
Oracle8 i

Data Cartridge Developer’s Guide

Release 2 (8.1.6)

December 1999

Part No. A76937-01

Data Cartridge Developer’s Guide, Release 2 (8.1.6)

Part No. A76937-01

Copyright © 1999, Oracle Corporation. All rights reserved.

Primary Authors: Denis Raphaely, James Rawles, Chuck Murray

Contributing Authors: Nippun Agarwal, Reema Al-Shaikh, Sandeepan Banerjee, Dinesh Das, Ravi
Murthy, Cathleen Trezza-Miller.

Contributors: Samuel DeFazio, Robert Hankel, Ravikanth Ksamsetty, Viswanathan Krishnamurthy,
Srinath Krishnaswamy, Daniel Mullen, Mark Scardina, Sriram Samu, Tomas Saulys, Jagannathan
Srinivasan.

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark of Oracle Corporation. All other company or product names mentioned
are used for identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments .. xvii

Preface .. xix

How This Book is Organized .. xx
What You Will Need In Addition To This Guide .. xx
Notation... xxi

Part I Introduction

1 What Is a Data Cartridge?

What Are Data Cartridges? ... 1-2
Why Build Data Cartridges? ... 1-3
Extending the Server — Services and Interfaces .. 1-6
Extensibility Services ... 1-6

Object Types... 1-8
Collection Types .. 1-8
Relationship Types (REF)... 1-8
Large Objects.. 1-9

Extensibility Interfaces .. 1-13
Cartridges as Software Components... 1-14

2 Roadmap to Building a Data Cartridge

Development Process ... 2-2
Installation and Use ... 2-4
v

Requirements and Guidelines for Data Cartridge Constituents... 2-5
Deployment Checklist ... 2-7

Need for Naming Conventions ... 2-8
Unique Name Format ... 2-9
Internal Versioning.. 2-12
External Versioning... 2-12
External Access .. 2-12
Internal Access ... 2-13
Invoker’s Rights ... 2-13
Test and Debug Services... 2-13
Configuration ... 2-13

3 Defining Object Types

Objects and Object Types.. 3-1
Assigning an OID to an Object Type .. 3-3
Constructor Methods.. 3-4
Object Comparison ... 3-5

Part II Building Data Cartridges

4 Methods: Using C/C++ and Java

External Procedures .. 4-2
Using Shared Libraries .. 4-2
Registering an External Procedure .. 4-3
How PL/SQL Calls an External Procedure ... 4-4
Configuration Files for External Procedures.. 4-5
OCIExtProcGetEnv ... 4-10
Doing Callbacks .. 4-10
OCI Access Functions for External Procedures ... 4-12
Common Potential Errors .. 4-13
Debugging External Procedures... 4-14
Guidelines for Using External Procedures with Data Cartridges ... 4-15
Java Methods.. 4-16
vi

5 Methods: Using PL/SQL

Methods .. 5-2
 PL/SQL Packages ... 5-5
Pragma RESTRICT_REFERENCES... 5-6
Privileges Required to Create Procedures and Functions .. 5-7
Debugging PL/SQL Code.. 5-8

Signature Mismatches... 5-9
RPC Time Out .. 5-10
Package Corruption .. 5-10

6 Working with Multimedia Datatypes

Overview .. 6-2
DDL for LOBs.. 6-2
LOB Locators.. 6-3
EMPTY_BLOB and EMPTY_CLOB Functions.. 6-4
Using the OCI to Manipulate LOBs.. 6-6
Using DBMS_LOB to Manipulate LOBs ... 6-10
LOBs in External Procedures .. 6-11
LOBs and Triggers .. 6-12
Using Open/Close as Bracketing Operations for Efficient Performance 6-12

7 Building Domain Indexes

Introduction to Extensible Indexing ... 7-2
The Relationship between Logical and Physical Structures ... 7-3
The Need for Index Structures that Encompass Unstructured Data 7-3
B-tree ... 7-4
Hash... 7-5
k-d tree .. 7-6
Point Quadtree... 7-8

The Extensible Indexing API.. 7-10
Overview .. 7-13
Example: A Text Indextype.. 7-15
Creating Indextypes.. 7-17
Dropping Indextypes.. 7-18
vii

Index Definition Methods .. 7-18
Index Maintenance Methods.. 7-19
Index Scan Methods .. 7-20
Index Metadata Method ... 7-21
Transaction Semantics during Index Method Execution... 7-22
Transaction Semantics for Index Definition Routines.. 7-22
Consistency Semantics during Index Method Execution .. 7-23
Privileges During Index Method Execution .. 7-23
Domain Index Operations .. 7-23
Domain Index Meta Data ... 7-24
Export/Import of Domain Indexes... 7-25
Operator Bindings ... 7-25
Creating operators... 7-26
Operator Invocation .. 7-27
Operator Privileges ... 7-28
Operators in WHERE clause .. 7-29
Operators elseWHERE.. 7-31
Ancillary Data .. 7-34
Dependencies ... 7-37
Drop Semantics .. 7-37
Object Validation ... 7-38

8 Query Optimization

Overview... 8-2
User-Defined Statistics.. 8-4
User-Defined Statistics for Partitioned Objects... 8-4
User-defined Selectivity.. 8-5
User-Defined Cost ... 8-6

Defining Statistics, Selectivity, and Cost Functions... 8-8
Using User-defined Statistics, Selectivity, and Cost... 8-15

Column Statistics ... 8-16
Domain Index Statistics .. 8-17
User-defined Operators .. 8-18
Stand-Alone Functions ... 8-18
Package Functions ... 8-18
viii

Type Methods .. 8-19
Default Selectivity ... 8-19
User-defined Operators .. 8-20
Stand-Alone Functions ... 8-20
Package Functions... 8-20
Type Methods .. 8-21
Default Cost.. 8-21

Predicate Ordering.. 8-22
Dependency Model .. 8-22
Restrictions and Suggestions ... 8-24

9 Using Cartridge Services

Cartridge Services — Introduction.. 9-2
Cartridge Handle .. 9-3
Memory Services... 9-4
Maintaining Context .. 9-5
National Language Service (NLS) ... 9-6
Parameter Manager Interface ... 9-7
File I/O .. 9-10
String Formatting.. 9-10

Part III Advanced Topics

10 Design Considerations

Designing the types.. 10-2
Nested Tables... 10-2
VARRAYs ... 10-3
Inheritance Implementation Consequences .. 10-4
Simulating Inheritance.. 10-4
Dual Subtype / Super-type Reference ... 10-8

Callouts ... 10-10
Designing Indexes .. 10-11

Influencing Index Performance... 10-11
Influencing Index Performance... 10-12
ix

Designing Operators .. 10-14
Talking to the Optimizer ... 10-14
Design for maintenance... 10-16
Miscellaneous .. 10-17

Part IV Scenarios and Examples

11 Power Demand Cartridge Example

Modeling the Application ... 11-9
Queries and Extensible Indexing... 11-13
Creating the Domain Index... 11-15

Type Definition .. 11-23
ODCIGetInterfaces Method ... 11-25
ODCIIndexCreate Method ... 11-25
ODCIIndexDrop Method ... 11-27
ODCIIndexStart Method (for Specific Queries)... 11-28
ODCIIndexStart Method (for Any Queries) .. 11-30
ODCIIndexFetch Method ... 11-32
ODCIIndexClose Method... 11-33
ODCIIndexInsert Method .. 11-33
ODCIIndexDelete Method ... 11-34
ODCIIndexUpdate Method ... 11-35
ODCIIndexGetMetadata Method.. 11-37

Testing the Domain Index ... 11-39
Type Definition .. 11-41
ODCIGetInterfaces Method ... 11-43
ODCIStatsCollect Method (for PowerDemand_Typ columns) 11-43
ODCIStatsDelete Method (for PowerDemand_Typ columns) 11-46
ODCIStatsCollect Method (for power_idxtype Domain Indexes) 11-47
ODCIStatsDelete Method (for power_idxtype domain indexes) 11-48
ODCIStatsSelectivity Method (for Specific Queries).. 11-49
ODCIStatsSelectivity Method (for Any Queries).. 11-57
ODCIStatsIndexCost Method (for Specific Queries) .. 11-59
ODCIStatsIndexCost Method (for Any Queries) .. 11-60
ODCIStatsFunctionCost Method... 11-61
x

Testing the Domain Index ... 11-64
Using Time Series with the Power Demand Cartridge ... 11-74
Using Spatial with the Power Demand Cartridge.. 11-81

12 SBTREE: An Example of Extensible Indexing

Introduction ... 12-2
Design of the indextype .. 12-2
Implementing Operators ... 12-2

Functional Implementation of EQ (EQUALS) .. 12-2
Functional Implementation of LT (LESS THAN) ... 12-3
Functional Implementation of GT (GREATER THAN)... 12-3
Operator EQ ... 12-4
Operator LT.. 12-4
Operator GT ... 12-4

Implementing the Index routines.. 12-4
The C Code... 12-9
Implementing the Indextype .. 12-27
Usage examples ... 12-27

Part V Reference

13 Reference: Cartridge Services Using C

Cartridge Services — OCI External Procedures.. 13-4
OCIExtProcAllocCallMemory().. 13-5
OCIExtProcRaiseExcp() ... 13-7
OCIExtProcRaiseExcpWithMsg()... 13-9
OCIExtProcGetEnv() .. 13-11

Cartridge Services — Memory Services ... 13-12
OCIDurationBegin() ... 13-13
OCIDurationEnd().. 13-15
OCIMemoryAlloc() .. 13-17
OCIMemoryResize()... 13-19
OCIMemoryFree() .. 13-21

Cartridge Services — Maintaining Context... 13-22
xi

OCIContextSetValue().. 13-23
OCIContextGetValue()... 13-25
OCIContextClearValue() ... 13-27
OCIContextGenerateKey() .. 13-29

Cartridge Services — Parameter Manager Interface .. 13-30
OCIExtractInit()... 13-31
OCIExtractTerm() ... 13-32
OCIExtractReset() ... 13-33
OCIExtractSetNumKeys().. 13-34
OCIExtractSetKey() .. 13-35
OCIExtractFromFile()... 13-38
OCIExtractFromStr() .. 13-40
OCIExtractToInt() ... 13-42
OCIExtractToBool() .. 13-44
OCIExtractToStr() ... 13-46
OCIExtractToOCINum().. 13-48
OCIExtractToList().. 13-50
OCIExtractFromList()... 13-51

Cartridge Services — File I/O Interface .. 13-53
OCIFileInit()... 13-54
OCIFileTerm() ... 13-55
OCIFileOpen() ... 13-56
OCIFileClose() ... 13-59
OCIFileRead().. 13-61
OCIFileWrite() ... 13-63
OCIFileSeek()... 13-65
OCIFileExists() .. 13-67
OCIFileGetLength() .. 13-69
OCIFileFlush() ... 13-71

Cartridge Services — File I/O Interface .. 13-72
OCIFileObject .. 13-72

Cartridge Services — String Formatting Interface ... 13-73
OCIFormatInit ... 13-73
OCIFormatTerm.. 13-74
OCIFormatString .. 13-75
xii

Format Modifiers .. 13-77
Format Codes .. 13-79
Example.. 13-81

14 Reference: Cartridge Service Using Java

File Installation ... 14-2
Cartridge Service — Maintaining Context... 14-3

CountException().. 14-5
CountException(String) ... 14-6
InvalidKeyException() ... 14-7
InvalidKeyException(String) .. 14-8

15 Reference: Extensibility Constants, Types, & Mappings

Extensibility Constants, Types, & Mappings .. 15-2
Alter Options Values.. 15-3
ODCIArgDesc.ArgType Bits... 15-4
ODCIPredInfo.Flag Bits ... 15-5
ODCIFuncInfo.Flags Bits... 15-6
ODCIQueryInfo.Flags Bits .. 15-7
ODCIStatsOptions.Flags Bits .. 15-8
ODCIStatsOptions.Options Bits ... 15-9
ScnFlg (Function with Index Context) Values.. 15-10
Status Values ... 15-11

System Defined Types.. 15-12
ODCIArgDesc ... 15-13
ODCIArgDescList... 15-14
ODCIRidList.. 15-15
ODCIColInfo ... 15-16
ODCIColInfoList... 15-17
ODCICost... 15-18
ODCIFuncInfo... 15-19
ODCIIndexInfo ... 15-20
ODCIPredInfo ... 15-21
ODCIIndexCtx .. 15-22
ODCIObject ... 15-23
xiii

ODCIObjectList ... 15-24
ODCIQueryInfo .. 15-25
ODCIStatsOptions .. 15-26

C Constants... 15-28
C Types.. 15-29

Mappings in Java .. 15-33
... 15-33

16 Reference: Extensible Indexing Interface

Extensible Indexing — System Defined Interface Routines .. 16-2
ODCIGetInterfaces ... 16-3
ODCIIndexAlter.. 16-4
OCDIIndexCreate ... 16-6
ODCIIndexClose ... 16-8
ODCIIndexDelete ... 16-9
ODCIIndexDrop.. 16-10
ODCIIndexFetch ... 16-12
ODCIIndexGetMetadata.. 16-14
ODCIIndexInsert... 16-17
ODCIIndexStart .. 16-18
ODCIIndexTruncate ... 16-21
OCIIndexUpdate... 16-22

17 Reference: Extensible Optimizer Interface

Extensible Optimizer — Interface ... 17-2
EXPLAIN PLAN ... 17-2
INDEX Hint ... 17-3
ORDERED_PREDICATES Hint.. 17-4
Example.. 17-5
User-Defined ODCIStats Functions ... 17-7
ODCIStatsCollect .. 17-8
ODCIStatsDelete ... 17-9
ODCIStatsSelectivity .. 17-10
ODCIStatsFunctionCost... 17-11
ODCIStatsIndexCost .. 17-12
xiv

A Java Demo Script

extdemo3.sql Demonstration Script.. A-13
extdemo3.java Demonstration Script.. A-21
extdemo3a.java Demonstration Script.. A-31

Index
xv

xvi

Send Us Your Comments

Oracle8 i Data Cartridge Developer’s Guide, Release 2 (8.1.6)

Part No. 76937-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail - infodev@us.oracle.com

■ FAX - (650) 506-7228 Attn: Oracle 8i Generic Documentation

■ Postal service:

Oracle Corporation

ST/Oracle 8i Generic Documentation

500 Oracle Parkway, 4op12

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.
xvii

xviii

Preface

This Preface includes the following information:

■ How This Book is Organized

■ What You Will Need In Addition To This Guide

■ Notation
xix

How This Book is Organized
This Guide is organized into 5 parts.

1. Introduction — Chapters 1 and 2 provide basic information, including

introduction of a comprehensive example.

2. Data Cartridge Components — Chapters 3 through 9 lay out the components

that go into building a data cartridge.

3. Advanced Topics — Chapters 10 and 11 discuss design considerations and

using Oracle cartridges.

4. A Comprehensive Example — Chapter 12 elaborates the Power Utility example

introduced in chapter 3.

5. Reference — Chapters 13 through 17 provide data cartridge specific references.

6. Java Demo — Appendix A is a demo showing a simple btree indextype

implemented as Java callouts.

What You Will Need In Addition To This Guide
This book on its own does not provide you with all the information you might need

to build every kind of data cartridge. This is because generic Oracle technology —

that is, technology that is not specific to data cartridges — is defined in the manuals,

guides and reference books that make up rest of the Oracle documentation set.

In reading through the chapters, you will come across many references to these

manuals. We suggest that you keep the Oracle documentation set by your side.
xx

Notation
The following notation is used in this Guide:

[] Square brackets enclose optional items in syntax

descriptions.

< > Angle brackets enclose the name of a syntactic element in

syntax descriptions.

{ } Braces enclose items, only one of which is required.

| A vertical bar separates options within brackets or braces

. . Two dots separate the lowest and highest values in a range.

. . . An ellipsis shows that the preceding parameter can be
repeated or that statements or clauses irrelevant to the
discussion were left out
xxi

xxii

Part I

Introduction

Chapter 1, "What Is a Data Cartridge?"

Chapter 2, "Roadmap to Building a Data Cartridge"

What Is a Data Cartr
1

What Is a Data Cartridge?

With the release of Oracle8i, the traditional server has evolved into an

Object-Relational Database Management System (ORDBMS). This means that in

addition to the efficient and secure management of data ordered under the

relational model, Oracle now also provides support for data organized under the

object model. Object types and other Oracle8i features, such as large objects (LOBs),

external procedures, extensible indexing and query optimization, can be used to

build powerful, reusable server-based components called data cartridges.

This chapter introduces the following introductory information about data

cartridges:

■ What Are Data Cartridges?

■ Why Build Data Cartridges?

■ Extending the Server — Services and Interfaces

■ Extensibility Services

■ Extensibility Interfaces

■ Cartridges as Software Components
idge? 1-1

What Are Data Cartridges?
What Are Data Cartridges?
Within the framework of the Oracle Extensibility Architecture, data cartridges are the

mechanism for extending the capabilities of the Oracle server. What does this mean?

First, Oracle8i lets you capture the business logic and processes associated with

domain-specific data in user-defined datatypes. In some cases, where the data

cartridge provides new behavior without needing new attributes, the vehicle of

implementation may be packages rather than formal types. Once you have defined

these types using either of these approaches, Oracle8i allows you to determine the

manner in which the server interprets, stores, retrieves, and indexes the data.

Ultimately, data cartridges are the means to package this functionality as software

components that can then be plugged into a server to extend its capabilities into a

new domain.

This is all possible because the database has itself been made extensible. That is, you

can now customize the database management system so that it treats user-defined

business objects and rich types on a par with native types with regard to server

mechanisms such as indexing and query optimization. Where some aspects of a

native service is not adequate for the specialized processing you require, you can

provide your own implementations of these services. These implementations are

then registered with the server using the extensibility interfaces.

The key characteristics of data cartridges areas follows:

■ Data cartridges are server- based. Their constituents reside at the server or are

accessed from the server. The bulk of processing for data cartridges occurs at

the server, or is dispatched from the server in the form of an external procedure.

■ Data cartridges extend the server. They define new types and behavior to provide

componentized, solution-oriented capabilities previously unavailable in the

server. Users of data cartridges can freely use the new types in their application

to get the new behavior. Having loaded an Image data cartridge, the user can

define a table Person with a column Photo of type Image .

■ Data cartridges are integrated with the server. The extensions made to the server by

defining new types are integrated with the server engine so that the optimizer,

query parser, indexer and other server mechanisms recognize and respond to

the extensions. The Oracle8i Extensibility Framework defines a set of interfaces

that enable data cartridges to integrate with the components of the server

engine. For example, the interface to the indexing engine allows for

domain-specific indexing. Optimizer interfaces similarly allow data cartridges

to specify the cost of accessing data by means of its functionality.
1-2 Oracle8i Data Cartridge Developer’s Guide

Why Build Data Cartridges?
■ Data cartridges are packaged. A data cartridges is installed as an unit. Once

installed, the data cartridge handles all access issues arising out of the

possibility that its target users might be in different schema, have different

privileges and so on.

Why Build Data Cartridges?

The Need to Handle Complex Data Objects
Over the years, virtually every industry has evolved sophisticated models to handle

complex data objects that make up the essence of their business. By data objects, we

mean both the structures that relate different units of information to one another

and the operations that are performed on them.

The simple names given these data objects often conceal the complexity of the

expertise they embody. For example, the banking industry has many different types

of bank accounts. Each bank account has customer demographic information,

balance information, transaction information, and rules that embody its behavior

(deposit, withdrawal, interest accrual, and so forth).

As will be described below, data cartridges allow you to leverage this expertise by

encapsulating this business logic in software components that integrate with the

Oracle server. The notion of adding logic to data in a database has been available for

some time by way of stored procedures. With the addition of object-relational

extensions, the Oracle8i server can now be enhanced by application programmers

and independent software vendors to support a new generation of data types,

processes, and logic in order to model business objects.

The Need to Operate on Complex and Multimedia Datatypes
At the same time as business models have led to the development of increasingly

complex data objects, the revolution in information technology has made it

necessary to work with new kinds of data: satellites images, X-rays, animal sounds,

seismic vibrations, chemical models — all these complex and multimedia datatypes

are now forms of information that have to be stored and retrieved, queried and

analyzed.

Today’s web-based applications routinely include many different kinds of complex

data. The ability to extend the database to include application-specific data types as

well as the business logic associated with these types requires a new class of

networked, content-rich, multi-tiered, distributed applications. As will be described

below, data cartridges allow you to meet this need by combining scalar and

unstructured datatypes in domain-specific components. You can further combine
What Is a Data Cartridge? 1-3

Why Build Data Cartridges?
these components to provide both horizontal (across industries) and vertical (niche

specific) functionality.

