
PLT Tools: DrScheme Extension Manual

PLT
scheme@cs.rice.edu

Version 103
August 2000

Rice University

Copyright notice

Copyright c©1996-2000 PLT

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby
granted without fee, provided that the above copyright notice, author, and this permission notice appear in
all copies of this documentation.

Send us your Web links

If you use any parts or all of the DrScheme package (software, lecture notes) for one of your courses, for
your research, or for your work, we would like to know about it. Furthermore, if you use it and publicize
the fact on some Web page, we would like to link to that page. Please drop us a line at scheme@cs.rice.edu.
Evidence of interest helps the DrScheme Project to maintain the necessary intellectual and financial support.
We appreciate your help.

Contents

1 Implementing DrScheme Tools 1

1.1 Common Tools Abstractions . 2

1.1.1 Evaluation . 2

1.1.2 Getting the same menu items as DrScheme . 2

1.1.3 Graphical Expressions . 2

2 Tools Reference 3

2.1 drscheme:frame:basics<%> . 3

2.2 drscheme:frame:basics-mixin . 3

2.3 drscheme:frame:name-message% . 5

2.4 drscheme:rep:context<%> . 5

2.5 drscheme:rep:text% . 6

2.6 drscheme:unit:definitions-canvas% . 9

2.7 drscheme:unit:frame% . 10

2.8 drscheme:unit:interactions-canvas% . 13

2.9 Languages . 13

2.10 Processing Programs with Zodiac . 18

2.11 Extending the DrScheme Classes . 21

2.12 Help Desk . 22

3 Zodiac Reference 23

3.1 zodiac:expands<%> . 23

3.2 Zodiac . 24

3.2.1 Motivation . 24

3.2.2 Notations and Terminology . 25

i

CONTENTS CONTENTS

3.2.3 Core of Zodiac . 25

3.2.4 Scanner . 25

3.2.5 Reader . 26

3.2.6 Parser . 31

3.3 Environments . 33

3.4 Attributes . 34

3.5 Vocabulary . 35

3.5.1 Linking . 36

3.6 Pattern Matching . 37

3.6.1 Examples . 38

3.7 Core Scheme . 39

Index 41

ii

1. Implementing DrScheme Tools

Tools are designed for major extensions in DrScheme’s functionality. To extend DrScheme to extend the
appearance or the functionality the DrScheme window (say, to annotate programs in certain ways, or to add
buttons on the frame) use a tool. The Static Debugger and the Syntax Checker are implemented as tools.

Libraries are for extensions of DrScheme that only want to add new functions and other values bound in the
users namespace. See the DrScheme manual for more information on constructing libraries.

Tools rely heavily on MzScheme’s units. See units, §7 in PLT MzScheme: Language Manual for informa-
tion on how to construct units. They also require understanding of libraries and collections, §15 in PLT
MzScheme: Language Manual

When DrScheme starts up, it looks in the tools subdirectory of the drscheme collection directory to determine
which tools are installed. For each subdirectory of the tools directory, it looks for two files: unit.ss and sig.ss.
If sig.ss exists it is loaded when all of the signatures of DrScheme are loaded. The file unit.ss is required to
exist. It must evaluate to a unit that imports 6 units matching the signatures:

• mred^ (all of the names in the mred manual)

• mzlib:core^, (defined in the MzLib section of the MzScheme manual, §15 in PLT MzScheme: Language
Manual),

• framework^ (all of the names in the framework manual),

• mzlib:print-convert^ (defined in the MzLib section of the MzScheme manual, §15 in PLT MzScheme:
Language Manual),

• drscheme:export^ (defined below), and

• zodiac:system^ (all of the names in section 3.2).

The drscheme:export^ signature contains the parameters defined in the parameters section2.11, and the
other classes described in the next subsections.

If the tools raises an error as it is loaded or invoked, DrScheme catches the error and displays a message
box. Then, DrScheme continues to start up, without the tool.

For example,
(unit/sig ()
(import mred^

mzlib:core^
framework^
[print-convert : mzlib:print-convert^]
[drscheme : drscheme:export^]
[zodiac : zodiac:system^])

(message-box "tool example" "tool loaded"))

1

1.1. Common Tools Abstractions 1. Implementing DrScheme Tools

is a simple tool that opens a dialog as drscheme is started up.

1.1 Common Tools Abstractions

1.1.1 Evaluation

In order to evaluate programs that the user has implemented,

• The text of the program is in a text% object, available from the definitions-text instance variable
of the drscheme:unit:frame% class.

• Use drscheme:basis:process/zodiac to process the text of the program.
• For evaluation, use the function drscheme:basis:initialize-parameters.

• Syntax errors are handled by raising a exn:syntax mz:exnsexception, see section of the MzScheme
manual.

1.1.2 Getting the same menu items as DrScheme

In order to get frames that tools create and frames that DrScheme creates to have a common subset of
menus, be sure to mixin frame:standard-menus-mixin and drscheme:frame:basics-mixin

1.1.3 Graphical Expressions

In order to add new kinds of graphical expressions to DrScheme, create a new snip that is the graphi-
cal representation of the value. If the snip is an expression that requires evaluation, implement Zodiac’s
zodiac:expands<%> interface. If the snip does not implement zodiac:expands<%>, it is treated as a value.

If the snip contains texts that have source text that may have errors, be sure to mix in
drscheme:unit:program-editor-mixin.

2

2. Tools Reference

2.1 drscheme:frame:basics<%>

This interface is the result of the drscheme:frame:basics-mixin

2.2 drscheme:frame:basics-mixin

Domain: frame:standard-menus<%>

Implements: frame:standard-menus<%>

Implements: drscheme:frame:basics<%>

Use this mixin to establish some common menu items across various DrScheme windows.

file-menu:between-open-and-revert

This method is called between the addition of the open menu-item and before the addition of the revert
menu-item to the file-menu menu. Override it to add additional menus at that point.

- (send a-drscheme:frame:basics-mixin file-menu:between-open-and-revert file-menu) ⇒ void
file-menu : (instance menu%)

Adds an Open Url... menu item, which invokes help desk’s drscheme:help-desk:open-users-url
function.

file-menu:new

This method is called when the new menu-item of the file-menu menu is selected. If file-menu:new is bound
to #f instead of a procedure, the new menu item will not be created.

- (send a-drscheme:frame:basics-mixin file-menu:new item evt) ⇒ void
item : (instance (derived-from menu-item%))
evt : (instance control-event%)

Opens a new empty drscheme window

file-menu:new-string

The result of this method is used to construct the name of this menu. It is inserted between ”&New” and ””
to form the complete name

3

2.2. drscheme:frame:basics-mixin 2. Tools Reference

- (send a-drscheme:frame:basics-mixin file-menu:new-string) ⇒ string

Returns the empty string

file-menu:open

This method is called when the open menu-item of the file-menu menu is selected. If file-menu:open is bound
to #f instead of a procedure, the open menu item will not be created.

- (send a-drscheme:frame:basics-mixin file-menu:open item evt) ⇒ void
item : (instance (derived-from menu-item%))
evt : (instance control-event%)

Calls handler:open-file to open a new file. Note that there is a handler installed already that opens
all files in DrScheme frames.

file-menu:open-string

The result of this method is used to construct the name of this menu. It is inserted between ”&Open” and
”...” to form the complete name

- (send a-drscheme:frame:basics-mixin file-menu:open-string) ⇒ string

Returns the empty string

help-menu:about

This method is called when the about menu-item of the help-menu menu is selected. If help-menu:about is
bound to #f instead of a procedure, the about menu item will not be created.

- (send a-drscheme:frame:basics-mixin help-menu:about item evt) ⇒ void
item : (instance (derived-from menu-item%))
evt : (instance control-event%)

Opens an about box for DrScheme.

help-menu:about-string

The result of this method is used to construct the name of this menu. It is inserted between ”About ” and
”...” to form the complete name

- (send a-drscheme:frame:basics-mixin help-menu:about-string) ⇒ string

Returns the string ”DrScheme”.

help-menu:after-about

This method is called after the addition of the about menu-item to the help-menu menu. Override it to add
additional menus at that point.

- (send a-drscheme:frame:basics-mixin help-menu:after-about help-menu) ⇒ void
help-menu : (instance menu%)

Adds the Help Desk menu item

4

2. Tools Reference 2.3. drscheme:frame:name-message%

2.3 drscheme:frame:name-message%

Superclass: canvas%

This class implements the little filename button in the top-right hand side of drscheme’s frame.

- (make-object drscheme:frame:name-message% parent) ⇒ drscheme:frame:name-message% object
parent : (instance area-container<%>)

set-message

Sets the names that the button shows.

- (send a-drscheme:frame:name-message set-message name short-name) ⇒ void
name : (union string #f)
short-name : string

The string short-name is the name that is shown on the button and name is shown when the button
is clicked on, in a separate window. If name is #f, a message indicating that the file hasn’t been saved
is shown.

2.4 drscheme:rep:context<%>

Objects that match this interface provide all of the services that the drscheme:rep:text% class needs to
connect with it’s context.

disable-evaluation

- (send a-drscheme:rep:context disable-evaluation) ⇒ void

This method enables all user-sponsored evaluation. See also enable-evaluation.

enable-evaluation

- (send a-drscheme:rep:context enable-evaluation) ⇒ void

This method must disable all user-sponsored evaluatoin. It is called once the user starts some evaluation
to ensure that only one evaluation proceeds at a time.

ensure-rep-shown

- (send a-drscheme:rep:context ensure-rep-shown) ⇒ void

This method is called to force the rep window to be visible when, for example, an error message is put
into the rep.

get-directory

- (send a-drscheme:rep:context get-directory) ⇒ : (union string #f)

The result of this method is used as the initial directory for the user’s program to be evaluted in.

5

2.5. drscheme:rep:text% 2. Tools Reference

get-user-setting

This method is called just before execution to determine the user’s setting.

- (send a-drscheme:rep:context get-user-setting) ⇒ setting

Returns the current preference setting for ’drscheme:settings. See preferences:get for more in-
formation on the preferences system.

needs-execution?

This method should return #t when the state of the program that the repl reflects has changed.

- (send a-drscheme:rep:context needs-execution?) ⇒ boolean

not-running

- (send a-drscheme:rep:context not-running) ⇒ void

This method should update some display in the gui that indicates no evaluation is currently proceeding
in the user’s world.

running

- (send a-drscheme:rep:context running) ⇒ void

This method should update some display in the gui that indicates evaluation is currently proceeding
in the user’s world.

user-setting

This is bound to the setting that holds the language settings for the current execution. See also
get-user-setting.

- (ivar a-drscheme:rep:context user-setting) ⇒ setting

2.5 drscheme:rep:text%

This class implements a read-eval-print loop for DrScheme. User submitted evaluations in DrScheme are
evaluated asynchronously, in an eventspace created for the user. No evaluations carried out by this class
affect the implementation that uses it.

