


Année 2004–2005 **Examen – 2 heures** 1er Septembre 2005

Aucun document ni machine électronique n'est permis à l'exception de la carte de référence de Scheme. Les téléphones doivent être éteints et rangés dans les sacs.

L'examen dure deux heures. Ce sujet comporte 7 pages.

Les questions peuvent être résolues de façon indépendante. Il est possible, voire même utile, pour répondre à une question, d'utiliser les fonctions qui sont l'objet des questions précédentes.

Répondre sur la feuille même, dans les cadres appropriés. La taille des cadres suggère le nombre de lignes de la réponse attendue (utiliser le dos de la feuille précédente si la réponse déborde des cadres). Le barème (total sur 40) apparaissant dans chaque cadre n'est donné qu'à titre indicatif.

La clarté des réponses et la présentation des programmes seront appréciées. Sauf mention contraire, les fonctions qui apparaîtront dans vos réponses devront être accompagnées de leur spécification.

Ne pas désagrafer les feuilles.

## Exercice 1

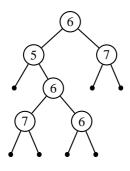
Ce problème traite des listes de nombres.

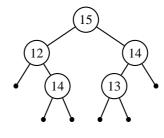
**Question 1.1** – Écrire une définition de la fonction ajoutlListe , qui prend une liste de nombres et renvoie la liste obtenue en ajoutant 1 à tous les éléments de la liste. Ainsi

| (ajout1Liste | ′ (23 | 12 | 5 | 7 | 2))   | -> | (24 | 13 | 6 | 8 | 3)       |
|--------------|-------|----|---|---|-------|----|-----|----|---|---|----------|
| (a)ouciliacc | (23   | 12 | J | , | ر ر ک |    | (27 | エン | U | O | <i>J</i> |

|  | [3/40] |
|--|--------|
|  |        |
|  |        |
|  |        |
|  |        |
|  |        |
|  |        |
|  |        |
|  |        |
|  |        |
|  |        |
|  |        |
|  |        |
|  |        |
|  |        |
|  |        |

| <b>Question 1.2</b> – Écrire une définit<br>nombres entiers et renvoie la liste<br>inchangés). Ainsi    |                  |           |                                 |                                                                                            |
|---------------------------------------------------------------------------------------------------------|------------------|-----------|---------------------------------|--------------------------------------------------------------------------------------------|
| (ajout1SiImpairListeRec                                                                                 | '(23 12 5 7      | 2)) -> (  | 24 12 6 8 2)                    |                                                                                            |
|                                                                                                         |                  |           |                                 | [4/40]                                                                                     |
|                                                                                                         |                  |           |                                 | [ "· ·~ ]                                                                                  |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
| cation que la fonction ajout1SiIn On définira pour cela une fonction et sinon renvoie x. Et pour répond | n ajout1SiImpair | qui, étar | nt donné un entier <i>x</i> rei | tervenir une fonctionnelle map. nvoie $x+1$ si l'entier est impair, nme argument d'un map. |
|                                                                                                         |                  |           |                                 | [3/40]                                                                                     |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |
|                                                                                                         |                  |           |                                 |                                                                                            |


| Section                          | Numéro d'anonymat                                                                                                                                                                                                                                                |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  | <b>4</b> – Écrire une définition de la fonction ajoutlSi qui prend une liste de nombres $L$ et un prédicat $p$ ?, et liste de même longueur que $L$ , où tous les nombres satisfaisant $p$ ? sont incrémentés de 1. Ainsi '(23 12 5 7 2) even?) -> (23 13 5 7 3) |
|                                  | [3/40]                                                                                                                                                                                                                                                           |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
| erreur si <i>k</i> e<br>(ajout11 | > 0, renvoie la liste obtenue en ajoutant 1 au $k^{ieme}$ élément de la liste initiale. Et la fonction renvoie une st supérieur à la longueur de la liste. Par exemple distere (23 12 5 7 2) 3) -> (23 12 6 7 2) distere (23 12 5 7 2) 6) -> erreur              |
|                                  | [4/40]                                                                                                                                                                                                                                                           |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                  |