Data Cartridge Domains
The complexity of data objects, which may entail the need to handle specialized

data, gives rise to application domains. Put another way: a data cartridge is typically

domain-specific. Domains are characterized by content and scope.

In terms of content, a data cartridge can accommodate either scalar data or complex

and multimedia forms of data. Scalar data is data that can be modeled using native

SQL types such as INTEGER, NUMBER, or CHAR. Complex forms of data include time

series, matrixes, temperature and magnetic grids, and compound documents.

Multimedia types include video, voice, and image data.

In terms of scope, a data cartridge can have broad horizontal (cross-industry)

coverage or it can be specialized for a specific type of business. For example, a data

cartridge for general storage and retrieval of textual data is cross-industry in scope,

whereas a data cartridge for the storage and retrieval of legal documents for

litigation support is industry-specific.

Table 1–1 shows a way of classifying data cartridge domains according to their

content (type of data) and scope (cross-industry or industry-specific), with some

examples.

.

Oracle8i furnished the ability to utilize built-in scalar datatypes to construct more

complex user-defined types. The Object-Relational Database Management System

has now evolved to the point that Oracle 8i now provides foundational cartridges

that package multimedia and complex data which can be used as bases for

applications across many different industries:

Table 1–1 Data Cartridge Domains by Content and Scope

Content Scope

Cross-Industry Uses Industry-Specific Extensions

Scalar Data Statistical conversion Financial and Petroleum

Multimedia and
Complex Data

Text

Image

Audio/Video

Time Series

Spatial

Legal

Medical

Broadcasting

Securities

Utilities
1-4 Oracle8i Data Cartridge Developer’s Guide

Why Build Data Cartridges?
Following from this, you can see that another way of viewing the relationship of

cartridges to domains is to view basic multimedia datatypes as forming a

foundation that can be extended in specific ways by specific industries. For

example, Table 1–3 shows cartridges that could be built for medical applications:

A cartridge providing basic services may be deployed across many industries, as a

text cartridge may be utilized within both law and medicine. A cartridge can also

leverage domain expertise across an industry, as an image cartridge may provide

basic functionality for both X-rays and Sonar within medicine. These cartridges can

in turn be further extended for more specialized vertical applications. For instance,

any of the cartridges mentioned above could be specialized by being extended by

other cartridges:

Table 1–2 Oracle Cartridges as Bases for Development

Cartridge Database Model Behavior

Time Ordered list of tuples Compute Rolling Averages,
Compare Time Periods,
Construct Calendars...

Text Tokenized serial byte stream Display, Compress,
Reformat, Index...

Image Structured large object Compress, Crop, Scale,
Rotate, Reformat...

Spatial Geometric objects such as
points, lines, polygons

Project, Rotate, Transform,
Map...

Video Structured large object of
serial (dynamic) image data

Compress, Play, Rewind,
Pause...

Table 1–3 Medicine-Specific Extensions to Basic Cartridges

Text Image Audio Video Time Series Spatial

Records MRI Heartbeat Teaching Patient
Status

Demographic
Analysis

Table 1–4 Examples of Extensions to a Basic Cartridge

Image

Image -> MRI -> Brain MRI -> Neonatal Brain MRI
What Is a Data Cartridge? 1-5

Extending the Server — Services and Interfaces
In other words, you can develop a cartridge for both horizontal and vertical market

penetration.

In summary: data cartridges allow you to define new datatypes and behavior which

can then provide, in component form, solution-oriented capabilities previously

unavailable in the server. In some cases, where the data cartridge provides new

behavior without needing new attributes, the data cartridge may provide PL/SQL

packages but not new datatype definitions. Users of data cartridges can freely use

the new datatypes in their application to take advantage of the new behavior. For

example, after an image data cartridge is installed, you can define a table called

Person with a Photo column of type Image

Extending the Server — Services and Interfaces
The Oracle8i server provides services for basic data storage, query processing,

optimization, and indexing. Various applications use these services to access

database capabilities. However, data cartridges have specialized needs because they

incorporate domain-specific data. To accommodate these specialized applications,

the basic services have been made extensible in the Oracle8i series of releases.

That is, where some aspects of a standard Oracle8i service are not adequate for the

processing a data cartridge requires, you as the data cartridge developer can

provide services that are specially tuned to your cartridge. Every data cartridge can

provide its own implementations of these services. These specialized

implementations are registered with the server using the Oracle8i extensibility

interfaces.

For example, suppose you want to build a spatial data cartridge for geographical

information systems (GIS) applications. In this case, you may need to implement

routines that create a spatial index, insert an entry into the index, update the index,

delete from the index, and perform any other required operations. To do this you

would register your implementations with the Oracle8i server using extensible

indexing interface, and then the server will invoke your implementation every time

indexing operations were needed for spatial data. In effect, you extend the indexing

service of the server.

Extensibility Services
Figure 1–1 shows the standard services implemented by the Oracle8i server. This

section describes some of these services, not to provide exhaustive descriptions but

to highlight major Oracle8i capabilities as they relate to data cartridge development.
1-6 Oracle8i Data Cartridge Developer’s Guide

Extensibility Services
Figure 1–1 Oracle8i Services

Extensible Type System
The Oracle8i universal data server provides both native and extensible type system

services. Historically, mainstream applications have focused on accessing and

modifying corporate data that is stored in tables composed of native SQL datatypes,

such as INTEGER, NUMBER, DATE, and CHAR. Oracle8i adds support for new types,

including:

■ user-defined objects

■ collections:

– VARRAY (varying length array)

– multi-set (nested table)

■ REF (relationship)

■ internal large object types:

– BLOB (binary large object)

– CLOB (character large object)

■ BFILE (external file)

This section discusses these new types.

Data
Cartridge

Oracle8 Universal
Data Server Extensibility Interfaces

Data
Cartridge

Oracle8 Universal
Data Server Extensibility Interfaces

. . .
Query

Processing
Data

Indexing
Server

Execution

Database and Extensibility Services

Type
System
What Is a Data Cartridge? 1-7

Extensibility Services
Object Types
An object type differs from native SQL datatypes in that it is user-defined and it

specifies both the underlying persistent data (attributes) and the related behaviors

(methods). Object types are used to extend the modeling capabilities provided by

the native datatypes. You can use object types to make better models of complex

entities in the real world by binding data attributes to semantic behaviors.

An object type can have one or more attributes. Each attribute has a name and a

type. The type of an attribute can be a native SQL type, a LOB, a collection, another

object type, or a REF type. The syntax for defining object types is discussed in

Chapter 3.

A method is a procedure or a function that is part of an object type definition.

Methods can access and manipulate attributes of the related object type. Methods

can run within the execution environment of the Oracle8i server. Methods can also

be dispatched outside the server as part of the extensible server execution

environment.

Collection Types
Collections are SQL datatypes that contain multiple elements. Each element, or

value, for a collection is the same datatype. In Oracle8i, collections of complex types

can be VARRAYs or nested tables.

A VARRAY contains a variable number of ordered elements. The VARRAY datatype

can be used for a column of a table or an attribute of an object type. The element

type of a VARRAY can be either a native datatype, such as NUMBER, or an object type.

A nested table can be created using Oracle8i SQL to provide the semantics of an

unordered collection. As with a VARRAY, a nested table can be used to define a

column of a table or an attribute of an object type.

Relationship Types (REF)
If you create an object table in Oracle8i, you can obtain a reference that acts as a

database pointer to an associated row object. References are important for

navigating among object instances, particularly in client-side applications.

The REF operator obtains a reference to a row object. Because REFs rely on the

underlying object identity, you can use REF only with an object stored as a row in

an object table or objects composed from an object view.

For further information about the REF operator and examples of its use, see the

chapter on object types in the PL/SQL User’s Guide and Reference.
1-8 Oracle8i Data Cartridge Developer’s Guide

Extensibility Services
Large Objects
Oracle8i provides large object (LOB) types to handle the storage demands of images,

video clips, documents, and other forms of non-structured data. For an extensive

coverage of Large Objects, please see Oracle8i Application Developer’s Guide - Large
Objects (LOBs). Large objects are stored in a way that optimizes space utilization

and provides efficient access. Large objects are composed of locators and the related

binary or character data. The LOB locators are stored in-line with other table

columns and, for internal LOBs (BLOB, CLOB, and NCLOB), the data can be in a

separate database storage area. For external LOBs (BFILE), the data is stored

outside the database tablespaces in operating system files. A table can contain

multiple LOB columns (in contrast to the limit of one LONG RAW column per table).

Each LOB column can be stored in a separate tablespace, and even on different

secondary storage devices.

Oracle8i SQL data definition language (DDL) extensions let you create, modify, and

delete tables and object types that contain large objects (LOBs). The Oracle8i SQL

data manipulation language (DML) includes statements to insert and delete

complete LOBs. There is also an extensive set of statements for piece-wise reading,

writing, and manipulating of LOBs with PL/SQL and the Oracle Call Interface

(OCI) software.

For internal LOB types, both the locators and related data participate fully in the

transactional model of the Oracle server. The data for BFILEs does not participate

in transactions; however, BFILE locators are fully supported by Oracle server

transactions. For more information about LOBs and transactions, see the Oracle8i
Application Developer’s Guide - Large Objects (LOBs).

With SQL alone, the data residing within Oracle8i LOBs is opaque and cannot be

queried. However, you can use the various LOB APIs to build modules, including

methods of object types, to access and manipulate LOB content. Further, unlike

scalar quantities, a LOB value cannot be indexed using built-in indexing schemes.

The extensible indexing framework lets you define the semantics of data

residing in LOBs, and to manipulate the data using these semantics.

Oracle8i provides you a variety of interfaces and environments to access and

manipulate LOBs, which are described in great detail in Oracle8i Application
Developer’s Guide - Large Objects (LOBs).The use of LOBs to store and manipulate

binary and character data to represent your domain is discussed Chapter 6,

"Working with Multimedia Datatypes".
What Is a Data Cartridge? 1-9

Extensibility Services
Extensible Server Execution Environment
The Oracle8i type system decouples the implementation of a member method for an

object type from the specification of the method. Components of an Oracle8i data

cartridge can be implemented using any of the popular programming languages. In

Oracle8i, methods, functions, and procedures can be developed using PL/SQL,

external C language routines, or Java. Thus, the database server runtime

environment can be extended by user-defined methods, functions, and procedures.

In Oracle8i, Java offers data cartridge developers a powerful implementation choice

for data cartridge behavior. In addition, PL/SQL offers a data cartridge developer a

powerful procedural language that supports all the object extensions for SQL. With

PL/SQL, program logic can execute on the server and perform traditional

procedural language operations such as loops, if-then-else clauses, and array access.

While PL/SQL and Java are powerful, certain computation-intensive operations

such as a Fast Fourier Transform or an image format conversion are handled more

efficiently by C programs. With the Oracle8i Server, you can call C language

programs from the server. Such programs are executed as in a separate address

space than the server. This ensures that the database server is insulated from any

program failures that might occur in external procedures and, under no

circumstances, can an Oracle8i database be corrupted by such failures.

With certain reasonable restrictions, external routines can call back to the Oracle

Server using OCI. Callbacks are particularly useful for processing LOBs. For

example, by using callbacks an external routine can perform piece-wise reads or

writes of LOBs stored in the database. External routines can also use callbacks to

manipulate domain indexes stored as Index-Organized Tables in the database.
1-10 Oracle8i Data Cartridge Developer’s Guide

Extensibility Services
Figure 1–2 External Program Executing in Separate Address Space

Extensible Indexing

Typical database management systems support a few types of access methods

(B+Trees, Hash Indexes) on a limited set of data types (numbers, strings, and so on).

For simple data types such as integers and small strings, all aspects of indexing can

be easily handled by the database system. In recent years, however, databases are

being used to store different types of data such as text, spatial, image, video and

audio that require content-based retrieval. This raises the need for indexing

complex data types and also specialized indexing techniques.

Complex data types have application-specific formats, indexing requirements, and

selection predicates. For example, there are many different means of document

encoding (ODA, XML, plain text) and information retrieval techniques (keyword,

full-text boolean, similarity, probabilistic, and so on). Similarly, R-trees are an

efficient method of indexing spatial data. No database server can be built with

support for all possible kinds of complex data and indexing. Oracle’s solution is to

build an extensible server which lets you define new index types as required.

The framework to develop new index types is based on the concept of cooperative

indexing where a data cartridge and the Oracle server cooperate to build and

maintain indexes for data types such as text, and spatial for application domains

Oracle Address Space External Address Space

Listener

extproc

/sh_libs/extlib.so

Oracle8

 Inter-Language
Method Server

Oracle
Database

PL/SQL

JAVA

SQL

C

What Is a Data Cartridge? 1-11

Extensibility Services
such as On-line-Analytical Processing (OLAP). The cartridge is responsible for

defining the index structure, maintaining the index content during load and update

operations, and searching the index during query processing. The index structure

itself can either be stored in Oracle database as heap-organized, or an

index-organized table, or externally as an operating system file.

To this end, Oracle8i introduces the concept of an indextype. The purpose of an

indextype is to enable efficient search and retrieval functions for complex domains

such as text, spatial, image, and OLAP by means of a data cartridge. An indextype

is analogous to the sorted or bit-mapped index types that are built-in within the

Oracle Server. The essential difference is that the implementation for an indextype is

provided by the data cartridge developer, whereas the Oracle kernel implements

built-in indexes. Once a new indextype has been implemented by a data cartridge

developer, end users of the data cartridge can use it just as they would built-in

indextypes.

With extensible indexing, the application

■ defines the structure of the domain index,

■ stores the index data either inside or outside the Oracle database, and

■ manages, retrieves and uses the index data to evaluate user queries.

When the database system handles the physical storage of domain indexes, data

cartridges

■ define the format and content of an index. This enables cartridges to define an

index structure that can accommodate a complex data object.

■ build, delete, and update a domain index. The cartridge handles building and

maintaining the index structures. Note that this is a significant departure from

the medicine indexing features provided for simple SQL data types. Also, since

an index is modeled as a collection of tuples, in-place updating is directly

supported.

■ access and interpret the content of an index. This capability enables the data

cartridge to become an integral component of query processing. That is, the

content-related clauses for database queries are handled by the data cartridge.

Typical database systems (RDBMS and ORDBMS) do not support extensible

indexing. Consequently, many applications maintain file-based indexes for complex

data residing in relational database tables. A considerable amount of code and effort

is required to maintain consistency between external indexes and the related

relational data, support compound queries (involving tabular values and external

indexes), and to manage a system (backup, recovery, allocate storage, and so on)
1-12 Oracle8i Data Cartridge Developer’s Guide

Extensibility Interfaces
with multiple forms of persistent storage (files and databases). By supporting

extensible indexes, the Oracle8i Server significantly reduces the level of effort

needed to develop solutions involving high-performance access to complex

datatypes.

Extensible Optimizer
The extensible optimizer functionality allows authors of user-defined functions and

indexes to create statistics collection, selectivity, and cost functions. This

information is used by the optimizer in choosing a query plan. The cost-based

optimizer is thus extended to use the user-supplied information; the rule-based

optimizer is unchanged.

The optimizer generates an execution plan for a SQL statement. An execution plan

includes an access method for each table in the FROMclause, and an ordering (called

the join order) of the tables in the FROM clause. System-defined access methods

include indexes, hash clusters, and table scans. The optimizer chooses a plan by

generating a set of join orders or permutations, computing the cost of each, and

selecting the one with the lowest cost. For each table in the join order, the optimizer

computes the cost of each possible access method and join method and chooses the

one with the lowest cost. The cost of the join order is the sum of the access method

and join method costs. The costs are calculated using algorithms which together

compose the cost model. A cost model can include varying level of detail about the

physical environment in which the query is executed. Our present cost model

includes only the number of disk accesses with minor adjustments to compensate

for the lack of detail. The optimizer uses statistics about the objects referenced in the

query to compute the costs. The statistics are gathered using the ANALYZE
command. The optimizer uses these statistics to calculate cost and selectivity. The

selectivity of a predicate is the fraction of rows in a table that will be chosen by the

predicate. It is a number between 0 and 100 (expressed as percentage).

Extensible indexing functionality allows users to define new operators, index types,

and domain indexes. For such user-defined operators and domain indexes, the

extensible optimizer functionality will allow users to control the three main

components used by the optimizer to select an execution plan: statistics, selectivity,
and cost.

Extensibility Interfaces
Extensibility interfaces fall into the following classes:

■ DBMS interfaces
What Is a Data Cartridge? 1-13

Cartridges as Software Components
■ Cartridge basic service interfaces

■ Data cartridge interfaces

DBMS Interfaces
The DBMS interfaces are the simplest kind of extensibility services. DBMS interfaces

are made available through extensions to SQL or to the Oracle Call Interface (OCI).

For example, the extensible type manager utilizes the CREATE TYPE syntax in SQL.

Similarly, extensible indexing uses DDL and DML support for specifying and

manipulating indexes.

Cartridge Basic Service Interfaces
Generic interfaces provide basic services like memory management, context

management, internationalization, and cartridge-specific management. These

cartridge basic interface services are used by data cartridges to implement behavior

for new datatypes in the context of the server's execution environment. These

services provide helper routines that make it easy for data cartridge developers to

write robust, portable server-side methods.

Data Cartridge Interfaces
Sometimes the DBMS needs to call the data cartridge functions for implementations

provided by the data cartridge developer. So, for user-defined indexing, the DBMS

must use the implementation of the index interface whenever an index search or

fetch operation is performed. For user-defined query optimization, the query

optimizer must call functions implemented by the data cartridge to compute cost of

user-defined operators or functions.

These standard data cartridge functions are similar to callback functions that the

DBMS can invoke. In the future, data cartridge interfaces will be made available to

enable the data cartridge to include the specifications for such functions.

Cartridges as Software Components
The accumulated expertise that underlies a set of data objects comprises a

knowledge base that can be marketed as a stand-alone cartridge, or as a cartridge

that could be extended in different ways by different users. But how does one

achieve this? The data and rules that apply to the software components are often

spread across many different applications. With data cartridges, you gather the

definition and rules together for use throughout the data processing environment.
1-14 Oracle8i Data Cartridge Developer’s Guide

Cartridges as Software Components
Packaging domain-specific component expertise in a data cartridge allows the

cartridge to access the corporate information repository and add both

organizational and operational value to the data. Such software components are

applications that can be "plugged" into other software components, and which are

themselves "pluggable".

Their constituents reside at the server or are accessed from the server. Most

processing for data cartridges occurs at the server or is dispatched from the server

in the form of an external procedure.

The Structure of a Data Cartridge
A data cartridge generally defines one or more object types. Object types from this

and potentially other data cartridges can provide users with new or extended

capabilities conveniently packaged. A data cartridge includes both the definition of

object types and the code that implements their capabilities. A data cartridge can be

used as the foundation for the definition of other data cartridges.

Each object type includes two components. The order in which these components

are made available to the server (that is, the order in which they are defined) is

important. The major components include:

■ Object type specification

■ Object type body code

In addition, a data cartridge may use the extended server execution environment.

The use of external procedures involves two additional components:

■ External library linkage specification

■ External library code

Simple data cartridges consist of these components, which are described in this

section. More complex data cartridges will use the extensibility services and

interfaces (see Chapter 9, "Using Cartridge Services"). Complex Data Cartridges

contain domain operators and domain indextypes (see Chapter 7, "Building

Domain Indexes"), and optimization functions (see Chapter 8, "Query

Optimization").

Object Type Specification
A data cartridge consists of one or more of these domain-specific objects packaged

and integrated with the server. Each domain-specific type is an object type (or ODT,

for object data type) and includes both of the following:
What Is a Data Cartridge? 1-15

Cartridges as Software Components
■ Attribute data that holds object state information

Attributes can be defined using built-in datatypes or other object types.

■ Methods that incorporate the object’s behavior

Methods can be simple (such as adding two numbers) or complex (such as

computing prices of financial derivatives), and can be coded either in PL/SQL

or in a third-generation language (3GL) such as C.

The object type specification gives the object a name, and it defines the types of

persistent data, called attributes, that an instance of this object will include. It also

specifies names, return values, and argument types of the related behaviors, or

methods. Much like a C++ class definition in a header (.h) prefix file, the type

specification lays out the object framework (attributes and method signatures), but

does not include the actual method code that performs the functions. The object

type specifications for the various object types defined by your data cartridge will

be written in SQL and stored in a SQL script that will be input to the server at

cartridge installation time.

Object Type Body Code
The type body provides the code that implements the object type's methods. Method

code can be implemented in PL/SQL, Java, C, C++, or any other 3GL. Most simple

methods can be written in PL/SQL and Java. (See the PL/SQL User’s Guide and
Reference for a complete discussion of PL/SQL syntax.)