The language dialog setting can be recovered from the user’s see section ?? in PLT Framework: GUI
Application Framework) with the key ’drscheme:setting.

- (make-object drscheme:rep:text% context) ⇒ drscheme:rep:text% object
context : (implements drscheme:rep:context<%>)

break

This method is called when the user clicks on the break button or chooses the break menu item.

6

2. Tools Reference 2.5. drscheme:rep:text%

- (send a-drscheme:rep:text break) ⇒ void

This method breaks the evaluation thread.

display-results

- (send a-drscheme:rep:text display-results results) ⇒ void
results : (list-of TST)

This displays each of the elemnts of results in the interactions window, expect those elements of results
that are void. Those are just ignored.

do-many-evals

Use this function to evaluate code or run actions that should mimic the user’s interactions. For example,
DrScheme uses this function to evaluate expressions in the definitions window and expressions submitted at
the prompt.

- (send a-drscheme:rep:text do-many-evals run-loop) ⇒ void
run-loop : (((-¿ void) -¿ void) -¿ void)

The function run-loop is called. It is expected to loop, calling it’s argument with a thunk that cor-
responds to the user’s evaluation. It should call it’s argument once for each expression the user is
evaluating. It should pass a thunk to it’s argument that actually does the users’s evaluation.

do-many-text-evals

This function evaluates all of the expressions in a text.

- (send a-drscheme:rep:text do-many-text-evals text start end) ⇒ void
text : a text% object
start : int
end : int

It evaluates all of the expressions in text starting at start and ending at end , calling do-many-evals
to handle the evaluation.

format-source-loc

Builds a string, based on the user’s preferences, that describes the source position in some file.

- (send a-drscheme:rep:text format-source-loc start-location end-location) ⇒ string
start-location : a zodiac:zodiac struct
end-location : a zodiac:zodiac struct

Calls drscheme:basis:format-source-loc with the values of the preferences (see section ?? in PLT
Framework: GUI Application Framework) ’framework:line-offsets and ’framework:display-line-numbers.

highlight-error

Call this method to highlight an error associated with this repl.

- (send a-drscheme:rep:text highlight-error text start-loc end-loc) ⇒ void
text : (instance text:basic%)

7

2.5. drscheme:rep:text% 2. Tools Reference

start-loc : small-integer
end-loc : small-integer

initialize-console

- (send a-drscheme:rep:text initialize-console) ⇒ void

This inserts the “Welcome to DrScheme” message into the interactions buffer, calls reset-console,
insert-prompt, and clear-undos.

insert-prompt

- (send a-drscheme:rep:text insert-prompt) ⇒ void

Inserts a new prompt at the end of the text.

kill-evaluation

This method is called when the user chooses the kill menu item.

- (send a-drscheme:rep:text kill-evaluation) ⇒ void

report-error

This is called to report an error in the user’s program.

- (send a-drscheme:rep:text report-error start-location end-location type error-message) ⇒ void
start-location : a zodiac:zodiac struct
end-location : a zodiac:zodiac struct
type : symbol
error-message : string

See PLT McMicMac: Parser Manual for the definition of the zodiac:zodiac struct.

The default behavior is to higlight the range from the start-location to end-location in the text named
in the file field of start-location, if the file field is a text% instance.

If the file field is not an instance of text%, it will pop up a modal dialog with the error message and
the source location.

reset-console

- (send a-drscheme:rep:text reset-console) ⇒ void

Kills the old eventspace, and creates a new parameterization

Also calls the super method.

To change/extend the user parameter settings, override this method, and after the call to the super
method returns, change the value of the parameters in the user’s thread. For example, to add a
definition of a function, f, to the users’ namespace, add this to a interactions class extension (see
drscheme:get/extend:extend-interactions-text for details)

(inherit user-namespace)
(rename [super-reset-console reset-console])
(public

8

2. Tools Reference 2.6. drscheme:unit:definitions-canvas%

[reset-console
(lambda ()

(super-reset-console) ;; initialize user-namespace ivar
(parameterize ([current-namespace user-namespace])

(global-defined-value ’f (lambda (...) ...))))]))

run-in-evaluation-thread

This function runs it’s arguments in the user evaluation thread. This thread is the same as the user’s
eventspace main thread.

See also do-many-evals.

- (send a-drscheme:rep:text run-in-evaluation-thread f) ⇒ void
f : (-¿ void)

Calls f , after switching to the user’s thread.

shutdown

Shuts down the user’s program and all windows. Reclaims any resources the program allocated.

- (send a-drscheme:rep:text shutdown) ⇒ void

user-thread

This is the thread that the users code runs in. It is updated with set! each time the user clicks on the
execute button.

It is #f before the first time the user click on the Execute button.

This thread has all of its parameters initialized according to the settings of the curren execution. See
parameters, §9.4 in PLT MzScheme: Language Manual for more information about parameters.

- (ivar a-drscheme:rep:text user-thread) ⇒ (union #f thread)

2.6 drscheme:unit:definitions-canvas%

Superclass: editor-canvas%

Initializes the visiblity of the save button.

- (make-object drscheme:unit:definitions-canvas% parent editor style scrolls-per-page)⇒ drscheme:unit:defi
object

parent : frame%, dialog%, panel%, or pane% object
editor = #f : text% or pasteboard% object or #f
style = null : list of symbols in ’(no-hscroll no-vscroll hide-hscroll hide-vscroll)
scrolls-per-page = 100 : exact integer in [1, 10000]

The style list can contain the following flags:

– ’no-hscroll — disallows horizontal scrolling

9

2.7. drscheme:unit:frame% 2. Tools Reference

– ’no-vscroll — disallows vertical scrolling
– ’hide-hscroll — allows horizontal scrolling, but hides the horizontal scrollbar
– ’hide-vscroll — allows vertical scrolling, but hides the vertical scrollbar

While vertical scrolling of text editors is based on lines, horizontal scrolling and pasteboard vertical
scrolling is based on a fixed number of steps per horizontal page. The scrollsPerPage argument sets
this value.

If a canvas is initialized with #f for editor , install an editor later with set-editor.

2.7 drscheme:unit:frame%

Implements: drscheme:rep:context<%>

This frame inserts the Scheme and Language menus into the menu bar as it is initialized.

- (make-object drscheme:unit:frame% label parent width height x y style)⇒ drscheme:unit:frame%
object

label : string
parent = #f : frame% object or #f
width = #f : exact integer in [0, 10000] or #f
height = #f : exact integer in [0, 10000] or #f
x = #f : exact integer in [0, 10000] or #f
y = #f : exact integer in [0, 10000] or #f
style = null : list of symbols in ’(no-resize-border no-caption no-system-menu mdi-parent

mdi-child)

The label string is displayed in the frame’s title bar. If the frame’s label is changed (see set-label),
the title bar is updated.

The parent argument can be #f or an existing frame. Under Windows, if parent is an existing frame,
the new frame is always on top of its parent. Also, the parent frame may be an MDI parent frame
from a new MDI child frame. Under Windows and X (for many window wanagers), a frame is iconized
when its parent is iconized.

If parent is #f, then the eventspace for the new frame is the current eventspace, as determined by
current-eventspace . Otherwise, parent ’s eventspace is the new frame’s eventspace.

If the width or height argument is not #f, it specifies an initial size for the frame (in pixels) assuming
that it is larger than the minimum size, otherwise the minimum size is used.

If the x or y argument is not #f, it specifies an initial location for the frame. Otherwise, a location is
selected automatically (tiling frames and dialogs as they are created).

The style flags adjust the appearance of the frame on some platforms:

– ’no-resize-border — omits the resizeable border around the window (Windows) or grow box
in the bottom right corner (MacOS)

– ’no-caption — omits the title bar for the frame (Windows)
– ’no-system-menu — omits the system menu (Windows)
– ’mdi-child — creates the frame as a MDI (multiple document interface) child frame, mutually
exclsuive with ’mdi-parent (Windows)

– ’mdi-parent— creates the frame as a MDI (multiple document interface) parent frame, mutually
exclsuive with ’mdi-child (Windows)

If the ’mdi-child style is specified, the parent must be a frame with the ’mdi-parent style, otherwise
an exn:application:mismatch exception is raised.

10

2. Tools Reference 2.7. drscheme:unit:frame%

Even if the frame is not shown, a few notification events may be queued for the frame on creation.
Consequently, the new frame’s resources (e.g., memory) cannot be reclaimed until some events are
handled, or the frame’s eventspace is shut down.

button-panel

This panel goes along the top of the drscheme window and has buttons for important actions the user
frequently executes.

A tool can add a button to this panel to make some new functionality easily accessible to the user.

- (ivar a-drscheme:unit:frame button-panel) ⇒ a horizontal-panel% object

change-to-file

- (send a-drscheme:unit:frame change-to-file file) ⇒ void
file : string

Loads this file into this already created frame. This method is only called if this is the first frame
opened and no editing has occurred.

definitions-canvas

This canvas is the canvas containing the definitions-text. It is initially the top half of the drscheme
window.

This canvas defaults to a drscheme:unit:definitions-canvas% object, but if you change the
drscheme:get/extend:extend-definitions-canvas procedure, it will use the class in the parameter to
create the canvas.

- (ivar a-drscheme:unit:frame definitions-canvas) ⇒ a drscheme:unit:definitions-canvas%
object

definitions-text

This text is initially the top half of the drscheme window and contains the users program.

This text defaults to a text% object, but if you change drscheme:get/extend:extend-definitions-text
procedure, it will use the extended class to create the text.

- (ivar a-drscheme:unit:frame definitions-text) ⇒ a text% object.

disable-evaluation

- (send a-drscheme:unit:frame disable-evaluation) ⇒ void

Disables the execute button, the interactions window, and the definitions window.

enable-evaluation

- (send a-drscheme:unit:frame enable-evaluation) ⇒ void

Enables the execute button, the interactions window, and the definitions window.

11

2.7. drscheme:unit:frame% 2. Tools Reference

execute-callback

This method is called when the user clicks on the execute button.

- (send a-drscheme:unit:frame execute-callback) ⇒ void

It calls ensure-rep-shown and then it calls do-many-text-evals passing in the interactions-text
and its entire range, unless the first two characters are ”#!” in which case, it skips the first line.

get-text-to-search

Override this method to specify which text to search.

- (send a-drscheme:unit:frame get-text-to-search) ⇒ a text:searching% object

returns the text that is active in the last canvas passed to make-searchable

interactions-canvas

This canvas is the canvas containing the interactions-text. It is initially the bottom half of the drscheme
window.

This canvas defaults to a drscheme:unit:interactions-canvas% object, but if you use the
drscheme:get/extend:extend-interactions-canvas procedure, it will use the extended class to create
the canvas.

- (ivar a-drscheme:unit:frame interactions-canvas) ⇒ a drscheme:unit:interactions-canvas%
object

interactions-text

This text is initially the bottom half of the drscheme window and contains the users interactions with the
REPL.

