard-client% . 36

3.13 control<%> . 37

3.14 control-event% . 38

3.15 cursor% . 39

3.16 dialog% . 39

3.17 event% . 41

3.18 frame% . 41

3.19 gauge% . 45

3.20 grow-box-spacer-pane% . 46

3.21 horizontal-pane% . 46

3.22 horizontal-panel% . 46

3.23 key-event% . 46

3.24 labelled-menu-item<%> . 50

3.25 list-box% . 52

3.26 list-control<%> . 55

3.27 menu% . 58

3.28 menu-bar% . 58

3.29 menu-item<%> . 59

3.30 menu-item% . 60

3.31 menu-item-container<%> . 60

3.32 message% . 60

3.33 mouse-event% . 61

3.34 pane% . 66

3.35 panel% . 66

3.36 popup-menu% . 67

ii

CONTENTS CONTENTS

3.37 radio-box% . 67

3.38 scroll-event% . 70

3.39 selectable-menu-item<%> . 71

3.40 separator-menu-item% . 72

3.41 slider% . 73

3.42 subarea<%> . 74

3.43 subwindow<%> . 74

3.44 text-field% . 75

3.45 timer% . 76

3.46 top-level-window<%> . 77

3.47 vertical-pane% . 81

3.48 vertical-panel% . 82

3.49 window<%> . 82

4 Windowing Procedures 89

4.1 Dialogs . 89

4.2 Eventspaces . 92

4.3 Miscellaneous . 95

II Drawing Toolbox 99

5 Drawing Toolbox Overview 101

6 Drawing Class Reference 104

6.1 Class Listing . 104

6.2 bitmap% . 104

6.3 bitmap-dc% . 106

6.4 brush% . 107

6.5 brush-list% . 110

6.6 color% . 110

6.7 color-database<%> . 112

iii

CONTENTS CONTENTS

6.8 dc<%> . 112

6.9 font% . 122

6.10 font-list% . 124

6.11 font-name-directory<%> . 125

6.12 pen% . 128

6.13 pen-list% . 131

6.14 point% . 131

6.15 post-script-dc% . 132

6.16 printer-dc% . 133

6.17 ps-setup% . 133

6.18 region% . 138

7 Drawing Procedures 141

7.1 Global Graphics and Screen . 141

III Editor Toolbox 144

8 Editor Toolbox 146

8.1 Editor Structure and Terminology . 148

8.1.1 Administrators . 148

8.1.2 Styles . 149

8.2 File Format . 150

8.2.1 Encoding Snips . 150

8.2.2 Global Data: Headers and Footers . 151

8.3 End of Line Ambiguity . 151

8.4 Flattened Text . 152

8.5 Caret Ownership . 152

8.6 Cut and Paste Time Stamps . 152

8.7 Clickbacks . 153

8.8 Internal Editor Locks . 153

iv

CONTENTS CONTENTS

9 Editor Class Reference 154

9.1 Class Listing . 154

9.2 Buffer Method Table . 155

9.3 add-color<%> . 158

9.4 editor<%> . 159

9.5 editor-admin% . 188

9.6 editor-canvas% . 191

9.7 editor-data% . 195

9.8 editor-data-class% . 196

9.9 editor-data-class-list<%> . 197

9.10 editor-snip% . 198

9.11 editor-snip-editor-admin<%> . 203

9.12 editor-stream-in% . 203

9.13 editor-stream-in-base% . 205

9.14 editor-stream-in-string-base% . 206

9.15 editor-stream-out% . 207

9.16 editor-stream-out-base% . 208

9.17 editor-stream-out-string-base% . 209

9.18 editor-wordbreak-map% . 209

9.19 image-snip% . 210

9.20 keymap% . 212

9.21 mult-color<%> . 217

9.22 pasteboard% . 219

9.23 snip% . 233

9.24 snip-admin% . 242

9.25 snip-class% . 246

9.26 snip-class-list<%> . 247

9.27 string-snip% . 248

9.28 style<%> . 249

v

CONTENTS CONTENTS

9.29 style-delta% . 253

9.30 style-list% . 262

9.31 tab-snip% . 264

9.32 text% . 264

10 Editor Procedures 295

10.1 Editors . 295

IV Appendices 300

11 Running MrEd 302

11.1 X Window System Flags . 304

11.2 Initial Eventspace . 304

Index 305

vi

1. Introduction

This manual describes the MrEd GUI toolbox for programmers developing MrEd applications. It assumes
familiarity with MzScheme as described in PLT MzScheme: Language Manual (particularly the class and
interface system) and with basic GUI concepts (such as windows and events).

What is MrEd?

MrEd is a Scheme implementation based on MzScheme (see PLT MzScheme: Language Manual). MrEd
embeds MzScheme and extends it with a graphical user interface (GUI) toolbox. GUI applications written
with MrEd run without modification under Windows, MacOS, and Unix/X.

MrEd is not a graphical environment for developing Scheme programs. DrScheme, documented in PLT
DrScheme: Development Environment Manual , is the development environment for producing MzScheme-
and MrEd-based applications.1

Toolbox Organization

For documentation purposes, the MrEd toolbox is organized into three parts:

• The windowing toolbox, for implementing form-filling GUI programs (such as a database query
window) using buttons, menus, text fields, and events. The windowing toolbox is described in §2.

• The drawing toolbox, for drawing pictures or implementing dynamic GUI programs (such as a video
game) using drawing canvases, pens, and brushes. The drawing toolbox is described in §5.

• The editor toolbox, for developing traditional text editors, editors that mix text and graphics, or
free-form layout editors (such as a word processor, HTML editor, or icon-based file browser). The
editor toolbox is described in §8.

These three parts roughly represent layers of increasing sophistication. Simple GUI programs access only
the windowing toolbox directly, more complex programs use both the windowing and drawing toolboxes,
and large-scale applications rely on all three toolboxes.2

All three parts are immediately available when MrEd is started. MrEd’s initial Scheme namespace contains
bindings for all of the class, interface, and procedure names defined in this manual. In addition, the initial
environment binds mred@ to a signed unit that exports all of the MrEd bindings (including mred@) and binds
mred^ to the unit’s signature (but no knowledge about units or signatures is required to understand this
manual).

1DrScheme is itself a MrEd-based application that is developed using DrScheme.
2This three-layer view of the toolbox breaks down under close scrutiny, because the windowing, drawing, and editor toolboxes

are actually interdependent and intertwined. Nevertheless, the layered separation is a good approximation.

1

Part I

Windowing Toolbox

2

2. Windowing Toolbox Overview

MrEd’s windowing toolbox provides the basic building blocks of GUI programs, including frames (top-level
windows), modal dialogs, menus, buttons, check boxes, text fields, and radio buttons. The toolbox provides
these building blocks via built-in classes, such as the frame% class:1

; Make a frame by instantiating the frame% class
(define frame (make-object frame% "Example"))

; Show the frame by calling its show method
(send frame show #t)

The built-in classes provide various mechanisms for handling GUI events. For example, when instantiating
the button% class, the programmer supplies an event callback procedure to be invoked when the user clicks
the button. The following example program creates a frame with a text message and a button; when the
user clicks the button, the message changes:

; Make a frame by instantiating the frame% class
(define frame (make-object frame% "Example"))

; Make a static text message in the frame
(define msg (make-object message% "No events so far..." frame))

; Make a button in the frame
(make-object button% "Click Me" frame

; Callback procedure for a button click
(lambda (button event) (send msg set-label "Button click")))

; Show the frame by calling its show method
(send frame show #t)

Programmers never implement the GUI event loop directly. Instead, the system automatically pulls each
event from an internal queue and dispatches the event to an appropriate window. The dispatch invokes
the window’s callback procedure or calls one of the window’s methods. In the above program, the system
automatically invokes the button’s callback procedure whenever the user clicks Click Me.

If a window receives multiple kinds of events, the events are dispatched to methods of the window’s class
instead of to a callback procedure. For example, a drawing canvas receives update events, mouse events,
keyboard events, and sizing events; to handle them, a programmer must derive a new class from the built-in
canvas% class and override the event-handling methods. The following expression extends the frame created
above with a canvas that handles mouse and keyboard events:

; Derive a new canvas (a generic drawing window) class to handle events
1To run the example, type it into DrScheme’s top window and click the Execute button. (The current language in DrScheme

should be MrEd Debug.) Alternatively, save the program to a file using your favorite text editor, and then load it into MrEd
via the Load File menu item.

4

2. Windowing Toolbox Overview 2.1. Core Windowing Classes

(define my-canvas%
(class canvas% ; The base class is canvas%

(frame) ; one extra argument, frame, is provided to make-object
(override
; Method to handle mouse events
[on-event (lambda (event) (send msg set-label "Canvas mouse"))]
; Method to handle keyboard events
[on-char (lambda (event) (send msg set-label "Canvas keyboard"))])

; Call the superclass initialization, providing frame
(sequence (super-init frame))))

; Make a canvas that handles events in the frame
(make-object my-canvas% frame)

(It may be neceesary to enlarge the frame to see the new canvas.) Moving the cursor over the canvas calls
the canvas’s on-event method with an object representing a motion event. Clicking on the canvas calls
on-event. While the canvas has the keyboard focus, typing on the keyboard invokes the canvas’s on-char
method.

The system dispatches GUI events sequentially; that is, after invoking an event-handling callback or method,
the system waits until the handler returns before dispatching the next event. To illustrate the sequential
nature of events, we extend the frame again, adding a Pause button:

(make-object button% "Pause" frame (lambda (button event) (sleep 5)))

After the user clicks Pause, the entire frame becomes unresponsive for five seconds; the system cannot
dispatch more events until the call to sleep returns. For more information about event dispatching, see
§2.4.

In addition to dispatching events, the GUI classes also handle the graphical layout of windows. Our example
frame demonstrates a simple layout; the frame’s elements are lined up top-to-bottom. In general, a pro-
grammer specifies the layout of a window by assigning each GUI element to a parent container. A vertical
container, such as a frame, arranges its children in a column, and a horizontal container arranges its children
in a row. A container can be a child of another container; for example, to place two buttons side-by-side in
our frame, we create a horizontal panel for the new buttons:

(define panel (make-object horizontal-panel% frame))
(make-object button% "Left" panel

(lambda (button event) (send msg set-label "Left button click")))
(make-object button% "Right" panel

(lambda (button event) (send msg set-label "Right button click")))

For more information about window layout and containers, see §2.2.

2.1 Core Windowing Classes

The fundamental graphical element in MrEd’s windowing toolbox is an area. The following classes implement
the different types of areas in the windowing toolbox:

• Containers — areas that can contain other areas:

– frame% — a frame is a top-level window that the user can move and resize.

5

2.1. Core Windowing Classes 2. Windowing Toolbox Overview

– dialog%— a dialog is a modal top-level window; when a dialog is shown, other top-level windows
are disabled until the dialog is dismissed.

– panel% — a panel is a subcontainer within a container. The toolbox provides two subclasses of
panel%: vertical-panel% and horizontal-panel%.

– pane% — a pane is a lightweight panel. It has no graphical representation or event-handling
capabilities. The pane% class has three subclasses: vertical-pane%, horizontal-pane%, and
grow-box-spacer-pane%.

• Containees — areas that must be contained within other areas:

– panel% — a panel is a containee as well as a container.
– pane% — a pane is a containee as well as a container.
– canvas% — a canvas is a subwindow for drawing on the screen.
– editor-canvas% — an editor canvas is a subwindow for displaying a text editor or pasteboard
editor. The editor-canvas% class is documented with the editor classes in §8.

– Controls — containees that the user can manipulate:
∗ message% — a message is a static text field or bitmap with no user interaction.
∗ button% — a button is a clickable control.
∗ check-box%— a check box is a clickable control; the user clicks the control to set or remove
its check mark.

∗ radio-box% — a radio box is a collection of mutually exclusive radio buttons; when the
user clicks a radio button, it is selected and the radio box’s previously selected radio button
is deselected.

∗ choice% — a choice item is a pop-up menu of text choices; the user selects one item in the
control.

∗ list-box%— a list box is a scrollable lists of text choices; the user selects one or more items
in the list (depending on the style of the list box).

∗ text-field% — a text field is a box for simple text entry.
∗ slider% — a slider is a dragable control that selects an integer value within a fixed range.
∗ gauge% — a gauge is a output-only control (the user cannot change the value) for reporting
an integer value within a fixed range.

As suggested by the above listing, certain areas, called containers, manage certain other areas, called
containees. Some areas, such as panels, are both containers and containees.

Most areas are windows, but some are non-windows. A window, such as a panel, has a graphical
representation,2 receives keyboard and mouse events, and can be disabled or hidden. In contrast, a non-
window, such as a pane, is useful only for geomerty management; a non-window does not receive mouse
events, and it cannot be disabled or hidden.

Every area is an instance of the area<%> interface. Each container is also an instance of the
area-container<%> interface, whereas each containee is an instance of subarea<%>. Windows are in-
stances of window<%>. The area-container<%>, subarea<%>, and window<%> interfaces are subinterfaces
of area<%>. Figure 2.1 shows more of the type hierarchy under area<%>.

Figure 2.2 extends the previous figure to show the complete type hierarchy under area<%>.3 To avoid
intersecting lines, the hierarchy is drawn for a cylindrical surface; lines from subarea<%> and subwindow<%>
wrap from the left edge of the diagram to the right edge.

Menu bars, menus, and menu items are graphical elements, but not areas (i.e., they do not have all of the
properties that are common to areas, such as an adjustable graphical size). Instead, the menu classes form

2For a panel, the graphical representation is merely an optional border.
3Some of the types in Figure 2.2 are represented by interfaces, and some types are represented by classes. In principle, every

area type should be represented by an interface, but whenever the windowing toolbox provides a concrete implementation, the
corresponding interface is omitted from the toolbox.

6

2. Windowing Toolbox Overview 2.1. Core Windowing Classes

area<%>
|

| | |
subarea<%> window<%> area-container<%>

| | |
| | | |
subwindow<%> area-container-window<%>

| |
| | |

control<%> canvas<%> top-level-window<%>

Figure 2.1: Core area type hierarchy

area<%>
|

| | |
subarea<%> window<%> area-container<%>

<<< | | | <<<
| | | | | |
subwindow<%> | | | |

<<< | | | | | <<<
| | | | pane% |

control<%> | | | |- horizontal-pane% |
- message%				- vertical-pane%
- button%				
- check-box%	area-container-window<%>			
- slider%				
- gauge%				
- text-field%				
- radio-box%		-------- panel%		
- list-control<%>			- horizontal-panel%	

|- choice% | | |- vertical-panel%
|- list-box% | |

| |- top-level-window<%>
| |- frame%
| |- dialog%

canvas<%>
|- canvas%
|- editor-canvas%

Figure 2.2: Complete area type hierarchy (drawn on a cylinder with wraparound lines)

7

2.2. Geometry Management 2. Windowing Toolbox Overview

menu-item<%> menu-item-container<%>
| |
|- separator-menu-item% |
|- labelled-menu-item<%> | |- menu-bar%

| | |- popup-menu%
| | |
| menu%
|
|- selectable-menu-item<%>

|- menu-item%
|- checkable-menu-item%

Figure 2.3: Menu type hierarchy

a separate container–containee hierarchy:

• Menu Item Containers

– menu-bar% — a menu bar is a top-level collection of menus that are associated with a frame.
– menu% — a menu contains a set of menu items. The menu can appear in a menu bar, in a popup
menu, or as a submenu in another menu.

– popup-menu% — a popup menu is a top-level menu that is dynamically displayed in a canvas or
editor canvas.

• Menu Items

– separator-menu-item% — a separator is an unselectable line in a menu or popup menu.
– menu-item% — a menu item is a selectable text item in a menu. When the item is selected, its
callback procedure is invoked.

– checkable-menu-item% — a checkable menu item is a text item in a menu; the user selects a
checkable menu item to toggle a check mark next to the item.

– menu% — a menu is a menu item as well as a menu item container.

The complete type hierarchy for the menu system is shown in Figure 2.3.

2.2 Geometry Management

MrEd’s geometry management makes it easy to design windows that look right on all platforms, despite
different graphical representations of GUI elements. Geometry management is based on containers; each
container arranges its children based on simple constraints, such as the current size of a frame and the
natural size of a button.

The built-in container classes include horizontal panels (and panes), which align their children in a row,
and vertical panels (and panes), which align their children in a column. By nesting horizontal and vertical
containers, a programmer can achieve most any layout. For example, we can construct a dialog with the
following shape:

Your name:

Cancel Ok

8

2. Windowing Toolbox Overview 2.2. Geometry Management

with the following program:

; Create a dialog
(define dialog (make-object dialog% "Example"))

; Add a text field to the dialog (with a dummy callback procedure)
(make-object text-field% "Your name" dialog void)
; Note: MzScheme’s void procedure accepts any number of arguments

; Add a horizontal panel to the dialog
(define panel (make-object horizontal-panel% dialog))

; Add Cancel and Ok buttons to the horizontal panel
(make-object button% "Cancel" panel void)
(make-object button% "Ok" panel void)

; Change the panel’s alignment to center the buttons
(send panel set-alignment ’center ’center)

; Show the dialog
(send dialog show #t)

Each container arranges its children using the natural size of each child, which usually depends on instan-
tiation parameters of the child, such as the label on a button or the number of choices in a radio box. In
the above example, the dialog stretches horizontally to match the minimum width of the text field, and it
strteches vertically to match the total height of the field and the buttons. The dialog then stretches the
horizontal panel to fill the bottom half of the dialog. Finally, the horizontal panel uses the sum of the
buttons’ minimum widths to center them horizontally.

As the example demonstrates, a stretchable container grows to fill its environment, and it distributes extra
space among its strechable children. By default, panels are stretchable in both directions, whereas buttons
are not stretchable in either direction. The programmer can change whether an individual GUI element is
stretchable.

The following subsections describe the container system in detail, first discussing the attributes of a containee
in §2.2.1, and then describing the attributes of a container in §2.2.2. In addition to the built-in vertical and
horizontal containers, programmers can define new types of containers as discussed in the final subsection,
§2.2.3.

2.2.1 Containees

Each containee, or child, has the following properties:

• a graphical minimum width and a graphical minimum height;

• a requested minimum width and a requested minimum height;

• horizontal and vertical stretchability (on or off); and
• horizontal and vertical margins.

A container arranges its chidlren based on these four properties of each containee. A containee’s parent
container is specified when the containee is created, and the parent cannot be changed. However, a containee
can be hidden or inactive within its parent, as described in §2.2.2.

9

2.2. Geometry Management 2. Windowing Toolbox Overview

The graphical minimum size of a particular containee depends on the platform, the label of the containee
(for a control), and style attributes specified when creating the containee. For example, a button’s minimum
graphical size ensures that the entire text of the label is visible. The graphical minimum size of a control
(such as a button) cannot be changed; it is fixed at creation time.4 The graphical minimum size of a panel
or pane depends on the total minimum size of its children and the way that they are arranged.

To select a size for a containee, its parent container considers the containee’s requested minimum size
rather than its graphical minimum size (assuming the requested minimum is larger than the graphical
minimum). Unlike the graphical minimum, the requested minimum size of a containee can be changed by a
programmer at any time using the min-width and min-height methods.

Unless a containee is stretchable (in a particular direction), it always shrinks to its minimum size (in the
corresponding direction). Otherwise, containees are streched to fill all available space in a container. Each
containee begins with a default stretchability. For example, buttons are not initially stretchable, whereas a
one-line text field is initially stretchable in the horizontal direction. A programmer can change the stretch-
ability of a containee at any time using the stretchable-width and stretchable-height methods.

A margin is whitespace surrounding a containee. Each containee’s margin is independent of its minimum size,
but from the container’s point of view, a margin effectively increases the minimum size of the containee. For
example, if a button has a vertical margin of 2, then the container must allocate enough room to leave two
pixels of whitespace above and below the button, in addition to the space that is allocated for the button’s
minimum height. A programmer can adjust a containee’s margin with horiz-margin and vert-margin.
The default margin is 2 for a control, and 0 for any other type of containee.

In practice, the requested minimum size and margin of a control are rarely changed, although they are often
changed for a canvas. Stretchability is commonly adjusted for any type of containee, depending on the visual
effect desired by the programmer.

2.2.2 Containers

A container has the following properties:

• a list of (active) children containees;
• a requested minimum width and a requested minimum height;

• a spacing used between the children;
• a border margin used around the total set of children;
• horizontal and vertical stretchability (on or off); and
• an alignment setting for positioning leftover whitespace.

These properties are factored into the container’s calculation of its own size and the arrangement of its
children. For a container that is also a containee (e.g., a panel), the container’s requested minimum size and
stretchability are the same as for its containee aspect.

A containee’s parent container is specified when the containee is created, and the parent cannot be changed.
However, a containee window can be hidden or inactive within its parent container:5

• A hidden child is invisible to the user, but space is still allocated for each hidden child within a
container. To hide or show a child, call the child’s show method.

4A control’s minimum size is not recalculated when its label is changed.
5A non-window containee cannot be make hidden or inactive.

10

2. Windowing Toolbox Overview 2.2. Geometry Management

• An inactive child is hidden and ignored by container as it arranges its other children, so no space is
reserved in the container for an inactive child. To make a child active or inactive, call the container’s
add-child or delete-child method (which calls the child’s show method).

When a child is created, it is initially shown and active. An inactive child is subject to garbage collection
when no external reference to the child exists. A list of active children (hidden or not) is available from a
container through its get-children method.

The order of the children in a container’s active list is significant. For example, a vertical panel puts the
first child in its list at the top of the panel, and so on. When a new child is created, it is put at the
end of its container’s list of children. The order of a container’s list can be changed dynamically via the
change-childrenmethod. (The change-childrenmethod can also be used to activate or deactive children.)

The (graphical) minimum size of a container is calculated by combining the minimum sizes of its children
(summing them or taking the maximum, as appropriate to the layout strategy of the container) along with
the spacing and border margins of the container. A larger miniumum may be specified by the programmer
using min-width and min-height methods; when the computed minimum for a container is larger than the
programmer-specified minimum, then the programmer-specified minimum is ignored.

A container’s spacing determines the amount of whitespace left between adjacent children in the container,
in addition to any whitespace required by the children’s margins. A container’s border margin determines
the amount of whitespace to add around the collection of children; it effectively decreases the area within
the container where children can be placed. A programmer can adjust a container’s border and spacing
dynamically via the border and spacing methods. The default border and spacing are 0 for all container
types.

Because a panel or pane is a containee as well as a container, it has a containee margin in addition to its
border margin. For a panel, these margins are not redundant because the panel can have a graphical border;
the border is drawn inside the panel’s containee margin, but outside the panel’s border margin.

For a top-level-window container, such as a frame or dialog, the container’s stretchability determines whether
the user can resize the window to something larger than its minimum size. Thus, the user cannot resize
a frame that is not stretchable. For other types of containers (i.e., panels and panes), the container’s
stretachability is its stretchability as a containee in some other container. All types of containers are initially
stretchable in both directions,6 but a programmer can change the stretchability of an area at any time via
the stretchable-width and stretchable-height methods.

The alignment specification for a container determines how it positions its children when the container has
leftover space. (A container can only have leftover space in a particular direction when none of its children are
stretchable in that direction.) For example, when the container’s horizontal alignment is ’left, the children
are left-aligned in the container and leftover whitespace is accumulated to the right. When the container’s
horizontal alignment is ’center, each child is horizontally centered in the container. A container’s alignment
is changed with the set-alignment method.

2.2.3 Defining New Types of Containers

Although nested horizontal and vertical containers can express most layout patterns, a programmer can define
a new type of container with an explicit layout procedure. A programmer defines a new type of container by
deriving a class from panel% or pane% and overriding the container-size and place-children methods.
The container-size method takes a list of size specifications for each child and returns two values: the
minimum height and width of the container. The place-children method takes the container’s size and a

6Except instances of grow-box-spacer-pane%, which is intended as a lightweight spacer class rather than a useful container
class.

11

2.3. Mouse and Keyboard Events 2. Windowing Toolbox Overview

list of size specifications for each child, and returns a list of sizes and placements (in parallel to the original
list).

A input size specification is a list of four values:

• the child’s minimum width;

• the child’s minimum height;

• the child’s horizontal stretchability (#t means stretchable, #f means not stretchable); and
• the child’s vertical stretchability.

For place-children, an output position and size specification is a list of four values:

• the child’s new horizontal position (relative to the parent);
• the child’s new vertical position;
• the child’s new actual width;
• the child’s new actual height.

The widths and heights for both the input and output include the children’s margins. The returned position
for each child is automatically incremented to account for the child’s margin in placing the control.

2.3 Mouse and Keyboard Events

Whenever the user moves the mouse, clicks or releases a mouse button, or presses a key on the keyboard,
an event is generated for some window. The window that receives the event depends on the current state of
the graphic display:

• The receiving window of a mouse event is usually the window under the cursor when the mouse is
moved or clicked. If the mouse is over a child window, the child window receives the event rather than
its parent.

When the user clicks in a window, the window “grabs” the mouse, so that all mouse events go to that
window until the mouse button is released (regardless of the location of the cursor). As a result, a
user can click on a scrollbar thumb and drag it without keeping the cursor strictly inside the scrollbar
control.

• The receiving window of a keyboard event is the window that owns the keyboard focus at the time
of the event. Only one window owns the focus at any time, and focus ownership is typically displayed
by a window in some manner. For example, a text field control shows focus ownership by displaying a
blinking caret.

Within a top-level window, only certain kinds of subwindows can have the focus, depending on the
conventions of the platform. Furthermore, the subwindow that initially owns the focus is platform-
specific. A user can moves the focus in various ways, usually by clicking the target window. A program
can use the focus method to move the focus to a subwindow or to set the initial focus.

Controls, such as buttons and list boxes, handle keyboard and mouse events automatically, eventually in-
voking the callback procedure that was provided when the control was created. A canvas propagates mouse
and keyboard events to its on-event and on-char methods, respectively.

12

2. Windowing Toolbox Overview 2.4. Event Dispatching and Eventspaces

A mouse and keyboard event is delivered in a special way to its window. Each ancestor of the receiving
window gets a chance to intercept the event through the on-subwindow-event and on-subwindow-char
methods. See the method descriptions for more information.

The default on-subwindow-char method for a top-level window intercepts keyboard events to detect menu-
shortcut events and focus-navigation events. See on-subwindow-char in frame% and on-subwindow-char
in dialog% for details. Certain OS-specific key combinations are captured at a low level, and cannot be
overridden. For example, under Windows and X, pressing and releasing Alt always moves the keyboard
focus to the menu bar. Similarly, Alt-Tab switches to a different application under Windows.7

2.4 Event Dispatching and Eventspaces

A graphical user interface is an inherently multi-threaded system: one thread is the program managing
windows on the screen, and the other thread is the user moving the mouse and typing at the keyboard. GUI
programs typically use an event queue to translate this multi-threaded system into a sequential one, at
least from the programmer’s point of view. Each user action is handled one at a time, ignoring further user
actions until the previous one is completely handled. The conversion from a multi-threaded process to a
single-threaded one greatly simplies the implementation of GUI programs.

Despite the programming convenience provided by a purely sequential event queue, certain situations require
a less rigid dialog with the user:

• Nested event handling: In the process of handling an event, it may be necessary to obtain further
information from the user. Usually, such information is obtained via a modal dialog; in whatever
fashion the input is obtained, more user events must be received and handled before the original event
is completely handled. To allow the further processing of events, the handler for the original event
must explicitly yield to the system. Yielding causes events to be handled in a nested manner, rather
than in a purely sequential manner.

• Asynchronous event handling: An application may consist of windows that represent independent
dialogs with the user. For example, a drawing program might support multiple drawing windows, and
a particularly time-consuming task in one window (e.g., a special filter effect on an image) should
not prevent the user from working in a different window. Such an application needs sequential event
handling for each individual window, but asynchronous (potentially parallel) event handling across
windows. In other words, the application needs a separate event queue for each window, and a separate
event-handling thread for each event queue.

In MrEd, an eventspace is a context for processing GUI events. Each eventspace maintains its own queue
of events, and events in a single eventspace are dispatched sequentially by a designated handler thread. An
event-handling procedure running in this handler thread can yield to the system by calling yield, in which
case other event-handling procedures may be called in a nested (but single-threaded) manner within the
same handler thread. Events from different eventspaces are dispatched asynchronously by separate handler
threads.

When a frame or dialog is created without a parent, it is associated with the current eventspace as described in
§2.4.3. Events for a top-level window and its decendents are always dispatched in the window’s eventspace.
Every dialog is modal; a dialog’s show method implcitly calls yield to handle events while the dialog is
shown. (See also §2.4.2 for information about threads and modal dialogs.) Furthermore, when a modal
dialog is shown, the system disables all other top-level windows in the dialog’s eventspace,8 but windows in

7Alt-Space invokes the system menu under Windows, but this shortcut is implemented by on-system-menu-char, which is
called by on-subwindow-char in frame% and on-subwindow-char in dialog%.

8Disabling a window prevents mouse and keyboard events from reaching the window, but other kinds of events, such as
update events, are still delivered.

13

2.4. Event Dispatching and Eventspaces 2. Windowing Toolbox Overview

other eventspaces are unaffected by the modal dialog.

2.4.1 Event Types and Priorities

In addition to events corresponding to user and windowing actions, such as button clicks, key presses, and
updates, the system dispatches two kinds of internal events: timer events and explicitly queued events.

Timer events are created by instances of timer%. When a timer is started and then expires, the timer
queues an event to call the timer’s notify method. Like a top-level window, each timer is associated with a
particular eventspace (the current eventspace as described in §2.4.3) when it is created, and the timer queues
the event in its eventspace.

Explicitly queued events are created with queue-callback, which accepts a callback procedure to handle
the event. The event is enqueued in the current eventspace at the time of the call to queue-callback, with
either a high or low priority as specified by the (optional) second argument to queue-callback.

An eventspace’s event queue is actually a priority queue with events sorted according to their kind, from
highest-priority (dispatched first) to lowest-priority (dispatched last):

• The highest-priority events are high-priority events installed with queue-callback.

• Timer events have the second-highest priority.
• Graphical events, such as mouse clicks or window updates, have the second-lowest priority.
• The lowest-priority events are low-priority events installed with queue-callback.

Although a programmer has no direct control over the order in which events are dispatched, a programmer
can control the timing of dispatches by setting the event dispatch handler via the event-dispatch-handler
parameter. This parameter and other eventspace procedures are described in more detail in §4.2.

2.4.2 Eventspaces and Threads

When a new eventspace is created, a corresponding handler thread is created for the eventspace. When
the system dispatches an event for an eventspace, it always does so in the eventspace’s handler thread. A
handler procedure can create new threads that run indefinitely, but as long as the handler thread is running
a handler procedure, no new events can be dispatched for the corresponding eventspace.

When a handler thread shows a dialog, the dialog’s show method implicitly calls yield for as long as the
dialog is shown. When a non-handler thread shows a dialog, the non-handler thread simply blocks until
the dialog is dismissed. Calling yield with no arguments from a non-handler thread has no effect. Calling
yield with a semaphore from a non-handler thread is equivalent to calling MzScheme’s semaphore-wait.

2.4.3 Creating and Setting the Eventspace

Whenever a frame, dialog, or timer is created, it is associated with the eventspace specified by the
current-eventspace parameter (see parameters, §9.4 in PLT MzScheme: Language Manual). When the
current-eventspace procedure is called with no arguments, it returns the current eventspace value. When
current-eventspace is called with an eventspace value, it changes the current eventspace to the provided
one.

The make-eventspace procedure creates a new eventspace. The following example creates a new eventspace
and a new frame in the eventspace (the parameterize syntactic form temporary sets a parameter value):

14

2. Windowing Toolbox Overview 2.4. Event Dispatching and Eventspaces

(let ([new-es (make-eventspace)])
(parameterize ([current-eventspace new-es])
(make-object frame% "Example")))

When an eventspace is created, it is placed under the management of the current custodian (see parameters,
§9.4 in PLT MzScheme: Language Manual). When a custodian shuts down an eventspace, all frames
and dialogs associated with the eventspace are destroyed (without calling can-close? or on-close in
top-level-window<%>), all timers in the eventspace are stopped, and all enqueued callbacks are removed.
Attempting to create a new window, timer, or explicitly queued event in a shut-down eventspace raises the
exn:misc exception.

2.4.4 Exceptions and Continuation Jumps

Whenever the system dispatches an event, the call to the handler procedure is wrapped so that full continu-
ation jumps are not allowed to escape from the dispatch, and escape continuation jumps are blocked at the
dispatch site. The following block procedure illustrates how the system blocks escape continuation jumps:

(define (block f)
; calls f, returning (void) if f tries to escape
(let ([done? #f])
(let/ec k
(dynamic-wind
void
(lambda () (begin0 (f) (set! done? #t)))
(lambda () (unless done? (k (void))))))))

(block (lambda () 5)) ; => 5
(let/ec k (block (lambda () (k 10)))) ; => void
(let/ec k ((lambda () (k 10))) 11) ; => 10
(let/ec k (block (lambda () (k 10))) 11) ; => 11

Calls to the event dispatch handler are also protected with block.

This blocking of continuation jumps complicates the interaction between with-handlers and yield (or the
default event dispatch handler). For example, in evaluating the expression

(with-handlers ([(lambda (x) #t)
(lambda (x) (error "error during yield"))])

(yield))

the "error during yield" handler is never called, even if a callback procedure invoked by yield raises
an exception. The with-handlers expression installs an exception handler that tries to jump back to the
context of the with-handlers expression before invoking a handler procedure; this jump is blocked by the
dispatch within yield, so "error during yield" is never printed. Exceptions during yield are “handled”
in the sense that control jumps out of the event handler, but yield may dispatch another event rather than
escaping or returning.

The following expression demonstrates a more useful way to handle exceptions within yield:

(let/ec k
(parameterize ([current-exception-handler

(lambda (x)
(error "error during yield")

15

2.4. Event Dispatching and Eventspaces 2. Windowing Toolbox Overview

(k))])
(yield)))

This expression installs an exception handler that prints an error message before trying to escape. Like the
continuation escape associated with with-handlers, the escape to k never succeeds. Nevertheless, if an
exception is raised by an event handler during the call to yield, an error message is printed before control
returns to the event dispatcher within yield.

16

3. Windowing Class Reference

3.1 Class Listing

Windows

area<%>
|

| | |
subarea<%> window<%> area-container<%>

<<< | | | <<<
| | | | | |
subwindow<%> | | | |

<<< | | | | | <<<
| | | | pane% |

control<%> | | | |- horizontal-pane% |
- message%				- vertical-pane%
- button%				
- check-box%	area-container-window<%>			
- slider%				
- gauge%				
- text-field%				
- radio-box%		-------- panel%		
- list-control<%>			- horizontal-panel%	

|- choice% | | |- vertical-panel%
|- list-box% | |

| |- top-level-window<%>
| |- frame%
| |- dialog%

canvas<%>
|- canvas%
|- editor-canvas%

17

3.2. area<%> 3. Windowing Class Reference

Menus

menu-item<%> menu-item-container<%>
| |
|- separator-menu-item% |
|- labelled-menu-item<%> | |- menu-bar%

| | |- popup-menu%
| | |
| menu%
|
|- selectable-menu-item<%>

|- menu-item%
|- checkable-menu-item%

Events

control-event%
|- key-event%
|- mouse-event%
|- event%

Miscellaneous

clipboard<%>
clipboard-client%
cursor%
timer%

3.2 area<%>

An area<%> object is either a window or a windowless container for managing the position and size of other
areas. An area<%> can be a container, a containee, or both. The only areas without a parent are top-level
windows.

get-graphical-min-size

Returns the area’s graphical minimum size as two values: the minimum width and the minimum height (in
pixels).

See §2.2 for more information. Note that the return value does not depend on the area’s min-width and
min-width settings.

- (send an-area get-graphical-min-size) ⇒ two exact integers in [0, 10000]

get-parent

Returns the area’s parent. A top-level window may have no parent (in which case #f is returned), or it may
have another top-level window as its parent.

- (send an-area get-parent) ⇒ area<%> object or #f

18

3. Windowing Class Reference 3.2. area<%>

get-top-level-window

Returns the area’s closest frame or dialog ancestor. For a frame or dialog area, the frame or dialog itself is
returned.

- (send an-area get-top-level-window) ⇒ frame% or dialog% object

min-height

Gets or sets the area’s minimum height for geometry management.

The minimum height is ignored when it is smaller than the area’s minimum graphical height , or when it is
smaller than the height reported by container-size if the area is a container. See §2.2 for more information.

An area’s initial minimum height is its graphical minimum height. See also get-graphical-min-size .

- (send an-area min-height) ⇒ exact integer in [0, 10000]

Returns the current minimum height (in pixels).

- (send an-area min-height h) ⇒ void
h : exact integer in [0, 10000]

Sets the minimum height (in pixels); if h is smaller than the internal hard minimum, an
exn:application:mismatch exception is raised.

min-width

Gets or sets the area’s minimum width (in pixels) for geometry management.

The minimum width is ignored when it is smaller than the area’s minimum graphical width, or when it is
smaller than the width reported by container-size if the area is a container. See §2.2 for more information.

An area’s initial minimum width is its graphical minimum width. See also get-graphical-min-size .

- (send an-area min-width) ⇒ exact integer in [0, 10000]

Returns the current minimum width (in pixels).

- (send an-area min-width w) ⇒ void
w : exact integer in [0, 10000]

Sets the minimum width (in pixels); if w is smaller than the internal hard minimum, an
exn:application:mismatch exception is raised.

stretchable-height

Gets or sets the area’s vertical stretchability for geometry management. See §2.2 for more information.

- (send an-area stretchable-height) ⇒ boolean

Returns the current vertical stretchability.

- (send an-area stretchable-height stretch?) ⇒ void
stretch? : boolean

Sets the vertical stretchability.

19

3.3. area-container<%> 3. Windowing Class Reference

stretchable-width

Gets or sets the area’s horizontal stretchability for geometry management. See §2.2 for more information.

- (send an-area stretchable-width) ⇒ boolean

Returns the current horizontal stretchability.

- (send an-area stretchable-width stretch?) ⇒ void
stretch? : boolean

Sets the horizontal stretchability.

3.3 area-container<%>

Extends: area<%>

A subarea<%> is a container area<%>.

add-child

Add the given subwindow to the set of active children. See also change-children.

- (send an-area-container add-child child) ⇒ void
child : subwindow<%> object

after-new-child

This method is called after a new containee area is created with this area as its container. The new child is
provided as an argument to the method.

- (send an-area-container after-new-child child) ⇒ void
child : subarea<%> object

Does nothing.

begin-container-sequence

Suspends geometry management in the container’s top-level window until end-container-sequence is
called. The begin-container-sequence and end-container-sequence methods are used to bracket a
set of container modifications so that the resulting geometry is computed only once. The commands may be
nested arbitrarily deep.

- (send an-area-container begin-container-sequence) ⇒ void

border

Gets or sets the border margin for the container in pixels. This margin is used as an inset into the panel’s
client area before the locations and sizes of the subareas are computed.

20

3. Windowing Class Reference 3.3. area-container<%>

- (send an-area-container border) ⇒ exact integer in [0, 1000]

Returns the current border margin.

- (send an-area-container border margin) ⇒ void
margin : exact integer in [0, 1000]

Sets the border margin.

change-children

Takes a filter procedure and changes the container’s list of active children. The filter procedure takes a list
of children areas and returns a new list of children areas. The new list must consist of children that were
created as subareas of this area (i.e., change-children cannot be used to change the parent of a subarea).

After the set of active children is changed, the container computes the sets of newly inactive and newly
active children. Newly inactive windows are hidden. Newly active windows are shown.

Since non-window areas cannot be hidden, non-window areas cannot be made inactive. If the filter procedure
removes non-window subareas, an exception is raised and the set of active children is not changed.

- (send an-area-container change-children filter) ⇒ void
filter : procedure of one argument, a list of subarea<%> objects, that returns a list of

subarea<%> objects

container-size

Called to determine the minimum size of a container. See §2.2 for more information.

- (send an-area-container container-size info) ⇒ two exact integers in [0, 10000]
info : list of list containing two exact integers in [0, 10000] and two booleans

delete-child

Removes the given subwindow from the list of active children. See also change-children .

- (send an-area-container delete-child child) ⇒ void
child : subwindow<%> object

end-container-sequence

See begin-container-sequence.

- (send an-area-container end-container-sequence) ⇒ void

get-alignment

Returns the container’s current alignment specification. See set-alignment for more information.

- (send an-area-container get-alignment) ⇒ two symbols

21

3.3. area-container<%> 3. Windowing Class Reference

get-children

Returns a list of the container’s active children. (The active children are the ones currently managed by the
container; inactive children are generally hidden.) The order of the children in the list is significant. For
example, in a vertical panel, the first child in the list is placed at the top of the panel.

- (send an-area-container get-children) ⇒ list of subarea<%> objects

place-children

Called to place the children of a container. See §2.2 for more information.

- (send an-area-container place-children info width height) ⇒ list of list containing four exact inte-
gers in [0, 10000]
info : list of list containing two exact integers in [0, 10000] and two booleans
width : exact integer in [0, 10000]
height : exact integer in [0, 10000]

reflow-container

When a container window is not shown, changes to the container’s set of children do not necessarily trigger
the immediate re-computation of the container’s size and its chidlren’s positions. Instead, the recalculation
is delayed until the container is shown, which avoids redundant computations between a series of changes.
The reflow-container method forces the immediate recalculation of the container’s and its childrens’s sizes
and locations.

Immediately after calling the reflow-containermethod , get-width, get-height, get-x, and get-y report
the correct size and location for the container and its children, even when the container is hidden.

- (send an-area-container reflow-container) ⇒ void

set-alignment

Sets the alignment specification for a container, which determines how it positions its children when the
container has leftover space (when a child was not stretchable in a particular dimension).

When the container’s horizontal alignment is ’left, the children are left-aligned in the container and whites-
pace is inserted to the right. When the container’s horizontal alignment is ’center, each child is horizontally
centered in the container. When the container’s horizontal alignment is ’right, leftover whitespace is in-
serted to the left.

Similarly, a container’s vertical alignment can be ’top, ’center, or ’bottom.

- (send an-area-container set-alignment horiz-align vert-align) ⇒ void
horiz-align : symbol in ’(left center right)
vert-align : symbol in ’(top center bottom)

spacing

Gets or sets the spacing, in pixels, used between subareas in the container. For example, a vertical panel
inserts this spacing between each pair of vertically aligned subaraes (with no extra space at the top or
bottom).

22

3. Windowing Class Reference 3.4. area-container-window<%>

- (send an-area-container spacing) ⇒ exact integer in [0, 1000]

Returns the current spacing.

- (send an-area-container spacing spacing) ⇒ void
spacing : exact integer in [0, 1000]

Sets the spacing.

3.4 area-container-window<%>

Extends: area-container<%>

Extends: window<%>

get-control-font

See set-control-font.

- (send an-area-container-window get-control-font) ⇒ font% object

get-label-font

See set-label-font.

- (send an-area-container-window get-label-font) ⇒ font% object

get-label-position

Returns the current label arrangement for the container. See set-label-position.

- (send an-area-container-window get-label-position) ⇒ symbol in ’(horizontal vertical)

set-control-font

Sets the font for drawing:

• buttons labels,

• check box labels,

• radio button labels,

• choice and list box items,

• text field contents, and

• slider and gauge values (if any)

23

3.5. button% 3. Windowing Class Reference

for newly-created controls within the container.

Only controls and sub-containers created after the call to set-control-font are affected. When a child
container window is created, it inherits the label font setting of its parent.

See also set-label-font.

- (send an-area-container-window set-control-font font) ⇒ void
font : font% object

set-label-font

Sets the font for drawing

• message labels,
• radio box labels (not the individual buttons),
• choice and list box labels (not the selectable items),
• text field labels (not the contents), and
• slider and gauge labels.

in newly-created controls within the container.

Only controls and sub-containers created after the call to set-label-font are affected. When a child
container window is created, it inherits the label font setting of its parent.

See also set-control-font.

- (send an-area-container-window set-label-font return) ⇒ void
return : font% object

set-label-position

Sets the arrangement of labels, ’horizontal (to the left of the control) or ’vertical (above the control),
for radio boxes, choice items, list boxes, text fields, sliders and gauges. Button and check box labels are not
affected.

Only controls and sub-containers created after the call to set-label-position are affected. When a child
container window is created, it inherits the label position setting of its parent. Horizontal label placement
is the default placement for a top-level window.

- (send an-area-container-window set-label-position position) ⇒ void
position : symbol in ’(horizontal vertical)

3.5 button%

Implements: control<%>

24

3. Windowing Class Reference 3.6. canvas<%>

Whenever a button is clicked by the user, the buttons’s callback procedure is invoked. A callback procedure
is provided as an initialization argument when each button is created.

- (make-object button% label parent callback style) ⇒ button% object
label : string or bitmap% object
parent : frame%, dialog%, panel%, or pane% object
callback : procedure of two arguments: a button% object and a control-event% object
style = null : list of symbols in ’(border)

Creates a button with a string or bitmap label. If label is a bitmap, then the bitmap must be valid (see
ok? in bitmap%) and not installed in a bitmap-dc% object; otherwise, an exn:application:mismatch
exception is raised.

If an ampersand (“&”) occurs in label (when label is a string), it is specially parsed; under Windows and
X, the character following an ampersand is underlined in the displayed control to indicate a keyboard
mnemonic. (Under MacOS, mnemonic underlines are not shown.) The underlined mnemonic character
must be a letter or a digit. The user can effectively click the button by typing the mnemonic when
the control’s top-level-window contains the keyboard focus. The user must also hold down the Meta
or Alt key if the keyboard focus is currently in a control that handles normal alphanumeric input. The
ampersand itself is removed from label before it is displayed for the control; a double-ampersand in
label is converted to a single ampersand (with no mnemonic underlining). Mnemonic keyboard events
are handled by on-traverse-char (but not under MacOS).

The callback procedure is called (with the event type ’button) whenever the user clicks the button.

If style includes ’border, the button is drawn with a special border that indicates to the user that it
is the default action button (see on-traverse-char).

set-label

Sets a window’s label. The window’s natural minimum size might be different after the label is changed, but
the window’s mininum size is not recomputed.

See get-label for more information.

- (send a-button set-label label) ⇒ void
label : bitmap% object

Sets the bitmap label for a bitmap button. Since label is a bitmap, the bitmap must be valid (see
ok? in bitmap%) and not installed in a bitmap-dc% object; otherwise, an exn:application:mismatch
exception is raised. The bitmap label is installed only if the control was originally created with a
bitmap label.

- (send a-button set-label l) ⇒ void
l : string or #f

If l is #f, the window’s label is removed.

3.6 canvas<%>

Extends: subwindow<%>

A canvas is a subwindow onto which graphics and text can be drawn. Canvases also receive mouse and
keyboard events.

25

3.6. canvas<%> 3. Windowing Class Reference

To draw onto a canvas, get its device context (see get-dc).

The canvas<%> interface is implemented by two classes:

• canvas% — a canvas for arbitrary drawing and event handling

• editor-canvas% — a canvas for displaying editor<%> objects

get-dc

Gets the canvas’s device context. See dc<%> for more information about drawing.

- (send a-canvas get-dc) ⇒ dc<%> object

min-client-height

Gets or sets the canvas’s minimum height for geometry management, based on the client size rather than
the full size. The client height is obtained or changed via min-height in area<%>, adding or subtracting
border and scrollbar sizes as appropriate.

The minimum height is ignored when it is smaller than the canvas’s minimum graphical height . See §2.2 for
more information.

- (send a-canvas min-client-height) ⇒ exact integer in [0, 10000]

Returns the current minimum client height (in pixels).

- (send a-canvas min-client-height h) ⇒ void
h : exact integer in [0, 10000]

Sets the minimum client height (in pixels).

min-client-width

Gets or sets the canvas’s minimum width for geometry management, based on the canvas’s client size rather
than its full size. The client width is obtained or changed via min-width in area<%>, adding or subtracting
border and scrollbar sizes as appropriate.

The minimum width is ignored when it is smaller than the canvas’s minimum graphical width. See §2.2 for
more information.

- (send a-canvas min-client-width) ⇒ exact integer in [0, 10000]

Returns the current minimum client width (in pixels).

- (send a-canvas min-client-width w) ⇒ void
w : exact integer in [0, 10000]

Sets the minimum client width (in pixels).

on-char

Called when the canvas receives a keyboard event. See also section 2.3 (page 12).

26

3. Windowing Class Reference 3.6. canvas<%>

- (send a-canvas on-char ch) ⇒ void
ch : key-event% object

Does nothing.

on-event

Called when the canvas receives a mouse event. See also section 2.3 (page 12).

- (send a-canvas on-event event) ⇒ void
event : mouse-event% object

Does nothing.

on-paint

Called when the canvas is exposed or resized so that the image in the canvas can be repainted.

When on-paint is called in response to a system expose event and only a portion of the canvas is newly
exposed, any drawing operations performed by on-paint are clipped to the newly-exposed region; however,
the clipping region as reported by get-clipping-region does not change.

- (send a-canvas on-paint) ⇒ void

Does nothing.

on-scroll

Called when the user changes one of the canvas’s manual scrollbars. A scroll-event% argument provides
information about the scroll action.

This method is not called when automatic scrollbars are changed; the on-paint method is called instead.

- (send a-canvas on-scroll event) ⇒ void
event : scroll-event% object

on-tab-in

Called when the keyboard focus enters the canvas via keyboard navigation events. The on-focus method is
also called, as usual for a focus change. When the keyboard focus leaves a canvas due to a navgation event,
only on-focus is called.

See also accept-tab-focus in canvas% and on-traverse-char in top-level-window<%> .

- (send a-canvas on-tab-in) ⇒ void

Does nothing.

popup-menu

Pops up the given popup-menu% object at the specified coordinates (in this window’s coordinates), and
returns after handling an unspecified number of events; the menu may still be popped up when this method

27

3.7. canvas% 3. Windowing Class Reference

returns. If a menu item is selected from the popup-menu, the callback for the menu item is called. (The
eventspace for menu item’s callback is the canvas’s eventspace.)

While the menu is popped up, its target is set to the canvas. See get-popup-target for more information.

- (send a-canvas popup-menu menu x y) ⇒ void
menu : popup-menu% object
x : exact integer in [0, 10000]
y : exact integer in [0, 10000]

The menu is popped up within the window at position (x , y).

warp-pointer

Moves the cursor to the given location on the canvas.

- (send a-canvas warp-pointer x y) ⇒ void
x : exact integer in [0, 10000]
y : exact integer in [0, 10000]

3.7 canvas%

Implements: canvas<%>

A canvas% object is a general-purpose window for drawing and handling events.

- (make-object canvas% parent style) ⇒ canvas% object
parent : frame%, dialog%, panel%, or pane% object
style = null : list of symbols in ’(border vscroll hscroll)

The style argument indicates one or more of the following syles:

– ’border — gives the canvas a thin border
– ’hscroll — enables horizontal scrolling (initially inactive)
– ’vscroll — enables vertical scrolling (initially inactive)

The ’hscroll and ’vscroll styles create a canvas with an initially inactive scrollbar. The scrollbar
is activated with either init-manual-scrollbars or init-auto-scrollbars.

accept-tab-focus

Gets or sets whether tab-focus is enabled for the canvas. When tab-focus is enabled, the canvas can receive
the keyboard focus when the user navigates among a frame or dialog’s controls with the Tab and arrow keys.
By default, tab-focus is disabled.

When tab-focus is enabled for a canvas, Tab, arrow, and Enter keyboard events are consumed by a frame’s
default on-traverse-char method. (In addition, a dialog’s default method consumes Escape key events.)
Otherwise, on-traverse-char allows the keyboard events to be propagated to the canvas.

- (send a-canvas accept-tab-focus) ⇒ boolean

Returns #t if tab-focus is enabled for the canvas, #f otherwise.

28

3. Windowing Class Reference 3.7. canvas%

- (send a-canvas accept-tab-focus on?) ⇒ void
on? : boolean

Enables or disables tab-focus for the canvas.

get-scroll-page

Get the current page step size of a manual scrollbar. The result is 0 if the scrollbar is not active or it is
automatic.

See also init-manual-scrollbars.

- (send a-canvas get-scroll-page which) ⇒ exact integer in [1, 10000]
which : symbol in ’(horizontal vertical)

The which argument is either ’horizontal or ’vertical, indicating whether to get the page step size
of the horizontal or vertical scrollbar, repsectively.

get-scroll-pos

Gets the current value of a manual scrollbar. The result is always 0 if the scrollbar is not active or it is
automatic.

See also init-manual-scrollbars.

- (send a-canvas get-scroll-pos which) ⇒ exact integer in [0, 10000]
which : symbol in ’(horizontal vertical)

The which argument is either ’horizontal or ’vertical, indicating that the value of the horizontal
or vertical scrollbar should be returned, repsectively.

get-scroll-range

Gets the current maximum value of a manual scrollbar. The result is always 0 if the scrollbar is not active
or it is automatic.

See also init-manual-scrollbars.

- (send a-canvas get-scroll-range which) ⇒ exact integer in [0, 10000]
which : symbol in ’(horizontal vertical)

The which argument is either ’horizontal or ’vertical, indicating whether to get the maximum
value of the horizontal or vertical scrollbar, repsectively.

get-view-start

Get the location at which the visible portion of the canvas starts, based on the current values of the horizontal
and vertical scrollbars if they are initialized as automatic (see init-auto-scrollbars). Combined with
get-client-size, an application can efficiently redraw only the visible portion of the canvas. The values
are in pixels.

If the scrollbars are disabled or initialized as manual (see init-manual-scrollbars), the result is 0.

- (send a-canvas get-view-start) ⇒ two exact integers in [0, 10000]

29

3.7. canvas% 3. Windowing Class Reference

get-virtual-size

Gets the size in device units of the scrollable canvas area (as opposed to the client size, which is the area
of the canvas currently visible). This is the same size as the client size (as returned by get-client-size)
unless scrollbars are initialized as automatic (see init-auto-scrollbars).

- (send a-canvas get-virtual-size) ⇒ two exact integers in [0, 10000]

init-auto-scrollbars

Enables and initializes automatic scrollbars for the canvas. A horizontal or vertical scrollbar can be activated
only in a canvas that was created with the ’hscroll or ’vscroll style flag, respectively.

With automatic scrollbars, the programmer specifies the desired virtual size of the canvas, and the scrollbars
are automatically handled to allow the user to scroll around the virtual area.

See also init-manual-scrollbars for information about manual scrollbars. The horizontal and vertical
scrollbars are always either both manual or both automatic, but they are independently enabled. Automatic
scrollbars can be re-initialized as manual, and vice-versa.

- (send a-canvas init-auto-scrollbars horiz-pixels vert-pixels h-value v-value) ⇒ void
horiz-pixels : exact integer in [1, 10000] or #f
vert-pixels : exact integer in [1, 10000] or #f
h-value : real number in [0.0, 1.0]
v-value : real number in [0.0, 1.0]

Initializes the scrollbars and resets the canvas’s virtual size to the given values. If either horiz-pixels or
vert-pixels is #f, the scrollbar is not enabled in the corresponding direction, and the canvas’s virtual
size in that direction is the same as its client size.

The h-value and v-value arguments specify the initial values of the scrollbars as a fraction of the
scrollbar’s range. A 0.0 value initializes the scrollbar to its left/top, while a 1.0 value initializes the
scrollbar to its right/bottom.

See also on-scroll and get-virtual-size.

init-manual-scrollbars

Enables and initializes manual scrollbars for the canvas. A horizontal or vertical scrollbar can be activated
only in a canvas that was created with the ’hscroll or ’vscroll style flag, respectively.

With manual scrollbars, the programmer is responsible for managing all details of the scrollbars, and the
scrollbar state has no effect on the canvas’s virtual size. Instead, the canvas’s virtual size is the same as its
client size.

See also init-auto-scrollbars for information about automatic scrollbars. The horizontal and vertical
scrollbars are always either both manual or both automatic, but they are independently enabled. Automatic
scrollbars can be re-initialized as manual, and vice-versa.

- (send a-canvas init-manual-scrollbars h-length v-length h-page v-page h-value v-value)⇒ void
h-length : exact integer in [0, 10000] or #f
v-length : exact integer in [0, 10000] or #f
h-page : exact integer in [1, 10000]
v-page : exact integer in [1, 10000]

30

3. Windowing Class Reference 3.7. canvas%

h-value : exact integer in [0, 10000]
v-value : exact integer in [0, 10000]

The h-length and v-length arguments specify the length of each scrollbar in scroll steps (i.e., the
maximum value of each scrollbar). If either is #f, the scrollbar is disabled in the corresponding
direction.
The h-page and v-page arguments set the number of scrollbar steps in a page, i.e., the amount moved
when pressing above or below the value indicator in the scrollbar control.
The h-value and v-value arguments specify the initial values of the scrollbars.
If h-value is greater than h-length or v-value is greater than v-length, an exn:application:mismatch
exception is raised. (The page step may be larger than the total size of a scrollbar.)
See also on-scroll and get-virtual-size.

scroll

Sets the values of automatic scrollbars. (This method has no effect on manual scrollbars.)

- (send a-canvas scroll h-value v-value) ⇒ void
h-value : real number in [0.0, 1.0] or #f
v-value : real number in [0.0, 1.0] or #f

If either argument is #f, the scrollbar value is not changed in the corresponding direction.
The h-value and v-value arguments each specify a fraction of the scrollbar’s movement. A 0.0 value
sets the scrollbar to its left/top, while a 1.0 value sets the scrollbar to its right/bottom. A 0.5 value
sets the scrollbar to its middle. In general, if the canvas’s virtual size is v , its client size is c, and (>
v c), then scrolling to p sets the view start to (floor (* p (- v c))).
See also init-auto-scrollbarsand get-view-start.

set-scroll-page

Set the current page step size of a manual scrollbar. (This method has no effect on automatic scrollbars.)

See also init-manual-scrollbars.

- (send a-canvas set-scroll-page which value) ⇒ void
which : symbol in ’(horizontal vertical)
value : exact integer in [1, 10000]

The which argument is either ’horizontal or ’vertical, indicating whether to set the page step size
of the horizontal or vertical scrollbar, repsectively.

set-scroll-pos

Sets the current value of a manual scrollbar. (This method has no effect on automatic scrollbars.)

The value of the canvas’s scrollbar can be changed by the user scrolling, and such changes do not go through
this method; use on-scroll to monitor scrollbar value changes.

See also init-manual-scrollbars and scroll.

- (send a-canvas set-scroll-pos which value) ⇒ void
which : symbol in ’(horizontal vertical)
value : exact integer in [0, 10000]

31

3.8. check-box% 3. Windowing Class Reference

The which argument is either ’horizontal or ’vertical, indicating whether to set the value of the
horizontal or vertical scrollbar set, repsectively.

set-scroll-range

Sets the current maximum value of a manual scrollbar. (This method has no effect on automatic scrollbars.)

See also init-manual-scrollbars.

- (send a-canvas set-scroll-range which value) ⇒ void
which : symbol in ’(horizontal vertical)
value : exact integer in [0, 10000]

The which argument is either ’horizontal or ’vertical, indicating whether to set the maximum
value of the horizontal or vertical scrollbar, repsectively.

3.8 check-box%

Implements: control<%>

A check box is a labelled box which is either checked or unchecked.

Whenever a check box is clicked by the user, the check box’s value is toggled and its callback procedure is
invoked. A callback procedure is provided as an initialization argument when each check box is created.

- (make-object check-box% label parent callback style) ⇒ check-box% object
label : string or bitmap% object
parent : frame%, dialog%, panel%, or pane% object
callback : procedure of two arguments: a check-box% object and a control-event% object
style = null : an empty list of symbols

Creates a check box with a string or bitmap label. If label is a bitmap, then the bitmap
must be valid (see ok? in bitmap%) and not installed in a bitmap-dc% object; otherwise, an
exn:application:mismatch exception is raised.

If an ampersand (“&”) occurs in label (when label is a string), it is specially parsed; under Windows and
X, the character following an ampersand is underlined in the displayed control to indicate a keyboard
mnemonic. (Under MacOS, mnemonic underlines are not shown.) The underlined mnemonic character
must be a letter or a digit. The user can effectively click the check box by typing the mnemonic when
the control’s top-level-window contains the keyboard focus. The user must also hold down the Meta
or Alt key if the keyboard focus is currently in a control that handles normal alphanumeric input. The
ampersand itself is removed from label before it is displayed for the control; a double-ampersand in
label is converted to a single ampersand (with no mnemonic underlining). Mnemonic keyboard events
are handled by on-traverse-char (but not under MacOS).

The callback procedure is called (with the event type ’check) whenever the user clicks the check box.

The style argument is provided for future extensions. Currently, style must be the empty list.

get-value

Gets the state of the check box: #t if it is checked, #f otherwise.

- (send a-check-box get-value) ⇒ boolean

32

3. Windowing Class Reference 3.9. checkable-menu-item%

set-label

Sets a window’s label. The window’s natural minimum size might be different after the label is changed, but
the window’s mininum size is not recomputed.

See get-label for more information.

- (send a-check-box set-label label) ⇒ void
label : bitmap% object

Since label is a bitmap, the bitmap must be valid (see ok? in bitmap%) and not installed in a
bitmap-dc% object; otherwise, an exn:application:mismatch exception is raised. The bitmap label
is installed only if the control was originally created with a bitmap label.

- (send a-check-box set-label l) ⇒ void
l : string or #f

If l is #f, the window’s label is removed.

set-value

Sets the check box’s state. (The control’s callback procedure is not invoked.)

The check box’s state can be changed by the user clicking the control, and such changes do not go through
this method; use the control callback procedure (provided as an initialization argument) to monitor state
changes.

- (send a-check-box set-value state) ⇒ void
state : boolean

If state is #f, the box is unchecked, otherwise it is checked.

3.9 checkable-menu-item%

Implements: selectable-menu-item<%>

A checkable-menu-item% is a string-labelled menu item that maintains a checkmark. Its parent must be
a menu% or popup-menu%. When the user selects the menu item, the item’s checkmark is toggled and its
callback procedure is called.

- (make-object checkable-menu-item% label parent callback shortcut help)⇒ checkable-menu-item%
object
label : string
parent : menu% or popup-menu% object
callback : procedure of two arguments: a menu-item% object and a control-event% object
shortcut = #f : character or #f
help = #f : string or #f

Creates a new menu item in parent . The item is initially shown, appended to the end of its parent,
and unchecked. The callback procedure is called (with the event type ’menu) when the menu item is
selected (either via a menu bar or popup-menu in canvas<%>).
See set-label for information about mnemonic ampersands (“&”) in label .
If shortcut is not #f, the item has a shortcut. See get-shortcut for more information.
If help is not #f, the item has a help string. See get-help-string for more information.

33

3.10. choice% 3. Windowing Class Reference

check

Checks or unchecks the menu item.

A menu item’s check state can be changed by the user selecting the item, and such changes do not go through
this method; use the menu item callback procedure (provided as an initialization argument) to monitor check
state changes.

- (send a-checkable-menu-item check check?) ⇒ void
check? : boolean

is-checked?

Returns #t if the item is checked, #f otherwise.

- (send a-checkable-menu-item is-checked?) ⇒ boolean

3.10 choice%

Implements: list-control<%>

A choice item allows the user to select one string item from a pop-up list of items. Unlike a list box, only
the currently selection is visible until the user pops-up the menu of choices.

Whenever the selection of a choice item is changed by the user, the choice item’s callback procedure is
invoked. A callback procedure is provided as an initialization argument when each choice item is created.

See also list-box%.

- (make-object choice% label choices parent callback style) ⇒ choice% object
label : string or #f
choices : list of strings
parent : frame%, dialog%, panel%, or pane% object
callback : procedure of two arguments: a choice% object and a control-event% object
style = null : an empty list of symbols

Creates a choice item. If label is a string, it is used as the label for the choice item.

If an ampersand (“&”) occurs in label , it is specially parsed; under Windows and X, the character
following an ampersand is underlined in the displayed control to indicate a keyboard mnemonic. (Under
MacOS, mnemonic underlines are not shown.) The underlined mnemonic character must be a letter
or a digit. The user can move the keyboard focus to the choice item by typing the mnemonic when
the control’s top-level-window contains the keyboard focus. The user must also hold down the Meta
or Alt key if the keyboard focus is currently in a control that handles normal alphanumeric input. The
ampersand itself is removed from label before it is displayed for the control; a double-ampersand in
label is converted to a single ampersand (with no mnemonic underlining). Mnemonic keyboard events
are handled by on-traverse-char (but not under MacOS).

The choices list specifies the initial list of user-selectable items for the control. The initial set of choices
determines the control’s minimum graphical width (see §2.2 for more information).
The callback procedure is called (with the event type ’choice) when the user selects a choice item (or
re-selects the currently selected item).

The style argument is provided for future extensions. Currently, style must be the empty list.

34

3. Windowing Class Reference 3.11. clipboard<%>

3.11 clipboard<%>

There is one clipboard<%> object, the-clipboard, which manages the contents of the system-wide clipboard
for cut-and-paste.

Data can be entered into the clipboard in one of two ways: by setting the current clipboard string, or by
installing a clipboard-client% object. When a client is installed, requests for clipboard data are directed
to the client.

Data is always retrived from the clipboard as a string. When retreiving clipboard data, a data type string
speficies the format of the data string. The availability of different clipboard formats is determined by the
current clipboard owner.

get-clipboard-bitmap

Gets the current clipboard contents as a bitmap (Windows, MacOS), returning #f if the clipboard does not
contain a bitmap.

- (send a-clipboard get-clipboard-bitmap time) ⇒ bitmap% object or #f
time : exact integer

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

get-clipboard-client

Gets the current clipboard-owning client, returning #f if the clipboard is not owned by a client.

- (send a-clipboard get-clipboard-client) ⇒ clipboard-client% object or #f

get-clipboard-data

Gets the current clipboard contents in a specific format, returning #f if the clipboard does not contain data
in the requested format.

- (send a-clipboard get-clipboard-data format time) ⇒ string or #f
format : string
time : exact integer

The format string is typically four capital letters. (On the Macinotsh, only four characters for format
are ever used.) For example, "TEXT" is the name of the simple text format. New format names can be
used to communicate application- and platform-specific data formats.

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

get-clipboard-string

Gets the current clipboard contents as simple text, returning #f if the clipboard does not contain any text.

- (send a-clipboard get-clipboard-string time) ⇒ string or #f
time : exact integer

35

3.12. clipboard-client% 3. Windowing Class Reference

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

set-clipboard-bitmap

Changes the current clipboard contents to a bitmap (Windows, MacOS).

- (send a-clipboard set-clipboard-bitmap new-bitmap time) ⇒ void
new-bitmap : bitmap% object
time : exact integer

Sets the clipboard contents to new-bitmap. See section 8.6 (page 152) for a discussion of the time
argument. If time is outside the platform-specific range of times, an exn:application:mismatch
exception is raised.

set-clipboard-client

Changes the clipboard-owning client.