Code written in C, C++, and other 3GLs must be packaged in a runtime or dynamic

link library. This is described in "External Library Linkage Specification" on

page 1-16 and "External Library Code" on page 1-17.

External Library Linkage Specification
If the implementation of your methods is in C, C++, or some other 3GL, the

methods must be packaged within a runtime or dynamic link library. The external

library linkage specification is necessary to tell the server about this library,

including its location, the binding of the type's methods to the library's entry points,

and the methods’ parameters.

Any 3GL code dispatched through the external library linkage specification will run

in a separate process from the Oracle server. As such, the dispatch involves

communication overhead. In deciding which methods should be implemented in

external libraries, you should be aware of this overhead. In general, the cost of

dispatch is less significant for methods that are complex or computation intensive.
1-16 Oracle8i Data Cartridge Developer’s Guide

Cartridges as Software Components
External Library Code
The external library is the runtime or dynamic link library that contains any 3GL

method code. You implement the 3GL methods in a language such as C, and then

use operating-system-specific commands to build a shared-object library on UNIX

platforms or a DLL on Windows NT systems.

Installing a Data Cartridge
Data cartridges are packaged so that their constituents (type definitions, PL/SQL

packages, external procedures, users, roles, synonyms, and so forth) can be installed

into or de-installed from the Oracle universal data server as a unit.

Figure 1–3 Installation of a Data Cartridge Using the Oracle Software Packager

The preceding diagram describes the relationship between the Oracle Universal
Installer and the Oracle Software Packager, as well as other components that you may

need to deploy. For more information, see the Oracle Software Packager User’s Guide.

Developers/ISVs
(Java)

Stage
• libraries
• components

Oracle
Universal
Installer

Driver
Editor/

Customizer

Library
Builder
(code)

Oracle
Software
Packager

End-userInstall Developers
& ISVs

Administrators-
customization

Component
Definition

Libraries

Logs

Drivers
What Is a Data Cartridge? 1-17

Cartridges as Software Components
1-18 Oracle8i Data Cartridge Developer’s Guide

Roadmap to Building a Data Car
2

Roadmap to Building a Data Cartridge

This chapter describes a recommended development process, including

relationships and dependencies among parts of the process. Topics include:

■ Development Process

■ Installation and Use

■ Requirements and Guidelines for Data Cartridge Constituents.

■ Cartridge Installation Directory

■ Deployment Checklist
tridge 2-1

Development Process
Development Process
The simplest questions are the most profound: Who? What? When? Where? How?
You could say that this chapter is concerned with the when and where of how. But

before we examine the road-map to building data cartridges, it would be wise to

give a moment to viewing the project as a whole.

What
The very first step in developing a data cartridge is to establish the domain-specific

value you intend to provide. Clearly define the new capabilities the cartridge will

make available. More specifically: What are the objects that cartridge will expose to

users as a means to accessing to these capabilities?

Who
Who are the intended users of this cartridge? Are they other developers — in which

case the extensibility of the cartridge is of crucial importance. Are they end- users —

in which case the cartridge must be highly attuned to the domain in question.

Building a cartridge is a non-trivial project that should be founded in a business

model that clearly distinguishes who these users are.

Being realistic about the complexity of building a data cartridge, raises the question

of who it is that will perform the task. Are all the necessary skills present in the

development team? Most essentially, the developers (be they one or many) must be

able to bridge the object-relational database management system with the domain.

When and Where
What are the deliverables? How much time is there for development? Is there a

software development process? The project is much more likely to succeed if there

are clearly defined expectations and milestones. This chapter should aid you in

mapping out a realistic development path.

How
Choose and design objects so that their names and semantics are familiar in the

developer’s and users’ domain. Given the complexity of the project, you should

consider using one of the standard object-oriented design methodologies.

In defining a collection of objects, give care to the interface between the SQL side of

object methods and the 3GL code that incorporates your value-added technology.

Keep this interface as simple as possible by limiting the number of methods that call

out to library routines and by allowing the 3GL code to do a block of work

independently. Avoid defining hundreds of calls into low-level library entry points.
2-2 Oracle8i Data Cartridge Developer’s Guide

Development Process
With this interface defined, you can proceed along parallel paths, as illustrated in

Figure 2–1. You can complete the paths sequentially or alternately work among the

paths until you complete all three.

Figure 2–1 Cartridge Development Process

Define key objects

Package existing 3GL
code in a DLL

Write SQL and PL/SQL
for object’s

type specification

Simple

Inventory Domain

Installation Script(s)
and User’s Guide

Test

Define Index typesBuild regular indexes

NoYes

Multi-domain
queries

Cost of I/O
only significant

factor

NoYes

Implement Extensible
Optimizer

Yes

Use existing optimizer

No

Inventory Access
Methods
Roadmap to Building a Data Cartridge 2-3

Installation and Use
The ’leftmost’ of these parallel paths packages any existing 3GL code that performs

operations relevant to your domain in a DLL, possibly with new entry points on top

of old code. The DLL will be called by the SQL component of the object's method

code. Where possible, this code should all be tested in a stand-alone fashion using a

3GL test program.

The ’middle’ path defines and writes the object's type specification and the PL/SQL

components of the object's method code. Some methods may be written entirely in

PL/SQL, while others may call into the external library. If your application requires

an external library, provide the library definition and the detailed bindings to

library entry routines.

The direction you take at the choice point results from the simplicity or complexity

of the access methods you need to deploy, which in turn derives from the nature of

the data as represented by columns in the table. If you the methods you need to

query your data are relatively simple, you can build regular indexes. By contrast,

dealing with complex data means you will need to define complex index types as

the basis for making use of Oracle’s extensible indexing technology. If you are in

addition faced with implementing multi-domain queries, you should choose to

make use of Oracle’s extensible optimizer technology.

It may be that you do not have execute queries on multiple domains. If I/O is the

only significant factor affecting performance, you can make use of standard

optimizing techniques. If, however, there are other factors in play, you may still

need to utilize the extensible optimizer.

Finally, you will want to test the application and create the necessary installation

scripts.

Installation and Use
Before you can use a data cartridge, you must install it. Installation is the process of

assembling the sub-components so that the server can locate them and understand

the object type definitions.

Putting the sub-components in place involves defining object types and tables in the

server (usually accomplished by running SQL scripts), putting dynamic link

libraries in the location expected by the linkage specification, and copying on-line

documentation, help files, and error message files to a managed location.

Telling the server about the object types involves running SQL scripts that load the

individual object types defined by the cartridge. This step must be done from a

privileged account.
2-4 Oracle8i Data Cartridge Developer’s Guide

Requirements and Guidelines for Data Cartridge Constituents.
Finally, users of the cartridge must be granted the necessary privileges to use it.

Requirements and Guidelines for Data Cartridge Constituents.
The following requirements and guidelines apply to certain database objects

associated with the data cartridge.

Schema
The database components that make up each cartridge must be installed in a

schema of the same name as the cartridge name. If a cartridge needs multiple

schemas, the first 10 characters of the schema must be the same as the cartridge

name. Note that the maximum permissible length of schema names in Oracle8i is 30

bytes (30 characters in single-byte languages.)

The following database components of a data cartridge must be placed in the

cartridge schema:

■ Type names

■ Table names

■ View names

■ Directory names

■ Library names

■ Package names

The choice of a schema name determines the Oracle username, because the schema

name and username are always the same in Oracle8i.

Globals
Some database-level constituents of cartridges may be global in scope, and so not

within the scope of a particular user (schema) but visible to all users. Examples of

such globals are:

■ Roles

■ Synonyms

■ Sequences
Roadmap to Building a Data Cartridge 2-5

Requirements and Guidelines for Data Cartridge Constituents.
All globals should start with the cartridge name. For example, a global role for the

Acme video cartridge should have a unique global name like C$ACMEVID1ROL1,

and not merely ROL1.

Error Message Names or Error Codes
Currently, error codes 2000-2099 are reserved for user errors or application errors.

When a cartridge encounters an error, it should generate an error of the form ORA
2000: %s, where %s is a place holder for a cartridge-specific error message.

Cartridge developers must ensure that their error messages are unique. You can

ensure uniqueness by having all cartridge-specific error messages consist of a

cartridge message name in the format C$pppptttm-nnnn, as well as a cartridge

message text. For example, an error raised by the Acme video cartridge might

reported as:

ORA 2000: C$ACMEVID1-0001: No such file

In this example:

■ ORA 2000 is the server error code.

■ C$ACMEVID1 is the cartridge name.

■ 0001 is the number assigned by Acme for this specific error.

■ No such file is the description of the error, as written by Acme.

Cartridge Installation Directory
In many cases, a cartridge installation directory is desirable. All the operating

system-level components of the cartridge, such as shared libraries, configuration

files, and so on, can be put under a directory that is specific to a vendor or

organization.

This directory name should be the same as the prefix chosen by the organization,

and the directory should be created under the root directory for the platform. For

example, if the Acme Cartridge Company needs to store any files, libraries, or

directories, it must create a directory /ACME, and then store any files in

cartridge-specific subdirectories.

Files
Message files that associate cartridge error or message numbers with message text

can be put in one or more cartridge-specific subdirectories.
2-6 Oracle8i Data Cartridge Developer’s Guide

Deployment Checklist
Configuration files can be placed in a cartridge-specific subdirectory. For example:

/ACME/VID1/Config

Shared Library Names for External Procedures
Use one of the following guidelines for each shared library (.so or .dll file):

■ Place it in the cartridge installation directory. In this case, ensure that all library

names are unique.

■ Place it in a directory other than the cartridge installation directory. In this case,

the file name should start with the cartridge name without the C$ part. If there

are multiple such libraries, the name should start with the first seven letters of

the cartridge name without the C$ part.

Deployment Checklist
At the deployment level, you will face a number of common issues. The most optimal

approach to these problems will depend on the particular needs of your application.

We list the tasks that we think should form the basis of your checklist, and in some

cases propose solutions.

■ You will need a way to install and de-install your cartridge components. This

includes libraries, database objects, flat files, programs, configuration tools,

administration tools, and other objects. Explore whether your cartridge might

be able to utilize the Oracle Universal Installer and the Oracle Software Packager

(see the Oracle Software Packager User’s Guide.).

■ You should allow for installation of multiple versions of a cartridge to provide

backward compatibility and availability. Make use of Oracle’s migration

facilities as part of your larger strategy.

■ You will need to track which cartridges are installed in order to install data

cartridges that depend on other data cartridge, or to handle different versions of

installed components.

■ You will need to provide an upgrade path for migrating to newer versions of

cartridges. Make use of Oracle’s migration facilities as part of your larger

strategy.

■ To be able to limit access to cartridge components to specific users and roles,

deploy Oracle’s security mechanisms together with a blend of procedures that

operate under invoker’s and definer’s rights depending on the need.
Roadmap to Building a Data Cartridge 2-7

Deployment Checklist
■ You will need to be able to keep track of which users have access to a cartridge

(for ease of administration). Consider making use of a table with appropriate

triggers.

■ How do you know where cartridges are installed? This is more of a

security/administration concern than a requirement. There is currently no easy

way of knowing which cartridges are installed in a particular database or what

users have access to the cartridge or any of its components.

Naming Conventions
This section discusses how the components of a data cartridge should be named. It

is intended for independent software vendors (ISVs) and others who are creating

cartridges to be used by others.

The naming conventions in this chapter assume a single-byte character set.

“National Language Support” (NLS) described later in this chapter discusses other

character sets.

Need for Naming Conventions
In a production environment, an Oracle8i database may have multiple data

cartridges installed. These data cartridges may be from different development

groups or vendors, and may have been developed in isolation. Each data cartridge

consists of various schema objects inside the database, as well as other components

visible at the operating system level, such as external procedures in shared libraries.

If multiple data cartridges tried to use the same names for schema objects or

operating system-level entities, the result would be incorrect and inconsistent

behavior.

Furthermore, because exception conditions during the runtime operation of data

cartridges can cause the Oracle8i server to return errors, it is important to prevent

conflicts between error or message codes of different data cartridges. These conflicts

can arise if, for example, two cartridges use the same error code for different error

Note: Most examples in this manual do not follow the naming

conventions, because they are intended to be as simple and generic

as possible. However, as your familiarity with the technology

increases and you consider building data cartridges to be used by

others, you should understand and follow these naming

conventions.
2-8 Oracle8i Data Cartridge Developer’s Guide

Deployment Checklist
conditions. Having unique error and message codes ensures that the origin of the

exception condition can be readily identified.

Unique Name Format
To prevent multiple data cartridge components from having the same name, Oracle

recommends the following convention to ensure unique naming of data cartridges.

Naming is to be done on a per-vendor or per-supplier basis. That is, each

organization developing data cartridges must choose an unique name, and Oracle

will provide a name reservation service.

Each organization should choose an reserve a prefix. Oracle will add C$ to the start

of the string chosen by the organization, to ensure a unique prefix. This prefix can

then be used to name the database schema in which the database components of the

data cartridge reside, or to name the directory in which the operating-system

components of the data cartridge are placed.

Data cartridges and their components should have names of the following format:

C$pppptttm.ccccccccc

The following table describes the parts of this naming convention format.

Oracle recommends that except for the dollar sign ($) as the second character, all

characters in the name should be alphanumeric (letters and numbers, with

underscores and hyphens permitted).

Table 2–1 Data Cartridge Naming Conventions

Part Explanation Example

C$ Recommended by Oracle for all data cartridges.

pppp Prefix selected by the data cartridge creator.
(Must be exactly four characters.)

ACME

ttt Type of cartridge, using an abbreviation
meaningful to the creator. Three characters.

AUD (for audio)

m Miscellaneous information indicator, to allow a
designation meaningful to the creator. One
character.

1 (perhaps a version
number)

. (period) Period required if specifying an object in full
schema.object form.

ccccccccc Component name. Variable length. mf_set_volume
(method function
adjusting volume)
Roadmap to Building a Data Cartridge 2-9

Deployment Checklist
For example, Acme Cartridge Company chooses and registers a prefix of ACME. It

provides an audio data cartridge and a video data cartridge, and chooses AUD and

VID as the type codes, respectively. It has no other information to include in the

cartridge name, and so it chooses an arbitrary number 1 for the miscellaneous

information indicator. As a result, the two cartridge names are:

■ C$ACMEAUD1

■ C$ACMEVID1

For each cartridge, a separate schema must be created, and Acme uses the cartridge

name is the schema name. Thus, all database components of the audio cartridge

must be created under the schema C$ACMEAUD1, and all database components of

the video cartridge must be created under the schema C$ACMEVID1. Examples of

some components might include:

■ C$ACMEVID1.mf_rewind

■ C$ACMEVID1.vid_ops_package

■ C$ACMEVID1.vid_stream_lib

Each organization is responsible for specific naming requirements after the C$pppp
portion of the object name. For example, Acme Cartridge Company must ensure

that all of its cartridges have unique names and that all components within a

cartridge have unique names.

Name Registration
To register the prefix for your organization, send e-mail to the Oracle Data

Cartridge Program with your proposed four-character prefix. Send the message to

the following address:

dcprog@us.oracle.com

Oracle will send you a confirmation that the prefix (with C$ added at the start) has

been reserved for you.

Cartridge Registration
How do you register cartridges and components?

In order to make a naming scheme work, you need to have a registration process

that will handle the administration of names of components that make up a data

cartridge.
2-10 Oracle8i Data Cartridge Developer’s Guide

Deployment Checklist
Directory Structure and Standards
You need some directory standard to know where to put your binaries, support

files, messages files, administration files, and libraries.

You also need to define a database user who will install your cartridges. One

possible solution is to use EXDSYS, for External Data Cartridge System user.

Cartridge Upgrades
Administrators need a safe way to upgrade a cartridge and its related meta-data to

a newer version of the cartridge. You also require a process for upgrading data and

removing obsolete data. This may entail installation support (Enterprise Manager)

and database support for moving to newer database cartridge types

Administrators also require a means to update tables using cartridge types when a

cartridge changes.

Import and Export
In order to handle the import and export handle objects, you need to understand

how Oracle’s import and export facilities handle Oracle8i objects. In particular, you

need to know how types are handled and whether the type methods are imported

and exported, and also whether user defined methods are supported.

Cartridge Versioning
There are two types of cartridge versioning problems that need to be addressed.

They are:

■ Internal Versioning

Note:

The EXDSYS user is a user with special privileges required for

running cartridges. This user could be installed as part of cartridge

installation, but would better be part of the database installation. To

do this, you will need to move this process into a standard database

creation script.

Your long range planning should consider ways to integrate

directory structure with the Network Computer Architecture

(NCA).
Roadmap to Building a Data Cartridge 2-11

Deployment Checklist
■ External Versioning

Internal Versioning
Internal versioning is the harder problem. Ideally, you would like a mechanism to

support multiple versions of a cartridge in the database. This would provide

backward compatibility and also make for high availability.

Types are amenable to changing methods, but not to changing the type attributes

themselves. This implies that upgrades are complicated for types that change over

time. You may need a way to use multiple versions of type, and some method to

insure that administrators can gradually update your technology.

External Versioning
External versioning is the easier of the two versioning problems. You need to be

able to track a cartridge version number and be able to take action accordingly upon

installation or configuration based on versioning information.

Internationalization
You may want to internationalize your cartridges. This means they will need to be

able to support multiple languages and have access to a National Language Support

(NLS) facility for messages as well as an NLS facility for parsing. For details on

NLS, see the Oracle 8i National Language Support Guide. It includes a chapter on NLS

data cartridge service.

It is recommended that the names for data cartridge components be chosen using

the ASCII character set.

If you must name the data cartridge components in a character set other than ASCII,

Oracle8i will still assign you a four-character unique prefix. This will, however,

increase the number of bytes required to hold the prefix. The names of all Oracle

schema objects must fit into 30 bytes. In ASCII, this equals 30 characters. If you

have, for example, a six-byte character set and request a four-character prefix string,

Oracle may truncate your request to a smaller number of characters.

External Access
■ How do administrators know who has access to a cartridge?

Administrators need to administer access rights to internal and external

components such as programs and data files to specific users and roles.
2-12 Oracle8i Data Cartridge Developer’s Guide

Deployment Checklist
Internal Access
■ How do administrators restrict access to certain tables, types, views, and other

cartridge components to individual users and roles?

Administrators for security reasons must be allowed to restrict access to types

on an individual basis.

For instance, some data cartridges, such as Oracle’s Image Cartridge, have few

security issues. These cartridges may grant privileges to every user in the

database. Other cartridges that are more complex, such as Oracle’ Time Series

Cartridge, may need differing security models. In building complex data

cartridges, you will need a way to identify the various components that make

up a cartridge and also an instance of a cartridge and be able to grant and

revoke security roles on identifiable components.

It may be that Oracle will provide a visual tool will identify components of a

cartridge and allow roles be assigned to each component.

Invoker’s Rights
 Invoker’s rights is a special privilege that allows the system to access database

objects that it wouldn’t normally have access to. This has been the case for the

special SYSuser. It also will need to be done for cartridges under whatever user you

use (e.g. EXDSYS).

If you don’t have invoker’s rights, then any types you construct in a central user

space (e.g. EXDSYS) will have to grant privileges to public, which is not necessarily

desirable.

Test and Debug Services
You will need a way to test and debug your cartridges.Please refer to the guides

which pertains to your operating environment (PL/SQL, Java, C/C++)

Administration

Configuration
Data Cartridges need a front end to handle deployment issues, such as installation,

as well as configuration tools. While each data cartridge may have differing security

needs, a basic front end that allows a user to install, configure, and administer data

cartridge components is necessary.
Roadmap to Building a Data Cartridge 2-13

Deployment Checklist
This front end may just be some form of knowledge base or on-line documentation.

In any case, it should be on-line, easily navigable, and contain templates exhibiting

standards and starting points.

Suggested Development Approach
In developing a data cartridge, it is best to take a systematic approach, starting with

small, easy tasks and building incrementally toward a comprehensive solution.This

section presents a suggested approach.

To create a prototype data cartridge:

1. Read this book and try the examples on disk and in example chapter.

2. Create the prototype of your own data cartridge, creating a single object type

and a few data elements and methods. You can add object types, data elements,

and methods, specific indextypes, and user-defined operators as you expand

the cartridge’s capabilities.)

3. Begin by implementing your methods entirely in SQL, and add callouts to 3GL

code (if any) later.

4. Test and debug your cartridge.

After you have the prototype working, you may want to follow a development

process that includes these steps:

1. Identify your areas of domain expertise.

2. Identify those areas of expertise that are relevant to persistent data.

3. Consider the feasibility of packaging one or more of these areas as a new data

cartridge or as an extension to an existing cartridge.

4. Use an object-oriented methodology to help decide what object types to include

in data cartridges.