This text defaults to a drscheme:rep:text% object, but if you use the drscheme:get/extend:extend-interactions-text
procedure, it will use the extended class to create the text.

- (ivar a-drscheme:unit:frame interactions-text) ⇒ a drscheme:rep:text% object.

make-searchable

- (send a-drscheme:unit:frame make-searchable canvas) ⇒ void
canvas : a drscheme:unit:interactions-canvas% object

stores the canvas, until get-text-to-search is called.

update-shown

This method is called when the user selects items of the View menu.

- (send a-drscheme:unit:frame update-shown) ⇒ void

Updates the interactions and definitions windows based on the contents of the menus.

12

2. Tools Reference 2.8. drscheme:unit:interactions-canvas%

2.8 drscheme:unit:interactions-canvas%

- (make-object drscheme:unit:interactions-canvas% parent editor style scrolls-per-page)⇒ drscheme:unit:int
object

parent : frame%, dialog%, panel%, or pane% object
editor = #f : text% or pasteboard% object or #f
style = null : list of symbols in ’(no-hscroll no-vscroll hide-hscroll hide-vscroll)
scrolls-per-page = 100 : exact integer in [1, 10000]

The style list can contain the following flags:
– ’no-hscroll — disallows horizontal scrolling
– ’no-vscroll — disallows vertical scrolling
– ’hide-hscroll — allows horizontal scrolling, but hides the horizontal scrollbar
– ’hide-vscroll — allows vertical scrolling, but hides the vertical scrollbar

While vertical scrolling of text editors is based on lines, horizontal scrolling and pasteboard vertical
scrolling is based on a fixed number of steps per horizontal page. The scrollsPerPage argument sets
this value.
If a canvas is initialized with #f for editor , install an editor later with set-editor.

2.9 Languages

This set of functions deal with the language level settings for DrScheme. Along with that comes a type,
setting that captures all of the settings for each language level. These functions operate on elemnts of that
type.

current-setting

This is a parameter (see section 9.4 in PLT MzScheme: Language Manual) that has the value of the current
setting. This parameter’s value reflects the current settings of the language in the interactions window,
which may be different from the current settings in the language dialog. The language dialog setting can be
recovered from the user’s preferences (see section ?? in PLT Framework: GUI Application Framework) with
the key ’drscheme:setting.

- (current-setting) ⇒ setting

Returns the value of the parameter.

- (current-setting setting) ⇒ void
setting : setting

Sets the current value of the parameter to setting .

drscheme:basis:add-setting

- (drscheme:basis:add-setting setting) ⇒ void
setting : setting

Adds setting to the list of settings in settings.

drscheme:basis:bottom-escape-handler

This is a parameter that is called when the exception handler does not escape. It must escape. Use this with
mzscheme’s event-dispatch-handler to set up an escaping continuation for each event in an eventspace,
if necessary.

13

2.9. Languages 2. Tools Reference

- (drscheme:basis:bottom-escape-handler) ⇒ (-¿ TST)

Gets the value of the parameter.

- (drscheme:basis:bottom-escape-handler escape-handler) ⇒ void
escape-handler : (-¿ TST)

Sets the value of the parameter.

drscheme:basis:copy-setting

- (drscheme:basis:copy-setting setting) ⇒ setting
setting : setting

Makes a copy of setting .

drscheme:basis:current-vocabulary

This parameter will be set to a Zodiac vocabulary after calling drscheme:basis:initialize-parameters.

- (drscheme:basis:current-vocabulary) ⇒ vocabulary

returns the current Zodiac vocabulary

- (drscheme:basis:current-vocabulary vocab) ⇒ void
vocab : zodiac:vocab

Sets the vocabulary to vocab.

drscheme:basis:error-display/debug-handler

This is parameter that is called to display errors. It’s default constructs a string from the second argument
and calls the built-in error-display-handler.

- (drscheme:basis:error-display/debug-handler) ⇒ (string zodiac:zodiac exn -¿ void)

- (drscheme:basis:error-display/debug-handler new-handler) ⇒ void
new-handler : (string zodiac:zodiac exn -¿ void)

drscheme:basis:find-setting-named

- (drscheme:basis:find-setting-named name) ⇒ setting
name : string

Finds the setting with the name give by name.

drscheme:basis:format-source-loc

Builds a string representing the error location.

- (drscheme:basis:format-source-loc start-location end-location start-at-one? lines-and-columns?)
⇒ string

start-location : a zodiac:zodiac struct
end-location : a zodiac:zodiac struct

14

2. Tools Reference 2.9. Languages

start-at-one? = #t : boolean
lines-and-columns? = #t : boolean

If start-at-one? is #f, the line and column offsets start from zero, otherwise they start at one.

If lines-and-columns? is #f, only the character offset from the start of the file is used, otherwise, the
line and column numbers are used (the start-at-one? flag also affects the inital offset).

drscheme:basis:get-default-setting

Returns a copy of the default setting, the one for the Beginner language level.

- (drscheme:basis:get-default-setting setting) ⇒ setting
setting : setting

drscheme:basis:get-default-setting-name

- (drscheme:basis:get-default-setting-name setting) ⇒ string
setting : setting

Gets the default setting’s name.

drscheme:basis:initialize-parameters

- (drscheme:basis:initialize-parameters custodian setting) ⇒ void
custodian : custodian
setting : setting

This initializes the parameters (see section 9.4 in PLT MzScheme: Language Manual) for the current
thread to enable evaluation in the language level specified by setting . The argument custodian is
installed as the current custodian (see section 9.5 in PLT MzScheme: Language Manual).

This procedure sets the following parameters:

1. break-enabled
2. compile-allow-set!-undefined
3. compile-allow-cond-fallthrough
4. current-eval
5. current-load
6. current-setting
7. current-custodian
8. current-exception-handler
9. current-namespace
10. current-zodiac-namespace
11. current-print
12. current-load-relative-directory
13. current-require-relative-collection
14. error-print-width
15. error-value-¿string-handler
16. global-port-print-handler
17. print-graph
18. print-struct
19. read-case-sensitive
20. read-curly-brace-as-paren
21. read-square-bracket-as-paren
22. use-compiled-file-kinds

15

2.9. Languages 2. Tools Reference

It also sets these Zodiac parameters, which control how code is generated:

1. aries:signal-undefined
2. aries:signal-not-boolean
3. zodiac:allow-reader-quasiquote
4. zodiac:disallow-untagged-inexact-numbers
5. zodiac:allow-improper-lists

It also sets these MzLib (see section 15 in PLT MzScheme: Language Manual). parameters,

1. mzlib:print-convert:constructor-style-printing
2. mzlib:print-convert:quasi-read-style-printing
3. mzlib:print-convert:show-sharing
4. mzlib:print-convert:whole/fractional-exact-numbers
5. mzlib:print-convert:abbreviate-cons-as-list
6. mzlib:pretty-print:pretty-print-show-inexactness

Additionally, zodiac:reset-previous-attribute is called wih the arguments #f and #f, unless the
language is MrEd Debug, in which case it is called with #f and #t.

Additionally, the following built in MzScheme primitives may be replaced with version that perform
checking, depending on the language level. The replacment only happens in the teaching language
levels, (Beginner, Intermediate and Advanced). For more details see plt/collects/userspce/ricedefr.ss.

<= < > >=
= + * /
cons
set-cdr!
list*
append
append!

Additionally, in the non-teaching levels, the variables: argv and program are set.

drscheme:basis:number->setting

- (drscheme:basis:number->setting n) ⇒ setting
n : number

Returns the setting corresponding to the number name.

drscheme:basis:process-file/zodiac

Use this function to process the contents of a file with zodiac. This function must be called with the
parameters controlling the user’s environment active.

- (drscheme:basis:process-file/zodiac filename processor annotate?) ⇒ void
filename : string
processor : (((+ process-finish sexp zodiac:parsed) (-¿ void) -¿ void)
annotate? : boolean

Iteratively processes the contents of the file named by filename. For each expression, calls processor .
If annotate? is #f, processor receives the parsed form of the expression. If annotate? is not #f,
processor recieves an sexpression representing the code to be evaluated for the user’s program. Finally,
varprocessor will receive an element of the process-finish structure after all expressions have been
processed.

16

2. Tools Reference 2.9. Languages

drscheme:basis:process-finish?

- (drscheme:basis:process-finish? object) ⇒ boolean
object : TST

Returns #t if object is an instance of the process-finish struct and #f otherwise.

drscheme:basis:process-sexp/zodiac

Use this function to process the contents of a file with zodiac. This function must be called with the
parameters controlling the user’s environment active.

- (drscheme:basis:process-sexp/zodiac sexp processor annotate?) ⇒ void
sexp : sexp
processor : (((+ process-finish sexp zodiac:parsed) (-¿ void) -¿ void)
annotate? : boolean

Processes the sexpression sexp, and calls processor . If annotate? is #f, processor receives the parsed
form of the expression. If annotate? is not #f, processor recieves an sexpression representing the
code to be evaluated for the user’s program. Finally, varprocessor will receive an element of the
process-finish structure after all expressions have been processed.

drscheme:basis:r4rs-style-printing?

- (drscheme:basis:r4rs-style-printing? setting) ⇒ boolean
setting : setting

Returns #t if this setting has the R4RS style printing.

drscheme:basis:setting-name

- (drscheme:basis:setting-name setting) ⇒ string
setting : setting

Returns the name of the setting .

drscheme:basis:setting-name->number

- (drscheme:basis:setting-name->number name) ⇒ number
name : string

Returns a number for setting . See also drscheme:basis:number->setting.

drscheme:basis:zodiac-vocabulary?

- (drscheme:basis:zodiac-vocabulary? setting) ⇒ boolean
setting : setting

Returns #t if this is a vocabulary that should be processed with zodiac.

drscheme:language:language-dialog

This function opens the language dialog and lets the user configure the lagnuage settings.

17

2.10. Processing Programs with Zodiac 2. Tools Reference

- (drscheme:language:language-dialog settings) ⇒ (union settings #f)
settings : settings

The input is a settings struct for the initial state of the dialog. The result is the settings for the new
language, based on the user’s choices in the dialog. If the uesr cancels the dialog, the result is #f.

drscheme:language:settings-preferences-symbol

This is defined to be the key used with the preferences system to get the user’s current language settings
(use this with preferences:get).

- a-drscheme:language:settings-preferences-symbol ⇒ symbol

settings

This list contains one entry for each language level in drscheme.