- (send a-clipboard set-clipboard-client new-owner time) ⇒ void
new-owner : clipboard-client% object
time : exact integer

Sets the client to new-owner . See section 8.6 (page 152) for a discussion of the time argument. If time
is outside the platform-specific range of times, an exn:application:mismatch exception is raised.

set-clipboard-string

Changes the current clipboard contents to a text string.

- (send a-clipboard set-clipboard-string new-text time) ⇒ void
new-text : string
time : exact integer

Sets the clipboard contents to new-text . See section 8.6 (page 152) for a discussion of the time argument.
If time is outside the platform-specific range of times, an exn:application:mismatch exception is
raised.

3.12 clipboard-client%

A clipboard-client% object allows a program to take over the clipboard and service requests for clipboard
data. See clipboard<%> for more information.

- (make-object clipboard-client%) ⇒ clipboard-client% object

Creates a clipboard client that supports no data formats.

add-type

Adds a new data format name to the list supported by thw clipboard client.

36

3. Windowing Class Reference 3.13. control<%>

- (send a-clipboard-client add-type format) ⇒ void
format : string

The format string is typically four capital letters. (On the Macinotsh, only four characters for format
are ever used.) For example, "TEXT" is the name of the simple text format. New format names can be
used to communicate application- and platform-specific data formats.

get-data

Called when some process requests clipboard data while this client owns the clipboard. The requested
format is passed to the method, and the result should be a string matching the requested format, or #f if
the request cannot be fulfilled. (Only data format names in the client’s list will be passed to this method;
see also add-type.)

- (send a-clipboard-client get-data format) ⇒ string or #f
format : string

The format string is typically four capital letters. (On the Macinotsh, only four characters for format
are ever used.) For example, "TEXT" is the name of the simple text format. New format names can be
used to communicate application- and platform-specific data formats.

get-types

Returns a list of names that are the data formats supported by the clipboard client.

- (send a-clipboard-client get-types) ⇒ list of strings

on-replaced

Called when a clipboard client is dismissed as the clipboard owner (because the clipboard has be taken by
another client or by an external application).

- (send a-clipboard-client on-replaced) ⇒ void

3.13 control<%>

Extends: subwindow<%>

The control<%> interface is implemented by the built-in control window classes:

• message%
• button%
• check-box%
• slider%
• gauge%
• text-field%
• radio-box%
• choice%
• list-box%

37

3.14. control-event% 3. Windowing Class Reference

command

Calls the control’s callback function, passing on the given control-event% object.

- (send a-control command event) ⇒ void
event : control-event% object

3.14 control-event%

Superclass: event%

A control-event% object contains information about a control event. An instance of control-event% is
always provided to a control or menu item callback procedure.

- (make-object control-event% event-type) ⇒ control-event% object
event-type : symbol in ’(button check-box choice list-box list-box-dclick

text-field text-field-enter menu slider radio-box)

The event-type argument is one of the following:

– ’button — for button% clicks
– ’check-box — for check-box% toggles
– ’choice — for choice% item selections
– ’list-box — for list-box% selections and deselections
– ’list-box-dclick — for list-box% double-clicks
– ’text-field — for text-field% changes
– ’text-field-enter — for single-line text-field% Enter event
– ’menu — for selectable-menu-item<%> callbacks
– ’slider — for slider% changes
– ’radio-box — for radio-box% selection changes
– ’menu-popdown — for popup-menu% callbacks (item selected)
– ’menu-popdown-none — for popup-menu% callbacks (no item selected)

This value is extacted out of a control-event% object with the get-event-type method.

get-event-type

Returns the type of the control event. See control-event% for information about each event type symbol.

- (send a-control-event get-event-type) ⇒ symbol in ’(button check-box choice list-box
list-box-dclick text-field text-field-enter menu slider radio-box)

set-event-type

Sets the type of the event. See control-event% for information about each event type symbol.

- (send a-control-event set-event-type type) ⇒ void
type : symbol in ’(button check-box choice list-box list-box-dclick

text-field text-field-enter menu slider radio-box)

38

3. Windowing Class Reference 3.15. cursor%

3.15 cursor%

A cursor is a small bitmap that indicates the location of the mouse pointer. The bitmap image typically
indicates the current mode or meaning of a mouse click at its current location.

A cursor is assigned to each window (or the window may use its parent’s cursor; see set-cursor for more
information), and the pointer image is changed to match the window’s cursor when the pointer is moved
over the window. Each cursor object may be assigned to many windows.

- (make-object cursor% name kind hot-spot-x hot-spot-y) ⇒ cursor% object
name : string
kind = ’unknown : symbol in ’(unknown gif xbm xpm bmp pict)
hot-spot-x = 0 : exact integer in [0, 10000]
hot-spot-y = 0 : exact integer in [0, 10000]

Creates a cursor using a bitmap. The name and kind arguments are the same as for load-file.

The hot-spot-x and hot-spot-y arguments determine the focus point of the cursor within the cursor
image, relative to its top-left corner.

If the cursor is loaded sucessfully, ok? returns #t, otherwise the cursor object cannot be assigned to a
window.

- (make-object cursor% id) ⇒ cursor% object
id : symbol in ’(arrow bullseye cross hand ibeam watch)

Creates a cursor using a stock cursor, specified as one of the follwing:

– ’arrow — the default cursor
– ’bullseye — concentric circles
– ’cross — a crosshair
– ’hand — an open hand
– ’ibeam — a vertical line, indicating that clicks control a text-selection caret
– ’watch— a watch or hourglass, indicating that the user must wait for a computation to complete

ok?

Returns #t if the cursor is can be assigned to a window, #f otherwise.

- (send a-cursor ok?) ⇒ boolean

3.16 dialog%

Implements: top-level-window<%>

A dialog is a top-level window that is modal: while the dialog is shown, all other top-level windows in the
dialog’s eventspace are disabled.

- (make-object dialog% label parent width height x y style) ⇒ dialog% object
label : string
parent = #f : frame% or dialog% object or #f
width = #f : exact integer in [0, 10000] or #f
height = #f : exact integer in [0, 10000] or #f
x = #f : exact integer in [0, 10000] or #f

39

3.16. dialog% 3. Windowing Class Reference

y = #f : exact integer in [0, 10000] or #f
style = null : list of symbols in ’(no-caption resize-border)

The label string is used as the dialog’s title in its title bar. If the dialog’s label is changed (see set-label
), the title bar is updated.

The parent argument can be #f or an existing frame. Under Windows, if parent is an existing frame,
the new dialog is always on top of its parent. Under Windows and X, a dialog is iconized when its
parent is iconized.

If parent is #f, then the eventspace for the new dialog is the current eventspace, as determined by
current-eventspace . Otherwise, parent ’s eventspace is the new dialog’s eventspace.

If the width or height argument is not #f, it specifies an initial size for the dialog (in pixles) assuming
that it is larger than the minimum size, otherwise the minimum size is used. Under Windows and
MacOS (and with some X window managers) dialogs are not resizeable.

If the x or y argument is not #f, it specifies an initial location for the dialog. Otherwise, a location is
selected automatically (tiling frames and dialogs as they are created).

The style flags adjust the appearance of the dialog on some platforms:

– ’no-caption — omits the title bar for the dialog (Windows)
– ’resize-border — adds a resizeable border around the window (Windows) or grow box in the
bottom right corner (MacOS)

Even if the dialog is not shown, a few notification events may be queued for the dialog on creation.
Consequently, the new dialog’s resources (e.g., memory) cannot be reclaimed until some events are
handled, or the dialog’s eventspace is shut down.

on-subwindow-char

Called when this window or a child window receives a keyboard event. The on-subwindow-char method of
the receiver’s top-level window is called first (see get-top-level-window); if the return value is #f, then
the on-subwindow-char method is called for the next child in the path to the receiver, and so on. Finally,
if the receiver’s on-subwindow-char method returns #f, the event is passed on to the receiver’s normal
key-handling mechanism.

BEWARE: The default on-subwindow-char in frame% and on-subwindow-char in dialog% methods con-
sume certain keyboard events (e.g., arrow keys, Enter) used for navigating within the window. Because the
top-level window gets the first chance to handle the keyboard event, some events never reach the “receiver”
child unless the default frame or dialog method is overridden.

- (send a-dialog on-subwindow-char receiver event) ⇒ boolean
receiver : window<%> object
event : key-event% object

Returns the result of

(or (send this on-system-menu-char event)
(send this on-traverse-char event))

show

Shows or hides a window.

The visibility of a window can be changed by the user clicking the window’s close box, for example, , and
such changes do not go through this method; use on-superwindow-show or on-close to monitor visibility
changes.

40

3. Windowing Class Reference 3.17. event%

- (send a-dialog show show?) ⇒ void
show? : boolean

If show? is #f, the window is hidden. Otherwise, the window is shown.

If the window is already shown, it is moved front of other top-level windows. If the window is iconized
(frames only), it is deiconized.

If show? is true, the dialog is shown and all frames (and other dialogs) in the eventspace become
disabled until the dialog is closed. If show? is false, the dialog is hidden and other frames and dialogs
are re-enabled (unless a different, pre-existing dialog is still shown).

3.17 event%

A event% object contains information about a control, keyboard, mouse, or scroll event. See also
control-event%, key-event%, mouse-event%, and scroll-event%.

get-time-stamp

Returns the time, in milliseconds, when the event occurred. This time is compatible with times reported b
yMzScheme’s current-milliseconds procedure.

- (send an-event get-time-stamp) ⇒ exact integer

set-time-stamp

Set the time, in milliseconds, when the event occurred. See also MzScheme’s current-milliseconds.

If the supplied value is outside the platform-specific range of time values, an exn:application:mismatch
exception is raised.

- (send an-event set-time-stamp time) ⇒ void
time : exact integer

3.18 frame%

Implements: top-level-window<%>

A frame is a top-level container window. It has a title bar (which displays the frame’s label), an optional
menu bar, and an optional status line.

Under Windows, both Multiple Document Interface (MDI) and Single Document Interface (SDI) frames are
supported.

- (make-object frame% label parent width height x y style) ⇒ frame% object
label : string
parent = #f : frame% object or #f
width = #f : exact integer in [0, 10000] or #f
height = #f : exact integer in [0, 10000] or #f
x = #f : exact integer in [0, 10000] or #f

41

3.18. frame% 3. Windowing Class Reference

y = #f : exact integer in [0, 10000] or #f
style = null : list of symbols in ’(no-resize-border no-caption no-system-menu mdi-parent

mdi-child)

The label string is displayed in the frame’s title bar. If the frame’s label is changed (see set-label),
the title bar is updated.

The parent argument can be #f or an existing frame. Under Windows, if parent is an existing frame,
the new frame is always on top of its parent. Also, the parent frame may be an MDI parent frame
from a new MDI child frame. Under Windows and X (for many window wanagers), a frame is iconized
when its parent is iconized.

If parent is #f, then the eventspace for the new frame is the current eventspace, as determined by
current-eventspace . Otherwise, parent ’s eventspace is the new frame’s eventspace.

If the width or height argument is not #f, it specifies an initial size for the frame (in pixels) assuming
that it is larger than the minimum size, otherwise the minimum size is used.

If the x or y argument is not #f, it specifies an initial location for the frame. Otherwise, a location is
selected automatically (tiling frames and dialogs as they are created).

The style flags adjust the appearance of the frame on some platforms:

– ’no-resize-border — omits the resizeable border around the window (Windows) or grow box
in the bottom right corner (MacOS)

– ’no-caption — omits the title bar for the frame (Windows)
– ’no-system-menu — omits the system menu (Windows)
– ’mdi-child — creates the frame as a MDI (multiple document interface) child frame, mutually
exclsuive with ’mdi-parent (Windows)

– ’mdi-parent— creates the frame as a MDI (multiple document interface) parent frame, mutually
exclsuive with ’mdi-child (Windows)

If the ’mdi-child style is specified, the parent must be a frame with the ’mdi-parent style, otherwise
an exn:application:mismatch exception is raised.

Even if the frame is not shown, a few notification events may be queued for the frame on creation.
Consequently, the new frame’s resources (e.g., memory) cannot be reclaimed until some events are
handled, or the frame’s eventspace is shut down.

create-status-line

- (send a-frame create-status-line) ⇒ void

Creates a status line at the bottom of the frame. The width of the status line is the whole width of
the frame (adjusted automatically when resizing), and the height and text size are platform-specific.

See also set-status-text.

get-menu-bar

Returns the frame’s menu bar, or #f if none has been created for the frame.

- (send a-frame get-menu-bar) ⇒ menu-bar% object or #f

has-status-line?

Returns #t if the frame’s status line has been created, #f otherwise. See also create-status-line.

- (send a-frame has-status-line?) ⇒ boolean

42

3. Windowing Class Reference 3.18. frame%

iconize

Iconizes or deiconizes the frame. Deiconizing brings the frame to the front. Iconization has no effect under
MacOS.

A frame’s iconization can be changed by the user, and such changes do not go through this method. A
program cannot detect when a frame has been iconized except by polling is-iconized?.

- (send a-frame iconize iconize?) ⇒ void
iconize? : boolean

is-iconized?

Returns #t if the frame is iconized, #f otherwise.

- (send a-frame is-iconized?) ⇒ boolean

maximize

Maximizes or restores the frame under Windows and MacOS; the frame’s show state is not affected. Under
Windows, an iconized frame cannot be maximized or restored.

A window’s maximization can be changed by the user, and such changes do not go through this method; use
on-size to monitor size changes.

- (send a-frame maximize maximize?) ⇒ void
maximize? : boolean

If maximize? is #f, the window is restored, otherwise it is maximized.

on-menu-char

If the frame has a menu bar with keyboard shortcuts, on-menu-char attempts to match the given event to
a menu item. If a match is found, #t is returned, otherwise #f is returned.

When the match corresponds to a complete shortcut combination, the menu item’s callback is called (before
on-menu-char returns). A match may also correspond to a shortcut prefix (under X, when when prefix style
is ’ctl-m; see set-x-shortcut-prefix), in which case the prefix key event is consumed and #t is returned,
but the menu item’s callback is not called until the shortcut is completed (if it is completed).

If the event does not correspond to a complete shortcut combination, the event may be handled anyway if it
correponds to a mnemonic in the menu bar (i.e., an underlined letter in a menu’s title, which is installed by
including an ampersand in the menu’s label). If a mnemonic match is found, the keyboard focus is moved
to the menu bar (selecting the menu with the mnemonic), and #t is returned.

- (send a-frame on-menu-char event) ⇒ boolean
event : key-event% object

on-subwindow-char

Called when this window or a child window receives a keyboard event. The on-subwindow-char method of
the receiver’s top-level window is called first (see get-top-level-window); if the return value is #f, then

43

3.18. frame% 3. Windowing Class Reference

the on-subwindow-char method is called for the next child in the path to the receiver, and so on. Finally,
if the receiver’s on-subwindow-char method returns #f, the event is passed on to the receiver’s normal
key-handling mechanism.

BEWARE: The default on-subwindow-char in frame% and on-subwindow-char in dialog% methods con-
sume certain keyboard events (e.g., arrow keys, Enter) used for navigating within the window. Because the
top-level window gets the first chance to handle the keyboard event, some events never reach the “receiver”
child unless the default frame or dialog method is overridden.

- (send a-frame on-subwindow-char receiver event) ⇒ boolean
receiver : window<%> object
event : key-event% object

Returns the result of

(or (send this on-menu-char event)
(send this on-system-menu-char event)
(send this on-traverse-char event))

set-icon

Sets the large or small icon bitmap for this frame. Future changes to the bitmap do not affect the frame’s
icon.

The icon is used in a platform-specific way:

• Windows — the small icon is used for the frame’s icon (in the top-left) and in the task bar, and the
large icon is used for the Atl-Tab task switcher.

• MacOS — both icons are ignored.

• X — many window managers use the small icon in the same way as Windows, and others use the small
icon when iconifying the frame; the large icon is ignored.

The bitmap for either icon can be any size, but most platforms scale the small bitmap to 16 by 16 pixels
and the large bitmap to 32 by 32 pixels.

If a mask bitmap is not provided, then the entire (rectangular) bitmap is used as an icon.

If a mask bitmap is provided, the mask must be monochrome. In the mask bitmap, use black pixels to
indicate the icon’s region and use white pixels outside the icon’s region. In the icon bitmap, use black pixels
for the region outside the icon.

- (send a-frame set-icon icon mask which) ⇒ void
icon : bitmap% object
mask = #f : bitmap% object
which = ’both : symbol in ’(small large both)

set-status-text

Sets the frame’s status line text and redraws the status line. See also create-status-line.

- (send a-frame set-status-text text) ⇒ void
text : string

44

3. Windowing Class Reference 3.19. gauge%

3.19 gauge%

Implements: control<%>

A gauge is a horizontal or vertical bar for displaying the output value of a bounded integer quantity. Each
guage has an adjustable range, and the gauge’s current value is always between 0 and its range, inclusive.
Use set-value to set the value of the gauge.

- (make-object gauge% label range parent style) ⇒ gauge% object
label : string or #f
range : exact integer in [1, 10000]
parent : frame%, dialog%, panel%, or pane% object
style = ’(horizontal) : list of symbols in ’(horizontal vertical)

If label is a string, it is used as the gauge label; otherwise the gauge does not display a label.

If an ampersand (“&”) occurs in label , it is specially parsed; under Windows and X, the character
following an ampersand is underlined in the displayed control to indicate a keyboard mnemonic. (Under
MacOS, mnemonic underlines are not shown.) The mnemonic is meaningless for a gauge (as far as
on-traverse-char is concerned), but it is supported for consistentcy with other control types. A
programmer may assign a meaning to the mneumonic, e.g., by overriding on-traverse-char.

The range argument is an integer specifying the maximum value of the gauge (inclusive). The minimum
guage value is always 0.

The style list must include either ’horizontal, specifying a horizontal gauge, or ’vertical, specifying
a vertical gauge.

get-range

Returns the range (maximum value) of the gauge.

- (send a-gauge get-range) ⇒ exact integer in [1, 10000]

get-value

Returns the gauge’s current value.

- (send a-gauge get-value) ⇒ exact integer in [0, 10000]

set-range

Sets the range (maximum value) of the gauge.

- (send a-gauge set-range range) ⇒ void
range : exact integer in [1, 10000]

set-value

Sets the gauge’s current value. If the specified value is larger than the gauge’s range, an
exn:application:mismatch exception is raised.

45

3.20. grow-box-spacer-pane% 3. Windowing Class Reference

- (send a-gauge set-value pos) ⇒ void
pos : exact integer in [0, 10000]

3.20 grow-box-spacer-pane%

Superclass: pane%

See pane%.

- (make-object grow-box-spacer-pane% parent) ⇒ grow-box-spacer-pane% object
parent : frame%, dialog%, panel%, or pane% object

3.21 horizontal-pane%

Superclass: pane%

A horizontal pane arranges its subwindows in a single row. See also pane%.

- (make-object horizontal-pane% parent) ⇒ horizontal-pane% object
parent : frame%, dialog%, panel%, or pane% object

3.22 horizontal-panel%

Superclass: panel%

A horizontal panel arranges its subwindows in a single row. See also panel%.

- (make-object horizontal-panel% parent style) ⇒ horizontal-panel% object
parent : frame%, dialog%, panel%, or pane% object
style = null : list of symbols in ’(border)

If the ’border style is specified, the window is created with a thin border (only in this case, the client
size of the panel may be less than its total size).

3.23 key-event%

Superclass: event%

A key-event% object contains information about a key event. Key events are primarily processed by
on-subwindow-char in window<%> and on-char in canvas<%>.

See also section 2.3 (page 12).

- (make-object key-event%) ⇒ key-event% object

get-alt-down

Returns #t if the Option (MacOS) key was down for the event. When the Alt key is pressed in Windows, it
is reported as a Meta press (see get-meta-down).

46

3. Windowing Class Reference 3.23. key-event%

- (send a-key-event get-alt-down) ⇒ boolean

get-control-down

Returns #t if the Control key was down for the event.

- (send a-key-event get-control-down) ⇒ boolean

get-key-code

Gets the virtual key code for the key event. The virtual key code is either a character or a special key
symbol, one of the following:

• ’start
• ’cancel
• ’clear
• ’shift
• ’control
• ’menu
• ’pause
• ’capital
• ’prior
• ’next
• ’end
• ’home
• ’left
• ’up
• ’right
• ’down
• ’select
• ’print
• ’execute
• ’snapshot
• ’insert
• ’help
• ’numpad0
• ’numpad1
• ’numpad2
• ’numpad3
• ’numpad4
• ’numpad5
• ’numpad6
• ’numpad7
• ’numpad8
• ’numpad9
• ’multiply
• ’add
• ’separator
• ’subtract
• ’decimal
• ’divide
• ’f1

47

3.23. key-event% 3. Windowing Class Reference

• ’f2
• ’f3
• ’f4
• ’f5
• ’f6
• ’f7
• ’f8
• ’f9
• ’f10
• ’f11
• ’f12
• ’f13
• ’f14
• ’f15
• ’f16
• ’f17
• ’f18
• ’f19
• ’f20
• ’f21
• ’f22
• ’f23
• ’f24
• ’numlock
• ’scroll

The special key symbols attempt to capture useful keys that have no standard ASCII representation. A few
keys have standard reprsentations that are not obvious:

• #\space — the space bar

• #\return — the Enter or Return key (on all platforms), but not necessarily the Enter key near the
numpad (which is reported as ’numpad-enter if the platform distinguishes the two Enter keys)

• #\tab — the tab key

• #\backspace — the backspace key

• #\rubout — the delete key

If a suitable special key symbol or ASCII representation is not available, #\nul (the null character) is
reported.

- (send a-key-event get-key-code) ⇒ character or symbol

get-meta-down

Returns #t if the Meta (X), Alt (Windows), or Command (MacOS) key was down for the event.

Under MacOS, if a command-key press is combined with a mouse button click, the event is reported as a
right-button click and get-meta-down for the event reports #f.

- (send a-key-event get-meta-down) ⇒ boolean

48

3. Windowing Class Reference 3.23. key-event%

get-shift-down

Returns #t if the Shift key was down for the event.

- (send a-key-event get-shift-down) ⇒ boolean

get-x

Returns the x-position of the mouse at the time of the event, in the target’s window’s (client-area) coordinate
system.

- (send a-key-event get-x) ⇒ real number

get-y

Returns the y-position of the mouse at the time of the event in the target’s window’s (client-area) coordinate
system.

- (send a-key-event get-y) ⇒ real number

set-alt-down

Sets whether the Option (MacOS) key was down for the event. When the Alt key is pressed in Windows, it
is reported as a Meta press (see set-meta-down).

- (send a-key-event set-alt-down down?) ⇒ void
down? : boolean

set-control-down

Sets whether the Control key was down for the event.

- (send a-key-event set-control-down down?) ⇒ void
down? : boolean

set-key-code

Sets the virtual key code for the event, either a character or one of the special symbols listed with
get-key-code.

- (send a-key-event set-key-code code) ⇒ void
code : character or symbol

set-meta-down

Sets whether the Meta (X), Alt (Windows), or Command (MacOS) key was down for the event.

Under MacOS, if a command-key press is combined with a mouse button click, the event is reported as a
right-button click and get-meta-down for the event reports #f.

49

3.24. labelled-menu-item<%> 3. Windowing Class Reference

- (send a-key-event set-meta-down down?) ⇒ void
down? : boolean

set-shift-down

Sets whether the Shift key was down for the event.

- (send a-key-event set-shift-down down?) ⇒ void
down? : boolean

set-x

Sets the x-position of the mouse at the time of the event in the target’s window’s (client-area) coordinate
system.

- (send a-key-event set-x pos) ⇒ void
pos : real number

set-y

Sets the y-position of the mouse at the time of the event in the target’s window’s (client-area) coordinate
system.

- (send a-key-event set-y pos) ⇒ void
pos : real number

3.24 labelled-menu-item<%>

Extends: menu-item<%>

A labelled-menu-item<%> object is a menu-item<%> with a string label (i.e., any menu item other
than a separator). More specifically, it is an instance of either menu-item% (a plain menu item),
checkable-menu-item% (a checkable menu item), or menu% (a submenu).

enable

Enables or disables the menu item. If the item is a submenu (or menu in a menu bar), the entire menu is
disabled, but each submenu item’s is-enabled? method returns #f only if the item is specifically disabled
(in addition to the submenu).

- (send a-labelled-menu-item enable enabled?) ⇒ void
enabled? : boolean

get-help-string

Returns the help string for the menu item, or #f if the item has no help string.

When an item has a help-string , the string may be used to display help information to the user.

50

3. Windowing Class Reference 3.24. labelled-menu-item<%>

- (send a-labelled-menu-item get-help-string) ⇒ string or #f

get-label

Returns the item’s label.

See also set-label and get-plain-label.

- (send a-labelled-menu-item get-label) ⇒ string

get-plain-label

Like get-label, except that ampersands in the label are removed as described in set-label.

- (send a-labelled-menu-item get-plain-label) ⇒ string

is-enabled?

Returns #t if the menu item is enabled, #f otherwise.

See also enable.

- (send a-labelled-menu-item is-enabled?) ⇒ boolean

on-demand

Normally called when the user clicks on the menu bar containing the item (before the user sees any menu
items), just before the popup menu containing the item is popped up, or just before inspecting the menu
bar containing the item for a shortcut key binding.

A on-demand in menu-item-container<%> method can be overridden in such a way that the container does
not call the on-demand method of its items.

- (send a-labelled-menu-item on-demand) ⇒ void

set-help-string

Sets the help string for the menu item. Use #f to remove the help string for an item.

- (send a-labelled-menu-item set-help-string help) ⇒ void
help : string or #f

set-label

Sets the menu item’s label. If the item has a shortcut, the shortcut is not affected.

If the label contains an ampersand (“&”) and the window is a control, the label is parsed specially; under
Windows, the character following an ampersand is underlined in the displayed menu to indicate a keyboard
mnemonic. Pressing and releasing the Alt key switches to menu-selection mode in the menu bar where

51

3.25. list-box% 3. Windowing Class Reference

mnemonic characters are used for navigation. (An Alt combination might select a menu via on-menu-char.)
A double-ampersand in the label is replaced by a literal (non-navigation) ampersand. Under X and MacOS,
ampersands in the label are parsed in the same way as for Windows, but no mnemonic underline is displayed.

An ampersand is always preserved in the label returned by get-label, but never preserved in the label
returned by get-plain-label.

- (send a-labelled-menu-item set-label label) ⇒ void
label : string

3.25 list-box%

Implements: list-control<%>

A list box allows the user to select one or more string items from a scrolling list. A list box is either a single-
selection control (if an item is selected, the previous selection is removed) or a multiple-selection control
(clicking an item toggles the item on or off independently of other selections).

Whenever the user changes the selection in a list box, the list box’s callback procedure is called. A callback
procedure is provided as an initialization argument when each list box is created.

List box items are indexed from 0.

See also choice%.

- (make-object list-box% label choices parent callback style) ⇒ list-box% object
label : string or #f
choices : list of strings
parent : frame%, dialog%, panel%, or pane% object
callback : procedure of two arguments: a list-box% object and a control-event% object
style = ’(single) : list of symbols in ’(single multiple extended)

If label is not #f, it is used as the list box label. Otherwise, the list box will not display its label.

If an ampersand (“&”) occurs in label , it is specially parsed; under Windows and X, the character
following an ampersand is underlined in the displayed control to indicate a keyboard mnemonic. (Under
MacOS, mnemonic underlines are not shown.) The underlined mnemonic character must be a letter
or a digit. The user can move the keyboard focus to the list box by typing the mnemonic when the
control’s top-level-window contains the keyboard focus. The user must also hold down the Meta or
Alt key if the keyboard focus is currently in a control that handles normal alphanumeric input. The
ampersand itself is removed from label before it is displayed for the control; a double-ampersand in
label is converted to a single ampersand (with no mnemonic underlining). Mnemonic keyboard events
are handled by on-traverse-char (but not under MacOS).

The choices list specifies the initial list of items to appear in the list box.

The callback procedure is called when the user changes the list box selection, by either selecting, re-
selecting, deselecting, or double-clicking an item. The type of the even provided to the callback is
’list-box-dclick when the user double-clicks on an item, or ’list-box otherwise.

The style specification must include exactly one of the following:

– ’single — Creates a single-selection list.
– ’multiple—Creates a multiple-selection list where a single click deselects other items and selects
a new item. Use this style for a list when single-selection is common, but multiple selections are
allowed.

52

3. Windowing Class Reference 3.25. list-box%

– ’extended — Creates a multiple-selection list where a single click extends the selection. Use this
style for a list when multiple selections are the rule rather than the exception.

The ’multiple and ’extended styles determine a platform-independent interpretation of unmodified
mouse clicks, but dragging, shift-clicking, control-clicking, etc. have platform-standard interpretations.
Whatever the platform-specific interface, the user can always select disjoint sets of items or deselect
items (and leave no items selected). On some platforms, the user can deselect the (sole) selected item
in a ’single list box.

In addition to the selection style, the style list can include one or more of the following:

– ’always-sb — Creates the vertical scrollbar immediately (otherwise, in Windows, the scrollbar
is not created until it is necessary).

– ’hscroll — Creates a horizontal scrollbar if the item strings are two wide (otherwise the string
items are clipped).

append

Adds a new item to the list of user-selectable items. The current selection is unchanged (unless the list
control is an empty choice control, in which case the new item is selected).

- (send a-list-box append item data) ⇒ void
item : string
data : value

Adds a new item to the list box with an associated “data” object. The data object is not displayed
in the list box; it is provided merely as a convenience for use with get-data, possibly allowing a
programmer to avoid managing a separate item-to-data mapping in addition to the list box control.

- (send a-list-box append item) ⇒ void
item : string

delete

Deletes a choice from the list box. Selected items that are not deleted remain selected, and no other items
are selected.

- (send a-list-box delete n) ⇒ void
n : exact non-negative integer

Deletes the item indexed by n. List box items are indexed from 0. If n is equal to or larger than the
number of items in the control, an exn:application:mismatch exception is raised.

get-data

Returns the data value associated with a list box item, or #f if there is no assciated data. See also append
and set-data.

- (send a-list-box get-data n) ⇒ value
n : exact non-negative integer

Returns the data for the item indexed by n. List box items are indexed from 0. If n is equal to or
larger than the number of choices, an exn:application:mismatch exception is raised.

53

3.25. list-box% 3. Windowing Class Reference

get-first-visible-item

Reports the index of the item currently scrolled to the top of the list box. List box items are indexed from
0.

- (send a-list-box get-first-visible-item) ⇒ exact non-negative integer

get-selections

Returns a list of indicies for all currently selected items. List box items are indexed from 0.

For single-selection lists, the result is always either null or a list containing one number.

- (send a-list-box get-selections) ⇒ list of exact integers

is-selected?

Returns #t if the item matching the specifies index is selected, #f otherwise.

A list box’s selection can be changed by the user clicking the control, and such changes do not go through
this method; use the control callback procedure (provided as an initialization argument) to monitor selection
changes.

- (send a-list-box is-selected? n) ⇒ boolean
n : exact non-negative integer

Returns #t if the item index by n is selected. List box items are indexed from 0. If n is equal to or
larger than the number of choices, an exn:application:mismatch exception is raised.

number-of-visible-items

Returns the maximum number of items in the list box that are visible to the user with the control’s current
size (rounding down if the exact answer is fractional, but returning at least 1).

- (send a-list-box number-of-visible-items) ⇒ exact positive integer

select

Selects or deselects a item. For selection in a single-selection list box, if a different choice is currently selected,
it is automatically deselected. For selection in a multiple-selection list box, other selections are preserved,
unlike set-selection.

A list box’s selection can be changed by the user clicking the control, and such changes do not go through
this method; use the control callback procedure (provided as an initialization argument) to monitor selection
changes.

The control’s callback procedure is not invoked.

- (send a-list-box select n select?) ⇒ void
n : exact non-negative integer
select? = #t : boolean

54

3. Windowing Class Reference 3.26. list-control<%>

If select? is #f, the item indexed by n is deselected; otherwise it is selected. List box items are indexed
from 0. If n is equal to or larger than the number of choices, an exn:application:mismatch exception
is raised.

set

Clears the list box and installs a new list of items.

- (send a-list-box set choices) ⇒ void
choices : list of strings

set-data

Sets the associated data for a list box choice item. See also append.

- (send a-list-box set-data n data) ⇒ void
n : exact non-negative integer
data : value

Sets the associated data for item indexed by n. List box items are indexed from 0. If n is equal to or
larger than the number of choices, an exn:application:mismatch exception is raised.

set-first-visible-item

Scrolls the list box so that the specified item is at the top of the list box display.

A list box’s scroll position can be changed by the user clicking the control, and such changes do not
go through this method. A program cannot detect when the scroll position changes except by polling
get-first-visible-item.

- (send a-list-box set-first-visible-item n) ⇒ void
n : exact non-negative integer

Shows the item indexed by n at the list box’s top. List box items are indexed from 0. If n is equal to
or larger than the number of choices, an exn:application:mismatch exception is raised.

set-string

Changes an item in the list box.

- (send a-list-box set-string n label) ⇒ void
n : exact non-negative integer
label : string

Sets the item indexed by n. List box items are indexed from 0. If n is equal to or larger than the
number of choices, an exn:application:mismatch exception is raised.

3.26 list-control<%>

Extends: control<%>

55

3.26. list-control<%> 3. Windowing Class Reference

A list control gives the user a list of string items to choose from. There are two built-in classes that implement
list-control<%>:

• choice% — presents the list in a popup menu (so the user can choose only one item at a time)

• list-box% — presents the list in a scrolling box, allowing the use to choose one item (if the style
includes ’single) or any number of items

In either case, the set of user-selectable items can be changed dynamically.

append

Adds a new item to the list of user-selectable items. The current selection is unchanged (unless the list
control is an empty choice control, in which case the new item is selected).

- (send a-list-control append item) ⇒ void
item : string

clear

Removes all user-selectable items from the control.

- (send a-list-control clear) ⇒ void

find-string

Finds a user-selectable item matching the given string. If no matching choice is found, #f is returned,
otherwise the index of the matching choice is returned (items are indexed from 0).

- (send a-list-control find-string s) ⇒ exact non-negative integer or #f
s : string

get-number

Returns the number of user-selectable items in the control (which is also one more than the greatest index
in the list control).

- (send a-list-control get-number) ⇒ exact non-negative integer

get-selection

Returns the index of the currently selected item (items are indexed from 0). If the choice item currently
contains no choices or no selections, #f is returned. If multiple selections are allowed and multiple items are
selected, the index of the first selection is returned.

- (send a-list-control get-selection) ⇒ exact non-negative integer or #f

56

3. Windowing Class Reference 3.26. list-control<%>

get-string

Returns the item for the given index (items are indexed from 0). If the provided index is larger than the
greatest index in the list control, an exn:application:mismatch exception is raised.

- (send a-list-control get-string n) ⇒ string or #f
n : exact non-negative integer

get-string-selection

Returns the currently selected item. If the control currently contains no choices, #f is returned. If multiple
selections are allowed and multiple items are selected, the first selection is returned.

- (send a-list-control get-string-selection) ⇒ string or #f

set-selection

Selects the item specified by the given index (items are indexed from 0). If the given index larger than the
greatest index in the list control, an exn:application:mismatch exception is raised.

In a list box control, all other items are deselected, even if multiple selections are allowed in the control. See
also select in list-box%.

The control’s callback procedure is not invoked when this method is called.

The list control’s selection can be changed by the user clicking the control, and such changes do not go
through this method; use the control callback procedure (provided as an initialization argument) to monitor
selection changes.

- (send a-list-control set-selection n) ⇒ void
n : exact non-negative integer

set-string-selection

Selects the item matching that matches the given string. If no match is found in the list control, an
exn:application:mismatch exception is raised.

In a list box control, all oter items are deselected, even if multiple selections are allowed in the control. See
also select in list-box%.

The control’s callback procedure is not invoked when this method is called.

The list control’s selection can be changed by the user clicking the control, and such changes do not go
through this method; use the control callback procedure (provided as an initialization argument) to monitor
selection changes.

- (send a-list-control set-string-selection s) ⇒ void
s : string

57

3.27. menu% 3. Windowing Class Reference

3.27 menu%

Implements: labelled-menu-item<%>

Implements: menu-item-container<%>

A menu% object is a submenu within a menu% or popup-menu%, or as a top-level menu in a menu-bar%.

- (make-object menu% label parent help) ⇒ menu% object
label : string
parent : menu%, popup-menu%, or menu-bar% object
help = #f : string or #f

Creates a new menu with the given label.

If label contains an ampersand (“&”), it is handled specially; under Windows, the character following
an ampersand is underlined in the displayed menu title to indicate a keyboard mnemonic. Pressing and
releasing the Alt key switches to menu-selection mode in the menu bar where mnemonic characters
are used for navigation. An Alt combination might select a specific menu via on-menu-char. A
double-ampersand in label is replaced by a literal (non-navigation) ampersand. Under X and MacOS,
ampersands in the label are parsed in the same way as for Windows, but no mnemonic underline is
displayed.

If help is not #f, the menu has a help string. See get-help-string for more information.

If the menu has the label “Help” in a menu bar, it is treated specially on some platforms. Under X,
the “Help” menu is typically right-aligned in the menu bar (sometimes only if it is the last menu).
Under MacOS, the items of a “Help” menu are folded into the standard help menu. In addition, under
MacOS, if the name of the first item in the “Help” menu starts with “About”, then the menu item is
duplicated as the first item under the Apple menu.

3.28 menu-bar%

Implements: menu-item-container<%>

A menu-bar% object is created for a particular frame% object. A frame can have at most one menu bar; an
exn:application:mismatch exception is raised when a new menu bar is created for a frame that already
has a menu bar.

- (make-object menu-bar% frame) ⇒ menu-bar% object
frame : frame% object

Creates a menu bar in the specified frame. The menu bar is initially empty.

enable

Enables or disables the menu bar (i.e., all of its menus). Each menu’s is-enabled? method returns #f only
if the menu is specifically disabled (in addition to the menu bar).

- (send a-menu-bar enable enable?) ⇒ void
enable? : boolean

58

3. Windowing Class Reference 3.29. menu-item<%>

get-frame

Returns the menu bar’s frame.

- (send a-menu-bar get-frame) ⇒ frame% object

is-enabled?

Returns #t if the menu bar is enabled, #f otherwise.

- (send a-menu-bar is-enabled?) ⇒ boolean

3.29 menu-item<%>

A menu-item<%> object is an element within a menu%, popup-menu%, or menu-bar%. Operations that affect
the parent — such as renaming the item, deleting the item, or adding a check beside the item — are
accomplished via the menu-item<%> object.

A menu item is either a separator-menu-item% object (merely a separator), of an labelled-menu-item<%>
object; the latter is more specifically an instance of either menu-item% (a plain menu item),
checkable-menu-item% (a checkable menu item), or menu% (a submenu).

delete

Removes the item from its parent. If the menu item is already deleted, delete has no effect.

See also restore.

- (send a-menu-item delete) ⇒ void

get-parent

Returns the menu, popup menu, or menu bar containing the item. The parent for a menu item is specified
when the menu item is created, and it cannot be changed.

- (send a-menu-item get-parent) ⇒ menu%, popup-menu%, or menu-bar% object

is-deleted?

Returns #t if the menu item is deleted from its parent, #f otherwise.

- (send a-menu-item is-deleted?) ⇒ boolean

restore

Adds a deleted item back into its parent. The item is always restored to the end of the parent, regardless of
its original position. If the item is not currently deleted, restore has no effect.

- (send a-menu-item restore) ⇒ void

59

3.30. menu-item% 3. Windowing Class Reference

3.30 menu-item%

Implements: selectable-menu-item<%>

A menu-item% is a plain string-labelled menu item. Its parent must be a menu% or popup-menu%. When the
user selects the menu item, its callback procedure is called.

- (make-object menu-item% label parent callback shortcut help) ⇒ menu-item% object
label : string
parent : menu% or popup-menu% object
callback : procedure of two arguments: a menu-item% object and a control-event% object
shortcut = #f : character or #f
help = #f : string or #f

Creates a new menu item in parent . The item is initially shown, appended to the end of its parent. The
callback procedure is called (with the event type ’menu) when the user selects the menu item (either
via a menu bar or popup-menu in canvas<%>).

See set-label for information about mnemonic ampersands (“&”) in label .

If shortcut is not #f, the item has a shortcut. See get-shortcut for more information.

If help is not #f, the item has a help string. See get-help-string for more information.

3.31 menu-item-container<%>

A menu-item-container<%> object is a menu%, popup-menu%, or menu-bar%.

get-items

Returns a list of the items in the menu, popup menu, or menu bar. The order of the items in the returned
list corresponds to the order as the user sees them in the menu or menu bar.

- (send a-menu-item-container get-items) ⇒ list of menu-item<%> objects

on-demand

Called when the user clicks on the container as a menu bar (before the user sees any menu items), just before
the container a as popup menu is popped up, or just before inspecting the menu bar containing the item for
a shortcut key binding.

If the container is not a menu bar or a popup menu, this method is normally called via the on-demand
method of the container’s owning menu bar or popup menu, because the default implementation of the
method chains to the on-demand method of its items. However, the method can be overridden in a container
such that it does not call the on-demand method of its items.

- (send a-menu-item-container on-demand) ⇒ void

3.32 message%

Implements: control<%>

60

3. Windowing Class Reference 3.33. mouse-event%

A message control is a static line of text or a static bitmap. The text or bitmap corresponds to the message’s
label (see set-label).

- (make-object message% label parent style) ⇒ message% object
label : string or bitmap% object
parent : frame%, dialog%, panel%, or pane% object
style = null : an empty list of symbols

Creates a string or bitmap message initally showing message. If message is a bitmap, then the
bitmap must be valid (see ok? in bitmap%) and not installed in a bitmap-dc% object; otherwise,
an exn:application:mismatch exception is raised.

If an ampersand (“&”) occurs in label , it is specially parsed; under Windows and X, the character
following an ampersand is underlined in the displayed control to indicate a keyboard mnemonic. (Under
MacOS, mnemonic underlines are not shown.) The mnemonic is meaningless for a message (as far as
on-traverse-char is concerned), but it is supported for consistentcy with other control types. A
programmer may assign a meaning to the mneumonic, e.g., by overriding on-traverse-char.

The style argument is provided for future extensions. Currently, style must be the empty list.

set-label

Sets a window’s label. The window’s natural minimum size might be different after the label is changed, but
the window’s mininum size is not recomputed.

See get-label for more information.

- (send a-message set-label label) ⇒ void
label : bitmap% object

Sets the bitmap label for a bitmap message. Since label is a bitmap, the bitmap must be valid (see
ok? in bitmap%) and not installed in a bitmap-dc% object; otherwise, an exn:application:mismatch
exception is raised. The bitmap label is installed only if the control was originally created with a
bitmap label.

- (send a-message set-label l) ⇒ void
l : string or #f

If l is #f, the window’s label is removed.

3.33 mouse-event%

Superclass: event%

A mouse-event% object encapsulates a mouse event. Mouse events are primarily processed by
on-subwindow-event in window<%> and on-event in canvas<%>.

See also section 2.3 (page 12).

- (make-object mouse-event% event-type) ⇒ mouse-event% object
event-type : symbol in ’(enter leave left-down left-up middle-down middle-up

right-down right-up motion)

Creates a mouse event for a particular type of event. The event types are:

– ’enter — mouse pointer entered the window

61

3.33. mouse-event% 3. Windowing Class Reference

– ’leave — mouse pointer left the window
– ’left-down — left mouse button pressed
– ’left-up — left mouse button released
– ’middle-down — middle mouse button pressed
– ’middle-up — middle mouse button released
– ’right-down — right mouse button pressed (MacOS: click with command key pressed)
– ’right-up — right mouse button released (MacOS: release with command key pressed)
– ’motion — mouse moved, with or without button(s) pressed

button-changed?

Returns #t if this was a mouse button press or release event, #f otherwise. See also button-up? and
button-down?.

- (send a-mouse-event button-changed? button) ⇒ boolean
button = ’any : symbol in ’(left middle right any)

If button is not ’any, then #t is only returned if it is a release event for a specific button.

button-down?

Returns #t if the event is for a button press, #f otherwise.

- (send a-mouse-event button-down? button) ⇒ boolean
button = ’any : symbol in ’(left middle right any)

If button is not ’any, then #t is only returned if it is a press event for a specific button.

button-up?

Returns #t if the event is for a button release, #f otherwise.

- (send a-mouse-event button-up? button) ⇒ boolean
button = ’any : symbol in ’(left middle right any)

If button is not ’any, then #t is only returned if it is a release event for a specific button.

dragging?

Returns #t if this was a dragging event (motion while a button is pressed), #f otherwise.

- (send a-mouse-event dragging?) ⇒ boolean

entering?

Returns #t if this event is for the mouse entering a window, #f otherwise.

- (send a-mouse-event entering?) ⇒ boolean

62

3. Windowing Class Reference 3.33. mouse-event%

get-alt-down

Returns #t if the Option (MacOS) key was down for the event. When the Alt key is pressed in Windows, it
is reported as a Meta press (see get-meta-down).

- (send a-mouse-event get-alt-down) ⇒ boolean

get-control-down

Returns #t if the Control key was down for the event.

- (send a-mouse-event get-control-down) ⇒ boolean

get-event-type

Returns the type of the event; see mouse-event% for information about each event type. See also
set-event-type .

- (send a-mouse-event get-event-type)⇒ symbol in ’(enter leave left-down left-up middle-down
middle-up right-down right-up motion)

get-left-down

Returns #t if the left mouse button was down (but not pressed) during the event.

- (send a-mouse-event get-left-down) ⇒ boolean

get-meta-down

Returns #t if the Meta (X), Alt (Windows), or Command (MacOS) key was down for the event.

Under MacOS, if a command-key press is combined with a mouse button click, the event is reported as a
right-button click and get-meta-down for the event reports #f.

- (send a-mouse-event get-meta-down) ⇒ boolean

get-middle-down

Returns #t if the middle mouse button was down (but not pressed) for the event. Under MacOS, a middle-
button click is impossible.

- (send a-mouse-event get-middle-down) ⇒ boolean

get-right-down

Returns #t if the right mouse button was down (but not pressed) for the event. Under MacOS, a command-
click combination is treated as a right-button click.

- (send a-mouse-event get-right-down) ⇒ boolean

63

3.33. mouse-event% 3. Windowing Class Reference

get-shift-down

Returns #t if the Shift key was down for the event.

- (send a-mouse-event get-shift-down) ⇒ boolean

get-x

Returns the x-position of the mouse at the time of the event, in the target’s window’s (client-area) coordinate
system.

- (send a-mouse-event get-x) ⇒ real number

get-y

Returns the y-position of the mouse at the time of the event in the target’s window’s (client-area) coordinate
system.

- (send a-mouse-event get-y) ⇒ real number

leaving?

Returns #t if this event is for the mouse leaving a window, #f otherwise.

- (send a-mouse-event leaving?) ⇒ boolean

moving?

Returns #t if this was a moving event (motion while no button is pressed), #f otherwise.

- (send a-mouse-event moving?) ⇒ boolean

set-alt-down

Sets whether the Option (MacOS) key was down for the event. When the Alt key is pressed in Windows, it
is reported as a Meta press (see set-meta-down).

- (send a-mouse-event set-alt-down down?) ⇒ void
down? : boolean

set-control-down

Sets whether the Control key was down for the event.

- (send a-mouse-event set-control-down down?) ⇒ void
down? : boolean

64

3. Windowing Class Reference 3.33. mouse-event%

set-event-type

Sets the type of the event; see mouse-event% for information about each event type. See also get-event-type
.

- (send a-mouse-event set-event-type event-type) ⇒ void
event-type : symbol in ’(enter leave left-down left-up middle-down middle-up

right-down right-up motion)

set-left-down

Sets whether the left mouse button was down (but not pressed) during the event.

- (send a-mouse-event set-left-down down?) ⇒ void
down? : boolean

set-meta-down

Sets whether the Meta (X), Alt (Windows), or Command (MacOS) key was down for the event.

Under MacOS, if a command-key press is combined with a mouse button click, the event is reported as a
right-button click and get-meta-down for the event reports #f.

- (send a-mouse-event set-meta-down down?) ⇒ void
down? : boolean

set-middle-down

Sets whether the middle mouse button was down (but not pressed) for the event. Under MacOS, a middle-
button click is impossible.

- (send a-mouse-event set-middle-down down?) ⇒ void
down? : boolean

set-right-down

Sets whether the right mouse button was down (but not pressed) for the event. Under MacOS, a command-
click combination by the user is treated as a right-button click.

- (send a-mouse-event set-right-down down?) ⇒ void
down? : boolean

set-shift-down

Sets whether the Shift key was down for the event.

- (send a-mouse-event set-shift-down down?) ⇒ void
down? : boolean

65

3.34. pane% 3. Windowing Class Reference

set-x

Sets the x-position of the mouse at the time of the event in the target’s window’s (client-area) coordinate
system.

- (send a-mouse-event set-x pos) ⇒ void
pos : real number

set-y

Sets the y-position of the mouse at the time of the event in the target’s window’s (client-area) coordinate
system.

- (send a-mouse-event set-y pos) ⇒ void
pos : real number

3.34 pane%

Implements: area-container<%>

Implements: subarea<%>

A pane is a both a container and a containee area. It serves only as a geometry management device. A
pane% cannot be hidden or disabled like a panel% object.

A pane% object has a degenerate placement strategy for managing its children; it places them all in the
upper left corner and does not stretch any of them. The horizontal-pane% and vertical-pane% classes
provide useful geometry management.

The grow-box-spacer-pane% is intended for use as a lightweight spacer in the bottom-right corner of
a frame, rather than as a container. Under MacOS, a grow-box-spacer-pane% has the same width
and height as the grow box that is inset into the bottom-right corner of a frame. Under Windows
and X, a grow-box-spacer-pane% has zero width and height. Unlike all other container types, a
grow-box-spacer-pane% is unstretchable by default.

- (make-object pane% parent) ⇒ pane% object
parent : frame%, dialog%, panel%, or pane% object

3.35 panel%

Implements: area-container-window<%>

Implements: subwindow<%>

A panel is a both a container and a containee window. It serves mainly as a geometry management device,
but the ’border creates a container with a border. Unlike a pane% object, a panel% object can be hidden
or disabled.

66

3. Windowing Class Reference 3.36. popup-menu%

A panel% object has a degenerate placement strategy for managing its children; it places them all in the
upper left corner and does not stretch any of them. The horizontal-panel% and vertical-panel% classes
provide useful geometry management.

- (make-object panel% parent style) ⇒ panel% object
parent : frame%, dialog%, panel%, or pane% object
style = null : list of symbols in ’(border)

If the ’border style is specified, the window is created with a thin border (only in this case, the client
size of the panel may be less than its total size).

3.36 popup-menu%

Implements: menu-item-container<%>

A popup-menu% object is created without a parent. Dynamically display a popup-menu% with popup-menu
in canvas<%>.

A popup menu is not a control. A choice% control, however, displays a single value that the user selects
from a popup menu. A choice% control’s popup menu is built into the control, and it is not accessible to
the programmer.

- (make-object popup-menu% title callback) ⇒ popup-menu% object
title = #f : string or #f
callback = (lambda (m e) (void)) : procedure of two arguments: a popup-menu% object and a control-event% objec

If title is not #f, it is used as a displayed title at the top of the popup menu.

If title contains an ampersand (“&”), it is handled specially, the same as for menu% titles. A popup
menu mnemonic is not useful, but it is supported for consistentcy with other menu labels.

The callback procedure is invoked when a popup menu is dismissed. If the popup menu is dis-
missed without an item being selected, callback is given a control-event% object with the event
type ’menu-popdown-none. If the popup menu is dismissed via an item selection, the item’s callback is
invoked first, and then callback is given a control-event% object with the event type ’menu-popdown.

get-popup-target

Returns the context in which the popup menu is currently displayed, or #f if it is not popped up in any
window.

The context is set before the on-demand method is called, and it is not removed until after the popup-menu’s
callback is invoked. (Consequently, it is also set while an item callback is invoked, if the user selected an
item.)

- (send a-popup-menu get-popup-target) ⇒ canvas<%> or editor<%> object or #f

3.37 radio-box%

Implements: control<%>

67

3.37. radio-box% 3. Windowing Class Reference

A radio-box% control allows the user to select one of number of mutually exclusive items. The items are
displayed as a vertical column or horizontal row of labelled radio buttons. Unlike a list-control<%>, the
set of items in a radio-box% cannot be changed dynamically.

Whenever the user changes the selected radio button, the radio box’s callback procedure is invoked. A
callback procedure is provided as an initialization argument when each radio box is created.

- (make-object radio-box% label choices parent callback style) ⇒ radio-box% object
label : string or #f
choices : list of strings or bitmap% objects
parent : frame%, dialog%, panel%, or pane% object
callback : procedure of two arguments: a radio-box% object and a control-event% object
style = ’(vertical) : list of symbols in ’(horizontal vertical)

Creates a radio button set with string or bitmap labels. The choices list specifies the radio button
labels; the list of choices must be homogenous, either all strings or all bitmaps.

If an ampersand (“&”) occurs in label , it is specially parsed; under Windows and X, the character
following an ampersand is underlined in the displayed control to indicate a keyboard mnemonic. (Under
MacOS, mnemonic underlines are not shown.) The underlined mnemonic character must be a letter
or a digit. The user can move the keyboard focus to the radio box by typing the mnemonic when the
control’s top-level-window contains the keyboard focus. The user must also hold down the Meta or
Alt key if the keyboard focus is currently in a control that handles normal alphanumeric input. The
ampersand itself is removed from label before it is displayed for the control; a double-ampersand in
label is converted to a single ampersand (with no mnemonic underlining). Mnemonic keyboard events
are handled by on-traverse-char (but not under MacOS).

Each string in choices can also contain an ampersand, which creates a mnemonic for clicking the
corresponding radio button. As for label , a double ampersand is converted to a single ampersand.

If choices is a list of bitmaps, then the bitmaps must be valid (see ok? in bitmap%) and not installed
in a bitmap-dc% object; otherwise, an exn:application:mismatch exception is raised.

If label is a string, it is used as the label for the radio box. Otherwise, the radio box does not display
its label.

The callback procedure is called (with the event type ’radio-box) when the user changes the radio
button selection.

The style argument must include either ’vertical for a collection of radio buttons vertically arranged,
or ’horizontal for a horizontal arrangement.

enable

Enables or disables a window so that input events are ignored. (Input events include mouse events, keyboard
events, and close-box clicks, but not focus or update events.) When a window is disabled, input events to
its children are also ignored.

The enable state of a window can be changed by enabling a parent window, and such changes do not go
through this method; use on-superwindow-enable to monitor enable state changes.

- (send a-radio-box enable enable?) ⇒ void
enable? : boolean

If enable? is #f, the entire radio box is disabled, otherwise it is enabled.

- (send a-radio-box enable n enable?) ⇒ void
n : exact non-negative integer
enable? : boolean

68

3. Windowing Class Reference 3.37. radio-box%

If enable? is #f, the nth radio button is disabled, otherwise it is enabled (assuming the entire radio
box is enabled). Radio buttons are numbered from 0. If n is equal to or larger than the number of
radio buttons in the radio box, an exn:application:mismatch exception is raised.

get-item-label

Gets the label of a radio button by position. Radio buttons are numbered from 0.

- (send a-radio-box get-item-label n) ⇒ string
n : exact non-negative integer

If n is equal to or larger than the number of radio buttons in the radio box, an
exn:application:mismatch exception is raised.

get-item-plain-label

Like get-item-label, except that the label must be a string and ampersands in the label are removed.

- (send a-radio-box get-item-plain-label n) ⇒ string
n : exact non-negative integer

If n is equal to or larger than the number of radio buttons in the radio box, an
exn:application:mismatch exception is raised.

get-number

Returns the number of radio buttons in the radio box.

- (send a-radio-box get-number) ⇒ exact non-negative integer

get-selection

Gets the position of the selected radio button. Radio buttons are numbered from 0.

- (send a-radio-box get-selection) ⇒ exact non-negative integer

is-enabled?

Returns #t if the window is enabled when all of its ancestors are enabled, #f otherwise.

- (send a-radio-box is-enabled?) ⇒ boolean

Returns #f if the entire radio box is disabled, #t otherwise.

- (send a-radio-box is-enabled? n) ⇒ boolean
n : exact non-negative integer

Returns #f if nth radio button is disabled (independet of disabling the entire radio box), #t otherwse.
Radio buttons are numbered from 0. If n is equal to or larger than the number of radio buttons in the
radio box, an exn:application:mismatch exception is raised.

69

3.38. scroll-event% 3. Windowing Class Reference

set-selection

Sets the selected radio button by position. (The control’s callback procedure is not invoked.) Radio buttons
are numbered from 0.

A radio box’s selection can be changed by the user clicking the control, and such changes do not go through
this method; use the control callback procedure (provided as an initialization argument) to monitor selection
changes.

- (send a-radio-box set-selection n) ⇒ void
n : exact non-negative integer

If n is equal to or larger than the number of radio buttons in the radio box, an
exn:application:mismatch exception is raised.

3.38 scroll-event%

Superclass: event%

A scroll-event% object contains information about a scroll event. An instance of scroll-event% is always
provided to on-scroll.

See get-event-type for a list of the scroll event types.

- (make-object scroll-event%) ⇒ scroll-event% object

get-direction

Gets the identity of the scrollbar that was modified by the event, either the horizontal scrollbar or the vertical
scrollbar, as ’horizontal or ’vertical, respectively. See also set-direction.

- (send a-scroll-event get-direction) ⇒ symbol in ’(horizontal vertical)

get-event-type

Returns the type of the event, one of the following:

• ’top — user clicked a scroll-to-top button

• ’bottom — user clicked a scroll-to-bottom button

• ’line-up — user clicked an arrow to scroll up or left one step

• ’line-down — user clicked an arrow to scroll down or right one step

• ’page-up — user clicked an arrow to scroll up or left one page

• ’page-down — user clicked an arrow to scroll down or right one page

• ’thumb — user dragged the scroll position indicator

- (send a-scroll-event get-event-type) ⇒ symbol in ’(top bottom line-up line-down page-up
page-down thumb)

70

3. Windowing Class Reference 3.39. selectable-menu-item<%>

get-position

Returns the position of the scrollbar after the action triggering the event. See also set-position.

- (send a-scroll-event get-position) ⇒ exact integer in [0, 10000]

set-direction

Sets the identity of the scrollbar that was modified by the event, either the horizontal scrollbar or the vertical
scrollbar, as ’horizontal or ’vertical, respectively. See also get-direction.

- (send a-scroll-event set-direction direction) ⇒ void
direction : symbol in ’(horizontal vertical)

set-event-type

Sets the type of the event. See get-event-type for information about each event type.

- (send a-scroll-event set-event-type type) ⇒ void
type : symbol in ’(top bottom line-up line-down page-up page-down thumb)

set-position

Records the position of the scrollbar after the action triggering the event. (The scrollbar itself is unaffected).
See also get-position.

- (send a-scroll-event set-position position) ⇒ void
position : exact integer in [0, 10000]

3.39 selectable-menu-item<%>

Extends: labelled-menu-item<%>

A selectable-menu-item<%> object is a labelled-menu-item<%> that the user can select. It may also have
a keyboard shortcut; the shortcut is displayed in the menu, and the default on-subwindow-char method in
the menu’s frame dispatches to the menu item when the shortcut key combination is pressed.

command

Invoke’s the menu item’s callback procedure, which is supplied when an instance of menu-item% or
checkable-menu-item% is created.

- (send a-selectable-menu-item command event) ⇒ void
event : control-event% object

get-shortcut

Gets the keyboard shortcut character for the menu item. Under MacOS, this character is always prefixed
with the command modifier. Under Windows, the character is prefixed with the control modifier. Under X,

71

3.40. separator-menu-item% 3. Windowing Class Reference

the modifier depends on the shortcut prefix returned by get-x-shortcut-prefix.

If the menu item has no shortcut, #f is returned.

The shortcut part of a menu item name is not included in the label returned by get-label.

- (send a-selectable-menu-item get-shortcut) ⇒ character or #f

get-x-shortcut-prefix

Returns a symbol that indicates the keyboard prefix used for the menu item’s keyboard shortcut. The
possible values are the following:

• ’meta

• ’alt

• ’ctl

• ’ctl-m

See get-shortcut for more information.

- (send a-selectable-menu-item get-x-shortcut-prefix) ⇒ symbol in ’(meta alt ctl ctl-m)

set-shortcut

Sets the keyboard shortcut character for the menu item. See get-shortcut for more information.

If the shortcut character is set to #f, then menu item has no keyboard shortcut.

- (send a-selectable-menu-item set-shortcut shortcut) ⇒ void
shortcut : character or #f

set-x-shortcut-prefix

Sets a symbol that indicates the keyboard prefix used for the menu item’s keyboard shortcut.

See get-x-shortcut-prefix for more information.

- (send a-selectable-menu-item set-x-shortcut-prefix prefix) ⇒ void
prefix : symbol in ’(meta alt ctl ctl-m)

3.40 separator-menu-item%

Implements: menu-item<%>

A separator is an unselectable line in a menu. Its parent must be a menu% or popup-menu%.

72

3. Windowing Class Reference 3.41. slider%

- (make-object separator-menu-item% parent) ⇒ separator-menu-item% object
parent : menu% or popup-menu% object

Creates a new separator in the menu.

3.41 slider%

Implements: control<%>

A slider object is a panel item with a handle that the user can drag to change the control’s value. Each
slider has a fixed minumum and maximum value.

Whenever the user changes the value of a slider, its callback procedure is invoked. A callback procedure is
provided as an initialization argument when each slider is created.

- (make-object slider% label min-value max-value parent callback init-value style) ⇒ slider%
object
label : string or #f
min-value : exact integer in [-10000, 10000]
max-value : exact integer in [-10000, 10000]
parent : frame%, dialog%, panel%, or pane% object
callback : procedure of two arguments: a slider% object and a control-event% object
init-value = min-value : exact integer in [-10000, 10000]
style = ’(horizontal) : list of symbols in ’(horizontal vertical plain)

If label is a string, it is used as the label for the slider. Otherwise, the slider does not display its label.

If an ampersand (“&”) occurs in label , it is specially parsed; under Windows and X, the character
following an ampersand is underlined in the displayed control to indicate a keyboard mnemonic. (Under
MacOS, mnemonic underlines are not shown.) The underlined mnemonic character must be a letter
or a digit. The user can move the keyboard focus to the slider by typing the mnemonic when the
control’s top-level-window contains the keyboard focus. The user must also hold down the Meta or
Alt key if the keyboard focus is currently in a control that handles normal alphanumeric input. The
ampersand itself is removed from label before it is displayed for the control; a double-ampersand in
label is converted to a single ampersand (with no mnemonic underlining). Mnemonic keyboard events
are handled by on-traverse-char (but not under MacOS).

The min-value and max-value arguments specify the range of the slider, inclusive. The init-value argu-
ment optionally specifies the slider’s initial value. If the sequence [min-value, initial-value, maximum-
value] is not increasing, an exn:application:mismatch exception is raised.

The callback procedure is called (with the event type ’slider) when the user changes the slider’s
value.

The style argument must include either ’vertical for a vertical slider, or ’horizontal for a horizontal
slider. If style includes ’plain, the slider does not display numbers for its range and current value to
the user.

get-value

Gets the current slider value.

- (send a-slider get-value) ⇒ exact integer in [-10000, 10000]

73

3.42. subarea<%> 3. Windowing Class Reference

set-value

Sets the value (and displayed position) of the slider. (The control’s callback procedure is not invoked.)

A slider’s value can be changed by the user clicking the control, and such changes do not go through this
method; use the control callback procedure (provided as an initialization argument) to monitor value changes.

- (send a-slider set-value value) ⇒ void
value : exact integer in [-10000, 10000]

If value is outside the slider’s minimum and maximum range, an exn:application:mismatch exception
is raised.

3.42 subarea<%>

Extends: area<%>

A subarea<%> is a containee area<%>.

horiz-margin

Gets or sets the area’s horizontal margin, which is added both to the right and left, for geometry management.
See §2.2 for more information.

- (send a-subarea horiz-margin) ⇒ exact integer in [0, 1000]

Returns the current horizontal margin.

- (send a-subarea horiz-margin margin) ⇒ void
margin : exact integer in [0, 1000]

Sets the horizontal margin.

vert-margin

Gets or sets the area’s vertical margin, which is added both to the right and left, for geometry management.
See §2.2 for more information.

- (send a-subarea vert-margin) ⇒ exact integer in [0, 1000]

Returns the current vertical margin.

- (send a-subarea vert-margin margin) ⇒ void
margin : exact integer in [0, 1000]

Sets the vertical margin.

3.43 subwindow<%>

Extends: subarea<%>

Extends: window<%>

74

3. Windowing Class Reference 3.44. text-field%

A subwindow<%> is a containee window.

3.44 text-field%

Implements: control<%>

A text-field% object is an editable text field with an optional label displayed in front of it. There are two
text field styles:

• A single line of text is visible, and a special control event is generated when the user presses Enter
(when the text field has the focus) and the event is not handled by the text field’s frame or dialog (see
on-traverse-char in top-level-window<%>).

• Multiple lines of text are visible, and Enter is not handled specially.

Whenever the user changes the content of a text field, its callback procedure is invoked. A callback procedure
is provided as an initialization argument when each text field is created.

The text field is implemented using a text% editor (with an inaccessible display). Thus, whereas text-field%
provides only get-value and set-value to manipulate the text in a text field, the get-editor returns the
field’s editor, which provides a vast collection of methods for more sophisticated operations on the text.

The keymap for the text field’s editor is initialized by calling the current keymap initializer procedure, which
is determined by the current-text-keymap-initializer parameter.

- (make-object text-field% label parent callback init-value style) ⇒ text-field% object
label : string or #f
parent : frame%, dialog%, panel%, or pane% object
callback : procedure of two arguments: a text-field% object and a control-event% object
init-value = "" : string
style = ’(single) : list of symbols in ’(single multiple hscroll)

If label is not #f, it is used as the text field label. Otherwise, the text field will does not display its
label.

If an ampersand (“&”) occurs in label , it is specially parsed; under Windows and X, the character
following an ampersand is underlined in the displayed control to indicate a keyboard mnemonic. (Under
MacOS, mnemonic underlines are not shown.) The underlined mnemonic character must be a letter
or a digit. The user can move the keyboard focus to the text field by typing the mnemonic when the
control’s top-level-window contains the keyboard focus. The user must also hold down the Meta or
Alt key if the keyboard focus is currently in a control that handles normal alphanumeric input. The
ampersand itself is removed from label before it is displayed for the control; a double-ampersand in
label is converted to a single ampersand (with no mnemonic underlining). Mnemonic keyboard events
are handled by on-traverse-char (but not under MacOS).

The callback procedure is called when the user changes the text in the text field or presses the
Enter key (and Enter is not handled by the text field’s frame or dialog; see on-traverse-char
in top-level-window<%>). If the user presses Enter, the type of event passed to the callback is
’text-field-enter, otherwise it is ’text-field.