5. Build and test the cartridges, one at a time.
2-14 Oracle8i Data Cartridge Developer’s Guide

Defining Object
3

Defining Object Types

This chapter provides an example of starting with a schema for a data cartridge.

Object types are crucial to building data cartridges in that they enable domain-level

abstractions to be captured in the database.

Topics include:

■ Objects and Object Types

■ Assigning an OID to an Object Type

■ Constructor Methods

■ Object Comparison

For information about creating and using object types, following manuals also

contain relevant information:

■ Oracle8i Concepts

■ Oracle8i Application Developer’s Guide - Fundamentals

■ PL/SQL User’s Guide and Reference.

For example, the Oracle8i Application Developer’s Guide - Fundamentals describes the

creation of types as columns in relational tables, the use of types as rows in object

tables, forward type declarations, object type dependencies, and object type

references.

Objects and Object Types
In the Oracle8i ORDBMS, you use object types to model real-world entities. An

object type has attributes, which reflect the entity’s structure, and methods, which

implement the operations on the entity. Attributes are defined using built-in types
Types 3-1

Objects and Object Types
or other object types. Methods are functions or procedures written in PL/SQL or an

external language like C and stored in the database.

A typical use for an object type is to impose structure on some part of the data kept

in the database. For example, an object type named DataStream could used by a

cartridge to store large amounts of data in a character LOB. (LOBs, or large objects,

are discussed elsewhere in this document and in the Oracle8i Application Developer’s
Guide - Large Objects (LOBs).) This object type has attributes such as an identifier, a

name, a date, and so on. The following statement defines the DataStream datatype:

CREATE OR REPLACE TYPE DataStream AS OBJECT (
 id INTEGER,
 name VARCHAR2(20),
 createdOn DATE,
 data CLOB,
 MEMBER FUNCTION DataStreamMin RETURN pls_integer,
 MEMBER FUNCTION DataStreamMax RETURN pls_integer,
 MAP MEMBER FUNCTION DataStreamToInt return integer,
 PRAGMA restrict_references(DataStreamMin, WNDS, WNPS),
 PRAGMA restrict_references(DataStreamMax, WNDS, WNPS));

A method is a procedure or function that is part of the object type definition and

that can operate on the object type data attributes. Such methods are called member
methods, and they take the keyword MEMBER when you specify them as a

component of the object type. The DataStream type definition declares three

methods. The first two, DataStreamMin and DataStreamMax, calculate the minimum

and maximum values, respectively, in the data stream stored inside the character

LOB.

The third method (DataStreamToInt), a map method, governs comparisons between

instances of data stream type. Map methods are described in elsewhere in this

document.

The pragma (compiler directive) RESTRICT_REFERENCES is necessary for security,

and is discussed below.

After declaring the type, define the type body. The body contains the code for type

methods. The following example shows the type body definition for the DataStream
type. It defines the member function methods (DataStreamMin and DataStreamMax)

and the map method (DataStreamToInt).

CREATE OR REPLACE TYPE BODY DataStream IS

 MEMBER FUNCTION DataStreamMin RETURN pls_integer IS
 a pls_integer := DS_Package.ds_findmin(data);

BEGIN RETURN a; END;
3-2 Oracle8i Data Cartridge Developer’s Guide

Assigning an OID to an Object Type
 MEMBER FUNCTION DataStreamMax RETURN pls_integer IS
 b pls_integer := DS_Package.ds_findmax(data);

BEGIN RETURN b; END;
 MAP MEMBER FUNCTION DataStreamToInt RETURN integer IS
 c integer := id;

BEGIN RETURN c; END;
END;

DataStreamMin and DataStreamMax involve calling routines in a PL/SQL package

called DS_Package. Since these methods are likely to be compute-intensive (they

process numbers stored in the CLOB to determine minimum and maximum

values), they are defined as external procedures and implemented in C. The

external dispatch is routed through a PL/SQL package named DS_Package. Such

packages are discussed in Oracle8i Supplied Packages Reference.

The third method (DataStreamToInt), the map method, is implemented in PL/SQL.

Because we have a identifier (id) attribute in DataStream, this method can return the

value of the identifier attribute. (Most map methods, however, are more complex

than DataStreamToInt.).

Assigning an OID to an Object Type
The CREATE TYPE statement has an optional keyword OID, which associates a

user-specified object identifier (OID) with the type definition. This feature was

available effective with release 8.0.3; however, it was not documented because it is

intended for use primarily by Oracle product developers and by developers of data

cartridges. However, it should be used by anyone who creates an object type that

will be used in more than one database.

Each type has an OID. If you create an object type and do not specify an OID, Oracle

generates an OID and assigns it to the type. Oracle8i uses the OID internally for

operations pertaining to that type. Using the same OID for a type is important if you

plan to share instances of the type across databases for such operations as

export/import and distributed queries.

Note: Most other Oracle8i documentation refers to the use of

OIDs with rows in object tables. In CREATE TYPEwith OID, an OID
is assigned to the type itself. Of course, each row created in a table

with a column of the specified type will also still have a

row-specific OID.
Defining Object Types 3-3

Constructor Methods
For example, assume that you want to create a type named SpecialPerson and then

instantiate that type in two different databases with tables named

SpecialPersonTable1 and SpecialPersonTable2. The RDBMS needs to know that the

SpecialPerson type is the same type in both instances, and therefore the type must be

defined using the same OID in both databases. If you do not specify an OID with

CREATE TYPE, a unique identifier is created automatically by the RDBMS.

The syntax for specifying an OID for an object type is as follows:

CREATE OR REPLACE TYPE type_name OID ’oid’ AS OBJECT (attribute datatype
[,...]);

In the following example, the SELECT statement generates an OID, and the CREATE
TYPE statement uses the OID in creating an object type named mytype. Be sure to

use the SELECT statement to generate a different OID for each object type to be

created, because this is the only way to guarantee that each OID is valid and

globally unique.

SVRMGR> SELECT SYS_OP_GUID() FROM DUAL;
SYS_OP_GUID()

19A57209ECB73F91E03400400B40BBE3
1 row selected.

SVRMGR> CREATE TYPE mytype OID '19A57209ECB73F91E03400400B40BBE3'
 2> AS OBJECT (attrib1 NUMBER);
Statement processed.

Constructor Methods
The system implicitly defines a constructor method for each object type that you

define. The name of the constructor method is the same as the name of the object

type. The parameters of the constructor method are exactly the data attributes of the

object type, and they occur in the same order as the attribute definition for the

object type. At present, only one constructor method can be defined, and thus you

cannot define other constructor methods.

For example, when the system executes the following statement to create a type

named rational_type, it also implicitly creates a constructor method for this object

type.

CREATE TYPE rational_type (
 numerator integer,
 denominator integer);
3-4 Oracle8i Data Cartridge Developer’s Guide

Object Comparison
When you instantiate an object of rational_type, you invoke the constructor method.

For example:

CREATE TABLE some_table (
 c1 integer, c2 rational_type);
INSERT INTO some_table
 VALUES (42, rational_type(223, 71));

Object Comparison
SQL performs comparison operations on objects. Comparisons can be explicit, using

the comparison operators (=, <, >, <>, <=, >=, !=) and the BETWEEN and IN
predicates. Comparisons can be implicit, as in the GROUP BY, ORDER BY, DISTINCT ,

and UNIQUE clauses.

Comparison of objects makes use of special member functions of the object type:

map methods and order methods. To perform object comparison, you must

implement either a map method or order method in the CREATE TYPE and CREATE
TYPE BODY statements.

For example, the type body for the DataStream type, implements the map member

function for DataStream comparison as:

MAP MEMBER FUNCTION DataStreamToInt RETURN integer IS
 c integer := id;

BEGIN RETURN c; END;

This definition of the map member function relies on the presence of the id attribute

of the DataStream type to map instances to integers. Whenever a comparison

operation is required between objects of type DataStream, the map function

DataStreamToInt () is called implicitly by the system.

The object type rational_type does not have a simple id attribute like that for

DataStream. For rational_type, the map member function is slightly more

complicated. Because a map function can return any of the built-in types; rational_
type can return a value or type REAL:

MAP MEMBER FUNCTION RationalToReal RETURN REAL IS
 BEGIN
 RETURN numerator/denominator;
 END;
...
Defining Object Types 3-5

Object Comparison
If you have not defined a map or order function for an object type, only equality

comparisons are allowed on objects of that type. Oracle SQL performs the

comparison by doing a field-by-field comparison of the attributes of that type.
3-6 Oracle8i Data Cartridge Developer’s Guide

Part II

Building Data Cartridges

Chapter 3, "Defining Object Types"

Chapter 4, "Methods: Using C/C++ and Java"

Chapter 5, "Methods: Using PL/SQL"

Chapter 6, "Working with Multimedia Datatypes"

Chapter 7, "Building Domain Indexes"

Chapter 8, "Query Optimization"

Chapter 9, "Using Cartridge Services"

Methods: Using C/C++ and
4

Methods: Using C/C++ and Java

This chapter describes how to use C, C++, and Java to implement the methods of a

data cartridge. Methods are procedures and functions that define the operations

permitted on data defined using the data cartridge.

This chapter focuses on issues related to developing and debugging external

procedures, including:

■ External Procedures

■ Using Shared Libraries

■ Registering an External Procedure

■ How PL/SQL Calls an External Procedure

■ Configuration Files for External Procedures

■ OCIExtProcGetEnv

■ Doing Callbacks

■ OCI Access Functions for External Procedures

■ Common Potential Errors

■ Debugging External Procedures

■ Guidelines for Using External Procedures with Data Cartridges

■ Java Methods
 Java 4-1

External Procedures
External Procedures
PL/SQL is powerful language for database programming. However, because some

methods can be complex, it may not be possible to code such a method optimally

using PL/SQL. For example, a routine to perform numerical integration will

probably run faster if it is implemented in C than if it is implemented in PL/SQL.

To support such special-purpose processing, PL/SQL provides an interface for

calling routines written in other languages. This makes the strengths and

capabilities of 3GLs like C available through calls from a database server. Such a

3GL routine, called an external procedure, is stored in a shared library, registered

with PL/SQL, and called from PL/SQL at runtime to perform special-purpose

processing. Details on external procedures and their use can be found in the PL/SQL
User’s Guide and Reference.

External procedures are an important tool for data cartridge developers. They can

be used not only to write fast, efficient, computation-intensive routines for cartridge

types, but also to integrate existing code with the database as data cartridges.

Shared libraries already written and available in other languages, such as a

Windows NT DLL with C routines to perform format conversions for audio files,

can be called directly from a method in a type implemented by an audio cartridge.

Similarly, you can use external procedures to process signals, drive devices, analyze

data streams, render graphics, or process numerical data.

Using Shared Libraries
A shared library is an operating system file, such as a Windows DLL or a Solaris

shared object, that stores the coded implementation of external procedures. Access

to the shared library from Oracle occurs by using an alias library, which is a schema

object that represents the library within PL/SQL. For security, creation of an alias

library requires DBA privileges. To create the alias library (such as DS_Lib in the

following example), you must decide on the operating system location for the

library, log in as a DBA or as a user with the CREATE LIBRARY PRIVILEGE, and

then enter a statement such as the following:

CREATE OR REPLACE LIBRARY DS_Lib AS
 '/data_cartridge_dir/libdatastream.so;
4-2 Oracle8i Data Cartridge Developer’s Guide

Registering an External Procedure
This example creates the alias library schema object in the database, and hereafter

you can refer to the shared library by the name DS_Lib from within PL/SQL.

Registering an External Procedure
To call an external procedure, you must not only tell PL/SQL the alias library in

which to find the external procedure, but also how to call the procedure and what

arguments to pass to it.

Earlier, the type DataStream was defined, and certain methods of type DataStream
were defined by calling functions from a package DS_Package. Also, this package

was specified. The following statement defines the body of this package (DS_
Package).

CREATE OR REPLACE PACKAGE BODY DS_Package AS
 FUNCTION DS_Findmin(data CLOB) RETURN PLS_INTEGER IS EXTERNAL
 NAME "c_findmin" LIBRARY DS_Lib LANGUAGE C WITH CONTEXT;
 FUNCTION DS_Findmax(data CLOB) RETURN PLS_INTEGER IS EXTERNAL
 NAME "c_findmax" LIBRARY DS_Lib LANGUAGE C WITH CONTEXT;
 END;

In the PACKAGE BODY declaration clause of this example, the package functions are

tied to external procedures in a shared library. The EXTERNALclause in the function

declaration registers information about the external procedure, such as its name

(found after the NAME keyword), its location (which must be an alias library,

following the LIBRARY keyword), the language in which the external procedure is

written (following the LANGUAGE keyword), and so on. For a description of the

parameters that can accompany an EXTERNAL clause, see the PL/SQL User’s Guide
and Reference.

Note: In Oracle8i, the absolute path to the shared library must be

specified, because Oracle does not search operating system

environment variables (such as LD_LIBRARY_PATH) to resolve the

location of shared libraries from the alias library name.

Note: In Oracle8i, only C is supported as a language for external

procedures. However, it is easy to call routines in other languages,

such as C++, by dispatching from the server as C but coding the

external procedures as extern "C". Thus, by creating C wrappers,

you can easily call external procedures written in other languages.
Methods: Using C/C++ and Java 4-3

How PL/SQL Calls an External Procedure
The final part of the EXTERNAL clause in the example is the WITH CONTEXT
specification. This means that a context pointer is passed to the external procedure.

The context pointer is opaque to the external procedure, but is available so that the

external procedure can call back to the Oracle8i server, to potentially access more

data in the same transaction context. The WITH CONTEXT clause is discussed in

"Using the WITH CONTEXT Clause" on page 4-9.

Although the example describes external procedure calls from object type methods,

a data cartridge can use external procedures from a variety of other places in

PL/SQL. External procedure calls can appear in:

■ Anonymous blocks

■ Standalone and packaged subprograms

■ Methods of an object type

■ Database triggers

■ SQL statements (calls to packaged functions only)

How PL/SQL Calls an External Procedure
To call an external procedure, PL/SQL must know the DLL or shared library in

which the procedure resides. PL/SQL looks up the alias library in the EXTERNAL
clause of the subprogram that registered the external procedure. The data

dictionary is used to determine the actual path to the operating system shared

library or DLL.

PL/SQL alerts a Listener process, which in turn spawns (launches) a

session-specific agent named extproc. The Listener hands over the connection to

extproc. PL/SQL passes to extproc the name of the DLL, the name of the external

procedure, and any parameters passed in by the caller.

Then, extproc loads the DLL and runs the external procedure. Also, extproc handles

service calls (such as raising an exception) and callbacks to the Oracle server.

Finally, extproc passes to PL/SQL any values returned by the external procedure.

Figure 4–1 shows the flow of control.
4-4 Oracle8i Data Cartridge Developer’s Guide

Configuration Files for External Procedures
Figure 4–1 How an External Procedure is Called

After the external procedure completes, extproc remains active throughout your

Oracle session. (When you log off, extproc is killed.) Thus, you incur the cost of

spawning extproc only once, no matter how many calls you make. Still, you should

call an external procedure only when the computational benefits outweigh the cost.

Configuration Files for External Procedures
The configuration files listener.ora and tnsnames.ora must have appropriate entries

so that the Listener can dispatch the external procedures.

The Listener configuration file listener.ora must have a SID_DESC entry for the

external procedure. For example:

Listener configuration file
This file is generated by stkconf.tsc

CONNECT_TIMEOUT_LISTENER = 0

LISTENER = (ADDRESS_LIST=

Note: The Listener must start extproc on the system that runs the

Oracle server. Starting extproc on a different system is not

supported.

See Also: For information about administering extproc and

external procedure calls, see the Oracle8i Administrator’s Guide.

Oracle Address Space External Address Space

Listener

extproc

/data_cartridge_dir/libdatastream.so

Oracle8 PL/SQL

Oracle
Database
Methods: Using C/C++ and Java 4-5

Configuration Files for External Procedures
 (ADDRESS=(PROTOCOL=ipc)(KEY=o8))
 (ADDRESS=(PROTOCOL=tcp)(HOST=unix123)(PORT=1521))
)

SID_LIST_LISTENER = (SID_LIST=
(SID_DESC=(SID_NAME=o8)(ORACLE_HOME=/rdbms/u01/app/oracle/product/8.0
.3))

(SID_DESC=(SID_NAME=extproc)(ORACLE_HOME=/rdbms/u01/app/oracle/product/
8.0.3)(PROGRAM=extproc))
)

This listener.ora example assumes the following:

■ The Oracle instance is called o8.

■ The system or node on which the Oracle server runs is named unix123.

■ The installation directory for the Oracle server is /rdbms/u01.

■ The port number for Oracle TCP/IP communication is the default Listener port

1521.

The tnsnames.ora file (network substrate configuration file) must also be updated to

refer to the external procedure. For example:

o8 =
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=unix123)(PORT=1521))(CONNECT_
DATA=(SID=o8)))
extproc_connection_data =
(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=o8))(CONNECT_DATA=(SID=extproc)))

This tnsnames.ora example assumes that IPC mechanisms are used to communicate

with the external procedure. You can also use, for example, TCP/IP for

communication, in which case the PROTOCOL parameter must be set to tcp.

For more information about configuring the listener.ora and tnsnames.ora files, see

the Oracle8i Administrator’s Guide.

Passing Parameters to an External Procedure
Passing parameters to an external procedure is complicated by several

circumstances:

■ The set of PL/SQL datatypes does not correspond one-to-one with the set of C

datatypes.
4-6 Oracle8i Data Cartridge Developer’s Guide

Configuration Files for External Procedures
■ PL/SQL parameters can be null, whereas C parameters cannot. (Unlike C,

PL/SQL includes the RDBMS concept of nullity.)

■ The external procedure might need the current length or maximum length of

CHAR, LONG RAW, RAW, and VARCHAR2 parameters.

■ The external procedure might need character set information about CHAR,
VARCHAR2, and CLOB parameters.

■ PL/SQL might need the current length, maximum length, or null status of

values returned by the external procedure.

In the following sections, you learn how to specify a parameter list that deals with

these circumstances.

An example of parameter passing is shown in "Doing Callbacks" on page 4-10,

where the package function DS_Findmin(data CLOB) calls the C routine c_findmin
and the CLOB argument is passed to the C routine as an OCILobLocator *.

Specifying Datatypes
You do not pass parameters to an external procedure directly. Instead, you pass

them to the PL/SQL subprogram that registered the external procedure. So, you

must specify PL/SQL datatypes for the parameters. For guidance, see Table 4–1.

Each PL/SQL datatype maps to a default external datatype. (In turn, each external

datatype maps to a C datatype.)

Table 4–1 Parameter Datatype Mappings

PL/SQL Type Supported External Types Default External Type

BINARY_INTEGER,
BOOLEAN,
PLS_INTEGER

CHAR, UNSIGNED CHAR, SHORT,
UNSIGNED SHORT, INT, UNSIGNED
INT, LONG, UNSIGNED LONG, SB1,
UB1, SB2, UB2, SB4, UB4, SIZE_
T

INT

NATURAL,
NATURALN,
POSITIVE,
POSITIVEN,
SIGNTYPE

CHAR, UNSIGNED CHAR, SHORT,
UNSIGNED SHORT, INT, UNSIGNED
INT, LONG, UNSIGNED LONG, SB1,
UB1, SB2, UB2, SB4, UB4, SIZE_
T

UNSIGNED INT

FLOAT,
REAL

FLOAT FLOAT

DOUBLE PRECISION DOUBLE DOUBLE
Methods: Using C/C++ and Java 4-7

Configuration Files for External Procedures
In some cases, you can use the PARAMETERS clause to override the default datatype

mappings. For example, you can re-map the PL/SQL datatype BOOLEAN from

external datatype INT to external datatype CHAR.

To avoid errors when declaring C prototype parameters, refer to Table 4–2, which

shows the C datatype to specify for a given external datatype and PL/SQL

parameter mode. For example, if the external datatype of an OUT parameter is

CHAR, specify the datatype char * in your C prototype.

CHAR,
CHARACTER,
LONG,
ROWID,
VARCHAR,
VARCHAR2

STRING STRING

LONG RAW,
RAW

RAW RAW

BFILE,
BLOB,
CLOB

OCILOBLOCATOR OCILOBLOCATOR

Table 4–2 External Datatype Mappings

External Datatype

IN,

RETURN

IN by Ref,

RETURN by Ref IN OUT, OUT

CHAR char char * char *

UNSIGNED CHAR unsigned char unsigned char * unsigned char *

SHORT short short * short *

UNSIGNED SHORT unsigned short unsigned short * unsigned short *

INT int int * int *

UNSIGNED INT unsigned int unsigned int * unsigned int *

LONG long long * long *

UNSIGNED LONG unsigned long unsigned long * unsigned long *

SIZE_T size_t size_t * size_t *

Table 4–1 Parameter Datatype Mappings (Cont.)