- a-settings ⇒ (list-of setting)

2.10 Processing Programs with Zodiac

These functions are used to process sexpressions, files, and portions of buffers through Zodiac, to retrieve
the current vocabulary and other Zodiac related aspects of DrScheme.

drscheme:basis:process-file/no-zodiac

- (drscheme:basis:process-file/no-zodiac filename f) ⇒ void
filename : string
f : ((+ process-finish sexp zodiac:parsed) (-¿ void) -¿ void)

This function process the file named by filename. It calls drscheme:basis:process/no-zodiac.

drscheme:basis:process-sexp/no-zodiac

- (drscheme:basis:process-sexp/no-zodiac sexp f) ⇒ void
sexp : sexp
f : ((+ process-finish sexp zodiac:parsed) (-¿ void) -¿ void)

This function calls drscheme:basis:process/no-zodiac.

drscheme:basis:process/no-zodiac

- (drscheme:basis:process/no-zodiac reader f) ⇒ void
reader : (-¿ (+ eof sexp))
f : ((+ sexp drscheme:basis:process-finish) (-¿ void) -¿ void)

This function is used to process a program, without zodiac. The first argument, f , is called
until it returns eof. The result of the first argument is applied to f, in a similar fashion to
drscheme:basis:process/zodiac

18

2. Tools Reference 2.10. Processing Programs with Zodiac

drscheme:basis:process/zodiac

- (drscheme:basis:process/zodiac reader f annotate?) ⇒ void
reader : (-¿ zodiac:sexp)
f : ((+ drscheme:basis:process-finish sexp zodiac:parsed) (-¿ void) -¿ void)
annotate? : boolean

This function is used to process a program with Zodiac. The first argument, reader is the result
of calling zodiac:read. The second argument, f , is used to process the intermediate results from
zodiac. It must accept either a drscheme:basis:process-finish structure, indicating that all of the
program is processed, or an sexpression or a zodiac:parsed structure. The final parameter annotate?
determines if f receives sexpressions or zodiac:parsed structures. If annotate? is not #f, f will be
passed sexpressions. If it is #f, f will be passed zodiac:parsed structures.

drscheme:basis:raw-reader

This is a parameter that controls the currently active reader for the non-debugging language levels. See also
drscheme:basis:zodiac-reader.

- (drscheme:basis:raw-reader new-reader) ⇒ void
new-reader : (port -¿ sexp)

sets the new reader to new-reader . The first argument of new-reader must default to the value of
(current-input-port).

- (drscheme:basis:raw-reader) ⇒ (port -¿ sexp)

Returns the current reader.

drscheme:basis:zodiac-reader

This is a parameter that controls the currently active reader for the debugging and teaching language levels.
See also drscheme:basis:raw-reader.

- (drscheme:basis:zodiac-reader new-reader) ⇒ void
new-reader : ((union input-port (-¿ TST)) zodiac-location boolean exact-integer) -¿ (-¿ (union read

eof))

Sets the reader to new-reader .

All four of the arguments to new-reader must have defaults. They are (in order):

– (current-input-port)
– (zodiac:make-zodiac 1 1 0)
– #t
– 1

- (drscheme:basis:zodiac-reader) ⇒ ((union input-port (-¿ TST)) zodiac-location boolean exact-
integer) -¿ (-¿ (union read eof))

Returns the current value of the reader.

drscheme:interface:static-error

This is the procedure that is linked into zodiac for static errors.

19

2.10. Processing Programs with Zodiac 2. Tools Reference

- (drscheme:interface:static-error link-text link-tag zodiac fmt args...) ⇒ TST
link-text : string
link-tag : (union symbol #f)
zodiac : (union zodiac:zodiac zodiac:eof zodiac:period)
fmt : string
args... : TST

Raises an exception. If this function is called in the user’s evaluation, and the exception is not caught,
DrScheme will highlight the source position given by zodiac.

The link-text and link-tag arguments are used to index into the documentation. The link-text is used
as a prefix to fmt and if clicked by the user will search for link-tag in the manual and go to the first
page found there.

The fmt string and the args arguments are used to construct the error message. The procedure
drscheme:interface:static-error accepts any number of args arguments.

drscheme:load-handler:process-text/no-zodiac

- (drscheme:load-handler:process-text/no-zodiac text f start end) ⇒ void
text : a text% object
f : ((+ process-finish sexp zodiac:parsed) (-¿ void) -¿ void)
start : int
end : int

This function process the text text . It calls drscheme:basis:process/no-zodiac.

drscheme:load-handler:process-text/zodiac

- (drscheme:load-handler:process-text/zodiac text f start end annotate?) ⇒ void
text : a text% object
f : ((+ process-finish sexp zodiac:parsed) (-¿ void) -¿ void)
start : int
end : int
annotate? : boolean

This function process the text text . It calls drscheme:basis:process/zodiac.

drscheme:unit:program-editor-mixin

This mixes in the ability to reset the highlighting for error message when the user modifies the buffer. Use
it for editors that have program text where errors can occur. It clears the error highlighting when the buffer
is modified.

- (drscheme:unit:program-editor-mixin text) ⇒ (extends text:basic%)
text : (extends text:basic%)

interface:mark-key

This parameter hold the mark key for the source location of syntax and run-time errors.

- (interface:mark-key) ⇒ symbol

Gets the value of the parameter

20

2. Tools Reference 2.11. Extending the DrScheme Classes

- (interface:mark-key new-key) ⇒ void
new-key : symbol

Sets the value of the parameter.

interface:set-zodiac-phase

This function tells the zodiac interface what phase of zodiac is about to be executed. Call this function
before calling zodiac:expand-expr or zodiac:read.

- (interface:set-zodiac-phase phase) ⇒ void
phase : (union ’reader ’expander #f)

Sets the phase to phase.

2.11 Extending the DrScheme Classes

Each of these names is bound to an extender function. In order to change the behavior of drscheme, you can
derive new classes from the standard classes for the frame, texts, canvases. Each extender accepts a function
as input. The function it accepts must take a class as it’s argument and return a classes derived from that
class as its result. For example:
(drscheme:get/extend:extend-interactions-text
(lambda (super%)

(class super%
(public
[method1 (lambda (x) ...)]
...))))

extends the interactions text class with a method named method1.

drscheme:get/extend:extend-definitions-canvas

The unextended class is drscheme:unit:definitions-canvas%. This canvas is used in the top window of
drscheme frames.

- (drscheme:get/extend:extend-definitions-canvas definitions-canvas-mixin) ⇒ void
definitions-canvas-mixin : a procedure that accepts a class and produces a class derived from it.

drscheme:get/extend:extend-definitions-text

The unextended class is text:backup-autosave%. This text is used in the top window of drscheme frames.

- (drscheme:get/extend:extend-definitions-text definitions-text-mixin) ⇒ void
definitions-text-mixin : a procedure that accepts a class and produces a class derived from it.

drscheme:get/extend:extend-interactions-canvas

The unextended class is canvas:wide-snip%. This canvas is used in the bottom window of drscheme frames.

- (drscheme:get/extend:extend-interactions-canvas interactions-canvas-mixin) ⇒ void
interactions-canvas-mixin : a procedure that accepts a class and produces a class derived from it.

21

2.12. Help Desk 2. Tools Reference

drscheme:get/extend:extend-interactions-text

The unextended class is drscheme:rep:text%. This text is used in the bottom window of drscheme frames.

- (drscheme:get/extend:extend-interactions-text interactions-text-mixin) ⇒ void
interactions-text-mixin : a procedure that accepts a class and produces a class derived from it.

drscheme:get/extend:extend-unit-frame

The unextended class is drscheme:unit:frame%. This is the frame that implements the main drscheme
window.

- (drscheme:get/extend:extend-unit-frame frame-mixin) ⇒ void
frame-mixin : a procedure that accepts a class and produces a class derived from it.

2.12 Help Desk

drscheme:help-desk:help-desk

This function opens a help desk window, or brings an already open help desk window to the front. If an
argument is specified, that key is searched for.

- (drscheme:help-desk:help-desk) ⇒ void

Opens a help-desk window to the starting page, or just brings a help-desk window to the front (without
changing what page it is viewing).

- (drscheme:help-desk:help-desk key) ⇒ void
key : string

Searches for the string key as an exact search in both the keyword and the index.

drscheme:help-desk:open-url

- (drscheme:help-desk:open-url url) ⇒ void
url : string

Opens url in a new help desk window.

drscheme:help-desk:open-users-url

- (drscheme:help-desk:open-users-url frame) ⇒ void
frame : (union #f (instance frame%))

Queries the user for a URL and opens it in a new help desk window. The frame argument is used as
a parent for the dialog box.

22

3. Zodiac Reference

3.1 zodiac:expands<%>

expand

This method returns the zodiac sexpression that corresponds to the expansion of this object. It accepts the
zodiac read object that corresonds to the object.

See zodiac:structurize-syntax.

- (send a-zodiac:expands expand object) ⇒ zodiac:sexp
object : zodiac:zodiac

3.1.0.1 Units

zodiac:unit-form : zodiac:parsed (imports exports clauses)

imports is a list of zodiac:lexical-bindings. exports is a list of pairs. The first projection of each pair
contains a zodiac:top-level-varref/bind , while the second projection contains a (Zodiac) zodiac:symbol .
The first projection corresponds to the internal name, and the second projection to the exported
name. When no renaming is specified, the same name is used for both projections. clauses is a list of
zodiac:parsed objects, corresponding to the expressions in the unit.

zodiac:compound-unit-form : zodiac:parsed (imports links exports)

imports is a list of zodiac:lexical-bindings. link is a list of lists. Each list corresponds to one link clause.
The car of the list is a (Zodiac) zodiac:symbol giving the link tag. The cadr is a zodiac:parsed object
holding the expression specifying the unit to link in that clause. The cddr is the list of arguments
to the unit. Each of the arguments is either a zodiac:lexical-varref , corresponding to an imported
variable, or a pair of a zodiac:symbol (for the link clause) and a zodiac:symbol (for the exported name),
corresponding to importing from another unit. Finally, zodiac:exports is a list of export clauses. The
car of each clause is a zodiac:symbol , naming the link clause; the cadr and cddr are zodiac:symbols
giving the internal and exported names, respectively.

zodiac:invoke-unit-form : zodiac:parsed (unit variables)
zodiac:invoke-open-unit-form : zodiac:parsed (unit name-specifier variables)

unit is a zodiac:parsed object; variables is a list of zodiac:parsed objects. name-specifier can have two
forms: #f, the false value, if no name prefix is given, or a (Zodiac) zodiac:symbol object, giving the
specified name prefix.

3.1.0.2 Objects

zodiac:interface-form : zodiac:parsed (super-exprs variables)

super-exprs is a list of zodiac:parsed expressions, and variables is a list of zodiac:symbols.

zodiac:class*/names-form : zodiac:parsed (this super-init super-expr interfaces init-vars inst-clauses)

this is a zodiac:lexical-binding giving the name for the self-variable, super-init is a zodiac:superinit-
binding , super-expr is of type zodiac:parsed , interfaces is a list of type zodiac:parsed , init-vars is a

23

3.2. Zodiac 3. Zodiac Reference

“parallel optional argument list” (see section 3.2.6.1) and inst-clauses is a list of body clauses (see
section 3.1.0.2).