If init-value is not "", the minimum width of the text item is made wide enough to show init-value.
Otherwise, a built-in default width is selected. For a text field in single-line mode, the minimum height
is set to show one line and only the control’s width is stretchable. For a multiple-line text field, the
minimum height shows three lines of text and is stretchable in both directions.

75

3.45. timer% 3. Windowing Class Reference

The style must contain exactly one of ’single or ’multiple; the former specifies a single-line field and
the latter specifies a multiple-line field. The ’hscroll style applies only to multiple-line fields; when
’hscroll is specified, the field has a horizontal scrollbar and autowrapping is disabled; otherwise, the
field has no horizontal scrollbar and autowrapping is enabled. A multile-line text field always has a
vertical scrollbar.

get-editor

Returns the editor used to implement the text field.

For a text field, the most useful methods of a text% object are the following:

• (send a-text get-text) returns the current text of the editor.

• (send a-text erase) deletes all text from the editor.

• (send a-text insert string) inserts string into the editor at the current caret position.

- (send a-text-field get-editor) ⇒ text% object

get-value

Returns the text currently in the text field.

- (send a-text-field get-value) ⇒ string

set-value

Sets the text currently in the text field. (The control’s callback procedure is not invoked.)

A text field’s value can be changed by the user typing into the control, and such changes do not go through
this method; use the control callback procedure (provided as an initialization argument) to monitor value
changes.

- (send a-text-field set-value val) ⇒ void
val : string

3.45 timer%

A timer% object encapsulates an event-based alarm. To use a timer, derive a new class and override the
notify method to perform the alarm-based action. Start a timer with start and stop it with stop.

Timers have a relatively high priority in the event queue. Thus, if the timer delay is set low enough, repeated
notification for a timer can preempt user activities (which might be directed at stopping the timer). For timers
with relatively short delays, call yield within the notify procedure to allow guranteed event processing.

See §2.4 for more information about event priorities.

- (make-object timer%) ⇒ timer% object

Creates an idle timer (i.e., the timer is not started, so notify will not be called).

76

3. Windowing Class Reference 3.46. top-level-window<%>

interval

Returns the number of millseconds between each timer expiration (when the timer is running).

- (send a-timer interval) ⇒ exact integer in [0, 1000000000]

notify

Called (on an event boundary) when the timer’s alarm expires.

- (send a-timer notify) ⇒ void

start

Starts (or restarts) the timer. If the timer is already running, its alarm time is not changed.

- (send a-timer start m just-once?) ⇒ void
m : exact integer in [0, 1000000000]
just-once? = #f : boolean

The timer’s alarm expires after m milliseconds, at which point notify is called (on an event boundary).
If just-once? is #f, the timer expires every mmilliseconds until the timer is explictly stopped;1 otherwise,
the timer expires only once.

stop

Stops the timer. A stopped timer never calls notify. If the timer has expired but the call to notify has
not yet been dispatched, the call is removed from the event queue.

- (send a-timer stop) ⇒ void

3.46 top-level-window<%>

Extends: area-container-window<%>

A top-level window is either a frame% or dialog% object.

can-close?

Called just before the window might be closed (e.g., by the window manager). If #f is returned, the window
is not closed, otherwise on-close is called and the window is closed (i.e., the window is hidden, like calling
show with #f).

This method is not called by show .

- (send a-top-level-window can-close?) ⇒ boolean

1Actually, the timer expires m milliseconds after notify returns each time

77

3.46. top-level-window<%> 3. Windowing Class Reference

can-exit?

Called for each visible top-level window when the operating system requests that all programs shut down;
for each frame that returns a true value, the frame’s on-exit method is called.

- (send a-top-level-window can-exit?) ⇒ boolean

Calls can-close? and returns the result.

center

Centers the window on the screen if it has no parent. If it has a parent, the window is centered with respect
to its parent’s location.

- (send a-top-level-window center direction) ⇒ void
direction = ’both : symbol in ’(horizontal vertical both)

If direction is ’horizontal, the window is centered horizontally. If direction is ’vertical, the window
is centered vertically. If direction is ’both, the window is centered in both directions.

get-edit-target-object

Like get-edit-target-window, but if an editor canvas had the focus and it also displays an editor, the
editor is returned instead of the canvas. Further, if the editor’s focus is delegated to an embedded editor,
the embedded editor is returned.

See also get-focus-object.

- (send a-top-level-window get-edit-target-object) ⇒ window<%> or editor<%> object or #f

get-edit-target-window

Returns the window that most recently had the keyboard focus, either the top-level window or one of its
currently-shown children. If neither the window nor any of its currectly-shown children has even owned the
keyboard focus, #f is returned.

See also get-focus-window and get-edit-target-object.

- (send a-top-level-window get-edit-target-window) ⇒ window<%> object or #f

get-eventspace

Returns the window’s eventspace.

- (send a-top-level-window get-eventspace) ⇒ eventspace

get-focus-object

Like get-focus-window, but if an editor canvas has the focus and it also displays an editor, the editor
is returned instead of the canvas. Further, if the editor’s focus is delegated to an embedded editor, the
embedded editor is returned.

78

3. Windowing Class Reference 3.46. top-level-window<%>

See also get-edit-target-object.

- (send a-top-level-window get-focus-object) ⇒ window<%> or editor<%> object or #f

get-focus-window

Returns the window that has the keyboard focus, either the top-level window or one of its children. If neither
the window nor any of its children has the focus, #f is returned.

See also get-edit-target-window and get-focus-object.

- (send a-top-level-window get-focus-window) ⇒ window<%> object or #f

move

Moves the window to the given position on the screen.

A window’s position can be changed by the user dragging the window, and such changes do not go through
this method; use on-move to monitor position changes.

- (send a-top-level-window move x y) ⇒ void
x : exact integer in [-10000, 10000]
y : exact integer in [-10000, 10000]

on-activate

Called when a window is activated or deactivated. A top-level window is activated when the keyboard
focus moves from outside the window to the window or one of its children. It is deactivated when the focus
moves back out of the window.

The method’s argument is #t when the window is activated, #f when it is deactivated.

- (send a-top-level-window on-activate active?) ⇒ void
active? : boolean

on-close

Called just before the window is closed (e.g., by the window manager). This method is not called by show .

See also can-close?.

- (send a-top-level-window on-close) ⇒ void

on-exit

Called for each visible top-level window when the operating system requests that all programs shut down.
For each top-level window, this method is called only if the frame’s can-exit? method returns true.

- (send a-top-level-window on-exit) ⇒ void

Calls on-close and then show to hide the window.

79

3.46. top-level-window<%> 3. Windowing Class Reference

on-message

A generic message method, usually called by send-message-to-window.

If the method is invoked by send-message-to-window, then it is invoked in the thread where
send-message-to-window was called (which is possibly not the handler thread of the window’s eventspace).

- (send a-top-level-window on-message message) ⇒ value
message : value

Returns void.

on-system-menu-char

Checks whether the given event pops open the system menu in the top-left corner of the window (Windows
only). If the window’s system menu is opened, #t is returned, otherwise #f is returned.

- (send a-top-level-window on-system-menu-char event) ⇒ boolean
event : key-event% object

on-traverse-char

Attempts to handle the given keyoard event as a navigation event, such as a Tab key event that moves the
keyboard focus. If the event is handled, #t is returned, otherwise #f is returned.

- (send a-top-level-window on-traverse-char event) ⇒ boolean
event : key-event% object

The following rules determine, in order, whether and how event is handled:

– If the window that currently owns the focus specifically handles the event, then #f is returned.
The following describes window types and the keyboard events they specifically handle:
∗ editor-canvas% — tab-exit is disabled (see allow-tab-exit): all keyboard events, except
alphanumeric key events when the Meta (X) or Alt (Windows) key is pressed; when tab-exit is
enabled: all keyboard events except Tab, Enter, Escape, and alphanumeric Meta/Alt events.

∗ canvas% — when tab-focus is disabled (see accept-tab-focus): all keyboard events, except
alphanumeric key events when the Meta (X) or Alt (Windows) key is pressed; when tab-focus
is enabled: no key events

∗ text-field%, ’single style — arrow key events and alphanumeric key events when the Meta
(X) or Alt (Windows) key is not pressed (and all alphanumeric events under MacOS)

∗ text-field%, ’multiple style — all keyboard events, except alphanumeric key events when
the Meta (X) or Alt (Windows) key is pressed

∗ choice% — arrow key events and alphanumeric key events when the Meta (X) or Alt (Win-
dows) key is not pressed

∗ list-box% — arrow key events and alphanumeric key events when the Meta (X) or Alt
(Windows) key is not pressed

– If event is a Tab or arrow key event, the keyboard focus is moved within the window and #t is
returned. Across platforms, the types of windows that accept the keyboard focus via navigation
may vary, but text-field% windows always accept the focus, and message%, gauge%, and panel%
windows never accept the focus.

– If event is an Space key event and the window that currently owns the focus is a button%,
check-box%, or radio-box% object, the event is handled in the same way as a click on the control
and #t is returned.

80

3. Windowing Class Reference 3.47. vertical-pane%

– If event is an Enter key event and the current top-level window contains a border button, the
button’s callback is invoked and #t is returned. (The ’border style for a button% object indicates
to the user that pressing Enter is the same as clicking the button.) If the window does not contain
a border button, #t is returned if the window with the current focus is not a text field or editor
canvas.

– In a dialog, if event is an Escape key event, the event is handled the same as a click on the
dialog’s close box (i.e., the dialog’s can-close? and on-close methods are called, and the dialog
is hidden) and #t is returned.

– If event is an alphanumeric key event and the current top-level window contains a control with
a mnemonic matching the key (which is installed via a label that contains “&”; see get-label
for more information), then the keyboard focus is moved to the matching control. Furthermore,
if the matching control is a button%, check-box%, or radio-box% button, the keyboard event is
handled in the same way as a click on the control.

– Otherwise, #f is returned.

resize

Sets the size of the window (in pixels), but only if the given size is larger than the window’s minimum size.

A window’s size can be changed by the user, and such changes do not go through this method; use on-size
to monitor size changes.

- (send a-top-level-window resize width height) ⇒ void
width : exact integer in [0, 10000]
height : exact integer in [0, 10000]

show

Shows or hides a window.

The visibility of a window can be changed by the user clicking the window’s close box, for example, , and
such changes do not go through this method; use on-superwindow-show or on-close to monitor visibility
changes.

- (send a-top-level-window show show) ⇒ void
show : boolean

If show? is #f, the window is hidden. Otherwise, the window is shown.

If the window is already shown, it is moved front of other top-level windows. If the window is iconized
(frames only), it is deiconized.

3.47 vertical-pane%

Superclass: pane%

A vertical pane arranges its subwindows in a single column. See also pane%.

- (make-object vertical-pane% parent) ⇒ vertical-pane% object
parent : frame%, dialog%, panel%, or pane% object

81

3.48. vertical-panel% 3. Windowing Class Reference

3.48 vertical-panel%

Superclass: panel%

A vertical panel arranges its subwindows in a single column. See also panel%.

- (make-object vertical-panel% parent style) ⇒ vertical-panel% object
parent : frame%, dialog%, panel%, or pane% object
style = null : list of symbols in ’(border)

If the ’border style is specified, the window is created with a thin border (only in this case, the client
size of the panel may be less than its total size).

3.49 window<%>

Extends: area<%>

A window<%> object is an area<%> with a graphical representation that can respond to events.

accept-drop-files

Enables or disables drag-and-drop dropping for the window (on platforms that support drag-and-drop), or
gets the enable state. Dropping is initially disabled. See also on-drop-file .

- (send a-window accept-drop-files) ⇒ boolean

Returns #t if file-dropping is enabled, #f otherwise.

- (send a-window accept-drop-files accept-files?) ⇒ void
accept-files? : boolean

Enables file-dropping if accept-files? is true, disables file-dropping otherwise.

client->screen

Converts local window coordinates to screen coordinates.

- (send a-window client->screen x y) ⇒ two exact integers in [-10000, 10000]
x : exact integer in [-10000, 10000]
y : exact integer in [-10000, 10000]

enable

Enables or disables a window so that input events are ignored. (Input events include mouse events, keyboard
events, and close-box clicks, but not focus or update events.) When a window is disabled, input events to
its children are also ignored.

The enable state of a window can be changed by enabling a parent window, and such changes do not go
through this method; use on-superwindow-enable to monitor enable state changes.

- (send a-window enable enable?) ⇒ void
enable? : boolean

82

3. Windowing Class Reference 3.49. window<%>

If enable? is true, the window is enabled, otherwise it is disabled.

focus

Moves the keyboard focus to the window, relative to its top-level window. If the focus is in the window’s top-
level window, then the focus is immediately moved to this window. Otherwise, the focus is not immediately
moved, but when the window’s top-level window gets the keyboard focus, it is delegated to this window.

See also on-focus.

Note that under X, keyboard focus can move to the menu bar when the user is selecting a menu item.

The current keyboard focus window can be changed by the user, and such changes do not go through this
method; use on-focus to monitor focus changes.

- (send a-window focus) ⇒ void

get-client-size

This gets the interior size of the window. For a container, the interior size is the size available for placing
subwindows (including the border margin). For a canvas, this is the visible drawing area.

The client size is returned as two values: width and height (in pixels).

- (send a-window get-client-size) ⇒ two exact integers in [0, 10000]

get-cursor

Returns the window’s cursor, or #f if this window’s cursor defaults to the parent’s cursor. See set-cursor
for more information.

- (send a-window get-cursor) ⇒ cursor% object or #f

get-height

Returns the window’s total height (in pixels).

See also reflow-container.

- (send a-window get-height) ⇒ exact integer in [0, 10000]

get-label

Gets a window’s label. Control windows generally display their label in some way. Frames and dialogs display
their label as a window title. Panels do not display their label, but the label can be used for identification
purposes. Buttons and check boxes can have bitmap labels (only when they are created with bitmap labels),
but all other windows have string labels.

The label string may contain ampersands (“&”), which serve as keyboard navigation annotations for controls
under Windows and X. The ampersands are not part of the displayed label of a control; instead, ampersands

83

3.49. window<%> 3. Windowing Class Reference

are removed in the displayed label (under all platforms), and any character preceeding an ampersand is
underlined (Windows and X) indicating that the character is a mnemonic for the control. Double ampersands
are converted into a single ampersand (with no displayed underline). See also on-traverse-char.

If the window does not have a label, #f is returned.

- (send a-window get-label) ⇒ string, bitmap% object, or #f

get-plain-label

Like get-label, except that ampersands in the label are removed. If the window’s label is not a string, #f
is returned.

- (send a-window get-plain-label) ⇒ string or #f

get-size

This gets the size of the entire window in pixels, not counting horizontal and vertical margins. (Under X,
this size does not include a title bar or borders for a frame/dialog.) See also get-client-size.

The geometry is returned as two values: width and height (in pixels).

- (send a-window get-size) ⇒ two exact integers in [0, 10000]

get-width

Returns the window’s total width (in pixels).

See also reflow-container.

- (send a-window get-width) ⇒ exact integer in [0, 10000]

get-x

Returns the position of the window’s left edge in its parent’s coordinate system.

See also reflow-container.

- (send a-window get-x) ⇒ exact integer in [-10000, 10000]

get-y

Returns the position of the window’s top edge in its parent’s coordinate system.

See also reflow-container.

- (send a-window get-y) ⇒ exact integer in [-10000, 10000]

84

3. Windowing Class Reference 3.49. window<%>

has-focus?

Indicates whether the window currently has the keyboard focus. See also on-focus.

- (send a-window has-focus?) ⇒ boolean

is-enabled?

Returns #t if the window is enabled when all of its ancestors are enabled, #f otherwise.

- (send a-window is-enabled?) ⇒ boolean

is-shown?

Indicates whether the window is currently shown or not (when all of its ancestors are also shown).

The result is #t if this window is shown when its ancestors are shown, or #f if this window remains hidden
when its ancestors are shown.

- (send a-window is-shown?) ⇒ boolean

on-drop-file

For platforms that support drag-and-drop, this method is called when the user drags a file onto the window.
Drag-and-drop must first be enabled for the window with accept-drop-files.

Under MacOS, when the user double-clicks on a MrEd file or drags a file onto the MrEd icon, the
on-drop-file method of the frontmost frame is called (if drag-and-drop is enabled for that frame).

- (send a-window on-drop-file pathname) ⇒ void
pathname : string

on-focus

Called when a window receives or loses the keyboard focus. If the argument is #t, the keyboard focus was
received, otherwise it was lost.

Note that under X, keyboard focus can move to the menu bar when the user is selecting a menu item.

- (send a-window on-focus on?) ⇒ void
on? : boolean

Does nothing.

on-move

Called when the window is moved. (For windows that are not top-level windows, “moved” means moved
relative to the parent’s top-left corner.) The new position is provided to the method.

- (send a-window on-move x y) ⇒ void
x : exact integer in [-10000, 10000]
y : exact integer in [-10000, 10000]

85

3.49. window<%> 3. Windowing Class Reference

Does nothing.

on-size

Called when the window is resized. The window’s new size (in pixels) is provided to the method. The size
values are for the entire window, not just the client area.

- (send a-window on-size width height) ⇒ void
width : exact integer in [0, 10000]
height : exact integer in [0, 10000]

Does nothing.

on-subwindow-char

Called when this window or a child window receives a keyboard event. The on-subwindow-char method of
the receiver’s top-level window is called first (see get-top-level-window); if the return value is #f, then
the on-subwindow-char method is called for the next child in the path to the receiver, and so on. Finally,
if the receiver’s on-subwindow-char method returns #f, the event is passed on to the receiver’s normal
key-handling mechanism.

BEWARE: The default on-subwindow-char in frame% and on-subwindow-char in dialog% methods con-
sume certain keyboard events (e.g., arrow keys, Enter) used for navigating within the window. Because the
top-level window gets the first chance to handle the keyboard event, some events never reach the “receiver”
child unless the default frame or dialog method is overridden.

- (send a-window on-subwindow-char receiver event) ⇒ boolean
receiver : window<%> object
event : key-event% object

The event argument is the event that was generated for the receiver window. Returns #f.

on-subwindow-event

Called when this window or a child window receives a mouse event. The on-subwindow-event method of
the receiver’s top-level window is called first (see get-top-level-window); if the return value is #f, the
on-subwindow-event method is called for the next child in the path to the receiver, and so on. Finally,
if the receiver’s on-subwindow-event method returns #f, the event is passed on to the receiver’s normal
mouse-handling mechanism.

- (send a-window on-subwindow-event receiver event) ⇒ boolean
receiver : window<%> object
event : mouse-event% object

The event argument is the event that was generated for the receiver window. Returns #f.

on-superwindow-enable

Called via the event queue whenever the enable state of a window has changed, either through a call to the
window’s enable method, or through the enabling/disabling of one of the window’s ancestors. The method’s
argument indicates whether the window is now enabled or not.

86

3. Windowing Class Reference 3.49. window<%>

This method is not called when the window is initially created; it is called only after a change from the
window’s initial enable state. Furthermore, if a enable notification event is queued for the window and it
reverts its enabled state before the event is dispatched, then the dispatch is cancelled.

If the enable state of a window’s ancestor changes while the window is not active (e.g., because it was
removed with delete-child), then no enable events are queued for the inactive window. But if the window
is later re-activated into an enable state that is different from the window’s state when it was de-activated,
then an enable event is immediately queued.

- (send a-window on-superwindow-enable enabled?) ⇒ void
enabled? : boolean

on-superwindow-show

Called via the event queue whenever the visibility of a window has changed, either through a call to the
window’s show, through the showing/hiding of one of the window’s ancestors, or through the activating or
deactivating of the window or its ancestor in a container (e.g., via delete-child). The method’s argument
indicates whether the window is now visible or not.

This method is not called when the window is initially created; it is called only after a change from the
window’s initial visibility. Furthermore, if a show notification event is queued for the window and it reverts
its visibility before the event is dispatched, then the dispatch is cancelled.

- (send a-window on-superwindow-show shown?) ⇒ void
shown? : boolean

refresh

Enqueues an event to repaint the window.

- (send a-window refresh) ⇒ void

screen->client

Converts global coordinates to widnow local coordinates.

- (send a-window screen->client x y) ⇒ two exact integers in [-10000, 10000]
x : exact integer in [-10000, 10000]
y : exact integer in [-10000, 10000]

set-cursor

Sets the window’s cursor. Providing #f instead of a cursor value removes the window’s cursor.

If a window does not have a cursor, it uses the cursor of its parent. Frames and dialogs start with the
standard arrow cursor, and text fields start with an I-beam cursor. All other windows are created without
a cursor.

- (send a-window set-cursor cursor) ⇒ void
cursor : cursor% object or #f

87

3.49. window<%> 3. Windowing Class Reference

set-label

Sets a window’s label. The window’s natural minimum size might be different after the label is changed, but
the window’s mininum size is not recomputed.

See get-label for more information.

- (send a-window set-label l) ⇒ void
l : string or #f

If l is #f, the window’s label is removed.

show

Shows or hides a window.

The visibility of a window can be changed by the user clicking the window’s close box, for example, , and
such changes do not go through this method; use on-superwindow-show or on-close to monitor visibility
changes.

- (send a-window show show?) ⇒ void
show? : boolean

If show? is #f, the window is hidden. Otherwise, the window is shown.

88

4. Windowing Procedures

4.1 Dialogs

These functions get input from the user and/or display messages.

get-choices-from-user

- (get-choices-from-user title message choices parent init-choices style) ⇒ list of exact non-
negative integers or #f
title : string
message : string or #f
choices : list of strings
parent = #f : frame% or dialog% object or #f
init-choices = null : list of exact non-negative integers
style = ’(single) : list of symbols in ’(single multiple extended)

Gets a list box selection from the user via a modal dialog, using parent as the parent window if it is
specified. The dialog’s title is title. The dialog’s list box is labelled with message and initialized by
selecting the items in init-choices.

The style must contain exactly one of ’single, ’multiple, or ’extended. The styles have the same
meaning as for creating a list-box% object. (For the single-selection style, only the last selection in
init-choices matters.)

The result is #f if the user cancels the dialog, the list of selections otherwise.

get-color-from-user

- (get-color-from-user message parent init-color style) ⇒ color% object or #f
message = #f : string or #f
parent = #f : frame% or dialog% object or #f
init-color = #f : color% object or #f
style = null : an empty list of symbols

Lets the user select a color though the platform-specific (modal) dialog, using parent as the parent
window if it is specified. The message string is displayed as a prompt in the dialog if possible. If
init-color is provided, the dialog is initialized to the given color.

The result is #f if the user cancels the dialog, the selected color otherwise.

The style argument is provided for future extensions. Currently, style must be the empty list.

get-file

- (get-file message parent directory filename extension style) ⇒ string or #f
message = #f : string or #f
parent = #f : frame% or dialog% object or #f

89

4.1. Dialogs 4. Windowing Procedures

directory = #f : string or #f
filename = #f : string or #f
extension = #f : string or #f
style = null : an empty list of symbols

Obtains a file pathname from the user via the platform-specific standard (modal) dialog, using parent
as the parent window if it is specified.

The result is #f if the user cancels the dialog, the selected pathname otherwise. The returned pathname
may or may not exist, although the style of the dialog is directed towards selecting existing files.

If directory is not #f, it is used as the starting directory for the file selector (otherwise the starting
directory is chosen automatically in a platform-specific manner, usually based on the current directory
and the user’s interactions in previous calls to get-file and put-file). If filename is not #f, it is
used as the default filename when appropriate.

Under Windows, if extension is not #f, the returned path will use the extension if the user does
not supply one; the extension string should not contain a period. The extension is ignored on other
platforms.

The style argument is provided for future extensions. Currently, style must be the empty list.

get-file-list

Like get-file, except that the user can select multiple files, and the result is either a list of file paths of #f.

- (get-file-list message parent directory filename extension style) ⇒ list of strings or #f
message = #f : string or #f
parent = #f : frame% or dialog% object or #f
directory = #f : string or #f
filename = #f : string or #f
extension = #f : string or #f
style = null : an empty list of symbols

get-font-from-user

- (get-font-from-user message parent init-font style) ⇒ font% object or #f
message = #f : string or #f
parent = #f : frame% or dialog% object or #f
init-font = #f : font% object or #f
style = null : an empty list of symbols

Lets the user select a font though the platform-specific (modal) dialog, using parent as the parent
window if it is specified. The message string is displayed as a prompt in the dialog if possible. If
init-font is provided, the dialog is initialized to the given font.

The result is #f if the user cancels the dialog, the selected font otherwise.

The style argument is provided for future extensions. Currently, style must be the empty list.

get-ps-setup-from-user

- (get-ps-setup-from-user message parent init-setup style) ⇒ ps-setup% object or #f
message = #f : string or #f
parent = #f : frame% or dialog% object or #f
init-setup = #f : ps-setup% object or #f
style = null : an empty list of symbols

90

4. Windowing Procedures 4.1. Dialogs

Lets the user select a PostScript configuration though a (modal) dialog, using parent as the parent
window if it is specified. The message string is displayed as a prompt in the dialog. If init-setup is
provided, the dialog is initialized to the given configuration, otherwise the current configuration from
current-ps-setup is used.

The result is #f if the user cancels the dialog, the selected PostScript configuration otherwise.

The style argument is provided for future extensions. Currently, style must be the empty list.

get-text-from-user

- (get-text-from-user title message parent init-val style) ⇒ string or #f
title : string
message : string or #f
parent = #f : frame% or dialog% object or #f
init-val = "" : string
style = null : an empty list of symbols

Gets a text string from the user via a modal dialog, using parent as the parent window if it is specified.
The dialog’s title is title. The dialog’s text field is labelled with message and initialized to init-val (but
init-val does not determine the size of the dialog).

The result is #f if the user cancels the dialog, the user-provided string otherwise.

The style argument is provided for future extensions. Currently, style must be the empty list.

message-box

- (message-box title message parent style) ⇒ symbol in ’(ok cancel yes no)
title : string
message : string
parent = #f : frame% or dialog% object or #f
style = ’(ok) : list of symbols in ’(ok ok-cancel yes-no)

Displays a message to the user in a (modal) dialog, using parent as the parent window if it is specified.
The dialog’s title is title. The message string can be arbitrarily long, and can contain explicit linefeeds
or carriage returns for breaking lines.

The style must include exactly one of the following:

– ’ok — the dialog only has an “Ok” button and always returns ’ok.
– ’ok-cancel — the message dialog has “Cancel” and “Ok” buttons. If the user clicks “Cancel”,
the result is ’cancel, otherwise the result is ’ok.

– ’yes-no — the message dialog has “Yes” and “No” buttons. If the user clicks “Yes”, the result
is ’yes, otherwise the result is ’no.

put-file

- (put-file message parent directory filename extension style) ⇒ string or #f
message = #f : string or #f
parent = #f : frame% or dialog% object or #f
directory = #f : string or #f
filename = #f : string or #f
extension = #f : string or #f
style = null : an empty list of symbols

Obtains a file pathname from the user via the platform-specific standard (modal) dialog, using parent
as the parent window if it is specified.

91

4.2. Eventspaces 4. Windowing Procedures

The result is #f if the user cancels the dialog, the selected pathname otherwise. The returned pathname
may or may not exist, although the style of the dialog is directed towards creating a new file.

If directory is not #f, it is used as the starting directory for the file selector (otherwise the starting
directory is chosen automatically in a platform-specific manner, usually based on the current directory
and the user’s interactions in previous calls to get-file and put-file). If filename is not #f, it is
used as the default filename when appropriate.

Under Windows, if extension is not #f, the returned path will use the extension if the user does
not supply one; the extension string should not contain a period. The extension is ignored on other
platforms.

The style argument is provided for future extensions. Currently, style must be the empty list.

4.2 Eventspaces

check-for-break

Inspects the event queue of the current eventspace, seaching for a Shift-Ctl-C (X, Windows) or Cmd-.
(MacOS) key combination. Returns #t if such an event was found (and the event is dequeued) or #f
otherwise.

- (check-for-break) ⇒ boolean

current-eventspace

This is a parameter (see parameters, §9.4 in PLT MzScheme: Language Manual) that obtains or sets the
current eventspace.

See section 2.4 (page 13) for more inforamtion about eventspaces.

- (current-eventspace) ⇒ eventspace

Gets the current eventspace.

- (current-eventspace e) ⇒ void
e : eventspace

Sets the current eventspace to e.

event-dispatch-handler

This parameter (see parameters, §9.4 in PLT MzScheme: Language Manual) gets or installs the current
event dispatch handler. The event dispatch handler is called by an eventspace’s handler thread for every
queue-based event to be processed in the eventspace. The only argument to the handler is the eventspace
in which an event should be dispatched. The event dispatch handler gives the programmer control over the
timing of event disptaching, but not the order in which events are dispatched within a single eventspace.

An event dispatch handler must ultimately call the primitive event dispatch handler. If an event dispatch
handler returns without calling the primitive handler, then the primitive handler is called directly by the
eventspace handler thread.

- (event-dispatch-handler) ⇒ procedure of one argument: an eventspace

Returns the current handler.

92

4. Windowing Procedures 4.2. Eventspaces

- (event-dispatch-handler handler) ⇒ void
handler : procedure of one argument: an eventspace

Sets the current handler.

eventspace-shutdown?

Returns #t if the given eventspace has been shut down by its custodian, #f otherwise. Attempting to create
a new window, timer, or explicitly queued event in a shut-down eventspace raises the exn:misc exception.

Attempting to use certain methods of windows and timers in a shut-down eventspace also raises the exn:misc
exception, but the get-top-level-window in area<%> and get-eventspace in top-level-window<%>meth-
ods work even after the area’s eventspace is shut down.

- (eventspace-shutdown? e) ⇒ boolean
e : eventspace

eventspace?

Tests whether a value is an eventspace.

See section 2.4 (page 13) for more inforamtion about eventspaces.

- (eventspace? v) ⇒ boolean
v : value

Returns #t if v is an eventspace value or #f otherwise.

get-top-level-edit-target-window

Returns the top level window in the current eventspace that is visible and most recently had the keyboard
focus (or contains the window that had the keyboard focus), or #f if there is no visible window in the current
eventspace.

- (get-top-level-edit-target-window) ⇒ frame% or dialog% object or #f

get-top-level-focus-window

Returns the top level window in the current eventspace that has the keyboard focus (or contains the window
with the keyboard focus), or #f if no window in the current eventspace has the focus.

- (get-top-level-focus-window) ⇒ frame% or dialog% object or #f

get-top-level-windows

Returns a list of visible top-level frames and dialogs in the current eventspace.

- (get-top-level-windows) ⇒ list of frame% and dialog% objects

93

4.2. Eventspaces 4. Windowing Procedures

make-eventspace

Creates an returns a new eventspace value. The new eventspace is created as a child of the current eventspace.
The eventspace is used by making it the current eventspace with the current-eventspace parameter.

See section 2.4 (page 13) for more inforamtion about eventspaces.

- (make-eventspace) ⇒ eventspace

queue-callback

Installs a procedure to be called via the current eventspace’s event queue. The procedure is called once in
the same way and under the same restrictions that a callback is invoked to handle a method.

A second (optional) boolean argument indicates whether the callback has a high or low priority in the event
queue. See section 2.4 (page 13) for information about the priority of events.

- (queue-callback callback high-priority?) ⇒ void
callback : procedure of no arguments
high-priority? = #t : boolean

sleep/yield

Blocks for at least the specified number of seconds, handling events meanwhile if the current thread is the
current eventspace’s handler thread (otherwise, sleep/yield is equivalent to sleep).

- (sleep/yield secs) ⇒ void
secs : non-negative real number

special-control-key

Enables or disables special Control key handling (MacOS). When Control is treated as a special key, the
system’s key-mapper is called without Control for keyboard translations. For some languages, Control key
presses must be seen by the system translation, so this mode should be turned off.

- (special-control-key on?) ⇒ void
on? : boolean

If on? is #f, Control is passed to the system translation as normal.

yield

Yields control to event dispatching. See §2.4 for details.

A handler procedure invoked by the system during a call to yield can itself call yield, creating an additional
level of nested (but single-threaded) event handling.

See also sleep/yield .

- (yield) ⇒ void

Dispatches an unspecified number of events, but only if the current thread is the current eventspace’s
handler thread (otherwise, there is no effect).

94

4. Windowing Procedures 4.3. Miscellaneous

- (yield wait-symbol) ⇒ void
wait-symbol : ’wait

When called in the handler thread of an eventspace, yields (processing events) until

– no top-level windows in the eventspace are visible;
– no timers in the eventspace are running; and
– no callbacks are queued in the eventspace.

(When called in a non-handler thread, returns immediately.)

- (yield sema) ⇒ void
sema : semaphore

Blocks on sema. If the current thread is the current eventspace’s handler thread, events are dispatched
until a sema wait succeeds on an event boundary. For other threads, calling yield with a semaphore
is equivalent to calling semaphore-wait.

Always use (yield sema) instead of a busy-wait loop.

4.3 Miscellaneous

begin-busy-cursor

- (begin-busy-cursor) ⇒ void

Changes the cursor to a watch cursor for all windows in the current eventspace. Use end-busy-cursor
to revert the cursor back to its previous state. Calls to begin-busy-cursor and end-busy-cursor
can be nested arbitrarily.

The cursor installed by begin-busy-cursor overrides any window-specific cursors installed with
set-cursor.

See also is-busy?.

bell

- (bell) ⇒ void

Rings the system bell.

end-busy-cursor

- (end-busy-cursor) ⇒ void

See begin-busy-cursor.

find-graphical-system-path

Finds a platform-specific (and possibly user- or machine-specific) standard filename or directory.

See also find-system-path, §11.2.1 in PLT MzScheme: Language Manual .

- (find-graphical-system-path what) ⇒ string
what : symbol in ’(init-file setup-file)

– ’init-file returns the path to the user-specific intialization file (containing Scheme code).
– ’setup-file returns the path to the file containing low-level preference settings (such as the font
family mapping).

95

4.3. Miscellaneous 4. Windowing Procedures

get-panel-background

Returns the background color of a panel (usually some shade of gray) for the current platform.

- (get-panel-background) ⇒ color% object

get-resource

- (get-resource section entry value file) ⇒ boolean
section : string
entry : string
value : boxed string or boxed exact integer
file = #f : string or #f

Gets a resource value from the resource database. If file is #f, the platform-specific resource database
is read, as determined by find-graphical-system-path with ’setup-file. (Under X, when file is
#f, the user’s .Xdefaults file is also read, or the file specified by the XENVIRONMENT environment
variable.)

The resource value is keyed on the combination of section and entry . The "mred" section is reserved
for PLT.

The return value is #t is a value is found, #f if it is not. The type of the value initially in the value
box determines the way that the resource is interpreted, and value is filled with a new value of the
same type if one is found.

See also write-resource.

get-window-text-extent

Returns the pixel size of a string drawn as a window’s label or value.

See also get-text-extent .

- (get-window-text-extent string font) ⇒ two exact non-negative integers: width and height
string : string
font : font% object

Returns the extent of the given string drawn with the given font. For information about the font used
to draw a window’s label or value, see set-label-font and set-control-font.

graphical-read-eval-print-loop

Similar to MzScheme’s read-eval-print-loop, except that none of read-eval-print-loop’s configuration
parameters are used (such as current-read) and the interaction occurs in a GUI window instead of using
the current input and output ports.

Expressions entered into the graphical read-eval-print loop can be evaluated in an eventspace (and thread)
that is distinct from the one implementing the graphical-read-eval-print-loop window (i.e., the current
eventspace when graphical-read-eval-print-loop is called).

If no eventspace is provided, or if #f is provided, an evaluation eventspace is created using
(make-eventspace) with a new custodian; the eventspace and its threads are be shut down when the
user closes the graphical-read-eval-print-loop window. The following parameters are initialized in the
created eventspace’s handler thread:

96

4. Windowing Procedures 4.3. Miscellaneous

• current-output-port — writes to the frame

• current-error-port — writes to the frame

• current-input-port — always returns eof

• current-will-executor — a new will executor

See (see parameters, §9.4 in PLT MzScheme: Language Manual) for more information about these parame-
ters.

If an evalaution eventspace is provided to graphical-read-eval-print-loop, the parameters are not set
(but evaluation output still goes to the new frame).

The keymap for the read-eval-print loop’s editor is initialized by calling the current keymap initializer
procedure, which is determined by the current-text-keymap-initializer parameter.

- (graphical-read-eval-print-loop eval-eventspace) ⇒ void
eval-eventspace = #f : eventspace

is-busy?

- (is-busy?) ⇒ boolean

Returns #t if a busy cursor has been installed with begin-busy-cursor and not removed with
end-busy-cursor.

label->plain-label

- (label->plain-label label) ⇒ string
label : string

Strips shortcut ampersands from label and returns the label as it would appear on a button.

play-sound

- (play-sound filename async?) ⇒ boolean
filename : string
async? : boolean

Plays a sound file. If async? is false, the function does not return until the sound completes. Otherwise,
it returns immediately. The result is #t if the sound plays successfully, #f otherwise.

Under X Windows, the play command must be defined through the user’s X resources file with the
resource name “mred.playcmd”; this command string is formatted with the input filename (so the
command string should contain a “∼s” where the filename should be substituted) and executed as a
shell command. the default command is "cat ∼s > /dev/audio".

Under Windows, only ”.wav” files are supported.

Under MacOS, only standard Macintosh sound files (SND) are supported.

send-message-to-window

- (send-message-to-window x y message) ⇒ value
x : exact integer in [-10000, 10000]

97

4.3. Miscellaneous 4. Windowing Procedures

y : exact integer in [-10000, 10000]
message : value

Finds the frontmost top-level window at (x , y) in global coordinates. If a window is there, this function
calls the window’s on-message method, providing message as the method’s argument; the result of
the function call is the result returned by the method. If no MrEd window is at the given coordinates,
or if it is covered by a non-MrEd window at (x , y), #f is returned.

the-clipboard

See clipboard<%>.

- the-clipboard ⇒ clipboard<%> object
Initial value : the clipboard

write-resource

- (write-resource section entry value file) ⇒ boolean
section : string
entry : string
value : string or exact integer
file = #f : string or #f

Writes a resource value to the specified resource database. If file is #f, the platform-specific resource
database is read, as determined by find-graphical-system-path with ’setup-file.

The resource value is keyed on the combination of section and entry . The "mred" section is reserved
for PLT.

The return value is #t if the write suceeds, #f otherwise. (A failure indicates that the resource file
cannot be written.)

If value is an integer outside a platform-specific range, an exn:application:mismatch exception is
raised.

See also get-resource.

98

Part II

Drawing Toolbox

99

5. Drawing Toolbox Overview

Drawing in MrEd requires a device context (DC), which is an instance of the dc<%> interface. For example,
the get-dc method of a canvas returns a dc<%> instance for drawing into the canvas window. Other kinds
of DCs draw to different kinds of devices:

• bitmap-dc% — a bitmap DC draws to an offscreen bitmap.

• post-script-dc% — a PostScript DC records drawing commands to a PostScript file.

• printer-dc% — a printer DC draws to a platform-specific printer device (Windows, MacOS).

Tools that are used for drawing include the following: pen% objects for drawing lines and shape outlines,
brush% objects for filling shapes, and bitmap% objects for storing bitmaps.

The following example creates a frame with a drawing canvas, and then draws a round, blue face with square,
yellow eyes and a smiling, red mouth:

; Make a 300 × 300 frame
(define frame (make-object frame% "Drawing Example" #f 300 300))
; Make the drawing area
(define canvas (make-object canvas% frame))
; Get the canvas’s drawing context
(define dc (send canvas get-dc))

; Make some pens and brushes
(define no-pen (make-object pen% "BLACK" 1 ’transparent))
(define no-brush (make-object brush% "BLACK" ’transparent))
(define blue-brush (make-object brush% "BLUE" ’solid))
(define yellow-brush (make-object brush% "YELLOW" ’solid))
(define red-pen (make-object pen% "RED" 2 ’solid))

; Define a procedure to draw a face
(define (draw-face dc)

(send dc set-pen no-pen)
(send dc set-brush blue-brush)
(send dc draw-ellipse 50 50 200 200)

(send dc set-brush yellow-brush)
(send dc draw-rectangle 100 100 10 10)
(send dc draw-rectangle 200 100 10 10)

(send dc set-brush no-brush)
(send dc set-pen red-pen)
(let ([pi (atan 0 -1)])
(send dc draw-arc 75 75 150 150 (* 5/4 pi) (* 7/4 pi))))

101

5. Drawing Toolbox Overview

; Show the frame
(send frame show #t)
; Wait a second to let the window get ready
(sleep/yield 1)
; Draw the face (if the window is ready)
(draw-face dc)

The sleep/yield call is necessary under X because drawing to the canvas has no effect when the canvas is
not shown. Although the (send frame show #t) expression queues a show request for the frame, the actual
display of the frame and its canvas requires handling several events. The sleep/yield procedure pauses for
a specified number of seconds, handling events while it pauses.

One second is plenty of time for the frame to show itself, but a better solution is to create a canvas with
an on-paint method. Using on-paint is better for all platforms; when the canvas in the above example is
resized or temporarily covered by another window, the face disappears. To ensure that the face is redrawn
whenever the canvas itself is repainted, we override the canvas’s on-paint method:

; Make a 300 × 300 frame
(define frame (make-object frame% "Drawing Example" #f 300 300))

; Derive a class for a canvas that calls draw-face to repaint itself
(define face-canvas%

(class canvas% (frame)
(inherit get-dc)
(override [on-paint (lambda () (draw-face (get-dc)))])
(sequence (super-init frame))))

; Make the drawing area
(define canvas (make-object face-canvas% frame))

; ... pens, brushes, and draw-face are the same as above ...

; Show the frame
(send frame show #t)

Suppose that draw-face creates a particularly complex face that takes a long time to draw. We might want
to draw the face once into an offscreen bitmap, and then override on-paint to copy the cached bitmap image
onto the canvas whenever the canvas is updated. To draw into a bitmap, we first create a bitmap% object,
and then we create a bitmap-dc% to direct drawing commands into the bitmap:

; ... pens, brushes, and draw-face are the same as above ...

; Create a 300 × 300 bitmap
(define face-bitmap (make-object bitmap% 300 300))
; Create a drawing context for the bitmap
(define bm-dc (make-object bitmap-dc%))
; Direct the drawing context to the bitmap
(send bm-dc set-bitmap face-bitmap)
; A new bitmap’s initial content is undefined, so clear it before drawing
(send bm-dc clear)

; Draw the face into the bitmap
(draw-face bm-dc)

102

5. Drawing Toolbox Overview

; Make a 300 × 300 frame
(define frame (make-object frame% "Drawing Example" #f 300 300))

; Derive a class for a canvas that copies the bitmap to repaint itself
(define bitmap-face-canvas%

(class canvas% (frame)
(inherit get-dc)
(override [on-paint (lambda () (send (get-dc) draw-bitmap face-bitmap 0 0))])
(sequence (super-init frame))))

; Make the drawing area
(define canvas (make-object bitmap-face-canvas% frame))

; Show the frame
(send frame show #t)

For all types of DCs, the drawing origin is the top-left corner of the DC. When drawing to a window or
bitmap, DC units initially correspond to pixels, but the set-scale method changes the scale. When drawing
to a PostScript or printer device, DC units initially correspond to points (1/72 of an inch).

Drawing effects are not completely portable across platforms or across types of DC. The drawing toolbox
provides tools to draw images precisely and portably, but also provides convenience tools for occasions when
precision or portability is not necessary. For example, drawing with a pen of width 0 or 1 produces reliable
results for all platforms and unscaled DCs, but a pen width of 2 or drawing to a scaled DC looks slightly
different depending on the platform and destination.

103

6. Drawing Class Reference

6.1 Class Listing

Device Contexts

dc<%>
|- bitmap-dc%
|- post-script-dc%
|- printer-dc%

Drawing Tools

pen%
brush%
font%
color%
bitmap%
point%
region%

Miscellaneous

pen-list%
brush-list%
font-list%
font-name-directory<%>
color-database<%>
ps-setup%

6.2 bitmap%

A bitmap% object is a pixel-based image, either monochrome or color.

Sometimes, a bitmap object creation fails in a low-level manner. In that case, the ok? method returns
#f, and the bitmap cannot be supplied to methods that consume or operate on bitmaps (otherwise, an
exn:application:mismatch exception is raised).

- (make-object bitmap% bits width height) ⇒ bitmap% object
bits : string
width : exact integer in [1, 10000]
height : exact integer in [1, 10000]

Creates a monochrome bitmap from an array of bit values, where each character in bits specifies eight

104

6. Drawing Class Reference 6.2. bitmap%

bits, and padding bits are added so that each bitmap line starts on a character boundary. A 1 bit
value indicates black, and 0 indicates white. If width times height is larger than 8 times the length of
bits, an exn:application:mismatch exception is raised.

- (make-object bitmap% width height monochrome?) ⇒ bitmap% object
width : exact integer in [1, 10000]
height : exact integer in [1, 10000]
monochrome? = #f : boolean

Creates a new bitmap. If monochrome? is #f, the bitmap matches the display depth of the screen.
The initial content of the bitmap is undefined.

- (make-object bitmap% name kind) ⇒ bitmap% object
name : string
kind = ’unknown : symbol in ’(unknown gif jpeg xbm xpm bmp pict)

Creates a bitmap from a file, where kind specifies the kind of image file. See load-file for details.

get-depth

Gets the color depth of the bitmap. See also is-color?.

- (send a-bitmap get-depth) ⇒ exact non-negative integer

get-height

Gets the height of the bitmap in pixels.

- (send a-bitmap get-height) ⇒ exact integer in [1, 10000]

get-width

Gets the width of the bitmap in pixels.

- (send a-bitmap get-width) ⇒ exact integer in [1, 10000]

is-color?

Returns #f if the bitmap is monochrome, #t otherwise.

- (send a-bitmap is-color?) ⇒ boolean

load-file

Loads a bitmap from a file. If the bitmap is in use by a bitmap-dc% object or a control, the bitmap file is
not loaded.

- (send a-bitmap load-file name kind) ⇒ boolean
name : string
kind = ’unknown : symbol in ’(unknown gif jpeg xbm xpm bmp pict)

The kind parameter specifies the file’s format:

105

6.3. bitmap-dc% 6. Drawing Class Reference

– ’unknown — examine the file to determine its format
– ’gif — load a GIF bitmap file (X, Windows, MacOS)
– ’jpeg — load a JPEG bitmap file (X, Windows, MacOS)
– ’xbm — load an X bitmap file (X, Windows, MacOS); creates a monochrome bitmap
– ’xpm — load an XPM bitmap file (X, Windows, MacOS)
– ’bmp — load a Windows bitmap file (X, Windows, MacOS)
– ’pict — load a PICT bitmap file (MacOS)

An XBM image is always loaded as a monochrome bitmap. An image in any other format is always
loaded as a bitmap that matches the depth of the screen.

ok?

Returns #t if the bitmap is usable (created or changed successfully). If #f is returned, the bitmap cannot
be supplied to methods that consume or operate on bitmaps (otherwise, an exn:application:mismatch
exception is raised).

- (send a-bitmap ok?) ⇒ boolean

save-file

Saves a bitmap in the named file.

- (send a-bitmap save-file name kind) ⇒ boolean
name : string
kind : symbol in ’(xbm xpm bmp pict)

The kind argument determined the type of file that is created, one of:
– ’xbm — save an X bitmap file (X, Windows, MacOS)
– ’xpm — save an XPM bitmap file (X, Windows, MacOS)
– ’bmp — save a Windows bitmap file (Windows)
– ’pict — save a PICT bitmap file (MacOS)

6.3 bitmap-dc%

Implements: dc<%>

A bitmap-dc% object allows drawing direclty into a bitmap. A bitmap% object must be supplied at initial-
ization or installed into a bitmap DC using set-bitmap before any other method of the DC is called. If a
bitmap-dc% method is called before a bitmap is selected, the method call is ignored.

- (make-object bitmap-dc% bm) ⇒ bitmap-dc% object
bm : bitmap% object or #f

Creates a new memory DC. If bm is not #f, it is installed into the DC so that drawing commands on
the DC draw to bm. Otherwise, no bitmap is installed into the DC and set-bitmap must be called
before any other method of the DC is called.

get-bitmap

Gets the bitmap currently installed in the DC, or #f if no bitmap is installed. See set-bitmap for more
information.

106

6. Drawing Class Reference 6.4. brush%

- (send a-bitmap-dc get-bitmap) ⇒ bitmap% object or #f

get-pixel

Gets the current color of a pixel in the bitmap.

Under X, interleaving drawing commands with get-pixel calls (for the same bitmap-dc% object) incurs a
substantial performance penalty.

- (send a-bitmap-dc get-pixel x y color) ⇒ boolean
x : real number
y : real number
color : color% object

Fills color with the color of the current pixel at position (x , y) in the drawing context. If the color is
successfully obtained, the return value is #t, otherwise the result is #f.

set-bitmap

Installs a bitmap into the DC, so that drawing operations on the bitmap DC draw to the bitmap. A bitmap
is removed from a DC by setting the bitmap to #f.

A bitmap can be selected into at most one bitmap DC, and only when it is not used by a control (as a label)
or in a pen% or brush% (as a stipple). If the argument to set-bitmap is already in use by another DC, a
control, a pen%, or a brush%, an exn:application:mismatch exception is raised.

- (send a-bitmap-dc set-bitmap bitmap) ⇒ void
bitmap : bitmap% object or #f

set-pixel

Sets a pixel in the bitmap.

Under X, interleaving drawing commands with set-pixel calls (for the same bitmap-dc% object) incurs a
substantial performance penalty.

- (send a-bitmap-dc set-pixel x y color) ⇒ void
x : real number
y : real number
color : color% object

6.4 brush%

A brush is a drawing tool with a color and a style that is used for filling in areas, such as the interior of a
rectangle or ellipse. On a monochrome display, all non-white brushes are drawn as black.

In addition to its color and style, a brush can have a stipple bitmap. Painting with a stipple brush is similar
to calling draw-bitmap with the stipple bitmap in the filled region.

A brush’s style is one of the following:

• ’transparent — Draws with no effect (on the interior of the drawn shape).

107

6.4. brush% 6. Drawing Class Reference

• ’solid — Draws using the brush’s color. If a monochrome stipple is installed into the brush, black
pixels from the stipple are transferred to the destination using the brush’s color, and white pixels from
the stipple are not transferred.

• ’opaque — Same as ’solid, except when a monochrome stipple is installed; in that case, white pixels
from the stipple are transferred to the destination using the destination’s background color.

• ’xor— If a color stipple is installed, ’xor is treated as ’solid. Otherwise, the brush’s color or colored
(monochrome) stipple is xored with existing destination pixel values. The ’xor mapping is unspecified
for arbitrary color combinations, but the mapping provides two guarantees:

– Black-and-white drawing to a color or monochrome destination always works as expected: black
xor white = black, white xor black = black, black xor black = white, and white xor white =
white.

– Performing the same drawing operation twice in a row with ’xor is equivalent to a no-op.

• The following modes correspond to built-in stipples drawn in ’solid mode:

– ’bdiagonal-hatch — diagonal lines, top-left to bottom-right
– ’crossdiag-hatch — crossed diagonal lines
– ’fdiagonal-hatch — diagonal lines, top-right to bottom-left
– ’cross-hatch — crossed horizontal and vertical lines
– ’horizontal-hatch — horizontal lines
– ’vertical-hatch — vertical lines

However, when a specific stipple is installed into the brush, the above modes are ignored and ’solid
is used, instead.

To draw outline shapes (such as unfilled boxes and ellipses), use the ’transparent brush style. See
set-style for more information about styles.

To avoid creating multiple brushes with the same characteristics, use the global brush-list% object
the-brush-list.

- (make-object brush%) ⇒ brush% object

Creates a solid black brush.

- (make-object brush% color style) ⇒ brush% object
color : color% object
style : symbol in ’(transparent solid opaque xor bdiagonal-hatch

crossdiag-hatch fdiagonal-hatch cross-hatch horizontal-hatch
vertical-hatch)

Creates a brush with the given color and style.

- (make-object brush% color-name style) ⇒ brush% object
color-name : string
style : symbol in ’(transparent solid opaque xor bdiagonal-hatch

crossdiag-hatch fdiagonal-hatch cross-hatch horizontal-hatch
vertical-hatch)

Creates a brush with the given color and style, where the color is specified using a name; see
color-database<%> for information about color names. If the name is not known, the brush’s color
is set to black.

get-color

Returns the brush’s color.

108

6. Drawing Class Reference 6.4. brush%

- (send a-brush get-color) ⇒ color% object

get-stipple

Gets the stipple bitmap, or #f if the brush has no stipple.

- (send a-brush get-stipple) ⇒ bitmap% object or #f

get-style

Returns the brush’s style. See brush% for information about brush styles.

- (send a-brush get-style) ⇒ symbol in ’(transparent solid opaque xor bdiagonal-hatch
crossdiag-hatch fdiagonal-hatch cross-hatch horizontal-hatch vertical-hatch)

set-color

Sets the brush’s color.

A brush cannot be modified if it was obtained from a brush-list% or while it is selected into a drawing
context.

- (send a-brush set-color color) ⇒ void
color : color% object

Sets the brush’s color to match the given color.

- (send a-brush set-color color-name) ⇒ void
color-name : string

Set’s the brushes color to color-name if the name is known; see color-database<%> for information
about color names.

- (send a-brush set-color red green blue) ⇒ void
red : exact integer in [0, 255]
green : exact integer in [0, 255]
blue : exact integer in [0, 255]

Sets the RGB values of the brush’s color.

set-stipple

Sets or removes the stipple bitmap, where #f removes the stipple. See brush% for information about drawing
with stipples.

A bitmap cannot be used as a stipple if it is selected into a bitmap-dc% object; if the given bitmap is selected
into a bitmap-dc% object, an exn:application:mismatch exception is raised. A brush cannot be modified
if it was obtained from a brush-list% or while it is selected into a drawing context.

- (send a-brush set-stipple bitmap) ⇒ void
bitmap : bitmap% object or #f

109

6.5. brush-list% 6. Drawing Class Reference

set-style

Sets the brush’s style. See brush% for information about the possible styles.

A brush cannot be modified if it was obtained from a brush-list% or while it is selected into a drawing
context.

- (send a-brush set-style style) ⇒ void
style : symbol in ’(transparent solid opaque xor bdiagonal-hatch

crossdiag-hatch fdiagonal-hatch cross-hatch horizontal-hatch
vertical-hatch)

6.5 brush-list%

A brush-list% object maintains a list of brush% objects to avoid creating brushes repeatedly. A brush%
object in a brush list cannot be mutated.

A global brush list, the-brush-list, is created automatically.

- (make-object brush-list%) ⇒ brush-list% object

Creates an empty brush list.

find-or-create-brush

Finds a brush of the given specification, or creates one and adds it to the list.

- (send a-brush-list find-or-create-brush color style) ⇒ brush% object
color : color% object
style : symbol in ’(transparent solid opaque xor bdiagonal-hatch

crossdiag-hatch fdiagonal-hatch cross-hatch horizontal-hatch
vertical-hatch)

See brush%.

- (send a-brush-list find-or-create-brush color-name style) ⇒ brush% object or #f
color-name : string
style : symbol in ’(transparent solid opaque xor bdiagonal-hatch

crossdiag-hatch fdiagonal-hatch cross-hatch horizontal-hatch
vertical-hatch)

See brush%.

The return value is #f when no color matching color-name can be found in the color database.

6.6 color%

A color is an object representing a red-green-blue (RGB) combination of primary colors, and is used to
determine drawing colors. Each red, green, or blure component of the color is in the range 0 to 255,
inclusive. For example, (0, 0, 0) is black, (255, 255, 255) is white, and (255, 0, 0) is red.

See color-database<%> for infomation about obtaining a color object using a color name.

- (make-object color% red green blue) ⇒ color% object
red : exact integer in [0, 255]

110

6. Drawing Class Reference 6.6. color%

green : exact integer in [0, 255]
blue : exact integer in [0, 255]

Creates a new color with the given RGB values.

- (make-object color% color-name) ⇒ color% object
color-name : string

Creates a new color by name, using the-color-database. (See color-database<%> for more infor-
mation.)

blue

Returns the blue component of the color.

- (send a-color blue) ⇒ exact integer in [0, 255]

copy-from

Copies the RGB values of another color object to this one, returning this object as the result.

- (send a-color copy-from src) ⇒ color% object
src : color% object

green

Returns the green component of the color.

- (send a-color green) ⇒ exact integer in [0, 255]

ok?

Returns #t if the color object is valid.

- (send a-color ok?) ⇒ boolean

red

Returns the red component of the color.

- (send a-color red) ⇒ exact integer in [0, 255]

set

Sets the three (red, green, and blue) component values of the color.

- (send a-color set red green blue) ⇒ void
red : exact integer in [0, 255]
green : exact integer in [0, 255]
blue : exact integer in [0, 255]

111

6.7. color-database<%> 6. Drawing Class Reference

6.7 color-database<%>

The global the-color-database object is an instance of color-database<%>. It maintains a database of
standard RGB colors for a predefined set of named colors (such as “black” and “light grey”).

The following colors are in the database:

aquamarine, black, blue, blue violet, brown, cadet blue, coral, cornflower blue, cyan, dark gray,
dark green, dark olive green, dark orchid, dark slate blue, dark slate gray, dark turquoise, dim
gray, firebrick, forest green, gold, goldenrod, gray, green, green yellow, indian red, khaki, light
blue, light gray, light steel blue, lime green, magenta, maroon, medium aquamarine, medium
blue, medium forest green, medium goldenrod, medium gray, medium orchid, medium sea green,
medium slate blue, medium spring green, medium turquoise, medium violet red, midnight blue,
navy, orange, orange red, orchid, pale green, pink, plum, purple, red, salmon, sea green, sienna,
sky blue, slate blue, spring green, steel blue, tan, thistle, turquoise, violet, violet red, wheat,
white, yellow, yellow green

The names are not case-sensitive.

See also color%.

find-color

Finds a color by name (character case is ignored). If no color is found for the name, #f is returned.

- (send a-color-database find-color color-name) ⇒ color% object or #f
color-name : string

See color-database<%> for the list of color names.

6.8 dc<%>

A dc<%> object is a device context for drawing graphics and text. It represents output devices in a generic
way; e.g., a canvas has a device context, as does a printer.

The drawing methods, such as draw-rectangle, accept real number values as arguments, but the results are
only well-defined when the drawing coordinates are in the range -16383 to 16383. This restriction applies
to the coordinates both before and after offsets and scaling factors are applied.

clear

Clears the drawing region (fills it with the current background brush).

- (send a-dc clear) ⇒ void

draw-arc

Draws an arc. The current pen is used for the arc and the current brush for filling a wedge.

If both the pen and brush are non-transparent, the wedge is filled with the brush before the arc is drawn with
the pen. The wedge and arc meet so that no space is left between them, but the precise overlap between the

112

6. Drawing Class Reference 6.8. dc<%>

wedge and arc is platform- and size-specific. Thus, the regions drawn by the brush and pen may partially
overlap.

- (send a-dc draw-arc x y width height start-radians end-radians) ⇒ void
x : real number
y : real number
width : non-negative real number
height : non-negative real number
start-radians : real number
end-radians : real number

Draws a counter-clockwise circular arc, a part of the ellipse inscribed in the rectangle specified by x
(left), y (top), width, and height . The arc starts at the angle specified by start-radians (0 is 3 o’clock)
and continues counter-clockwise to end-radians. If start-radions and end-radians are the same, a full
ellipse is drawn.

If the current brush is not transparent, it is used to fill the wedge bounded by the arc plus lines (not
drawn) extending to the center of the inscribed ellipse.

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

draw-bitmap

Displays a bitmap. For color bitmaps, the drawing style and color arguments are ignored. For monochrome
bitmaps, draw-bitmap uses the style and color arguments in the same way that a brush uses its style and
color settings to draw a monochrome stipple (see brush% for more information).

See also draw-bitmap-section.

The current brush, current pen, and current text settings for the DC have no effect on how the bitmap is
drawn.

- (send a-dc draw-bitmap source xdest ydest style color) ⇒ boolean
source : bitmap% object
xdest : real number
ydest : real number
style = ’solid : symbol in ’(solid opaque xor)
color = black : color% object

The xdest and ydest arguments are in DC coodinates and may be scaled, but the source bitmap is
never scaled as it is copied. Thus, if the DC has a scaling factor of 2, the destination width in DC
units is width/2.

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

draw-bitmap-section

Display part of a bitmap. See also draw-bitmap.

- (send a-dc draw-bitmap-section source xdest ydest xsrc ysrc width height style color)⇒ boolean
source : bitmap% object
xdest : real number
ydest : real number
xsrc : real number
ysrc : real number

113

6.8. dc<%> 6. Drawing Class Reference

width : non-negative real number
height : non-negative real number
style = ’solid : symbol in ’(solid opaque xor)
color = black : color% object

The xsrc, xsrc, width, and height arguments specify a rectangle in the source bitmap to copy to this
device context.

See draw-bitmapfor information about xdest , ydest , style and color .

draw-ellipse

Draws an ellipse contained in a rectangle. The current pen is used for the outline and the current brush for
filling the shape.

If both the pen and brush are non-transparent, the ellipse is filled with the brush before the outline is drawn
with the pen. The filling and outline meet so that no space is left between them, but the precise overlap
between the filling and outline is platform- and size-specific. Thus, the regions drawn by the brush and pen
may partially overlap.

- (send a-dc draw-ellipse x y width height) ⇒ void
x : real number
y : real number
width : non-negative real number
height : non-negative real number

Draws an ellipse that fits within a rectange with the given top-left corner and size.

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

draw-line

Draws a line from one point to another. The line covers both the start and end points. The current pen is
used for drawing the line.

- (send a-dc draw-line x1 y1 x2 y2) ⇒ void
x1 : real number
y1 : real number
x2 : real number
y2 : real number

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

draw-lines

Draws multiple connected lines. The current pen is used for drawing the lines.

- (send a-dc draw-lines points xoffset yoffset) ⇒ void
points : list of point% objects
xoffset = 0 : real number
yoffset = 0 : real number

Draws lines using a list of points, adding xoffset and yoffset to each point.

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

114

6. Drawing Class Reference 6.8. dc<%>

draw-point

Plots a single point using the current pen.

- (send a-dc draw-point x y) ⇒ void
x : real number
y : real number

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

draw-polygon

Draws and paints a polygon from a list of points. The current pen is used for drawing the outline, and the
current brush for filling the shape.

If both the pen and brush are non-transparent, the polygon is filled with the brush before the outline is
drawn with the pen. The filling and outline meet so that no space is left between them, but the precise
overlap between the filling and outline is platform- and shape-specific. Thus, the regions drawn by the brush
and pen may partially overlap.

- (send a-dc draw-polygon points xoffset yoffset fill-style) ⇒ void
points : list of point% objects
xoffset = 0 : real number
yoffset = 0 : real number
fill-style = ’odd-even : symbol in ’(odd-even winding)

Draw a filled polygon using a list of points, adding xoffset and yoffset to each point. The ploygon is
automatically closed, so the first and last point can be different.

The fill-style argument specifies the fill rule: ’odd-even or ’winding.

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

draw-rectangle

Draws a rectangle. The current pen is used for the outline and the current brush for filling the shape.

If both the pen and brush are non-transparent, the rectangle is filled with the brush before the outline is
drawn with the pen. When the pen is size 0 or 1, the filling precisely overlaps the entire outline. As a result,
if a rectangle is drawn with a size-0 or size-1 ’xor pen% and an ’xor brush%, the outline is xored twice (first
by the brush, then by the pen), leaving it unchanged.

- (send a-dc draw-rectangle x y width height) ⇒ void
x : real number
y : real number
width : non-negative real number
height : non-negative real number

Draws a rectangle with the given top-left corner and size.

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

draw-rounded-rectangle

Draws a rectangle with rounded corners. The current pen is used for the outline and the current brush for
filling the shape.

115

6.8. dc<%> 6. Drawing Class Reference

If both the pen and brush are non-transparent, the rectangle is filled with the brush before the outline is
drawn with the pen. The filling and outline meet so that no space is left between them, but the precise
overlap between the filling and outline is platform- and size-specific. Thus, the regions drawn by the brush
and pen may partially overlap.

- (send a-dc draw-rounded-rectangle x y width height radius) ⇒ void
x : real number
y : real number
width : non-negative real number
height : non-negative real number
radius = 20 : real number

Draws a rectangle with the given top-left corner, and with the given size. The corners are quarter-circles
using the given radius.

If radius is positive, the value is used as the radius of the rounded corner. If radius is negative, the
absolute value is used as the the proportion of the smallest dimension of the rectangle. If radius is
more than half of width or height , the resulting image is undefined.

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

draw-spline

Draws a three-point spline using the current pen.

- (send a-dc draw-spline x1 y1 x2 y2 x3 y3) ⇒ void
x1 : real number
y1 : real number
x2 : real number
y2 : real number
x3 : real number
y3 : real number

Draws a spline from (x1 , y1) to (x3 , y3) using (x2 , y2) as the control point.

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

draw-text

Draws a text string at a specified point, using the current text font, and the current text foreground and
background colors. The specified point is used as the starting top-left point for drawing characters (e.g, if
“W” is drawn, the point is roughly the location of the top-left pixel in the “W”).

See get-text-extent for information on the size of the drawn text.

See also set-text-foreground, set-text-background, and set-text-mode.

The current brush and current pen settings for the DC have no effect on how the text is drawn.

- (send a-dc draw-text text x y big-chars? offset) ⇒ void
text : string
x : real number
y : real number
big-chars? = #f : boolean
offset = 0 : exact non-negative integer

116

6. Drawing Class Reference 6.8. dc<%>

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

The text string is drawn starting from the offset character, and continuing until the end of text or the
first null character

If big-chars? is #t, then text is interpreted as a Unicode string instead of an ASCII string; however,
Unicode strings are not yet fully supported.

end-doc

Ends a document, relevant only when drawing to a printer or PostScript device.

- (send a-dc end-doc) ⇒ void

end-page

Ends a single page, relevant only when drawing to a printer or PostScript device.

- (send a-dc end-page) ⇒ void

get-background

Gets the color used for painting the background. See also set-background.

- (send a-dc get-background) ⇒ color% object

get-brush

Gets the current brush. See also set-brush.

- (send a-dc get-brush) ⇒ brush% object

get-char-height

Gets the height of a character using the current font.

- (send a-dc get-char-height) ⇒ non-negative real number

get-char-width

- (send a-dc get-char-width) ⇒ non-negative real number

Gets the average width of a character using the current font.

get-clipping-region

Gets the current clipping region, returning #f if the drawing context is not clipped (i.e., the clipping region
is the entire drawing region).

- (send a-dc get-clipping-region) ⇒ region% object or #f

117

6.8. dc<%> 6. Drawing Class Reference

get-font

Gets the current font. See also set-font.

- (send a-dc get-font) ⇒ font% object

get-pen

Gets the current pen. See also set-pen.

- (send a-dc get-pen) ⇒ pen% object

get-size

Gets the size of the destination drawing area. For a dc<%> object obtained from a canvas<%>, this is the
(virtual client) size of the desintation window; for a bitmap-dc% object, this is the size of the selected
bitmap (or 0 if no bitmap is selected); for a post-script-dc% or printer-dc% device context, this gets the
horizontal and vertical size of the drawing area.