PL/SQL Type Supported External Types Default External Type
4-8 Oracle8i Data Cartridge Developer’s Guide

Configuration Files for External Procedures
Using the Parameters Clause
You can optionally use the PARAMETERS clause to pass additional information

about PL/SQL formal parameters and function return values to an external

procedure. You can also use this clause to reposition parameters.

Using the WITH CONTEXT Clause
Once launched, an external procedure may need to access the database. For

example, DS_Findmin does not copy the entire CLOB data over to c_findmin, because

doing so would vastly increase the amount of stack that the C routine needs.

Instead, the PL/SQL function just passes a LOB locator to the C routine, with the

intent that the database will be re-accessed from C to read the actual LOB data.

When the C routine reads the data, it can use the OCI buffering and streaming

interfaces associated with LOBs (see the Oracle Call Interface Programmer’s Guide for

details), so that only incremental amounts of stack are needed. Such re-access of the

database from an external procedure is known as a callback.

SB1 sb1 sb1 * sb1 *

UB1 ub1 ub1 * ub1 *

SB2 sb2 sb2 * sb2 *

UB2 ub2 ub2 * ub2 *

SB4 sb4 sb4 * sb4 *

UB4 ub4 ub4 * ub4 *

FLOAT float float * float *

DOUBLE double double * double *

STRING char * char * char *

RAW unsigned char * unsigned char * unsigned char *

OCILOBLOCATOR OCILobLocator * OCILobLocator * OCILobLocator **

See Also: For more information about the PARAMETERS clause,

see the PL/SQL User’s Guide and Reference.

Table 4–2 External Datatype Mappings (Cont.)

External Datatype

IN,

RETURN

IN by Ref,

RETURN by Ref IN OUT, OUT
Methods: Using C/C++ and Java 4-9

OCIExtProcGetEnv
To be able to call back to a database, you need to use the WITH CONTEXT clause to

give the external procedure access to the database environment, service, and error

handles. When an external procedure is called using WITH CONTEXT, the

corresponding C routine automatically gets as its first parameter an argument of

type OCIExtProcContext *. (The order of the parameters can be changed using

the PARAMETERSclause.) You can use this context pointer to fetch the handles using

the OCIExtProcGetEnv call, and then call back to the database. This procedure is

shown in "Doing Callbacks" on page 4-10.

OCIExtProcGetEnv
This service routine enables OCI callbacks to the database during an external

procedure call. Use the OCI handles obtained by this function only for callbacks. If

you use them for standard OCI calls, the handles establish a new connection to the

database and cannot be used for callbacks in the same transaction. In other words,

during an external procedure call, you can use OCI handles for callbacks or a new

connection but not for both.

The C prototype for this function follows:

sword OCIExtProcGetEnv(
 OCIExtProcContext *with_context,
 OCIEnv **envh,
 OCISvcCtx **svch,
 OCIError **errh);

The parameter with_context is the context pointer, and the parameters envh, svch,

and errh are the OCI environment, service, and error handles, respectively. The

return values OCIEXTPROC_SUCCESSand OCIEXTPROC_ERRORindicate success or

failure.

"Doing Callbacks" on page 4-10 shows how OCIExtProcGetEnv might be used in

callbacks. For a working example, see the script extproc.sql in the PL/SQL demo

directory. (For the location of this directory, see your Oracle installation or user's

guide.) This script demonstrates the calling of an external procedure. The

companion file extproc.c contains the C source code for the external procedure. To

run the demo, follow the instructions in extproc .sql . You must use the

SCOTT/TIGER account, which must have CREATE LIBRARY privileges.

Doing Callbacks
An external procedure executing on the Oracle8i server can call the access function

OCIExtProcGetEnv to obtain OCI environment and service handles. With the
4-10 Oracle8i Data Cartridge Developer’s Guide

Doing Callbacks
OCI, you can use callbacks to execute SQL statements and PL/SQL subprograms,

fetch data, and manipulate LOBs. Moreover, callbacks and external procedures

operate in the same user session and transaction context, so they have the same user

privileges.

The following example is a version of c_findmin that is simplified to illustrate

callbacks. The complete listing is available on the disk that is included with this kit.

Static OCIEnv *envhp;
Static OCISvcCtx *svchp;
Static OCIError *errhp;
Int c_findmin (OCIExtProcContext *ctx, OCILobLocator *lobl) {
sword retval;
retval = OCIExtProcGetEnv (ctx, &envhp, &svchp, &errhp);
if ((retval != OCI_SUCCESS) && (retval != OCI_SUCCESS_WITH_INFO))
 exit(-1);
 /* Use lobl to read the CLOB, compute the minimum, and store the value
 in retval. */
return retval;
}

Restrictions on Callbacks
With callbacks, the following SQL statements and OCI routines are not supported:

■ Transaction control statements such as COMMIT

■ Data definition statements such as CREATE

■ Object-oriented OCI routines such as OCIRefClear

■ Polling-mode OCI routines such as OCIGetPieceInfo

■ All these OCI routines:

OCIEnvInit
OCIInitialize
OCIPasswordChange
OCIServerAttach
OCIServerDetach
OCISessionBegin
OCISessionEnd
OCISvcCtxToLda
OCITransCommit
OCITransDetach
OCITransRollback
OCITransStart
Methods: Using C/C++ and Java 4-11

OCI Access Functions for External Procedures
■ Also, with OCI routine OCIHandleAlloc , the following handle types are not

supported:

OCI_HTYPE_SERVER
OCI_HTYPE_SESSION
OCI_HTYPE_SVCCTX
OCI_HTYPE_TRANS

OCI Access Functions for External Procedures
When called from an external procedure, a service routine can raise exceptions,

allocate memory, and get OCI handles for callbacks to the server. To use the

functions, you must specify the WITH CONTEXT clause, which lets you pass a

context structure to the external procedure. The context structure is declared in

header file ociextp.h as follows:

typedef struct OCIExtProcContext OCIExtProcContext;

This section describes how service routines use the context information. For more

information and examples of usage, see the chapter on external procedures in

theOracle8i Application Developer’s Guide - Fundamentals.

OCIExtProcAllocCallMemory
This service routine allocates n bytes of memory for the duration of the external

procedure call. Any memory allocated by the function is freed as soon as control

returns to PL/SQL.

The C prototype for this function follows:

dvoid *OCIExtProcAllocCallMemory(
 OCIExtProcContext *with_context,
 size_t amount);

The parameters with_context and amount are the context pointer and number of

bytes to allocate, respectively. The function returns an untyped pointer to the

allocated memory. A return value of zero indicates failure.

Note: Do not use any other function to allocate or free memory.
4-12 Oracle8i Data Cartridge Developer’s Guide

Common Potential Errors
OCIExtProcRaiseExcp
This service routine raises a predefined exception, which must have a valid Oracle

error number in the range 1..32767. After doing any necessary cleanup, the external

procedure must return immediately. (No values are assigned to OUT or IN OUT
parameters.) The C prototype for this function follows:

int OCIExtProcRaiseExcp(
 OCIExtProcContext *with_context,
 size_t error_number);

The parameters with_context and error_number are the context pointer and Oracle

error number. The return values OCIEXTPROC_SUCCESSand OCIEXTPROC_ERROR
indicate success or failure.

OCIExtProcRaiseExcpWithMsg
This service routine raises a user-defined exception and returns a user-defined error

message. The C prototype for this function follows:

int OCIExtProcRaiseExcpWithMsg(
 OCIExtProcContext *with_context,
 size_t error_number,
 text *error_message,
 size_t len);

The parameters with_context , error_number , and error_message are the

context pointer, Oracle error number, and error message text. The parameter len
stores the length of the error message. If the message is a null-terminated string, len
is zero. The return values OCIEXTPROC_SUCCESS and OCIEXTPROC_ERROR
indicate success or failure.

Common Potential Errors
This section presents several kinds of errors you might make in running external

procedures.

Calls to External Functions
Can't Find DLL
ORA-06520: PL/SQL: Error loading external library
ORA-06522: Unable to load DLL
ORA-06512: at "<name>", line <number>
Methods: Using C/C++ and Java 4-13

Debugging External Procedures
ORA-06512: at "<name>", line <number>
ORA-06512: at line <number>

You may have specified the wrong path or wrong name for the DLL file, or you may

have tried to use a DLL on a network mounted drive (a remote drive).

RPC Time Out
ORA-28576: lost RPC connection to external procedure agent
ORA-06512: at "<name>", line <number>
ORA-06512: at "<name>", line <number>
ORA-06512: at line <number>

This error might occur after you exit a debugger while debugging a shared library

or DLL. Simply disconnect your client and reconnect to the database.

Debugging External Procedures
Usually, when an external procedure fails, its C prototype is faulty. That is, the

prototype does not match the one generated internally by PL/SQL. This can happen

if you specify an incompatible C datatype. For example, to pass an OUT parameter

of type REAL, you must specify float *. Specifying float, double *, or any other C

datatype will result in a mismatch.

In such cases, you might get a lost RPC connection to external procedure agent

error, which means that agent extproc terminated abnormally because the external

procedure caused a core dump. To avoid errors when declaring C prototype

parameters, refer to Table 4–2

Using Package DEBUG_EXTPROC
To help you debug external procedures, PL/SQL provides the utility package

DEBUG_EXTPROC. To install the package, run the script dbgextp .sql , which you

can find in the PL/SQL demo directory.

To use the package, follow the instructions in dbgextp.sql. Your Oracle account

must have EXECUTE privileges on the package and CREATE LIBRARY privileges.

Note: DEBUG_EXTPROC works only on platforms with debuggers

that can attach to a running process.
4-14 Oracle8i Data Cartridge Developer’s Guide

Guidelines for Using External Procedures with Data Cartridges
Debugging C Code in DLLs on Windows NT Systems
If you are developing on a Windows NT system, you may perform the following

additional actions to debug external procedures:

1. Invoke the Windows NT Task Manager (press Ctrl+Alt+Del.and select Task

Manager).

2. In the Processes display, select ExtProc.exe.

3. Right click, and select Debug.

4. Select OK in the message box.

At this point, if you have built your DLL in a debug fashion with Microsoft

Visual C++, Visual C++ is activated.

5. In the Visual C++ window, select Edit > Breakpoints.

6. Use the breakpoint identified in dbgextp.sql in the PL/SQL demo directory.

Guidelines for Using External Procedures with Data Cartridges
In future releases, extproc might be a multithreaded process. So, be sure to write

thread-safe external procedures. That way, they will continue to run properly if

extproc becomes multithreaded. In particular, avoid using static variables, which can

be shared by routines running in separate threads. Otherwise, you might get

unexpected results.

For help in creating a dynamic link library, look in the RDBMS subdirectory

/public, where a template makefile can be found.

When calling external procedures, never write to IN parameters or overflow the

capacity of OUT parameters. (PL/SQL does no runtime checks for these error

conditions.) Likewise, never read an OUT parameter or a function result. Also,

always assign a value to IN OUT and OUT parameters and to function results.

Otherwise, your external procedure will not return successfully.

If you include the WITH CONTEXT and PARAMETERS clauses, you must specify the

parameter CONTEXT, which shows the position of the context pointer in the

parameter list. If you omit the PARAMETERS clause, the context pointer is the first

parameter passed to the external procedure.

If you include the PARAMETERS clause and the external routine is a function, you

must specify the parameter RETURN (not RETURNproperty) in the last position.
Methods: Using C/C++ and Java 4-15

Java Methods
For every formal parameter, there must be a corresponding parameter in the

PARAMETERS clause. Also, make sure that the datatypes of parameters in the

PARAMETERS clause are compatible with those in the C prototype because no

implicit conversions are done.

A parameter for which you specify INDICATOR or LENGTH has the same parameter

mode as the corresponding formal parameter. However, a parameter for which you

specify MAXLEN, CHARSETID, or CHARSETFORM is always treated like an IN
parameter, even if you also specify BY REF.

With a parameter of type CHAR, LONG RAW, RAW, or VARCHAR2, you must use the

property LENGTH. Also, if that parameter is IN OUT or OUT and null, you must set

the length of the corresponding C parameter to zero.

Java Methods
In order to utilize Java Data Cartridges, it is important that you know how to load

Java class definitions, about how to call stored procedures, and about context

management. For details on these issues, see Chapters 1 and 2 of the Oracle8i Java
Stored Procedures Developer’s Guide. Information on ODCI classes can also be found

in Chapter 14 of this manual.
4-16 Oracle8i Data Cartridge Developer’s Guide

Methods: Using PL
5

Methods: Using PL/SQL

This chapter describes how to use PL/SQL to implement the methods of a data

cartridge. Methods are procedures and functions that define the operations

permitted on data defined using the data cartridge. Topics include:

■ Methods

■ PL/SQL Packages

■ Pragma RESTRICT_REFERENCES

■ Privileges Required to Create Procedures and Functions

■ Debugging PL/SQL Code
/SQL 5-1

Methods
Methods
A method is procedure or function that is part of the object type definition, and that

can operate on the attributes of the type. Such methods are also called member
methods, and they take the keyword MEMBER when you specify them as a

component of the object type.

See the Oracle8i Concepts manual for information about:

■ Method specification

■ Method names

■ Method name overloading

Map methods, which govern comparisons between object types, are discussed

above.

The following sections show simple examples of implementing a method, invoking

a method, and referencing an attribute in a method. For further explanation and

more detailed examples, see the chapter on object types in the PL/SQL User’s Guide
and Reference.

Implementing Methods
To implement a method, create the PL/SQL code and specify it within a CREATE
TYPE BODY statement.

For example, consider the following definition of an object type named rational_type:

CREATE TYPE rational_type AS OBJECT
(numerator INTEGER,
 denominator INTEGER,
 MAP MEMBER FUNCTION rat_to_real RETURN REAL,
 MEMBER PROCEDURE normalize,
 MEMBER FUNCTION plus (x rational_type)
 RETURN rational_type);

The following definition is shown merely because it defines the function gcd , which

is used in the definition of the normalize method in the CREATE TYPE BODY
statement later in this section.

CREATE FUNCTION gcd (x INTEGER, y INTEGER) RETURN INTEGER AS
-- Find greatest common divisor of x and y. For example, if
-- (8,12) is input, the greatest common divisor is 4.
-- This will be used in normalizing (simplifying) fractions.
-- (You need not try to understand how this code works, unless
5-2 Oracle8i Data Cartridge Developer’s Guide

Methods
-- you are a math wizard. It does.)
--
 ans INTEGER;
BEGIN
 IF (y <= x) AND (x MOD y = 0) THEN
 ans := y;
 ELSIF x < y THEN
 ans := gcd(y, x); -- Recursive call
 ELSE
 ans := gcd(y, x MOD y); -- Recursive call
 END IF;
 RETURN ans;
END;

The following statement implements the methods (rat_to_real , normalize ,

and plus) for the object type rational_type :

CREATE TYPE BODY rational_type
(MAP MEMBER FUNCTION rat_to_real RETURN REAL IS
 -- The rat-to-real function converts a rational number to
 -- a real number. For example, 6/8 = 0.75
 BEGIN
 RETURN numerator/denominator;
 END;

 -- The normalize procedure simplifies a fraction.
 -- For example, 6/8 = 3/4
 MEMBER PROCEDURE normalize IS
 divisor INTEGER := gcd(numerator, denominator);
 BEGIN
 numerator := numerator/divisor;
 denominator := denominator/divisor;
 END;

 -- The plus function adds a specified value to the
 -- current value and returns a normalized result.
 -- For example, 1/2 + 3/4 = 5/4
 --
 MEMBER FUNCTION plus(x rational_type)
 RETURN rational_type IS
 -- Return sum of SELF + x
 BEGIN
 r = rational_type(numerator*x.demonimator +
 x.numerator*denominator,
 denominator*x.denominator);
Methods: Using PL/SQL 5-3

Methods
 -- Example adding 1/2 to 3/4:
 -- (3*2 + 1*4) / (4*2)
 -- Now normalize (simplify). Here, 10/8 = 5/4
 r.normalize;
 RETURN r;
 END;
END;

Invoking Methods
To invoke a method, use the following syntax:

<object_name>.<method_name>([parameter_list])

In SQL statements only, you can use the following syntax:

<correlation_variable>.<method_name>([parameter_list])

The following PL/SQL example invokes a method named get_emp_sal:

DECLARE
 employee employee_type;
 salary number;
 ...
BEGIN
 salary := employee.get_emp_sal();
 ...
END;

An alternative way to invoke a method is by using the SELF built-in parameter.

Because the implicit first parameter of each method is the name of the object on

whose behalf the method is invoked, the following example performs the same

action as the line after BEGIN in the preceding example:

salary := get_emp_sal(SELF => employee);

In this example, employee is the name of the object on whose behalf the get_emp_
sal method is invoked.

Note: If an object type has no methods, no CREATE TYPE BODY
statement for that object type is required.
5-4 Oracle8i Data Cartridge Developer’s Guide

PL/SQL Packages
Referencing Attributes in a Method
As shown in the example in “Implementing Methods” on page 3-1, member

methods can reference the attributes and member methods of the same object type

without using a qualifier. A built-in reference is always provided to the object on

whose behalf the method is invoked. This reference is called SELF.

Consider the following trivial example, in which two statements set the value of

variable var1 to 42:

CREATE TYPE a_type AS OBJECT (
 var1 INTEGER,
 MEMBER PROCEDURE set_var1);
CREATE TYPE BODY a_type (
 MEMBER PROCEDURE set_var1 IS
 BEGIN
 var1 := 42;
 SELF.var1 := 42;
 END set_var1;
);

In this example, var1 := 42 and SELF.var1 := 42 are in effect the same statement.

Because var1 is the name of an attribute of the object type a_type and because set_
var1 is a member method of this object type, no qualification is required to access

var1 in the method code. However, for code readability and maintainability, you can

use the keyword SELF in this context to make the reference to var1 more clear.

 PL/SQL Packages
A package is a group of PL/SQL types, objects, and stored procedures and

functions. The specification part of a package declares the public types, variables,

constants, and subprograms that are visible outside the immediate scope of the

package. The body of a package defines the objects declared in the specification, as

well as private objects that are not visible to applications outside the package.

The following example shows the package specification for the package named DS_
package. This package contains the two stored functions ds_findmin and ds_findmax,

which implement the DataStreamMin and DataStreamMax functions defined for the

DataStream object type.

CREATE OR REPLACE PACKAGE DS_package AS
FUNCTION ds_findmin(data clob) RETURN pls_integer;
FUNCTION ds_findmax(data clob) RETURN pls_integer;
PRAGMA restrict_references(ds_findmin, WNDS, WNPS);
Methods: Using PL/SQL 5-5

Pragma RESTRICT_REFERENCES
PRAGMA restrict_references(ds_findmax, WNDS, WNPS);
END;

For the DataStream type and type body definitions, see Chapter 2, "Roadmap to

Building a Data Cartridge".

For more information about PL/SQL packages, see the chapter about using

procedures and packages in the Oracle8i Supplied Packages Reference.

Pragma RESTRICT_REFERENCES
To execute a SQL statement that calls a member function, Oracle must know the

purity level of the function, that is, the extent to which the function is free of side

effects. The term side effect, in this context, refers to accessing database tables,

package variables, and so forth for reading or writing. It is important to control side

effects because they can prevent the proper parallelization of a query, produce

order-dependent (and therefore indeterminate) results, or require impermissible

actions such as the maintenance of package state across user sessions.

A member function called from a SQL statement can be restricted so that it cannot:

■ Insert into, update, or delete database tables

■ Be executed remotely or in parallel if it reads or writes the values of packaged

variables

■ Write the values of packaged variables unless it is called from a SELECT,
VALUES, or SET clause

■ Call another method or subprogram that violates any of these rules

■ Reference a view that violates any of these rules

For more information about the rules governing purity levels and side effects, see

the PL/SQL User’s Guide and Reference.

You use the pragma (compiler directive) RESTRICT_REFERENCES to enforce these

rules. For example, the purity level of the DataStreamMax method of type

DataStream is asserted to be write no database state (WNDS) and write no package state
(WNPS) in the following way:

CREATE TYPE DataStream AS OBJECT (

PRAGMA RESTRICT_REFERENCES (DataStreamMax, WNDS, WNPS)
 ...);
5-6 Oracle8i Data Cartridge Developer’s Guide

Privileges Required to Create Procedures and Functions
Member methods that call external procedures cannot do so directly, but must be

routed through a package. The reason for this requirement is that currently the

arguments to external procedures cannot be object types; a member function

automatically gets a SELF reference (a reference to that specific instance) as its first

argument. Therefore, member methods in objects types cannot call out directly to

external procedures.