Variables

zodiac:supervar-binding : zodiac:binding ()
zodiac:superinit-binding : zodiac:binding ()
zodiac:public-binding : zodiac:binding ()
zodiac:private-binding : zodiac:binding ()
zodiac:inherit-binding : zodiac:binding ()
zodiac:rename-binding : zodiac:binding ()
zodiac:supervar-varref : zodiac:bound-varref ()
zodiac:superinit-varref : zodiac:bound-varref ()
zodiac:public-varref : zodiac:bound-varref ()
zodiac:private-varref : zodiac:bound-varref ()
zodiac:inherit-varref : zodiac:bound-varref ()
zodiac:rename-varref : zodiac:bound-varref ()

Clauses

Note: The following convention is used: exports is a list of (Zodiac) zodiac:symbols; internals is a list
of the appropriate kind of zodiac:bindings; exprs is a list of zodiac:parsed expressions; and imports is
a list of (Zodiac) zodiac:symbols.

zodiac:public-clause (exports internals exprs)
zodiac:private-clause (internals exprs)
zodiac:inherit-clause (internals imports)
zodiac:rename-clause (internals imports)
zodiac:sequence-clause : (exprs)

3.2 Zodiac

3.2.1 Motivation

A typical program-processing tool consists of several components: a reader, a parser, and the actual process-
ing component. The reader converts the input text into some internal representation. This representation is
parsed into abstract syntax. The core of the tool processes the abstract syntax and possibly produces some
output. The output is finally presented to the programmer.

Ideally, the output of a program-processing tool should be presented in terms of the original program. The
best way to achieve this form of reporting is to have source-object correlation (or “source correlation”).
Unfortunately, Scheme macros can transform programs in numerous ways, making the task of source corre-
lation difficult.

This document describes the Zodiac package, which provides a front-end for Scheme that generates source
correlation maps. The front-end consists of a scanner, reader, macro-expander and parser, which can be
combined selectively. It provides a common ground from which numerous programming tools can be built
and given powerful and convenient user interfaces.

The rest of this document describes each of these three phases. The parser is only sparsely specified, since
the actual abstract syntax produced by it is completely controlled by the user. (Indeed, this is one of the
features of Zodiac.) Separate documents will describe the default abstract syntaxes provided with Zodiac.

24

3. Zodiac Reference 3.2. Zodiac

3.2.2 Notations and Terminology

These documents assume a strong familiarity with MzScheme. In particular, the implementation of Zodiac
makes extensive use of structures and sub-typing, units and classes.

In these documents, a structure declaration is written as follows:

type (field)

corresponds to the Scheme code

(define-struct type (field))

Sub-typing is declared as in

sub-type : type (added-field)

which corresponds to code such as

(define-struct (sub-type struct:type) (added-field))

In the text, the types are written as type, and the fields as field.

Some of the following chapters have sections on the types used and the procedures provided. It will be
assumed that the available procedures automatically include all those arising out of the structure declarations
mentioned in the types section, even if these are not explicated in the section on procedures.

3.2.3 Core of Zodiac

All structures in these documents, unless otherwise mentioned, are sub-types of a single structure, named
zodiac:zodiac. This structure has the form

zodiac:zodiac (origin start finish)

where origin is an zodiac:origin struct, while start and finish are zodiac:location structs. The origin field is
currently unused, and the zodiac:origin struct is correspondingly unspecified. Locations are represented as
a tuple of the line number, column number, file offset and file name:

zodiac:location (line column offset file)

The line and column fields contain positive integers starting at 1, while offset contains a non-negative integer
that starts at 0. The type of file is left unspecified. The zodiac:period struct provides the location of periods
in improper lists:

zodiac:period (location)

Note that zodiac:origin, zodiac:location and zodiac:period are not sub-types of zodiac:zodiac.

3.2.4 Scanner

The scanner returns two kinds of objects: tokens in the input program, or the end-of-file delimiter. The
latter is returned as an zodiac:eof struct:

zodiac:eof (location)

25

3.2. Zodiac 3. Zodiac Reference

while all other objects returned by the scanner are a sub-type of zodiac:scanned :

zodiac:scanned : zodiac ()

In turn, zodiac:scanned has one sub-type: zodiac:token, which is the most specific type of all the objects
returned by the scanner.

zodiac:token : scanned (object type)

The object and type fields will be documented later.

3.2.5 Reader

Like the scanner, the reader returns either an end-of-file delimiter or the actual object read. The end-of-file
object is of type zodiac:eof , as defined in Section ??. All other values are elements of zodiac:read1:

zodiac:read : zodiac (object)

The reader’s output is sub-divided into scalar and sequence objects2:

zodiacscalar : read ()
zodiac:sequence : read (length)

Most of these sub-types should be self-explanatory:

zodiac:string : scalar ()
zodiac:boolean : scalar ()
zodiac:number : scalar ()
zodiac:symbol : scalar (orig-name marks)
zodiac:char : scalar ()
zodiac:external : scalar ()
zodiac:list : sequence (marks)
zodiac:vector : sequence ()
zodiac:improper-list : sequence (period marks)

In the case of zodiac:scalar objects, the object field contains the Scheme representation of that object. All
zodiac:sequence objects have a list of zodiac:read objects in their object field; in the case of zodiac:improper-
list , the length of this list is one greater than the number of pairs that constitute the list.

The zodiac:external struct may contain any scheme value in the read field, except those listed in other
structures. That is, it will not be a string, boolean, number, symbol or character, but it might be a
procedure, the void value, or an instance of a class.

The period field contains a zodiac:period which gives the location of the period in the source that marks a
list as being improper. The orig-name and marks fields are used by parsers that perform hygienic macro-
expansion3.

3.2.5.1 Argument Lists

Argument lists are encapsulated within a structure:

zodiac:arglist (vars)
1Rhymes with “dead”, “head”, “routinely bled” and “positively fed”.
2Strings are classified as scalar objects.
3There is currently no clean way of hiding this detail from the user of Zodiac; elucubration on this is forthcoming.

26

3. Zodiac Reference 3.2. Zodiac

The vars field is expected to always be a list of zodiac:binding identifiers. To distinguish between the different
structures of argument lists, a sub-type is used. In Core Scheme, argument lists in the input can only be
(syntactic) lists of identifiers:

zodiac:sym-arglist : arglist ()

Higher language levels may permit more kinds of argument lists.

zodiac:arglist-decls-vocab

- (zodiac:arglist-decls-vocab) ⇒ void

UNDOCUMENTED

zodiac:arglist-pattern

- (zodiac:arglist-pattern) ⇒ void

UNDOCUMENTED

zodiac:distinct-valid-id/s?

- (zodiac:distinct-valid-id/s?) ⇒ void

UNDOCUMENTED

zodiac:distinct-valid-syntactic-id/s?

- (zodiac:distinct-valid-syntactic-id/s?) ⇒ void

UNDOCUMENTED

zodiac:expand-expr

- (zodiac:expand-expr read env attrib vocab) ⇒ zodiac:parsed
read : read
env : zodiac:env
attrib : zodiac:attr
vocab : zodiac:vocab

See Zodiac Environments for information on the env argument, Zodiac Attributes for information on
the attrib argument and Zodiac Vocabularies for information on the vocab argument.

zodiac:extend-parsed->raw

- (zodiac:extend-parsed->raw) ⇒ void

UNDOCUMENTED

zodiac:generate-name

- (zodiac:generate-name) ⇒ void

UNDOCUMENTED

27

3.2. Zodiac 3. Zodiac Reference

zodiac:in-lexically-extended-env

- (zodiac:in-lexically-extended-env) ⇒ void

UNDOCUMENTED

zodiac:internal-error

- (zodiac:internal-error zodiac format) ⇒ doesn’t
zodiac : zodiac:zodiac
format : string

This function accepts arbitrarily many arguments after format .

The procedure internal-error is for critical errors; since it is not possible to guarantee that the
object in question is in the Zodiac hierarchy (indeed, that may sometimes be the error), zodiac:object
is flexible enough to accept any kind of Scheme object.

The argument format is used the format string to printf, and the remaining arguments are meant to
satisfy parameters in the format string.

zodiac:language<=?

- (zodiac:language<=?) ⇒ void

UNDOCUMENTED

zodiac:language>=?

- (zodiac:language>=?) ⇒ void

UNDOCUMENTED

zodiac:lexically-resolved?

- (zodiac:lexically-resolved?) ⇒ void

UNDOCUMENTED

zodiac:make-argument-list

- (zodiac:make-argument-list) ⇒ void

UNDOCUMENTED

zodiac:make-empty-back-box

- (zodiac:make-empty-back-box) ⇒ void

UNDOCUMENTED

zodiac:make-optargument-list

- (zodiac:make-optargument-list) ⇒ void

UNDOCUMENTED

28

3. Zodiac Reference 3.2. Zodiac

zodiac:marks-equal?

- (zodiac:marks-equal?) ⇒ void

UNDOCUMENTED

zodiac:name-eq?

- (zodiac:name-eq?) ⇒ void

UNDOCUMENTED

zodiac:optarglist-decls-vocab

- (zodiac:optarglist-decls-vocab) ⇒ void

UNDOCUMENTED

zodiac:optarglist-pattern

- (zodiac:optarglist-pattern) ⇒ void

UNDOCUMENTED

zodiac:parsed->raw

- (zodiac:parsed->raw) ⇒ void

UNDOCUMENTED

zodiac:read

- (zodiac:read input location script? first-column) ⇒ (-¿ (union read eof))
input = (current-input-port) : (union input-port (-¿ TST))
location = (make-zodiac 1 1 0) : zodiac-location
script? = #t : boolean
first-column = 1 : exact-integer

When invoked, the reader returns a thunk. Repeatedly invoke this thunk to obtain a series of zodiac:read
objects until an zodiac:eof is returned. The names and the functionality of the optional arguments to
the reader, in turn, are:

input This argument can be either an input port or a thunk from which to take the input. The thunk
should return a zodiac:char , zodiac:eof or an object appropriate for zodiac:external .

initial-location The location used for the first character read from the port; subsequent characters
are appropriately offset from it.

script? Whether or not the file is a script. In a script, if the first two chars from port are #!, then
the reader will treat the first line as a comment. (This comment can span multiple lines if each
preceding line ends in a \ before the newline.)

first-column The first column of each line is can be changed by this argument. This is useful for
treating the entire file as if it were indented by some amount. Note that this parameter is unrelated
to the initial location parameter.

Note: It is an error to perform read-char on any port passed to the reader, since this may interfere
with its operation.