- (send a-dc get-size) ⇒ two non-negative real numbers: width and height

get-text-background

Gets the current text background color. See also set-text-background.

- (send a-dc get-text-background) ⇒ color% object

get-text-extent

Gets the dimensions of a string drawn into this device context. The result is four real numbers:

• the total width of the text (depends on both the font and the text);
• the total height of the font (depends only on the font);
• the distance from the baseline of the font to the bottom of the descender (included in the height,
depends only on the font); and

• extra vertical space added to the font by the font designer (included in the height, and often zero;
depends only on the font).

The returned width and height define a rectangle is that guaranteed to contain the text string when it is
drawn, but the fit is not necessarily tight. Some undefined number of pixels on the left, right, top, and
bottom of the drawn string may be “whitespace,” depending on the whims of the font designer and the
platform-specific font-scaling mechanism.

- (send a-dc get-text-extent string font big-chars? offset) ⇒ four non-negative real numbers:
width, height, descent, and space
string : string

118

6. Drawing Class Reference 6.8. dc<%>

font = #f : font% object or #f
big-chars? = #f : boolean
offset = 0 : exact non-negative integer

Returns the size of string at it would be drawn in the device context, starting from the offset character
of string , and continuing until the end of string or the first null character. The font argument specifies
the font to use in measuring the text; if it is #f, the current font of the drawing area is used. (See also
set-font.)

If big-chars? is #t, then string is interpreted as a string or Unicode or 16-bit characters instead of an
ASCII string, but such strings are not yet fully supported.

get-text-foreground

Gets the current text foreground color. See also set-text-foreground.

- (send a-dc get-text-foreground) ⇒ color% object

get-text-mode

Reports how text is drawn; see set-text-mode .

- (send a-dc get-text-mode) ⇒ symbol in ’(solid transparent)

ok?

Returns #t if the drawing context is useable.

- (send a-dc ok?) ⇒ boolean

set-background

Sets the background color for drawing in this object. On a monochrome display, all non-black colors are
treated as white.

- (send a-dc set-background color) ⇒ void
color : color% object

set-brush

Sets the current brush for drawing in this object. While a brush is selected into a drawing context, it cannot
be modified.

- (send a-dc set-brush brush) ⇒ void
brush : brush% object

set-clipping-rect

Sets the clipping region to a rectangular region.

See also set-clipping-region and get-clipping-region.

119

6.8. dc<%> 6. Drawing Class Reference

- (send a-dc set-clipping-rect x y width height) ⇒ void
x : real number
y : real number
width : non-negative real number
height : non-negative real number

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

set-clipping-region

Sets the clipping region for the drawing area, turning off all clipping within the drawing region if #f is
provided.

The clipping region must be reset after changing a dc<%> object’s origin or scale (unless it is #f); see region%
for more information.

See also set-clipping-rect and get-clipping-region.

- (send a-dc set-clipping-region rgn) ⇒ void
rgn : region% object or #f

set-font

Sets the current font for drawing text in this object.

- (send a-dc set-font font) ⇒ void
font : font% object

set-origin

Sets the device origin, i.e., the location in device coordinates of (0, 0) in logical coordinates.

Changing a dc<%> object’s origin or scale invalidates region% objects associated with the device context.
See region% for more information.

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

- (send a-dc set-origin x y) ⇒ void
x : real number
y : real number

set-pen

Sets the current pen for this object.

The current pen does not affect text drawing; see also set-text-foreground.

While a pen is selected into a drawing context, it cannot be modified.

- (send a-dc set-pen pen) ⇒ void
pen : pen% object

120

6. Drawing Class Reference 6.8. dc<%>

set-scale

Sets a scaling factor that maps logical coordinates to device coordinates.

Changing a dc<%> object’s origin or scale invalidates region% objects associated with the device context.
See region% for more information.

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

- (send a-dc set-scale x-scale y-scale) ⇒ void
x-scale : non-negative real number
y-scale : non-negative real number

set-text-background

Sets the current text background color for this object. The text background color is painted behind text
that is drawn with draw-text, but only for the ’solid text mode (see set-text-mode).

On a monochrome display, all non-white colors are treated as black.

- (send a-dc set-text-background color) ⇒ void
color : color% object

set-text-foreground

- (send a-dc set-text-foreground color) ⇒ void
color : color% object

Sets the current text foreground color for this object, used for drawing text with draw-text.

On a monochrome display, all non-black colors are treated as white.

set-text-mode

Determines how text is drawn:

• ’solid — Before text is drawn, the destination area is filled with the text background color (see
set-text-background).

• ’transparent — Text is drawn directly over any existing image in the destination, as if overlaying
text written on transparent film.

- (send a-dc set-text-mode mode) ⇒ void
mode : symbol in ’(solid transparent)

start-doc

Starts a document, relevant only when drawing to a printer or PostScript device.

- (send a-dc start-doc message) ⇒ boolean
message : string

For some platforms, the message string is displayed in a dialog until end-doc is called.

121

6.9. font% 6. Drawing Class Reference

start-page

Starts a page, relevant only when drawing to a printer or PostScript device.

- (send a-dc start-page) ⇒ void

try-color

Detrmines the actual color used for drawing requests with the given color.

- (send a-dc try-color try result) ⇒ void
try : color% object
result : color% object

The result color is set to the RGB values that are actually produced for this device context to draw
the color try .

6.9 font%

A font is an object which determines the appearance of text, primarily when drawing text to a device context.
A font is determined by six properties:

• size — The size of the text in logical drawing units (usually points, 1/72 inch).

• family — A platform- and device-indepedent font designation. The families are:

– ’default
– ’decorative
– ’roman
– ’script
– ’swiss
– ’modern (fixed width)
– ’symbol (Greek letters)
– ’system (used to draw control labels)

• face — A string face name, such as "Times" (under Windows and MacOS) or "-*-times" (under X).
The format and meaning of a face name is platform- and device-specific. If a font’s face name is #f,
then the font’s appearance depends only on the family. If a face is provided but no mapping is available
for the face name (for a specific platform or device), then the face name is ignored and the family is
used. See font-name-directory<%> for information about how face names are mapped for drawing
text.

• style — The slant style of the font, one of:

– ’normal
– ’slant (Windows, MacOS: same as ’italic; X: tries ’italic if ’slant font does not exist)
– ’italic (X: tries ’slant if ’italic font does not exist)

• weight — The weight of the font, one of:

– ’normal
– ’light
– ’bold

• underlining — #t for underlined, #f for plain

122

6. Drawing Class Reference 6.9. font%

To avoid creating multiple fonts with the same characteristics, use the global font-list% object
the-font-list.

See also font-name-directory<%>.

- (make-object font%) ⇒ font% object

Creates an instance of the default font.

- (make-object font% size family style weight underline) ⇒ font% object
size : exact integer in [1, 255]
family : symbol in ’(default decorative roman script swiss modern symbol

system)
style : symbol in ’(normal italic slant)
weight : symbol in ’(normal bold light)
underline = #f : boolean

Creates a font with a family, but no face name.

See font% for information about family , style, and weight . font-name-directory<%>.

- (make-object font% size face family style weight underline) ⇒ font% object
size : exact integer in [1, 255]
face : string
family : symbol in ’(default decorative roman script swiss modern symbol

system)
style : symbol in ’(normal italic slant)
weight : symbol in ’(normal bold light)
underline = #f : boolean

See font% for information about family , style, and weight . See also font-name-directory<%> for
information about the way face is interpreted for drawing text on various platforms and devices.
When a platform- or device-specific interpretation of face is not availaable, the family is used to draw
text.

get-face

Gets the font’s face name, or #f if none is specified.

- (send a-font get-face) ⇒ string or #f

get-family

Gets the font’s family. See font% for information about families.

- (send a-font get-family) ⇒ symbol in ’(default decorative roman script swiss modern
symbol system)

get-font-id

Gets the font’s ID, for use with a font-name-directory<%>. The ID is determined by the font’s face and
family specifications, only.

- (send a-font get-font-id) ⇒ exact integer

123

6.10. font-list% 6. Drawing Class Reference

get-point-size

Gets the font’s size (roughly the height) in logical units.

(The method’s name is misleading. When this font is used with a particular drawing context, one logical
unit may or may not correspond to 1/72 inch.)

- (send a-font get-point-size) ⇒ exact integer in [1, 255]

get-style

Gets the font’s slant style. See font% for information about styles.

- (send a-font get-style) ⇒ symbol in ’(normal italic slant)

get-underlined

Returns #t if the font is underlined or #f otherwise.

- (send a-font get-underlined) ⇒ boolean

get-weight

Gets the font’s weight. See font% for information about weights.

- (send a-font get-weight) ⇒ symbol in ’(normal bold light)

6.10 font-list%

A font-list% object maintains a list of font% objects to avoid repeatedly creating fonts.

A global font list, the-font-list, is created automatically.

- (make-object font-list%) ⇒ font-list% object

Creates an empty font list.

find-or-create-font

Finds an existing font in the list or creates a new one (that is automatically added to the list).

- (send a-font-list find-or-create-font size family style weight underline) ⇒ font% object
size : exact integer in [1, 255]
family : symbol in ’(default decorative roman script swiss modern symbol

system)
style : symbol in ’(normal italic slant)
weight : symbol in ’(normal bold light)
underline = #f : boolean

See font% for information about family , style, and weight .

124

6. Drawing Class Reference 6.11. font-name-directory<%>

- (send a-font-list find-or-create-font size face family style weight underline) ⇒ void
size : exact integer in [1, 255]
face : string
family : symbol in ’(default decorative roman script swiss modern symbol

system)
style : symbol in ’(normal italic slant)
weight : symbol in ’(normal bold light)
underline = #f : boolean

See font% for information about family , style, and weight . See also font-name-directory<%> about
the use of face.

6.11 font-name-directory<%>

There is one font-name-directory<%> object: the-font-name-directory. It implements the mapping
from font specifications (face, family, style, and weight) to information for rendering text on a specific
device. The mapping is different for each platform. For example, when drawing to a bitmap in Windows,
the rendering information is simply the name of a Windows font. When drawing to a PostScript file, the
rendering information is a PostScript font name, which encapsulates the style and weight. When drawing
to a bitmap in X, the rendering information is an X font string, which encapsulates the style and weight,
parameterized over the size (using a “%d” placeholder).

Programmers rarely need to directly invoke methods of the-font-name-directory. It is used automati-
cally when drawing text to a dc<%> object. Nevertheless, the-font-name-directory is available so that
programmers can query or modify the mapping manually. A programmer may also need to understand how
the face-and-family mapping works.

To extract mapping information from the-font-name-directory, first obtain a font ID, which is an index
based on a family and and optional face string. Font IDs ar returned by find-or-create-font-id and
get-font-id . A Font ID can be combined with a weight and style to obtain a specific mapping value via
get-screen-name or get-post-script-name.

For a family without a face string, the corresponding font ID has a useful built-in mapping for every plat-
form and device. For a family with a face string, the-font-name-directory interprets the string (in a
platform-specific way) to generate a mapping for “screen” drawing (to a canvas’s dc<%>, a bitmap-dc%, or
a printer-dc%). When drawing to a post-script-dc% object, the face-specific mapping defaults to the
family’s mapping.

Under Windows and MacOS, a face name is interpreted simply as a system font name for drawing to the
screen, bitmap, or printer. The mapping succeeds if the system provides a font with the given name, and
fails otherwise. For example, under Windows, "MS Sans Serif" maps to the font that is typically used for
button labels.

Under X, a face name has a more complex interpretation:

• If the string begins with "+", then the remainder of the string is interpreted as an X font name. These
names are usually long, such as "+-b&h-lucidatypewriter-medium-r-normal-sans-24-240-75-75-m-140-iso8859-1
As usual for X font names, aterisks may appear in the string as wildcards. Furthermore, the size of
the font can be parametered by using "%d" in the place of a specific size.

• A string of the form "-provider-font" is equivalent to "+-provider-font-weight-style-normal-*-*-%d-*-*-*-*-*-*",
where weight is either medium, light or bold (depending on the requested weight mapping) and style
is either r, i, or i (depending on the requested style mapping).

• A string of the form "-font" is equivalent to "-*-font".

125

6.11. font-name-directory<%> 6. Drawing Class Reference

• A string of any orther format is interpreted as an X font name, optionally parameterized with "%d".

find-family-default-font-id

Gets the font ID reprsenting the default font for a family. See font% for information about font families.

- (send a-font-name-directory find-family-default-font-id family) ⇒ exact integer
family : symbol in ’(default decorative roman script swiss modern symbol

system)

find-or-create-font-id

Gets the face name for a font ID, initializing the mapping for the face name if necessary.

Font ID are useful only as mapping indices for the-font-name-directory.

- (send a-font-name-directory find-or-create-font-id name family) ⇒ exact integer
name : string
family : symbol in ’(default decorative roman script swiss modern symbol

system)

get-face-name

Gets the face name for a font ID. If the font ID corresponds to the default font for a particular family, #f is
returned.

- (send a-font-name-directory get-face-name font-id) ⇒ string or #f
font-id : exact integer

get-family

Gets the family for a font ID. See font% for information about font families.

- (send a-font-name-directory get-family font-id) ⇒ symbol in ’(default decorative roman
script swiss modern symbol system)
font-id : exact integer

get-font-id

Gets the font ID for a face name paired with a default family. If the mapping for the given pair is not already
initialized, 0 is returned. See also find-or-create-font-id.

Font ID are useful only as mapping indices for the-font-name-directory.

- (send a-font-name-directory get-font-id name family) ⇒ exact integer
name : string
family : symbol in ’(default decorative roman script swiss modern symbol

system)

126

6. Drawing Class Reference 6.11. font-name-directory<%>

get-post-script-name

Gets a PostScript font name for a font ID, weight, and style combination. The PostScript font name is used
both for the font name in PostScript output, and as the Adobe(tm) Font Manager file name (suffixed with
".afm" and prefixed with the Adobe(tm) Font Manager path determined by get-afm-path).

- (send a-font-name-directory get-post-script-name font-id weight style) ⇒ string or #f
font-id : exact integer
weight : symbol in ’(normal bold light)
style : symbol in ’(normal italic slant)

See font% for information about weight and style.

get-screen-name

Gets a platform-dependent screen font name (used for drawing to a canvas’s dc<%>, a bitmap-dc%, or a
printer-dc%) for a font ID, weight, and style combination.

- (send a-font-name-directory get-screen-name font-id weight style) ⇒ string or #f
font-id : exact integer
weight : symbol in ’(normal bold light)
style : symbol in ’(normal italic slant)

See font% for information about weight and style.

set-post-script-name

Sets a PostScript font name for a font ID, weight, and style combination. See also get-post-script-name.

- (send a-font-name-directory set-post-script-name font-id weight style name) ⇒ void
font-id : exact integer
weight : symbol in ’(normal bold light)
style : symbol in ’(normal italic slant)
name : string

See font% for information about weight and style.

set-screen-name

Sets a platform-dependent screen font name (used for drawing to a canvas’s dc<%>, a bitmap-dc%, or a
printer-dc%) for a font ID, weight, and style combination.

Under X, if the screen name contains “%d,” it is replaced by the size of the font (point size times 10) to
obtain the full screen font name.

- (send a-font-name-directory set-screen-name font-id weight style name) ⇒ void
font-id : exact integer
weight : symbol in ’(normal bold light)
style : symbol in ’(normal italic slant)
name : string

See font% for information about weight and style.

127

6.12. pen% 6. Drawing Class Reference

6.12 pen%

A pen is a drawing tool with a color, width, and style. A pen draws lines and outlines, such as the outline
of a rectangle. On a monochrome display, all non-white pens are drawn as black.

In addition to its color, width, and style, a pen can have a stipple bitmap that is a 8 x 8 monochrome bitmap.
Painting with a stipple pen is similar to calling draw-bitmap with the stipple bitmap in region painted by
the pen.

A pen’s style is one of the following:

• ’transparent — Draws with no effect (on the outline of the drawn shape).

• ’solid— Draws using the pen’s color. If a (monochrome) stipple is installed into the pen, black pixels
from the stipple are transferred to the destination using the brush’s color, and white pixels from the
stipple are not transferred.

• ’xor — The pen’s color or colored stipple is xor -ed with existing destination pixel values. The ’xor
mapping is unspecified for arbitrary color combinations, but the mapping provides two guarantees:

– Black-and-white drawing to a color or monochrome destination always works as expected: black
xor white = black, white xor black = black, black xor black = white, and white xor white =
white.

– Performing the same drawing operation twice in a row with ’xor is equivalent to a no-op.

• The following special pen modes use the pen’s color and only apply when a stipple is not installed:
– ’dot
– ’long-dash
– ’short-dash
– ’dot-dash
– ’xor-dot
– ’xor-long-dash
– ’xor-short-dash
– ’xor-dot-dash

To avoid creating multiple pens with the same characteristics, use the global pen-list% object
the-pen-list.

A pen of size 0 uses the minimum line size for the destination drawing context. In (unscaled) screens and
bitmaps, this behaves the nearly same as a pen of size 1. In a post-script-dc%, a pen of size 0 draws a line
thinner than a pen of size 1. If the pen’s width is not an integer, then the width is truncated to an integer
(even before scaling) when not drawing to a post-script-dc%.

- (make-object pen%) ⇒ pen% object

- (make-object pen% color width style) ⇒ pen% object
color : color% object
width : real number in [0, 255]
style : symbol in ’(transparent solid xor dot long-dash short-dash dot-dash

xor-dot xor-long-dash xor-short-dash xor-dot-dash)

Creates a pen using a color object.

- (make-object pen% color-name width style) ⇒ pen% object
color-name : string

128

6. Drawing Class Reference 6.12. pen%

width : real number in [0, 255]
style : symbol in ’(transparent solid xor dot long-dash short-dash dot-dash

xor-dot xor-long-dash xor-short-dash xor-dot-dash)

Creates a pen using a color name; a color is found for the name through the global color-database<%>
object the-color-database. If the color name is not known, the pen is initialized to black.

get-cap

Returns the pen cap style (X, Windows). The default is ’round.

- (send a-pen get-cap) ⇒ symbol in ’(round projecting butt)

get-color

Returns the pen’s color object.

- (send a-pen get-color) ⇒ color% object

get-join

Returns the pen join style (X, Windows). The default is ’round.

- (send a-pen get-join) ⇒ symbol in ’(round bevel miter)

get-stipple

Gets the current stipple bitmap, or return #f is no stipple bitmap is being used.

- (send a-pen get-stipple) ⇒ bitmap% object or #f

get-style

Returns the pen style. See pen% for information about possible styles.

- (send a-pen get-style) ⇒ symbol in ’(transparent solid xor dot long-dash short-dash
dot-dash xor-dot xor-long-dash xor-short-dash xor-dot-dash)

get-width

Returns the pen width.

- (send a-pen get-width) ⇒ real number in [0, 255]

set-cap

Sets the pen cap style (X, Windows). See get-cap for information about cap styles.

A pen cannot be modified if it was obtained from a pen-list% or while it is selected into a drawing context.

129

6.12. pen% 6. Drawing Class Reference

- (send a-pen set-cap cap-style) ⇒ void
cap-style : symbol in ’(round projecting butt)

set-color

Sets the pen color.

A pen cannot be modified if it was obtained from a pen-list% or while it is selected into a drawing context.

- (send a-pen set-color color) ⇒ void
color : color% object

Sets the color to match the given color.

- (send a-pen set-color color-name) ⇒ void
color-name : string

Sets the pen color by looking up a color name in the global color-database<%> object
the-color-database. The pen is not changed if the color is unknown.

- (send a-pen set-color red green blue) ⇒ void
red : exact integer in [0, 255]
green : exact integer in [0, 255]
blue : exact integer in [0, 255]

Sets the pen color to specific RGB values.

set-join

Sets the pen join style (X, Windows). See get-join for information about join styles.

A pen cannot be modified if it was obtained from a pen-list% or while it is selected into a drawing context.

- (send a-pen set-join join-style) ⇒ void
join-style : symbol in ’(round bevel miter)

set-stipple

Sets the pen stipple bitmap, which must be an 8 x 8 monochrome bitmap or #f, which turns off the stipple
bitmap.

A bitmap cannot be used as a stipple if it is selected into a bitmap-dc% object; if the given bitmap is selected
into a bitmap-dc% object, an exn:application:mismatch exception is raised. A pen cannot be modified if
it was obtained from a pen-list% or while it is selected into a drawing context.

- (send a-pen set-stipple stipple) ⇒ void
stipple : bitmap% object or #f

set-style

Sets the pen style. See pen% for information about the possible styles.

A pen cannot be modified if it was obtained from a pen-list% or while it is selected into a drawing context.

130

6. Drawing Class Reference 6.13. pen-list%

- (send a-pen set-style style) ⇒ void
style : symbol in ’(transparent solid xor dot long-dash short-dash dot-dash

xor-dot xor-long-dash xor-short-dash xor-dot-dash)

set-width

Sets the pen width.

A pen cannot be modified if it was obtained from a pen-list% or while it is selected into a drawing context.

- (send a-pen set-width width) ⇒ void
width : real number in [0, 255]

6.13 pen-list%

A pen-list% object maintains a list of pen% objects to avoid repeatedly creating pen objects. A pen% object
in a pen list cannot be mutated.

A global pen list the-pen-list is created automatically.

- (make-object pen-list%) ⇒ pen-list% object

Creates an empty pen list.

find-or-create-pen

Finds a pen of the given specification, or creates one and adds it to the list.

- (send a-pen-list find-or-create-pen color width style) ⇒ pen% object
color : color% object
width : real number in [0, 255]
style : symbol in ’(transparent solid xor dot long-dash short-dash dot-dash

xor-dot xor-long-dash xor-short-dash xor-dot-dash)

See pen%.

- (send a-pen-list find-or-create-pen color-name width style) ⇒ pen% object or #f
color-name : string
width : real number in [0, 255]
style : symbol in ’(transparent solid xor dot long-dash short-dash dot-dash

xor-dot xor-long-dash xor-short-dash xor-dot-dash)

See pen%.

The return value is #f when no color matching color-name can be found in the color database.

6.14 point%

A point% is used for certain drawing commands. It excapsulates two real numbers, x and y .

- (make-object point%) ⇒ point% object

Creates a point with 0 x and y values.

131

6.15. post-script-dc% 6. Drawing Class Reference

- (make-object point% x y) ⇒ point% object
x : real number
y : real number

Creates a point.

get-x

Gets the point x-value.

- (send a-point get-x) ⇒ real number

get-y

Gets the point y-value.

- (send a-point get-y) ⇒ real number

set-x

Sets the point x-value.

- (send a-point set-x x) ⇒ void
x : real number

set-y

Sets the point y-value.

- (send a-point set-y y) ⇒ void
y : real number

6.15 post-script-dc%

Implements: dc<%>

A post-script-dc% object is a PostScript device context, that can write PostScript files on any platform.
See also ps-setup%.

Be sure to use the following methods to start/end drawing:

• start-doc

• start-page

• end-page

• end-doc

See also printer-dc%.

132

6. Drawing Class Reference 6.16. printer-dc%

- (make-object post-script-dc% interactive? parent) ⇒ post-script-dc% object
interactive? = #t : boolean
parent = #f : frame% or dialog% object or #f

If interative? is true, the user is given a dialog for setting printing parameters (see
get-ps-setup-from-user); the resulting configuration is installed as the current configuration). If
the user chooses to print to a file (the only possibility under Windows and MacOS), another dialog is
given to select the filename. If the user hits cancel in either of these dialogs, then ok? returns #f.

If parent is not #f, it is used as the parent window of the configuration dialog.

If interative? is #f, then the settings returned by current-ps-setup are used. A file dialog is still
presented to the user if the get-file method returns #f, and the user may hit cancel in that case so
that ok? returns #f.

See also ps-setup% and current-ps-setup. The settings for a particular post-script-dc% object
are fixed to the values in the current configuration when the object is created (after the user has
interactively adjusted them when interactive? is true).

6.16 printer-dc%

Implements: dc<%>

A printer-dc% object is a Windows or MacOS printer device context. The class cannot be instantiated
under X (an exn:misc:unsupported exception is raised).

Be sure to use the following methods to start/end drawing:

• start-doc

• start-page

• end-page

• end-doc

See also post-script-dc%.

When a printer-dc% object is created, the user gets platform-specific modal dialogs for configuring the
output.

- (make-object printer-dc% parent) ⇒ printer-dc% object
parent = #f : frame% or dialog% object or #f

If parent is not #f, it is used as the parent window of the configuration dialog.

6.17 ps-setup%

A ps-setup% object contains configuration information for producing PostScript files using a
post-script-dc% object.

When a post-script-dc% object is created, its configuration is determined by the current-ps-setup
parameter’s ps-setup% value. After a post-script-dc% object is created, it is unaffected by changes to the
current-ps-setup parameter or mutations to the ps-setup% object.

133

6.17. ps-setup% 6. Drawing Class Reference

- (make-object ps-setup%) ⇒ ps-setup% object

Creates a new ps-setup% object with the (platform-specific) default configuration.

copy-from

Copies the settings from the given ps-setup% object to this one.

- (send a-ps-setup copy-from source) ⇒ void
source : ps-setup% object

get-afm-path

- (send a-ps-setup get-afm-path) ⇒ string or #f

Returns the current Adobe(tm) Font Manager directory pathname, used for getting font size informa-
tion when generating PostScript files. If the directory is unknown, #f is returned.

If Adobe(tm) Font Manager files cannot be found when a PostScript file is being generated, then text
sizes will be cacluated incorrectly and will likely be drawn with an incorrect position.

get-command

- (send a-ps-setup get-command) ⇒ string

Gets the printer command used to print a file in X. The default is usually "lpr". This value is not
used by other platforms.

get-editor-margin

- (send a-ps-setup get-editor-margin h-margin v-margin) ⇒ void
h-margin : boxed exact non-negative integer
v-margin : boxed exact non-negative integer

Returns the current settings for horizontal and vertical margins when printing an editor<%>. See also
set-editor-margin.

get-file

- (send a-ps-setup get-file) ⇒ string or #f

Gets the PostScript output filename. A #f value (the default) indicates that the user should be
prompted for a filename when a post-script-dc% object is created.

get-level-2

- (send a-ps-setup get-level-2) ⇒ boolean

Reports whether Level 2 commands are output in PostScript files.

Currently, Level 2 commands are only needed to include color bitmap images in PostScript output
(drawn with draw-bitmap), or bitmap pen and brush stipples. When Level 2 commands are disabled,
bitmaps are converted to grayscale images and stipples are not supported.

134

6. Drawing Class Reference 6.17. ps-setup%

get-margin

- (send a-ps-setup get-margin h-margin v-margin) ⇒ void
h-margin : boxed non-negative real number
v-margin : boxed non-negative real number

Returns the current settings for horizontal and vertical PostScript margins. See also set-margin.

get-mode

- (send a-ps-setup get-mode) ⇒ symbol in ’(preview file printer)

Gets the printing mode that determines where output is sent: ’preview, ’file, or ’printer. The
default for X is ’preview. The value Windows and MacOS is always ’file.

get-options

- (send a-ps-setup get-options) ⇒ string

Gets the additional options for the print command (e.g. specific printer). The default is "".

get-orientation

- (send a-ps-setup get-orientation) ⇒ symbol in ’(portrait landscape)

Gets the orientation: ’portrait or ’landscape. The default is ’portrait.
Landscaped orientation affects the size of the drawing area as reported by get-size: the horizontal
and vertical sizes determined by the selected paper type are transposed and then scaled.

get-paper-name

- (send a-ps-setup get-paper-name) ⇒ string

Returns the name of the current paper type: "A4 210 x 297 mm", "A3 297 x 420 mm", "Letter 8
1/2 x 11 in", or "Legal 8 1/2 x 14 in". The default is "Letter 8 1/2 x 11 in". The paper
name determines the size of the drawing area as reported by get-size (along with landscape trans-
formations from get-orientation and/or the scaling factors of get-scaling).

get-preview-command

- (send a-ps-setup get-preview-command) ⇒ string

Gets the command used to view a PostScript file for X. The default is usually "ghostview". This
value is not used by other platforms.

get-scaling

- (send a-ps-setup get-scaling x y) ⇒ void
x : boxed non-negative real number
y : boxed non-negative real number

Gets the scaling factor for PostScript output. The x box is filled with the horizontal scaling factor.
The y box is filled with the vertical scaling factor. The default is 1.0 by 1.0.
This scale is in addition to a scale that can be set by set-scale in a post-script-dc% context. The
size reported by get-size is the size of the selected paper type (transposed for landscaped mode)
divided by this scale.

135

6.17. ps-setup% 6. Drawing Class Reference

get-translation

- (send a-ps-setup get-translation x y) ⇒ void
x : boxed real number
y : boxed real number

Gets the translation (from the bottom left corner) for PostScript output. The x box is filled with the
horizontal offset. The y box is filled with the vertical offset. The default is 0.0 and 0.0.

The translation is not scaled by the numbers returned from get-scaling and the translation does not
affect the size of the drawing area.

set-afm-path

- (send a-ps-setup set-afm-path path) ⇒ void
path : string or #f

Sets the current Adobe(tm) Font Manager directory pathname. See get-afm-path.

set-command

- (send a-ps-setup set-command command) ⇒ void
command : string

Sets the printer command used to print a file under X. See get-command.

set-editor-margin

- (send a-ps-setup set-editor-margin h v) ⇒ void
h : exact non-negative integer
v : exact non-negative integer

Sets the horizontal and vertical margins used when when printing an editor with the print method.
These margins are always used for printing, whether the drawing destination is a post-script-dc% or
printer-dc%. The margins are in the units of the destination printer-dc% or post-script-dc%. In
the case of post-script-dc% printing, the editor margin is in addition to the PostScript margin that
is determined by set-margin.

set-file

- (send a-ps-setup set-file filename) ⇒ void
filename : string or #f

Sets the PostScript output filename. See get-file.

set-level-2

- (send a-ps-setup set-level-2 on?) ⇒ void
on? : boolean

Sets whether Level 2 commands are output in PostScript files. See get-level-2.

set-margin

- (send a-ps-setup set-margin h v) ⇒ void
h : non-negative real number

136

6. Drawing Class Reference 6.17. ps-setup%

v : non-negative real number

Sets the horizontal and vertical PostScript margins. When drawing to a post-script-dc%, the page
size reported by get-size subtracts these margins from the normal page area (before taking into
account scaling affects). In addition, drawing into the post-script-dc% produces PostScript output
that is offset by the margins.

When using the output of a post-script-dc% as Encapsulated PostScript, the margin values are
effectively irrelevant. Changing the margins moves the PostScript image in absolute coordinates, but
it also moves the bounding box.

The margins are in unscaled post-script-dc% units, which are points. The default margins are 16
points.

set-mode

- (send a-ps-setup set-mode mode) ⇒ void
mode : symbol in ’(preview file printer)

Sets the printing mode controlling where output is sent. See get-mode.

Under Windows and MacOS, if ’preview or ’printer is provided, an exn:application:mismatch
exception is raised.

set-options

- (send a-ps-setup set-options options) ⇒ void
options : string

Sets the additional options for the print command (e.g. specific printer) under X. See get-options.

set-orientation

- (send a-ps-setup set-orientation orientation) ⇒ void
orientation : symbol in ’(portrait landscape)

Sets the orientation. See get-orientation.

set-paper-name

- (send a-ps-setup set-paper-name type) ⇒ void
type : string

Sets the name of the current paper type. See get-paper-name.

set-preview-command

- (send a-ps-setup set-preview-command command) ⇒ void
command : string

Sets the command used to view a PostScript file under X. See get-preview-command.

set-scaling

- (send a-ps-setup set-scaling x y) ⇒ void
x : non-negative real number
y : non-negative real number

137

6.18. region% 6. Drawing Class Reference

Sets the scaling factor for PostScript output. See get-scaling.

set-translation

- (send a-ps-setup set-translation x y) ⇒ void
x : real number
y : real number

Sets the translation (from the bottom left corner) for PostScript output. See get-translation.

6.18 region%

A region% object specifies a portion of a drawing area (possibly discontinuous) for clipping drawing opera-
tions.

Each region% object is associated to a particular dc<%> object, specified when the region is created. A
region can only be used with its associated dc<%> object, and changing the origin or scale of a drawing
context invalidates its associated regions. (The region can still be used after the origin or scale is chaged,
but the results are platform- and device-dependent.)

See also set-clipping-region in dc<%> and get-clipping-region in dc<%>.

- (make-object region% dc) ⇒ region% object
dc : dc<%> object

Creates an empty region.

get-bounding-box

Returns a rectangle that encloses the region. The return values are the top, left, width, and height of the
rectangle.

- (send a-region get-bounding-box) ⇒ four real numbers

get-dc

Returns the region’s drawing context.

- (send a-region get-dc) ⇒ dc<%> object

intersect

Sets the region to the intersection of itself with the given region.

This region’s DC and given region’s DC must be the same.

- (send a-region intersect rgn) ⇒ void
rgn : region% object

138

6. Drawing Class Reference 6.18. region%

is-empty?

Returns #t if the region is empty, #f otherwise.

- (send a-region is-empty?) ⇒ boolean

set-arc

Sets the region to the interior of the specified wedge.

See also draw-ellipse in dc<%>.

- (send a-region set-arc x y width height start-radians end-radians) ⇒ void
x : real number
y : real number
width : non-negative real number
height : non-negative real number
start-radians : real number
end-radians : real number

set-ellipse

Sets the region to the interior of the specified ellipse.

See also draw-ellipse in dc<%>.

- (send a-region set-ellipse x y width height) ⇒ void
x : real number
y : real number
width : non-negative real number
height : non-negative real number

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

set-polygon

Sets the region to the interior of the specified polygon.

See also draw-polygon in dc<%>.

- (send a-region set-polygon points xoffset yoffset fill-style) ⇒ void
points : list of point% objects
xoffset = 0 : real number
yoffset = 0 : real number
fill-style = ’odd-even : symbol in ’(odd-even winding)

set-rectangle

Sets the region to the interior of the specified rectangle.

See also draw-rectangle in dc<%>.

139

6.18. region% 6. Drawing Class Reference

- (send a-region set-rectangle x y width height) ⇒ void
x : real number
y : real number
width : non-negative real number
height : non-negative real number

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

set-rounded-rectangle

Sets the region to the interior of the specified rounded rectangle.

See also draw-rounded-rectangle in dc<%>.

- (send a-region set-rounded-rectangle x y width height radius) ⇒ void
x : real number
y : real number
width : non-negative real number
height : non-negative real number
radius = 20 : real number

Restrictions on the magnitude of drawing coordinates are described with dc<%>.

subtract

Sets the region to the subtraction of itself minus the given region. In other words, a point is removed from
the region if it is included in the given region. (The given region may contain points that are not in the
current region; such points are ignored.)

This region’s DC and given region’s DC must be the same.

- (send a-region subtract rgn) ⇒ void
rgn : region% object

union

Sets the region to the union of itself with the given region.

This region’s DC and given region’s DC must be the same.

- (send a-region union rgn) ⇒ void
rgn : region% object

140

7. Drawing Procedures

7.1 Global Graphics and Screen

current-ps-setup

Sets the object that contains the current PostScript configuration settings.

- (current-ps-setup) ⇒ ps-setup% object

Returns the current PostScript configuration object.

- (current-ps-setup ps-setup) ⇒ void
ps-setup : ps-setup% object

Sets the current PostScript configuration object.

flush-display

Under X, flushes pending display messages such that the user’s display reflects the actual state of the
windows. Under Windows and MacOS, the procedure has no effect.

- (flush-display) ⇒ void

get-display-depth

- (get-display-depth) ⇒ exact non-negative integer

Returns the depth of the main display (a value of 1 denotes a monochrome display).

get-display-size

Gets the physical size of the display in pixels. Under Windows, this size does not include the task bar.
Under MacOS, this size does not include the menu bar.

- (get-display-size) ⇒ two exact non-negative integers

Returns the screen’s width and height.

get-face-list

Returns a list of font face names available on the current system.

- (get-face-list) ⇒ list of strings

141

7.1. Global Graphics and Screen 7. Drawing Procedures

get-family-builtin-face

Returns the built-in default face mapping for a particular font family. The built-in default can be overridden
via resources, as described in the FONTS file that is included in the notes directory of the MrEd distribution.

- (get-family-builtin-face family) ⇒ string
family : symbol in ’(default decorative roman script swiss modern symbol

system)

See font% for information about family .

is-color-display?

- (is-color-display?) ⇒ boolean

Returns #t if the main display has color, #f otherwise.

register-collecting-blit

Registers a blit to occur when garbage collection starts or ends.

- (register-collecting-blit canvas x y w h on off on-x on-y off-x off-y) ⇒ void
canvas : canvas% object
x : real number
y : real number
w : non-negative real number
h : non-negative real number
on : bitmap% object
off : bitmap% object
on-x = 0 : real number
on-y = 0 : real number
off-x = 0 : real number
off-y = 0 : real number

When garbage collection starts, (send (send canvas get-dc) draw-bitmap-section on on-x
on-y x y w h) is called. When garbage collection ends, (send (send canvas get-dc)
draw-bitmap-section off off-x off-y x y w h) is called.

The canvas is registered weakly, so it will be automatically unregistered if the canvas becomes invisible
and inaccessible. Multiple registrations can be installed for the same canvas.

See also unregister-collecting-blit.

the-brush-list

See brush-list%.

- the-brush-list ⇒ brush-list% object
Initial value : empty brush list

the-color-database

See color-database<%>.

142

7. Drawing Procedures 7.1. Global Graphics and Screen

- the-color-database ⇒ color-database<%> object
Initial value : basic color database

the-font-list

See font-list%.

- the-font-list ⇒ font-list% object
Initial value : empty font list

the-font-name-directory

See font-name-directory<%>.

- the-font-name-directory ⇒ font-name-directory<%> object
Initial value : the font name directory

the-pen-list

See pen-list%.

- the-pen-list ⇒ pen-list% object
Initial value : empty pen list

unregister-collecting-blit

Unregisters a blit request installed with See also register-collecting-blit.

- (unregister-collecting-blit canvas) ⇒ void
canvas : canvas% object

Unregsiters all blits for canvas.

143

Part III

Editor Toolbox

144

8. Editor Toolbox

The editor toolbox provides a foundation for two common kinds of applications:

1. Programs that need a sophisticated text editor— The simple text field control is inadequate for
text-intensive applications. Many programs need editors that can handle multiple fonts and non-text
items.

2. Programs that need a canvas with dragable objects — The drawing toolbox provides a generic
drawing surface for plotting lines and boxes, but many applications need an interactive canvas, where
the user can drag and resize individual objects.

Both kinds of applications need an extensible editor that can handle text, images, programmer-defined items,
and even embedded editors. The difference between them is the layout of items. MrEd therefore provides
two kinds of editors via two classes:

• text% — in a text editor, items are automatically positioned in a paragraph flow.

• pasteboard% — in a pasteboard editor, items are explicitly positioned and dragable.

MrEd’s editor architecture addresses the full range of real-world issues for an editor—including cut-and-paste,
extensible file formats, and layered text styles—while supporting a high level of extensibility. Unfortunately,
the system is fairly complex as a result,1 and using the editor classes effectively requires a solid understanding
of the structure and terminology of the editor toolbox. Nevertheless, enough applications fit one (or both)
of the descriptions above to justify the depth and complexity of the toolbox and the learning investment
required to use it.

A brief example illustrates how MrEd editors work. To start, an editor needs an editor-canvas% to display
its contents. Then, we can create a text editor an install it into the canvas:

(define f (make-object frame% "Simple Edit" #f 200 200))
(define c (make-object editor-canvas% f))
(define t (make-object text%))
(send c set-editor t)
(send f show #t)

At this point, the editor is fully functional: the user can type text into the editor, but no cut-and-paste
operations are available. We can support all of the standard operations on an editor via the menu bar:

(define mb (make-object menu-bar% f))
(define m-edit (make-object menu% "Edit" mb))
(define m-font (make-object menu% "Font" mb))
(append-editor-operation-menu-items m-edit)
(append-editor-font-menu-items m-font)
1Nearly half of this manual is dedicated to documenting the editor classes.

146

8. Editor Toolbox

Now, the standard cut and paste operations work, and the user can even set font styles. The user can also
insert an embedded editor by selecting Insert Text from the Edit menu; after selecting the menu item, a box
appears in the editor with the caret inside. Typing with the caret in the box stretches the box as text is
added, and font operations apply wherever the caret is active. Text on the outside of the box is rearranged
as the box changes sizes. Note that the box itself can be copied and pasted.

The content of an editor is made up of snips. An embedded editor is a single snip from the embedding
editor’s point-of-view. To encode immediate text, a snip can be a single character, but more often a snip
is a sequence of adjacent characters on the same line. The find-snip method extracts a snip from a text
editor:

(send t find-snip 0 ’after)

The above expression returns the first snip in the editor, which may be a string snip (for immediate text) or
an editor snip (for an embedded editor).

An editor is not permanently attached to any display. We can take the text editor out of our canvas and
put a pastboard editor in the canvas, instead:

(define pb (make-object pasteboard%))
(send c set-editor pb)

With the pasteboard editor installed, the user can no longer type characters directly into the editor (because
a pasteboard does not support directly entered text). However, the user can cut text from elsewhere and
paste it into pasteboard, or select one of the Insert menu items in the Edit menu. Snips are clearly identifiable
in a pasteboard editor (unlike a text editor) because each snip is separately dragable.

We can insert the old text editor (which we recently removed from the canvas) as an embedded editor in the
pasteboard by explicitly creating an editor snip:

(define s (make-object editor-snip% t)) ; t is the old text editor
(send pb insert s)

An individual snip cannot be inserted into different editors at the same time, or inserted multiple times in
the same editor:

(send pb insert s) ; no effect

However, we can make a deep copy of the snip and insert the copy into the pasteboard:

(send pb insert (send s copy))

Applications that use the editor classes typically derive new versions of the text% and pasteboard% classes.
For example, to implement an append-only editor (which allows insertions only at the end and never allows
deletions), derive a new class from text% and override the can-insert? and can-delete? methods:

(define append-only-text%
(class text% args
(inherit last-position)
(override
[can-insert? (lambda (s l) (= s (last-position)))]
[can-delete? (lambda (s l) #f)])
(sequence (apply super-init args))))

147

8.1. EDITOR STRUCTURE AND TERMINOLOGY 8. Editor Toolbox

8.1 Editor Structure and Terminology

MrEd supports extensible and nestable editors by decomposing an editor assembly into three functional
parts:

• The editor itself stores the state of the text or pasteboard and handles most events and editing
operations. The editor<%> interface defines the core editor functionality, but editors are created as
instances of text% or pasteboard%.

• A snip is a segment of information within the editor. Each snip can contain a sequence of characters,
a picture, or an interactive object (such as an embedded editor). In a text editor, snips are constrained
to fit on a single line and generally contain data of a single type. The snip% class implements a basic
snip. Other snip classes include string-snip% for managing text, image-snip% for managing pictures,
and editor-snip% for managing embedded editors.

• A display presents the editor on the screen. The display lets the user scroll around an editor or change
editors. Most displays are instances of the editor-canvas% class, but the editor-snip% class also
acts as a display for embedded editors.

These three parts are illustrated by a simple word processor. The editor corresponds to the text document.
The editor object receives keyboard and mouse commands for editing the text. The text itself is distributed
among snips. Each character could be a separate snip, or multiple characters on a single line could be
grouped together into a snip. The display roughly corresponds to the window in which the text is displayed.
While the editor manages the arrangement of the text as it is displayed into a window, the display determines
which window to draw into and which part of the editor to display.

Each selectable entity in an editor is an item. In a pasteboard, all selection and dragging operations work
on snips, so there is a one-to-one correspondence between snips and items. In an editor, one snip contains
one or more consecutive items, and every item belongs to some snip. For example, in a simple text editor,
each character is an item, but multiple adjacent characters may be grouped into a single snip.

Each place where the insertion point can appear in a text editor is a text position. A text editor with n
items contains n+ 1 text positions: one position before each item, and one position after the last item.

The order of snips within a pasteboard determines each snip’s drawing plane. When two snips overlap within
the pasteboard, the snip that is earlier in the order is in front of the other snip (i.e., the former is drawn
after the latter, such that the former snip may cover part of the latter snip).

When an editor is drawn into a display, each snip and text position has a graphic location. The location
of a position or snip is specified in coordinates relative to the top-left corner of the editor. Locations in an
editor are only meaningful when the editor is displayed.

8.1.1 Administrators

Two extra layers of administration manage the display-editor and editor-snip connections. An editor never
communicates directly with a display; instead, it always communicates with a editor administrator, an
instance of the editor-admin% class, which relays information to the display. Similarly, a snip communicates
with a snip administrator, an instance of the snip-admin% class.

The administrative layers make the editor hierarchy flexible without forcing every part of an editor assembly
to contain the functionality of several parts. For example, a text editor can be a single item within another
editor; without administrators, the text% class would also have to contain all the functionality of a display
(for the containing editor) and a snip (for the embedded editor). Using administrators, an editor class can

148

8. Editor Toolbox 8.1. EDITOR STRUCTURE AND TERMINOLOGY

serve as both a containing and an embedded editor without directly implementing the display and snip
functionality.

A snip belongs to at most one editor via a single administrator. A editor also has only one administrator at a
time. However, the administrator that connects the an editor to the standard display (i.e., an editor canvas)
can work with other such administrators. In particular, the administrator of a editor-canvas% (each one
has its own administrator) can work with other editor-canvas% administrators, allowing an editor to be
displayed in multiple editor-canvas% windows at the same time.

When an editor is displayed by multiple canvases, one of the canvases’ administrators is used as the editor’s
primary administrator. To handle user and update events for other canvases, the editor’s administrator is
temporarily changed and then restored through the editor’s set-admin method. The return value of the
editor’s get-admin method thus depends on the context of the call.

8.1.2 Styles

A style, an instance of the style<%> interface, parameterizes high-level display information that is common
to all snip classes. This includes the font, color, and alignment for drawing the item. A single style is
attached to each snip.

Styles are hierarchical: each style is defined in terms of another style. There is a single root style, named
"Basic", from which all other styles in an editor are derived. The difference between a base style and each
of its derived style is encoded in a style delta (or simply delta). A delta encodes changes such as

• change the font family to X;
• enlarge the font by adding Y to the point size;
• toggle the boldness of the font; or
• change everything to match the style description Z.

Style objects are never created separately; rather, they are always be created through a style list, an
instance of the style-list% class. A style list manages the styles, servicing external requests to find a
particular style, as well as the hierarchical relationship between the styles. A global style list is available
(the-style-list), but new style lists can be created for managing separate style hierarchies. For example,
each editor will typically have its own style list.

Each new style is defined in one of two ways:

• A derived style is defined in terms of a base style and a delta. Every style (except for the root style)
has a base style, even if it does not depend on the base style in any way (i.e., the delta describes a
fixed style rather than extensions to an existing style).2

• A join style is defined in terms of two other styles: a base style and a shift style. The meaning of a
join style is determined by reinterpreting the shift style; in the reinterpretation, the base style is used
as the root style for the shift style.3

Usually, when text is inserted into a buffer, a it inherits the style of the preceeding snip. If text is inserted
into an empty editor, the new snip is usually assigned a style called "Standard". By default, the "Standard"
style is unmodified from the root style.

2This is the usual kind of style inheritance, as found in word processors such as Microsoft Word.
3This is analogous to multi-level styles, like the paragraph and character styles in FrameMaker. In this analogy, the paragraph

style is the base style, and the character style is the shift style. However, FrameMaker allows only those two levels; with join
styles support any number of levels.

149

8.2. FILE FORMAT 8. Editor Toolbox

The exception to the above is when change-style in text% is called with the current selection position
(when the selection is a position and not a range). In that case, the style is remembered, and if the next
buffer-modifying action is a text insertion, the inserted text gets the remembered style.

8.2 File Format

Editor data can be read and written using editor-stream-in% and editor-stream-out% objects.

Editor information can only be read from or written to one stream at a time. To write one or more ed-
itors to a stream, first call the function write-editor-global-header to write initialization data into
an output stream. When all editors are written to the stream, call write-editor-global-footer. Sim-
ilarly, reading editors from a stream is initialized with read-editor-global-header and finalized with
read-editor-global-footer.

The editor file data format can be embedded within another file, and it can be extended with new kinds
of data. The editor file format can be extended in two ways: with snip- or content-specific data, and with
editor-specific global data. These are descibed in the remainder of this section.

8.2.1 Encoding Snips

The generalized notion of a snip allows new snip types to be defined and immediately used in any editor
class. Also, when two applications support the same kinds of snips, snip data can easily be cut and pasted
between them, and the same data files will be readable by each program. This interoperability is due to a
consistent encoding mechanism that is built into the snip system.

Graceful and extensible encoding of snips requires that two issues are addressed:

• In order to convert a snip from an encoded representation (e.g., as bytes in a file) to a memory object,
a decoding function must be provided for each type of snip. Furthermore, a list of such decoders must
be available to the high-level decoding process. This decoding mapping is defined by associating a
snip class object to every snip. A snip class is an instance of the snip-class% class.

• Some editors may require additional information to be stored about a snip; this information is or-
thogonal to the type-specific information stored by the snip itself. For example, a pasteboard needs
to remember a snip’s position, while a text editor does not need this information. If data is being
cut and pasted from one pasteboard to another, then information about relative positions needs to be
maintained, but this information should not inhibit pasting into an editor. Extra data is associated
with a snip through editor data objects, instances of the editor-data% class; decoding requires that
each editor data object has a editor data class, an instance of the editor-data-class% class.

Snip classes, snip data, and snip data classes solve problems related to encoding and decoding snips. In an
application that has no need for saving files or cut-and-paste, these issues can be safely ignored.

Snip Classes Each snip can be associated to a snip class. This “class” is not a class description in the
programmer’s language; it is an object which provides a way to create new snips of the appropriate type
from an encoded snip specification. All snip class objects should be added to the global snip class list,
returned by get-the-snip-class-list.

When a snip is encoded, the snip’s class name is associated with the encoding; when the snip needs to be
decoded, then the snip class list is searched by name to find the snip’s class. The snip class will then provide
a decoding function that can create a new snip from the encoding.

150

8. Editor Toolbox 8.3. END OF LINE AMBIGUITY

Editor Data While a snip belongs to a editor, the editor may store extra information about a snip in some
specialized way. When the snip is to be encoded, this extra information needs to be put into a editor data
object so that the extra information can be encoded as well. In a text editor, extra information can be
associated with ranges of items, as well as snips.

Just as a snip must be associated with a snip class to be decoded (see section 8.2.1 (page 150)), a editor
data object needs a editor data class for decoding. Every editor data class object should be added to the
global editor data class list, returned by get-the-editor-data-class-list.

To store and load information about a snip or region in a editor:

1. derive new classes from editor-data% and editor-data-class%.

2. derive a new class from the text% or pasteboard% class, and override the get-snip-data and
set-snip-data methods and/or the get-region-data and set-region-data methods.

When deriving the new editor-data-class% class, pick a new unique name to identify the encoded data.
All names beginning with “wx” are reserved for internal use. By tagging extra data with a unique name,
the normal editor content can be safely decoded in a editor that does not support the extra data.

8.2.2 Global Data: Headers and Footers

The editor file format provides for adding extra global data in special header and footer sections. To save
and load special header and/or footer records:

1. Pick a name for each header/footer record. This name should not conflict with any other header/footer
record name in use, and no one else should use these names. All names beginning with “wx” are reserved
for internal use. By tagging extra header and footer records with a unique name, the file can be safely
loaded under a system that does not support the records.

2. Derive a new class from the text% or pasteboard% class, and override the write-headers-to-file,
write-footers-to-file, read-header-from-file and/or read-footer-from-file methods.

When a editor is saved, the methods write-headers-to-file and write-footers-to-file are invoked;
this is when the derived text% or pasteboard% object has a chance to save records. To write a header/footer
record, first invoke the begin-write-header-footer-to-file method, at which point the record name is
provided. Once the record is written, call end-write-header-footer-to-file.

When a editor is loaded and a header/footer record is encountered, the read-header-from-file or
read-footer-from-file method is invoked, with the record name as the argument. If the name matches a
known record type, then the data can be loaded.

See also write-headers-to-file and write-headers-to-file.

8.3 End of Line Ambiguity

Because the editor can force a line break even when there is no carriage return item, a position alone does
not always specify a graphic location for the caret. Consider the last position of a line which is soft-broken
(i.e., no carriage return is present): there is no item between the last item of the line and the first item of
the next line, so two graphic locations (one end-of-line and one start-of-line) map to the same position.

For this reason, position-setting and position-getting methods often have an extra argument. In the case of a
position-setting method, the argument specifies whether the caret should be draw at the left or right side of

151

8.4. FLATTENED TEXT 8. Editor Toolbox

the page (in the event that the location is doubly defined); #t means that the caret should be drawn on the
right side. Similarly, methods which calculate a position from a location will take an extra boxed boolean;
the box is filled with #t if the position is ambiguous and it came from a right-side location, or #f otherwise.

8.4 Flattened Text

In plain text editors, there is a simple correlation between editor positions and characters. In a editor<%>
object, this is not true much of the time, but it is still sometimes useful to just “get the text” of an editor.

There are two kinds of text available:

1. Simple text, where there is one character per item. Items which are characters are mapped to
themselves, and all other items are mapped to a period. Line breaks are represented by carriage return
characters (ASCII 13).

2. Flattened text, where each item can map to an arbitrary string. Items which are characters are still
mapped to themselves, but more complicated items can be represented with a useful string, which is
determined by the item’s snip. Newlines are mapped to platform-specific character sequences (linefeed
under X, carriage return under MacOS, and linefeed-carriage return under Windows). This is called
“flattened” because the editor’s items have been reduced to a linear sequence of characters.

8.5 Caret Ownership

Within a frame, only one object can contain the keyboard focus. This property must be maintained when a
frame contains multiple editors in multiple displays, and when a single editor contains other editors as items.

When a editor has the keyboard focus, it will usually display the current selection, or a line indicating the
insertion point; this line is called the caret.

When a editor contains other editors, it keeps track of caret ownership among the sub-editors it contains.
When the caret is taken away from the main editor, it will take away caret ownership from the appropriate
sub-editor.

When a editor or snip is drawn, an argument to the drawing method specifies whether the caret should be
drawn with the data. This argument can be any of (in increasing order):

• ’no-caret — The caret should not be drawn at all.

• ’show-inactive-caret— The caret should be drawn as inactive; items may be identified as the local
current selection, but the keyboard focus is elsewhere.

• ’show-caret — The caret should be drawn to show keyboard focus ownership.

The ’show-inactive-caret display mode is useful for showing selection ranges in text editors that do not
have the focus. This ’show-inactive-caret mode is distinct from ’no-caret mode; when editors are
embedded, only the locally-active editor shows its selection.

8.6 Cut and Paste Time Stamps

Methods of editor<%> that use the clipboard — including copy, cut, paste, and do-edit-operation
— consume a time stamp argument. This time stamp is generally extracted from the mouse-event% or

152

8. Editor Toolbox 8.7. CLICKBACKS

key-event% object that triggered the clipboard action. X uses the time stamp to synchronize clipboard
operations among the clipboard clients.

All instances of event% include a time stamp, which can be obtained using get-time-stamp.

If the time stamp is 0, it defauls to the current time. Using 0 as the time stamp almost always works fine,
but it is considered bad manners under X.

8.7 Clickbacks

Clickbacks in a text% editor facilitate the creation of simple interactive objects, such as hyper-text. A
clickback is defined by associating a callback function with a range of items in the editor. When a user clicks
on the items in that range, the callback function is invoked. For example, a hyper-text clickback would
associate a range with a callback function that changes the selection range in the editor.

By default, the callback function is invoked when the user releases the mouse button. The set-clickback
method accepts an optional argument that causes the callback function to be invoked on the button press,
instead. This behavior is useful, for example, for a clickback that creates a popup menu.

Note that there is no attempt to save clickback information when a file is saved, since a clickback will have
an arbitrary procedure associated with it.

8.8 Internal Editor Locks

Instances of editor<%> have three levels of internal locking:

• write locking —When an editor is interally locked for writing, the abstract content of the editor cannot
be changed. However, snips in a text editor can still be split and merged, and the text editor can be
changed in ways that affects the flow of lines.

• flow locking — When a text editor is interally locked for reflowing, it is locked for writing and the
actual snip content of the editor cannot change. Thus, no change can be made that would affect the
flow of lines in the editor.

• read locking — When an editor is interally locked for reading, no operations can be performed on the
editor. This extreme state is used only during callbacks to its snips while the editor is in a sensitive
state.

The internal lock for an editor is not affected by calls to lock.

153

9. Editor Class Reference

9.1 Class Listing

Editors

editor<%>
|- text%
|- pasteboard%

Displays

editor-canvas%
editor-snip%

Snips

snip%
|- string-snip%
| |- tab-snip%
|- image-snip%
|- editor-snip%

Administrators

editor-admin%
|- editor-snip-editor-admin<%>

snip-admin%

Styles

add-color<%>
mult-color<%>
style<%>
style-delta%
style-list%

File Reading/Writing and Cut-and-Patse

editor-data%
editor-data-class%
editor-data-class-list<%>
editor-stream-in%
editor-stream-in-base%

154

9. Editor Class Reference 9.2. BUFFER METHOD TABLE

editor-stream-in-string-base%
editor-stream-out%
editor-stream-out-base%
editor-stream-out-string-base%
snip-class%
snip-class-list<%>

Miscellaneous

editor-wordbreak-map%
keymap%

9.2 Buffer Method Table

The following is a table of methods in the wx:media-buffer%, wx:media-edit% and wx:media-pasteboard%
arranged by category.

155

9.2. BUFFER METHOD TABLE 9. Editor Class Reference

selection & positions

add-selected in wx:media-pasteboard%
find-snip in wx:media-edit%
find-first-snip in wx:media-pasteboard%
find-next-selected-snip in wx:media-pasteboard%
flash-off in wx:media-edit%
flash-on in wx:media-edit%
get-anchor in wx:media-edit%
get-between-threshold in wx:media-edit%
get-end-position in wx:media-edit%
get-position in wx:media-edit%
get-snip-position in wx:media-edit%
get-snip-position-and-location in wx:media-edit%
get-start-position in wx:media-edit%
get-visible-position-range in wx:media-edit%
is-selected? in wx:media-pasteboard%
last-position in wx:media-edit%
line-end-position in wx:media-edit%
line-start-position in wx:media-edit%
move-position in wx:media-edit%
no-selected in wx:media-pasteboard%
position-line in wx:media-edit%
position-location in wx:media-edit%
scroll-to-position in wx:media-edit%
set-anchor in wx:media-edit%
set-between-threshold in wx:media-edit%
set-position in wx:media-edit%
set-position-bias-scroll in wx:media-edit%
set-selected in wx:media-pasteboard%

locations & lines

find-line in wx:media-edit%
find-position in wx:media-edit%
find-position-in-line in wx:media-edit%
find-snip in wx:media-pasteboard%
get-snip-location in wx:media-buffer%
get-snip-position-and-location in wx:media-edit%
get-visible-line-range in wx:media-edit%
global-to-local in wx:media-buffer%
last-line in wx:media-edit%
line-end-position in wx:media-edit%
line-length in wx:media-edit%
line-location in wx:media-edit%
line-start-position in wx:media-edit%
local-to-global in wx:media-buffer%
lower in wx:media-pasteboard%
move in wx:media-pasteboard%
move-to in wx:media-pasteboard%
position-line in wx:media-edit%
position-location in wx:media-edit%
raise in wx:media-pasteboard%
resize in wx:media-pasteboard%
set-after in wx:media-pasteboard%
set-before in wx:media-pasteboard%
set-position-bias-scroll in wx:media-edit%

paragraphs

last-paragraph in wx:media-edit%
line-paragraph in wx:media-edit%
paragraph-end-line in wx:media-edit%
paragraph-end-position in wx:media-edit%
paragraph-start-line in wx:media-edit%
paragraph-start-position in wx:media-edit%
position-paragraph in wx:media-edit%

inserting & deleting

begin-edit-sequence in wx:media-buffer%
clear in wx:media-buffer%
delete in wx:media-edit%
delete in wx:media-pasteboard%

erase in wx:media-edit%
erase in wx:media-pasteboard%
end-edit-sequence in wx:media-buffer%
insert in wx:media-buffer%
insert in wx:media-edit%
insert in wx:media-pasteboard%
insert-box in wx:media-buffer%
insert-image in wx:media-buffer%
remove in wx:media-pasteboard%

cut & paste & undo

clear-undos in wx:media-buffer%
copy in wx:media-buffer%
copy in wx:media-edit%
cut in wx:media-buffer%
cut in wx:media-edit%
get-max-undo-history in wx:media-buffer%
kill in wx:media-buffer%
paste in wx:media-buffer%
paste in wx:media-edit%
redo in wx:media-buffer%
set-max-undo-history in wx:media-buffer%
undo in wx:media-buffer%

styles

change-style in wx:media-buffer%
change-style in wx:media-edit%
change-style in wx:media-pasteboard%
get-style-list in wx:media-buffer%
get-tabs in wx:media-edit%
set-style-list in wx:media-buffer%
set-tabs in wx:media-edit%

text

find-string in wx:media-edit%
find-string-all in wx:media-edit%
find-wordbreak in wx:media-edit%
get-character in wx:media-edit%
get-flattened-text in wx:media-buffer%
get-text in wx:media-edit%
get-wordbreak-map in wx:media-edit%
set-wordbreak-func in wx:media-edit%
set-wordbreak-map in wx:media-edit%

events & key mapping

add-buffer-functions in wx:media-buffer%
add-editor-functions in wx:media-edit%
add-pasteboard-functions in wx:media-pasteboard%
after-change-style in wx:media-edit%
after-delete in wx:media-edit%
after-delete in wx:media-pasteboard%
after-edit-sequence in wx:media-buffer%
after-insert in wx:media-edit%
after-insert in wx:media-pasteboard%
after-move-to in wx:media-pasteboard%
after-resize in wx:media-pasteboard%
after-set-position in wx:media-edit%
after-set-size-constraint in wx:media-edit%
get-focus-snip in wx:media-buffer%
get-keymap in wx:media-buffer%
on-char in wx:media-buffer%
on-change in wx:media-buffer%
on-change-style in wx:media-edit%
on-default-char in wx:media-buffer%
on-default-event in wx:media-buffer%
on-delete in wx:media-edit%
on-delete in wx:media-pasteboard%
on-edit-sequence in wx:media-buffer%

156

9. Editor Class Reference 9.2. BUFFER METHOD TABLE

on-event in wx:media-buffer%
on-insert in wx:media-edit%
on-insert in wx:media-pasteboard%
on-local-char in wx:media-buffer%
on-local-event in wx:media-buffer%
on-move-to in wx:media-pasteboard%
on-resize in wx:media-pasteboard%
on-set-size-constraint in wx:media-edit%
set-keymap in wx:media-buffer%

view & administration

adjust-cursor in wx:media-buffer%
caret-hidden? in wx:media-edit%
get-admin in wx:media-buffer%
get-extent in wx:media-buffer%
get-dc in wx:media-buffer%
get-descent in wx:media-buffer%
get-dragable in wx:media-pasteboard%
get-inactive-focus-threshold in wx:media-buffer%
get-max-height in wx:media-buffer%
get-max-width in wx:media-buffer%
get-min-height in wx:media-buffer%
get-min-width in wx:media-buffer%
get-space in wx:media-buffer%
get-view-size in wx:media-buffer%
hide-caret in wx:media-edit%
invalidate-bitmap-cache in wx:media-buffer%
lock in wx:media-buffer%
needs-update in wx:media-buffer%
on-focus in wx:media-buffer%
on-paint in wx:media-buffer%
own-caret in wx:media-buffer%
refresh in wx:media-buffer%
resized in wx:media-buffer%
scroll-to in wx:media-buffer%
scroll-to-position in wx:media-edit%
set-admin in wx:media-buffer%
set-autowrap-bitmap in wx:media-edit%
set-caret-owner in wx:media-buffer%
set-cursor in wx:media-edit%
set-dragable in wx:media-pasteboard%
set-inactive-focus-threshold in wx:media-buffer%
set-max-height in wx:media-buffer%
set-max-width in wx:media-buffer%
set-min-height in wx:media-buffer%
set-min-width in wx:media-buffer%
size-cache-invalid in wx:media-buffer%

file loading & saving

after-load-file in wx:media-buffer%
after-save-file in wx:media-buffer%
begin-write-header-footer-to-file in wx:media-buffer%
end-write-header-footer-to-file in wx:media-buffer%
get-file in wx:media-buffer%
get-filename in wx:media-buffer%
get-file-format in wx:media-edit%
get-region-data in wx:media-edit%
get-snip-data in wx:media-buffer%
insert-file in wx:media-buffer%
load-file in wx:media-buffer%
modified? in wx:media-buffer%
on-load-file in wx:media-buffer%
on-save-file in wx:media-buffer%
put-file in wx:media-buffer%
read-footer-from-file in wx:media-buffer%
read-from-file in wx:media-buffer%
read-from-file in wx:media-edit%
read-header-from-file in wx:media-buffer%
save-file in wx:media-buffer%
set-filename in wx:media-buffer%
set-file-format in wx:media-edit%
set-modified in wx:media-buffer%
set-region-data in wx:media-edit%
set-snip-data in wx:media-buffer%

write-headers-to-file in wx:media-buffer%
write-footers-to-file in wx:media-buffer%
write-to-file in wx:media-buffer%
write-to-file in wx:media-edit%

menus

append-edit-items in wx:media-buffer%
append-font-items in wx:media-buffer%
do-edit in wx:media-buffer%
do-font in wx:media-buffer%

other

copy-self in wx:media-buffer%
copy-self-to in wx:media-buffer%
copy-self-to in wx:media-edit%
copy-self-to in wx:media-pasteboard%
set-clickback in wx:media-edit%
on-new-image-snip in wx:media-buffer%
on-new-tab-snip in wx:media-edit%
on-new-text-snip in wx:media-edit%

157

9.3. add-color<%> 9. Editor Class Reference

9.3 add-color<%>

A add-color<%> object is used to additively change the RGB values of a color% object. A add-color<%>
object only exists within a style-delta% object.

See also get-foreground-add and get-background-add.

get

Gets all of the additive values.

- (send an-add-color get r g b) ⇒ void
r : boxed exact integer in [-1000, 1000]
g : boxed exact integer in [-1000, 1000]
b : boxed exact integer in [-1000, 1000]

The r box is filled with the additive value for the red component of the color. The g box is filled with
the additive value for the green component of the color. The b box is filled with the additive value for
the blue component of the color.

get-b

Gets the additive value for the blue component of the color.

- (send an-add-color get-b) ⇒ exact integer in [-1000, 1000]

get-g

Gets the additive value for the green component of the color.

- (send an-add-color get-g) ⇒ exact integer in [-1000, 1000]

get-r

Gets the additive value for the red component of the color.

- (send an-add-color get-r) ⇒ exact integer in [-1000, 1000]

set

Sets all of the additive values.