Collecting all external calls into a package makes for a better design. The purity

level of the package must also be asserted. Therefore, when the package named DS_
Package is declared and all external procedure calls from type DataStream are

routed through this package, the purity level of the package is also declared, as

follows:

CREATE OR REPLACE PACKAGE DS_Package AS
 ...
PRAGMA RESTRICT_REFERENCES (ds_findmin, WNDS, WNPS)
 ...
END;

In addition to WNDS and WNPS, it is possible to specify two other constraints: read no
database state (RNDS) and read no package state (RNPS). These two constraints are

normally useful if you have parallel queries.

Each constraint is independent of the others and does not imply another. Choose

the set of constraints based on application-specific requirements. For more

information about controlling side effects using the RESTRICT_REFERENCES
pragma, see the Oracle8i Application Developer’s Guide - Fundamentals.

You can also specify the keyword DEFAULTinstead of a method or procedure name,

in which case the pragma applies to all member functions of the type (or procedures

of the package). For example:

PRAGMA RESTRICT_REFERENCES (DEFAULT, WNDS, WNPS)

Privileges Required to Create Procedures and Functions
To create a standalone procedure or function, or package specification or body, you

must have the CREATE PROCEDURE system privilege to create a procedure or

package in your schema, or the CREATE ANY PROCEDURE system privilege to create

a procedure or package in another user’s schema.

For the compilation of the procedure or package, the owner of the procedure or

package must have been explicitly granted the necessary object privileges for all
Methods: Using PL/SQL 5-7

Debugging PL/SQL Code
objects referenced within the body of the code. The owner cannot have obtained
required privileges through roles.

For more information about privilege requirements for creating procedures and

functions, see the chapter about using procedures and packages in the Oracle8i
Application Developer’s Guide - Fundamentals.

Debugging PL/SQL Code
One of the simplest ways to debug PL/SQL code is to try each method, block, or

statement interactively using SQL*Plus, and fix any problems before proceeding to

the next statement. If you need more information on an error message, enter the

statement SHOW ERRORS. Also consider displaying statements for runtime

debugging, such as those of the general form:

Location in module: <location>
Parameter name: <name>
Parameter value: <value>

You can debug stored procedures and packages using the DBMS_OUTPUT package.

You insert PUT and PUTLINE statements in your code to output the value of

variables and expressions to your terminal. The DBMS_OUTPUTpackage is described

in the Oracle8i Supplied Packages Reference and the PL/SQL User’s Guide and Reference.

To debug stored procedures and packages, though not object type methods at present,
you can use Procedure Builder, which is a part of the Oracle Developer/2000 tool

set. Procedure Builder lets you execute PL/SQL stored procedures and triggers in a

controlled debugging environment, and you can set breakpoints, list the values of

variables, and perform other debugging tasks. See the Oracle8i Java Stored Procedures
Developer’s Guide

A PL/SQL tracing tool provides more information about exception conditions in

application code. You can use this tool to trace the execution of server-side PL/SQL

statements. Object type methods cannot be traced directly, but you can trace any

PL/SQL functions or procedures that a method calls. The tracing tool also provides

information about exception conditions in the application code. The trace output is

written to the Oracle server trace file.
5-8 Oracle8i Data Cartridge Developer’s Guide

Debugging PL/SQL Code
Notes for C and C++ Programmers
If you are a C or C++ programmer, several PL/SQL conventions and requirements

may differ from your expectations. Note the following about PL/SQL:

■ = means equal (not assign).

■ := means assign (as in Algol).

■ VARRAYs begin at index 1 (not 0).

■ Comments begin with two hyphens (--), not with // or /*.

■ The IF statement requires the THEN keyword.

■ The IF statement must be concluded with the END IF keyword (which comes

after the ELSE clause, if there is one).

■ There is no PRINTF statement. The comparable feature is the DBMS_
OUTPUT.PUT_LINE statement. In this statement, literal and variable text is

separated using the double vertical bar (||).

■ A function must have a return value, and a procedure cannot have a return

value.

■ If you call a function, it must be on the right side of an assignment operator.

■ Many PL/SQL keywords cannot be used as variable names.

For complete information on PL/SQL, see the PL/SQL User’s Guide and Reference.

Common Potential Errors
This section presents several kinds of errors you may make in creating a data

cartridge.

Signature Mismatches
13/19 PLS-00538: subprogram or cursor '<name>' is declared in an object
 type specification and must be defined in the object type body
15/19 PLS-00539: subprogram '<name>' is declared in an object type body
 and must be defined in the object type specification

Note: Only the database administrator has access to this trace file.

The tracing tool is described in the Oracle8i Application Developer’s
Guide - Fundamentals.
Methods: Using PL/SQL 5-9

Debugging PL/SQL Code
If you see either or both of these messages, you have made an error with the

signature for a procedure or function. In other words, you have a mismatch

between the function or procedure prototype that you entered in the object

specification, and the definition in the object body.

Ensure that parameter orders, parameter spelling (including case), and function

returns are identical. Use copy-and-paste to avoid errors in typing.

RPC Time Out
ORA-28576: lost RPC connection to external procedure agent
ORA-06512: at "<name>", line <number>
ORA-06512: at "<name>", line <number>
ORA-06512: at line 34

This error might occur after you exit the debugger for the DLL. Restart the program

outside the debugger.

Package Corruption
ERROR at line 1:
ORA-04068: existing state of packages has been discarded
ORA-04063: package body "<name>" has errors
ORA-06508: PL/SQL: could not find program unit being called
ORA-06512: at "<name>", line <number>
ORA-06512: at line <number>

This error might occur if you are extending an existing data cartridge; it indicates

that the package has been corrupted and must be recompiled.

Before you can perform the recompilation, you must delete all tables and object

types that depend upon the package that you will be recompiling. To find the

dependents on a Windows NT system, use the Oracle Administrator toolbar. Click

the Schema button, log in as sys\change_on_install, and find packages and tables

that you created. Drop these packages and tables by entering SQL statements of the

following form into the SQL*Plus interface:

DROP TYPE <type_name>;
DROP TABLE <table_name> CASCADE CONSTRAINTS;

The recompilation can then be done using a SQL statement of the following form:

ALTER TYPE <type_name> COMPILE BODY;
or
ALTER TYPE <type_name> COMPILE SPECIFICATION;
5-10 Oracle8i Data Cartridge Developer’s Guide

Working with Multimedia Data
6

Working with Multimedia Datatypes

This chapter includes the following topics:

■ Overview

■ DDL for LOBs

■ LOB Locators

■ EMPTY_BLOB and EMPTY_CLOB Functions

■ Using the OCI to Manipulate LOBs

■ Using DBMS_LOB to Manipulate LOBs

■ LOBs in External Procedures

■ LOBs and Triggers

■ Using Open/Close as Bracketing Operations for Efficient Performance
types 6-1

Overview
Overview
Some data cartridges need to handle large amounts of raw binary data, such as

graphic images or sound waveforms, or character data, such as text or streams of

numbers. Oracle8i supports large objects (LOBs) to handle these kinds of data.

Internal LOBs are stored in the database tablespaces in way that optimizes space

and provides efficient access. Internal LOBs participate in the transactional model of

the server. External LOBs are stored in operating system files outside the database

tablespaces. External LOBs do not participate in transactions.

Internal LOBs can store binary data (BLOBs), single-byte character data (CLOBs), or

fixed-width single-byte or multibyte character data (NCLOBs). An NCLOBconsists of

character data that corresponds to the national character set defined for the Oracle

database. Varying-width character data is not supported in Oracle8i. External LOBs
store only binary data (BFILEs). Together, internal and external LOBs provide

considerable flexibility in handling large amounts of data.

Data stored in a LOB is called the LOB’s value. To the Oracle8i server, a LOB's
value is unstructured and cannot be queried. You must unpack and interpret a

LOB's value in cartridge-specific ways.

LOBs can be manipulated using the Oracle Call Interface (OCI) or the PL/SQL

DBMS_LOB package. You can write functions (including methods on object types

that can contain LOBs) to manipulate parts of LOBs. Details on LOBs can be found

in the Oracle8i Application Developer’s Guide - Large Objects (LOBs).

DDL for LOBs
LOB definition can involve the CREATE TYPE and the CREATE TABLE statements.

For example, the following statement specifies a CLOB within a datatype named lob_
type:

CREATE OR REPLACE TYPE lob_type AS OBJECT (
 id INTEGER,
 data CLOB);

The following statement creates an object table (lob_table) in which each row is an

instance of lob_type data:

CREATE TABLE lob_table OF lob_type;

The following statement stores LOBs in a regular table, as opposed to an object table

as in the preceding statement:
6-2 Oracle8i Data Cartridge Developer’s Guide

LOB Locators
CREATE TABLE lob_table1 (
 id INTEGER,
 b_lob BLOB,
 c_lob CLOB,
 nc_lob NCLOB,
 b_file BFILE);

When creating LOBs in tables, you can set the LOB storage, buffering, and caching

properties. See the Oracle8i SQL Reference manual and the Oracle8i Application
Developer’s Guide - Large Objects (LOBs) for information about using LOBs in the

following DDL statements:

■ CREATE TABLE and ALTER TABLE

– LOB columns

– LOB storage clause

– NOCACHE and NOLOGGING options

■ CREATE TYPE and ALTER TYPE

– BLOB, CLOB and BFILE datatypes

LOB Locators
LOBs can be stored with other row data or separate from row data. Regardless of

the storage location, each LOB has a locator, which can be viewed as a handle or

pointer to the actual location. Selecting a LOB returns the LOB locator instead of the

LOB value.

The following PL/SQL code selects the LOB locator for b_lob and place it a PL/SQL

local variable named image1:

DECLARE
 image1 BLOB;
 image_no INTEGER := 101;
BEGIN
 SELECT b_lob INTO image1 FROM lob_table
 WHERE key_value = image_no;
 ...
END;

When you use an API function to manipulate the LOB value, you refer to the LOB
using the locator. The PL/SQL DBMS_LOB package contains useful routines to

manipulate LOBs, such as PUT_LINE and GETLENGTH:
Working with Multimedia Datatypes 6-3

EMPTY_BLOB and EMPTY_CLOB Functions
BEGIN
 DBMS_OUTPUT.PUT_LINE('Size of the Image is: ',
 DBMS_LOB.GETLENGTH(image1));
END;

In the OCI, LOB locators are mapped to LOBLocatorPointers (OCILobLocator *).

The OCI LOB interface and the PL/SQL DBMS_LOB package are described briefly in

this chapter. The OCI is described in more detail in the Oracle Call Interface
Programmer’s Guide. The DBMS_LOB API is described in the Oracle8i Application
Developer’s Guide - Large Objects (LOBs).

For a BFILE , the LOBcolumn has its own distinct locator, which refers to the LOB's
value that is stored in an external file in the server's file system. This implies that

two rows in a table with a BFILE column may refer to the same file or two distinct

files. A BFILE locator variable in a PL/SQL or OCI program behaves like any other

automatic variable. With respect to file operations, it behaves like a file descriptor

available as part of the standard I/O library of most conventional programming

languages.

EMPTY_BLOB and EMPTY_CLOB Functions
You can use the special functions EMPTY_BLOB and EMPTY_CLOB in INSERT or

UPDATE statements of SQL DML to initialize a NULL or non-NULL internal LOB to

empty. These are available as special functions in Oracle8i SQL DML, and are not

part of the DBMS_LOB package.

Before you can start writing data to an internal LOB using OCI or the DBMS_LOB
package, the LOB column must be made non-null, that is, it must contain a locator

that points to an empty or populated LOB value. You can initialize a BLOB column's

value to empty by using the function EMPTY_BLOB in the VALUES clause of an

INSERT statement. Similarly, a CLOB or NCLOB column's value can be initialized by

using the function EMPTY_CLOB.

Syntax

FUNCTION EMPTY_BLOB() RETURN BLOB;
FUNCTION EMPTY_CLOB() RETURN CLOB;

Parameters

Note: The parentheses are required syntax for both functions.
6-4 Oracle8i Data Cartridge Developer’s Guide

EMPTY_BLOB and EMPTY_CLOB Functions
None.

Return Values

EMPTY_BLOB returns an empty locator of type BLOB and EMPTY_CLOB returns an

empty locator of type CLOB, which can also be used for NCLOBs.

Pragma

None.

Exceptions

An exception is raised if you use these functions anywhere but in the VALUES
clause of a SQL INSERT statement or as the source of the SET clause in a SQL

UPDATE statement.

Examples

The following example shows EMPTY_BLOB used with SQL DML:

INSERT INTO lob_table VALUES (1001, EMPTY_BLOB(), 'abcde', NULL);
UPDATE lob_table SET c_lob = EMPTY_CLOB() WHERE key_value = 1001;
INSERT INTO lob_table VALUES (1002, NULL, NULL, NULL);

The following example shows the correct and erroneous usage of EMPTY_BLOB and

EMPTY_CLOB in PL/SQL programs:

DECLARE
 loba BLOB;
 lobb CLOB;
 read_offset INTEGER;
 read_amount INTEGER;
 rawbuf RAW(20);
 charbuf VARCHAR2(20);
BEGIN
 loba := EMPTY_BLOB();
 read_amount := 10; read_offset := 1;
 -- the following read will fail
 dbms_lob.read(loba, read_amount, read_offset, rawbuf);

 -- the following read will succeed;
 UPDATE lob_table SET c_lob = EMPTY_CLOB() WHERE key_value =
 1002 RETURNING c_lob INTO lobb;
dbms_lob.read(lobb, read_amount, read_offset, charbuf);
 dbms_output.put_line('lobb value: ' || charbuf);
Working with Multimedia Datatypes 6-5

Using the OCI to Manipulate LOBs
Using the OCI to Manipulate LOBs
The OCI includes functions that you can use to access data stored in BLOBs, CLOBs,
NCLOBs, and BFILEs . These functions are mentioned briefly in Table 6–1. For

detailed documentation, including parameters, parameter types, return values, and

example code, see the Oracle Call Interface Programmer’s Guide.

Table 6–1 OCI Functions for Manipulating LOBs

Function Description

OCILobAppend() Appends LOB value to another LOB.

OCILobAssign() Assigns one LOB locator to another.

OCILobCharSetForm() Returns the character set form of a LOB.

OCILobCharSetId() Returns the character set ID of a LOB.

OCILobCopy() Copies a portion of a LOB into another LOB.

OCILobDisableBuffering() Disables the buffering subsystem use.

OCILobEnableBuffering() Uses the LOB buffering subsystem for subsequent read and
write operations of LOB data.

OCILobErase() Erases part of a LOB, starting at a specified offset.

OCILobFileClose() Closes an open BFILE .

OCILobFileCloseAll() Closes all open BFILEs .

OCILobFileExists() Tests to see if a BFILE exists.

OCILobFileGetName() Returns the name of a BFILE .

OCILobFileIsOpen() Tests to see if a BFILE is open.

OCILobFileOpen() Opens a BFILE .

OCILobFileSetName() Sets the name of a BFILE in a locator.

OCILobFlushBuffer() Flushes changes made to the LOB buffering subsystem to
the database (server)

OCILobGetLength() Returns the length of a LOB or a BFILE .

OCILobIsEqual() Tests to see if two LOB locators refer to the same LOB.

OCILobLoadFromFile() Loads BFILE data into an internal LOB.

OCILobLocatorIsInit() Tests to see if a LOB locator is initialized.

OCILobLocatorSize() Returns the size of a LOB locator.
6-6 Oracle8i Data Cartridge Developer’s Guide

Using the OCI to Manipulate LOBs
Table 6–2 compares the OCI and PL/SQL (DBMS_LOB package) interfaces in terms

of LOB access.

OCILobRead() Reads a specified portion of a non-null LOB or a BFILE into
a buffer.

OCILobTrim() Truncates a LOB.

OCILobWrite() Writes data from a buffer into a LOB, writing over existing
data.

Table 6–2 OCI and PL/SQL (DBMS_LOB) Interfaces Compared

OCI (ociap.h) PL/SQL DBMS_LOB (dbmslob.sql)

N/A DBMS_LOB.COMPARE()

N/A DBMS_LOB.INSTR()

N/A DBMS_LOB.SUBSTR()

OCILobAppend DBMS_LOB.APPEND()

OCILobAssign N/A [use PL/SQL assign operator]

OCILobCharSetForm N/A

OCILobCharSetId N/A

OCILobCopy DBMS_LOB.COPY()

OCILobDisableBuffering N/A

OCILobEnableBuffering N/A

OCILobErase DBMS_LOB.ERASE()

OCILobFileClose DBMS_LOB.FILECLOSE()

OCILobFileCloseAll DBMS_LOB.FILECLOSEALL()

OCILobFileExists DBMS_LOB.FILEEXISTS()

OCILobFileGetName DBMS_LOB.FILEGETNAME()

OCILobFileIsOpen DBMS_LOB.FILEISOPEN()

OCILobFileOpen DBMS_LOB.FILEOPEN()

OCILobFileSetName N/A (use BFILENAME operator)

Table 6–1 OCI Functions for Manipulating LOBs (Cont.)

Function Description
Working with Multimedia Datatypes 6-7

Using the OCI to Manipulate LOBs
The following example shows a LOB being selected from the database into a locator.

This example assumes that the type lob_type has two attributes (id of type INTEGER
and data of type CLOB) and that a table (lob_table) of this type (lob_type) has been

created.

/*---*/
/* Select lob locators from a CLOB column */
/* We need the 'FOR UPDATE' clause because we need to write to the LOBs. */
/*---*/
static OCIEnv *envhp;
static OCIServer *srvhp;
static OCISvcCtx *svchp;
static OCIError *errhp;
static OCISession *authp;
static OCIStmt *stmthp;
static OCIDefine *defnp1;
static OCIBind *bndhp;

sb4 select_locator(int rowind)
{
 sword retval;
 boolean flag;
 int colc = rowind;
 OCILobLocator *clob;
 text *sqlstmt = (text *)"SELECT DATA FROM LOB_TABLE WHERE ID = :1 FOR
UPDATE";

 if (OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4) strlen((char *)sqlstmt),

OCILobFlushBuffer N/A

OCILobGetLength DBMS_LOB.GETLENGTH()

OCILobIsEqual N/A [use PL/SQL equal operator]

OCILobLoadFromFile DBMS_LOB.LOADFROMFILE()

OCILobLocatorIsInit N/A [always initialize]

OCILobRead DBMS_LOB.READ()

OCILobTrim DBMS_LOB.TRIM()

OCILobWrite DBMS_LOB.WRITE()

Table 6–2 OCI and PL/SQL (DBMS_LOB) Interfaces Compared (Cont.)

OCI (ociap.h) PL/SQL DBMS_LOB (dbmslob.sql)
6-8 Oracle8i Data Cartridge Developer’s Guide

Using the OCI to Manipulate LOBs
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() sqlstmt\n");
 return OCI_ERROR;
 }

 if (OCIStmtBindByPos(stmthp, bndhp, errhp, (ub4) 1,
 (dvoid *) &colc, (sb4) sizeof(colc), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtBindByPos()\n");
 return OCI_ERROR;
 }

 if (OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *) &clob, (sb4) -1, (ub2) SQLT_CLOB,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIDefineByPos()\n");
 return OCI_ERROR;
 }

 /* Execute the select and fetch one row */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() sqlstmt\n");
 report_error();
 return OCI_ERROR;
 }

 /* Now test to see if the LOB locator is initialized */
 retval = OCILobLocatorIsInit(envhp, errhp, clob, &flag);
 if ((retval != OCI_SUCCESS) && (retval != OCI_SUCCESS_WITH_INFO))
 {
 (void) printf("Select_Locator --ERROR: OCILobLocatorIsInit(), retval =
%d\n", retval);
 report_error();
 checkerr(errhp, retval);
 return OCI_ERROR;
 }
Working with Multimedia Datatypes 6-9

Using DBMS_LOB to Manipulate LOBs
 if (!flag)
 {
 (void) printf("Select_Locator --ERROR: LOB Locator is not initialized.\n");
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}
A sample program (populate.c) that uses the OCI to populate a CLOB with the

contents of a file is included on the disk.

Using DBMS_LOB to Manipulate LOBs
The DBMS_LOB package can be used to manipulate LOBs from PL/SQL.