29

3.2. Zodiac 3. Zodiac Reference

zodiac:scheme-expand

- (zodiac:scheme-expand) ⇒ void

UNDOCUMENTED

zodiac:scheme-vocabulary

- (zodiac:scheme-vocabulary) ⇒ void

UNDOCUMENTED

zodiac:sexp->raw

- (zodiac:sexp->raw sexp) ⇒ sexp
sexp : zodiac:sexp

The input is a member of the zodiac:read hierarchy. The body is recursively translated into raw Scheme
s-expressions. For zodiac:symbols, the value in the object field, not in the orig-name field, is used.

zodiac:static-error

- (zodiac:static-error zodiac format) ⇒ doesn’t
zodiac : zodiac:zodiac
format : string

This function accepts arbitrarily many arguments after format .

Use static-error should be used to report syntactic errors. It will not return.

The argument format is used the format string to printf, and the remaining arguments are meant to
satisfy parameters in the format string.

zodiac:structurize-syntax

- (zodiac:structurize-syntax sexp zodiac marks) ⇒ zodiac:read
sexp : mixed
zodiac : zodiac:zodiac
marks = ??? : marks

The first argument is a raw Scheme s-expression that has zodiac:read objects in one or more posi-
tions (type zodiac:mixed). The second argument is any object that is an instance of a sub-type of
zodiac:zodiac. The output is a zodiac:read representation of the input. All Scheme s-expressions in
the input are recursively converted to zodiac:read forms, while zodiac:read forms are left untouched
(and are not traversed further). For all raw inputs that are converted into zodiac:read objects, the
origin, start and finish information is extracted from the second argument to structurize-syntax.
The optional marks argument is used to give zodiac:symbols and zodiac:list forms their initial set of
marks. Ordinary users may ignore this argument.

zodiac:syntax-car

- (zodiac:syntax-car sexp) ⇒ zodiac:read
sexp : (union zodiac:list zodiac:improper-list)

Takes the “car” of the syntax. The read-object accessors should not be used to access them. In-
stead use these procedures: zodiac:syntax-car, zodiac:syntax-cdr, zodiac:syntax-null? , and
zodiac:syntax-map.

30

3. Zodiac Reference 3.2. Zodiac

Use zodiac:structurize-syntax to get the effect of a zodiac:syntax-cons.

zodiac:syntax-cdr

- (zodiac:syntax-cdr sexp) ⇒ zodiac:read
sexp : (union zodiac:list zodiac:improper-list)

Takes the “cdr” of the syntax. The read-object accessors should not be used to access them. In-
stead use these procedures: zodiac:syntax-car, zodiac:syntax-cdr, zodiac:syntax-null? , and
zodiac:syntax-map.

Use zodiac:structurize-syntax to get the effect of a zodiac:syntax-cons.

zodiac:syntax-map

- (zodiac:syntax-map f l1 l2) ⇒ B
f : (union (TST TST -¿ B) (TST -¿ B))
l1 : zodiac:list
l2 = #f : zodiac:list

As with Scheme’s map, syntax-map can take more than one argument (currently, at most two are
allowed).

The read-object accessors should not be used to access them. Instead use these procedures:
zodiac:syntax-car, zodiac:syntax-cdr, zodiac:syntax-null? , and zodiac:syntax-map.

Use zodiac:structurize-syntax to get the effect of a zodiac:syntax-cons.

3.2.6 Parser

Parsers primarily convert zodiac:read objects into objects of type zodiac:parsed . This section describes
the structure hierarchy for Scheme.

3.2.6.1 Preliminaries

zodiac:parsed : zodiac:zodiac (back)

All the output from the parser is an element of zodiac:parsed . Each back contains a distinct box in
which information can be stored. All parsed output is either a variable reference, an application, or a
special form.

zodiac:form : zodiac:parsed ()
zodiac:app : zodiac:parsed (fun args)

The fun field contains a single zodiac:parsed object, while zodiac:args holds a list of these.

Variables

zodiac:varref : zodiac:parsed (var)
zodiac:top-level-varref : zodiac:varref ()
zodiac:bound-varref : zodiac:varref (binding)
zodiac:lexical-varref : zodiac:bound-varref ()
zodiac:binding : zodiac:parsed (var orig-name)
zodiac:lexical-binding : zodiac:binding ()

All variable references fall under zodiac:varref , whose var field contains the name (Scheme symbol)
of the variable (possibly with some consistent renaming performed). The binding field contains a
zodiac:binding struct. The var field of a zodiac:binding contains the same zodiac:symbol as in the var
field of the referring zodiac:bound-varref . The orig-name field contains the original name, as specified
in the input or by a rewrite rule.

zodiac:top-level-varref/bind : zodiac:top-level-varref (slot)

31

3.2. Zodiac 3. Zodiac Reference

When the procedure scheme-expand-program is used, top-level variable references are given an extra
field, slot, which contains a box. All top-level uses (which can be definitions, mutations and uses) of
the same name point to the same box. Thus, the box can be used to share information between these
instances. Furthermore, this box holds a list of all the references (both definitions and uses) to the
identifer. The elements of the list are of zodiac:top-level-varref/binds. Top-level references inside a
unit are not related to references to identifiers with the same name outside a unit, i.e., they do not
share a box in the slot field. They do, however, share a box amongst themselves, one per unit.

Note: The box in the slot field is unrelated to the one possessed by every zodiac:top-level-varref/bind
object by virtue of being a sub-type of zodiac:parsed ; there is a distinct box of the latter kind for every
syntactic occurrence of the top-level variable.

Argument Lists

Regular argument lists are of type zodiac:arglist . These do not allow the specification of a default
initial value. When initial values are allowed, the initial value expressions may be evaluated in dif-
ferent environments. The type zodiac:paroptarglist , short for “parallel optional argument list” (what
is optional is the specification of an initial value expression) expands all the expressions in an envi-
ronment augmented with all the formal variables, so they can be mutually referential. Another kind,
zodiac:optarglist , is available for incremental environment extension from left to right (as in MzScheme’s
opt-lambda construct).

zodiac:arglist (vars)
zodiac:sym-arglist : zodiac:arglist ()
zodiac:list-arglist : zodiac:arglist ()
zodiac:ilist-arglist : zodiac:arglist ()

vars is always a list of zodiac:lexical-binding . The additional structure indicates whether the argument
list is a single zodiac:symbol, a proper list or an improper list. In the first of these cases, vars has
length one; in the last of these cases, the period before the last argument is implicit in vars.

zodiac:paroptarglist (vars)
zodiac:sym-paroptarglist : zodiac:paroptarglist ()
zodiac:list-paroptarglist : zodiac:paroptarglist ()
zodiac:ilist-paroptarglist : zodiac:paroptarglist ()

The structure of vars in zodiac:paroptarglist is similar to that in zodiac:arglist . The only exception is
that, for expressions where an initial value has been supplied, the element of the list is a pair whose
first argument is the zodiac:lexical-binding and whose second argument is in zodiac:parsed .

3.2.6.2 Core Scheme

Note: As a convention in this section, val and body will hold a zodiac:parsed object; var will contain
a zodiac:binding . The plural forms, vals and bodies, contain lists of zodiac:parsed .

zodiac:set!-form : zodiac:form (var val)
zodiac:begin-form : zodiac:form (bodies)
zodiac:begin0-form : zodiac:form (bodies)

These structures are explained by the above convention.

zodiac:define-values-form : zodiac:form (vars val)

vars is a list of zodiac:binding .

zodiac:let-values-form : zodiac:form (vars vals body)
zodiac:letrec*-values-form : zodiac:form (vars vals body)

The vars fields are lists of lists of zodiac:binding .4

zodiac:if-form : zodiac:form (test then else)

test, then and else are zodiac:parsed .
4Arguably, the fields should have been called varss, but we chose not to play hob with language.

32

3. Zodiac Reference 3.3. Environments

zodiac:quote-form : zodiac:form (expr)

expr contains a zodiac:read object.

zodiac:case-lambda-form : zodiac:form (args bodies)

args is a list of argument lists. Each element of args is an zodiac:arglist (see section 3.2.6.1).

zodiac:struct-form : zodiac:form (type super fields)

type is a (Zodiac) zodiac:symbol ; fields is a list of these. zodiac:super is either the false value (#f) or a
zodiac:parsed object, depending on whether or not a super-type expression was specified.

3.2.6.3 Image Values

zodiac:syntax-null?

- (zodiac:syntax-null? sexp) ⇒ zodiac:read
sexp : (union zodiac:list zodiac:improper-list)

Tests to see if the syntax is “null”. The read-object accessors should not be used to access them.
Instead use these procedures: zodiac:syntax-car, zodiac:syntax-cdr, zodiac:syntax-null? , and
zodiac:syntax-map.

Use zodiac:structurize-syntax to get the effect of a zodiac:syntax-cons.

zodiac:valid-id/s?

- (zodiac:valid-id/s?) ⇒ void

UNDOCUMENTED

zodiac:valid-id?

- (zodiac:valid-id?) ⇒ void

UNDOCUMENTED

zodiac:valid-syntactic-id/s?

- (zodiac:valid-syntactic-id/s?) ⇒ void

UNDOCUMENTED

zodiac:valid-syntactic-id?

- (zodiac:valid-syntactic-id?) ⇒ void

UNDOCUMENTED

3.3 Environments

An environment maps identifiers in the input to information about their intended behavior in the program.
For instance, some identifiers act as keywords that represent a micro or a macro, others are bound by a
binding construct, and others are unbound.

Zodiac uses the type zodiac:env-entry to range over representations of the possible types of behaviors an
identifier can exhibit. zodiac:env-entry includes:

33

3.4. Attributes 3. Zodiac Reference

zodiac:macro-resolution (rewriter)
zodiac:micro-resolution (rewriter)
zodiac:top-level-resolution ()

The rewriter fields contain a micro or macro, as appropriate. Micros have the type read ×env ×attr ×vocab
−→parsed while macros have the type read ×env −→read .

Languages implemented atop Zodiac will extend env-entry to reflect their binding constructs. Unless ex-
tended, all identifiers that do not resolve to macro or micros will yield top-level-resolutions.

zodiac:extend-env

- (zodiac:extend-env extension env) ⇒ void
extension : (list-of (union new-vars marks))
env : zodiac:env

zodiac:resolve

- (zodiac:resolve id env vocab) ⇒ zodiac:env-entry
id : id
env : zodiac:env
vocab : zodiac:vocab

zodiac:retract-env

- (zodiac:retract-env retraction env) ⇒ void
retraction : (list-of new-vars)
env : zodiac:env

3.4 Attributes

Attributes are used to inherit and synthesize information, and to also communicate it across top-level ex-
pression boundaries.

zodiac:get-attribute

- (zodiac:get-attribute attr key) ⇒ (union TST #f)
attr : zodiac:attr
key : symbol

put-attribute updates the value of an attribute, adding it if not already present.

zodiac:make-attributes

- (zodiac:make-attributes) ⇒ zodiac:attr

make-attributes creates a new (empty) table of attributes.