- (send an-add-color set r g b) ⇒ void
r : exact integer in [-1000, 1000]
g : exact integer in [-1000, 1000]
b : exact integer in [-1000, 1000]

set-b

Sets the additive value for the blue component of the color.

158

9. Editor Class Reference 9.4. editor<%>

- (send an-add-color set-b v) ⇒ void
v : exact integer in [-1000, 1000]

set-g

Sets the additive value for the green component of the color.

- (send an-add-color set-g v) ⇒ void
v : exact integer in [-1000, 1000]

set-r

Sets the additive value for the red component of the color.

- (send an-add-color set-r v) ⇒ void
v : exact integer in [-1000, 1000]

9.4 editor<%>

The editor<%> interface is implemented by text% and pasteboard%.

See ??§ for a table of editor methods sorted by kind of functionality.

add-canvas

Adds a canvas to this editor’s list of displaying canvases. (See get-canvases.)

Normally, this method is called only by set-editor in editor-canvas% .

- (send an-editor add-canvas canvas) ⇒ void
canvas : editor-canvas% object

add-undo

Adds an undoer procedure to the editor’s undo stack. If an undo is currently being performed, the undoer is
added to the editor’s redo stack. The undoer is called by the system when it is undoing (or redoing) changes
to a editor, and when this undoer is the first item on the undo (or redo) stack.

The system automatically installs undo records to undo built-in editor operations, such as inserts, deletes,
and font changes. Install an undoer only when it is necessary to maintain state or handle operations that
are not built-in. For example, in a program where the user can assign labels to snips in a pasteboard, the
program should install an undoer to revert a label change. Thus, when a user changes a snip’s label and
then selects Undo (from a standard menu bar), the snip’s label will revert as expected. In contrast, there
is no need to install an undoer when the user moves a snip by dragging it, because the system installs an
appropriate undoer automatically.

After an undoer returns, the undoer is popped off the editor’s undo (or redo) stack; if the return value is
true, then the next undoer is also executed as part of the same undo (or redo) step. The undoer should
return true if the action being undone was originally performed as part of a begin-edit-sequence and
end-edit-sequence sequence. The return value should also be true if the undone action was implicitly part

159

9.4. editor<%> 9. Editor Class Reference

of a sequence. To extend the previous example, if a label change is paired with a move to realign the snip,
then the label-change undoer should be added to the editor after the call to move, and it should return
#t when it is called. As a result, the move will be undone immediately after the label change is undone.
(If the opposite order is needed, use begin-edit-sequence and end-edit-sequence to create an explicit
sequence.)

The system adds undoers to an editor (in response to other method calls) without calling this method.

- (send an-editor add-undo undoer) ⇒ void
undoer : procedure of zero arguments

adjust-cursor

Gets a cursor to be used in the editor’s display. If the return value is #f, a default cursor is used.

See also set-cursor.

- (send an-editor adjust-cursor event) ⇒ cursor% object or #f
event : mouse-event% object

If an overriding cursor has been installed with set-cursor, then the installed cursor is returned.
Otherwise, if the event is a dragging event, a snip in the editor has the focus, and the snip’s
adjust-cursor method returns a cursor, that cursor is returned.
Otherwise, if the cursor is over a snip and the snip’s adjust-cursor method returns a cursor, that
cursor is returned.
Otherwise, if a cursor has been installed with set-cursor, then the installed cursor is returned.
Otherwise, if the cursor is over a clickback region in an editor, an arrow cursor is returned.
Finally, if none of the above cases apply, a default cursor is returned. For a text editor, the default
cursor is an I-beam. For a pasteboard editor, the default cursor is an arrow.

after-edit-sequence

Called after a top-level edit sequence completes (involving unnested begin-edit-sequence and
end-edit-sequence).

See also on-edit-sequence.

- (send an-editor after-edit-sequence) ⇒ void

after-load-file

Called just after the editor is loaded from a file. The argument to the method specifies whether the load
was sucessful or not. See also can-load-file? and on-load-file.

- (send an-editor after-load-file success?) ⇒ void
success? : boolean

after-save-file

Called just after the editor is saved to a file. The argument to the method specifies whether the save was
sucessful or not. See also can-save-file?and on-save-file.

160

9. Editor Class Reference 9.4. editor<%>

- (send an-editor after-save-file success?) ⇒ void
success? : boolean

auto-wrap

Enables or disables automatically calling set-max-width in response to on-display-size, or gets the state
of auto-wrapping. For text editors, this has the effect of wrapping the editor’s contents to fit in a canvas
displaying the editor (the widest one if multiple canvases display the editor). For pasteboard editors, “auto-
wrapping” merely truncates the area of the pasteboard to match its canvas display.

Auto-wrapping is initially disabled.

- (send an-editor auto-wrap) ⇒ boolean

Returns #t if auto-wrapping is enabled, #f otherwise.

- (send an-editor auto-wrap auto-wrap?) ⇒ void
auto-wrap? : boolean

Enables auto-wrapping if auto-wrap? is true, disables auto-wrapping otherwise. The on-display-size
method is called immediately to update the editor’s maximum width.

begin-edit-sequence

The begin-edit-sequence and end-edit-sequence methods are used to bracket a set of editor modifica-
tions so that the results are all displayed at once. The commands may be nested arbitrarily deep. Using
these functions can greatly speed up displaying the changes.

When a editor contains other editors, using begin-edit-sequence and end-edit-sequence on the main
editor brackets some changes to the sub-editors as well, but it is not as effective when a sub-editor changes
as calling begin-edit-sequence and end-edit-sequence for the sub-editor.

See also refresh-delayed?.

- (send an-editor begin-edit-sequence undoable?) ⇒ void
undoable? = #t : boolean

If the undoable? flag is #f, then the changes made in the sequence cannot be reversed through the undo
method. This flag is only effective for the outermost begin-edit-sequence when nested sequences
are used.

begin-write-header-footer-to-file

This method must be called before writing any special header data to a stream.

See section 8.2 (page 150) and write-headers-to-file for more information.

- (send an-editor begin-write-header-footer-to-file f name buffer) ⇒ void
f : editor-stream-out% object
name : string
buffer : boxed exact integer

The name string must be a unique name that can be used by a header reader to recognize the data. This
method will store a value in buffer that should be passed on to end-write-header-footer-to-file.

161

9.4. editor<%> 9. Editor Class Reference

blink-caret

Tells the editor to blink the selection caret. This method is called periodically when the editor’s display has
the keyboard focus.

- (send an-editor blink-caret) ⇒ void

Propagates the flag to any snip with the editor-local focus.

can-do-edit-operation?

Checks whether a generic edit command would succeed for the editor. This check is especially useful for
enabling and disabling menus on demand.

- (send an-editor can-do-edit-operation? op recursive?) ⇒ bool
op : symbol in ’(undo redo clear cut copy paste kill select-all

insert-text-box insert-pasteboard-box insert-image)
recursive? = #t : boolean

See do-edit-operation for information about the op and recursive? arguments.

can-load-file?

Called just before the editor is loaded from a file. If the return value is #f, the file is not loaded. See also
on-load-file and after-load-file.

- (send an-editor can-load-file? filename format) ⇒ boolean
filename : string
format : symbol in ’(guess standard text text-force-cr same copy)

The filename argument is the name the file will be loaded from. See load-file for information about
format .

can-save-file?

Called just before the editor is saved to a file. If the return value is #f, the file is not saved. See also
on-save-file and after-save-file.

- (send an-editor can-save-file? filename format) ⇒ boolean
filename : string
format : symbol in ’(guess standard text text-force-cr same copy)

The filename argument is the name the file will be saved to. See load-file for information about
format .

change-style

Changes the style for items in the editor.

The style within an editor can be changed by the system (in response to other method calls), and such
changes do not go through this method; use on-change-style in text% to monitor style changes.

- (send an-editor change-style delta) ⇒ void
delta : style-delta% object

162

9. Editor Class Reference 9.4. editor<%>

Changes the style of the selected items by applying a style delta.

To change a large collection of snips from one style to another style, consider providing a
style<%> instance rather than a style-delta% instance. Otherwise, change-style must convert
the style-delta% instance to the style<%> instance for every snip; this conversion consumes both
time and (temporary) memory.

- (send an-editor change-style style) ⇒ void
style : style<%> object

Changes the style of the selected items to a specific style. The editor’s style list must contain style,
otherwise the style is not changed. See also convert.

clear

Deletes the currently selected items.

The content of an editor can be changed by the system in response to other method calls, and such changes
do not go through this method; use on-delete in text% or on-delete in pasteboard% to monitor content
deletions changes.

- (send an-editor clear) ⇒ void

clear-undos

Destroys the undo history of the editor.

- (send an-editor clear-undos) ⇒ void

copy

Copies items into the clipboard.

The system may execute a copy (in response to other method calls) without calling this method. To extend
or re-implement copying, override the do-copy in text% or do-copy in pasteboard% method of an editor.

- (send an-editor copy extend? time) ⇒ void
extend? = #f : boolean
time = 0 : exact integer

Copies the selected items into the clipboard. If extend? is not #f, the old clipboard contents are
appended.

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

copy-self

Creates a new editor with the same properties as this one.

- (send an-editor copy-self) ⇒ text% or pasteboard% object

After an editor is created (either a text% or pasteboard% instance, as appropriate), the new editor is
passed to copy-self-to.

163

9.4. editor<%> 9. Editor Class Reference

copy-self-to

Copies the properties of this editor into an existing editor.

- (send an-editor copy-self-to dest) ⇒ void
dest : text% or pasteboard% object

Each snip in this editor is copied and inserted into dest . In addition, this editor’s filename, maximum
undo history setting, keymap, interactive caret threshold, and overwrte-styles-on-load settings are
installed into dest . This editor’s style list is copied and the copy is installed as the style list for dest .

cut

Copies and then deletes items in the editor.

The system may execute a cut (in response to other method calls) without calling this method. To extend
or re-implement the copying portion of the cut, override the do-copy in text% or do-copy in pasteboard%
method of an editor. To monitor deletions in an editor, override on-delete in text% or on-delete in
pasteboard%.

- (send an-editor cut extend? time) ⇒ void
extend? = #f : boolean
time = 0 : exact integer

Copies and then deletes the currently selected items. If extend? is not #f, the old clipboard contents
are appended.
See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

dc-location-to-editor-location

Converts the given coordinates from top-level display coordinates (usually canvas coordinates) to editor
location coordinates. The same calculation is performed by global-to-local.

The result is only valid when the editor is displayed (see section 8.1 (page 148)).

See also editor-location-to-dc-location.

- (send an-editor dc-location-to-editor-location x y) ⇒ two real numbers
x : real number
y : real number

Returns the equivalent of x and y translated from DC coordinates to editor drawing coordinates.

do-edit-operation

Performs a generic edit command.

- (send an-editor do-edit-operation op recursive? time) ⇒ void
op : symbol in ’(undo redo clear cut copy paste kill select-all

insert-text-box insert-pasteboard-box insert-image)
recursive? = #t : boolean
time = 0 : exact integer

The op argument must be a valid edit command, one of:

164

9. Editor Class Reference 9.4. editor<%>

– ’undo — undoes the last operation
– ’redo — undoes the last undo
– ’clear — deletes the current selection
– ’cut — cuts
– ’copy — copies
– ’paste — pastes
– ’kill — cuts to the end of the current line, or cuts a newline if there is only whitespace between
the selection and end of line

– ’select-all — selects everything in the editor
– ’insert-text-box — inserts a text editor as an item in this editor; see also on-new-box .
– ’insert-pasteboard-box — inserts a pasteboard editor as an item in this editor; see also

on-new-box .
– ’insert-image — gets a filename from the user and inserts the image as an item in this editor;
see also on-new-image-snip .

If recursive? is not #f, then the command is passed on to any active snips of this editor (i.e., snips
which own the caret).

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

editor-location-to-dc-location

Converts the given coordinates from editor location coordinates to top-level display coordinates (usually
canvas coordinates). The same calculation is performed by local-to-global.

The result is only valid when the editor is displayed (see section 8.1 (page 148)).

See also dc-location-to-editor-location.

- (send an-editor editor-location-to-dc-location x y) ⇒ two real numbers
x : real number
y : real number

Returns the equivalent of x and y translated from editor coordinates to DC drawing coordinates.

end-edit-sequence

See begin-edit-sequence.

- (send an-editor end-edit-sequence) ⇒ void

end-write-header-footer-to-file

This method must be called after writing any special header data to a stream.

- (send an-editor end-write-header-footer-to-file f buffer-value) ⇒ void
f : editor-stream-out% object
buffer-value : exact integer

The buffer-value argument must be the value put in the buffer argument box by begin-write-header-footer-to-file.

See section 8.2 (page 150) and write-headers-to-file for more information.

165

9.4. editor<%> 9. Editor Class Reference

find-first-snip

Returns the first snip in the editor, or #f if the editor is empty. To get all of the snips in the editor, use the
next in snip% on the resulting snip.

The first snip in a text editor is the one at position 0. The first snip in a pasteboard is the frontmost snip.
(See section 8.1 (page 148) for information about snip order in pasteboards.)

- (send an-editor find-first-snip) ⇒ snip% object or #f

find-scroll-line

Maps a vertical location within the editor to a vertical scroll position.

For text% objects: Calling this method may force the recalculation of location information, even if the
editor currently has delayed refreshing (see refresh-delayed?). The result is only valid when the editor
is displayed (see section 8.1 (page 148)).

- (send an-editor find-scroll-line location) ⇒ exact non-negative integer
location : real number

get-active-canvas

If the editor is displayed in a canvas, this method returns the canvas that most recently had the keyboard
focus (while the editor was displayed). If no such canvas exists, #f is returned.

- (send an-editor get-active-canvas) ⇒ editor-canvas% object or #f

get-admin

Returns the editor-admin% object currently managing this editor or #f if the editor is not displayed.

- (send an-editor get-admin) ⇒ editor-admin% object or #f

get-canvas

If get-active-canvas returns a canvas, that canvas is also returned by this method. Otherwise, if
get-canvases returns a non-empty list, the first canvas in the list is returned, otherwise #f is returned.

- (send an-editor get-canvas) ⇒ editor-canvas% object or #f

get-canvases

Returns a list of canvases displaying the editor. An editor may be displayed in multiple canvases and no
other kind of display, or one instance of another kind of display and no canvases. If the editor is not displayed
or the editor’s current display is not a canvas, null is returned.

- (send an-editor get-canvases) ⇒ list of editor-canvas% objects

166

9. Editor Class Reference 9.4. editor<%>

get-dc

Typically used (indirectly) by snip objects belonging to the editor. Returns a destination drawing context
which is suitable for determining display sizing information, or #f if the editor is not displayed.

- (send an-editor get-dc) ⇒ dc<%> object or #f

get-descent

Returns the font descent for the editor. This method is primarily used when an editor is an item within
another editor.

The result is only valid when the editor is displayed (see section 8.1 (page 148)). For text% objects, calling
this method may force the recalculation of location information if a maximum width is set for the editor,
even if the editor currently has delayed refreshing (see refresh-delayed?).

- (send an-editor get-descent) ⇒ non-negative real number

get-extent

Gets the current extent of the editor’s graphical representation.

The result is only valid when the editor is displayed (see section 8.1 (page 148)). For text% objects, calling
this method may force the recalculation of location information if a maximum width is set for the editor,
even if the editor currently has delayed refreshing (see refresh-delayed?).

- (send an-editor get-extent w h) ⇒ void
w : boxed non-negative real number or #f
h : boxed non-negative real number or #f

The w box is filled with the editor’s width, unless w is #f. The h box is filled with the editor’s height,
unless h is #f.

get-file

Called when the user must be queried for a filename to load an editor. A starting directory string is passed
in, but is may be #f to indicate that any directory is fine.

- (send an-editor get-file directory) ⇒ string or #f
directory : string or #f

Calls the global get-fileprocedure.

If the editor is displayed in a single canvas, then the canvas’s top-level frame is used as the parent for
the file dialog. Otherwise, the file dialog will have no parent.

get-filename

Returns the path name of the last file saved from or loaded into this editor, #f if the editor has no filename.

- (send an-editor get-filename temp) ⇒ string or #f
temp = #f : boxed boolean or #f

The temp box is filled with #t if the filename is temporary or #f otherwise.

167

9.4. editor<%> 9. Editor Class Reference

get-flattened-text

Returns the contents of the editor in text form. See section 8.4 (page 152) for a discussion of flattened vs.
non-flattened text.

- (send an-editor get-flattened-text) ⇒ string

get-focus-snip

Returns the snip within the editor that gets the keyboard focus when the editor has the focus, or #f if the
editor does not delegate the focus.

The returned snip might be an editor-snip% object. In that case, the embedded editor might delegate the
focus to one of its own snips. However, the get-focus-snip method returns only the editor-snip% object,
because it is the focus-owning snip within the immediate editor.

See also set-caret-owner .

- (send an-editor get-focus-snip) ⇒ snip% object or #f

get-inactive-caret-threshold

Returns the threshold for painting an inactive selection. This threshold is compared with the draw-caret
argument to refresh and if the argument is as least as large as the threshold (but larger than ’show-caret),
the selection is drawn as inactive.

See also set-inactive-caret-threshold and section 8.5 (page 152).

- (send an-editor get-inactive-caret-threshold) ⇒ symbol in ’(no-caret show-inactive-caret
show-caret)

get-keymap

Returns the main keymap currently used by the editor.

- (send an-editor get-keymap) ⇒ keymap% object or #f

get-load-overwrites-styles

Reports whether named styles in the current style list are replaced by load-file when the loaded file
contains style specifications.

See also set-load-overwrites-styles.

- (send an-editor get-load-overwrites-styles) ⇒ boolean

get-max-height

Gets the maximum display height for the contents of the editor; zero or ’none indicates that there is no
maximum.

168

9. Editor Class Reference 9.4. editor<%>

- (send an-editor get-max-height) ⇒ non-negative real number or ’none

get-max-undo-history

Returns the maximum number of undoables that will be remembered by the editor. Note that undoables
are counted by insertion, deletion, etc. events, not by the number of times that undo can be called; a single
undo call often reverses multiple events at a time (such as when the user types a stream of characters at
once).

- (send an-editor get-max-undo-history) ⇒ exact integer in [0, 100000]

get-max-view-size

Returns the maximum visible area into which the editor is currently being displayed, according to the editor’s
administrators. If the editor has only one display, the result is the same as for get-view-size. Otherwise,
the maximum width and height of all the editor’s displaying canvases is returned.

The result is only valid when the editor is displayed (see section 8.1 (page 148)).

If the display is an editor canvas, see also reflow-container.

- (send an-editor get-max-view-size) ⇒ two non-negative real numbers

get-max-width

Gets the maximum display width for the contents of the editor; zero or ’none indicates that there is no
maximum. In a text editor, zero of ’none disables automatic line breaking.

- (send an-editor get-max-width) ⇒ non-negative real number or ’none

get-min-height

Gets the minimum display height for the contents of the editor; zero or ’none indicates that there is no
minimum.

- (send an-editor get-min-height) ⇒ non-negative real number or ’none

get-min-width

Gets the minimum display width for the contents of the editor; zero or ’none indicates that there is no
minimum.

- (send an-editor get-min-width) ⇒ non-negative real number or ’none

get-paste-text-only

If the result is #t, then the editor accepts only plain-text data from the clipboard. If the result is #f, the
editor accepts both text and snip data from the clipboard.

- (send an-editor get-paste-text-only) ⇒ boolean

169

9.4. editor<%> 9. Editor Class Reference

get-snip-data

Gets extra data associated with a snip (e.g., location information in a pasteboard) or returns #f is there is
no information. See section 8.2.1 (page 151) for more information.

- (send an-editor get-snip-data thesnip) ⇒ editor-data% object or #f
thesnip : snip% object

Returns #f.

get-snip-location

Gets the graphical location of the given snip. If the snip is found in the editor, #t is returned; otherwise, #f
is returned.

The result is only valid when the editor is displayed (see section 8.1 (page 148)). For text% objects, calling
this method may force the recalculation of location information if a maximum width is set for the editor,
even if the editor currently has delayed refreshing (see refresh-delayed?).

- (send an-editor get-snip-location thesnip x y bottom-right?) ⇒ boolean
thesnip : snip% object
x = #f : boxed real number or #f
y = #f : boxed real number or #f
bottom-right? = #f : boolean

The x box is filled with the x-coordinate of the snip’s location, unless x is #f. The y box is filled with
the y-coordinate of the snip’s location, unless y is #f.

If bottom-right? is not #f, the values in the x and y boxes are for the snip’s bottom right corner instead
of its top-left corner.

get-space

Returns the maximum font space for the editor. This method is primarily used when an editor is an item
within another editor.

The result is only valid when the editor is displayed (see section 8.1 (page 148)). For text% objects, calling
this method may force the recalculation of location information if a maximum width is set for the editor,
even if the editor currently has delayed refreshing (see refresh-delayed?).

- (send an-editor get-space) ⇒ non-negative real number

get-style-list

Returns the style list currently in use by the editor.

- (send an-editor get-style-list) ⇒ style-list% object

get-view-size

Returns the visible area into which the editor is currently being displayed (according to the editor’s admin-
istrator). See also get-view .

170

9. Editor Class Reference 9.4. editor<%>

The result is only valid when the editor is displayed (see section 8.1 (page 148)).

If the display is an editor canvas, see also reflow-container.

- (send an-editor get-view-size w h) ⇒ void
w : boxed non-negative real number or #f
h : boxed non-negative real number or #f

The w box is filled with the visible area width, unless w is #f. The h box is filled with the visible area
height, unless h is #f.

global-to-local

Converts the given coordinates from top-level display coordinates (usually canvas coordinates) to editor
location coordinates. The same calculation is performed by dc-location-to-editor-location.

The result is only valid when the editor is displayed (see section 8.1 (page 148)).

See also local-to-global.

- (send an-editor global-to-local x y) ⇒ void
x : boxed real number or #f
y : boxed real number or #f

The x box is filled with the translated x-coordiante of the value initially in x , unless x is #f. The y
box is filled with the translated x-coordiante of the value initially in y , unless y is #f.

insert

Inserts data into the editor.

The content of an editor can be changed by the system in response to other method calls, and such changes
do not go through this method; use on-insert in text% or on-insert in pasteboard% to monitor content
additions changes.

- (send an-editor insert snip) ⇒ void
snip : snip% object

Inserts a snip into the editor. A snip cannot be inserted into multiple editors or multiple times within
a single editor.

insert-box

Inserts a box (a sub-editor) into the editor.

The content of an editor can be changed by the system in response to other method calls, and such changes
do not go through this method; use on-insert in text% or on-insert in pasteboard% to monitor content
additions changes.

- (send an-editor insert-box type) ⇒ void
type = ’text : symbol in ’(text pasteboard)

Calls on-new-box, passing along type and inserts the resulting snip into the editor.

171

9.4. editor<%> 9. Editor Class Reference

insert-file

Inserts a file into the editor (at the current selection position in text% editors).

The content of an editor can be changed by the system in response to other method calls, and such changes
do not go through this method; use on-insert in text% or on-insert in pasteboard% to monitor content
additions changes.

- (send an-editor insert-file filename format show-errors?) ⇒ boolean
filename : string
format = ’guess : symbol in ’(guess standard text text-force-cr same copy)
show-errors? = #t : boolean

For more information on file formats, see load-file. If show-errors? is #f, error messages in loading
the file (printed to stdout) are suppressed.

insert-image

Inserts an image into the editor.

The content of an editor can be changed by the system in response to other method calls, and such changes
do not go through this method; use on-insert in text% or on-insert in pasteboard% to monitor content
additions changes.

- (send an-editor insert-image filename type relative-path? inline?) ⇒ void
filename = #f : string or #f
type = ’unknown : symbol in ’(unknown gif jpeg xbm xpm bmp pict)
relative-path? = #f : boolean
inline? = #t : boolean

If filename is #f, then the user is queried for a filename. The kind must one of the symbols that can
be passed to load-file.
After the filename has been determined, an image is created by calling on-new-image-snip. See also
image-snip%.

invalidate-bitmap-cache

When on-paint is overridden, call this method when the state of on-paint’s drawing changes.

- (send an-editor invalidate-bitmap-cache x y width height) ⇒ void
x = 0.0 : real number
y = 0.0 : real number
width = ’end : non-negative real number or ’end
height = ’end : non-negative real number or ’end

The x , y , width, and height arguments specify the area that needs repainting in editor coordinates. If
width/height is ’end, then the total height/width of the editor (as reported by get-extent) is used.
Note that the editor’s size can be smaller than the visible region of its display.

is-locked?

Returns #t if the editor is currently locked, #f otherwise. See lock for more information.

- (send an-editor is-locked?) ⇒ boolean

172

9. Editor Class Reference 9.4. editor<%>

is-modified?

Returns #t is the editor has been modified since the last save or load, #f otherwise.

- (send an-editor is-modified?) ⇒ boolean

kill

In a text editor, cuts to the end of the current line, or cuts a newline if there is only whitespace between the
selection and end of line. Multiple consective kills are appended. In a pasteboard editor, cuts the current
selection.

See also cut.

The content of an editor can be changed by the system in response to other method calls, and such changes
do not go through this method; use on-delete in text% or on-delete in pasteboard% to monitor content
deletions changes.

- (send an-editor kill time) ⇒ void
time = 0 : exact integer

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

load-file

Loads a file into the editor, return #t if successful, #f otherwise.

The filename used to load the file can be retrieved with get-filename. For a text% instance, the format
can be retrieved with get-file-format.

See also on-load-file, after-load-file, can-load-file?, and set-load-overwrites-styles.

- (send an-editor load-file filename format show-errors?) ⇒ boolean
filename = #f : string or #f
format = ’guess : symbol in ’(guess standard text text-force-cr same copy)
show-errors? = #t : boolean

If filename is #f, then the internally stored filename will be used; if filename is "" or if the internal
name is unset or temporary, then the user will be prompted for a name.

The possible values for format are listed below. A single set of format values are used for loading and
saving files:

– ’guess — guess the format based on extension and/or contents; when saving a file, this is the
same as ’standard

– ’standard — read/write a standard file
– ’text — read/write a text file (text% only)
– ’text-force-cr— read/write a text file (text% only); when writing, change automatic newlines
(from word-wrapping) into real carriage returns

– ’same — read in whatever format was last loaded or saved
– ’copy—write using whatever format was last loaded or saved, but do not change the modification
flag or remember filename (saving only)

In a text% instance, the format returned from get-file-format is always one of ’standard, ’text,
or ’text-force-cr.

173

9.4. editor<%> 9. Editor Class Reference

If show-errors? is #f, then error messages reporting load errors (printed to stdout) are suppressed.

local-to-global

Converts the given coordinates from editor location coordinates to top-level display coordinates (usually
canvas coordinates). The same calculation is performed by editor-location-to-dc-location.

The result is only valid when the editor is displayed (see section 8.1 (page 148)).

See also global-to-local.

- (send an-editor local-to-global x y) ⇒ void
x : boxed real number
y : boxed real number

The x box is filled with the translated x-coordiante of the value initially in x , unless x is #f. The y
box is filled with the translated x-coordiante of the value initially in y , unless y is #f.

lock

Locks or unlocks the editor for modifications. If an editor is locked, all modifications are blocked, not just
user modifications.

See also is-locked?.

This method does not affect internal locks, as discussed in section 8.8 (page 153).

- (send an-editor lock lock?) ⇒ void
lock? : boolean

If lock? is #f, the editor is unlocked, otherwise it is locked.

needs-update

Typically called (indirectly) by a snip within the editor to force the editor to be redrawn.

For text% objects, calling this method may force the recalculation of location information if a maximum
width is set for the editor, even if the editor currently has delayed refreshing (see refresh-delayed?).

- (send an-editor needs-update snip localx localy w h) ⇒ void
snip : snip% object
localx : real number
localy : real number
w : non-negative real number
h : non-negative real number

The localx , localy , width, and height arguments specify the area that needs repainting in the coordinate
system of snip.

num-scroll-lines

Reports the number of scroll positions available within the editor.

174

9. Editor Class Reference 9.4. editor<%>

For text% objects: Calling this method may force the recalculation of location information, even if the
editor currently has delayed refreshing (see refresh-delayed?). If the editor is not displayed and the editor
has a maximum width, line breaks are calculated as for line-start-position.

- (send an-editor num-scroll-lines) ⇒ exact non-negative integer

on-change

Called whenever any change is made to the editor that affects the way the editor is drawn or the values
reported for the location/size of any snip in the editor. The on-change method is called just before the
editor calls its administrator’s needs-update method to refresh the editor’s display.

The editor is locked for writing and reflowing during the call to on-change.

- (send an-editor on-change) ⇒ void

on-char

Handles keyboard input to the editor.

Consider overriding on-local-char or on-default-char instead of this method.

- (send an-editor on-char event) ⇒ void
event : key-event% object

Either passes this event on to a caret-owning snip or calls on-local-char .

on-default-char

Called by on-local-char when the event is not handled by a caret-owning snip or by the keymap.

- (send an-editor on-default-char event) ⇒ void
event : key-event% object

Does nothing.

on-default-event

Called by on-local-event when the event is not handled by a caret-owning snip or by the keymap.

- (send an-editor on-default-event event) ⇒ void
event : mouse-event% object

Does nothing. See also on-default-event in pasteboard%.

on-display-size

This method is called by the editor’s display whenever the display’s size (as reported by get-view-size)
changes.

- (send an-editor on-display-size) ⇒ void

175

9.4. editor<%> 9. Editor Class Reference

If automatic wrapping is enabled (see auto-wrap) then set-max-width is called with the maximum
width of all of the editor’s canvases (according to the administrators; call-as-primary-owner in
editor-canvas% is used with each canvas to set the administrator and get the view size). If the editor
is displayed but not in a canvas, the unique width is obtained from the editor’s administrator (there is
only one). If the editor is not displayed, the editor’s maximum width is not changed.

on-edit-sequence

Called just before a top-level (i.e., unnested) edit sequence starts.

During an edit sequence, all callbacks methods are invoked normally, but it may be appropriate for these
callbacks to delay computation during an edit sequence. The callbacks must manage this delay manually.
Thus, when overriding other callback methods, such as on-insert in text%, on-insert in pasteboard%,
after-insert in text%, or after-insert in pasteboard%, consider overriding on-edit-sequence and
after-edit-sequence as well.

“Top-level edit sequence” refers to an outermost pair of begin-edit-sequence and end-edit-sequence
calls. The embeddeding of an editor within another editor does not affect the timing of calls to
on-edit-sequence, even if the embedding editor is in an edit sequence.

- (send an-editor on-edit-sequence) ⇒ void

on-event

Handles mouse input to the editor. The event’s x and y coordinates are in the display’s co-
ordinate system; use the administrator’s get-dc method to obtain translation arguments (or use
dc-location-to-editor-location).

Consider overriding on-local-event or on-default-event instead of this method.

- (send an-editor on-event event) ⇒ void
event : mouse-event% object

Either passes this event on to a caret-owning snip or calls on-local-event .

on-focus

Called when the keyboard focus changes into or out of this editor (and not to/from a snip within the editor)
with #t if the focus is being turned on, #f otherwise.

- (send an-editor on-focus on?) ⇒ void
on? : boolean

on-load-file

Called just before the editor is loaded from a file, after calling can-load-file? to verify that the load is
allowed. See also after-load-file.

- (send an-editor on-load-file filename format) ⇒ void
filename : string
format : symbol in ’(guess standard text text-force-cr same copy)

176

9. Editor Class Reference 9.4. editor<%>

The filename argument is the name the file will be loaded from. See load-file for information about
format .

on-local-char

Called by on-char when the event is not handled by a caret-owning snip.

Consider overriding on-default-char instead of this method.

- (send an-editor on-local-char event) ⇒ void
event : key-event% object

Either lets the keymap handle the event or calls on-default-char .

on-local-event

Called by on-event when the event is not handled by a caret-owning snip.

Consider overriding on-default-event instead of this method.

- (send an-editor on-local-event event) ⇒ void
event : mouse-event% object

Either lets the keymap handle the event or calls on-default-event .

on-new-box

Creates and returns a new snip for an embedded editor. This method is called by insert-box.

- (send an-editor on-new-box type) ⇒ snip% object
type : symbol in ’(text pasteboard)

Creates a editor-snip% with either a sub-editor from text% or sub-pasteboard from pasteboard%,
depending on whether type is ’text or ’pasteboard. The keymap (see keymap%) and style list (see
style-list%) for of the new sub-editor are set to the keymap and style list of this editor.

on-new-image-snip

Creates and returns a new instance of image-snip% for insert-image.

- (send an-editor on-new-image-snip filename kind relative-path? inline?) ⇒ image-snip% ob-
ject
filename : string or #f
kind : symbol in ’(unknown gif jpeg xbm xpm bmp pict)
relative-path? : boolean
inline? : boolean

Returns (make-object image-snip% filename kind reltaive-path? inline?).

on-paint

Provides a way to add arbitrary graphics to an editors’s display. This method is called just before and just
after every painting of the editor.

177

9.4. editor<%> 9. Editor Class Reference

The on-paint method, together with the snips’ draw methods, must be able to draw the entire state of an
editor. Never paint directly into an editor’s display canvas except from within on-paint or draw. Instead,
put all extra drawing code within on-paint and call invalidate-bitmap-cache when part of the display
needs to be repainted.

The on-paint method must not make any assumptions about the state of the drawing context (e.g., the
current pen), except that the clipping region is already set to something appropriate. Before on-paint
returns, it must restore any drawing context settings that it changes.

The editor is internally locked for writing and reflowing during a call to this method (see also section 8.8
(page 153)).

- (send an-editor on-paint before? dc left top right bottom dx dy draw-caret) ⇒ void
before? : boolean
dc : dc<%> object
left : real number
top : real number
right : real number
bottom : real number
dx : real number
dy : real number
draw-caret : symbol in ’(no-caret show-inactive-caret show-caret)

The before? argument is #t when the method is called just before a painting the contents of the editor
or #f when it is called after painting. The left , top, right , and bottom arguments specify which region
of the editor is being repainted, in editor coordinates. To get the coordinates for dc, offset editor
coordinates by adding (dx , dy). See section 8.5 (page 152) for information about draw-caret .

See also invalidate-bitmap-cache.

on-save-file

Called just before the editor is saved to a file, after calling can-save-file? to verify that the save is allowed.
See also after-save-file.

- (send an-editor on-save-file filename format) ⇒ void
filename : string
format : symbol in ’(guess standard text text-force-cr same copy)

The filename argument is the name the file will be saved to. See load-file for information about
format .

own-caret

Tells the editor to display or not display the selection.

The focus state of an editor can be changed by by the system, and such changes do not go through this
method; use on-focus to monitor focus changes.

- (send an-editor own-caret own?) ⇒ void
own? : boolean

Propagates the flag to any snip with the editor-local focus. If no sub-subffers are active, the editor
assumes the caret ownership.

178

9. Editor Class Reference 9.4. editor<%>

paste

Pastes the current contents of the clipboard into the editor.

The system may execute a paste (in response to other method calls) without calling this method. To extend
or re-implement copying, override the do-paste in text% or do-paste in pasteboard% method of an editor.

See also get-paste-text-only .

- (send an-editor paste time) ⇒ void
time = 0 : exact integer

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

print

Prints the editor.

- (send an-editor print interactive? fit-on-page? output-mode parent) ⇒ void
interactive? = #t : boolean
fit-on-page? = #t : boolean
output-mode = ’standard : symbol in ’(standard postscript)
parent = #f : frame% or dialog% object or #f

If interactive? is true and a PostScript file is created, the is given a dialog for adjusting printing
parameters; see also get-ps-setup-from-user. Otherwise, if a PostScript file is created, the settings
returned by current-ps-setup are used. (The user may still get a dialog to select an output file name;
see post-script-dc% for more details.

If fit-on-page? is a true value, then during printing for a text% editor, the editor’s maximum width is
set to the width of the page (less margins) and the autowrapping bitmap is removed.

The output-mode setting is used for Windows and MacOS. It determines whether the output is gen-
erated directly as a PostScript file (using MrEd’s built-in PostScript system) or generated using the
platform-specific standard printing mechanism. The possible values as

– ’standard — print using the platform-standard mechanism (via a printer-dc%)
– ’postscript — print to a PostScript file (via a post-script-dc%)

If parent is not #f, it is used as the parent window for configuration dialogs (for either PostScript
or platform-standard printing). If parent is #f and if the editor is displayed in a single canvas, then
the canvas’s top-level frame is used as the parent for configuration dialogs. Otherwise, configuration
dialogs will have no parent.

The printing margins are determined by get-editor-margin in the current ps-setup% object (as
determined by current-ps-setup).

For properly spaced text in PostScript output, make sure that the AFM directory is correct in
set-afm-path.

print-to-dc

Prints the editor into the given drawing context. See also print .

- (send an-editor print-to-dc dc) ⇒ void
dc : dc<%> object

179

9.4. editor<%> 9. Editor Class Reference

put-file

Called when the user must be queried for a filename to save an editor. Starting directory and default name
strings are passed in, but either may be #f to indicate that any directory is fine or there is no default name.

- (send an-editor put-file directory default-name) ⇒ string or #f
directory : string or #f
default-name : string or #f

Calls the global put-fileprocedure.

If the editor is displayed in a single canvas, then the canvas’s top-level frame is used as the parent for
the file dialog. Otherwise, the file dialog will have no parent.

read-footer-from-file

See read-header-from-file.

- (send an-editor read-footer-from-file stream name) ⇒ boolean
stream : editor-stream-in% object
name : string

read-from-file

Reads new contents for the editor from a stream. The return value is #t if there are no errors, #f otherwise.
See also section 8.2 (page 150).

The stream provides either new mappings for names in the editor’s style list, or it indicates that the editor
should share a previously-read style list (depending on how style lists were shared when the editor was
written to the stream; see also write-to-file).

• In the former case, if the overwrite-styles? argument is is #f, then each style name in the loaded file
that is already in the current style list keeps its current style. Otherwise, existing named styles are
overwritten with specifications from the loaded file.

• In the latter case, the editor’s style list will be changed to the previously-read list.

- (send an-editor read-from-file stream overwrite-styles?) ⇒ boolean
stream : editor-stream-in% object
overwrite-styles? = #t : boolean

read-header-from-file

Called to handle a named header that is found when reading editor data from a stream. The return value is
#t if there are no errors, #f otherwise.

Override this method only to embellish the file format with new header information. Always call the inherited
method if the derived reader does not recognize the header.

- (send an-editor read-header-from-file stream name) ⇒ boolean
stream : editor-stream-in% object
name : string

See also section 8.2 (page 150).

180

9. Editor Class Reference 9.4. editor<%>

redo

Undoes the last undo, if no other changes have been made since.

The system may perform a redo without calling this method in response to other method calls. Use methods
such as on-change to monitor editor content changes.

See also add-undo .

- (send an-editor redo) ⇒ void

If the editor is currently perfoming an undo or redo, the method call is ignored.

refresh

Repaints a region of the editor, generally called by an editor administrator.

- (send an-editor refresh x y width height draw-caret) ⇒ void
x : real number
y : real number
width : non-negative real number
height : non-negative real number
draw-caret : symbol in ’(no-caret show-inactive-caret show-caret)

The x , y , width, and height arguments specify the area that needs repainting in editor coordinates.
See section 8.5 (page 152) for information about draw-caret .

refresh-delayed?

Returns #t if updating on this editor is currently delayed. Updating may be delayed because
begin-edit-sequence has been called for this editor, or because the editor has no administrator, or because
the editor’s administrator returns #t from its refresh-delayed? method. (The administator might return
#t because an enclosing editor’s refresh is delayed.)

- (send an-editor refresh-delayed?) ⇒ boolean

release-snip

Requests that the specified snip be deleted and released from the editor. If this editor is not the snip’s owner
or if the snip cannot be released, then #f is returned. Otherwise, #t is returned and the snip is no longer
owned.

See also release-snip in snip-admin% .

- (send an-editor release-snip snip) ⇒ void
snip : snip% object

remove-canvas

Removes a canvas from this editor’s list of displaying canvases. (See get-canvases.)

Normally, this method is called only by set-editor in editor-canvas% .

181

9.4. editor<%> 9. Editor Class Reference

- (send an-editor remove-canvas canvas) ⇒ void
canvas : editor-canvas% object

resized

Called (indirectly) by snips within the editor: it forces a recalculation of the display information in which
the specified snip has changed its size.

- (send an-editor resized snip redraw-now?) ⇒ void
snip : snip% object
redraw-now? : boolean

If redraw-now? is #f, the editor will require another message to repaint itself. (See also needs-update.)

save-file

Saves the editor into a file, returning #t if sucessful, #f otherwise.

The filename and format used to save the file can be retrieved with get-filename. In a text% instance, the
format can be retrieved with get-file-format.

See also on-save-file, after-save-file, and can-save-file?.

- (send an-editor save-file filename format show-errors?) ⇒ boolean
filename = #f : string or #f
format = ’same : symbol in ’(guess standard text text-force-cr same copy)
show-errors? = #t : boolean

If filename is #f, then the internally stored filename will be used; if filename is "" or if the internal
name is unset or temporary, then the user will be prompted for a name. The possible values for format
are described at load-file. If show-errors? is #f, then error messages reporting save errors (printed
to stdout) are suppressed.

scroll-line-location

Maps a vertical scroll position to a vertical location within the editor.

For text% objects: Calling this method may force the recalculation of location information, even if the
editor currently has delayed refreshing (see refresh-delayed?). If the editor is not displayed and the editor
has a maximum width, line breaks are calculated as for line-start-position.

- (send an-editor scroll-line-location pos) ⇒ non-negative real number
pos : exact integer

scroll-to

Called (indirectly) by snips within the editor: it causes the editor to be scrolled so that a given location
range within a given snip is visible. If the editor is scrolled, #t is returned, otherwise #f is returned.

- (send an-editor scroll-to snip localx localy width height refresh? bias) ⇒ boolean
snip : snip% object
localx : real number

182

9. Editor Class Reference 9.4. editor<%>

localy : real number
width : non-negative real number
height : non-negative real number
refresh? : boolean
bias = Symbolnone : symbol in ’(start end none)

The localx , localy , width, and height arguments specify the area that needs to be viisble in snip’s
coordinate system.

When the specified region cannot fit in the visible area, bias indicates which end of the region to
display. When bias is ’start, then the top-left of the region is displayed. When bias is ’end, then the
bottom-right of the region is displayed. Otherwise, bias must be ’none.

select-all

Selects all data in the editor

- (send an-editor select-all) ⇒ void

set-active-canvas

Sets the active canvas for this editor. (See get-active-canvas.)

Normally, this method is called only by on-focus in editor-canvas% in an editor canvas that is displaying
an editor.

- (send an-editor set-active-canvas canvas) ⇒ void
canvas : editor-canvas% object

set-admin

Sets the editor’s administrator. This method is only called by an administrator.

The administrator of an editor can be changed by by the system, and such changes do not go through this
method. A program cannot detect when the administrator changes except by polling get-admin.

- (send an-editor set-admin admin) ⇒ void
admin : editor-admin% object or #f

set-caret-owner

Sets the keyboard focus owner within an editor or globally.

If #f is provided as the new owner, then the local focus is moved to the editor itself. Otherwise, the local
focus is moved to the specified snip.

The domain of focus-setting is one of:

• ’immediate — only set the focus owner within the editor

• ’display— make this editor or the new focus owner get the keyboard focus among the editors in this
editor’s display (if this is an embedded editor)

183

9.4. editor<%> 9. Editor Class Reference

• ’global — make this editor or the new focus owner get the keyboard focus among all elements in the
editor’s frame

The focus state of an editor can be changed by by the system, and such changes do not go through this
method; use on-focus to monitor focus changes.

See also get-focus-snip .

- (send an-editor set-caret-owner snip domain) ⇒ void
snip : snip% object or #f
domain = ’immediate : symbol in ’(immediate display global)

Attempts to give the keyboard focus to snip. If snip is #f, then the caret is taken away from any snip
in the editor that currently has the caret and restored to this editor.

If the keyboard focus is moved to snip and the editor has the real keyboard focus, the own-caret
method of the snip will be called.

set-cursor

Sets a custom cursor for the editor. If the custom cursor is #f, the current cursor is removed, and a cursor
is selected automatically by the editor (depending on whether the cursor is pointing at a clickback). See
adjust-cursor for more information about the default selection.

An embedding editor’s custom cursor can override the cursor of an embedded editor — even if the embedded
editor has the caret — if the cursor is specified as an overriding cursor.

- (send an-editor set-cursor cursor override?) ⇒ void
cursor : cursor% object or #f
override? = #t : boolean

Sets the custom cursor for the editor to cursor . If override? is a true value and cursor is not #f, then
this cursor overrides cursor settings in embedded editors.

set-filename

Set the path name for the file to be saved from or reloaded into this editor. This method is also called when
the filename changes through any method (such as load-file).

The filename of an editor can be changed by the system in response to file loading and saving method calls,
and such changes do not go through this method; use on-load-file and on-save-file to monitor such
filename changes.

- (send an-editor set-filename filename temporary?) ⇒ void
filename : string or #f
temporary? = #f : boolean

Sets the filename to filename. If filename is #f or temporary? is a true value, then the user will still
be prompted for a name on future calls to save-file and load-file.

set-inactive-caret-threshold

Sets the threshold for painting an inactive selection. See get-inactive-caret-threshold for more infor-
mation.

184

9. Editor Class Reference 9.4. editor<%>

- (send an-editor set-inactive-caret-threshold threshold) ⇒ void
threshold : symbol in ’(no-caret show-inactive-caret show-caret)

set-keymap

Sets the current keymap for the editor. A #f argument removes all key mapping.

- (send an-editor set-keymap keymap) ⇒ void
keymap = #f : keymap% object or #f

set-load-overwrites-styles

Determines whether named styles in the current style list are replaced by load-file when the loaded file
contains style specifications.

See also get-load-overwrites-styles and read-from-file.

- (send an-editor set-load-overwrites-styles overwrite?) ⇒ void
overwrite? : boolean

set-max-height

Sets the maximum display height for the contents of the editor. A value less or equal to 0 indicates that
there is no maximum.

Setting the height is disallowed when the editor is internally locked for reflowing (see also section 8.8 (page
153)).

- (send an-editor set-max-height width) ⇒ void
width : non-negative real number or ’none

set-max-undo-history

Sets the maximum number of undoables that will be remembered by the editor.

- (send an-editor set-max-undo-history count) ⇒ void
count : exact integer in [0, 100000]

set-max-width

Sets the maximum display width for the contents of the editor; zero or ’none indicates that there is no max-
imum. In a text editor, having no maximum disables automatic line breaking, and the minimum (positive)
maximum width depends on the width of the autowrap bitmap.

Setting the width is disallowed when the editor is internally locked for reflowing (see also section 8.8 (page
153)).

See also set-autowrap-bitmap.

- (send an-editor set-max-width width) ⇒ void
width : non-negative real number or ’none

185

9.4. editor<%> 9. Editor Class Reference

set-min-height

Sets the minimum display height for the contents of the editor; zero or ’none indicates that there is no
minimum.

Setting the height is disallowed when the editor is internally locked for reflowing (see also section 8.8 (page
153)).

- (send an-editor set-min-height width) ⇒ void
width : non-negative real number or ’none

set-min-width

Sets the minimum display width for the contents of the editor; zero or ’none indicates that there is no
minimum.

Setting the width is disallowed when the editor is internally locked for reflowing (see also section 8.8 (page
153)).

- (send an-editor set-min-width width) ⇒ void
width : non-negative real number or ’none

set-modified

Sets the modified state of the editor. Usually, the state is changed automatically after an insertion, deletion,
or style change by calling this method. (This method is also called when the modification state changes
through any method.) This method is usually not called when the state of the flag is not changing.

See also is-modified?.

- (send an-editor set-modified modified?) ⇒ void
modified? : boolean

Sets the modification state to modified? . If modified? is #f and the editor’s undo or redo stack contains
a system-created undoer that resets the modified state (because the preceding undo or redo action puts
the editor back to a state where the modification state was #f), the undoer is disabled.

set-paste-text-only

Sets whether the editor accepts only text from the clipboard, or both text and snips. By default, an editor
accepts both text and snips.

See also get-paste-text-only .

- (send an-editor set-paste-text-only text-only?) ⇒ void
text-only? : boolean

set-snip-data

Sets extra data associated with the snip (e.g., location information in a pasteboard). See section 8.2.1 (page
151) for more information.

186

9. Editor Class Reference 9.4. editor<%>

- (send an-editor set-snip-data thesnip data) ⇒ void
thesnip : snip% object
data : editor-data% object

set-style-list

Sets the editor’s style list. Styles currently in use with the old style list will be “moved” to the new style
list. In this “move”, if a named style already exists in the new style list, then the new style with the same
name will be used in place of the old style.

Setting the style list is disallowed when the editor is internally locked for reflowing (see also section 8.8 (page
153)).

- (send an-editor set-style-list style-list) ⇒ void
style-list : style-list% object

size-cache-invalid

Usually called by the editor’s administrator. It notifies that editor that it will have to re-calculate all graphic
information before re-displaying itself.

- (send an-editor size-cache-invalid) ⇒ void

style-has-changed

Notifies the editor that a style in its style list has changed. This method is automtaically registered with the
editor’s style list using notify-on-change in style-list%and automatically deregistered when the style
list is removed from the editor.

See notify-on-change in style-list% for more information.

- (send an-editor style-has-changed style) ⇒ void
style : style<%> object or #f

undo

Undoes the last editor change.

The system may perform an undo without calling this method in response to other method calls. Use
methods such as on-change to monitor editor content changes.

See also add-undo .

- (send an-editor undo) ⇒ void

If the editor is currently perfoming an undo or redo, the method call is ignored.

write-footers-to-file

See write-headers-to-file.

187

9.5. editor-admin% 9. Editor Class Reference

- (send an-editor write-footers-to-file stream) ⇒ boolean
stream : editor-stream-out% object

write-headers-to-file

Called when the editor is being saved to a file. The return value is #t if there are no errors, #f otherwise.
Override this method to add custom header data to a file, but always call the inherited method so that it
can write its own extra headers.

To write a header item, call begin-write-header-footer-to-file, passing a box for an integer. Then
write the header data and end by calling end-write-header-footer-to-file, passing back the integer
that was put into the box. Follow this procedure correctly or the file will be corrupted.

- (send an-editor write-headers-to-file stream) ⇒ boolean
stream : editor-stream-out% object

Does nothing.

write-to-file

Writes the current editor contents to the given stream. The return value is #t if there are no errors, #f
otherwise. See also section 8.2 (page 150).

If the editor’s style list has already been written to the stream, it is not re-written. Instead, the editor
content indicates that the editor shares a previously-written style list. This sharing will be recreated when
the stream is later read.

- (send an-editor write-to-file stream) ⇒ boolean
stream : editor-stream-out% object

9.5 editor-admin%

See section 8.1.1 (page 148) for information about the role of administrators. The editor-admin% class is
never instantiated directly. It is not even instantiated through derived classes by most programmers; each
editor-canvas% and editor-snip% object creates its own administrator. However, it may be useful to
derive a new instance of this class to display editors in a new context. Also, it may be useful to call the
methods of an existing administrator from an owned editor.

To create a new editor-admin% class, all methods described here must be overridden. They are all invoked
by the administrator’s editor.

- (make-object editor-admin%) ⇒ editor-admin% object

Creates a (useless) editor administrator.

get-dc

Returns either the drawing context into which the editor is displayed, or the context into which it is currently
being drawn. When the editor is not embedded, the returned context is always the drawing content into
which the editor is displayed. If the editor is not displayed, #f is returned.

The origin of the drawing context is also returned, translated into the local coordinates of the editor. For

188

9. Editor Class Reference 9.5. editor-admin%

an embedded editor, the returned origin is reliable only while the editor is being drawn, or while it receives
a mouse or keyboard event.

- (send an-editor-admin get-dc x y) ⇒ dc<%> object or #f
x = #f : boxed real number or #f
y = #f : boxed real number or #f

The x box is filled with the x-origin of the DC in editor coordinates, unless x is #f. The y box is filled
with the y-origin of the DC in editor coordinates, unless y is #f.

See also editor-location-to-dc-location in editor<%>and dc-location-to-editor-location in
editor<%>.

get-max-view

Same as get-view unless the editor is visible in multiple standard displays. If the editor has mulitple
displays, a region is computed that includes the visible region in all displays.

- (send an-editor-admin get-max-view x y w h full?) ⇒ void
x : boxed real number or #f
y : boxed real number or #f
w : boxed non-negative real number or #f
h : boxed non-negative real number or #f
full? = #f : boolean

See get-view.

get-view

Gets the the visible region of the editor within its display (in editor coordinates), or the overall size of the
viewing region in the editor’s top-level display (for an embedded editor).

If the display is an editor canvas, see also reflow-container. The viewing area within an editor canvas
is not the full client area of the canvas, because an editor canvas installs a whitespace border around a
displayed editor within the client area.

The calculation of the editor’s visible region is based on the current size and scrollbar values of the top-level
display. For an editor canvas display, the region reported by get-view does not depend on whether the
canvas is hidden, obscured by other windows, or moved off the edge of the screen.

- (send an-editor-admin get-view x y w h full?) ⇒ void
x : boxed real number or #f
y : boxed real number or #f
w : boxed non-negative real number or #f
h : boxed non-negative real number or #f
full? = #f : boolean

The x box is filled with the left edge of the visible region in editor coordinates, unless x is #f. The y
box is filled with the top edge of the visible region in editor coordinates, unless y is #f. The w box is
filled with the width of the visible region, which may be larger than the editor itself, unless w is #f.
The h box is filled with the height of the visible region, which may be larger than the editor itself,
unless h is #f.

If an editor is fully visible and full? is #f, then x and y will both be filled with 0.

189

9.5. editor-admin% 9. Editor Class Reference

If full? is a true value, then the returned area is the view area of the top-level display for the editor.
This result is different only when the editor is embedded in another editor; in that case, the x and y
values may be meaningless, because they are in the coordinate system of the immediate editor within
the top-level display.

grab-caret

Called by the editor to request the keyboard focus. If the request is granted, then the administered editor’s
own-caret method will be called.

- (send an-editor-admin grab-caret domain) ⇒ void
domain = ’global : symbol in ’(immediate display global)

See set-caret-owner for information about the possible values of domain.

needs-update

Called by the editor to request a refresh to its displayed representation. When the administrator decides
that the displayed should be refreshed, it calls the editor’s refresh method.

- (send an-editor-admin needs-update localx localy w h) ⇒ void
localx : real number
localy : real number
w : non-negative real number
h : non-negative real number

The localx , localy , w , and h arguments specify a region of the editor to be updated (in editor coordi-
nates).

popup-menu

Opens a popup menu in the display for this editor. The result is #t if the popup succeeds, #f otherwise
(independent of whether the user selects an item in the popup menu).

While the menu is popped up, its target is set to the top-level editor in this editor’s display. See
get-popup-target for more information.

- (send an-editor-admin popup-menu menu x y) ⇒ bool
menu : popup-menu% object
x : real number
y : real number

The menu is displayed at x and y in editor coordinates.

refresh-delayed?

Returns #t if updating on this administrator’s display is currently delayed (usually by begin-edit-sequence
in editor<%> in an enclosing editor).

- (send an-editor-admin refresh-delayed?) ⇒ boolean

190

9. Editor Class Reference 9.6. editor-canvas%

resized

Called by the editor to notify its display that the editor’s size or scroll count has changed, so the scrollbars
need to be adjusted to reflect the new size. The editor generally needs to be updated after a resize, but the
editor decides whether the update should occur immediately.

- (send an-editor-admin resized refresh?) ⇒ void
refresh? : boolean

If refresh? is not #f, then the editor is requesting to be updated immediately.

scroll-to

Called by the editor to request scrolling so that the given region is visible. The editor generally needs to be
updated after a scroll, but the editor decides whether the update should occur immediately.

- (send an-editor-admin scroll-to localx localy w h refresh? bias) ⇒ boolean
localx : real number
localy : real number
w : non-negative real number
h : non-negative real number
refresh? = #t : boolean
bias = ’none : symbol in ’(start end none)

The localx , localy , w , and h arguments specify a region of the editor to be made visible by the scroll
(in editor coordinates).

If refresh? is not #f, then the editor is requesting to be updated immediately.

The bias argument is one of:

– ’start — if the range doesn’t fit in the visible area, show the top-left region
– ’none — no special scrolling instructions
– ’end — if the range doesn’t fit in the visible area, show the bottom-right region

update-cursor

Queues an update for the cursor in the display for this editor. The actual cursor used will be determined by
calling the editor’s adjust-cursor method.

- (send an-editor-admin update-cursor) ⇒ void

9.6 editor-canvas%

Implements: canvas<%>

An editor-canvas% object manages and displays a text% or pasteboard% object.

- (make-object editor-canvas% parent editor style scrolls-per-page) ⇒ editor-canvas% object
parent : frame%, dialog%, panel%, or pane% object
editor = #f : text% or pasteboard% object or #f
style = null : list of symbols in ’(no-hscroll no-vscroll hide-hscroll hide-vscroll)
scrolls-per-page = 100 : exact integer in [1, 10000]

191

9.6. editor-canvas% 9. Editor Class Reference

The style list can contain the following flags:

– ’no-hscroll — disallows horizontal scrolling
– ’no-vscroll — disallows vertical scrolling
– ’hide-hscroll — allows horizontal scrolling, but hides the horizontal scrollbar
– ’hide-vscroll — allows vertical scrolling, but hides the vertical scrollbar

While vertical scrolling of text editors is based on lines, horizontal scrolling and pasteboard vertical
scrolling is based on a fixed number of steps per horizontal page. The scrollsPerPage argument sets
this value.

If a canvas is initialized with #f for editor , install an editor later with set-editor.

allow-scroll-to-last

Enbales or disables last-line scrolling, or gets the current enable state. If last-line scrolling is enabled, then
an editor displayed in this canvas can be scrolled so that the last line of text is at the top of the canvas (or
bottom of the canvas when bottom-based scrolling is enabled; see scroll-with-bottom-base). By default,
an editor can only be scrolled until the last line is at the bottom (or top) of the canvas.

- (send an-editor-canvas allow-scroll-to-last) ⇒ boolean

Returns #t if last-line scrolling is enabled, #f otherwise.

- (send an-editor-canvas allow-scroll-to-last on?) ⇒ void
on? : boolean

If on? is #f, last-line scrolling is disabled, otherwise it is enabled.

allow-tab-exit

Gets or sets whether tab-exit is enabled for the editor canvas. When tab-exit is enabled, the user can move
the keyboard focus out of the editor using the Tab and arrow keys, or invoke the default button using the
Enter/Return key. By default, tab-exit is disabled.

When tab-exit is enabled for an editor canvas, Tab, arrow, and Enter keyboard events are consumed by a
frame’s default on-traverse-char method. (In addition, a dialog’s default method consumes Escape key
events.) Otherwise, on-traverse-char allows the keyboard events to be propagated to the canvas.

- (send an-editor-canvas allow-tab-exit) ⇒ boolean

Returns #t if tab-exit is enabled for the canvas, #f otherwise.

- (send an-editor-canvas allow-tab-exit on?) ⇒ void
on? : boolean

Enables or disables tab-exit for the canvas.

call-as-primary-owner

Calls a thunk and returns the value. While the thunk is being called, if the canvas has an editor, the editors’s
get-admin method returns the administrator for this canvas. This method is only useful when an editor is
displayed in multiple canvases.

- (send an-editor-canvas call-as-primary-owner f) ⇒ return value of f
f : procedure of zero arguments

Returns (f).

192

9. Editor Class Reference 9.6. editor-canvas%

force-display-focus

Enables or disables force-focus mode. In force-focus mode, the caret of the editor displayed in this canvas
will always be visible, even when the canvas does not actually have the keyboard focus.

- (send an-editor-canvas force-display-focus) ⇒ boolean

Returns #t if force-focus mode is enabled, #f otherwise.

- (send an-editor-canvas force-display-focus on?) ⇒ void
on? : boolean

If on? is #f, the focus is displayed normally, otherwise the focus display is forced.

get-editor

Returns the editor currently displayed by this canvas, or #f if the canvas does not have an editor.

- (send an-editor-canvas get-editor) ⇒ text% or pasteboard% object or #f

lazy-refresh

Enables or disables lazy-refresh mode, or gets the current enable state. In lazy-refresh mode, the canvas’s
refresh method is called when the window needs to be updated, rather than on-paint. By default, an
editor-canvas% object is not in lazy-refresh mode.

- (send an-editor-canvas lazy-refresh) ⇒ boolean

Returns #t if lazy-refresh mode is enabled, #f otherwise.

- (send an-editor-canvas lazy-refresh on?) ⇒ void
on? : boolean

If on? if #f, lazy-refresh mode is disabled, otherwise it is enabled.

on-char

Called when the canvas receives a keyboard event. See also section 2.3 (page 12).

- (send an-editor-canvas on-char event) ⇒ void
event : key-event% object

Passes the event to the canvas’s editor, if any, by calling its on-char method.

See also get-editor .

on-event

Called when the canvas receives a mouse event. See also section 2.3 (page 12).

- (send an-editor-canvas on-event event) ⇒ void
event : mouse-event% object

Passes the event to the canvas’s editor, if any, by calling its on-char method.

See also get-editor .

193

9.6. editor-canvas% 9. Editor Class Reference

on-focus

Called when a window receives or loses the keyboard focus. If the argument is #t, the keyboard focus was
received, otherwise it was lost.

Note that under X, keyboard focus can move to the menu bar when the user is selecting a menu item.

- (send an-editor-canvas on-focus on?) ⇒ void
on? : boolean

Enables or disables the caret in the display’s editor, if there is one.

on-paint

Called when the canvas is exposed or resized so that the image in the canvas can be repainted.

When on-paint is called in response to a system expose event and only a portion of the canvas is newly
exposed, any drawing operations performed by on-paint are clipped to the newly-exposed region; however,
the clipping region as reported by get-clipping-region does not change.

- (send an-editor-canvas on-paint) ⇒ void

Repaints the editor.

on-scroll

Called when the user changes one of the canvas’s manual scrollbars. A scroll-event% argument provides
information about the scroll action.

This method is not called when automatic scrollbars are changed; the on-paint method is called instead.

- (send an-editor-canvas on-scroll event) ⇒ void
event : scroll-event% object

Repaints the editor.

on-size

Called when the window is resized. The window’s new size (in pixels) is provided to the method. The size
values are for the entire window, not just the client area.

- (send an-editor-canvas on-size width height) ⇒ void
width : exact integer in [0, 10000]
height : exact integer in [0, 10000]

If the canvas is dispalying an editor, its on-display-size method is called.

scroll-with-bottom-base

Enables or disables bottom-base scrolling, or gets the current enable state. If bottom-base scrolling is on,
then scroll positions are determined by line boundaries aligned with the bottom of the viewable area (rather
than with the top of the viewable area). If last-line scrolling is also enabled (see allow-scroll-to-last),
then the editor is bottom-aligned in the display area even when the editor does not fill the viewable area.

194

9. Editor Class Reference 9.7. editor-data%

- (send an-editor-canvas scroll-with-bottom-base) ⇒ boolean

Returns #t if bottom-based scrolling is enabled, #f otherwise.

- (send an-editor-canvas scroll-with-bottom-base on?) ⇒ void
on? : boolean

If on? is #f, bottom-based scrolling is disabled, otherwise it is enabled.

set-editor

Sets the editor that is displayed by the canvas, releasing the current editor (if any). If the new editor already
has an administrator that is not associated with a editor-canvas%, then the new editor is not installed into
the canvas.

- (send an-editor-canvas set-editor edit redraw?) ⇒ void
edit : text% or pasteboard% object or #f
redraw? = #t : boolean

If redraw? is #f, then the editor is not immediately drawn; in this case, something must force a redraw
later (e.g., a call to the on-paint method).

If the canvas has a line count installed with set-line-count, the canvas’s miniumum height is adjusted.

set-line-count

Sets the canvas’s graphical minimum height to display a particular number of lines of text. The line height
is determined by measuring the difference between the top and bottom of a displayed editor’s first line. The
minimum height is not changed until the canvas gets an editor. When the canvas’s editor is changed, the
minimum height is recalculated.

If the line count is set to #f, then the canvas’s graphical minimum height is restored to its original value.

- (send an-editor-canvas set-line-count count) ⇒ void
count : exact integer in [1, 1000] or #f

9.7 editor-data%

An editor-data% object contains extra data associated to a snip or region in an editor. See also section 8.2.1
(page 151).

- (make-object editor-data%) ⇒ editor-data% object

The element returned by get-next is initialized to #f.

get-dataclass

Gets the class for this data.

- (send an-editor-data get-dataclass) ⇒ editor-data-class% object or #f

195

9.8. editor-data-class% 9. Editor Class Reference

get-next

Gets the next editor data element in a list of editor data elements. A #f terminates the list.

- (send an-editor-data get-next) ⇒ editor-data% object or #f

set-dataclass

Sets the class for this data.

- (send an-editor-data set-dataclass v) ⇒ void
v : editor-data-class% object

set-next

Sets the next editor data element in a list of editor data elements. A #f terminates the list.

- (send an-editor-data set-next v) ⇒ void
v : editor-data% object or #f

write

Writes the data to the specified stream, returing #t if data is written successfully or #f otherwise.

- (send an-editor-data write f) ⇒ boolean
f : editor-stream-out% object

9.8 editor-data-class%

An editor-data-class% object defines a type for editor-data% objects. See also section 8.2.1 (page 151).

- (make-object editor-data-class%) ⇒ editor-data-class% object

get-classname

Gets the name of the class. Names starting with “wx” are reserved for internal use.

- (send an-editor-data-class get-classname) ⇒ string

read

Reads a new data object from the given stream, returning #f if there is an error.

- (send an-editor-data-class read f) ⇒ editor-data% object or #f
f : editor-stream-in% object

196

9. Editor Class Reference 9.9. editor-data-class-list<%>

set-classname

Sets the name of the class. Names starting with “wx” are reserved for internal use.

- (send an-editor-data-class set-classname v) ⇒ void
v : string

9.9 editor-data-class-list<%>

Each eventspace has an instance of editor-data-class-list<%>, obtained with (get-the-editor-data-class-list).
New instances cannot be created directly. This list keeps a list of editor data classes; this list is needed for
loading snips from a file. See also section 8.2.1 (page 151).

add

Adds a snip data class to the list. If a class with the same name already exists in the list, this one will not
be added.

- (send an-editor-data-class-list add snipclass) ⇒ void
snipclass : editor-data-class% object

find

Finds a snip data class from the list with the given name, returning #f if none can be found.

- (send an-editor-data-class-list find name) ⇒ snip-class% object or #f
name : string

find-position

Returns an index into the list for the specified class.

- (send an-editor-data-class-list find-position class) ⇒ exact non-negative integer
class : editor-data-class% object

nth

Returns the nth class in the list (counting from 0), returning #f if the list has n or less classes.

- (send an-editor-data-class-list nth n) ⇒ editor-data-class% object or #f
n : exact non-negative integer

number

Returns the number of editor data classes in the list.