The routines that can modify BLOB, CLOB, and NCLOB values are:

■ APPEND() -- append the contents of the source LOB to the destination LOB

■ COPY() -- copy all or part of the source LOB to the destination LOB

■ ERASE() -- erase all or part of a LOB

■ LOADFROMFILE() -- load BFILE data into an internal LOB

■ TRIM() -- trim the LOB value to the specified shorter length

■ WRITE() -- write data to the LOB from a specified offset

The routines that read or examine LOB values are:

■ GETLENGTH() -- get the length of the LOB value

■ INSTR() -- return the matching position of the nth occurrence of the pattern in

the LOB

■ READ() -- read data from the LOB starting at the specified offset

■ SUBSTR() -- return part of the LOB value starting at the specified offset

The read-only routines specific to BFILEs are:

■ FILECLOSE() -- close the file

■ FILECLOSEALL() -- close all previously opened files

■ FILEEXISTS () -- test to see if the file exists on the server

■ FILEGETNAME() -- get the directory alias and file name
6-10 Oracle8i Data Cartridge Developer’s Guide

LOBs in External Procedures
■ FILEISOPEN () -- test to see if the file was opened using the input BFILE
locators

■ FILEOPEN() -- open a file

The following example calls the TRIM procedure to trim a CLOB value to a smaller

length is shown below. This example assumes that the type lob_type has two

attributes (id of type INTEGER and data of type CLOB) and that a table (lob_table) of

this type (lob_type) has been created.

PROCEDURE Trim_Clob IS
 clob_loc CLOB;
BEGIN
 -- get the LOB Locator
 SELECT data into clob_loc FROM lob_table
 WHERE id = 179 FOR UPDATE;
 -- call the TRIM Routine
 DBMS_LOB.TRIM(clob_loc, 834004);
 COMMIT;
END;

Because this example deals with CLOB data, the second argument (834004) to DBMS_
LOB.TRIM specifies the number of characters. If the example dealt with BLOB data,

this argument would be interpreted as the number of bytes.

LOBs in External Procedures
LOB locators can be passed as arguments to an external procedure. The

corresponding C routine gets an argument of type OCILobLocator *. For example,

a PL/SQL external procedure could be defined as:

FUNCTION DS_Findmin(data CLOB) RETURN PLS_INTEGER IS EXTERNAL
 NAME "c_findmin" LIBRARY DS_Lib LANGUAGE C;

When this function is called, it invokes a routine (c_findmin) with the signature:

int c_findmin (OCILobLocator *)

This routine in a shared library associated with DS_Lib. In order to use the pointer

OCILobLocator * to get data from the LOB (for example, using OCILobRead ()),

you must reconnect to the database by performing a callback. External procedures

and callbacks are discussed in “Doing Callbacks” on page 5-10.
Working with Multimedia Datatypes 6-11

LOBs and Triggers
LOBs and Triggers
You cannot write to a LOB (:old or :new value) in any kind of trigger.

In regular triggers, you can read the :old value but you cannot read the :new value.

In INSTEAD OF triggers, you can read the :old and the :new values.

You cannot specify LOB type columns in an OF clause, because BFILE types can be

updated without updating the underlying table on which the trigger is defined.

Using OCI functions or the DBMS_LOB package to update LOB values or LOB
attributes of object columns will not fire triggers defined on the table containing the

columns or the attributes.

Using Open/Close as Bracketing Operations for Efficient Performance
The Open/Close functions let you indicate the beginning and end of a series of

LOB operations so that large-scale operations, such updating indexes, can be

performed once the Close function is called. This means that once the Open call is

made, the index would not be updated each time the LOB is modified, and that

such updating would not resume until the Close call.

You do not have to wrap all LOBoperations inside the Open/Close operations, but

this function can be very useful for cartridge developers.

For one thing, if the you do not wrap LOB operations inside an Open/Close call,

then each modification to the LOB will implicitly open and close the LOB, thereby

firing any triggers. But if do you wrap the LOB operations inside a pair of

Open/Close operations, then the triggers will not be fired for each LOB
modification. Instead, one trigger will be fired at the time the Close call is made.

LIkewise, extensible indexes will not be updated until the user calls Close . This

means that any extensible indexes on the LOB are not valid between the

Open/Close calls.

You need to apply this technology carefully since state, such as the changes to the

LOB, will not be saved between the Open and the Close operations. Once you have

called Open, Oracle no longer keeps track of what portions of the LOB value were

modified, nor the old and new values of the LOBthat result from any modifications.

The LOB value is still updated directly on a per OCILob* or DBMS_LOB operation

basis and the usual read consistency mechanism is still in place. Moreover, you may

want extensible indexes on the LOB to be updated as LOB modifications are made

because in that case, the extensible LOB indexes are always valid and may be used

at any time.
6-12 Oracle8i Data Cartridge Developer’s Guide

Using Open/Close as Bracketing Operations for Efficient Performance
The API allows you to find out if the LOB is “open” or not. In all cases openness is

associated with the LOB, not the locator. The locator does not save any information

as to whether the LOB to which it refers is open.

Errors and Restrictions Regarding Open/Close Operations
Note that it is an error to commit the transaction before closing all previously

opened LOBs. At transaction rollback time, all LOBs that are still open will be

discarded, which means that they will not be closed thereby firing the triggers).

Only 32 LOBs may be open at any one time. An error will be returned when the

33rd LOB is opened. Assigning an already opened locator to another locator does

not incur a round trip to the server and does not count as opening a new LOB (both

locators refer to the same LOB).

It is an error to Open/Close the same LOB twice either with different locators or

with the same locator. It is an error to close a LOB that has not been opened.

Example
Assume loc1 is refers to an opened LOB and is assigned to loc2 . If loc2 is

subsequently used to modify the LOB value, the modification is grouped together

with loc1 ’s modifications (i.e., there’s only one entry in the LOB manager’s state,

not one per each locator). Once the LOB is closed (via loc1 or loc2), the triggers

are fired and all updates made to the LOB through any locator are committed. After

the close of the LOB, if the user tries to use either locator to modify the LOB, the

operation will be performed as Open/operation/Close . Note that consistent read

is still maintained on a per-locator basis. This discussion is merely showing that the

LOB, not the locator, is opened and closed. No matter how many copies of the

locator are made, the triggers for the LOB are fired only once on the first Close call.

For example:

open (loc1);
loc2 := loc1;
write (loc1);
write (loc2);
open (loc2); /* error because the LOB is already open */
close (loc1); /* triggers are fired and all LOB updates made prior to this
 statement by any locator are incorporated in the extensible
 index */
write (loc2); /* implicit open, write, implicit close */
Working with Multimedia Datatypes 6-13

Using Open/Close as Bracketing Operations for Efficient Performance
6-14 Oracle8i Data Cartridge Developer’s Guide

Building Domain In
7

Building Domain Indexes

This chapter describes extensible indexing, including:

■ Introduction to Extensible Indexing

■ The Extensible Indexing API
dexes 7-1

Introduction to Extensible Indexing
Introduction to Extensible Indexing
What is extensible indexing? Why is it important to you as a cartridge developer?

How should you go about implementing it?

To answer these questions we first need to understand the modes of indexing

provided by the Oracle, which in turn requires that we first consider the role of

indexing in information management systems.

What is Indexing?
The impetus to index data arises because of the need to locate specific information

and then to retrieve it as efficiently as possible. If you could keep the entire dataset

in main memory (equivalent to a person memorizing a book), there would be no

need for indexing. Since this is not possible, and since disk access times are much

slower than main memory access times, you are forced to wrestle with the art of

indexing.

If you think of the form of indexing with which we are most familiar — the index at

the back of a technical book — you will note that every index token has three

characteristics which refer to the item being indexed:

■ Identity — the token must allows us to identify the item in such a way that it is

distinguished from the rest of the mass of the data. But this is not simply a

representative relationship. By defining an index item you filter the

information, implicitly providing a the logical structure for the indexed

information.

There has many implications. For one, it means that the same data can be

subject to different indexing schemes. For another, it means that the indexing

scheme provides a pathway of access to the information. The index in the back

of the book gives you access to the entire range of topics covered in the book.

Provided that its structure meets your needs, its presorting of the data means

that you do not have to sift through every iota of information.

■ Location —the token must allows us to locate the information. In the case of a

book, this is a page number, and may also include a chapter designation. This is

not very precise since we still have to search the page for the item. In contrast to

the normal index, conversation analysis makes use of line numbers because of

the need for greater precision in locating the item:

10296 HELEN: If you really loved me you wouldn’t go to war.
10297 PARIS: If you really loved me you wouln’t stand in the way of my
 duty.
7-2 Oracle8i Data Cartridge Developer’s Guide

Introduction to Extensible Indexing
■ Storage — the index token has to be located somewhere, and the information

that it maps also has to be stored. In the case of books, a page is normally the

unit of storage in both cases, but the nature of the storage is different. While the

body text is stored as sentences, the index tokens have an altogether different

structure.

The upshot is that you can retrieve the information much quicker than if you had to

page through the entire book (equivalent to sequential scanning of a file)! However,

note that while indexing speeds up retrieval, it slows down inserts because you

have to update the index.

Index Structures
An index can be any structure which can be used to represent information that can

be used to efficiently evaluate a query.

The Relationship between Logical and Physical Structures
There is no single structure that is optimal for all applications.

■ If you want to discover if any Regions contain a city named Metropolis, you

will deploy an equality operator that will return an exact match (or not).

■ If you are interested how many time-periods have power demands between

two stipulated numbers, you will use an operator that can process a range of

data.

In each case, you will want to organize the data in a different index structure since

different queries require that information be indexed in different ways. As we will

discuss below, a Hash structure is best suited for determining exact match, whereas

a B-tree is much better suited for range queries.

Moreover, these are not the only kind of queries. What if you want to discover

whether Power Station A or B can best service Quadrant 3, or to determine the

overlapping coverage zones derived from different distributions of power stations?

In these cases, you will want to create operators (inRangeOf , servesArea , etc.)

that meet your specific requirements. Unfortunately, you cannot do this by means of

either the Hash or B-tree indextypes.

The Need for Index Structures that Encompass Unstructured Data
The limitation of Hash and B-tree indextypes is important because one criterion that

distinguishes cartridges from other database applications is that data often

incorporates many different kinds of information. While database systems are
Building Domain Indexes 7-3

Introduction to Extensible Indexing
accomplished in processing scalar values, they cannot encompass the

domain-specific data of interest to cartridge developers. Information in these

contexts may be made up of text, images, audio, video — and combinations of these

that comprise domain-specific datatypes.

One way to resolve this problem is to create an index that serves as an intermediate

structure. This is a logical extension of the basic idea underlying software-based

indexing, namely that pointers refer to data (records, pages, files). In this scheme,

keywords used to index video may be stored as an index. Going one step further, an

intermediate structure may itself be indexed, as you might index abstracts (capsule

text descriptions) of films.The advantage of this approach is that it may be easier to

construct an index based on textual description of film than it is to index video

footage. Employing this strategy you can scan the index without ever referring to

the primary data (the film).

Unfortunately, intermediate structures in which text or scalars are used to represent

unstructured data cannot satisfy all requirements. For one thing, they are always

slower than direct indexing of the data because they introduce a level of indirection.

More importantly, if the task is to analyze the density of bone in x-rays, or to

categorize primate gestures, or to record the radio emissions of stars, there is no

efficient substitute for direct indexing of unstructured data.

Examples of Indextypes

B-tree
While there is no single indextype that can satisfy all needs, the B-tree indextype

comes closest to meeting the requirement. Here we describe the Knuth variation in

which the index consists of two parts: a sequence set that provides fast sequential

access to the data, and an index set that provides direct access to the sequence set.
7-4 Oracle8i Data Cartridge Developer’s Guide

Introduction to Extensible Indexing
Figure 7–1 B-tree Indextype Structure

While the nodes of a B-tree will generally not contain the same number of data

values, and will usually contain a certain amount of unused space, the B-tree

algorithm ensures that it remains balanced (the leaf nodes will all be at the same

level).

Hash
Hashing gives fast direct access to a specific stored record based on a given field

value. Each record is placed at a location whose address is computed as some

function of some field of that record. The same function is used both at the time of

insertion and retrieval.

The problem with hashing is that the physical ordering of records has little if any

relation to their logical ordering. Also, there may be large unused areas on the disk.

x Sequence set
(with pointers to
data records)

Index set

x xx x

x x

x x
Building Domain Indexes 7-5

Introduction to Extensible Indexing
Figure 7–2 Hash Indextype Structure

k-d tree
Our sample scenario integrates geographic data with other kinds of data. Insofar as

we are interested in points that can be defined with two dimensions (latitude and

longitude), such as geographic location of power stations, we can use a variation on

the k-d tree known as the 2-d tree.

In this structure, each node is a datatype with fields for information, the two

co-ordinates, a left-link and a right-link which can point to two children.

S300 Blake 30 Paris

10

12

3 4

7 8

2

S200 Jones 10 Paris

5

S500 Adams 30 Athens

6

11

S100 Smith 30 London

9

S400 Clark 20 London

10
7-6 Oracle8i Data Cartridge Developer’s Guide

Introduction to Extensible Indexing
Figure 7–3 2-d Indextype Structure

The structure allows for range queries. That is, if the user specifies a point (xx, xx)

and a distance, the query will return the set of all points within the specified

distance of the point.

2-d trees are very easy to implement. However,the fact that a 2-d tree containing k
nodes may have a height of k means that insertion and querying may be complex.

A (XX, XX)

A (XX, XX)

B (XX, XX)

C (XX, XX)

A (XX, XX)

B (XX, XX)
Building Domain Indexes 7-7

Introduction to Extensible Indexing
Point Quadtree

Figure 7–4 Point Quadtree Indextype Structure

A

A B

A B C
7-8 Oracle8i Data Cartridge Developer’s Guide

Introduction to Extensible Indexing
The point quadtree is also used to represent point data in a two dimensional spaces.

But these structures divide regions into four parts while 2-d trees divide regions

into two. The fields of the record type for this node are comprised of an attribute for

information, two co-ordinates, and four compass points (NW, SW, NE, SE) that can

therefore point to four children.

Like 2-d trees, point quadtrees are very easy to implement. Also like 2-d trees, the

fact that a point quadtree containing k nodes may have a height of k means that

insertion and querying may be complex. Each comparison requires comparisons on

at least two co-ordinates. However, in practice the lengths from root to leaf tend to

be shorter in point quadtrees.

Why is Extensible Indexing Necessary?
The fact is that Oracle provides a limited number of indextypes, so that if (for

instance) you wish to utilize either the k-d tree or the point quadtree, you will have

to implement this yourself. As you consider your need to access your data, you

need to keep in mind the following restrictions that pertain to the standard

indextypes:

An Inability to Index Unstructured Data
 Oracle’s standard modes of indexing do not permit indexing a column that

contains LONG or LOB values.

An Inability to Index Attributes of Column Objects
You may not be able to index a column object using Oracle’s standard indexing

schemes or the elements of a collection type.

An Inability to Index Values Derived from Domain-specific Operations
Oracle object types may be compared using either a map function or an order

function. If the object utilizes a map function, then you can define a functional index

that can be used implicitly to evaluate relational predicates. However, if an order

function is used, you will not be able to use this to construct an index.

Further, you cannot utilize functions in predicates in which the range of the

parameters is infinite. With Oracle8i functional indexes allow you to include a

function in a predicate, provided you can precompute the function values for all the

rows. Typically the index would store the rowid and the functional value. Queries

that apply relational operators to values based on derived values utilize the index.
Building Domain Indexes 7-9

The Extensible Indexing API
However, you can use functional indexes only if the function is so designed that

there are a finite number of input combinations. Put another way: you cannot use

functional indexes in cases in which the input parameters do not have a limited

cardinality.

The Extensible Indexing API
This SQL-based interface allows you to define domain-specific operators and

indexing schemes, and integrate these into the Oracle8i server.

Oracle8i provides a set of pre-defined operators which include arithmetic operators

(+, -, *, /), comparison operators (=, >, <) and logical operators (NOT, AND, OR).

These operators take as input one or more arguments (or operands) and return a

result. They are represented by special characters (+) or keywords (AND).

Like built-in operators, user-defined operators (e.g., Contains) take a set of

operands as input and return a result. The implementation of the operator is

provided by the user. After a user has defined a new operator, it can be used in SQL

statements like any other built-in operator.

For instance, suppose you define a new operator Contains , which takes as input a

text document and a keyword, and returns 1 if the document contains the specified

keyword. You can then write an SQL query as:

SELECT * FROM Employees WHERE Contains(resume, ’Oracle and UNIX’)=1;

Oracle8i uses indexes to efficiently evaluate some built-in operators. For example, a

B-tree index can be used to evaluate the comparison operators =, > and <. Similarly,

user-defined domain indexes can be used to efficiently evaluate user-defined

operators.

Typical database management systems support a few types of access methods

(B+Trees, Hash Index) on some set of data types (numbers, strings, etc.). In recent

years, databases are more and more being used to store different types of data, such

as text, spatial, image, video and audio. In these complex domains, there is a need

for indexing complex data types and also specialized indexing techniques. For

instance, R-trees are an efficient method of indexing spatial data. No database

server can be built with support for all possible kinds of complex data and

indexing. The solution is to provide an extensible server which allows the user to

define new index types.

The framework to develop new index types is based on the concept of cooperative

indexing where an application and the Oracle server cooperate to build and

maintain indexes for data types such as text, spatial and On-line-Analytical
7-10 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
Processing (OLAP). The application software, in the form of a cartridge, is

responsible for defining the index structure, maintaining the index content during

load and update operations, and searching the index during query processing. The

index structure itself can either be stored in an Oracle database as an

Index-Organized Table, etc., or externally as a file.

The extensible indexing framework consists of the following components:

■ Indextype: A schema object Indextype specifies the routines that manage all

aspects of an application-specific index, namely, index definition, index

maintenance, and index scan operations. This schema object enables the

Oracle8i Server to establish a user-defined index on a column of a table or

attribute of an Object. It encapsulates the set of routines that together manage

and access the user-defined index.

■ Domain Index: Using the Indextype schema object, an application-specific

index can be created. Such an index is called a domain index since it is used for

indexing data in application-specific domains. A domain index is an instance of

an index which is created, managed, and accessed by routines supplied by an

indextype. This is in contrast to B-tree indexes maintained by Oracle internally,

which are simply referred to as indexes.

■ Operators: Queries and data manipulation statements can involve

application-specific operators, like the Overlaps operator in the spatial

domain. In general, user-defined operators can be bound to functions.

However, operators can also be evaluated using indexes. For instance, the

equality operator can be evaluated using a hash index. An indextype provides

index-based implementation for the operators listed in the indextype definition.

■ Index-Organized tables: This feature enables applications to define, build,

maintain, and access indexes for complex objects using a table metaphor. To the

application, an index is modeled as a table, where each row is an index entry. In

addition, this feature extends the current sorted access method to handle

indexing content-rich objects by providing improved handling of duplicate

index entries. For detailed information on index-organized tables see Oracle8i
Administrator’s Guide.

To illustrate the role of each of these components, let us consider a text domain

application. Suppose a new indextype TextIndexType be defined as part of the

text cartridge. It contains routines for managing and accessing the text index. The

text index is an inverted index storing the occurrence list for each token in each of

the text documents. The text cartridge also defines the Contains operator for

performing content-based search on textual data. It provides both a functional
Building Domain Indexes 7-11

The Extensible Indexing API
implementation (a simple number function) and an index implementation (using

the text index) for the Contains operator.

Now, let Employees be an employee table with a resume column containing

textual data.

CREATE TABLE Employees
(name VARCHAR(128), id INTEGER, resume VARCHAR2(1024));

A domain index can be created on resume column as follows:

CREATE INDEX ResumeTextIndex ON Employees(resume)
INDEXTYPE IS TextIndexType;

The Oracle server invokes the routine corresponding to the create method in the

TextIndexType , which results in the creation of an index-organized table to store

the occurrence list of all tokens in the resumes (essentially, the inverted index data).

The inverted index modeled by ResumeTextIndex is automatically maintained by

invoking routines defined in TextIndexType , whenever an Employees row is

inserted, updated, or deleted.

Content-based search on the resume column can be performed as follows:

SELECT * FROM Employees WHERE Contains(resume, ’Oracle and UNIX’)=1;

Index-based implementation of the Contains operator can take advantage of the

previously built inverted index. Specifically, the Oracle server can invoke routines

specified in TextIndexType to search the domain index for identifying candidate

rows, and then do further processing such as filtering, selection, and fetching of

rows. Note that the above query can also be evaluated using the non-index

implementation of the Contains operator, if the Oracle server chooses to not use

the index defined on resume column. In such a case, the filtering of rows will be

done by applying the non-index implementation on each resume instance of the

table.

In summary, the extensible indexing interface will

■ Allow encapsulating application-specific index management routines as an

indextype schema object,

■ Support defining a domain index (an application-specific index) on table

columns, and

■ Provide efficient processing of application-specific operators.

This interface will enable a domain index to operate essentially the same way as any

other Oracle Server index, the primary difference being that the Oracle Server will
7-12 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
invoke application code specified as part of the indextype to create, drop, truncate,

modify, and search a domain index.