34

3. Zodiac Reference 3.5. Vocabulary

zodiac:put-attribute

- (zodiac:put-attribute attr key value) ⇒ zodiac:attr
attr : zodiac:attr
key : symbol
value : TST

get-attribute returns the value of the attribute, if present, and #f otherwise. The value of attr-entry
is fixed by individual applications.

3.5 Vocabulary

Zodiac allows the user to completely specify the syntax of the underlying language. This is done by providing
different vocabularies, which are collections of expanders for the various parts of the language. Other
documentation describes the standard Scheme vocabularies that accompany Zodiac.

A vocabulary consists of micros to manage the treatment of the individual syntactic components: symbols,
literals, lists and improper-lists. All sub-types of scalar other than symbol , in addition to vector , are
considered “literals”5. In addition, micros and macros can be triggered by a leading object of type symbol
in a list .

zodiac:add-ilist-micro

- (zodiac:add-ilist-micro vocab micro) ⇒ void
vocab : zodiac:vocab
micro : (zodiac:read zodiac:env zodiac:attr zodiac:vocab -¿ zodiac:parsed)

add-ilist-micro installs the expander for an improper lists of tokens.

zodiac:add-list-micro

- (zodiac:add-list-micro vocab micro) ⇒ void
vocab : zodiac:vocab
micro : (zodiac:read zodiac:env zodiac:attr zodiac:vocab -¿ zodiac:parsed)

add-list-micro installs the expander that handles a list of tokens,

zodiac:add-lit-micro

- (zodiac:add-lit-micro vocab micro) ⇒ void
vocab : zodiac:vocab
micro : (zodiac:read zodiac:env zodiac:attr zodiac:vocab -¿ zodiac:parsed)

add-lit-micro installs the the expander for processing literals.

zodiac:add-macro-form

- (zodiac:add-macro-form macro-name vocab macro) ⇒ void
macro-name : symbol
vocab : zodiac:vocab
macro : (zodiac:read zodiac:env -¿ zodiac:read)

5These correspond to the self-quoting objects in Scheme.

35

3.5. Vocabulary 3. Zodiac Reference

If a list of tokens is headed by a symbol for which a micro or macro has been defined, then the defined
micro or macro is invoked; only otherwise is the micro for lists of tokens invoked.

zodiac:add-micro-form

- (zodiac:add-micro-form micro-name vocab micro) ⇒ void
micro-name : symbol
vocab : zodiac:vocab
micro : (zodiac:read zodiac:env zodiac:attr zodiac:vocab -¿ zodiac:parsed)

If a list of tokens is headed by a symbol for which a micro or macro has been defined, then the defined
micro or macro is invoked; only otherwise is the micro for lists of tokens invoked.

zodiac:add-sym-micro

- (zodiac:add-sym-micro vocab micro) ⇒ void
vocab : zodiac:vocab
micro : (zodiac:read zodiac:env zodiac:attr zodiac:vocab -¿ zodiac:parsed)

add-sym-micro installs the expander for individual symbols.

zodiac:copy-vocabulary

- (zodiac:copy-vocabulary v) ⇒ zodiac:vocab
v : zodiac:vocab

copy-vocabulary returns a new vocabulary that contains all the micros and macros contained in the
given vocabulary.

Note: copy-vocabulary literally makes a copy of the given vocabulary. Any changes made after the
copy operation will not be seen by the copy. Thus, the copy should be made only when the programmer
is certain the vocabulary being copied has all the appropriate contents.

zodiac:make-vocabulary

- (zodiac:make-vocabulary) ⇒ zodiac:vocab

make-vocabulary creates a new vocabulary that contains no micros or macros. Any syntactic input
parsed with it will result in a syntax error.

zodiac:merge-vocabulary

- (zodiac:merge-vocabulary v1 v2) ⇒ zodiac:vocab
v1 : zodiac:vocab
v2 : zodiac:vocab

merge-vocabulary merges two vocabularies; the first argument is destructively updated by each of
the entries in the second argument.

3.5.1 Linking

Zodiac has been written so that it can be used independently of the graphical components of DrScheme.
Its only requirement is that it be run under MzScheme (or any other “sufficiently compatible” system).
Thus, Zodiac can be used with tools both within and without DrScheme. Linking to Zodiac inside

36

3. Zodiac Reference 3.6. Pattern Matching

DrScheme is done as part of the standard interface for DrScheme tools. This section describes how a
tool linking directly to Zodiac should do so.

The code for Zodiac is found in the zodiac directory of the Rice PLT distribution (say this path is
bound to plt-home). To load Zodiac into the system, use

(require-library "fileu.ss") ; to load load-recent
(load-recent (build-path plt-home "zodiac" "load"))

This will ensure all the files are loaded, and that the compiled versions are loaded where available and
newer than their source. All the Zodiac signatures mentioned below are in the file sigs.ss.

Any unit wanting to use the Zodiac procedures must include the signature zodiac:system^ among
its imports. The unit zodiac:system@, which satisfies this signature, contains all the requisite code.
Linking to zodiac:system@ requires it be passed two parameters, in this order:

Error Interface Zodiac requires an implementation of the error handlers (Section ??). Thus,
a unit satisfying the signature zodiac:interface^, containing the error handlers that have
the described types, must be provided. Zodiac provides a default unit with no imports,
zodiac:default-interface@, that meets this signature, but those procedures will likely be un-
satisfactory for most presentation needs. They are provided only to provide a template and to
reduce the effort needed to start using Zodiac; users are strongly encouraged to replace them.

Language Parameters Zodiac takes several parameters that customize its language. These are listed
in the signature plt:parameters^ (from the file sparams.ss in the directory lib of the PLT dis-
tribution), and the settings for MzScheme are in the unit plt:mzscheme-parameters@. Invoking
this latter unit with no arguments will yield the appropriate values, which can then be passed to
Zodiac.

The implementation of zodiac:default-interface@, and a sample linkage, can be found in the file
invoke.ss.

Note: It is suggested that users of Zodiac use the prefix mechanism while importing into a unit to
prefix all Zodiac names. Since the system is not entirely documented, this will prevent unexpected
name clashes (though if they should arise, the file sigs.ss should be consulted to see what names are
exported). In addition, Zodiac provides different definitions for standard Scheme primitives such as
read and make-vector. Mixing these values with traditional Scheme primitives will lead to confusion
and, sometimes, insidious errors. Using a prefix helps the user clarify when a Zodiac primitive is desired
and when the Scheme primitive should be used instead.

3.6 Pattern Matching

Since Zodiac is intended to serve as a platform for writing tools that process programs, it is invaluable to
have a utility that syntactically validates and de-constructs input program phrases. Since Zodiac is currently
geared toward processing Scheme programs, it currently includes a pattern-matching utility that processes
Scheme s-expressions in their Zodiac-enriched forms (i.e., embedded in the read type).

The pattern matcher in Zodiac is procedural in nature. This means that it does not define any macros or
core forms; rather, patterns are defined and matched against using a series of procedure calls. A current
area of investigation is into whether there is a reasonable syntactic interface that can be provided for these
procedures and, if so, what that interface is.

This document describes Zodiac’s pattern matcher and provides some examples of its use.

The pattern matcher includes a pattern compiler, which pre-processes patterns to generate efficient code
that performs two tasks: to validate the input, and to bind pattern variables against the corresponding
components of the input.

37

3.6. Pattern Matching 3. Zodiac Reference

The pattern matcher introduces four new types: the keyword list, kwd-list ; the (raw) pattern, pat ; the
compiled pattern, cpat ; and the pattern environment, penv . For now, kwd-list is just a synonym for the type
list(scheme-symbol).

3.6.1 Examples

The source for match-and-rewrite is presented first:
(define match-and-rewrite
(lambda (expr rewriter out kwd env)

(let ((p-env (match-against rewriter expr env)))
(and p-env

(pexpand out p-env kwd))))))

This assumes that a compiled pattern has already been generated for use as the rewriter argument. A
typical use might be:
(let* ((kwd ’(let))

(in-pattern ’(let ((v e) ...) b))
(out-pattern ’((lambda (v ...) b) e ...))
(m\&e (make-match\&env in-pattern-1 kwd)))

(lambda (expr env)
(or (match-and-rewrite expr m\&e out-pattern kwd env)

(static-error expr "Malformed let"))))

This implements the let macro used by many Scheme implementations. Note that the compiled pattern,
bound to m&e, is created outside the procedure representing the let macro.
(let* ((kwd ’(lambda))

(in-pattern ’(lambda args body))
(m&e (make-match&env in-pattern kwd)))

(lambda (expr env attributes vocab)
(cond
((match-against m&e expr env)
=>
(lambda (p-env)

(let ((args (pexpand ’args p-env kwd))
(body (pexpand ’body p-env kwd)))

(make-lambda-form args body))))
(else
(static-error expr "Malformed lambda body")))))

In this example, a simplified version of the Scheme lambda expression is shown. Note that there is no
checking done to ensure that args does indeed match against a well-formed argument list. After the pattern
variables are expanded, the results are passed to the procedure make-lambda-form, which may represent an
abstract syntax constructor.

zodiac:make-match&env

- (zodiac:make-match&env kl) ⇒ zodiac:cpat
kl : (listof keyword)

make-match&env is used to pre-compile patterns. Typically, the computation that compiles patterns
will be hoisted out of procedure bodies so that the compilation takes place once while its result can be
used several times.

38

3. Zodiac Reference 3.7. Core Scheme

zodiac:match-against

- (zodiac:match-against pattern exp env) ⇒ (union penv #f)
pattern : zodiac:cpat
exp : zodiac:read
env : zodiac:env

match-against performs the actual matching of a given expression (of type read) against a compiled
pattern6. If the expression matches the pattern, a pattern environment, which is a non-false value, is
returned; else the result is #f.

zodiac:match-and-rewrite

- (zodiac:match-and-rewrite sexp pattern1 pattern2 keywords) ⇒ (union mixed #f)
sexp : zodiac:read
pattern1 : zodiac:cpat
pattern2 : zodiac:pat
keywords : (list keyword)

match-and-rewrite is used to provide a concise means of writing rewrite rules. It is particularly useful
for writing source-to-source transformations (macros). In Section 3.6.1, we will show the source for
this procedure.

zodiac:pexpand

- (zodiac:pexpand pattern env keywords) ⇒ mixed
pattern : zodiac:pat
env : zodiac:penv
keywords : (listof keyword)

pexpand expands patterns in the context of a pattern environment and a list of keywords. The first
argument is recursively copied verbatim into the output unless an identifier is encountered that is bound
in the pattern environment and is not in the keyword list; this identifier is replaced by its binding,
which has type read , in the pattern environment, and transcription proceeds accordingly. The output
of compositing pexpand with zodiac:structurize-syntax yields an object of type read , which can
be subjected to further pattern matching, etc.

3.7 Core Scheme

The core portions of the Zodiac vocabulary that parse Scheme are found in the unit zodiac:scheme-core@,
which satisfies the signature zodiac:scheme-core^. This document describes the Core Scheme unit.