| Section                 | Numéro d'anonymat                                                                                        |
|-------------------------|----------------------------------------------------------------------------------------------------------|
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         | 6 - On définit ci-dessous une fonction mystere , avec deux fonctions internes f et g.                    |
|                         | le résultat de l'application de la fonction mystere sur la liste (23 12 5 7 2) ?                         |
| Ecrire la<br>(define    | a spécification de la fonction mystere et des fonctions internes f et g.  (mystere L)                    |
| (defi                   | ne (f L)                                                                                                 |
| (ii                     | F (pair? L)                                                                                              |
|                         | (cons (car L)<br>(g (cdr L)))                                                                            |
|                         | L))                                                                                                      |
|                         | ine (g L)<br>E (pair? L)                                                                                 |
| (                       | (cons (+ 1 (car L))                                                                                      |
|                         | $(f(\operatorname{cdir} L))$                                                                             |
| ; corp                  | os de la fonction mystere                                                                                |
| (f L                    |                                                                                                          |
|                         |                                                                                                          |
|                         | [3/40]                                                                                                   |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         | 7 – Écrire une définition de la fonction supprimeListeUnSurDeux , qui prend une liste et renvoie la      |
| liste obtenu<br>exemple | e en supprimant un élément sur deux dans la liste initiale (en commençant par supprimer le premier). Par |
|                         | neListeUnSurDeux (23 12 5 7 2)) -> (12 7)                                                                |
|                         |                                                                                                          |
|                         | [4/40]                                                                                                   |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |
|                         |                                                                                                          |

| Section | Numéro d'anonymat |
|---------|-------------------|
|         |                   |
|         |                   |

## **Exercice 2**

Ce problème s'intéresse à des arbres binaires étiquetés par des entiers. Les arbres ci-dessous serviront d'exemple par la suite. On suppose que l'arbre de gauche est produit par l'expression (B1) et l'arbre de droite par l'expression (B2) .





**Question 2.1** – Écrire une définition de la fonction somme-etiquettes , qui prend un arbre binaire étiqueté par des entiers et renvoie la somme de ses étiquettes. Ainsi

(samme-etiquettes (B1)) -> 37 (samme-etiquettes (B2)) -> 68

| Section                                                                  | Numéro d'anonymat                                                                                                                                                                          |                                                             |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
| que pour tou<br>est inférieur<br>par des entie<br>(bien-e                | ut sommet s autre que la racine, la valeur absolue de re ou égale à 1. Écrire une définition du prédicat bier et renvoie vrai si et seulement si cet arbre est bier etiquete?  (B1)) -> #t |                                                             |
| (bien-                                                                   | etiquete? (B2)) -> #f                                                                                                                                                                      |                                                             |
|                                                                          |                                                                                                                                                                                            | 15/40)                                                      |
|                                                                          |                                                                                                                                                                                            | [5/40]                                                      |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
| la fonction of<br>Écrire une d<br>ou p ou p +<br>On pourra u<br>;;; rand | qui permet de calculer une étiquette égale à 1 près à 1                                                                                                                                    | entier $p$ renvoie un entier $q$ aléatoirement égal à $p-1$ |
|                                                                          |                                                                                                                                                                                            | [3/40]                                                      |
|                                                                          |                                                                                                                                                                                            | [5/40]                                                      |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |
|                                                                          |                                                                                                                                                                                            |                                                             |

**Question 2.4** – Il s'agit maintenant de construire des arbres binaires bien étiquetés et de forme aléatoire. Pour construire un arbre binaire de taille n (c'est-à-dire contenant n nœuds), on choisit un entier aléatoire k compris entre

| Section                                 | Numéro d'anonymat | _                                              |
|-----------------------------------------|-------------------|------------------------------------------------|
|                                         |                   |                                                |
|                                         |                   | J                                              |
| sous-arbres<br>sous-arbre g<br>En suiva |                   | on arbre-etiq-alea qui, étant donnés un entier |
|                                         |                   | [4/40]                                         |
|                                         |                   |                                                |
|                                         |                   |                                                |
|                                         |                   |                                                |
|                                         |                   |                                                |
|                                         |                   |                                                |
|                                         |                   |                                                |
|                                         |                   |                                                |
|                                         |                   |                                                |
|                                         |                   |                                                |
|                                         |                   |                                                |
|                                         |                   |                                                |
|                                         |                   |                                                |
|                                         |                   |                                                |