- (send an-editor-data-class-list number) ⇒ exact non-negative integer

197

9.10. editor-snip% 9. Editor Class Reference

9.10 editor-snip%

Superclass: snip%

An editor-snip% object is a snip% object that contains and displays a editor object. This snip class is
used to insert an editor as a single item within another editor.

- (make-object editor-snip% editor with-border? left-margin top-margin right-margin bottom-margin
left-inset top-inset right-inset bottom-inset min-width max-width min-height max-height)⇒ editor-snip%
object
editor = #f : text% object or #f
with-border? = #t : boolean
left-margin = 5 : exact non-negative integer
top-margin = 5 : exact non-negative integer
right-margin = 5 : exact non-negative integer
bottom-margin = 5 : exact non-negative integer
left-inset = 1 : exact non-negative integer
top-inset = 1 : exact non-negative integer
right-inset = 1 : exact non-negative integer
bottom-inset = 1 : exact non-negative integer
min-width = ’none : non-negative real number or ’none
max-width = ’none : non-negative real number or ’none
min-height = ’none : non-negative real number or ’none
max-height = ’none : non-negative real number or ’none

If editor is non-#f, then it will be used as the editor contained by the snip. See also set-editor.

If with-border? is not #f, then a border will be drawn around the snip. The editor display will be inset
in the snip area by the amounts specified in the -margin arguments. The border will be drawn with
an inset specified by the -inset arguments.

See get-inset and get-margin for information about the inset and margin arguments.

adjust-cursor

Called to determine the cursor image used when the cursor is moved over the snip in an editor. If #f is
returned, a default cursor is selected by the editor. (See adjust-cursor in editor<%> for more information.)

- (send an-editor-snip adjust-cursor dc x y editorx editory event) ⇒ cursor% object or #f
dc : dc<%> object
x : real number
y : real number
editorx : real number
editory : real number
event : mouse-event% object

Gets a cursor from the embedded editor by calling its adjust-cursor method.

border-visible?

Returns #t if the snip has a border draw adound it, #f otherwise.

- (send an-editor-snip border-visible?) ⇒ boolean

198

9. Editor Class Reference 9.10. editor-snip%

get-align-top-line

Reports whether the snip is in align-top-line mode. See get-extent for more information.

See also set-align-top-line.

- (send an-editor-snip get-align-top-line) ⇒ boolean

get-editor

Returns the editor contained by the snip or #f is there is no editor.

- (send an-editor-snip get-editor) ⇒ text% or pasteboard% object or #f

get-extent

Calculates the snip’s width, height, descent (amount of height which is drawn below the baseline), space
(amount of height which is “filler” space at the top), and horizontal spaces (amount of width which is “filler”
space at the left and right).

A drawing context is provided for the purpose of finding font sizes, but no drawing should occur. The
get-extent and partial-offset methods must not make any assumptions about the state of the drawing
context, except that it is scaled properly. In particular, the font for the snip’s style is not automatically
set in the drawing context before the method is called.1 If get-extent or partial-offset changes the
drawing context’s setting, it must restore them before returning. However, the methods should not need to
change the drawing context; only font settings can affect measurement results from a device context, and
get-text-extent in dc<%> accepts a font% argument for sizing that overrides that device context’s current
font.

The snip’s left and top locations are provided in editor corrdinates. In a text editor, the y-coordinate is the
line’s top location; the snip’s actual top location is potentially undetermined until its height is known.

This method is called by the snip’s administrator; it should not be called directly by others. To get the
extent of a snip, use get-snip-location in editor<%> .

The snip’s editor is usually internally locked for writing and reflowing when this method is called (see also
section 8.8 (page 153)).

- (send an-editor-snip get-extent dc x y w h descent space lspace rspace) ⇒ void
dc : dc<%> object
x : real number
y : real number
w = #f : boxed non-negative real number or #f
h = #f : boxed non-negative real number or #f
descent = #f : boxed non-negative real number or #f
space = #f : boxed non-negative real number or #f
lspace = #f : boxed non-negative real number or #f
rspace = #f : boxed non-negative real number or #f

Calls its editor’s get-extent method, then adds the editor snip’s margins.

The top space always corresponds to the space of the editor’s top line, plus the snip’s top margin.
Normally, the descent corresponds to the descent of the editor’s last line plus the snip’s bottom margin.

1Many snips cache their size information, so automatically setting the font would be wasteful.

199

9.10. editor-snip% 9. Editor Class Reference

However, if the snip is in align-top-line mode (see set-align-top-line), the descent correponds to
the descent of the top line, plus the height rest of the editor’s lines, plus the snip’s bottom margin.

If the editor is a text editor, then 1 is normally subtracted from the editor’s width as returned by
get-extent, because the result looks better for editing. If the snip is in tight-text-fit mode (see
set-tight-text-fit) then 2 is subtracted from a text editor’s width, eliminating the two pixels that
the text editor reserves for the blinking caret. In addition, tight-text-fit mode subtracts an amount
equal to the line spacing from the editor’s height. By default, tight-text-fit mode is disabled.

get-inset

Gets the current border insets for the snip. The inset sets how much space is left between the edge of the
snip and the border.

- (send an-editor-snip get-inset l t r b) ⇒ void
l : boxed exact non-negative integer
t : boxed exact non-negative integer
r : boxed exact non-negative integer
b : boxed exact non-negative integer

The l box is filled with left inset. The t box is filled with top inset. The r box is filled with right inset.
The b box is filled with bottom inset.

get-margin

Gets the current margins for the snip. The margin sets how much space is left between the edge of the
editor’s contents and the edge of the snip.

- (send an-editor-snip get-margin l t r b) ⇒ void
l : boxed exact non-negative integer
t : boxed exact non-negative integer
r : boxed exact non-negative integer
b : boxed exact non-negative integer

The l box is filled with left margin. The t box is filled with top margin. The r box is filled with right
margin. The b box is filled with bottom margin.

get-max-height

Gets the maximum display height of the snip; zero or ’none indicates that there is no maximum.

- (send an-editor-snip get-max-height) ⇒ non-negative real number or ’none

get-max-width

Gets the maximum display width of the snip; zero or ’none indicates that there is no maximum.

- (send an-editor-snip get-max-width) ⇒ non-negative real number or ’none

get-min-height

Gets the minimum display height of the snip; zero or ’none indicates that there is no minimum.

200

9. Editor Class Reference 9.10. editor-snip%

- (send an-editor-snip get-min-height) ⇒ non-negative real number or ’none

get-min-width

Gets the minimum display width of the snip; zero or ’none indicates that there is no minimum.

- (send an-editor-snip get-min-width) ⇒ non-negative real number or ’none

get-tight-text-fit

Reports whether the snip is in tight-text-fit mode. See get-extent for more information.

See also set-tight-text-fit.

- (send an-editor-snip get-tight-text-fit) ⇒ boolean

resize

Resizes the snip. The snip can refuse to be resized by returning #f. Otherwise, the snip will resize (it must
call its administrator’s resized method) and return #t.

See also on-interactive-resize in pasteboard%.

- (send an-editor-snip resize w h) ⇒ boolean
w : non-negative real number
h : non-negative real number

Also sets the minimum and maximum width of the editor owned by the snip to the given width (minus
the snip border space).

set-align-top-line

Enables or disables align-top-line mode. See get-extent for more information.

See also get-align-top-line.

- (send an-editor-snip set-align-top-line tight?) ⇒ void
tight? : boolean

set-editor

Sets the editor contained by the snip, relasing the old editor in the snip (if any). If the new editor already
has an administrator, then the new editor is not installed into the snip.

When a editor-snip% object is not inserted in an editor, it does not have an administrator. During this
time, it does not give its contained editor an administrator, either. The administratorless contained editor
can therefore ”defect” to some other display with an administrator. When a contained editor defects and
the snip is eventually inserted into a different editor, the snip drops the traitor contained editor, setting its
contained editor to #f.

- (send an-editor-snip set-editor editor) ⇒ void
editor : text% or pasteboard% object or #f

201

9.10. editor-snip% 9. Editor Class Reference

set-inset

Sets the current border insets for the snip. The inset sets how much space is left between the edge of the
snip and the border.

- (send an-editor-snip set-inset l t r b) ⇒ void
l : exact non-negative integer
t : exact non-negative integer
r : exact non-negative integer
b : exact non-negative integer

set-margin

Sets the current margins for the snip. The margin sets how much space is left between the edge of the
editor’s contents and the edge of the snip.

- (send an-editor-snip set-margin l t r b) ⇒ void
l : exact non-negative integer
t : exact non-negative integer
r : exact non-negative integer
b : exact non-negative integer

set-max-height

Sets the maximum display height of the snip; zero or ’none indicates that there is no maximum.

- (send an-editor-snip set-max-height h) ⇒ void
h : non-negative real number or ’none

set-max-width

Sets the maximum display width of the snip; zero or ’none indicates that there is no maximum.

- (send an-editor-snip set-max-width w) ⇒ void
w : non-negative real number or ’none

set-min-height

Sets the minimum display height of the snip; zero or ’none indicates that there is no minimum.

- (send an-editor-snip set-min-height h) ⇒ void
h : non-negative real number or ’none

set-min-width

Sets the minimum display width of the snip; zero or ’none indicates that there is no minimum.

- (send an-editor-snip set-min-width w) ⇒ void
w : non-negative real number or ’none

202

9. Editor Class Reference 9.11. editor-snip-editor-admin<%>

set-tight-text-fit

Enables or disables tight-text-fit mode. See get-extent for more information.

See also get-tight-text-fit.

- (send an-editor-snip set-tight-text-fit tight?) ⇒ void
tight? : boolean

show-border

Shows or hides the snip’s border.

- (send an-editor-snip show-border show?) ⇒ void
show? : boolean

If show? is #f, the border is hidden, otherwise is it shown.

9.11 editor-snip-editor-admin<%>

Extends: (class->interface editor-admin%)

An instance of this administrator interface is created with each editor-snip% object; new instances cannot
be created directly.

get-snip

Returns the snip that owns this administrator (and displays the editor controlled by the administrator, if
any).

- (send an-editor-snip-editor-admin get-snip) ⇒ editor-snip% object

9.12 editor-stream-in%

An editor-stream-in% object is used to read editor information from a file or other input stream (such as
the clipboard).

- (make-object editor-stream-in% base) ⇒ editor-stream-in% object
base : editor-stream-in-base% object

An in-stream base — possible a editor-stream-in-string-base% object — must be supplied in base.

>>

Same as get.

- (send an-editor-stream-in >>v) ⇒ editor-stream-in% object
v : boxed exact integer

- (send an-editor-stream-in >>v) ⇒ editor-stream-in% object
v : boxed real number

203

9.12. editor-stream-in% 9. Editor Class Reference

get

Reads data from the stream, returning itself. Reading from a bad stream always gives 0.

- (send an-editor-stream-in get v) ⇒ editor-stream-in% object
v : boxed exact integer

The v box is filled with the next integer in the stream.

- (send an-editor-stream-in get v) ⇒ editor-stream-in% object
v : boxed real number

The v box is filled with the next floating-point value in the stream.

get-exact

Returns the next integer value in the stream.

- (send an-editor-stream-in get-exact) ⇒ exact integer

get-fixed

Gets a fixed-sized integer from the stream. See put-fixed for more information. Reading from a bad stream
always gives 0.

- (send an-editor-stream-in get-fixed v) ⇒ editor-stream-in% object
v : boxed exact integer

The v box is filled with the fixed-size integer from the stream.

get-inexact

Returns the next floating-point value in the stream.

- (send an-editor-stream-in get-inexact) ⇒ real number

get-string

Returns the next string from the stream. Reading from a bad stream returns #f or "".

- (send an-editor-stream-in get-string len) ⇒ string or #f
len = #f : boxed exact non-negative integer or #f

The len box is filled with the length of the string, unless len is #f.

jump-to

Jumps to a given position in the stream.

- (send an-editor-stream-in jump-to pos) ⇒ void
pos : exact non-negative integer

204

9. Editor Class Reference 9.13. editor-stream-in-base%

ok?

Returns #t if the stream is ready for reading, #f otherwise. Reading from a bad stream always returns 0 or
"".

- (send an-editor-stream-in ok?) ⇒ boolean

remove-boundary

See set-boundary.

- (send an-editor-stream-in remove-boundary) ⇒ void

set-boundary

Sets a file-reading boundary at a position in the stream. If there is an attempt to read past this boundary,
an error is signalled. The boundary is removed with a call to remove-boundary. Every call to set-boundary
must be balanced by a call to remove-boundary.

Boundaries help keep a subroutine from reading too much data leading to confusing errors. However, a
malicious subroutine can call remove-boundary on its own.

- (send an-editor-stream-in set-boundary n) ⇒ void
n : exact non-negative integer

Sets a file-reading boundary at n bytes past the current stream location.

skip

Skips forward in the stream.

- (send an-editor-stream-in skip n) ⇒ void
n : exact non-negative integer

Skips past the next n bytes in the stream.

tell

Returns the current stream position.

- (send an-editor-stream-in tell) ⇒ exact non-negative integer

9.13 editor-stream-in-base%

An editor-stream-in-base% object is used by a editor-stream-in% object to perform low-level reading
of data.

The editor-stream-in-base% class is never instantiated directly, but the derived class editor-stream-in-string-base%
can be instantiated. New derived classes must override all of the methods decribed in this section.

205

9.14. editor-stream-in-string-base% 9. Editor Class Reference

bad?

Returns #t if there has been an error reading from the stream, #f otherwise.

- (send an-editor-stream-in-base bad?) ⇒ boolean

read

Reads characters to fill the supplied vector. The return value is the number of characters read, which may
be less than the number requested if the stream is emptied. If the stream is emptied, the next call to bad?
must return #t.

- (send an-editor-stream-in-base read data) ⇒ exact non-negative integer
data : vector for characters

seek

Moves to the specified absolute position in the stream.

- (send an-editor-stream-in-base seek pos) ⇒ void
pos : exact non-negative integer

skip

Skips over characters in the stream.

- (send an-editor-stream-in-base skip n) ⇒ void
n : exact non-negative integer

Skips past the next n characters in the stream.

tell

Returns the current stream position.

- (send an-editor-stream-in-base tell) ⇒ exact non-negative integer

9.14 editor-stream-in-string-base%

Superclass: editor-stream-in-base%

An editor-stream-in-string-base% object can be used to read editor data from a string.

- (make-object editor-stream-in-string-base% s) ⇒ editor-stream-in-string-base% object
s : string

Creates a stream base that reads from s.

206

9. Editor Class Reference 9.15. editor-stream-out%

9.15 editor-stream-out%

An editor-stream-out% object is used to write editor information to a file or other output stream (such as
the clipboard).

- (make-object editor-stream-out% base) ⇒ editor-stream-out% object
base : editor-stream-out-base% object

An out-stream base — possibly a editor-stream-out-string-base% object — must be supplied in
base.

<<

Same as put.

- (send an-editor-stream-out <<v) ⇒ editor-stream-out% object
v : string

- (send an-editor-stream-out <<v) ⇒ editor-stream-out% object
v : exact integer

- (send an-editor-stream-out <<v) ⇒ editor-stream-out% object
v : real number

jump-to

Jumps to a given position in the stream.

- (send an-editor-stream-out jump-to pos) ⇒ void
pos : exact non-negative integer

ok?

Returns #t if the stream is ready for writing, #f otherwise. Writing to a bad stream has no effect.

- (send an-editor-stream-out ok?) ⇒ boolean

put

Writes data to a stream. Writing to a bad stream has no effect.

- (send an-editor-stream-out put n v) ⇒ editor-stream-out% object
n : exact non-negative integer
v : string

Writes n characters of the string v . The string v may contain null characters.

- (send an-editor-stream-out put v) ⇒ editor-stream-out% object
v : string

Writes v . If v has a null character, it will be truncated.

207

9.16. editor-stream-out-base% 9. Editor Class Reference

- (send an-editor-stream-out put v) ⇒ editor-stream-out% object
v : exact integer

Writes an integer.

- (send an-editor-stream-out put v) ⇒ editor-stream-out% object
v : real number

Writes a floating-point number.

put-fixed

Puts a fixed-sized integer into the stream. This method is needed because numbers are usually written in a
compressed form (for example, 1 takes one byte, and 512 takes up two bytes, regardless of the C++ type
that the number had). In many cases it is useful to temporary write a 0 to a stream, write more data, and
then go back and change the 0 to another number; this requires a fixed-size number.

Numbers written to a stream with put-fixed must be read with get-fixed.

- (send an-editor-stream-out put-fixed v) ⇒ editor-stream-out% object
v : exact integer

tell

Returns the current stream position.

- (send an-editor-stream-out tell) ⇒ exact non-negative integer

9.16 editor-stream-out-base%

An editor-stream-out-base% object is used by a editor-stream-out% object to perform low-level writing
of data.

The editor-stream-out-base% class is never instantiated directly, but the derived class editor-stream-out-string-base%
can be instantiated. New derived classes must override all of the methods decribed in this section.

bad?

- (send an-editor-stream-out-base bad?) ⇒ boolean

Returns #t if there has been an error writing to the stream, #f otherwise.

seek

Moves to the specified absolute position in the stream.

- (send an-editor-stream-out-base seek pos) ⇒ void
pos : exact non-negative integer

tell

Returns the current stream position.

208

9. Editor Class Reference 9.17. editor-stream-out-string-base%

- (send an-editor-stream-out-base tell) ⇒ exact non-negative integer

write

Writes data to the stream.

- (send an-editor-stream-out-base write data) ⇒ void
data : list of characters

9.17 editor-stream-out-string-base%

Superclass: editor-stream-out-base%

An editor-stream-out-string-base% object can be used to write editor data into a string.

- (make-object editor-stream-out-string-base%) ⇒ editor-stream-out-string-base% object

Creates an empty stream.

get-string

Returns the current contents of the stream.

- (send an-editor-stream-out-string-base get-string) ⇒ string

9.18 editor-wordbreak-map%

An editor-wordbreak-map% objects is used with a text% objects to specify word-breaking criteria for the
default wordbreaking function. See also set-wordbreak-map, get-wordbreak-map, find-wordbreak, and
set-wordbreak-func.

A global object the-editor-wordbreak-map is created automatically and used as the default map for all
text objects.

A workdbreak objects implemnts a mapping from each character to a list of symbols. The following symbols
are legal elements of the list:

• ’caret,

• ’line,

• ’selection,

• ’user1,

• ’user2

The presence of a flag in a character’s value indicates that the character does not break a word when
searching for breaks using the corresponding reason. For example, if ’caret is present, then the character
is a non-breaking character for caret-movement words. (Each stream of non-breaking characters is a single
word.)

209

9.19. image-snip% 9. Editor Class Reference

- (make-object editor-wordbreak-map%) ⇒ editor-wordbreak-map% object

All alpha-numeric characters are initialized with ’(caret line selection). All other non-space
characters except “-” are initialized with ’(line). All space characters and “-” are initialized with
null.

get-map

Gets the mapping value for a character. See editor-wordbreak-map% for more information.

- (send an-editor-wordbreak-map get-map char) ⇒ list of symbols
char : character

Gets the mapping value for char .

set-map

Sets the mapping value for a character. See editor-wordbreak-map% for more information.

- (send an-editor-wordbreak-map set-map char value) ⇒ void
char : character
value : list of symbols

Sets the mapping value for char to value.

9.19 image-snip%

Superclass: snip%

An image-snip% is a snip that can display bitmap images (usually loaded from a file). When the image file
cannot be found, a box containing an “X” is drawn.

- (make-object image-snip% filename kind relative-path? inline?) ⇒ image-snip% object
filename = #f : string or #f
kind = ’unknown : symbol in ’(unknown gif jpeg xbm xpm bmp pict)
relative-path? = #f : boolean
inline? = #t : boolean

Creates an image snip, loading the image filename if specified. See also load-file.

- (make-object image-snip% bitmap) ⇒ image-snip% object
bitmap : bitmap% object

Creates an image snip with the given bitmap. See also set-bitmap.

get-filename

Returns the name of the currently loaded file, or #f if a file is not loaded (or if a file was loaded with inlining).

- (send an-image-snip get-filename relative-path) ⇒ string or #f
relative-path = #f : boxed boolean or #f

The relative-path box is filled with #t if the loaded file’s path is relative to the owning editor’s path,
unless relative-path is #f.

210

9. Editor Class Reference 9.19. image-snip%

get-filetype

Returns the kind used to load the currently loaded file, or ’unknown if a file is not loaded (or if an image
was loaded via inlining).

- (send an-image-snip get-filetype) ⇒ symbol in ’(unknown gif jpeg xbm xpm bmp pict)

load-file

Loads a new bitmap into the snip.

- (send an-image-snip load-file filename kind relative-path? inline?) ⇒ void
filename : string or #f
kind = ’unknown : symbol in ’(unknown gif jpeg xbm xpm bmp pict)
relative-path? = #f : boolean
inline? = #t : boolean

Loads the file by passing filename and kind to load-file If a bitmap had previously been specified
with set-bitmap, that bitmap will no longer be used. If filename is #f, then the current image is
cleared.

If relative-path? is not #f and filename is a relative path, then the file will be read using the path of
the owning editor’s filename. If the image is not inlined, it will be saved as a relative pathname.

If inline? is not #f, the image data will be saved directly to the file or clipboard when the image is
saved or copied. The source filename is no longer relevant.

resize

Resizes the snip. The snip can refuse to be resized by returning #f. Otherwise, the snip will resize (it must
call its administrator’s resized method) and return #t.

See also on-interactive-resize in pasteboard%.

- (send an-image-snip resize w h) ⇒ void
w : non-negative real number
h : non-negative real number

The bitmap will be cropped to fit in the given dimensions.

set-bitmap

Sets the bitmap that is displayed by the snip.

A bitmap cannot be used in an image-snip% object if it is selected into a bitmap-dc% object; if the given
bitmap is selected into a bitmap-dc% object, an exn:application:mismatch exception is raised.

- (send an-image-snip set-bitmap bm) ⇒ void
bm : bitmap% object

set-offset

Sets a graphical offset for the bitmap within the image snip.

211

9.20. keymap% 9. Editor Class Reference

- (send an-image-snip set-offset dx dy) ⇒ void
dx : real number
dy : real number

9.20 keymap%

A keymap% object is used by editor<%> objects to map keyboard and mouse sequences to arbitrary functions
in an extensible way. Keymaps can be used without editors, as well. A keymap% object contains

• a mapping from function names to event-handling procedures; and
• a mapping from key and mouse sequences to function names .

A handler procedure in a keymap is invoked with a key-event% object or a mouse-event% object. It is
also given another value that depends on the context in which the keymap is used (or, more specifically,
the arguments to handle-key-event or handle-mouse-event). For keymaps associated with editor<%>
objects, the extra parameter is generally the editor<%> object that received the keyboard or mouse event.

- (make-object keymap%) ⇒ keymap% object

Creates an empty keymap.

add-function

Names a new function to handle events, called in response to handle-key-event, handle-key-event, or
call-function. The return value is of the procedure is ignored.

If there was already a function mapped to this name, it will be replaced with the given function.

When the function is called, it gets the arguments that were passed to handle-key-event,
handle-mouse-event, or call-function. For keymaps asscociated with an editor, this is normally the
target editor.

- (send a-keymap add-function name func) ⇒ void
name : string
func : procedure of two arguments: an arbitrary value and a event% object

break-sequence

Clears the state of the keymap if it is in the middle of a key sequence. For example, the user may have hit
escape, and then changed to another window; if escape is part of a keyboard sequence, the keymap state
needs to be cleared because the user is not going to complete the sequence.

A break callback function can be installed with set-break-sequence-callback.

- (send a-keymap break-sequence) ⇒ void

call-function

Calls a named event handler directly. If the function cannot be found or the found handler did not want to
handle the event, #f is returned. Otherwise, the return value is the return value of the event handler.

212

9. Editor Class Reference 9.20. keymap%

- (send a-keymap call-function name in event try-chain?) ⇒ boolean
name : string
in : value
event : event% object
try-chain? = #f : boolean

The in and event arguments are passed on to the keymap handler procedure if one is found.

If try-chain? is not #f, keymaps chained to this one are searched for the function name. If the function
is not found and try-chain? is #f; an exception is also raised, but the exception handler cannot escape
(see §2.4.4).

chain-to-keymap

Multiple keymaps can be chained off one keymap using chain-to-keymap. When keymaps are chained to a
main keymap, then events handled by the main keymap are passed to the chained keymaps until a chained
keymap handles the events. Keymaps can be chained together in an arbitrary acyclic graph.

Keymap chaining is useful because multiple-event sequences are handled correctly by chained groups. Dis-
patching each individual event to separate keymaps is problematic withouth chaining because keymaps may
acquire state that must be reset when a callback is invoked in one of the keymaps. This state can be maually
cleared with break-sequence, but this also invokes the handler installed by set-break-sequence-callback.

- (send a-keymap chain-to-keymap next prefix?) ⇒ void
next : keymap% object
prefix? : boolean

If next will be used to handle events which are not handled by this keymap. If prefix? is a true value,
then next will take precedence over other keymaps already chained to this one.

get-double-click-interval

Returns the maximum number of milliseconds that can separate the clicks of a double-click.

- (send a-keymap get-double-click-interval) ⇒ exact integer in [0, 1000000]

handle-key-event

Attempts to handle a keyboard event, returning #t if the event was handled (i.e., a handler was found and
it returned a true value), #f otherwise.

- (send a-keymap handle-key-event in event) ⇒ boolean
in : value
event : key-event% object

Seraches for a mapping that matches event . See also call-function.

handle-mouse-event

Attempts to handle a mouse event, returning #t if the event was handled (i.e., a handler was found and it
returned a true value), #f otherwise.

213

9.20. keymap% 9. Editor Class Reference

- (send a-keymap handle-mouse-event in event) ⇒ boolean
in : value
event : mouse-event% object

Seraches for a mapping that matches event . See also call-function.

map-function

Maps an input state to the name of an event handler.

- (send a-keymap map-function keyname fname) ⇒ void
keyname : string
fname : string

Maps an input state sequence to a function name using a string-encoded sequence in keyname. The
format of keyname is a sequence of semicolon-delimited input states; each state is made up of a sequence
of modifier identifiers followed by a key identifier.

The modifier identifiers are:

– “s:” — All platforms: Shift
– “c:” — All platforms: Control
– “a:” — MacOS: Option
– “m:” — Windows: Alt; X: Meta
– “d:” — MacOS: Command

If a particular modifier is not mentioned in a state string, it matches states whether that modifier is
pressed or not pressed. A tilde () preceding a modifier makes the string match only states where the
corresponding modifier is not pressed. If the state string begins with a colon, then the string only
matches a state if modifiers not mentioned in the string are not pressed.

A key identifier can be either a character on the keyboard (e.g., "a", "2", "?") or a special name. The
special names are:

– "leftbutton" (button down)
– "rightbutton"
– "middlebutton"
– "leftbuttondouble" (button down for double-click)
– "rightbuttondouble"
– "middlebuttondouble"
– "leftbuttontriple" (button down for triple-click)
– "rightbuttontriple"
– "middlebuttontriple"
– "leftbuttonseq" (all events from button down through button up)
– "rightbuttonseq"
– "middlebuttonseq"
– "esc"
– "delete"
– "del" (same as "delete")
– "insert"
– "ins" (same as "insert")
– "add"
– "subtract"
– "multiply"
– "divide"
– "backspace"
– "back"

214

9. Editor Class Reference 9.20. keymap%

– "return"
– "enter" (same as "return")
– "tab"
– "space"
– "right"
– "left"
– "up"
– "down"
– "home"
– "end"
– "pageup"
– "pagedown"
– "semicolon"
– "colon"
– "numpad1"
– "numpad2"
– "numpad3"
– "numpad4"
– "numpad5"
– "numpad6"
– "numpad7"
– "numpad8"
– "numpad9"
– "f1"
– "f2"
– "f3"
– "f4"
– "f5"
– "f6"
– "f7"
– "f8"
– "f9"
– "f10"
– "f11"
– "f12"
– "f13"
– "f14"
– "f15"
– "f16"
– "f17"
– "f18"
– "f19"
– "f20"
– "f21"
– "f22"
– "f23"
– "f24"

For a special keyword, the capitalization does not matter. However, capitalization is important for
single-letter keynames (e.g., "A" is interpreted as "s:a").

A state can match multiple state strings mapped in a keymap (or keymap chain); when a state matches
multiple state strings, a mapping is selected by ranking the strings according to specificity. A state
string that mentions more pressed modifiers has a higher rank than other state strings, and if two
strings mention the same number of pressed modifiers, the one that metions more unpressed modifiers

215

9.20. keymap% 9. Editor Class Reference

has a higher rank. In that case that multiple matching strings have the same rank, one string is selected
arbitrarily.

Examples:

– "space" — matches whenever the space bar is pressed, regardless of the state of modifiers keys.
– " c:space" — matches whenever the space bar is pressed and the Control key is not pressed.
– "a" — matches whenever “a” is typed, regardless of the state of modifiers keys other than Shift.
– ":a" — matches only when “a” is typed with no modifier keys pressed.
– " c:a"—matches whenever “a” is typed and neither the Shift key nor the Control key is pressed.
– ":esc;:c:c" — matches an Escape key press (no modifiers) followed by a Control-C press (no
modifiers other than Control).

A call to map-function that would map a particular key sequence both as a prefix and as a complete
sequence raises an exception, but the exception handler cannot escape (see §2.4.4).
A function name does not have to be mapped to a handler before input states are mapped to the name;
the handler is dispatched by name at the time of invocation. The event handler mapped to a function
name can be changed without affecting the map from input states to function names.

remove-chained-keymap

Unchains a keymap from this keymap.

- (send a-keymap remove-chained-keymap keymap) ⇒ void
keymap : keymap% object

If keymap was previously chained from this keymap (through chain-to-keymap, then it is removed
from the chain-to list.

remove-grab-key-function

Removes a callback installed with set-grab-key-function.

- (send a-keymap remove-grab-key-function) ⇒ void

remove-grab-mouse-function

Removes a callback installed with set-grab-mouse-function.

- (send a-keymap remove-grab-mouse-function) ⇒ void

set-break-sequence-callback

Installs a callback procedure that is invoked when break-sequence is called. After it is invoked once, the
callback is removed from the keymap. If another callback is installed before break-sequence is called, the
old callback is invoked immediately before the new one is installed.

- (send a-keymap set-break-sequence-callback f) ⇒ void
f : procedure of no arguments

set-double-click-interval

Sets the maximum number of milliseconds that can separate the clicks of a double-click.

216

9. Editor Class Reference 9.21. mult-color<%>

- (send a-keymap set-double-click-interval n) ⇒ void
n : exact integer in [0, 1000000]

set-grab-key-function

Installs a callback procedure that is invoked after the keymap matches input to a function name or fails to
match an input. Only one keyboard grab function can be installed at a time. When keymaps are chained to
a keymap with a grab callback, the callback is invoked for matches in the chained keymap (when the chained
keymap does not have its own grab callback).

If a grab callback returns a true value for a matching or non-matching callback, the event is considered
handled. If the callback returns a true value for a matching callback, then the matching keymap function is
not called by the keymap.

- (send a-keymap set-grab-key-function f) ⇒ void
f : procedure of four arguments — a string or #f, a keymap% object, an arbitrary value,

and a key-event% object — that returns a boolean

The callback procedure f will be invoked as:

(f str km editor event)

The str argument is the name of a function for a matching callback, or #f for a non-matching callback.
The km argument is the keymap that matched (possibly a keymap chained to the one in which the
callback was installed) or the keymap in which the callback was installed. The editor and event
arguments are the same as passed on to the matching keymap function.

Key grab callback functions are de-installed with remove-grab-key-function.

set-grab-mouse-function

Like set-grab-key-function, but for mouse events.

- (send a-keymap set-grab-mouse-function f) ⇒ void
f : procedure of four arguments — a string or #f, a keymap% object, an arbitrary value,

and a mouse-event% object — that returns a boolean

See set-grab-key-function.

9.21 mult-color<%>

A mult-color<%> object is used to scale the RGB values of a color% object. A mult-color<%> object exist
only within a style-delta% object.

See also get-foreground-mult and get-background-mult.

get

Gets all of the scaling values.

- (send a-mult-color get r g b) ⇒ void
r : boxed real number
g : boxed real number
b : boxed real number

217

9.21. mult-color<%> 9. Editor Class Reference

The r box is filled with the scaling value for the red component of the color. The g box is filled with
the scaling value for the green component of the color. The b box is filled with the scaling value for
the blue component of the color.

get-b

Gets the multiplicative scaling value for the blue component of the color.

- (send a-mult-color get-b) ⇒ real number

get-g

Gets the multiplicative scaling value for the green component of the color.

- (send a-mult-color get-g) ⇒ real number

get-r

Gets the multiplicative scaling value for the red component of the color.

- (send a-mult-color get-r) ⇒ real number

set

Sets all of the scaling values.

- (send a-mult-color set r g b) ⇒ void
r : real number
g : real number
b : real number

set-b

Sets the multiplicative scaling value for the blue component of the color.

- (send a-mult-color set-b v) ⇒ void
v : real number

set-g

Sets the multiplicative scaling value for the green component of the color.

- (send a-mult-color set-g v) ⇒ void
v : real number

set-r

Sets the additive value for the red component of the color.

218

9. Editor Class Reference 9.22. pasteboard%

- (send a-mult-color set-r v) ⇒ void
v : real number

9.22 pasteboard%

Implements: editor<%>

A pasteboard% object is an editor for displaying snips with arbitrary positions.

- (make-object pasteboard%) ⇒ pasteboard% object

The editor will not be displayed until it is attached to a editor-canvas% object or some other display.

A new keymap% object is created for the new editor. See also get-keymap and set-keymap.

A new style-list object is created for the new editor. See also get-style-list and set-style-list.

add-selected

Selects snips without deselecting other snips.

The selection in a pasteboard can be changed by the system in response to other method calls, and such
changes do not go through this method; use on-select to monitor selection changes.

- (send a-pasteboard add-selected snip) ⇒ void
snip : snip% object

Selects snip.

- (send a-pasteboard add-selected x y w h) ⇒ void
x : real number
y : real number
w : non-negative real number
h : non-negative real number

Selects all snips that intersect with the given rectangle (in editor coordinates).

after-delete

Called after a snip is deleted from the editor (and after the display is refreshed; use on-delete and
begin-edit-sequence to avoid extra refreshes when after-delete modifies the editor).

See also can-delete? and on-edit-sequence.

No internals locks are set when this method is called.

- (send a-pasteboard after-delete snip) ⇒ void
snip : snip% object

after-insert

Called after a snip is inserted into the editor (and after the display is refreshed; use on-insert and
begin-edit-sequence to avoid extra refreshes when after-insert modifies the editor).

219

9.22. pasteboard% 9. Editor Class Reference

See also can-insert? and on-edit-sequence.

No internals locks are set when this method is called.

- (send a-pasteboard after-insert snip before x y) ⇒ void
snip : snip% object
before : snip% object or #f
x : real number
y : real number

after-interactive-move

This method is called after the user stops interactively dragging snips (the ones that are selected; see
find-next-selected-snip). The mouse event that terminated the move (usually a button-up event) is
provided.

See also can-interactive-move? and on-interactive-move.

- (send a-pasteboard after-interactive-move event) ⇒ void
event : mouse-event% object

Does nothing.

after-interactive-resize

This method is called after the user stops interactively resizing a snip (the one that is currently selected; see
find-next-selected-snip).

See also can-interactive-resize? and on-interactive-resize.

- (send a-pasteboard after-interactive-resize snip) ⇒ void
snip : snip% object

The snip argument is the snip that was resized. This method does nothing.

after-move-to

Called after a given snip is moved within the editor (and after the display is refreshed; use on-move-to and
begin-edit-sequence to avoid extra refreshes when after-move-to modifies the editor).

See also can-move-to? and on-edit-sequence.

No internals locks are set when this method is called.

- (send a-pasteboard after-move-to snip x y dragging?) ⇒ void
snip : snip% object
x : real number
y : real number
dragging? : boolean

If dragging? is not #f, then this move was a temporary move for dragging.

220

9. Editor Class Reference 9.22. pasteboard%

after-resize

Called after a given snip is resized (and after the display is refreshed; use on-resize and
begin-edit-sequence to avoid extra refreshes when after-resize modifies the editor), or after an un-
successful resize attempt was made

See also can-resize? and on-edit-sequence.

No internals locks are set when this method is called.

- (send a-pasteboard after-resize snip w h resized?) ⇒ void
snip : snip% object
w : non-negative real number
h : non-negative real number
resized? : boolean

If resized? is not #f, the snip was successfully resized.

after-select

This method is called after a snip in the pasteboard is selected or deselected. See also on-select. This
method is not called after selected snip is deleted (and thus de-selected indirectly); see also after-delete.

See also can-select? and on-edit-sequence.

No internals locks are set when this method is called.

- (send a-pasteboard after-select snip on?) ⇒ void
snip : snip% object
on? : boolean

If on? is #t, then snip was just selected, otherwise snip was just deselected.

can-delete?

Called before a snip is deleted from the editor. If the return value is #f, then the delete will be aborted.

See also on-delete and after-delete.

The editor is internally locked for writing when this method is called (see also section 8.8 (page 153)).

- (send a-pasteboard can-delete? snip) ⇒ boolean
snip : snip% object

can-insert?

Called before a snip is inserted from the editor. If the return value is #f, then the insert will be aborted.

See also on-insert and after-insert.

The editor is internally locked for writing when this method is called (see also section 8.8 (page 153)).

- (send a-pasteboard can-insert? snip before x y) ⇒ boolean
snip : snip% object

221

9.22. pasteboard% 9. Editor Class Reference

before : snip% object or #f
x : real number
y : real number

can-interactive-move?

This method is called when the user starts interactively dragging snips (the ones that are selected; see
find-next-selected-snip). All of the selected snips will be moved. If #f is returned, the interactive move
is disallowed. The mouse event that started the move (usually a button-down event) is provided.

See also on-interactive-move, after-interactive-move, and interactive-adjust-move.

- (send a-pasteboard can-interactive-move? event) ⇒ boolean
event : mouse-event% object

Returns #t.

can-interactive-resize?

This method is called when the user starts interactively resizing a snip (the one that is selected; see
find-next-selected-snip). If #f is returned, the interactive resize is disallowed.

See also after-interactive-resize, after-interactive-resize, and interactive-adjust-resize.

- (send a-pasteboard can-interactive-resize? snip) ⇒ boolean
snip : snip% object

The snip argument is the snip that will be resized. This method returns #t.

can-move-to?

Called before a snip is moved in the editor. If the return value is #f, then the move will be aborted.

See also on-move-to and after-move-to.

The editor is internally locked for writing when this method is called (see also section 8.8 (page 153)).

- (send a-pasteboard can-move-to? snip x y dragging?) ⇒ boolean
snip : snip% object
x : real number
y : real number
dragging? : boolean

If dragging? is not #f, then this move is a temporary move for dragging.

can-resize?

Called before a snip is resized in the editor. If the return value is #f, then the resize will be aborted.

See also on-resize and after-resize.

The editor is internally locked for writing when this method is called (see also section 8.8 (page 153)).

222

9. Editor Class Reference 9.22. pasteboard%

- (send a-pasteboard can-resize? snip w h) ⇒ boolean
snip : snip% object
w : non-negative real number
h : non-negative real number

can-select?

This method is called before a snip in the pasteboard is selected or deselected. If #f is returned, the selection
change is disallowed. This method is not called when a selected snip is to be deleted (and thus de-selected
indirectly); see also can-delete? .

See also on-select and after-select.

The editor is internally locked for writing when this method is called (see also section 8.8 (page 153)).

- (send a-pasteboard can-select? snip on?) ⇒ boolean
snip : snip% object
on? : boolean

If on? is #t, then snip will be selected, otherwise snip will be deselected.

change-style

Changes the style for items in the editor.

The style within an editor can be changed by the system (in response to other method calls), and such
changes do not go through this method; use on-change-style in text% to monitor style changes.

- (send a-pasteboard change-style style snip) ⇒ void
style : style<%> object
snip = #f : snip% object or #f

Changes the style of snip by applying a style delta. If snip is #f, then all currently selected snips are
changed.

- (send a-pasteboard change-style delta snip) ⇒ void
delta : style-delta% object
snip : snip% object

Changes the style of style to a specific style. The editor’s style list must contain style. If snip is #f,
then all currently selected snips are changed.

- (send a-pasteboard change-style delta) ⇒ void
delta : style-delta% object

Changes the style of the selected items by applying a style delta.

To change a large collection of snips from one style to another style, consider providing a
style<%> instance rather than a style-delta% instance. Otherwise, change-style must convert
the style-delta% instance to the style<%> instance for every snip; this conversion consumes both
time and (temporary) memory.

- (send a-pasteboard change-style style) ⇒ void
style : style<%> object

Changes the style of the selected items to a specific style. The editor’s style list must contain style,
otherwise the style is not changed. See also convert.

223

9.22. pasteboard% 9. Editor Class Reference

copy-self-to

Copies the properties of this editor into an existing editor.

- (send a-pasteboard copy-self-to dest) ⇒ void
dest : text% or pasteboard% object

Each snip in this editor is copied and inserted into dest . In addition, this editor’s filename, maximum
undo history setting, keymap, interactive caret threshold, and overwrte-styles-on-load settings are
installed into dest . This editor’s style list is copied and the copy is installed as the style list for dest .
This editor’s dragability, selection visiblity state, and scroll step are installed into dest .

delete

The content of an editor can be changed by the system in response to other method calls, and such changes
do not go through this method; use on-delete to monitor content deletion changes.

- (send a-pasteboard delete) ⇒ void

Deletes the currently selected snips from the editor.

- (send a-pasteboard delete snip) ⇒ void
snip : snip% object

Deletes the snip from the editor.

do-copy

Called to copy the editor’s current selection into the clipboard. This method is provided so that it can be
overriden by subclasses. Do not call this method directly; instead, call copy .

- (send a-pasteboard do-copy time extend?) ⇒ void
time : exact integer
extend? : boolean

Copy the current selection, extending the current clipboard contexnts if extend? is true.
See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

do-paste

Called to paste the current contents of the clipboard into the editor. This method is provided so that it can
be overriden by subclasses. Do not call this method directly; instead, call paste.

- (send a-pasteboard do-paste time) ⇒ void
time : exact integer

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

erase

Deletes all snips from the editor.

See also delete.

224

9. Editor Class Reference 9.22. pasteboard%

- (send a-pasteboard erase) ⇒ void

find-next-selected-snip

Returns a selected snip in the editor.

- (send a-pasteboard find-next-selected-snip start) ⇒ snip% object or #f
start : snip% object or #f

Returns the next selected snip in the editor, starting the search after start . (See section 8.1 (page 148)
for information about snip order in pasteboards.) If start is #f, then the search starts with the first
snip in the editor (and thus returns the first selected snip, if any are selected). If no more selected
snips are available, or if start is not in the pasteboard, #f is returned.

find-snip

Finds the frontmost snip that intersects with a given location. See section 8.1 (page 148) for information
about snip order in pasteboards.

The result is only valid when the editor is displayed (see section 8.1 (page 148)).

- (send a-pasteboard find-snip x y) ⇒ snip% object or #f
x : real number
y : real number

The x and y arguments are in editor corrdinates.

get-center

Returns the center of the pasteboard in pasteboard coordinates.

- (send a-pasteboard get-center x y) ⇒ void
x : boxed real number
y : boxed real number

The x box is filled with the x-coordinate of the center and y is filled with the y-coordinate of the center.

get-dragable

Returns whether snips in the editor can be interactively dragged by event handling in on-default-event:
#t if dragging is allowed, #f otherwise. By default, dragging is allowed. See also set-dragable.

- (send a-pasteboard get-dragable) ⇒ boolean

get-scroll-step

Gets the editor location offset for each vertical scroll position. See also set-scroll-step.

- (send a-pasteboard get-scroll-step) ⇒ non-negative real number

225

9.22. pasteboard% 9. Editor Class Reference

get-selection-visible

Returns whether selection dots are drawn around the edge of selected snips in the pasteboard. By default,
selection dots are on. See also set-selection-visible.

- (send a-pasteboard get-selection-visible) ⇒ boolean

insert

Inserts data into the editor.

The content of an editor can be changed by the system in response to other method calls, and such changes
do not go through this method; use on-insert in text% or on-insert in pasteboard% to monitor content
additions changes.

- (send a-pasteboard insert snip before x y) ⇒ void
snip : snip% object
before : snip% object or #f
x : real number
y : real number

Inserts snip at position (x , y) just in front of snip. (See section 8.1 (page 148) for information about
snip order in pasteboards.) If snip is #f, then snip is inserted behind all other snips.

- (send a-pasteboard insert snip x y) ⇒ void
snip : snip% object
x : real number
y : real number

Inserts snip at position (x , y) behind all other snips. (See section 8.1 (page 148) for information about
snip order in pasteboards.)

- (send a-pasteboard insert snip before) ⇒ void
snip : snip% object
before : snip% object or #f

Inserts snip in the center of the editor (with respect to the total width and height of the editor) just
in front of snip. (See section 8.1 (page 148) for information about snip order in pasteboards.) If snip
is #f, then snip is inserted behind all other snips.

- (send a-pasteboard insert snip) ⇒ void
snip : snip% object

Inserts a snip into the editor. A snip cannot be inserted into multiple editors or multiple times within
a single editor.

interactive-adjust-mouse

This method is called during interactive dragging and resizing (of the currently selected snips; see
find-next-selected-snip) to preprocess the current mouse position (in editor coordinates). The snip
and actual x and y coordinates are passed into the method (boxed); the resulting coordinates are used
instead of the actual mouse position.

See also interactive-adjust-resize.

226

9. Editor Class Reference 9.22. pasteboard%

- (send a-pasteboard interactive-adjust-mouse x y) ⇒ void
x : boxed real number
y : boxed real number

A negative value for either x or y is replaced with 0.

interactive-adjust-move

This method is called during an interactive move (for each selected snip) to preprocess the user-determined
snip position for each selected snip. The snip and mouse-determined positions (in editor coodinates) are
passed into the method (boxed); the resulting positions are used for graphical feedback to the user during
moving.

The actual mouse coordinates are first sent through interactive-adjust-mouse before determining the
positions passed into this method.

- (send a-pasteboard interactive-adjust-move snip x y) ⇒ void
snip : snip% object
x : boxed real number
y : boxed real number

Does nothing.

interactive-adjust-resize

This method is called during interactive resizing of a snip to preprocess the user-determined snip size. The
snip and mouse-determined height and width are passed into the method (boxed); the resulting height and
width are used for graphical feedback to the user during resizing.

The actual mouse coordinates are first sent through interactive-adjust-mouse before determining the
sizes passed into this method.

- (send a-pasteboard interactive-adjust-resize snip width height) ⇒ void
snip : snip% object
width : boxed non-negative real number
height : boxed non-negative real number

Does nothing.

is-selected?

Returns #t if a specified snip is currently selected or #f otherwise.

- (send a-pasteboard is-selected? snip) ⇒ boolean
snip : snip% object

lower

Moves the snip one level deeper (i.e., behind one more other snip) in the pasteboard’s snip order. See
section 8.1 (page 148) for information about snip order in pasteboards.

See also raise, set-before, and set-after.

227

9.22. pasteboard% 9. Editor Class Reference

- (send a-pasteboard lower snip) ⇒ void
snip : snip% object

move

Moves a specified snip a given number of pixels in the horizontal and vertical directions.

Snip locations in a pasteboard can be changed by the system in response to other method calls, and such
changes do not go through this method; use on-move-to to monitor snip position changes.

- (send a-pasteboard move snip x y) ⇒ void
snip : snip% object
x : real number
y : real number

Moves snip right x pixels and down y pixels.

- (send a-pasteboard move x y) ⇒ void
x : real number
y : real number

Moves all selected snips right x pixels and down y pixels.

move-to

Moves a specified snip to a given location in the editor.

Snip locations in a pasteboard can be changed by the system in response to other method calls, and such
changes do not go through this method; use on-move-to to monitor snip position changes.

- (send a-pasteboard move-to snip x y) ⇒ void
snip : snip% object
x : real number
y : real number

no-selected

Deselects all selected snips in the editor.

The selection in a pasteboard can be changed by the system in response to other method calls, and such
changes do not go through this method; use on-select to monitor selection changes.

- (send a-pasteboard no-selected) ⇒ void

on-default-event

Called by on-local-event when the event is not handled by a caret-owning snip or by the keymap.

- (send a-pasteboard on-default-event event) ⇒ void
event : mouse-event% object

Selects, drags, and resizes snips:

228

9. Editor Class Reference 9.22. pasteboard%

– Clicking on a snip selects the snip. Shift-clicking extends the current selection with the snip.
– Clicking in the space between snips drags a selection box; once the mouse button is released,
all snips touching the box are selected. Shift-clicking extends the current selection with the new
snips.

– Double-clicking on a snip calls on-double-click.
– Clicking on a selected snip drags the selected snip(s) to a new location.
– Clicking on a hilighting tab for a selected object resizes the object.

on-delete

Called before a snip is deleted from the editor, after can-delete? is called to verify that the deletion is
allowed. The after-delete method is guaranteed to be called after the delete has completed.

The editor is internally locked for writing when this method is called (see also section 8.8 (page 153)). Use
after-delete to modify the editor, if necessary.

- (send a-pasteboard on-delete snip) ⇒ void
snip : snip% object

on-double-click

This method is called when the user double-clicks on a snip in the editor. The clicked-on snip and event
records are passed to the method.

- (send a-pasteboard on-double-click snip event) ⇒ void
snip : snip% object
event : mouse-event% object

If snip accepts events, it is designated as the caret owner and all snips in the editor are unselected.

on-insert

Called before a snip is inserted from the editor, after can-insert? is called to verify that the insertion is
allowed. The after-insert method is guaranteed to be called after the insert has completed.

The editor is internally locked for writing when this method is called (see also section 8.8 (page 153)). Use
after-insert to modify the editor, if necessary.

- (send a-pasteboard on-insert snip before x y) ⇒ void
snip : snip% object
before : snip% object or #f
x : real number
y : real number

on-interactive-move

This method is called when the user starts interactively dragging snips (the ones that are selected; see
find-next-selected-snip), after can-interactive-move? is called to verify that the move is allowed.
The after-interactive-move method is guaranteed to be called after the move has completed. All of
the selected snips will be moved. The mouse event that started the move (usually a button-down event) is
provided.

229

9.22. pasteboard% 9. Editor Class Reference

See also interactive-adjust-move.

- (send a-pasteboard on-interactive-move event) ⇒ void
event : mouse-event% object

Returns #t.

on-interactive-resize

This method is called when the user starts interactively resizing a snip (the one that is selected; see
find-next-selected-snip), after can-interactive-resize? is called to verify that the resize is allowed.
The after-interactive-resize method is guaranteed to be called after the resize has completed.

- (send a-pasteboard on-interactive-resize snip) ⇒ void
snip : snip% object

The snip argument is the snip that will be resized. This method returns #t.

on-move-to

Called before a snip is moved in the editor, after can-move-to? is called to verify that the move is allowed.
The after-move-to method is guaranteed to be called after the move has completed.

The editor is internally locked for writing when this method is called (see also section 8.8 (page
153)). Use after-move-to to modify the editor, if necessary. See also on-interactive-move and
interactive-adjust-move.

- (send a-pasteboard on-move-to snip x y dragging?) ⇒ void
snip : snip% object
x : real number
y : real number
dragging? : boolean

If dragging? is not #f, then this move is a temporary move for dragging.

on-resize

Called before a snip is resized by the editor, after can-resize? is called to verify that the resize is allowed.
The after-resize method is guaranteed to be called after the resize has completed.

The editor is internally locked for writing when this method is called (see also section 8.8 (page 153)). Use
after-resize to modify the editor, if necessary.

Note that a snip calls resized, not this method, to notify the pasteboard that the snip resized itself.

- (send a-pasteboard on-resize snip w h) ⇒ void
snip : snip% object
w : non-negative real number
h : non-negative real number

on-select

This method is called before a snip in the pasteboard is selected or deselected, after can-select? is called to
verify that the selection is allowed. The after-select method is guaranteed to be called after the selection

230

9. Editor Class Reference 9.22. pasteboard%

has completed. This method is not called when a selected snip is to be deleted (and thus de-selected
indirectly); see also on-delete .

The editor is internally locked for writing when this method is called (see also section 8.8 (page 153)). Use
after-select to modify the editor, if necessary.

- (send a-pasteboard on-select snip on?) ⇒ void
snip : snip% object
on? : boolean

If on? is #t, then snip will be selected, otherwise snip will be deselected.

raise

Moves a snip one level shallower (i.e., in front of one more other snip) in the pasteboard’s snip order. See
section 8.1 (page 148) for information about snip order in pasteboards.

See also lower, set-before, and set-after.

- (send a-pasteboard raise snip) ⇒ void
snip : snip% object

remove

Removes the specified snip from the editor in a non-undoable manner (so the snip is completely free of the
pasteboard can can be used in other editors).

See also delete.

- (send a-pasteboard remove snip) ⇒ void
snip : snip% object

remove-selected

Deselects a snip without deselecting any other snips.

The selection in a pasteboard can be changed by the system in response to other method calls, and such
changes do not go through this method; use on-select to monitor selection changes.

- (send a-pasteboard remove-selected snip) ⇒ void
snip : snip% object

Deselects snip (if it is currently selected).

resize

Attempts to resize a given snip. If the snip allows resizing, #t is returned, otherwise #f is retured. Using
this method instead of calling the snip’s resize method directly will make the resize undo-able.

- (send a-pasteboard resize snip w h) ⇒ boolean
snip : snip% object
w : non-negative real number
h : non-negative real number

231

9.22. pasteboard% 9. Editor Class Reference

set-after

Changes the depth of a snip. See section 8.1 (page 148) for information about snip order in pasteboards.

See also raise, lower, and set-before.

- (send a-pasteboard set-after snip after) ⇒ void
snip : snip% object
after : snip% object or #f

Changes the depth of snip moving it just behind after . If after is #f, snip is moved to the back.

set-before

Changes the depth of a snip. See section 8.1 (page 148) for information about snip order in pasteboards.

See also raise, lower, and set-after.

- (send a-pasteboard set-before snip before) ⇒ void
snip : snip% object
before : snip% object or #f

Changes the depth of snip moving it just in front of before. If before is #f, snip is moved to the front.

set-dragable

Sets whether snips in the editor can be interactively dragged by event handling in on-default-event: a
true value allows dragging, #f disallows dragging. See also get-dragable.

- (send a-pasteboard set-dragable allow-drag?) ⇒ void
allow-drag? : boolean

set-scroll-step

Sets the editor location offset for each vertical scroll position. See also get-scroll-step.

- (send a-pasteboard set-scroll-step stepsize) ⇒ void
stepsize : non-negative real number

set-selected

Selects a specified snip (deselecting all others).

The selection in a pasteboard can be changed by the system in response to other method calls, and such
changes do not go through this method; use on-select to monitor selection changes.

- (send a-pasteboard set-selected snip) ⇒ void
snip : snip% object

232

9. Editor Class Reference 9.23. snip%

set-selection-visible

Sets whether selection dots are drawn around the edge of selected snips in the pasteboard. See also
get-selection-visible.

- (send a-pasteboard set-selection-visible visible?) ⇒ void
visible? : boolean

9.23 snip%

A direct instance of snip% is uninteresting. Useful snips are defined by instantiating derived subclasses, but
this class defines the basic fucntionality.

In deriving a new snip class, these methods must be overridden to create a useful snip:

• get-extent

• draw

• resize if the snip can be resized by the user

• partial-offset if the snip can contain more than one item

• split if the snip can contain more than one item

• size-cache-invalid if the snip caches the result to get-extent

• get-text (not required)

• find-scroll-step, get-num-scroll-steps, and get-scroll-step-offset if the snip can contain
more than one scroll position

If a snip can contain more than one item, then the snip’s count must be maintained as well.

To define a class of snips that can be saved or cut-and-pasted:

• Create an instance of snip-class%, implementing the read method.

• For each instance of the snip class, set the snip’s classs object with set-snipclass.

• Override the copy method.

• Override the write method.

- (make-object snip%) ⇒ snip% object

Creates a plain snip of length 1.

adjust-cursor

Called to determine the cursor image used when the cursor is moved over the snip in an editor. If #f is
returned, a default cursor is selected by the editor. (See adjust-cursor in editor<%> for more information.)

233

9.23. snip% 9. Editor Class Reference

- (send a-snip adjust-cursor dc x y editorx editory event) ⇒ cursor% object or #f
dc : dc<%> object
x : real number
y : real number
editorx : real number
editory : real number
event : mouse-event% object

Returns #f.

blink-caret

Tells the snip to blink the selection caret. This method is called periodically when the snips’s editor’s display
has the keyboard focus, and the snip has the editor-local focus.

The drawing context and snip’s position in drawing context coordinates are provided.

- (send a-snip blink-caret dc x y) ⇒ void
dc : dc<%> object
x : real number
y : real number

can-do-edit-operation?

See can-do-edit-operation?.

Called when the snip’s editor’s method is called, recusive? is not #f, and this snip owns the caret.

- (send a-snip can-do-edit-operation? op recursive?) ⇒ bool
op : symbol in ’(undo redo clear cut copy paste kill select-all

insert-text-box insert-pasteboard-box insert-image)
recursive? = #t : boolean

See can-do-edit-operation? for information about the arguments.

copy

Creates and returns a copy of this snip. The copy method is responsible for copying this snip’s style (as
returned by get-style) to the new snip.

- (send a-snip copy) ⇒ snip% object

do-edit-operation

See do-edit-operation.

Called when the snip’s editor’s method is called, recusive? is not #f, and this snip owns the caret.

- (send a-snip do-edit-operation op recursive? time) ⇒ void
op : symbol in ’(undo redo clear cut copy paste kill select-all

insert-text-box insert-pasteboard-box insert-image)
recursive? = #t : boolean
time = 0 : exact integer

234

9. Editor Class Reference 9.23. snip%

See do-edit-operation in editor<%> for information about the arguments.

draw

Called (by an editor) to draw the snip.

Before this method is called, the correct font, text color, and pen color will have been set in the drawing
context for this snip already. (This is not true for get-extent or partial-offset.) The draw method must
not make any other assumptions about the state of the drawing context, except that the clipping region is
already set to something appropriate. Before draw returns, it must restore any drawing context settings that
it changes.

See also on-paint in editor<%>.

The snip’s editor is usually internally locked for writing and reflowing when this method is called (see also
section 8.8 (page 153)).

- (send a-snip draw dc x y left top right bottom dx dy draw-caret) ⇒ void
dc : dc<%> object
x : real number
y : real number
left : real number
top : real number
right : real number
bottom : real number
dx : real number
dy : real number
draw-caret : symbol in ’(no-caret show-inactive-caret show-caret)

Draws the snip into the given drawing context with the snip’s top left corner at location (x , y) in DC
coordinates.

The arguments left , top, right , and bottom define a clipping region (in DC coordinates) that the snip
can use to optimize drawing, but it can also ignore these arguments.

The dx and dy argument provide numbers that can be subtracted from x and y to obtain the snip’s
position in editor coordinates (as opposed to DC coordinates, which are used for drawing).

See section 8.5 (page 152) for information about draw-caret .

find-scroll-step

If a snip contains more than one vertical scroll step (see get-num-scroll-steps) then this method is caled
to find a scroll step offset for a given y-offset into the snip.

- (send a-snip find-scroll-step y) ⇒ exact non-negative integer
y : real number

get-admin

Returns the administrator for this snip. (The administrator can be #f even if the snip is owned but not
visible in the editor.)

- (send a-snip get-admin) ⇒ snip-admin% object or #f

235

9.23. snip% 9. Editor Class Reference

get-count

Returns the number of items within the snip.

- (send a-snip get-count) ⇒ exact integer in [0, 100000]

get-extent

Calculates the snip’s width, height, descent (amount of height which is drawn below the baseline), space
(amount of height which is “filler” space at the top), and horizontal spaces (amount of width which is “filler”
space at the left and right).

A drawing context is provided for the purpose of finding font sizes, but no drawing should occur. The
get-extent and partial-offset methods must not make any assumptions about the state of the drawing
context, except that it is scaled properly. In particular, the font for the snip’s style is not automatically
set in the drawing context before the method is called.2 If get-extent or partial-offset changes the
drawing context’s setting, it must restore them before returning. However, the methods should not need to
change the drawing context; only font settings can affect measurement results from a device context, and
get-text-extent in dc<%> accepts a font% argument for sizing that overrides that device context’s current
font.

The snip’s left and top locations are provided in editor corrdinates. In a text editor, the y-coordinate is the
line’s top location; the snip’s actual top location is potentially undetermined until its height is known.

This method is called by the snip’s administrator; it should not be called directly by others. To get the
extent of a snip, use get-snip-location in editor<%> .

The snip’s editor is usually internally locked for writing and reflowing when this method is called (see also
section 8.8 (page 153)).

- (send a-snip get-extent dc x y w h descent space lspace rspace) ⇒ void
dc : dc<%> object
x : real number
y : real number
w = #f : boxed non-negative real number or #f
h = #f : boxed non-negative real number or #f
descent = #f : boxed non-negative real number or #f
space = #f : boxed non-negative real number or #f
lspace = #f : boxed non-negative real number or #f
rspace = #f : boxed non-negative real number or #f

Fills in all boxes with 0.0.

get-flags

Returns flags defining the behavior of the snip. It is a bitwise combination of these flags:

• ’is-text — this is a text snip derived from string-snip%; do not set this flag

• ’can-append — this snip can be merged with another snip of the same type

• ’invisible — the user doesn’t “see” this snip; e.g.: a carriage return
2Many snips cache their size information, so automatically setting the font would be wasteful.

236

9. Editor Class Reference 9.23. snip%

• ’hard-newline — a newline must follow the snip

• ’newline — a newline currently follows the snip; only an owning editor should set this flag

• ’handles-events — this snip can handle keyboard and mouse events

• ’width-depends-on-x — this snip’s display width depends on the snip’s x-location within the editor;
e.g.: tab

• ’height-depends-on-y— this snip’s display height depends on the snip’s y-location within the editor

• ’width-depends-on-y — this snip’s display width depends on the snip’s y-location within the editor

• ’height-depends-on-x— this snip’s display height depends on the snip’s x-location within the editor

• ’uses-editor-path — this snip uses its editor’s pathname and should be notified when the name
changes; notification is given as a redundant call to set-admin

Additional private flags are not listed here.

- (send a-snip get-flags) ⇒ list of symbols

get-num-scroll-steps

Returns the number of horizontal scroll steps within the snip. For most snips, this is 1. Embedded editor
snips use this method so that scrolling in the owning editor will step through the lines in the embedded
editor.

- (send a-snip get-num-scroll-steps) ⇒ exact non-negative integer

get-scroll-step-offset

If a snip contains more than one vertical scroll step (see get-num-scroll-steps) then this method is called
to find the y-offset into the snip for a given scroll offset.

- (send a-snip get-scroll-step-offset offset) ⇒ non-negative real number
offset : exact non-negative integer

get-snipclass

Returns the snip’s class, used for file saving and cut-and-paste.

- (send a-snip get-snipclass) ⇒ snip-class% object

get-style

Returns the snip’s style. See also set-style.

- (send a-snip get-style) ⇒ style<%> object

237

9.23. snip% 9. Editor Class Reference

get-text

Gets the text representation for this snip.

- (send a-snip get-text offset num flattened?) ⇒ string
offset : exact non-negative integer
num : exact non-negative integer
flattened? = #f : boolean

Returns the text for this snip starting with the item position offset within the snip, and continuing
for a total length of num items. If offset is greater than the snip’s count, then "" is returned. If num
is greater than the snip’s count minus the offset, then text from the offset to the end of the snip is
returned.

If flattened? is not #f, then flattened text is returned. See section 8.4 (page 152) for a discussion of
flattened vs. non-flattened text.

is-owned?

Returns #t if this snip has an owner, #f otherwise. Note that a snip may be owned by an editor if it was
inserted and then deleted from the editor, if it’s still in the editor’s undo history.

- (send a-snip is-owned?) ⇒ boolean

match?

Return #t if this snip “matches” an input snip or #f otherwise.

- (send a-snip match? snip) ⇒ boolean
snip : snip% object

Returns #t if the snip and this snip are from the same class and have the same length.

merge-with

Merges this snip with the given snip, returning #f if the snips cannot be merged or a new merged snip
otherwise. This method will only be invoked if both snips are from the same class and both have the
’can-append flag.

If the returned snip does not have the expected count, its count is forcibly modified. If the returned snip is
already owned by a another administrator, a surrogate snip is created.

The snip’s editor is usually internally locked for reading when this method is called (see also section 8.8
(page 153)).

- (send a-snip merge-with pred) ⇒ snip% object or #f
pred : snip% object

Returns #f.

next

Returns the next snip in the editor owning this snip, or #f if this is the last snip.

238

9. Editor Class Reference 9.23. snip%

In a text editor, the next snip is the snip at the text position following this snip’s (last) text position. In a
pasteboard, the next snip is the one immediately behind this snip. (See section 8.1 (page 148) for information
about snip order in pasteboards.)

- (send a-snip next) ⇒ snip% object or #f

on-char

Called to handle keyboard events when this snip has the keyboard focus and can handle events. The drawing
context is provided, as well as the snip’s location in display coordinates (the event uses display coordinates),
and the snip’s location in editor coordinates.

See also ’handles-events in get-flags.

- (send a-snip on-char dc x y editorx editory event) ⇒ void
dc : dc<%> object
x : real number
y : real number
editorx : real number
editory : real number
event : key-event% object

The x and y arguments are the snip’s location in display coordiantes. The editorx and editory ar-
guments are the snip’s location in editor coordinates. To get event ’s x location in snip coordinates,
subtract x from (send event get-x).

on-event

Called to handle mouse events on the snip when this snip can handle events and when the snip has the
keyboard focus. See on-char for information about the arguments. See also ’handles-events in get-flags.

- (send a-snip on-event dc x y editorx editory event) ⇒ void
dc : dc<%> object
x : real number
y : real number
editorx : real number
editory : real number
event : mouse-event% object

The x and y arguments are the snip’s location in display coordiantes. The editorx and editory ar-
guments are the snip’s location in editor coordinates. To get event ’s x location in snip coordinates,
subtract x from (send event get-x).

own-caret

Notifies the snip that it is or is not allowed to display the caret (indicating oversnip of keyboard focus) in
some display. This method is not caled to request that the caret is actually shown or hidden; the draw
method is called for all display requests.

- (send a-snip own-caret own-it?) ⇒ void
own-it? : boolean

The own-it? argument is #t if the snip owns the keyboard focus or #f otherwise.

239

9.23. snip% 9. Editor Class Reference

partial-offset

Calculates a partial width for the snip, starting from the first snip item and continuing for a given number
of items. The drawing context and snip’s position in editor coordinates are provided. See also get-extent.

The snip’s editor is usually internally locked for writing and reflowing when this method is called (see also
section 8.8 (page 153)).

- (send a-snip partial-offset dc x y len) ⇒ real number
dc : dc<%> object
x : real number
y : real number
len : exact non-negative integer

Calculates a partial width for the snip, starting from the first snip item and continuing for len items.

previous

Returns the previous snip in the editor owning this snip, or #f if this is the first snip.