The primary task of Core Scheme is to create a vocabulary, scheme-vocabulary, which will be built up on
in the more advanced vocabularies, and to populate it with micros that handle the core behavior of Scheme.
For instance, a list of tokens (not headed by a keyword) is treated as an application, an improper list is
flagged as an error, and literals are quoted. Vocabularies are provided for parsing argument lists with and
without optional initial values. Predicates are provided for determining the syntactic validity of argument
lists. The rest of this document describes Core Scheme in detail.

3.7.0.1 Vocabularies

scheme-vocabulary is intended to contain all the micros and macros that parse Scheme programs. It is
6The environment is provided to determine whether a keyword has been lexically shadowed.

39

3.7. Core Scheme 3. Zodiac Reference

initially populated with micros for handling the different syntactic categories; all list objects are treated as
applications, awaiting further layers of Scheme to add the various core forms in the language.

arglist-decls-vocab is used to parse argument lists such as those of abstractions. The syntax of arguments
accepted is controlled by the language level at which Zodiac is being used.

3.7.0.2 Types

The parsed type is used to represent the output from the parser. All parsed objects have a back field, which
is used to convey information between program processing tools such as analyzers and monitors:

zodiac:parsed (back)

3.7.0.3 Expressions

Any expression is either a variable reference, an application or a special form:

zodiac:varref : parsed (var)
zodiac:app : parsed (fun args)
zodiac:form : parsed ()

The var field of a varref is a Scheme symbol. The fun field of app is of type parsed , while args contains a
list of parsed . All the special forms — which are defined in other documents — are sub-types of form.

3.7.0.4 Identifiers and Binding

The Core Scheme unit recognizes that identifiers may be free or (lexically) bound. To accomodate additional
binding forms, a distinction is first drawn between free and bound variables:

zodiac:top-level-varref : varref ()
zodiac:bound-varref : varref (binding)

One sub-type of the latter is also defined:

zodiac:lexical-varref : bound-varref ()

The binding field of a bound-varref refers to an object of type binding , with a lexical-varref referring to an
object of type lexical-binding :

zodiac:binding : parsed (var orig-name)
zodiac:lexical-binding : binding ()

The var field contains a Scheme symbol representing the name of the bound identifier. Since hygienic
renaming may have taken place, the orig-name field holds the original name (which may have been provided
in the source, or been introduced via a macro or micro).

The binding field may be used to distinguish between bound variables in that exactly all occurrences of the
same bound identifier contain the same value in their binding field (in the sense of eq?).

Note: There is no justification for binding to be a sub-type of parsed ; this dependency will be elided.

40

Index

break, 6
button-panel, 11

canvas
scroll bars, 9, 13

canvas%, 5
change-to-file, 11
current-setting, 13

definitions-canvas, 11
definitions-text, 11
disable-evaluation, 5, 11
display-results, 7
do-many-evals, 7
do-many-text-evals, 7
drscheme:basis:add-setting, 13
drscheme:basis:bottom-escape-handler, 13
drscheme:basis:copy-setting, 14
drscheme:basis:current-vocabulary, 14
drscheme:basis:error-display/debug-handler,

14
drscheme:basis:find-setting-named, 14
drscheme:basis:format-source-loc, 14
drscheme:basis:get-default-setting, 15
drscheme:basis:get-default-setting-name, 15
drscheme:basis:initialize-parameters, 15
drscheme:basis:number->setting, 16
drscheme:basis:process-file/no-zodiac, 18
drscheme:basis:process-file/zodiac, 16
drscheme:basis:process-finish?, 17
drscheme:basis:process-sexp/no-zodiac, 18
drscheme:basis:process-sexp/zodiac, 17
drscheme:basis:process/no-zodiac, 18
drscheme:basis:process/zodiac, 19
drscheme:basis:r4rs-style-printing?, 17
drscheme:basis:raw-reader, 19
drscheme:basis:setting-name, 17
drscheme:basis:setting-name->number, 17
drscheme:basis:zodiac-reader, 19
drscheme:basis:zodiac-vocabulary?, 17
drscheme:frame:basics-mixin, 3
drscheme:frame:basics<%>, 3
drscheme:frame:name-message%, 5
drscheme:get/extend:extend-definitions-canvas,

21
drscheme:get/extend:extend-definitions-text,

21
drscheme:get/extend:extend-interactions-canvas,

21

drscheme:get/extend:extend-interactions-text,
22

drscheme:get/extend:extend-unit-frame, 22
drscheme:help-desk:help-desk, 22
drscheme:help-desk:open-url, 22
drscheme:help-desk:open-users-url, 22
drscheme:interface:static-error, 19
drscheme:language:language-dialog, 17
drscheme:language:settings-preferences-symbol,

18
drscheme:load-handler:process-text/no-zodiac,

20
drscheme:load-handler:process-text/zodiac,

20
drscheme:rep:context<%>, 5
drscheme:rep:text%, 6
drscheme:setting, 6, 13
drscheme:unit:definitions-canvas%, 9
drscheme:unit:frame%, 10
drscheme:unit:interactions-canvas%, 13
drscheme:unit:program-editor-mixin, 20

editor-canvas%, 9
enable-evaluation, 5, 11
ensure-rep-shown, 5
execute-callback, 12
expand, 23

file-menu:between-open-and-revert, 3
file-menu:new, 3
file-menu:new-string, 3
file-menu:open, 4
file-menu:open-string, 4
format-source-loc, 7

get-directory, 5
get-text-to-search, 12
get-user-setting, 6

help-menu:about, 4
help-menu:about-string, 4
help-menu:after-about, 4
’hide-hscroll, 9, 13
’hide-vscroll, 9, 13
highlight-error, 7

initialize-console, 8
insert-prompt, 8
interactions-canvas, 12
interactions-text, 12

41

INDEX

interface:mark-key, 20
interface:set-zodiac-phase, 21

kill-evaluation, 8

make-searchable, 12
’mdi-child, 10
’mdi-parent, 10

needs-execution?, 6
’no-caption, 10
’no-hscroll, 9, 13
’no-resize-border, 10
’no-system-menu, 10
’no-vscroll, 9, 13
not-running, 6

report-error, 8
reset-console, 8
run-in-evaluation-thread, 9
running, 6

set-message, 5
settings, 18
shutdown, 9

update-shown, 12
user-setting, 6
user-thread, 9

vocabularies, 35

zodiac:add-ilist-micro, 35
zodiac:add-list-micro, 35
zodiac:add-lit-micro, 35
zodiac:add-macro-form, 35
zodiac:add-micro-form, 36
zodiac:add-sym-micro, 36
zodiac:app, 31, 40
zodiac:arglist, 26, 32
zodiac:arglist-decls-vocab, 27
zodiac:arglist-pattern, 27
zodiac:begin-form, 32
zodiac:begin0-form, 32
zodiac:binding, 31, 40
zodiac:boolean, 26
zodiac:bound-varref, 31, 40
zodiac:case-lambda-form, 33
zodiac:char, 26
zodiac:class*/names-form, 23
zodiac:compound-unit-form, 23
zodiac:copy-vocabulary, 36
zodiac:define-values-form, 32
zodiac:distinct-valid-id/s?, 27
zodiac:distinct-valid-syntactic-id/s?, 27

zodiac:eof, 25
zodiac:expand-expr, 27
zodiac:expands<%>, 23
zodiac:extend-env, 34
zodiac:extend-parsed->raw, 27
zodiac:external, 26
zodiac:form, 31, 40
zodiac:generate-name, 27
zodiac:get-attribute, 34
zodiac:if-form, 32
zodiac:ilist-arglist, 32
zodiac:ilist-paroptarglist, 32
zodiac:improper-list, 26
zodiac:in-lexically-extended-env, 28
zodiac:inherit-binding, 24
zodiac:inherit-clause, 24
zodiac:inherit-varref, 24
zodiac:interface-form, 23
zodiac:internal-error, 28
zodiac:invoke-open-unit-form, 23
zodiac:invoke-unit-form, 23
zodiac:language<=?, 28
zodiac:language>=?, 28
zodiac:let-values-form, 32
zodiac:letrec*-values-form, 32
zodiac:lexical-binding, 31, 40
zodiac:lexical-varref, 31, 40
zodiac:lexically-resolved?, 28
zodiac:list, 26
zodiac:list-arglist, 32
zodiac:list-paroptarglist, 32
zodiac:location, 25
zodiac:macro-resolution, 33
zodiac:make-argument-list, 28
zodiac:make-attributes, 34
zodiac:make-empty-back-box, 28
zodiac:make-match&env, 38
zodiac:make-optargument-list, 28
zodiac:make-vocabulary, 36
zodiac:marks-equal?, 29
zodiac:match-against, 39
zodiac:match-and-rewrite, 39
zodiac:merge-vocabulary, 36
zodiac:micro-resolution, 34
zodiac:name-eq?, 29
zodiac:number, 26
zodiac:optarglist-decls-vocab, 29
zodiac:optarglist-pattern, 29
zodiac:paroptarglist, 32
zodiac:parsed, 31, 40
zodiac:parsed->raw, 29
zodiac:period, 25
zodiac:pexpand, 39

42

INDEX

zodiac:private-binding, 24
zodiac:private-clause, 24
zodiac:private-varref, 24
zodiac:public-binding, 24
zodiac:public-clause, 24
zodiac:public-varref, 24
zodiac:put-attribute, 35
zodiac:quote-form, 32
zodiac:read, 26
zodiac:read, 29
zodiac:rename-binding, 24
zodiac:rename-clause, 24
zodiac:rename-varref, 24
zodiac:resolve, 34
zodiac:retract-env, 34
zodiac:scanned, 26
zodiac:scheme-expand, 30
zodiac:scheme-vocabulary, 30
zodiac:sequence, 26
zodiac:sequence-clause, 24
zodiac:set

-form, 32
zodiac:sexp->raw, 30
zodiac:static-error, 30
zodiac:string, 26
zodiac:struct-form, 33
zodiac:structurize-syntax, 30
zodiac:superinit-binding, 24
zodiac:superinit-varref, 24
zodiac:supervar-binding, 24
zodiac:supervar-varref, 24
zodiac:sym-arglist, 27, 32
zodiac:sym-paroptarglist, 32
zodiac:symbol, 26
zodiac:syntax-car, 30
zodiac:syntax-cdr, 31
zodiac:syntax-map, 31
zodiac:syntax-null?, 33
zodiac:token, 26
zodiac:top-level-resolution, 34
zodiac:top-level-varref, 31, 40
zodiac:top-level-varref/bind, 31
zodiac:unit-form, 23
zodiac:valid-id/s?, 33
zodiac:valid-id?, 33
zodiac:valid-syntactic-id/s?, 33
zodiac:valid-syntactic-id?, 33
zodiac:varref, 31, 40
zodiac:vector, 26
zodiac:zodiac, 25
zodiacscalar, 26

43