- (send a-snip previous) ⇒ snip% object or #f

release-from-owner

Asks the snip to try to release itself from its owner. If the snip is not owned or the release is successful, then
#t is returned. Otherwise, #f is returned and the snip remains owned. See also is-owned?.

Use this method for moving a snip from one editor to another. This method notifies the snip’s owning editor
that someone else really wants control of the snip. It is not necessary to use this method for ”cleaning up”
a snip when it is deleted from an editor.

- (send a-snip release-from-owner) ⇒ boolean

Requests a low-level release from the snip’s owning administrator.

resize

Resizes the snip. The snip can refuse to be resized by returning #f. Otherwise, the snip will resize (it must
call its administrator’s resized method) and return #t.

See also on-interactive-resize in pasteboard%.

- (send a-snip resize w h) ⇒ boolean
w : non-negative real number
h : non-negative real number

Returns #f.

set-admin

Sets the snip’s administrator. Only an administrator should call this method.

The default method sets the internal state of a snip to record its administrator. It will not modify this state
if the snip is already owned by an administrator and the administrator has not blessed the transition. If

240

9. Editor Class Reference 9.23. snip%

the administrator state of a snip is not modified as expected during a sensitive call to this method by an
instance of text% or pasteboard%, the internal state may be forcibly modified (if the new administrator was
#f) or a surrogate snip may be created (if the snip was expected to receive a new administrator).

The snip’s (new) editor is usually internally locked for reading when this method is called (see also section 8.8
(page 153)).

- (send a-snip set-admin admin) ⇒ void
admin : snip-admin% object or #f

set-count

Sets the number of items within the snip.

The snip’s count may be changed by the system (in extreme cases to maintain consistency) without calling
this method.

- (send a-snip set-count c) ⇒ void
c : exact integer in [1, 100000]

Sets the number of items in the snip, and notifies the snip’s administrator that its size has changed.

set-flags

Sets the snip’s flags. See get-flags.

- (send a-snip set-flags flags) ⇒ void
flags : list of symbols

Sets the snip flags and notifies the snip’s editor that its flags have changed.

set-snipclass

Sets the snip’s class, used for file saving and cut-and-paste.

- (send a-snip set-snipclass class) ⇒ void
class : snip-class% object

set-style

Sets the snip’s style if it is not owned by any editor. See also get-style and is-owned?.

The snip’s style may be changed by the system without calling this method.

- (send a-snip set-style style) ⇒ void
style : style<%> object

size-cache-invalid

Called to notify the snip that it may need to recalculate its display arguments (width, height, etc.) when it
is next asked, because the style or location of the snip has changed.

241

9.24. snip-admin% 9. Editor Class Reference

The snip’s (new) editor is usually internally locked for reflowing when this method is called (see also sec-
tion 8.8 (page 153)).

- (send a-snip size-cache-invalid) ⇒ void

split

Splits the snip into two snips. This is called when a snip has more than one item and something is inserted
between two items.

The arguments are a position integer and two boxes. The position integer specifies how many items should
be given to the new first snip; the rest go to the new second snip. The two boxes must be filled with two
new snips. (The old snip is no longer used, so it can be recycled as a new snip.)

If the returned snips do not have the expected counts, their counts are forcibly modified. If either returned
snip is already owned by a another administrator, a surrogate snip is created.

The snip’s editor is usually internally locked for reading when this method is called (see also section 8.8
(page 153)).

- (send a-snip split position first second) ⇒ void
position : exact non-negative integer
first : boxed snip% object
second : boxed snip% object

write

Writes the snip to the given stream. (Snip reading is handled by the snip class.) Style information about
the snip (i.e., the content of get-style) will be saved and restored automatically.

- (send a-snip write f) ⇒ void
f : editor-stream-out% object

9.24 snip-admin%

See section 8.1.1 (page 148) for information about the role of administrators. The snip-admin% class is never
instantiated directly. It is not even instantiated through derived classes by most programmers; each text%
or pasteboard% object creates its own administrator. However, it may be useful to derive a new instance
of this class to display snips in a new context. Also, it may be useful to call the methods of an existing
administrator from an owned snip.

To create a new snip-admin% class, all methods described here must be overridden. They are all invoked
by the administrator’s snip.

Because a snip-admin% object typically owns more than one snip, many methods require a snip% object as
a argument.

- (make-object snip-admin%) ⇒ snip-admin% object

Creates a (useless) editor administrator.

242

9. Editor Class Reference 9.24. snip-admin%

get-dc

Gets a drawing context suitable for determining display size information. If the snip is not displayed, #f is
returned.

- (send a-snip-admin get-dc) ⇒ dc<%> object or #f

get-editor

Returns the editor that this administrator reports to (directly or indirectly)

- (send a-snip-admin get-editor) ⇒ text% or pasteboard% object

get-view

Gets the position and size of the visible region of a snip in snip coordinates. The result is undefined if the
given snip is not managed by this administrator.

If no snip is specified, then the position and size of the snip’s editor are returned, instead, in editor coordi-
nates.

See also get-view in editor-admin%.

- (send a-snip-admin get-view x y w h snip) ⇒ void
x : boxed real number or #f
y : boxed real number or #f
w : boxed non-negative real number or #f
h : boxed non-negative real number or #f
snip = #f : snip% object or #f

If snip is not #f, the current visible region of the snip is installed in the boxes x , y , w , and h. The x
and y values are relative to the snip’s top-left corner. The w and h values may be larger than the snip
itself.

If snip is #f, the total visible region of the snip’s top-level display is returned in editor coordinates.
Using #f for snip is anaologous to using #t for full? in get-view in editor-admin%.

get-view-size

Gets the visible size of the administrator’s display region.

If the display is an editor canvas, see also reflow-container.

- (send a-snip-admin get-view-size h w) ⇒ void
h : boxed non-negative real number or #f
w : boxed non-negative real number or #f

needs-update

Called by the snip to request that the snip’s display needs to be updated. The administrator determines
when to actually update the snip; the snip’s drawmethod is eventually called.

No update occurs if the given snip is not managed by this administrator.

243

9.24. snip-admin% 9. Editor Class Reference

- (send a-snip-admin needs-update snip localx localy w h) ⇒ void
snip : snip% object
localx : real number
localy : real number
w : non-negative real number
h : non-negative real number

The localx , localy , w , and h arguments specify a region of the snip to be refreshed (in snip coordinates).

popup-menu

Opens a popup menu in the display for this snip’s editor. The result is #t if the popup succeeds, #f otherwise
(independent of whether the user selects an item in the popup menu).

While the menu is popped up, its target is set to the top-level editor in the display for this snip’s editor. See
get-popup-target for more information.

- (send a-snip-admin popup-menu menu snip x y) ⇒ bool
menu : popup-menu% object
snip : snip% object
x : real number
y : real number

The menu is displayed at x and y in snip coordinates.

recounted

Called by a snip to notify the administrator that the specified snip has changed its count. The snip gen-
erally needs to be updated after changing its count, but the snip decides whether the update should occur
immediately.

The method call is ignored if the given snip is not managed by this administrator.

- (send a-snip-admin recounted snip refresh?) ⇒ void
snip : snip% object
refresh? : boolean

If refresh? is not #f, then the snip is requesting to be updated immediately. Otherwise,
needs-updatemust eventually be called as well.

release-snip

Requests that the specified snip be released. If this administrator is not the snip’s owner or if the snip cannot
be released, then #f is returned. Otherwise, #t is returned and the snip is no longer owned.

See also release-snip in editor<%> .

The result is #f if the given snip is not managed by this administrator.

- (send a-snip-admin release-snip snip) ⇒ boolean
snip : snip% object

244

9. Editor Class Reference 9.24. snip-admin%

resized

Called by a snip to notify the administrator that the specified snip has changed its display size (without
being polled by get-extent). The snip generally needs to be updated after a resize, but the snip decides
whether the update should occur immediately.

The method call is ignored if the given snip is not managed by this administrator.

- (send a-snip-admin resized snip refresh?) ⇒ void
snip : snip% object
refresh? : boolean

If refresh? is not #f, then the snip is requesting to be updated immediately. Otherwise,
needs-updatemust eventually be called as well.

scroll-to

Called by the snip to request scrolling so that the given region is visible. The snip generally needs to be
updated after a scroll, but the snip decides whether the update should occur immediately.

The result is #t if the editor is scrolled, #f oitherwise.

The method call is ignored (and the result is #f) if the given snip is not managed by this administrator.

- (send a-snip-admin scroll-to snip localx localy w h refresh? bias) ⇒ boolean
snip : snip% object
localx : real number
localy : real number
w : non-negative real number
h : non-negative real number
refresh? : boolean
bias = ’none : symbol in ’(start end none)

The localx , localy , w , and h arguments specify a region of the snip to be made visible by the scroll (in
snip coordinates).

If refresh? is not #f, then the editor is requesting to be updated immediately.

The bias argument is one of:

– ’start — if the range doesn’t fit in the visible area, show the top-left region
– ’none — no special scrolling instructions
– ’end — if the range doesn’t fit in the visible area, show the bottom-right region

set-caret-owner

Requests that the keyboard focus is assigned to the specified snip. If the request is granted, the own-caret
method of the snip is called.

The method call is ignored if the given snip is not managed by this administrator.

- (send a-snip-admin set-caret-owner snip domain) ⇒ void
snip : snip% object
domain : symbol in ’(immediate display global)

See set-caret-owner for imformation about the possible values of domain.

245

9.25. snip-class% 9. Editor Class Reference

update-cursor

Queues an update for the cursor in the display for this snip’s editor. The actual cursor used will be determined
by calling the snip’s adjust-cursormethod as appropriate.

- (send a-snip-admin update-cursor) ⇒ void

9.25 snip-class%

Useful snip classes are defined by instantiating derived subclasses of snip-class%. A class derived from
snip-class% serves as a kind of “meta-class” for snips; each snip is associated with an instance of
snip-class% as its snip class.

In deriving a new snip-class% class, override the read method. Then, for each instance of the derived class
(where each instance corresponds to a single snip class):

• Set the classname using set-classname.
• Set the version using set-version.
• Install the class into the list returned by get-the-snip-class-list using the add method. Note that
if the same name is inserted into the same class list mulitple times, all but the first insertion is ignored.

See also section 8.2.1 (page 150).

- (make-object snip-class%) ⇒ snip-class% object

Creates a useless snip class.

get-classname

Return’s the class’s name, a string uniquely designating this snip class. For example, the standard text snip
classname is “wxtext”. Names beginning with “wx” are reserved.

- (send a-snip-class get-classname) ⇒ string

get-version

Returns the version of this snip class. When attempting to load a file containing a snip with the same class
name but a different version, the user is warned.

- (send a-snip-class get-version) ⇒ exact integer

read

Reads a snip from a given stream, returning a newly created snip as the result or #f if there is an error.

- (send a-snip-class read f) ⇒ snip% object or #f
f : editor-stream-in% object

246

9. Editor Class Reference 9.26. snip-class-list<%>

read-header

Called to read header information that may be useful for every snip read in this class. This method is only
called once per editor read session, and only if the stream contains header information for this class.

The return value is #f if a read error occurs or anything else otherwise.

See also write-header.

- (send a-snip-class read-header f) ⇒ boolean
f : editor-stream-in% object

reading-version

Returns the version number specified for this snip class for snips currently being read from the given stream.

- (send a-snip-class reading-version class) ⇒ exact integer
class : editor-stream-in% object

set-classname

Sets the class’s name. See also get-classname.

- (send a-snip-class set-classname name) ⇒ void
name : string

set-version

Sets the version of this class. See get-version.

- (send a-snip-class set-version v) ⇒ void
v : exact integer

write-header

Called to write header information that may be useful for every snip written for this class. This method is
only called once per editor write session, and only if the editor contains snips in this class.

When reading the snips back in, read-header will only be called if write-header writes some data to the
stream.

The return value is #f if a write error occurs or anything else otherwise.

- (send a-snip-class write-header stream) ⇒ boolean
stream : editor-stream-out% object

9.26 snip-class-list<%>

Each eventspace has its own instance of snip-class-list<%>, obtained with (get-the-snip-class-list).
New instances cannot be created directly. Each instance keeps a list of snip classes. This list is needed for
loading snips from a file. See also section 8.2.1 (page 150).

247

9.27. string-snip% 9. Editor Class Reference

add

Adds a snip class to the list. If a class with the same name already exists in the list, this one will not be
added.

- (send a-snip-class-list add snipclass) ⇒ void
snipclass : snip-class% object

find

Finds a snip class from the list with the given name, returning #f if none is found.

- (send a-snip-class-list find name) ⇒ snip-class% object or #f
name : string

find-position

Returns an index into the list for the specified class.

- (send a-snip-class-list find-position class) ⇒ exact non-negative integer
class : snip-class% object

nth

Returns the nth class in the list, or #f if the list has n classes or less.

- (send a-snip-class-list nth n) ⇒ snip-class% object or #f
n : exact non-negative integer

number

Returns the number of snip classes in the list.

- (send a-snip-class-list number) ⇒ exact non-negative integer

9.27 string-snip%

Superclass: snip%

An instance of string-snip% is created automatically when text is inserted into a text editor. See also
on-new-string-snip in text%.

- (make-object string-snip% allocsize) ⇒ string-snip% object
allocsize = 0 : exact non-negative integer

Creates an empty string snip. The allocsize argument is a hint about how much storage space for text
should be initially allocated by the snip.

- (make-object string-snip% s) ⇒ string-snip% object
s : string

Creates a string snip with the given initial string.

248

9. Editor Class Reference 9.28. style<%>

insert

Inserts text into the snip. The system can insert text into a text snip without calling this method.

- (send a-string-snip insert s len pos) ⇒ void
s : string
len : exact non-negative integer
pos = 0 : exact non-negative integer

Inserts s (with length len) into the snip at position pos within the snip.

read

Reads the snip’s data from the given stream.

- (send a-string-snip read len f) ⇒ void
len : exact non-negative integer
f : editor-stream-in% object

The len argument specifies the maximum length of the text to be read. (When a text snip is written
to a file, the very first field is the length of the text contained in the snip.) This method is usually
invoked by the text snip class’s read method.

9.28 style<%>

A style<%> object encapsulates drawing information (font, color, alignment, etc.) in a hierarchical manner.
A style<%> object always exists within the context of a style-list% object and is never created except by
a style-list% object.

See also section 8.1.2 (page 149).

get-alignment

Returns the style’s alignment: ’top, ’center, or ’bottom.

- (send a-style get-alignment) ⇒ symbol in ’(top center bottom)

get-background

Returns the style’s background color.

- (send a-style get-background) ⇒ color% object

get-base-style

Returns the style’s base style. See section 8.1.2 (page 149) for more information. The return value is #f only
for the basic style in the list.

- (send a-style get-base-style) ⇒ style<%> object or #f

249

9.28. style<%> 9. Editor Class Reference

get-delta

Returns the style’s delta information if the style is not a join style. See section 8.1.2 (page 149) for more
information.

- (send a-style get-delta delta) ⇒ void
delta : style-delta% object

Copies the style’s delta into delta.

get-face

Returns the style’s face name. See font%.

- (send a-style get-face) ⇒ string or #f

get-family

Returns the style’s font family. See font%.

- (send a-style get-family) ⇒ symbol in ’(default decorative roman script swiss modern
symbol system)

get-font

Returns the style’s font information.

- (send a-style get-font) ⇒ font% object

get-foreground

Returns the style’s foreground color.

- (send a-style get-foreground) ⇒ color% object

get-name

Returns the style’s name, or #f if it is unnamed. Style names are only set through the style’s style-list%
object.

- (send a-style get-name) ⇒ string or #f

get-shift-style

Returns the style’s shift style if it is a join style. Otherwise, the root style is returned. See section 8.1.2
(page 149) for more information.

- (send a-style get-shift-style) ⇒ style<%> object

250

9. Editor Class Reference 9.28. style<%>

get-size

Returns the style’s font size.

- (send a-style get-size) ⇒ exact integer in [0, 255]

get-style

Returns the style’s font style. See font%.

- (send a-style get-style) ⇒ symbol in ’(normal italic slant)

get-text-descent

Returns the descent of text using this style in a given DC.

- (send a-style get-text-descent dc) ⇒ non-negative real number
dc : dc<%> object

get-text-height

Returns the height of text using this style in a given DC.

- (send a-style get-text-height dc) ⇒ non-negative real number
dc : dc<%> object

get-text-space

Returns the vertical spacing for text using this style in a given DC.

- (send a-style get-text-space dc) ⇒ non-negative real number
dc : dc<%> object

get-text-width

Returns the width of a space character using this style in a given DC.

- (send a-style get-text-width dc) ⇒ non-negative real number
dc : dc<%> object

get-transparent-text-backing

Returns #t if text is drawn without erasing the text background or #f otherwise.

- (send a-style get-transparent-text-backing) ⇒ boolean

251

9.28. style<%> 9. Editor Class Reference

get-underlined

Returns #t if the style is underlined or #f otherwise.

- (send a-style get-underlined) ⇒ boolean

get-weight

Returns the style’s font weight. See font%.

- (send a-style get-weight) ⇒ symbol in ’(normal bold light)

is-join?

Returns #t if the style is a join style or #f otherwise. See section 8.1.2 (page 149) for more information.

- (send a-style is-join?) ⇒ boolean

set-base-style

Sets the style’s base style and recomputes the style’s font, etc. See section 8.1.2 (page 149) for more
information.

- (send a-style set-base-style base-style) ⇒ void
base-style : style<%> object

set-delta

Sets the style’s delta (if it is not a join style) and recomputes the style’s font, etc. See section 8.1.2 (page
149) for more information.

- (send a-style set-delta delta) ⇒ void
delta : style-delta% object

Copies delta into the style‘s delta.

set-shift-style

Sets the style’s shift style (if it is a join style) and recomputes the style’s font, etc. See section 8.1.2 (page
149) for more information.

- (send a-style set-shift-style style) ⇒ void
style : style<%> object

switch-to

Sets the font, pen color, etc. of the given drawing context. If oldstyle is not #f, only differences between the
given style and this one are applied to the drawing context.

252

9. Editor Class Reference 9.29. style-delta%

- (send a-style switch-to dc old-style) ⇒ void
dc : dc<%> object
old-style : style<%> object or #f

9.29 style-delta%

A style-delta% object encapsulates a style change. The changes expressible by a delta include:

• changing the font family
• changing the font face
• changing the font size to a new value
• enlarging the font by an additive amount
• enlarging the font by a multiplicative amount, etc.
• changing the font style (normal, italic, or slant)
• toggling the font style
• changing the font to italic if it is currently slant, etc.
• changing the font weight, etc.
• changing the underline, etc.
• changing the vertical alignment, etc.
• changing the foreground color
• dimming or brightening the foreground color, etc.
• changing the background color, etc.
• changing text backing transparency

The set-delta method is convenient for most style delta settings; it takes a high-level delta specification
and sets the internal delta information.

To take full advantage of a style delta, it is necessary to understand the internal on/off settings that can
be manipulated through methods such as set-weight-on. For example, the font weight change is specified
through the weight-on and weight-off internal settings. Roughly, weight-on turns on a weight setting
when it is not present and weight-off turns off a weight setting when it is present. These two interact
precisely in the following way:

• If both weight-on and weight-off are set to ’base, then the font weight is not changed.
• If weight-on is not ’base, then the weight is set to weight-on.
• If weight-off is not ’base, then the weight will be set back to ’normal when the base style has the
weight weight-off.

• If both weight-on and weight-off are set to the same value, then the weight is toggled with respect
to that value: if the base style has the weight weight-on, then weight is changed to ’normal; if the
base style has a different weight, it is changed to weight-on.

• If both weight-on and weight-off are set, but to different values, then the weight is changed to
weight-on only when the base style has the weight weight-off.

Font styles, underlining, and alignment work in an analogous manner.

The possible values for alignment-on and alignment-off are:

• ’base

• ’top

• ’center

253

9.29. style-delta% 9. Editor Class Reference

• ’bottom

The possible values for style-on and style-off are:

• ’base

• ’normal

• ’italic

• ’slant

The possible values for underlined-on and underlined-off are:

• #f (acts like ’base)

• #t

The possible values for trasnparent-text-backing-on and trasnparent-text-backing-off are:

• #f (acts like ’base)

• #t

The possible values for weight-on and weight-off are:

• ’base

• ’normal

• ’bold

• ’light

The family and face settings in a style delta are interdependent:

• When a delta’s face is #f and its family is ’base, then neither the face nor family are modified by the
delta.

• When a delta’s face is a string and its family is ’base, then only face is modified by the delta.
• When a delta’s family is not ’base, then both the face and family are modified by the delta. If the
delta’s face is #f, then applying the delta sets a style’s face to #f, so that the family setting prevails
in choosing a font.

- (make-object style-delta% change-command) ⇒ style-delta% object
change-command = ’change-nothing : symbol in ’(change-nothing change-normal change-toggle-unde

change-normal-color change-bold)

- (make-object style-delta% change-command v) ⇒ style-delta% object
change-command : symbol in ’(change-family change-style change-toggle-style

change-weight change-toggle-weight change-alignment)
v : symbol

254

9. Editor Class Reference 9.29. style-delta%

- (make-object style-delta% change-command v) ⇒ style-delta% object
change-command : symbol in ’(change-size change-bigger change-smaller)
v : exact integer in [0, 255]

- (make-object style-delta% change-command v) ⇒ style-delta% object
change-command : symbol in ’(change-underline)
v : boolean

The initialization arguments are passed on to set-delta.

collapse

Tries to collapse into a single delta the changes that would be made by applying this delta after a given
delta. If the return value is #f, then it is impossible to perform the collapse. Otherwise, the return value is
#t and this delta will contain the collapsed change specification.

- (send a-style-delta collapse delta) ⇒ boolean
delta : style-delta% object

copy

Copies the given style delta’s settings into this one.

- (send a-style-delta copy delta) ⇒ void
delta : style-delta% object

equal?

Returns #t if the given delta is equivalent to this one in all contexts or #f otherwise.

- (send a-style-delta equal? delta) ⇒ boolean
delta : style-delta% object

get-alignment-off

See style-delta%.

- (send a-style-delta get-alignment-off) ⇒ symbol in ’(base top center bottom)

get-alignment-on

See style-delta%.

- (send a-style-delta get-alignment-on) ⇒ symbol in ’(base top center bottom)

get-background-add

Gets the object additive color shift for the background (applied after the multiplicative factor). Call this
add-color<%> object’s methods to change the style delta’s additive backgound color shift.

- (send a-style-delta get-background-add) ⇒ add-color<%> object

255

9.29. style-delta% 9. Editor Class Reference

get-background-mult

Gets the multiplicative color shift for the background (applied before the additive factor). Call this
mult-color<%> object’s methods to change the style delta’s multiplicative background color shift.

- (send a-style-delta get-background-mult) ⇒ mult-color<%> object

get-face

Gets the delta’s font face string. If this string is #f and the family is ’base when the delta is applied to a
style, the style’s face and family are not changed. However, if the gace string is #f and the family is not
’base, then the style’s face is changed to #f.

See also get-family.

- (send a-style-delta get-face) ⇒ string or #f

get-family

Returns the delta’s font family. The possible values are

• ’base — no change to family

• ’default

• ’decorative

• ’roman

• ’script

• ’swiss

• ’modern (fixed width)

• ’symbol (Greek letters)

• ’system (used to draw control labels)

See also get-face.

- (send a-style-delta get-family) ⇒ symbol in ’(base default decorative roman script swiss
modern symbol system)

get-foreground-add

Gets the additive color shift for the foreground (applied after the multiplicative factor). Call this
add-color<%> object’s methods to change the style delta’s additive foreground color shift.

- (send a-style-delta get-foreground-add) ⇒ add-color<%> object

256

9. Editor Class Reference 9.29. style-delta%

get-foreground-mult

Gets the multiplicative color shift for the foreground (applied before the additive factor). Call this
mult-color<%> object’s methods to change the style delta’s multiplicative foreground color shift.

- (send a-style-delta get-foreground-mult) ⇒ mult-color<%> object

get-size-add

Gets the additive font size shift (applied after the multiplicative factor).

- (send a-style-delta get-size-add) ⇒ exact integer in [0, 255]

get-size-mult

Gets the multiplicative font size shift (applied before the additive factor).

- (send a-style-delta get-size-mult) ⇒ real number

get-style-off

See style-delta%.

- (send a-style-delta get-style-off) ⇒ symbol in ’(base normal italic slant)

get-style-on

See style-delta%.

- (send a-style-delta get-style-on) ⇒ symbol in ’(base normal italic slant)

get-transparent-text-backing-off

See style-delta%.

- (send a-style-delta get-transparent-text-backing-off) ⇒ boolean

get-transparent-text-backing-on

See style-delta%.

- (send a-style-delta get-transparent-text-backing-on) ⇒ boolean

get-underlined-off

See style-delta%.

- (send a-style-delta get-underlined-off) ⇒ boolean

257

9.29. style-delta% 9. Editor Class Reference

get-underlined-on

See style-delta%.

- (send a-style-delta get-underlined-on) ⇒ boolean

get-weight-off

See style-delta%.

- (send a-style-delta get-weight-off) ⇒ symbol in ’(base normal bold light)

get-weight-on

See style-delta%.

- (send a-style-delta get-weight-on) ⇒ symbol in ’(base normal bold light)

set-alignment-off

See style-delta%.

- (send a-style-delta set-alignment-off v) ⇒ void
v : symbol in ’(base top center bottom)

set-alignment-on

See style-delta%.

- (send a-style-delta set-alignment-on v) ⇒ void
v : symbol in ’(base top center bottom)

set-delta

Configures the delta with high-level specifications. The return value is the delta itself.

Except for ’change-nothing and ’change-normal, the command only changes part of the delta. Thus,
applying ’change-bold and then ’change-italic sets the delta for both the style and weight change.

- (send a-style-delta set-delta change-command) ⇒ style-delta% object
change-command = ’change-nothing : symbol in ’(change-nothing change-normal change-toggle-unde

change-normal-color change-bold)

The change-command argument specifies how the delta is changed; the possible values are:

– ’change-nothing — reset all changes
– ’change-normal — turn off all styles and resizings
– ’change-toggle-underline — underline regions that are currently not underlined, and vice-
versa

– ’change-normal-color— change the foreground and background to black and white, respectively

258

9. Editor Class Reference 9.29. style-delta%

– ’change-italic — change the style of the font to italic
– ’change-bold — change the weight of the font to bold

- (send a-style-delta set-delta change-command param) ⇒ style-delta% object
change-command : symbol in ’(change-family change-style change-toggle-style

change-weight change-toggle-weight change-alignment)
param : symbol

The change-command argument specifies how the delta is changed; the possible values are:

– ’change-family — change the font family (param is a family; see font%); see also get-family
– ’change-style — change the style of the font (param is a style; see font%)
– ’change-toggle-style — toggle the style of the font (param is a style; see font%)
– ’change-weight — change the weight of the font (param is a weight; see font%)
– ’change-toggle-weight — toggle the weight of the font (param is a weight; see font%)
– ’change-alignment — change the alignment(param is an alignment; see style-delta%)

- (send a-style-delta set-delta change-command param) ⇒ style-delta% object
change-command : symbol in ’(change-size change-bigger change-smaller)
param : exact integer in [0, 255]

The change-command argument specifies how the delta is changed; the possible values are:

– ’change-size — change the size to an absolute value (param is a size)
– ’change-bigger — make the text larger (param is an additive amount)
– ’change-smaller — make the text smaller (param is an additive amount)

- (send a-style-delta set-delta change-command underlined?) ⇒ style-delta% object
change-command : symbol in ’(change-underline)
underlined? : boolean

There is only one possible value for change-command :

– ’change-underline — set the underline status to either underlined or plain

set-delta-background

Makes the delta encode a background color change to the absolute color given. The return value is the delta
itself.

- (send a-style-delta set-delta-background name) ⇒ style-delta% object
name : string

The string is looked up in the-color-database. See color-database<%>.

- (send a-style-delta set-delta-background color) ⇒ style-delta% object
color : color% object

The color argument is copied into the delta’s background color.

set-delta-face

Like set-face, but sets the family at the same time.

The return value is the delta itself.

- (send a-style-delta set-delta-face name family) ⇒ style-delta% object
name : string
family = default : symbol in ’(base default decorative roman script swiss modern symbol

system)

259

9.29. style-delta% 9. Editor Class Reference

set-delta-foreground

Makes the delta encode a foreground color change to the absolute color given. The return value is the delta
itself.

- (send a-style-delta set-delta-foreground name) ⇒ style-delta% object
name : string

The string is looked up in the-color-database. See color-database<%>.

- (send a-style-delta set-delta-foreground color) ⇒ style-delta% object
color : color% object

The color argument is copied into the delta’s foreground color.

set-face

See get-face. See also set-delta-face.

- (send a-style-delta set-face v) ⇒ void
v : string or #f

set-family

Sets the delta’s font family. See get-family.

- (send a-style-delta set-family v) ⇒ void
v : symbol in ’(base default decorative roman script swiss modern symbol

system)

set-size-add

Sets the additive font size shift (applied after the multiplicative factor).

- (send a-style-delta set-size-add v) ⇒ void
v : exact integer in [0, 255]

set-size-mult

Sets the multiplicative font size shift (applied before the additive factor).

- (send a-style-delta set-size-mult v) ⇒ void
v : real number

set-style-off

See style-delta%.

- (send a-style-delta set-style-off v) ⇒ void
v : symbol in ’(base normal italic slant)

260

9. Editor Class Reference 9.29. style-delta%

set-style-on

See style-delta%.

- (send a-style-delta set-style-on v) ⇒ void
v : symbol in ’(base normal italic slant)

set-transparent-text-backing-off

See style-delta%.

- (send a-style-delta set-transparent-text-backing-off v) ⇒ void
v : boolean

set-transparent-text-backing-on

See style-delta%.

- (send a-style-delta set-transparent-text-backing-on v) ⇒ void
v : boolean

set-underlined-off

See style-delta%.

- (send a-style-delta set-underlined-off v) ⇒ void
v : boolean

set-underlined-on

See style-delta%.

- (send a-style-delta set-underlined-on v) ⇒ void
v : boolean

set-weight-off

See style-delta%.

- (send a-style-delta set-weight-off v) ⇒ void
v : symbol in ’(base normal bold light)

set-weight-on

See style-delta%.

- (send a-style-delta set-weight-on v) ⇒ void
v : symbol in ’(base normal bold light)

261

9.30. style-list% 9. Editor Class Reference

9.30 style-list%

A style-list% object contains a set of style<%> objects and maintains the hierarchical relationships be-
tween them. A style<%> object can only be created through the methods of a style-list% object. There is
a global style list object, the-style-list, but any number of independent lists can be created for separate
style hierarchies. Each editor creates its own private style list.

See section 8.1.2 (page 149) for more information.

- (make-object style-list%) ⇒ style-list% object

The root style, named "Basic", is automatically created.

basic-style

Returns the root style. Each style list has its own root style.

- (send a-style-list basic-style) ⇒ style<%> object

convert

Converts an external style to a style in this list.

- (send a-style-list convert style) ⇒ style<%> object
style : style<%> object

Converts style, which can be from another style list, to a style in this list. If style is already in this
list, then style is returned. If style is named and a style by that name is already in this list, then the
existing named style is returned. Otherwise, the style is converted by converting it’s base style (and
shift style if style is a join style) and then creating a new style in this list.

find-named-style

Finds a style by name. If no such style can be found, #f is returned.

- (send a-style-list find-named-style name) ⇒ style<%> object or #f
name : string

find-or-create-join-style

Creates a new join style, or finds an appropriate existing one. The returned style is always unnamed. See
section 8.1.2 (page 149) for more information.

- (send a-style-list find-or-create-join-style base-style shift-style) ⇒ style<%> object
base-style : style<%> object
shift-style : style<%> object

The base-style argument must be a style within this style list.

find-or-create-style

Creates a new derived style, or finds an appropriate existing one. The returned style is always unnamed.
See section 8.1.2 (page 149) for more information.

262

9. Editor Class Reference 9.30. style-list%

- (send a-style-list find-or-create-style base-style delta) ⇒ style<%> object
base-style : style<%> object
delta : style-delta% object

The base-style argument must be a style within this style list.

forget-notification

See notify-on-change.

- (send a-style-list forget-notification key) ⇒ void
key : value

The key argument is the value returned by notify-on-change.

index-to-style

Returns the style associated with the given index, or #f for a bad index. See also style-to-index.

- (send a-style-list index-to-style i) ⇒ style<%> object or #f
i : exact non-negative integer

new-named-style

Creates a new named style, unless the name is already being used.

- (send a-style-list new-named-style name like-style) ⇒ style<%> object
name : string
like-style : style<%> object

If name is already being used, then like-style is ignored and the old style associated to the name is
returned. Otherwise, a new style is created for name with the same characteristics (i.e., the same base
style and same style delta or shift style) as like-style.
The like-style style must be in this style list, otherwise the named style is derived from the basic style
with an empty style delta.

notify-on-change

Attaches a callback to the style list. The callback is invoked whenever a style is modified.

Often, a change in one style will trigger a change in several other derived styles; to allow clients to handle
all the changes in a batch, #f is passed in as the changing style after a set of styles has been processed.

The return value from notify-on-change is an opaque key to be used with forget-notification.

- (send a-style-list notify-on-change f) ⇒ value
f : procedure of one argument: a style<%> object or #f

number

Returns the number of styles in the list.

- (send a-style-list number) ⇒ exact non-negative integer

263

9.31. tab-snip% 9. Editor Class Reference

replace-named-style

Like new-named-style, except that if the name is already mapped to a style, the existing mapping is
replaced.

- (send a-style-list replace-named-style name like-style) ⇒ style<%> object
name : string
like-style : style<%> object

style-to-index

Returns the index for a particular style. The index for a style’s base style (and shift style, if it is a join style)
is guaranteed to be lower than the style’s own index. (As a result, the root style’s index is always 0.) An
style’s index can change whenever a new style is added to the list, or the base style or shift style of another
style is changed.

If the given style is not in this list, #f is returned.

- (send a-style-list style-to-index style) ⇒ exact non-negative integer or #f
style : style<%> object

9.31 tab-snip%

Superclass: string-snip%

An instance of tab-snip% is created automatically when a tab is inserted into an editor.

- (make-object tab-snip%) ⇒ tab-snip% object

Creates a snip for a single tab.

9.32 text%

Implements: editor<%>

A text% object is a standard text editor. A text editor is displayed on the screen through a editor-canvas%
object or some other display.

- (make-object text% line-spacing tabstops) ⇒ text% object
line-spacing = 1.0 : non-negative real number
tabstops = null : list of real numbers

The line-spacing argument sets the additional amount of space (in DC units) inserted between each
line in the editor when the editor is displayed. This spacing is included in the reported height of each
line.

See set-tabs for information about tabstops.

A new keymap% object is created for the new editor. See also get-keymap and set-keymap.

A new style-list object is created for the new editor. See also get-style-list and set-style-list.

264

9. Editor Class Reference 9.32. text%

after-change-style

Called after the style is changed for a given range (and after the display is refreshed; use on-change-style
and begin-edit-sequence to avoid extra refreshes when after-change-style modifies the editor).

See also can-change-style? and on-edit-sequence.

No internals locks are set when this method is called.

- (send a-text after-change-style start len) ⇒ void
start : exact non-negative integer
len : exact non-negative integer

after-delete

Called after a given range is deleted from the editor (and after the display is refreshed; use on-delete and
begin-edit-sequence to avoid extra refreshes when after-delete modifies the editor).

See also can-delete? and on-edit-sequence.

No internals locks are set when this method is called.

- (send a-text after-delete start end) ⇒ void
start : exact non-negative integer
end : exact non-negative integer

The start argument specifies the starting position of the deleted range. The len argument specifies
number of deleted items (so start + length is the endig position of the deleted range).

after-insert

Called after items are inserted into the editor (and after the display is refreshed; use on-insert and
begin-edit-sequence to avoid extra refreshes when after-insert modifies the editor).

See also can-insert? and on-edit-sequence.

No internals locks are set when this method is called.

- (send a-text after-insert start len) ⇒ void
start : exact non-negative integer
len : exact non-negative integer

The start argument specifies the position of the insert. The len argument specifies the total length (in
positions) of the inserted items.

after-set-position

Called after the start and end position have been moved (but not when the position is moved due to inserts
or deletes).

See also on-edit-sequence.

- (send a-text after-set-position) ⇒ void

265

9.32. text% 9. Editor Class Reference

after-set-size-constraint

Called after the editor’s maximum or minimum height or width is changed (and after the display
is refreshed; use on-set-size-constraint and begin-edit-sequence to avoid extra refreshes when
after-set-size-constraint modifies the editor).

(This callback method is provided because setting an editor’s maxmimum width may cause lines to be
re-flowed with soft carriage returns.)

See also can-set-size-constraint? and on-edit-sequence.

- (send a-text after-set-size-constraint) ⇒ void

call-clickback

Simulates a user click that invokes a clickback, if the given range of positions is within a clickback’s region.
See also section 8.7 (page 153).

- (send a-text call-clickback start end) ⇒ void
start : exact non-negative integer
end : exact non-negative integer

can-change-style?

Called before the style is changed in a given range of the editor. If the return value is #f, then the style
change will be aborted.

The editor is internally locked for writing during a call to this method (see also section 8.8 (page 153)). Use
after-change-style to modify the editor, if necessary.

See also on-change-style, after-change-style, and on-edit-sequence.

- (send a-text can-change-style? start len) ⇒ boolean
start : exact non-negative integer
len : exact non-negative integer

can-delete?

Called before a range is deleted from the editor. If the return value is #f, then the delete will be aborted.

The editor is internally locked for writing during a call to this method (see also section 8.8 (page 153)). Use
after-delete to modify the editor, if necessary.

See also on-delete, after-delete, and on-edit-sequence.

- (send a-text can-delete? start len) ⇒ boolean
start : exact non-negative integer
len : exact non-negative integer

The start argument specifies the starting position of the range to delete. The len argument specifies
number of items to delete (so start + length is the endig position of the range to delete).

266

9. Editor Class Reference 9.32. text%

can-insert?

Called before items are inserted into the editor. If the return value is #f, then the insert will be aborted.

The editor is internally locked for writing during a call to this method (see also section 8.8 (page 153)). Use
after-insert to modify the editor, if necessary.

See also on-insert, after-insert, and on-edit-sequence.

- (send a-text can-insert? start len) ⇒ boolean
start : exact non-negative integer
len : exact non-negative integer

The start argument specifies the position of the potential insert. The len argument specifies the total
length (in positions) of the items to be inserted.

can-set-size-constraint?

Called before the editor’s maximum or minimum height or width is changed. If the return value is #f, then
the change will be aborted.

(This callback method is provided because setting an editor’s maxmimum width may cause lines to be
re-flowed with soft carriage returns.)

See also on-set-size-constraint, after-set-size-constraint, and on-edit-sequence.

- (send a-text can-set-size-constraint?) ⇒ boolean

caret-hidden?

Returns #t if the caret is hidden for this editor or #f otherwise.

- (send a-text caret-hidden?) ⇒ boolean

See also hide-caret.

change-style

Changes the style for items in the editor.

The style within an editor can be changed by the system (in response to other method calls), and such
changes do not go through this method; use on-change-style in text% to monitor style changes.

- (send a-text change-style delta start end) ⇒ void
delta : style-delta% object
start : exact non-negative integer or ’start
end = ’end : exact non-negative integer or ’end

Changes the style for a region in the editor by applying a style delta. If start is ’start and end is ’end,
then the currently selected items are changed. Otherwise, if end is ’end, then the style is changed
from start until the end of the selection.

- (send a-text change-style style start end) ⇒ void
style : style<%> object

267

9.32. text% 9. Editor Class Reference

start = ’start : exact non-negative integer or ’start
end = ’end : exact non-negative integer or ’end

Changes the style for a region in the editor to a specific style. If start is ’start and end is ’end, then
the currently selected items are changed. Otherwise, if end is ’end, then the style is changed from
start until the end of the selection.

- (send a-text change-style delta) ⇒ void
delta : style-delta% object

Changes the style of the selected items by applying a style delta.

To change a large collection of snips from one style to another style, consider providing a
style<%> instance rather than a style-delta% instance. Otherwise, change-style must convert
the style-delta% instance to the style<%> instance for every snip; this conversion consumes both
time and (temporary) memory.

- (send a-text change-style style) ⇒ void
style : style<%> object

Changes the style of the selected items to a specific style. The editor’s style list must contain style,
otherwise the style is not changed. See also convert.

copy

Copies items into the clipboard.

The system may execute a copy (in response to other method calls) without calling this method. To extend
or re-implement copying, override the do-copy in text% or do-copy in pasteboard% method of an editor.

- (send a-text copy extend? time start end) ⇒ void
extend? : boolean
time : exact integer
start : exact non-negative integer or ’start
end = ’end : exact non-negative integer or ’end

Copies specified range of text into the clipboard. If extend? is not #f, the old clipboard contents are
appended. If start is ’start or end is ’end, then the current selection start/end is used.

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

- (send a-text copy extend? time) ⇒ void
extend? = #f : boolean
time = 0 : exact integer

Copies the selected items into the clipboard. If extend? is not #f, the old clipboard contents are
appended.

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

copy-self-to

Copies the properties of this editor into an existing editor.

- (send a-text copy-self-to dest) ⇒ void
dest : text% or pasteboard% object

268

9. Editor Class Reference 9.32. text%

Each snip in this editor is copied and inserted into dest . In addition, this editor’s filename, maximum
undo history setting, keymap, interactive caret threshold, and overwrte-styles-on-load settings are
installed into dest . This editor’s style list is copied and the copy is installed as the style list for dest .

This editor’s file format, wordbreak function, wordbreak map, click-between-threshold, caret visbility
state, overwrite mode state, and autowrap bitmap are installed into dest .

cut

Copies and then deletes items in the editor.

The system may execute a cut (in response to other method calls) without calling this method. To extend
or re-implement the copying portion of the cut, override the do-copy in text% or do-copy in pasteboard%
method of an editor. To monitor deletions in an editor, override on-delete in text% or on-delete in
pasteboard%.

- (send a-text cut extend? time start end) ⇒ void
extend? : boolean
time : exact integer
start : exact non-negative integer or ’start
end = ’end : exact non-negative integer or ’end

Copies and then deletes the specified range. If extend? is not #f, the old clipboard contents are
appended. If start is ’start or end is ’end, then the current selection start/end is used.

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

- (send a-text cut extend? time) ⇒ void
extend? = #f : boolean
time = 0 : exact integer

Copies and then deletes the currently selected items. If extend? is not #f, the old clipboard contents
are appended.

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

delete

The content of an editor can be changed by the system in response to other method calls, and such changes
do not go through this method; use on-delete to monitor content deletion changes.

- (send a-text delete start end scroll-ok?) ⇒ void
start : exact non-negative integer or ’start
end = ’back : exact non-negative integer or ’back
scroll-ok? = #t : boolean

Deletes the specified range in the editor. If start is ’start, then the starting selection position is used;
if end is ’back, then only the character preceding start is deleted. If scroll-ok? is not #f and start
is the same as the current caret position, then the editor’s display may be scrolled to show the new
selection position.

- (send a-text delete) ⇒ void

Deletes the currently selected text.

269

9.32. text% 9. Editor Class Reference

do-copy

Called to copy a region of the editor into the clipboard. This method is provided so that it can be overriden
by subclasses. Do not call this method directly; instead, call copy.

- (send a-text do-copy start end time extend?) ⇒ void
start : exact non-negative integer
end : exact non-negative integer
time : exact integer
extend? : boolean

Copy the data from start to end , extending the current clipboard contexnts if extend? is not #f.

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

do-paste

Called to paste the current contents of the clipboard into the editor. This method is provided so that it can
be overriden by subclasses. Do not call this method directly; instead, call paste.

- (send a-text do-paste start time) ⇒ void
start : exact non-negative integer
time : exact integer

Paste into the position start .

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

erase

Erases the contents of the editor.

See also delete.

- (send a-text erase) ⇒ void

find-line

Given a graphical location in the editor, returns the line at that location. Lines are numbered starting with
0.

The result is only valid when the editor is displayed (see section 8.1 (page 148)). Calling this method
may force the recalculation of location information, even if the editor currently has delayed refreshing (see
refresh-delayed?).

- (send a-text find-line y on-it?) ⇒ exact non-negative integer
y : real number
on-it? = #f : boxed boolean or #f

The on-it? box is filled with #t if the line actually touches this position, or #f otherwise, unless on-it?
is #f. (A large enough y will always return the last line number, but will set on-it? to #f.)

270

9. Editor Class Reference 9.32. text%

find-position

Given a graphical location in the editor, returns the item editor position at that location.

The result is only valid when the editor is displayed (see section 8.1 (page 148)). Calling this method
may force the recalculation of location information, even if the editor currently has delayed refreshing (see
refresh-delayed?).

- (send a-text find-position x y at-eol? on-it? edge-close?) ⇒ exact non-negative integer
x : real number
y : real number
at-eol? = #f : boxed boolean or #f
on-it? = #f : boxed boolean or #f
edge-close? = #f : boxed real number or #f

See section 8.3 (page 151) for a discussion of the at-eol? argument. The on-it? box is filled with #t if
the line actually touches this position, or #f otherwise, unless on-it? is #f.

The edge-close? box is filled with it will be filled in with a value indicating how close the point is to
the vertical edges of the item when the point falls on the item, unless edge-close? is #f. If the point
is closest to the left edge of the item, the value will be negative; otherwise, the value will be positive.
In either case, then absolute value of the returned result is the distance from the point to the edge of
the item. The values 100 and -100 indicate infinity.

find-position-in-line

Given a graphical location within a line of the editor, returns the item editor position at that location. Lines
are numbered starting with 0.

The result is only valid when the editor is displayed (see section 8.1 (page 148)). Calling this method
may force the recalculation of location information, even if the editor currently has delayed refreshing (see
refresh-delayed?).

- (send a-text find-position-in-line line x at-eol? on-it? edge-close?) ⇒ exact non-negative
integer
line : exact non-negative integer
x : real number
at-eol? = #f : boxed boolean or #f
on-it? = #f : boxed boolean or #f
edge-close? = #f : boxed real number or #f

See section 8.3 (page 151) for a discussion of the at-eol? argument. The on-it? box is filled with #t if
the line actually touches this position, or #f otherwise, unless on-it? is #f.

See find-position for a discussion of edge-close? .

find-snip

Returns the snip at a given position or #f if an appropriate snip cannot be found.

- (send a-text find-snip pos direction s-pos) ⇒ snip% object or #f
pos : exact non-negative integer
direction : symbol in ’(before-or-none before after after-or-none)
s-pos = #f : boxed exact non-negative integer or #f

271

9.32. text% 9. Editor Class Reference

If the position pos is between two snips, direction specifies which snip to return; direction can be any
of the following:

– ’before-or-none — returns the snip before the position, or #f if pos is 0
– ’before — returns the snip before the position, or the first snip if pos is 0
– ’after — returns the snip after the position, or the last snip if pos is the last position
– ’after-or-none – returns the snip after the position, or #f if pos is the last position or larger

The s-pos box is filled with the position where the returned snip starts, unless s-pos is #f.

find-string

Finds an exact-match string in the editor and returns its position. If the string is not found, #f is returned.

- (send a-text find-string str direction start end get-start? case-sensitive?) ⇒ exact non-
negative integer or #f
str : string
direction = ’forward : symbol in ’(forward backward)
start = ’start : exact non-negative integer or ’start
end = ’eof : exact non-negative integer or ’eof
get-start? = #t : boolean
case-sensitive? = #t : boolean

The direction argument can be ’forward or ’backward, indicating a forward search or backward search
respectively. In the case of a forward search, the return value is the starting position of the string; for
a backward search, the ending position is returned. However, if get-start? is #f, then the other end of
the string position will be returned.

The start and end arguments set the starting and ending positions of a forward search (use start ¿ end
for a backward search). If start is ’start, then the search starts at the start of the selection. If end
is ’eof, then the search continues to the end (for a forward search) or start (for a backward search) of
the editor.

If case-sensitive? is #f, then an uppercase and lowercase of each alphabetic character are treated as
equivalent.

find-string-all

Finds all occurences of a string using find-string. No no occurrences are found, the empty list is returned.

- (send a-text find-string-all str direction start end get-start? case-sensitive) ⇒ list of exact
non-negative integers
str : string
direction = ’forward : symbol in ’(forward backward)
start = ’start : exact non-negative integer or ’start
end = ’eof : exact non-negative integer or ’eof
get-start? = #t : boolean
case-sensitive = #t : boolean

The arguments are the same as for find-string.

find-wordbreak

Finds wordbreaks in the editor using the current wordbreak procedure. See also set-wordbreak-func.

272

9. Editor Class Reference 9.32. text%

- (send a-text find-wordbreak start end reason) ⇒ void
start : boxed exact non-negative integer or #f
end : boxed exact non-negative integer or #f
reason : symbol in ’(caret line selection user1 user2)

The contents of the start argument specifies a location to start searching backwards to the next word
start; its will be filled with the starting position of the word that is found. If start is #f, no backward
search is performed.

The contents of the end argument specifies a location to start searching forwards to the next word end;
its will be filled with the ending position of the word that is found. If end is #f, no forward search is
performed.

The reason argument specifies more information about what the wordbreak is used for. For example,
the wordbreaks used to move the caret may be different from the wordbreaks used to break lines. The
possible values of reason are:

– ’caret — find a wordbreak suitable for moving the caret
– ’line — find a wordbreak suitable for breaking lines
– ’selection — find a wordbreak suitable for selecting the closest word
– ’user1 — for other (not built-in) uses
– ’user2 — for other (not built-in) uses

The actual handling of reason is controlled by the current wordbreak procedure; see
set-wordbreak-funcfor details. The default handler and default wordbreak map treats alphanumeric
charatecters the same for ’caret, ’line, and ’selection. Non-alphanumeric, non-space, non-hypen
charaters do not break lines, but do break caret and selection words. For example a comma should
not be counted as part of the preceding word for moving the caret past the word or double-clicking
the word, but the comma should stay on the same line as the word (and thus counts in the same “line
word”).

flash-off

See flash-on. There is no effect if this method is called when flashing is already off.

- (send a-text flash-off) ⇒ void

Turns off the hiliting and shows the normal selection range again.

flash-on

Temporarily hilites a region in the editor without changing the current selection.

- (send a-text flash-on start end at-eol? scroll? timeout) ⇒ void
start : exact non-negative integer
end : exact non-negative integer
at-eol? = #f : boolean
scroll? = #t : boolean
timeout = 500 : exact non-negative integer

See section 8.3 (page 151) for a discussion of the at-eol? argument. If scroll? is not #f, the editor
display will be scrolled if necessary to show the hilited region. If timeout is greater than 0, then the
hiliting will be automatically turned off after the given number of milliseconds.

See also flash-off.

273

9.32. text% 9. Editor Class Reference

get-anchor

Returns #t if the selection is currently auto-extending.

- (send a-text get-anchor) ⇒ boolean

get-between-threshold

Returns an amount used to determine the meaning of a user click. If the click falls within the threshold of
a positon between two items, then the click registers on the space between the items rather than on either
item.

See also set-between-threshold.

- (send a-text get-between-threshold) ⇒ non-negative real number

get-character

Gets a single character for the editor.

- (send a-text get-character start) ⇒ character
start : exact non-negative integer

Returns the character following the position start . If start is greater than or equal to the last position,
the null character is returned.

get-end-position

Returns the ending position of the current selection. See also get-position.

- (send a-text get-end-position) ⇒ exact non-negative integer

get-file-format

Returns the format of the last file saved from or loaded into this editor. See also load-file.

- (send a-text get-file-format) ⇒ symbol in ’(standard text text-force-cr)

get-line-spacing

Returns the spacing inserted by the editor between each line. This spacing is included in the reported height
of each line.

- (send a-text get-line-spacing) ⇒ non-negative real number

get-overwrite-mode

Returns #t if the editor is in overwrite mode, #f otherwise. Overwrite mode only affects the way that
on-default-charhandles keyboard input for insertion characters. See also set-overwrite-mode.

274

9. Editor Class Reference 9.32. text%

- (send a-text get-overwrite-mode) ⇒ boolean

get-position

Returns the current selection range. See also get-start-position and get-end-position.

- (send a-text get-position start end) ⇒ void
start : boxed exact non-negative integer or #f
end = #f : boxed exact non-negative integer or #f

The start box is filled with the starting position of the selection, unless start is #f. The end box is
filled with the ending position of the selection, unless end is #f.

get-region-data

Gets extra data associated with a given region. See section 8.2.1 (page 151)for more information. This
method is not called when the whole editor is saved to a file; in such cases, the information can be stored in
the header or footer.

- (send a-text get-region-data start end) ⇒ editor-data% object or #f
start : exact non-negative integer
end : exact non-negative integer

get-snip-position

Returns the starting item position of a given snip or #f if the snip is not in this editor.

- (send a-text get-snip-position snip) ⇒ exact non-negative integer or #f
snip : snip% object

get-snip-position-and-location

Gets a snip’s item position and top left display location in editor coordinates. The return value is #t if the
snip is found, #f otherwise.

When location information is requested: The result is only valid when the editor is displayed (see section 8.1
(page 148)). Calling this method may force the recalculation of location information, even if the editor
currently has delayed refreshing (see refresh-delayed?).

- (send a-text get-snip-position-and-location snip pos x y) ⇒ boolean
snip : snip% object
pos : boxed exact non-negative integer or #f
x = #f : boxed real number or #f
y = #f : boxed real number or #f

The pos box is filled with starting position of snip, unless pos is #f. The x box is filled with left
location of snip in editor coordinates, unless x is #f. The y box is filled with top location of snip in
editor coordinates, unless y is #f.

get-start-position

Returns the starting position of the current selection. See also get-position.

275

9.32. text% 9. Editor Class Reference

- (send a-text get-start-position) ⇒ exact non-negative integer

get-styles-sticky

In the normal mode for a text editor, style settings are sticky. With sticky styles, when a string or character
is inserted into an editor, it gets the style of the snip preceding the insertion point (or the snip that includes
the insertion point if text is inserted into an exiting string snip). Alternatively, if change-style is called to
set the style at the caret position (when it is not a range), then the style is remembered; if the editor is not
changed before text is inserted at the caret, then the text gets the remembered style.

With non-sticky styles, text inserted into an editor always gets the style named “Standard” in the editor’s
style list.

See also set-styles-sticky.

- (send a-text get-styles-sticky) ⇒ boolean

get-tabs

Returns the current tab position array as a list.

- (send a-text get-tabs length tab-width in-units) ⇒ list of real numbers
length = #f : boxed exact non-negative integer or #f
tab-width = #f : boxed real number or #f
in-units = #f : boxed boolean or #f

The length box is filled with the length of the tab array (and therefore the returned list), unless length
is #f. The tab-width box is filled with the width used for tabs past the end of the tab array, unless
tab-width is #f. The in-units box is filled with #t if the tabs are specified in canvas units or #f if they
are specified in space-widths, unless in-units is #f.

See also set-tabs.

get-text

Returns the contents of the editor in text form.

- (send a-text get-text start end flattened? force-cr?) ⇒ string
start = 0 : exact non-negative integer
end = ’eof : exact non-negative integer or ’eof
flattened? = #f : boolean
force-cr? = #f : boolean

Gets the text from start to end . If end is ’eof, then the contents are returned from start until the
end of the editor.

If flattened? is not #f, then flattened text is returned. See section 8.4 (page 152) for a discussion of
flattened vs. non-flattened text.

If force-cr? is not #f and flattened? is not #f, then automatic carriage returns (from word-wrapping)
are written into the return string as real carriage returns.

276

9. Editor Class Reference 9.32. text%

get-top-line-base

Returns the distance from the top of the editor to the alignment baseline of the top line. This method is
primarily used when an editor is an item within another editor.

The result is only valid when the editor is displayed (see section 8.1 (page 148)). For text% objects, calling
this method may force the recalculation of location information if a maximum width is set for the editor,
even if the editor currently has delayed refreshing (see refresh-delayed?).

- (send a-text get-top-line-base) ⇒ non-negative real number

get-visible-line-range

Returns the range of lines which are currently visible to the user. Lines are numbered starting with 0.

The result is only valid when the editor is displayed (see section 8.1 (page 148)). Calling this method
may force the recalculation of location information, even if the editor currently has delayed refreshing (see
refresh-delayed?).

- (send a-text get-visible-line-range start end) ⇒ void
start : boxed exact non-negative integer or #f
end : boxed exact non-negative integer or #f

The start box is filled with first line visible to the user, unless start is #f. The end box is filled with
last line visible to the user, unless end is #f.

get-visible-position-range

Returns the range of positions which are currently visible to the user.

The result is only valid when the editor is displayed (see section 8.1 (page 148)). Calling this method
may force the recalculation of location information, even if the editor currently has delayed refreshing (see
refresh-delayed?).

- (send a-text get-visible-position-range start end) ⇒ void
start : boxed exact non-negative integer or #f
end : boxed exact non-negative integer or #f

The start box is filled with first position visible to the user, unless start is #f. The end box is filled
with last position visible to the user, unless end is #f.

get-wordbreak-map

Returns the wordbreaking map that is used by the standard wordbreaking function. See
editor-wordbreak-map% for more information.

- (send a-text get-wordbreak-map) ⇒ editor-wordbreak-map% object

hide-caret

Determines whether the caret is shown when the editor has the keyboard focus.

277

9.32. text% 9. Editor Class Reference

- (send a-text hide-caret hide?) ⇒ void
hide? : boolean

If hide? is not #f, then the caret or selection hiliting will not be drawn for the editor. The editor can
still own the keyboard focus, but no caret will be drawn to indicate the focus.

See also caret-hidden?and lock.

insert

Inserts data into the editor.

The content of an editor can be changed by the system in response to other method calls, and such changes
do not go through this method; use on-insert in text% or on-insert in pasteboard% to monitor content
additions changes.

- (send a-text insert str start end scroll-ok?) ⇒ void
str : string
start : exact non-negative integer
end = ’same : exact non-negative integer or ’same
scroll-ok? = #t : boolean

Inserts the text str at position start .

If end is not ’same, then str replaces the region from start to end , and the selection is left at the end
of the inserted text. Otherwise, If the insertion position is before or equal to the selection’s start/end
position, then the selection’s start/end position is incremented by the length of str .

If scroll-ok? is not #f and start is the same as the current selection’s start position, then the editor’s
display is scrolled to show the new selection position.

See also get-styles-sticky.

- (send a-text insert n str start end scroll-ok?) ⇒ void
n : exact non-negative integer
str : string
start : exact non-negative integer
end = ’same : exact non-negative integer or ’same
scroll-ok? = #t : boolean

Inserts the first n characters of str at position start .

If end is not ’same, then the inserted text replaces the region from start to end , and the selection
is left at the end of the inserted text. Otherwise, If the insertion position is before or equal to the
selection’s start/end position, then the selection’s start/end position is incremented by n.

If scroll-ok? is not #f and start is the same as the current select’s start position, then the editor’s
display is scrolled to show the new selection position.

See also get-styles-sticky.

- (send a-text insert str) ⇒ void
str : string

Inserts str at the current selection start position.

If the current selection covers a range of items, then str replaces the selected text. The selection’s
starts and end positions are moved to the end of the inserted text.

The editor’s display is scrolled to show the new selection position.

See also get-styles-sticky.

278

9. Editor Class Reference 9.32. text%

- (send a-text insert n str) ⇒ void
n : exact non-negative integer
str : string

Inserts the first n characters of str at the current selection start position.

If the current selection covers a range of items, then the inserted text replaces the selected text. The
selection’s start and end positions are moved to the end of the inserted text.

The editor’s display is scrolled to show the new selection position.

See also get-styles-sticky.

- (send a-text insert snip start end scroll-ok?) ⇒ void
snip : snip% object
start : exact non-negative integer
end = ’same : exact non-negative integer or ’same
scroll-ok? = #t : boolean

Inserts snip into the editor at start . A snip cannot be inserted into multiple editors or multiple times
within a single editor.

If end is not ’same, then snip replaces the region from start to end , and the selection is left at the end
of the inserted snip. Otherwise, If the insertion position is before or equal to the selection’s start/end
position, then the selection’s start/end position is incremented by the item length of snip.

If scroll-ok? is not #f and start is the same as the current selection’s start position, then the editor’s
display is scrolled to show the new selection position.

See also get-styles-sticky.

- (send a-text insert snip) ⇒ void
snip : snip% object

Inserts snip into the editor at the current selection position. A snip cannot be inserted into multiple
editors or multiple times within a single editor.

If the current selection covers a range of items, then the inserted text replaces the selected text. The
selection’s start and end positions are moved to the end of the inserted snip.

The editor’s display is scrolled to show the new selection position.

- (send a-text insert char) ⇒ void
char : character

Inserts char into the editor at the current selection position.

If the current selection covers a range of items, then char replaces the selected text. The selection’s
start and end positions are moved to the end of the inserted character.

The editor’s display is scrolled to show the new selection position.

See also get-styles-sticky.

- (send a-text insert char start end) ⇒ void
char : character
start : exact non-negative integer
end = ’same : exact non-negative integer or ’same

Inserts char into the editor at the position start .

If end is not ’same, then char replaces the region from start to end , and the selection is left at the end
of the inserted text. Otherwise, If the insertion position is before or equal to the selection’s start/end
position, then the selection’s start/end position is incremented by 1.

If start is the same as the current selection’s start position, then the editor’s display is scrolled to show
the new selection position.

See also get-styles-sticky.

279

9.32. text% 9. Editor Class Reference

kill

In a text editor, cuts to the end of the current line, or cuts a newline if there is only whitespace between the
selection and end of line. Multiple consective kills are appended. In a pasteboard editor, cuts the current
selection.

See also cut.

The content of an editor can be changed by the system in response to other method calls, and such changes
do not go through this method; use on-delete in text% or on-delete in pasteboard% to monitor content
deletions changes.

- (send a-text kill time start end) ⇒ void
time : exact integer
start : exact non-negative integer
end : exact non-negative integer

Cuts the text in the given region.

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

- (send a-text kill time) ⇒ void
time = 0 : exact integer

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

last-line

Returns the number of the last line in the editor. Lines are numbered starting with 0, so this is one less
than the number of lines in the editor.

Calling this method may force the recalculation of location information if a maximum width is set for the
editor, even if the editor currently has delayed refreshing (see refresh-delayed?). If the editor is not
displayed and the editor has a maximum width, line breaks are calculated as for line-start-position.

See also paragraph-start-position, which operates on paragraphs (determined by explicit newline char-
acters) instead of lines (determined by both explicit newline characters and automatic line-wrapping).

- (send a-text last-line) ⇒ exact non-negative integer

last-paragraph

Returns the number of the last paragraph in the editor. Paragraphs are numbered starting with 0, so this
is one less than the number of paragraphs in the editor.

Calling this method may force the recalculation of location information if a maximum width is set for the
editor, even if the editor currently has delayed refreshing (see refresh-delayed?).

- (send a-text last-paragraph) ⇒ exact non-negative integer

last-position

Returns the last selection position in the editor. This is also the number of items in the editor.

280

9. Editor Class Reference 9.32. text%

- (send a-text last-position) ⇒ exact non-negative integer

line-end-position

Returns the last position of a given line. Lines are numbered starting with 0.

Calling this method may force the recalculation of location information if a maximum width is set for the
editor, even if the editor currently has delayed refreshing (see refresh-delayed?). If the editor is not
displayed and the editor has a maximum width, line breaks are calculated as for line-start-position.

See also paragraph-start-position, which operates on paragraphs (determined by explicit newline char-
acters) instead of lines (determined by both explicit newline characters and automatic line-wrapping).

- (send a-text line-end-position line visible?) ⇒ exact non-negative integer
line : exact non-negative integer
visible? = #t : boolean

If there are fewer than line−1 lines, the end of the last line is returned. If line is less than 0, then the
end of the first line is returned.

If the line ends with invisible items (such as a carriage return) and visible? is not #f, the first position
before the invisible items is returned.

line-length

Returns the number of items in a given line. Lines are numbered starting with 0.

Calling this method may force the recalculation of location information if a maximum width is set for the
editor, even if the editor currently has delayed refreshing (see refresh-delayed?). If the editor is not
displayed and the editor has a maximum width, line breaks are calculated as for line-start-position.

- (send a-text line-length i) ⇒ exact non-negative integer
i : exact non-negative integer

line-location

Given a line number, returns the graphic location of the line. Lines are numbered starting with 0.

The result is only valid when the editor is displayed (see section 8.1 (page 148)). Calling this method
may force the recalculation of location information, even if the editor currently has delayed refreshing (see
refresh-delayed?).

See also paragraph-start-position, which operates on paragraphs (determined by explicit newline char-
acters) instead of lines (determined by both explicit newline characters and automatic line-wrapping).

- (send a-text line-location line top?) ⇒ real number
line : exact non-negative integer
top? = #t : boolean

If top? is not #f, the location for the top of the line is returned; otherwise, the the location for the
bottom of the line is returned.

281

9.32. text% 9. Editor Class Reference

line-paragraph

Returns the paragraph number of the paragraph containing the line. Lines are numbered starting with 0.
Paragraphs are numbered starting with 0.

Calling this method may force the recalculation of location information if a maximum width is set for the
editor, even if the editor currently has delayed refreshing (see refresh-delayed?). If the editor is not
displayed and the editor has a maximum width, line breaks are calculated as for line-start-position.

- (send a-text line-paragraph start) ⇒ exact non-negative integer
start : exact non-negative integer

line-start-position

Returns the first position of the given line. Lines are numbered starting with 0.

Calling this method may force the recalculation of location information if a maximum width is set for the
editor, even if the editor currently has delayed refreshing (see refresh-delayed?).

To calculate lines, if the following are true:

• the editor is not displayed (see section 8.1 (page 148)),
• a maximum width is set for the editor, and

• the editor has never been viewed

then this method ignores the editor’s maximum width and any automatic line breaks it might imply. If the
first two of the above conditions are true and the editor was formerley displayed, this method uses the line
breaks from the most recent display of the editor. (Insertions or deletions since the display shift line breaks
within the editor in the same way as items.)

See also paragraph-start-position, which operates on paragraphs (determined by explicit newline char-
acters) instead of lines (determined by both explicit newline characters and automatic line-wrapping).

- (send a-text line-start-position line visible?) ⇒ exact non-negative integer
line : exact non-negative integer
visible? = #t : boolean

If there are fewer than line−1 lines, the start of the last line is returned. If line is less than 0, then
the start of the first line is returned.

If the line starts with invisible items and visible? is not #f, the first position past the invisible items
is returned.

move-position

Move the current selection.

See also set-position.

- (send a-text move-position code extend? kind) ⇒ void
code : symbol in ’(home end right left up down)

282

9. Editor Class Reference 9.32. text%

extend? = #f : boolean
kind = ’simple : symbol in ’(simple word page line)

The possible values for code are:

– ’home — go to start of file
– ’end — go to end of file
– ’right — move right
– ’left — move left
– ’up — move up
– ’down — move down

If extend? is not #f, the selection range is extended instead of moved.

The possible values for kind are:

– ’simple — move one item or line
– ’word — works with ’right or ’left
– ’page — works with ’up or ’down
– ’line — works with ’right or ’left; moves to the start or end of the line

on-change-style

Called before the style is changed in a given range of the editor, after can-change-style? is called to verify
that the change is ok. The after-change-style method is guaranteed to be called after the change has
completed.

The editor is internally locked for writing during a call to this method (see also section 8.8 (page 153)). Use
after-change-style to modify the editor, if necessary.

See also on-edit-sequence.

- (send a-text on-change-style start len) ⇒ void
start : exact non-negative integer
len : exact non-negative integer

on-default-char

Called by on-local-char when the event is not handled by a caret-owning snip or by the keymap.

- (send a-text on-default-char event) ⇒ void
event : key-event% object

Handles the following:

– Delete and Backspace — calls delete.
– The arrow keys, Page Up, Page Down, Home, and End (including shfted versions) — moves the
selection position with move-position.

– Any other character in the range (integer->char 32) to (integer->char 255) — inserts the
character into the editor.

on-delete

Called before a range is deleted from the editor, after can-delete? is called to verify that the deletion is
ok. The after-delete method is guaranteed to be called after the delete has completed.

283

9.32. text% 9. Editor Class Reference

The editor is internally locked for writing during a call to this method (see also section 8.8 (page 153)). Use
after-delete to modify the editor, if necessary.

See also on-edit-sequence.

- (send a-text on-delete start len) ⇒ void
start : exact non-negative integer
len : exact non-negative integer

The start argument specifies the starting position of the range to delete. The len argument specifies
number of items to delete (so start + length is the endig position of the range to delete).

on-insert

Called before items are inserted into the editor, after can-insert? is called to verify that the insertion is
ok. The after-insert method is guaranteed to be called after the insert has completed.

The editor is internally locked for writing during a call to this method (see also section 8.8 (page 153)). Use
after-insert to modify the editor, if necessary.

See also on-edit-sequence.

- (send a-text on-insert start len) ⇒ void
start : exact non-negative integer
len : exact non-negative integer

The start argument specifies the position of the insert. The len argument specifies the total length (in
positions) of the items to be inserted.

on-new-string-snip

Creates and returns a new instance of string-snip% to store inserted text.

- (send a-text on-new-string-snip) ⇒ string-snip% object

on-new-tab-snip

Creates and returns a new instance of tab-snip% to store an inserted tab.

- (send a-text on-new-tab-snip) ⇒ tab-snip% object

on-set-size-constraint

Called before the editor’s maximum or minimum height or width is changed, after can-set-size-constraint?
is called to verify that the change is ok. The after-set-size-constraint method is guaranteed to be called
after the change has completed.

(This callback method is provided because setting an editor’s maxmimum width may cause lines to be
re-flowed with soft carriage returns.)

See also on-edit-sequence.

- (send a-text on-set-size-constraint) ⇒ void

284

9. Editor Class Reference 9.32. text%

paragraph-end-line

Returns the ending line of a given paragraph. Paragraphs are numbered starting with 0. Lines are numbered
starting with 0.

Calling this method may force the recalculation of location information if a maximum width is set for the
editor, even if the editor currently has delayed refreshing (see refresh-delayed?). If the editor is not
displayed and the editor has a maximum width, line breaks are calculated as for line-start-position.

- (send a-text paragraph-end-line paragraph) ⇒ exact non-negative integer
paragraph : exact non-negative integer

paragraph-end-position

Returns the ending position of a given paragraph. Paragraphs are numbered starting with 0.

Calling this method may force the recalculation of location information if a maximum width is set for the
editor, even if the editor currently has delayed refreshing (see refresh-delayed?). If the editor is not
displayed and the editor has a maximum width, line breaks are calculated as for line-start-position.

- (send a-text paragraph-end-position paragraph visible?) ⇒ exact non-negative integer
paragraph : exact non-negative integer
visible? = #f : boolean

If there are fewer than paragraph−1 paragraphs, the end of the last paragraph is returned. If paragraph
is less than 0, then the end of the first paragraph is returned.

If the paragraph ends with invisible items (such as a carriage return) and visible? is not #f, the first
position before the invisible items is returned.

paragraph-start-line

Returns the starting line of a given paragraph. Paragraphs are numbered starting with 0. Lines are numbered
starting with 0.

Calling this method may force the recalculation of location information if a maximum width is set for the
editor, even if the editor currently has delayed refreshing (see refresh-delayed?). If the editor is not
displayed and the editor has a maximum width, line breaks are calculated as for line-start-position.

- (send a-text paragraph-start-line paragraph) ⇒ exact non-negative integer
paragraph : exact non-negative integer

paragraph-start-position

Returns the starting position of a given paragraph. Paragraphs are numbered starting with 0.

Calling this method may force the recalculation of location information if a maximum width is set for the
editor, even if the editor currently has delayed refreshing (see refresh-delayed?). If the editor is not
displayed and the editor has a maximum width, line breaks are calculated as for line-start-position.

- (send a-text paragraph-start-position paragraph visible?) ⇒ exact non-negative integer
paragraph : exact non-negative integer
visible? = #f : boolean

285

9.32. text% 9. Editor Class Reference

If there are fewer than paragraph−1 paragraphs, the start of the last paragraph is returned.
If the paragraph starts with invisible items and visible? is not #f, the first position past the invisible
items is returned.

paste

Pastes the current contents of the clipboard into the editor.

The system may execute a paste (in response to other method calls) without calling this method. To extend
or re-implement copying, override the do-paste in text% or do-paste in pasteboard% method of an editor.

See also get-paste-text-only .

- (send a-text paste time start end) ⇒ void
time : exact integer
start : exact non-negative integer or ’end
end = ’same : exact non-negative integer or ’same

Pastes into the specified range. If start is ’end, then the current selection end position is used. If end
is ’same, then start is used for end .

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

- (send a-text paste time) ⇒ void
time = 0 : exact integer

See section 8.6 (page 152) for a discussion of the time argument. If time is outside the platform-specific
range of times, an exn:application:mismatch exception is raised.

paste-next

Editors collectively manitain a copy ring that holds up to 30 previous copies (and cuts) among the editors.
When it is called as the next method on an editor after a paste, the paste-next method replaces the text
from a previous paste with the next data in the copy ring, incrementing the ring pointer so that the next
paste-next pastes in even older data.

It is a copy “ring” because the ring pointer wraps back to the most recent copied data after the oldest
remembered data is pasted. Any cut, copy, or (regular) paste operation resets the copy ring pointer back to
the beginning.

If the previous operation on the editor was not a paste, calling paste-next has no effect.

- (send a-text paste-next) ⇒ void

position-line

Returns the line number of the line containing a given position. Lines are numbered starting with 0.

Calling this method may force the recalculation of location information if a maximum width is set for the
editor, even if the editor currently has delayed refreshing (see refresh-delayed?). If the editor is not
displayed and the editor has a maximum width, line breaks are calculated as for line-start-position.

See also paragraph-start-position, which operates on paragraphs (determined by explicit newline char-
acters) instead of lines (determined by both explicit newline characters and automatic line-wrapping).

286

9. Editor Class Reference 9.32. text%

- (send a-text position-line start at-eol?) ⇒ exact non-negative integer
start : exact non-negative integer
at-eol? = #f : boolean

See section 8.3 (page 151) for a discussion of at-eol? .

position-location

Returns the graphic locaiton of a given position.

The result is only valid when the editor is displayed (see section 8.1 (page 148)). Calling this method
may force the recalculation of location information, even if the editor currently has delayed refreshing (see
refresh-delayed?).

- (send a-text position-location start x y front? at-eol? whole-line?) ⇒ void
start : exact non-negative integer
x = #f : boxed real number or #f
y = #f : boxed real number or #f
front? = #t : boolean
at-eol? = #f : boolean
whole-line? = #f : boolean

The x box is filled with the x-location of the position start in editor coordinates, unless x is #f. The y
box is filled with the y-location (top or bottom; see below) of the position start in editor coordinates,
unless y is #f.
See section 8.3 (page 151) for a discussion of at-eol? .
If front? is not #f, the top coordinate of the location is returned, otherwise the bottom coordinate of
the location is returned.
The top y location may be different for different positions within a line when different-sized graphic
objects are used. If whole-line? is not #f, the minimum top location or maximum bottom location for
the whole line is returned in y .

position-paragraph

Returns the paragraph number of the paragraph containing a given position.

Calling this method may force the recalculation of location information if a maximum width is set for the
editor, even if the editor currently has delayed refreshing (see refresh-delayed?). If the editor is not
displayed and the editor has a maximum width, line breaks are calculated as for line-start-position.

- (send a-text position-paragraph start at-eol?) ⇒ exact non-negative integer
start : exact non-negative integer
at-eol? = #f : boolean

See section 8.3 (page 151) for a discussion of at-eol? .

read-from-file

Reads new contents for the editor from a stream. The return value is #t if there are no errors, #f otherwise.
See also section 8.2 (page 150).

The stream provides either new mappings for names in the editor’s style list, or it indicates that the editor
should share a previously-read style list (depending on how style lists were shared when the editor was
written to the stream; see also write-to-file).

287

9.32. text% 9. Editor Class Reference

• In the former case, if the overwrite-styles? argument is is #f, then each style name in the loaded file
that is already in the current style list keeps its current style. Otherwise, existing named styles are
overwritten with specifications from the loaded file.

• In the latter case, the editor’s style list will be changed to the previously-read list.

- (send a-text read-from-file stream start overwrite-styles?) ⇒ boolean
stream : editor-stream-in% object
start : exact non-negative integer or ’start
overwrite-styles? = #t : boolean

New data is inserted at the position indicated by start , or at the current position if start is ’start.

- (send a-text read-from-file stream overwrite-styles?) ⇒ boolean
stream : editor-stream-in% object
overwrite-styles? = #t : boolean

remove-clickback

Removes clickbacks. See also section 8.7 (page 153).

- (send a-text remove-clickback start end) ⇒ void
start : exact non-negative integer
end : exact non-negative integer

Removes all clickbacks installed for exacty the range start to end .

scroll-to-position

Scrolls the editor so that a given position is visible.

Scrolling is disallowed when the editor is internally locked for reflowing (see also section 8.8 (page 153)).

The system may scroll the editor without calling this method.

- (send a-text scroll-to-position start at-eol? end bias) ⇒ boolean
start : exact non-negative integer
at-eol? = #f : boolean
end = ’same : exact non-negative integer or ’same
bias = ’none : symbol in ’(start end none)

If end is ’same or equal to start , then position start is made visible. See section 8.3 (page 151) for a
discussion of at-eol? .

If end is not ’same and not the same as start , then the range start to end is made visible and at-eol?
is ignored.

When the specified range cannot fit in the visible area, bias indicates which end of the range to display.
When bias is ’same, then the start of the range is displayed. When bias is ’end, then the end of the
range is displayed. Otherwise, bias must be ’none.

If the editor is scrolled, then the editor is redrawn and the return value is #t; otherwise, the return
value is #f.

288

9. Editor Class Reference 9.32. text%

set-anchor

Turns anchoring on or off. This method can be overridden to affect or detect changes in the anchor state.

- (send a-text set-anchor on?) ⇒ void
on? : boolean

If on? is not #f, then the selection will be automatically extended when cursor keys are used, otherwise
anchoring is turned off. Anchoring is automatically turned off if the user does anything besides cursor
movements.

set-autowrap-bitmap

Sets the bitmap that is drawn at the end of a line when it is automatically line-wrapped.

The bitmap will not be modified. It may be selected into a bitmap-dc% object, but it will be selected out if
this method is called again.

Setting the bitmap is disallowed when the editor is internally locked for reflowing (see also section 8.8 (page
153)).

- (send a-text set-autowrap-bitmap bitmap) ⇒ bitmap% object or #f
bitmap : bitmap% object or #f

If bitmap is #f, no autowrap indicator is drawn (this is the default). The previously used bitmap
(possibly #f) is returned.

set-between-threshold

Sets the graphical distance used to determine the meaning of a user click.

- (send a-text set-between-threshold threshold) ⇒ void
threshold : non-negative real number

If the click falls within threshold of a positon between two items, then the click registers on the space
between the items rather than on either item.

See also get-between-threshold.

set-clickback

Installs a clickback for a given region. See also section 8.7 (page 153).

- (send a-text set-clickback start end f hilite-delta call-on-down?) ⇒ void
start : exact non-negative integer
end : exact non-negative integer
f : procedure of three arguments: a text% object, a starting position exact non-negative

integer, and an ending position exact non-negative integer
hilite-delta = #f : style-delta% object or #f
call-on-down? = #f : boolean

The callback procedure f is called when the user selects the clickback. The arguments to f are this
editor and the starting and ending range of the clickback.

289

9.32. text% 9. Editor Class Reference

The hilite-delta style delta is applied to the clickback text when the user has clicked and is still holding
the mouse over the clickback. If hilite-delta is #f, then the clickback region’s style is not changed when
it is being selected.
If call-on-down? is not #f, the clickback is called immediately when the user clicks the mouse button
down, instead of after a mouse-up event. The hilite-delta argument is not used in this case.

set-file-format

Set the format of the file saved from this editor.

The file format of an editor can be changed by the system in response to file loading and saving method
calls, and such changes do not go through this method; use on-load-file and on-save-file to monitor
such file format changes.

- (send a-text set-file-format format) ⇒ void
format : symbol in ’(standard text text-force-cr)

The legal formats are:
– ’standard — a standard editor file
– ’text — a text file
– ’text-force-cr — a text file; when writing, change automatic newlines (from word-wrapping)
into real carriage returns

set-line-spacing

Sets the spacing inserted by the editor between each line. This spacing is included in the reported height of
each line.

- (send a-text set-line-spacing space) ⇒ void
space : non-negative real number

set-overwrite-mode

Enables or disables overwrite mode. See get-overwrite-mode. This method can be overridden to affect or
detect changes in the overwrite mode.

- (send a-text set-overwrite-mode on?) ⇒ void
on? : boolean

set-paragraph-alignment

Sets a paragraph-specific horizontal alignment. The alignment is only used when the editor has a maximum
width, as set with set-max-width. Paragraphs are numbered starting with 0.

This method is experimental, and works reliably only when the paragraph is not merged or split. Merging
or splitting a paragraph with alignment settings causes the settings to be transfered unpredictably (although
other paragraphs in the editor can be safely split or merged). If the last paragraph in an editor is empty,
settings assigned to it are ignored.

- (send a-text set-paragraph-alignment paragraph alignment) ⇒ void
paragraph : exact non-negative integer
alignment : symbol in ’(left center right)

290

9. Editor Class Reference 9.32. text%

set-paragraph-margins

Sets a paragraph-specific margin. Paragraphs are numbered starting with 0.

This method is experimental, and works reliably only when the paragraph is not merged or split. Merging or
splitting a paragraph with margin settings causes the settings to be transfered unpredictably (although other
paragraphs in the editor can be safely split or merged). If the last paragraph in an editor is empty, settings
assigned to it are ignored.

- (send a-text set-paragraph-margins paragraph first-left left right) ⇒ void
paragraph : exact non-negative integer
first-left : non-negative real number
left : non-negative real number
right : non-negative real number

The first line of the paragraph is indented by first-left points within the editor. If the paragraph is
line-wrapped (when the editor has a maximum width), subsequent lines are indented by left points.
If the editor has a maximum width, the paragraph’s maximum width for line-wrapping is right points
smaller than the editor’s maximum width.

set-position

Sets the current selection in the editor.

Setting the position is disallowed when the editor is internally locked for reflowing (see also section 8.8 (page
153)).

The system may change the selection in an editor without calling this method (or any visible method).

- (send a-text set-position start end at-eol? scroll? seltype) ⇒ void
start : exact non-negative integer
end = ’same : exact non-negative integer or ’same
at-eol? = #f : boolean
scroll? = #t : boolean
seltype = ’default : symbol in ’(default x local)

If end is ’same or less than or equal to start , the current start and end positions are both set to start .
Otherwise the given range is selected.

See section 8.3 (page 151) for a discussion of at-eol? . If scroll? is not #f, then the display is scrolled
to show the selection if necessary.

The seltype argument is only used when the X Window System selection mechanism is enabled. The
possible values are:

– ’default — if this window has the keyboard focus and given selection is non-empty, make it the
current X selection

– ’x — if the given selection is non-empty, make it the current X selection
– ’local — do not change the current X selection

See also editor-set-x-selection-mode.

set-position-bias-scroll

Like set-position, but a scrolling bias can be specified.

291

9.32. text% 9. Editor Class Reference

- (send a-text set-position-bias-scroll bias start end ateol? scroll? seltype) ⇒ void
bias : symbol in ’(start-only start none end end-only)
start : exact non-negative integer
end = ’same : exact non-negative integer or ’same
ateol? = #f : boolean
scroll? = #t : boolean
seltype = ’default : symbol in ’(default x local)

The possible values for bias are:

– ’start-only — only insure that the starting position is visible
– ’start — if the range doesn’t fit in the visible area, show the starting position
– ’none — no special scrolling instructions
– ’end — if the range doesn’t fit in the visible area, show the ending position
– ’end-only — only insure that the ending position is visible

See also scroll-to-position.

set-region-data

Sets extra data associated with a given region. See section 8.2.1 (page 151)and get-region-data for more
information.

- (send a-text set-region-data start end data) ⇒ void
start : exact non-negative integer
end : exact non-negative integer
data : editor-data% object

set-styles-sticky

See get-styles-sticky for information about sticky styles.

- (send a-text set-styles-sticky sticky?) ⇒ void
sticky? : boolean

set-tabs

Sets the tabbing array for the editor.

Setting tabs is disallowed when the editor is internally locked for reflowing (see also section 8.8 (page 153)).

- (send a-text set-tabs tabs tab-width in-units?) ⇒ void
tabs : list of real numbers
tab-width = 20 : real number
in-units? = #t : boolean

The tabs list determines the tabbing array. The tabbing array specifies the x-locations where each tab
occurs. Tabs beyond the last specified tab are separated by a fixed amount tab-width. If in-units? is
not #f, then tabs are specified in canvas units; otherwise, they are specified as a number of spaces. (If
tabs are specified in spaces, then the graphic tab positions will change with the font used for the tab.)

292

9. Editor Class Reference 9.32. text%

set-wordbreak-func

Sets the word-breaking function for the editor. For information about the arguments to the word-breaking
function, see find-wordbreak.

The standard wordbreaking function uses the editor’s editor-wordbreak-map% object to determine which
characters break a word. See also editor-wordbreak-map% and set-wordbreak-map.

Since the wordbreak function will be called when line breaks are being determined (in an editor that has
a maximum width), there is a constrained set of text% methods that the wordbreak function is allowed to
invoke. It cannot invoke a member function that uses information about graphic locations or lines (which
are identified in this manual with “ The result is only valid when the editor is displayed (see section 8.1
(page 148)).”), but it can still invoke member functions that work with snips and item positions.

- (send a-text set-wordbreak-func f) ⇒ void
f : procedure of four arguments: a text% object, a boxed exact non-negative integer or

#f, another boxed exact non-negative integer or #f, and a symbol

set-wordbreak-map

Sets the wordbreaking map that is used by the standard wordbreaking function. See editor-wordbreak-map%
for more information.

- (send a-text set-wordbreak-map map) ⇒ void
map : editor-wordbreak-map% object or #f

If map is #f, then then standard map (the-editor-wordbreak-map) is used.

split-snip

Given a position, splits a snip that includes the position so that the position is between two snips. The snip
may refuse to split, although none of the built-in snip classes will ever refuse.

Splitting a snip is disallowed when the editor is internally locked for reflowing (see also section 8.8 (page
153)).

- (send a-text split-snip pos) ⇒ void
pos : exact non-negative integer

write-to-file

Writes the current editor contents to the given stream. The return value is #t if there are no errors, #f
otherwise. See also section 8.2 (page 150).

If the editor’s style list has already been written to the stream, it is not re-written. Instead, the editor
content indicates that the editor shares a previously-written style list. This sharing will be recreated when
the stream is later read.

- (send a-text write-to-file stream start end) ⇒ boolean
stream : editor-stream-out% object
start : exact non-negative integer
end = ’eof : exact non-negative integer or ’eof

293

9.32. text% 9. Editor Class Reference

If start is 0 and end is ’eof negative, then the entire contents are written to the stream. If end is
’eof, then the contents are written from start until the end of the editor. Otherwise, the contents of
the given range are written.

- (send a-text write-to-file stream) ⇒ boolean
stream : editor-stream-out% object

294

10. Editor Procedures

10.1 Editors

add-editor-keymap-functions

Given a keymap% object, the keymap is loaded with mappable functions that apply to all editor<%> objects:

• “copy-clipboard”
• “copy-append-clipboard”
• “cut-clipboard”
• “cut-append-clipboard”
• “paste-clipboard”
• “delete-selection”
• “clear-selection”
• “undo”
• “redo”
• “select-all”

- (add-editor-keymap-functions keymap) ⇒ void
keymap : keymap% object

add-pasteboard-keymap-functions

Given a keymap% object, the table is loaded with mappable functions that apply to pasteboard% objects.
Currently, there are no such functions.

See also add-editor-keymap-functions.

- (add-pasteboard-keymap-functions keymap) ⇒ void
keymap : keymap% object

add-text-keymap-functions

Given a keymap% object, the table is loaded with functions that apply to all text% objects:

• “forward-character”
• “backward-character”
• “previous-line”
• “next-line”
• “previous-page”
• “next-page”
• “forward-word”

295

10.1. Editors 10. Editor Procedures

• “backward-word”
• “forward-select”
• “backward-select”
• “select-down”
• “select-up”
• “select-page-up”
• “select-page-down”
• “forward-select-word”
• “backward-select-word”
• “beginning-of-file”
• “end-of-file”
• “beginning-of-line”
• “end-of-line”
• “select-to-beginning-of-file”
• “select-to-end-of-file”
• “select-to-beginning-of-line”
• “select-to-end-of-line”
• “copy-clipboard”
• “copy-append-clipboard”
• “cut-clipboard”
• “cut-append-clipboard”
• “paste-clipboard”
• “delete-selection”
• “delete-previous-character”
• “delete-next-character”
• “clear-selection”
• “delete-to-end-of-line”
• “delete-next-word”
• “delete-previous-word”
• “delete-line”
• “undo”
• “redo”

See also add-editor-keymap-functions.

- (add-text-keymap-functions keymap) ⇒ void
keymap : keymap% object

append-editor-font-menu-items

Appends menu items to a given menu (not a popup menu) to implement a standard set of font-
manipulation operations, such as changing the font face or style. The callback for each menu item uses
get-edit-target-object in top-level-window<%> (finding the frame by following a chain of parents until
a frame is reached); if the result is an editor<%> object, change-style in editor<%> is called on the editor.

- (append-editor-font-menu-items menu) ⇒ void
menu : menu% or popup-menu% object

296

10. Editor Procedures 10.1. Editors

append-editor-operation-menu-items

Appends menu items to a given menu (not a popup menu) to implement the standard editor operations, such
as cut and paste. The callback for each menu item uses get-edit-target-object in top-level-window<%>
(finding the frame by following a chain of parents until a frame is reached); if the result is an editor<%>
object, do-edit-operation in editor<%> is called on the editor.

- (append-editor-operation-menu-items menu text-only?) ⇒ void
menu : menu% or popup-menu% object
text-only? = #t : boolean

If text-only? is #f, then menu items that insert non-text snips (such as Insert Image...) are appended
to the menu.

current-text-keymap-initializer

Parameter that specifies a keymap-initialization procedure. This procedure is called to initialize the keymap
of a text-field% object or an text% object created by graphical-read-eval-print-loop.

The initializer takes a keymap object and returns nothing. The default initializer chains the given keymap
to an internal keymap that implements standard text editor keyboard and mouse bindings for cut, copy,
paste, undo, and select-all. The right mouse button is mapped to popup an edit menu when the button is
released. Under X, start-of-line (Ctl-A) and end-of-line (Ctl-E) are also mapped.

- (current-text-keymap-initializer) ⇒ procedure of one argument: a keymap% object

Returns the current initializer procedure.

- (current-text-keymap-initializer proc) ⇒ void
proc : procedure of one argument: a keymap% object

Sets the initializer procedure.

editor-set-x-selection-mode

- (editor-set-x-selection-mode on) ⇒ void
on : boolean

Under X Windows, editor selections conform to the X Windows selection conventions instead of a
clipboard-based convention. If on is #f, the behavior is switched to the clipboard-based convention
(where copy must be explicitly requested before a paste).

get-the-editor-data-class-list

- (get-the-editor-data-class-list) ⇒ editor-data-class-list<%> object

Gets the editor data class list instance for the current eventspace.

get-the-snip-class-list

- (get-the-snip-class-list) ⇒ snip-class-list<%> object

Gets the snip class list instance for the current eventspace.

297

10.1. Editors 10. Editor Procedures

read-editor-global-footer

- (read-editor-global-footer in) ⇒ boolean
in : editor-stream-in% object

See read-editor-global-header. Call read-editor-global-footer even if read-editor-global-header
returns #f.

read-editor-global-header

- (read-editor-global-header in) ⇒ boolean
in : editor-stream-in% object

Reads data from in to initialize for reading editors from the stream. The return value is #t if
the read succeeds, or #f otherwise. One or more editors can be read from the stream by call-
ing the editor’s read-from-file method. (The number of editors to be read must be known
by the application beforehand.) When all editors are read, call read-editor-global-footer.
Calls to read-editor-global-header and read-editor-global-footer must bracket any call to
read-from-file, and only one stream at a time can be read using these methods or written using
write-editor-global-header and write-editor-global-footer.

the-editor-wordbreak-map

See editor-wordbreak-map%.

- the-editor-wordbreak-map ⇒ editor-wordbreak-map% object
Initial value : basic wordbreak mapping

the-style-list

See style-list%.

- the-style-list ⇒ style-list% object
Initial value : empty style list

write-editor-global-footer

- (write-editor-global-footer out) ⇒ boolean
out : editor-stream-out% object

See write-editor-global-header. Call write-editor-global-footer even if write-editor-global-header
returns #f.

write-editor-global-header

- (write-editor-global-header out) ⇒ boolean
out : editor-stream-out% object

Writes data to out to initialize for writing editors to the stream. The return value is #t if the
write succeeds, or #f otherwise. One or more editors can be written to the stream by calling the
editor’s write-to-file method. When all editors are written, call write-editor-global-footer.
Calls to write-editor-global-header and write-editor-global-footer must bracket any call to
write-to-file, and only one stream at a time can be written using these methods or read using
read-editor-global-header and read-editor-global-footer.

298

10. Editor Procedures 10.1. Editors

See also section 8.2.

299

Part IV

Appendices

300

11. Running MrEd

MrEd accepts a number of command-line flags. Under MacOS, a user can specify command-line flags by
holding down the Command key while starting MrEd, which provides a dialog for entering the command
line. Dragging files onto the MrEd icon in MacOS is equivalent to providing each file’s name on the command
line preceded by -f, so each file is loaded after MrEd starts. When files are dragged onto MrEd with the
Command key pressed, the command line specified in the dialog is appended to the implicit command-line
for loading the files.

MrEd accepts the following flags (in addition to the X-specific flags described in §11.1):

• Startup file and expression flags:

* -e expr : Evaluates expr after MrEd starts.
* -f file : Loads file after MrEd starts.
* -d file : Uses load/cd to load file after MrEd starts.
* -F : Loads each remaining argument as a file after MrEd starts.
* -D : Loads each remaining argument as a file using load/cd after MrEd starts.
* -l file : Loads the MzLib library file after MrEd starts.
* -L file collect : Loads the library file in the collection collect after MrEd starts.
* -r file or --script file : Use this flag for MrEd-based scripts. It mutes the startup banner
printout, suppresses the graphical read-eval-print loop, and loads file after MrEd starts. No
argument after file is treated as a flag. The -r or --script flag is a shorthand for -fmv-.

* -i file or --script-cd file : Same as -r file or --script file, except that the current directory
is changed to file’s directory before it is loaded. The -i or --script-cd flag is a shorthand for
-dmv-.

* -z or --stdio : Calls read-eval-print loop (using the current input and output), and sup-
presses the graphical read-eval-print loop. The -z or --stdio flag is shorthand for -ve
"(read-eval-print-loop)".

* -w or --awk : Loads the awk.ss library after MrEd starts.
* -k n m : Loads code embedded in the executable from file position n to m after MrEd starts. This
flag is useful for creating a stand-alone binary by appending code to the normal MrEd executable.
See PLT mzc: MzScheme Compiler Manual for more details.

• Initialization flags:

* -x or --no-lib-path : Suppresses the initialization of current-library-collection-paths (as
described in Library Collections and MzLib, §15 in PLT MzScheme: Language Manual).

* -q or --no-init-file : Suppresses loading the user’s initialization file, as described below.

• Language setting flags:

* -g or --case-sens : Creates an initial namespace where identifiers and symbols are case-sensitive.
* -c or --esc-cont : Creates an initial namespace where call-with-current-continuation and
call/cc capture escape continuations (like call/ec) instead of full continuations.

* -s or --set-undef : Creates an initial namespace where set! will successfully mutate an unde-
fined global variable (implicitly defining it).

302

11. Running MrEd

* -a or --no-auto-else : Creates an initial namespace where falling through all of the clauses in
a cond or case expression raises the exn:else exception.

* -n or --no-key : Creates an initial namespace where keywords are not enforced.
* -y or --hash-percent-syntax : Creates an initial namespace that includes only the #% syntactic
forms.

• Miscellaneous flags:

* -- : No argument following this flag is used as a flag.
* -m or --mute-banner : Suppresses the startup banner text.
* -v or --version : Suppresses the graphical read-eval-print loop and prints version information
to stdout.

* -V or --no-yield : Suppresses the graphical read-eval-print loop, prints version information
to stdout, and suppresses the normal yield that follows command-line expression evaluation and
file loading.

* -h or --help : Shows information about MrEd’s command-line flags and then exits; ignoring
other flags.

* -p or --persistent : Catches the SIGDANGER (low page space) signal and ignores it (AIX
only).

* -Rfile or --restore file : Restores a saved image (see Images, §14.8 in PLT MzScheme: Language
Manual). Extra arguments after file are returned as a vector of strings to the continuation of the
write-image-to-file call that created the image.

Extra arguments following the last flag are put into the Scheme global variable argv as a vector of strings.
The name used to start MrEd is put into the global variable program as a string.

Multiple single-letter flags (the ones preceded by a single dash) can be collapsed into a single flag by con-
catenating the letters, as long as the the first flag is not --. The arguments for each flag are placed after
the collapsed flags (in the order of the flags). For example,

-vfme file expr

and

-v -f file -m -e expr

are equivalent.

The current-library-collection-paths parameter is initialized (as described in Library Collections and
MzLib, §15 in PLT MzScheme: Language Manual) before any expression or file is evaluated or loaded, unless
the -x or --no-lib-path flag is specified.

Unless the -q or --no-init-file flag is specified, a user initialization file is loaded after
current-library-collection-paths parameter is initialized and before any other expression or file is
evaluated or loaded. The path to the user initialization file is obtained from MzScheme’s find-system-path
procedure using ’init-file.

Expressions and files are evaluated and loaded in order that they are provided on the command line. If an
error occurs, the remaining expressions and files are skipped. The thread that loads the files and evaluates
the expressions is the main thread. When the main thread terminates (or is killed), the MrEd process
exits. The main thread is also the handler thread of the initial eventspace.

After the command-line files and expressions are loaded and evaluated, the main thread calls
graphical-read-eval-print-loop, unless the -v, --version, -r, --script, -i, --script-cd flag is
specified. The -z or --stdio flag also suppresses the call to graphical-read-eval-print-loop, but

303

11.1. X Window System Flags 11. Running MrEd

it calls read-eval-print-loop, instead. (The other flags, such as -v, have no effect on this call to
read-eval-print-loop.)

Finally, after the command-line files and expressions are loaded and evaluated, and after
graphical-read-eval-print-loop or read-eval-print-loop is called, the main thread evaluates (yield
’wait). The -V or --no-yield flag suppresses this call to yield.

The exit status for the MrEd process indicates an error if an error occurs evaluating or loading a command-
line expression or file and graphical-read-eval-print-loop is not called afterwards, or if the default exit
handler is called with an exact integer between 1 and 255.

Evaluating command-line expressions with -f or -v is different from evaluating the same expressions within
the window provided by graphical-read-eval-print-loop. The graphical-read-eval-print-loop win-
dow creates a new eventspace (and thus a new thread) for evaluating expressions entered into the window.
One consequence of this convention is that terminating the evaluation thread (e.g., with (kill-thread
(current-thread))) does not cause MrEd to exit, because the evaluation thread is not MrEd’s main thread.1

In contrast, MzScheme’s read-eval-print-loop always evaluates expressions within the thread that calls
read-eval-print-loop. Using the -z or --stdio flag calls read-eval-print-loop in the main thread,
so (kill-thread (current-thread)) in that case does exit MrEd. Furthermore, the main thread is the
handler thread for the initial eventspace; thus, windows created in read-eval-print-loop without changing
the eventspace never receive events unless (yield) is called explicitly.

11.1 X Window System Flags

Under Unix/X, the following standard X Window System flags are recognized (but not necessarily im-
plemented): -display (1 argument), -geometry (1 argument), -bg (1 argument), -background (1 argu-
ment), -fg (1 argument), -foreground (1 argument), -fn (1 argument), -font (1 argument), -iconic
(0 arguments), -name (1 argument), -rv (0 argument), -reverse (0 arguments), -rv (0 arguments),
-selectionTimeout (1 argument), -synchronous (0 arguments), -title (1 argument), -xnllanguage (1
argument), and -xrm (1 argument).

All X flags must precede all other flags and arguments.

11.2 Initial Eventspace

MrEd creates an initial eventspace with a parameterization obtained from the parameterizaton branch han-
dler in the initial parameterization. The handler thread for this eventspace is MrEd’s main thread; if this
thread is killed, then the MrEd process exits.

1However, the exit handler is not changed, so evaluating (exit) does exit MrEd unless the exit handler is changed before
calling graphical-read-eval-print-loop.

304

Index

<<, 207
>>, 203
--, 303
--awk, 302
--case-sens, 302
--esc-cont, 302
--hash-percent-syntax, 303
--help, 303
--mute-banner, 303
--no-auto-else, 303
--no-init-file, 302
--no-key, 303
--no-lib-path, 302
--no-yield, 303
--persistent, 303
--restore, 303
--script, 302
--script-cd, 302
--set-undef, 302
--stdio, 302
--version, 303
-D, 302
-F, 302
-L, 302
-R, 303
-V, 303
-a, 303
-background, 304
-bg, 304
-c, 302
-d, 302
-display, 304
-e, 302
-f, 302
-fg, 304
-fn, 304
-font, 304
-foreground, 304
-g, 302
-geometry, 304
-h, 303
-i, 302
-iconic, 304
-k, 302
-l, 302
-m, 303
-n, 303
-name, 304
-p, 303

-q, 302
-r, 302
-reverse, 304
-rv, 304
-s, 302
-selectionTimeout, 304
-synchronous, 304
-title, 304
-v, 303
-w, 302
-x, 302
-xnllanguage, 304
-xrm, 304
-y, 303
-z, 302
“About” boxes, 58
“Help” menus, 58
mred^, 1

accept-drop-files, 82
accept-tab-focus, 28
add, 197, 248
add-canvas, 159
add-child, 20
add-color<%>, 158
add-editor-keymap-functions, 295
add-function, 212
add-pasteboard-keymap-functions, 295
add-selected, 219
add-text-keymap-functions, 295
add-type, 36
add-undo, 159
adjust-cursor, 160, 198, 233
administrators, 148, 166
’after, 271
after-change-style, 265
after-delete, 219, 265
after-edit-sequence, 160
after-insert, 219, 265
after-interactive-move, 220
after-interactive-resize, 220
after-load-file, 160
after-move-to, 220
after-new-child, 20
’after-or-none, 271
after-resize, 221
after-save-file, 160
after-select, 221
after-set-position, 265

305

INDEX

after-set-size-constraint, 266
alignment, 249
allow-scroll-to-last, 192
allow-tab-exit, 192
’alt, 72
’any, 62
append, 53, 56
append-editor-font-menu-items, 296
append-editor-operation-menu-items, 297
area-container-window<%>, 23
area-container<%>, 20
area<%>, 18
argv, 303
’arrow, 39
auto-wrap, 161

’backward, 272
bad?, 206, 208
’base, 253–261
basic-style, 262
’bdiagonal-hatch, 108–110
’before, 271
’before-or-none, 271
begin-busy-cursor, 95
begin-container-sequence, 20
begin-edit-sequence, 161
begin-write-header-footer-to-file, 161
bell, 95
’bevel, 129, 130
bitmap DC, 101
bitmap-dc%, 106
bitmap%, 104
bitmaps, 210
blink-caret, 162, 234
blue, 111
’bmp, 39, 105, 106, 172, 177, 210, 211
’bold, 122–125, 127, 252, 254, 258, 261
’border, 25, 28, 46, 67, 82
border, 20
border-visible?, 198
’both, 44, 78
’bottom, 22, 70, 71, 249, 254, 255, 258
break-sequence, 212
brush-list%, 110
brush%, 107
bufers

custom data, 151
buffers

method table, 155
’bullseye, 39
’butt, 129, 130
button, 6
’button, 25, 38
button-changed?, 62

button-down?, 62
button-up?, 62
button%, 24

call-as-primary-owner, 192
call-clickback, 266
call-function, 212
call-with-current-continuation, 302
call/cc, 302
’can-append, 236, 238
can-change-style?, 266
can-close?, 77
can-delete?, 221, 266
can-do-edit-operation?, 162, 234
can-exit?, 78
can-insert?, 221, 267
can-interactive-move?, 222
can-interactive-resize?, 222
can-load-file?, 162
can-move-to?, 222
can-resize?, 222
can-save-file?, 162
can-select?, 223
can-set-size-constraint?, 267
’cancel, 91
canvas, 6

scroll bars, 191
canvas<%>, 25
canvas%, 28
canvases, 191
caret, 178, 183, 239

blinking, 162, 234
moving, 282

’caret, 209, 273
caret-hidden?, 267
’center, 11, 22, 249, 253, 255, 258, 290
center, 78
chain-to-keymap, 213
’change-alignment, 254, 259
’change-bigger, 255, 259
’change-bold, 254, 258
change-children, 21
’change-family, 254, 259
’change-normal, 254, 258
’change-normal-color, 254, 258
’change-nothing, 254, 258
’change-size, 255, 259
’change-smaller, 255, 259
’change-style, 254, 259
change-style, 162, 223, 267
’change-toggle-style, 254, 259
’change-toggle-underline, 254, 258
’change-toggle-weight, 254, 259
’change-underline, 255, 259

306

INDEX

’change-weight, 254, 259
’check, 32
check, 34
check box, 6
’check-box, 38
check-box%, 32
check-for-break, 92
checkable menu item, 8
checkable-menu-item%, 33
’choice, 34, 38
choice item, 6
choice%, 34
’clear, 162, 164, 234
clear, 56, 112, 163
clear-undos, 163
clickbacks, 153, 266, 288, 289
client->screen, 82
clipboard-client%, 36
clipboard<%>, 35
collapse, 255
color-database<%>, 112
color%, 110
colors, 158, 217
command, 38, 71
containees, 6
container-size, 21
containers, 5
control-event%, 38
control<%>, 37
controls, 6
convert, 262
’copy, 162, 164, 172, 173, 176, 178, 182, 234
copy, 163, 234, 255, 268
copy-from, 111, 134
copy-self, 163
copy-self-to, 164, 224, 268
create-status-line, 42
’cross, 39
’cross-hatch, 108–110
’crossdiag-hatch, 108–110
’ctl, 72
’ctl-m, 72
current-eventspace, 92
current-library-collection-paths, 302, 303
current-ps-setup, 141
current-text-keymap-initializer, 297
cursor%, 39
’cut, 162, 164, 234
cut, 164, 269

dc-location-to-editor-location, 164
dc<%>, 112
’decorative, 122–126, 142, 250, 256, 259, 260

’default, 122–126, 142, 250, 256, 259, 260, 291,
292

delete, 53, 59, 224, 269
delete-child, 21
deltas, see style deltas
device contexts, see DCs
dialog%, 39
dialogs

modal, 13
’display, 184, 190, 245
displays, 148, 191

standard, 191
do-copy, 224, 270
do-edit-operation, 164, 234
do-paste, 224, 270
’dot, 128, 129, 131
’dot-dash, 128, 129, 131
’down, 282
dragging?, 62
draw, 235
draw-arc, 112
draw-bitmap, 113
draw-bitmap-section, 113
draw-ellipse, 114
draw-line, 114
draw-lines, 114
draw-point, 115
draw-polygon, 115
draw-rectangle, 115
draw-rounded-rectangle, 115
draw-spline, 116
draw-text, 116
drawing, 101

outlines, 108

editor canvas, 6
editor-admin%, 188
editor-canvas%, 191
editor-data-class-list<%>, 197
editor-data-class%, 196
editor-data%, 195
editor-location-to-dc-location, 165
editor-set-x-selection-mode, 297
editor-snip-editor-admin<%>, 203
editor-snip%, 198
editor-stream-in-base%, 205, 206
editor-stream-in-string-base%, 206
editor-stream-in%, 203
editor-stream-out-base%, 208, 209
editor-stream-out-string-base%, 209
editor-stream-out%, 207
editor-wordbreak-map%, 209
editor<%>, 159
editors, 146, 148, 159

307

INDEX

clearing, 163
clearing undos, 163
coordinates, 164, 165, 171, 174
copying, 163, 164, 224, 268
cursors, 160
custom data, 151, 170, 186, 275, 292
events, 175–177, 228, 283
flashing, 273
hooks, 160, 175, 176, 219–222, 229, 230, 265–

267, 283, 284
locking, 172, 174
modified, 173, 186
multiple changes, 161
nested, 171, 198
pasteboard, 219
saving, 151
tabs, 276, 292
text, 264
undo depth, 169, 185

enable, 50, 58, 68, 82
’end, 183, 191, 245, 282, 288, 292
end-busy-cursor, 95
end-container-sequence, 21
end-doc, 117
end-edit-sequence, 165
end-of-line ambiguity, 151
’end-only, 292
end-page, 117
end-write-header-footer-to-file, 165
’enter, 61, 63, 65
entering?, 62
eol ambiguity, 151
equal?, 255
erase, 224, 270
event-dispatch-handler, 92
event%, 38, 41, 46, 61, 70
events

delivery, 12
dispatching, 13
explcitly queued, 14
timer, 14

eventspace-shutdown?, 93
eventspace?, 93
’extended, 52, 89

’fdiagonal-hatch, 108–110
’file, 135, 137
file format, 150
files

formats, 173, 274, 290
inserting, 172
loading, 160, 162, 176
names, 184
saving, 160, 162, 178

find, 197, 248
find-color, 112
find-family-default-font-id, 126
find-first-snip, 166
find-graphical-system-path, 95
find-line, 270
find-named-style, 262
find-next-selected-snip, 225
find-or-create-brush, 110
find-or-create-font, 124
find-or-create-font-id, 126
find-or-create-join-style, 262
find-or-create-pen, 131
find-or-create-style, 262
find-position, 197, 248, 271
find-position-in-line, 271
find-scroll-line, 166
find-scroll-step, 235
find-snip, 225, 271
find-string, 56, 272
find-string-all, 272
find-system-path, 303
find-wordbreak, 272
flash-off, 273
flash-on, 273
flush-display, 141
focus, 83
font-list%, 124
font-name-directory<%>, 125
font%, 122
footers, 151, 161, 165
force-display-focus, 193
forget-notification, 263
’forward, 272
frame%, 41

gauge, 6
gauge%, 45
get, 158, 204, 217
get-active-canvas, 166
get-admin, 166, 235
get-afm-path, 134
get-align-top-line, 199
get-alignment, 21, 249
get-alignment-off, 255
get-alignment-on, 255
get-alt-down, 46, 63
get-anchor, 274
get-b, 158, 218
get-background, 117, 249
get-background-add, 255
get-background-mult, 256
get-base-style, 249
get-between-threshold, 274

308

INDEX

get-bitmap, 106
get-bounding-box, 138
get-brush, 117
get-canvas, 166
get-canvases, 166
get-cap, 129
get-center, 225
get-char-height, 117
get-char-width, 117
get-character, 274
get-children, 22
get-choices-from-user, 89
get-classname, 196, 246
get-client-size, 83
get-clipboard-bitmap, 35
get-clipboard-client, 35
get-clipboard-data, 35
get-clipboard-string, 35
get-clipping-region, 117
get-color, 108, 129
get-color-from-user, 89
get-command, 134
get-control-down, 47, 63
get-control-font, 23
get-count, 236
get-cursor, 83
get-data, 37, 53
get-dataclass, 195
get-dc, 26, 138, 167, 188, 243
get-delta, 250
get-depth, 105
get-descent, 167
get-direction, 70
get-display-depth, 141
get-display-size, 141
get-double-click-interval, 213
get-dragable, 225
get-edit-target-object, 78
get-edit-target-window, 78
get-editor, 76, 193, 199, 243
get-editor-margin, 134
get-end-position, 274
get-event-type, 38, 63, 70
get-eventspace, 78
get-exact, 204
get-extent, 167, 199, 236
get-face, 123, 250, 256
get-face-list, 141
get-face-name, 126
get-family, 123, 126, 250, 256
get-family-builtin-face, 142
get-file, 89, 134, 167
get-file-format, 274

get-file-list, 90
get-filename, 167, 210
get-filetype, 211
get-first-visible-item, 54
get-fixed, 204
get-flags, 236
get-flattened-text, 168
get-focus-object, 78
get-focus-snip, 168
get-focus-window, 79
get-font, 118, 250
get-font-from-user, 90
get-font-id, 123, 126
get-foreground, 250
get-foreground-add, 256
get-foreground-mult, 257
get-frame, 59
get-g, 158, 218
get-graphical-min-size, 18
get-height, 83, 105
get-help-string, 50
get-inactive-caret-threshold, 168
get-inexact, 204
get-inset, 200
get-item-label, 69
get-item-plain-label, 69
get-items, 60
get-join, 129
get-key-code, 47
get-keymap, 168
get-label, 51, 83
get-label-font, 23
get-label-position, 23
get-left-down, 63
get-level-2, 134
get-line-spacing, 274
get-load-overwrites-styles, 168
get-map, 210
get-margin, 135, 200
get-max-height, 168, 200
get-max-undo-history, 169
get-max-view, 189
get-max-view-size, 169
get-max-width, 169, 200
get-menu-bar, 42
get-meta-down, 48, 63
get-middle-down, 63
get-min-height, 169, 200
get-min-width, 169, 201
get-mode, 135
get-name, 250
get-next, 196
get-num-scroll-steps, 237

309

INDEX

get-number, 56, 69
get-options, 135
get-orientation, 135
get-overwrite-mode, 274
get-panel-background, 96
get-paper-name, 135
get-parent, 18, 59
get-paste-text-only, 169
get-pen, 118
get-pixel, 107
get-plain-label, 51, 84
get-point-size, 124
get-popup-target, 67
get-position, 71, 275
get-post-script-name, 127
get-preview-command, 135
get-ps-setup-from-user, 90
get-r, 158, 218
get-range, 45
get-region-data, 275
get-resource, 96
get-right-down, 63
get-scaling, 135
get-screen-name, 127
get-scroll-page, 29
get-scroll-pos, 29
get-scroll-range, 29
get-scroll-step, 225
get-scroll-step-offset, 237
get-selection, 56, 69
get-selection-visible, 226
get-selections, 54
get-shift-down, 49, 64
get-shift-style, 250
get-shortcut, 71
get-size, 84, 118, 251
get-size-add, 257
get-size-mult, 257
get-snip, 203
get-snip-data, 170
get-snip-location, 170
get-snip-position, 275
get-snip-position-and-location, 275
get-snipclass, 237
get-space, 170
get-start-position, 275
get-stipple, 109, 129
get-string, 57, 204, 209
get-string-selection, 57
get-style, 109, 124, 129, 237, 251
get-style-list, 170
get-style-off, 257
get-style-on, 257

get-styles-sticky, 276
get-tabs, 276
get-text, 238, 276
get-text-background, 118
get-text-descent, 251
get-text-extent, 118
get-text-foreground, 119
get-text-from-user, 91
get-text-height, 251
get-text-mode, 119
get-text-space, 251
get-text-width, 251
get-the-editor-data-class-list, 197, 297
get-the-snip-class-list, 247, 297
get-tight-text-fit, 201
get-time-stamp, 41
get-top-level-edit-target-window, 93
get-top-level-focus-window, 93
get-top-level-window, 19
get-top-level-windows, 93
get-top-line-base, 277
get-translation, 136
get-transparent-text-backing, 251
get-transparent-text-backing-off, 257
get-transparent-text-backing-on, 257
get-types, 37
get-underlined, 124, 252
get-underlined-off, 257
get-underlined-on, 258
get-value, 32, 45, 73, 76
get-version, 246
get-view, 189, 243
get-view-size, 170, 243
get-view-start, 29
get-virtual-size, 30
get-visible-line-range, 277
get-visible-position-range, 277
get-weight, 124, 252
get-weight-off, 258
get-weight-on, 258
get-width, 84, 105, 129
get-window-text-extent, 96
get-wordbreak-map, 277
get-x, 49, 64, 84, 132
get-x-shortcut-prefix, 72
get-y, 49, 64, 84, 132
’gif, 39, 105, 172, 177, 210, 211
’global, 184, 190, 245
global-to-local, 171
grab-caret, 190
graphical-read-eval-print-loop, 96, 303, 304
green, 111
grow-box-spacer-pane%, 46

310

INDEX

’guess, 162, 172, 173, 176, 178, 182

’hand, 39
handle-key-event, 213
handle-mouse-event, 213
’handles-events, 237, 239
’hard-newline, 237
has-focus?, 85
has-status-line?, 42
headers, 151, 161, 165, 180, 188
’height-depends-on-x, 237
’height-depends-on-y, 237
hide-caret, 277
’hide-hscroll, 191
’hide-vscroll, 191
’home, 282
horiz-margin, 74
’horizontal, 23, 24, 29, 31, 32, 45, 68, 70, 71, 73,

78
’horizontal-hatch, 108–110
horizontal-pane%, 46
horizontal-panel%, 46
’hscroll, 28, 30, 75
hyper-text, 153

’ibeam, 39
iconize, 43
image-snip%, 210
images, 210
’immediate, 184, 190, 245
index-to-style, 263
init-auto-scrollbars, 30
’init-file, 95
init-manual-scrollbars, 30
insert, 171, 226, 249, 278
insert-box, 171
insert-file, 172
’insert-image, 162, 164, 234
insert-image, 172
’insert-pasteboard-box, 162, 164, 234
’insert-text-box, 162, 164, 234
insertion mode, 274
interactive-adjust-mouse, 226
interactive-adjust-move, 227
interactive-adjust-resize, 227
intersect, 138
interval, 77
invalidate-bitmap-cache, 172
’invisible, 236
is-busy?, 97
is-checked?, 34
is-color-display?, 142
is-color?, 105
is-deleted?, 59

is-empty?, 139
is-enabled?, 51, 59, 69, 85
is-iconized?, 43
is-join?, 252
is-locked?, 172
is-modified?, 173
is-owned?, 238
is-selected?, 54, 227
is-shown?, 85
’is-text, 236
’italic, 122–125, 127, 251, 254, 257, 260, 261
items, 148

’jpeg, 105, 172, 177, 210, 211
jump-to, 204, 207

key names, 214
key-event%, 46
keyboard events

overview, 12
keyboard focus, 78, 79

editor, see caret
last active, 78
navigation, 13, 28, 80, 192
notification, 85, 176, 194
overview, 12
setting, 83
snips, 168

keyboard mapping, 212
keymap%, 212
keymaps, 168, 185, 212

chaining, 213, 216
in an editor, 219, 264
standard editor functions, 295

’kill, 162, 164, 234
kill, 173, 280

label->plain-label, 97
labelled-menu-item<%>, 50
’landscape, 135, 137
’large, 44
last-line, 280
last-paragraph, 280
last-position, 280
lazy-refresh, 193
’leave, 61, 63, 65
leaving?, 64
’left, 11, 22, 62, 282, 290
’left-down, 61, 63, 65
’left-up, 61, 63, 65
’light, 122–125, 127, 252, 254, 258, 261
’line, 209, 273, 283
line breaking, 209, 277, 293
’line-down, 70, 71

311

INDEX

line-end-position, 281
line-length, 281
line-location, 281
line-paragraph, 282
line-start-position, 282
’line-up, 70, 71
list box, 6
’list-box, 38, 52
’list-box-dclick, 38, 52
list-box%, 52
list-control<%>, 55
load-file, 105, 173, 211
’local, 291, 292
local-to-global, 174
locations (graphic), 148
lock, 174
’long-dash, 128, 129, 131
lower, 227

make-eventspace, 94
map-function, 214
match?, 238
maximize, 43
’mdi-child, 42
’mdi-parent, 42
menu, 8
’menu, 33, 38, 60
menu bar, 8
menu item, 8
menu-bar%, 58
menu-item-container<%>, 60
menu-item<%>, 59
menu-item%, 60
’menu-popdown, 67
’menu-popdown-none, 67
menu%, 58
menus

standard editor items, 162, 164
merge-with, 238
message, 6
message-box, 91
message%, 60
’meta, 72
’middle, 62
’middle-down, 61, 63, 65
’middle-up, 61, 63, 65
min-client-height, 26
min-client-width, 26
min-height, 19
min-width, 19
’miter, 129, 130
’modern, 122–126, 142, 250, 256, 259, 260
’motion, 61, 63, 65
mouse events

overview, 12
mouse mapping, see keyboard mapping
mouse-event%, 61
move, 79, 228
move-position, 282
move-to, 228
moving?, 64
mred@, 1
mult-color<%>, 217
’multiple, 52, 75, 89

namespaces
initial, 1

needs-update, 174, 190, 243
new-named-style, 263
’newline, 237
next, 238
’no, 91
’no-caption, 40, 42
’no-caret, 152, 168, 178, 181, 185, 235
’no-hscroll, 191
’no-resize-border, 42
no-selected, 228
’no-system-menu, 42
’no-vscroll, 191
’none, 183, 191, 245, 288, 292
’normal, 122–125, 127, 251, 252, 254, 257, 258,

260, 261
notify, 77
notify-on-change, 263
nth, 197, 248
num-scroll-lines, 174
number, 197, 248, 263
number-of-visible-items, 54

’odd-even, 115, 139
’ok, 91
’ok-cancel, 91
ok?, 39, 106, 111, 119, 205, 207
on-activate, 79
on-change, 175
on-change-style, 283
on-char, 26, 175, 193, 239
on-close, 79
on-default-char, 175, 283
on-default-event, 175, 228
on-delete, 229, 283
on-demand, 51, 60
on-display-size, 175
on-double-click, 229
on-drop-file, 85
on-edit-sequence, 176
on-event, 27, 176, 193, 239
on-exit, 79

312

INDEX

on-focus, 85, 176, 194
on-insert, 229, 284
on-interactive-move, 229
on-interactive-resize, 230
on-load-file, 176
on-local-char, 177
on-local-event, 177
on-menu-char, 43
on-message, 80
on-move, 85
on-move-to, 230
on-new-box, 177
on-new-image-snip, 177
on-new-string-snip, 284
on-new-tab-snip, 284
on-paint, 27, 177, 194
on-replaced, 37
on-resize, 230
on-save-file, 178
on-scroll, 27, 194
on-select, 230
on-set-size-constraint, 284
on-size, 86, 194
on-subwindow-char, 40, 43, 86
on-subwindow-event, 86
on-superwindow-enable, 86
on-superwindow-show, 87
on-system-menu-char, 80
on-tab-in, 27
on-traverse-char, 80
’opaque, 108–110, 113, 114
overwrite mode, 274
own-caret, 178, 239

’page, 283
’page-down, 70, 71
’page-up, 70, 71
pane, 6
pane%, 46, 66, 81
panel, 6
panel%, 46, 66, 82
paragraph-end-line, 285
paragraph-end-position, 285
paragraph-start-line, 285
paragraph-start-position, 285
partial-offset, 240
’paste, 162, 164, 234
paste, 179, 286
paste-next, 286
’pasteboard, 171, 177
pasteboard editor, 146
pasteboard%, 219
pen-list%, 131
pen%, 128

’pict, 39, 105, 106, 172, 177, 210, 211
pictures, 210
place-children, 22
’plain, 73
platform, 95
play-sound, 97
point%, 131
popup menu, 8
popup-menu, 27, 190, 244
popup-menu%, 67
’portrait, 135, 137
position-line, 286
position-location, 287
position-paragraph, 287
positions (text), 148
post-script-dc%, 132
’postscript, 179
PostScript DC, 101
’preview, 135, 137
previous, 240
print, 179
print-to-dc, 179
’printer, 135, 137
printer DC, 101
printer-dc%, 133
printing, 179
program, 303
’projecting, 129, 130
ps-setup%, 133
put, 207
put-file, 91, 180
put-fixed, 208

queue-callback, 94

radio box, 6
radio buttons, 6
’radio-box, 38, 68
radio-box%, 67
raise, 231
read, 196, 206, 246, 249
read-editor-global-footer, 298
read-editor-global-header, 298
read-eval-print-loop, 304
read-footer-from-file, 180
read-from-file, 180, 287
read-header, 247
read-header-from-file, 180
reading-version, 247
recounted, 244
red, 111
’redo, 162, 164, 234
redo, 181
reflow-container, 22

313

INDEX

refresh, 87, 181
refresh-delayed?, 181, 190
region%, 138
register-collecting-blit, 142
release-from-owner, 240
release-snip, 181, 244
remove, 231
remove-boundary, 205
remove-canvas, 181
remove-chained-keymap, 216
remove-clickback, 288
remove-grab-key-function, 216
remove-grab-mouse-function, 216
remove-selected, 231
replace-named-style, 264
resize, 81, 201, 211, 231, 240
’resize-border, 40
resized, 182, 191, 245
restore, 59
’right, 22, 62, 282, 290
’right-down, 61, 63, 65
’right-up, 61, 63, 65
’roman, 122–126, 142, 250, 256, 259, 260
’round, 129, 130

’same, 162, 172, 173, 176, 178, 182
save-file, 106, 182
screen->client, 87
’script, 122–126, 142, 250, 256, 259, 260
scroll, 31
scroll-event%, 70
scroll-line-location, 182
scroll-to, 182, 191, 245
scroll-to-position, 288
scroll-with-bottom-base, 194
scrolling, 192, 194
searching, 272
seek, 206, 208
select, 54
’select-all, 162, 164, 234
select-all, 183
selectable-menu-item<%>, 71
’selection, 209, 273
send-message-to-window, 97
separator, 8
separator-menu-item%, 72
set, 55, 111, 158, 218
set!, 302
set-active-canvas, 183
set-admin, 183, 240
set-afm-path, 136
set-after, 232
set-align-top-line, 201
set-alignment, 22

set-alignment-off, 258
set-alignment-on, 258
set-alt-down, 49, 64
set-anchor, 289
set-arc, 139
set-autowrap-bitmap, 289
set-b, 158, 218
set-background, 119
set-base-style, 252
set-before, 232
set-between-threshold, 289
set-bitmap, 107, 211
set-boundary, 205
set-break-sequence-callback, 216
set-brush, 119
set-cap, 129
set-caret-owner, 183, 245
set-classname, 197, 247
set-clickback, 289
set-clipboard-bitmap, 36
set-clipboard-client, 36
set-clipboard-string, 36
set-clipping-rect, 119
set-clipping-region, 120
set-color, 109, 130
set-command, 136
set-control-down, 49, 64
set-control-font, 23
set-count, 241
set-cursor, 87, 184
set-data, 55
set-dataclass, 196
set-delta, 252, 258
set-delta-background, 259
set-delta-face, 259
set-delta-foreground, 260
set-direction, 71
set-double-click-interval, 216
set-dragable, 232
set-editor, 195, 201
set-editor-margin, 136
set-ellipse, 139
set-event-type, 38, 65, 71
set-face, 260
set-family, 260
set-file, 136
set-file-format, 290
set-filename, 184
set-first-visible-item, 55
set-flags, 241
set-font, 120
set-g, 159, 218
set-grab-key-function, 217

314

INDEX

set-grab-mouse-function, 217
set-help-string, 51
set-icon, 44
set-inactive-caret-threshold, 184
set-inset, 202
set-join, 130
set-key-code, 49
set-keymap, 185
set-label, 25, 33, 51, 61, 88
set-label-font, 24
set-label-position, 24
set-left-down, 65
set-level-2, 136
set-line-count, 195
set-line-spacing, 290
set-load-overwrites-styles, 185
set-map, 210
set-margin, 136, 202
set-max-height, 185, 202
set-max-undo-history, 185
set-max-width, 185, 202
set-meta-down, 49, 65
set-middle-down, 65
set-min-height, 186, 202
set-min-width, 186, 202
set-mode, 137
set-modified, 186
set-next, 196
set-offset, 211
set-options, 137
set-orientation, 137
set-origin, 120
set-overwrite-mode, 290
set-paper-name, 137
set-paragraph-alignment, 290
set-paragraph-margins, 291
set-paste-text-only, 186
set-pen, 120
set-pixel, 107
set-polygon, 139
set-position, 71, 291
set-position-bias-scroll, 291
set-post-script-name, 127
set-preview-command, 137
set-r, 159, 218
set-range, 45
set-rectangle, 139
set-region-data, 292
set-right-down, 65
set-rounded-rectangle, 140
set-scale, 121
set-scaling, 137
set-screen-name, 127

set-scroll-page, 31
set-scroll-pos, 31
set-scroll-range, 32
set-scroll-step, 232
set-selected, 232
set-selection, 57, 70
set-selection-visible, 233
set-shift-down, 50, 65
set-shift-style, 252
set-shortcut, 72
set-size-add, 260
set-size-mult, 260
set-snip-data, 186
set-snipclass, 241
set-status-text, 44
set-stipple, 109, 130
set-string, 55
set-string-selection, 57
set-style, 110, 130, 241
set-style-list, 187
set-style-off, 260
set-style-on, 261
set-styles-sticky, 292
set-tabs, 292
set-text-background, 121
set-text-foreground, 121
set-text-mode, 121
set-tight-text-fit, 203
set-time-stamp, 41
set-translation, 138
set-transparent-text-backing-off, 261
set-transparent-text-backing-on, 261
set-underlined-off, 261
set-underlined-on, 261
set-value, 33, 45, 74, 76
set-version, 247
set-weight-off, 261
set-weight-on, 261
set-width, 131
set-wordbreak-func, 293
set-wordbreak-map, 293
set-x, 50, 66, 132
set-x-shortcut-prefix, 72
set-y, 50, 66, 132
’setup-file, 95, 96, 98
’short-dash, 128, 129, 131
show, 40, 81, 88
show-border, 203
’show-caret, 152, 168, 178, 181, 185, 235
’show-inactive-caret, 152, 168, 178, 181, 185,

235
’simple, 283
’single, 52, 75, 89

315

INDEX

size-cache-invalid, 187, 241
skip, 205, 206
’slant, 122–125, 127, 251, 254, 257, 260, 261
sleep/yield, 94
slider, 6
’slider, 38, 73
slider%, 73
’small, 44
snip classes, 237, 241, 246

name, 246
version, 246

snip-admin%, 242
snip-class-list<%>, 247
snip-class%, 246
snip%, 198, 210, 233, 248
snips, 148, 210, 233, 248, 264

class, 150
cut and paste, 150
data, 151
flags, 236
in editors, 271
inserting into an editor, 171, 226
location in editor, 170
order in pasteboard, 227, 231, 232
owned, 171, 226, 238, 240
saving, 150
size, 236, 241

’solid, 108–110, 113, 114, 119, 121, 128, 129, 131
spacing, 22
special-control-key, 94
split, 242
split-snip, 293
’standard, 162, 172, 173, 176, 178, 179, 182, 274,

290
’start, 183, 191, 245, 288, 292
start, 77
start-doc, 121
’start-only, 292
start-page, 122
stop, 77
stretchable-height, 19
stretchable-width, 20
string-snip%, 248, 264
style deltas, 149
style lists, 149, 187

in an editor, 219, 264
style-delta%, 253
style-has-changed, 187
style-list%, 262
style-to-index, 264
style<%>, 249
styles, 149, 162, 223, 237, 241, 249, 267

derived, 149

join, 149
root, 149

subarea<%>, 74
subtract, 140
subwindow<%>, 74
’swiss, 122–126, 142, 250, 256, 259, 260
switch-to, 252
’symbol, 122–126, 142, 250, 256, 259, 260
’system, 122–126, 142, 250, 256, 259, 260

tab-snip%, 264
tabs, 264
tell, 205, 206, 208
text

simple vs. flattened, 152
’text, 162, 171–173, 176–178, 182, 274, 290
text editor, 146
text field, 6
’text-field, 38, 75
’text-field-enter, 38, 75
text-field%, 75
’text-force-cr, 162, 172, 173, 176, 178, 182,

274, 290
text%, 264
the-brush-list, 108, 110, 142
the-clipboard, 35, 98
the-color-database, 111, 112, 129, 130, 142
the-editor-wordbreak-map, 209, 298
the-font-list, 123, 124, 143
the-font-name-directory, 125, 126, 143
the-pen-list, 128, 131, 143
the-style-list, 149, 262, 298
’thumb, 70, 71
time stamp, 152
timer%, 76
’top, 22, 70, 71, 249, 253, 255, 258
top-level-window<%>, 77
’transparent, 107–110, 119, 121, 128, 129, 131
try-color, 122

’undo, 162, 164, 234
undo, 187
union, 140
’unknown, 39, 105, 172, 177, 210, 211
unregister-collecting-blit, 143
’up, 282
update-cursor, 191, 246
’user1, 209, 273
’user2, 209, 273
’uses-editor-path, 237

vert-margin, 74
’vertical, 23, 24, 29, 31, 32, 45, 68, 70, 71, 73,

78

316

INDEX

’vertical-hatch, 108–110
vertical-pane%, 81
vertical-panel%, 82
’vscroll, 28, 30

warp-pointer, 28
’watch, 39
’width-depends-on-x, 237
’width-depends-on-y, 237
’winding, 115, 139
window<%>, 82
windows, 4
’word, 283
word breaking, 209, 272, 277, 293
write, 196, 209, 242
write-editor-global-footer, 298
write-editor-global-header, 298
write-footers-to-file, 187
write-header, 247
write-headers-to-file, 188
write-image-to-file, 303
write-resource, 98
write-to-file, 188, 293

’x, 291, 292
’xbm, 39, 105, 106, 172, 177, 210, 211
’xor, 108–110, 113, 114, 128, 129, 131
’xor-dot, 128, 129, 131
’xor-dot-dash, 128, 129, 131
’xor-long-dash, 128, 129, 131
’xor-short-dash, 128, 129, 131
’xpm, 39, 105, 106, 172, 177, 210, 211

’yes, 91
’yes-no, 91
yield, 94

317