It should be noted that an index designer may choose to store the index data in files,

rather than in index-organized tables. The SQL interface for extensible indexing

makes no restrictions on the location of the index data, only that the application

adhere to the protocol for index definition, maintenance and search operations.

Concepts: Extensible Indexing
This section describes the key concepts of the Extensible Indexing Framework.

Overview
For simple data types such as integers and small strings, all aspects of indexing can

be easily handled by the database system. This is not the case for documents,

images, video clips and other complex data types that require content-based

retrieval (CBR). The essential reason is that complex data types have application

specific formats, indexing requirements, and selection predicates. For example,

there are many different document encodings (e.g., ODA, SGML, plain text) and

information retrieval (IR) techniques (e.g., keyword, full-text boolean, similarity,

probabilistic, and so on). To effectively accommodate the large and growing number

of complex data objects, the database system must support application specific

indexing. The approach that we employ to satisfy this requirement is termed

extensible indexing.

With Extensible indexing,

■ The application defines the structure of the domain index

■ The application stores the index data either inside the Oracle database (e.g., in

form of index-organized tables) or outside the Oracle database

■ The application manages, retrieves and uses the index data to evaluate user

queries

In effect, the application controls the structure and semantic content of the domain

index. The database system interacts with the application to build, maintain, and

employ the domain index. It is highly desirable for the database to handle the

physical storage of domain indexes. In the following discussion, we implicitly make

the assumption that the index is stored in an index-organized table. Note however,

that the extensible indexing paradigm does not impose this requirement. The index

could be stored in one or more external files.
Building Domain Indexes 7-13

The Extensible Indexing API
To illustrate the notion of extensible indexing, we consider a textual database

application with IR functionality. For such applications, document indexing

involves parsing the text and inserting the words, or tokens, into an inverted index.

Such index entries typically have the following logical form

(token, <docid, data>)

where token is the key, docid is a unique identifier (e.g., object identification) for the

related document, and data is a segment containing IR specific quantities. For

example, a probabilistic IR scheme could have a data segment with token frequency

and occurrence list attributes. The occurrence list identifies all locations within the

related document where the token appears. Assuming an IR scheme such as this,

each index entry would be of the form:

(token, <docid, frequency, occlist> ..)

The following sample index entry for the token Archimedes illustrates the

associated logical content.

(Archimedes, <5, 3, [7 62 225]>, <26, 2, [33, 49]>, ...);

In this sample index entry, the token "Archimedes" appears in document 5 at 3

locations(7, 62, and 225), and in document 26 at 2 locations(33 and 49). Note that the

index would contain one entry for every document with the word "Archimedes".

IR applications can use domain indexes to locate documents that satisfy some given

selection criteria. After consulting the index, the documents of interest are retrieved

with the related docid values. It should be noted that the occurrence lists are

required for queries that contain proximity expressions (e.g., the phrase "Oracle

Corporation").

When the database system handles the physical storage of domain indexes,

applications must be able to:

■ Define the format and content of an index. This enables applications to define

an index structure that can accommodate a complex data object.

■ Build, delete, and update a domain index. With this capability, the application

software handles building and maintaining the index structures. Note that this

is a significant departure from the "automatic" indexing features provided for

simple SQL data types. Also, since an index is modeled as a collection of tuples,

in-place updating is directly supported.

■ Access and interpret the content of an index. This capability enables the

application software to become an integral component of query processing.
7-14 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
That is, the content-related clauses for database queries are handled by

application software.

In the following section, we illustrate the extensible indexing framework by

building a text domain index.

Example: A Text Indextype
This section presents an example of adding a text indexing scheme to Oracle

RDBMS using the extensible indexing framework. It describes:

■ Defining a new indexing scheme using text indextype.

■ Use of text indextype by the end user to index and operate on textual data.

Text Indextype Designer
’The sequence of steps required to define the Text Indextype are:

■ Define and code functions to support functional implementation of operators

which would eventually be supported by the text indextype.

The text cartridge intends to support an operator Contains , that takes as

parameters a text value and a key and returns a number value indicating whether

the text contained the key. The functional implementation of this operator is a

regular function defined as:

CREATE FUNCTION TextContains(Text IN VARCHAR2, Key IN VARCHAR2)
RETURN NUMBER AS
BEGIN
.......
END TextContains;

■ Create a new operator, and define its specification, namely, the argument and

return datatypes, and the functional implementation

CREATE OPERATOR Contains
 BINDING (VARCHAR2, VARCHAR2) RETURN NUMBER USING TextContains;

■ Define a type that implements the index interface ODCIIndex . This involves

implementing routines for index definition, index maintenance, and index scan

operations.

The index definition routines (ODCIIndexCreate , ODCIIndexAlter ,

ODCIIndexDrop , ODCIIndexTruncate) build the text index when index is

created, alter the index information when index is altered, remove the index

information when the index is dropped, and truncate the text index when the

base table is truncated.
Building Domain Indexes 7-15

The Extensible Indexing API
The index maintenance routines (ODCIIndexInsert , ODCIIndexDelete ,

ODCIIndexUpdate) maintain the text index when the table rows are inserted,

deleted, or updated.

The index scan routines (ODCIIndexStart , ODCIIndexFetch ,

ODCIIndexClose) implement access to the text index to retrieve rows of the

base table that satisfy the operator predicate. In this case, the Contains (...) =1,

whose arguments are passed to the index scan routines. The index scan routines

scan the text index and return the qualifying rows to the system.

CREATE TYPE TextIndexMethods
(
FUNCTION ODCIIndexCreate(...)
...
);
CREATE TYPE BODY TextIndexMethods
(
...
);

■ Create the Text Indextype schema object. The Indextype definition also

specifies all the operators supported by the new indextype and specifies the

type that implements the index interface.

CREATE INDEXTYPE TextIndexType
FOR Contains(VARCHAR2, VARCHAR2)
USING TextIndexMethods;

End User of Text Indextype
Suppose that the text indextype presented in the previous section has been defined

in the system. You can define text indexes on text columns and use the associated

Contains operator to query text data.

Consider the Employees table defined as follows:

CREATE TABLE Employees
(name VARCHAR2(64), id INTEGER, resume VARCHAR2(2000));

A text domain index can be built on the resume column as follows:

CREATE INDEX ResumeIndex ON Employees(resume) INDEXTYPE IS TextIndexType;

The text data in the resume column can be queried as:

SELECT * FROM Employees WHERE Contains(resume, ’Oracle’) =1;
7-16 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
The query execution will use the text index on resume to efficiently evaluate the

Contains predicate.

The following sections describe the concepts of indextypes, domain indexes and

operators in greater detail.

Indextypes
The purpose of an indextype is to enable efficient search and retrieval functions for

complex domains such as text, spatial, image, and OLAP using external software.

An indextype is analogous to the sorted or bit-mapped indextype that are supplied

internally within the Oracle Server. The essential difference is that the

implementation for an indextype is provided by application software, as opposed to

the Oracle Server internal routines.

Interface A set of routine specifications. It does not refer to a separate schema object

but rather a logical set of documented method specifications.

ODCIIndex Interface The set of index definition, maintenance and scan routine

specifications.

The interface specifies all the routines which have to be implemented by the index

designer. The routines are implemented as type methods.

Creating Indextypes
After the type implementing the ODCIIndex interface has been defined, a new

indextype can be created by specifying the list of operators supported by the

indextype and referring to the type that implements the index interface.

Using the information retrieval example, the DDL statement for defining the new

indextype TextIndexType which supports the Contains operator and whose

implementation is provided by the type TextIndexMethods (implemented in the

previous section) is as follows:

CREATE INDEXTYPE TextIndexType
FOR Contains (VARCHAR2, VARCHAR2)
USING TextIndexMethods;

In addition to the ODCIIndex interface routines, the implementation type must

always implement the ODCIGetInterfaces routine. This function returns the list

of names of the interfaces implemented by the type. The routine is invoked by

Oracle when CREATE INDEXTYPE is executed. In Oracle8i there is only one set of

extensible indexing interface routines called SYS.ODCIINDEX1. Thus, the
Building Domain Indexes 7-17

The Extensible Indexing API
ODCIGetInterfaces routine must return ’SYS’.’ODCIINDEX1’ as one of the

implemented interfaces.

Dropping Indextypes
A corresponding DROP statement is supported to remove the definition of an

indextype. For our example, this statement would be of the following form:

DROP INDEXTYPE TextIndexType;

The default DROP behavior is DROP RESTRICT semantics, that is, if one or more

domain indexes exist that uses the indextype then the DROPoperation is disallowed.

User can override the default behavior with the FORCE option, which drops the

indextype and marks dependent domain indexes (if any) invalid. For more details

on object dependencies and drop semantics see "Object Dependencies, Drop

Semantics, and Validation" on page 7-37.

ODCI Index Interface
The ODCIIndex (Oracle Data Cartridge Interface Index) interface consists of the

following classes of methods:

■ Index Definition methods

■ Index Maintenance methods

■ Index Scan methods

■ Index Metadata method

Index Definition Methods
Index definition methods allow specification of CREATE, ALTER, DROP, and

TRUNCATE behaviors.

ODCIIndexCreate

The ODCIIndexCreate procedure is called when a CREATE INDEX statement is

issued that references the indextype. Upon invocation, any physical parameters

specified as part of the CREATE INDEX... PARAMETERS (...) statement are passed in

along with the description of the index.

A typical action of this procedure is to create tables/files to store index data.

Further, if the base table is not empty, this routine should build the index for the

existing data in the indexed columns.

ODCIIndexAlter
7-18 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
The ODCIIndexAlter procedure is invoked when a domain index is altered using

an ALTER INDEX statement. The description of the domain index to be altered is

passed in along with any specified physical parameters.

In addition, this procedure is allowed to handle ALTER with REBUILD option,

which supports rebuilding of domain index. The precise behavior in these two cases

is defined by the person who implements indextype.

The ODCIIndexAlter routine is also invoked when a domain index is renamed

using the ALTER INDEX ... RENAME command.

ODCIIndexTruncate

The ODCIIndexTruncate procedure is called when a TRUNCATE statement is

issued against a table that contains a column or OBJECT type attribute indexed by

the indextype. After this procedure executes, the domain index should be empty.

ODCIIndexDrop

The ODCIIndexDrop procedure is invoked when a domain index is destroyed

using a DROP INDEX statement.

Index Maintenance Methods
Index maintenance methods allow specification of index INSERT, UPDATE, and

DELETE behaviors.

ODCIIndexInsert

The ODCIIndexInsert procedure in the indextype is called when a record is

inserted in a table that contains columns or OBJECT attributes indexed by the

indextype. The new values in the indexed columns are passed in as arguments

along with the corresponding row identifier.

ODCIIndexDelete

The ODCIIndexDelete procedure in the indextype is called when a record is

deleted from a table that contains columns or OBJECT attributes indexed by the

indextype. The old values in the indexed columns are passed in as arguments along

with the corresponding row identifier.

ODCIIndexUpdate

The ODCIIndexUpdate procedure in the indextype is called when a record is

updated in a table that contains columns or OBJECT attributes indexed by the

indextype. The old and new values in the indexed columns are passed in as

arguments along with the row identifier.
Building Domain Indexes 7-19

The Extensible Indexing API
Index Scan Methods
Index scan methods allow specification of an index-based implementation for

evaluating predicates containing operators.

An index scan is specified through three routines, ODCIIndexStart ,

ODCIIndexFetch , and ODCIIndexClose , which can perform initialization, fetch

rows (essentially row identifiers) satisfying the predicate, and clean-up once all

rows satisfying the predicate are returned.

ODCIIndexStart

ODCIIndexStart () is invoked to initialize any data structures and start an index

scan. The index related information and the operator related information are passed

in as arguments.

A typical action performed when ODCIIndexStart () is invoked is to parse and

execute SQL statements that query the tables storing the index data. It could also

generate some set of result rows to be returned later when ODCIIndexFetch () is

invoked (see below).

Since the index and operator related information are passed in as arguments to

ODCIIndexStart () and not to the other index scan routines (ODCIIndexFetch ()

and ODCIIndexClose ()), any information needed in the later routines must be

saved. This is referred to as the state that has to be shared among the index scan

routines. There are two ways of doing this:

■ Return State: If the state to be maintained is small, it can be returned back to

Oracle RDBMS through an output SELF argument.

■ Return Handle: If the state to be maintained is large (for example, a subset of

the results), cursor-duration memory can be allocated to save the state. In this

case, a handle to the memory (see Chapter 13, "Reference: Cartridge Services

Using C" for details and restrictions) can be returned to Oracle RDBMS through

the output SELF parameter.

In both cases, Oracle RDBMS will pass the SELF value to subsequent

ODCIIndexFetch () and ODCIIndexClose () calls which can then use the to access

the relevant context information.

There are two modes of evaluating the operator predicate to return the result set of

rows.

■ Precompute All: Compute the entire result set in ODCIIndexStart (). Iterate

over the results returning a row at a time in ODCIIndexFetch (). This mode is

required for operators involving some sort of ranking over the entire collection,
7-20 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
etc. Evaluating such operators would require looking at the entire result set to

compute the ranking, relevance, etc. for each candidate row.

■ Incremental Computation: Compute one result row at a time as part of

ODCIIndexFetch (). This mode is applicable for operators which can

determine the candidate rows one at a time without having to look at the entire

result set.

The choice of evaluating modes as well as what gets saved is left to the index

designer. In either case, the Oracle RDBMS simply executes the ODCIIndexStart ()

routine as part of processing query containing operators which returns the context

as an output SELF value.The returned value is passed back to subsequent

ODCIIndexFetch () and ODCIIndexClose () calls.

ODCIIndexFetch

ODCIIndexFetch () returns the "next" row identifier of the row that satisfies the

operator predicate.The operator predicate is specified in terms of the operator

expression (name and arguments) and a lower and upper bound on the operator

return values. Thus, a ODCIIndexFetch () call returns the row identifier of the

rows for which the operator return value falls within the specified bounds. A NULL
is returned to indicate end of index scan. The fetch method supports returning a

batch of rows in each call. The state returned by ODCIIndexStart () or a previous

call to ODCIIndexFetch () is passed in as an argument.

ODCIIndexClose

ODCIIndexClose () is invoked when the cursor is closed or reused. In this call the

Indextype can perform any clean-ups, etc. The current state is passed in as an

argument.

Index Metadata Method
The ODCIIndexGetMetadata routine, if it is implemented, is called by the export

utility to write implementation-specific metadata into the export dump file. This

metadata might be policy information, version information, per-user settings, and

so on, which are not stored in the system catalogs. The metadata is written to the

dump files as anonymous PL/SQL blocks that get executed at import time

immediately prior to the creation of the associated index.

This method on the ODCIIndex interface is required in version 8.1.3 and must be

implemented by all domain index implementation types. If

ODCIIndexGetMetadata is not found, export will abort the creation of the index.

However, for the final release of 8.1, this method will be optional if no

implementation-specific metadata is required.
Building Domain Indexes 7-21

The Extensible Indexing API
Transaction Semantics during Index Method Execution
The index interface routines (with the exception of index definition methods,

namely, ODCIIndexCreate() , ODCIIndexAter() , ODCIIndexTruncate() ,

ODCIIndexDrop()) are invoked under the same transaction that triggered these

actions. Thus, the changes made by these routines are atomic and are committed or

aborted based on the parent transaction. To achieve this, there are certain

restrictions on the nature of the actions that can be performed in the different

indextype routines.

■ Index definition routines have no restrictions.

■ Index maintenance routines can only execute DML statements. However, the

DML statements cannot update the base table on which the domain index is

created.

■ Index scan routines can only execute SQL query statements.

For example, if an INSERT statement caused the ODCIIndexInsert() routine to

be invoked, ODCIIndexInsert() runs under the same transaction as INSERT.

The ODCIIndexInsert() routine can execute any number of DML statements (for

example, insert into index-organized tables). If the original transaction aborts, all

the changes made by the indextype routines are rolled back.

However, if the indextype routines cause changes external to the database (like

writing to external files), transaction semantics are not assured.

Transaction Semantics for Index Definition Routines
The index definition routines do not have any restrictions on the nature of actions

within them. Consider ODCIIndexCreate() to understand this difference. A

typical set of actions to be performed in ODCIIndexCreate() could be:

1. Create an index-organized table

2. Insert data into the index-organized table

3. Create a secondary index on a column of the index-organized table

To allow ODCIIndexCreate() to execute an arbitrary sequence of DDL and DML

statements, we consider each statement to be an independent operation.

Consequently, the changes made by ODCIIndexCreate() are not guaranteed to

be atomic. The same is true for other index-definition routines.
7-22 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
Consistency Semantics during Index Method Execution
The index maintenance (and scan routines) execute with the same snapshot as the

top level SQL statement performing the DML (or query) operation. This enables the

index data processed by the index method to be consistent with the data in the base

tables.

Privileges During Index Method Execution
Indextype routines always execute as the owner of the index. To support this, the

index access driver will dynamically change user mode to index owner before

invoking the indextype routines.

For certain operations, indextype routines may require to store information in tables

owned by indextype designer. Indextype implementation must code those actions

in a separate routine which will be executed using definer’s privileges. For more

information on syntax, see CREATE TYPE in the Oracle8i SQL Reference.

Domain Index
This section describes the domain index operations and how metadata associated

with the domain index can be obtained.

Domain Index Operations
Creating a Domain Index
A domain index can be created on a column of a table just like a B-tree index.

However, an indextype must be explicitly specified. For example:

CREATE INDEX ResumeTextIndex ON Employees(resume)
INDEXTYPE IS TextIndexType
PARAMETERS (’:Language English :Ignore the a an’);

The INDEXTYPE clause specifies the indextype to be used. The PARAMETERS clause

identifies any parameters for the domain index, specified as a string. This string is

passed uninterpreted to the ODCIIndexCreate routine for creating the domain

index. In the above example, the parameters string identifies the language of the

text document (thus identifying the lexical analyzer to use) and the list of stop

words which are to be ignored while creating the text index.

Altering a Domain Index
A domain index can be altered using ALTER INDEX statement. For example:

ALTER INDEX ResumeTextIndex PARAMETERS (’:Ignore on’);
Building Domain Indexes 7-23

The Extensible Indexing API
The parameter string is passed uninterpreted to ODCIIndexAlter() routine,

which takes appropriate actions to alter the domain index. In the above example,

additional stop words to ignore in the text index are specified.

The ALTER statement can be used to rename a domain index.

ALTER INDEX ResumeTextIndex RENAME TO ResumeTIdx;

The ODCIIndexAlter() routine is invoked, which takes appropriate actions to

rename the domain index.

In addition, the ALTER statement can be used to rebuild a domain index.

ALTER INDEX ResumeTextIndex REBUILD PARAMETERS (’:Ignore of’);

The same ODCIIndexAlter() routine is called but with additional information

about the ALTER option.

Truncating Domain Index
There is no explicit statement for truncating a domain index. However, when the

corresponding table is truncated the truncate procedure specified as part of the

indextype is invoked. For example:

TRUNCATE TABLE Employees;

will result in truncating ResumeTextIndex by calling ODCIIndexTruncate ()

routine.

Dropping a Domain Index
To drop an instance of a domain index, the DROP INDEX statement is used. For our

example, this statement would be of the form:

DROP INDEX ResumeTextIndex;

This results in calling the ODCIIndexDrop () routine and passing information about

the index.

Domain Index Meta Data
For B-tree indexes, users can query the USER_INDEXES view to get index

information. To provide similar support for domain indexes, indextype designers

can add any domain-specific metadata in the following manner:

■ The indextype designer can define one or more tables that will contain this meta

information. The key column of this table must be a unique identifier for the
7-24 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
index. This unique key could be the index name (schema.index). The

remainder of the column definitions are at the discretion of the index designer.

■ Views can be created that join the system defined metadata tables with the

index meta tables to provide a comprehensive set of information for each

instance of a domain index. It is the responsibility of the indextype designer to

provide the view definition.

Export/Import of Domain Indexes
Like B-tree and bitmap indexes, domain indexes are exported and subsequently

imported when their base tables are exported. However, domain indexes can have

implementation-specific metadata associated with them that are not stored in the

system catalogs. For example, a text domain index can have associated policy

information, a list of irrelevant words, and so on. Export/Import provides a

mechanism to opaquely move this metadata from the source platform to target

platform.

To move the domain index metadata, the indextype needs to implement the

ODCIIndexGetMetadata interface routine (see the reference chapters for details).

This interface routine gets invoked when a domain index is being exported. The

domain index information is passed in as a parameter. It can return any number of

anonymous PL/SQL blocks that are written into the dump file and executed on

import. If present, these anonymous PL/SQL blocks are executed immediately

before the creation of the associated domain index.

Note that the ODCIIndexGetMetadata is an optional interface routine. It is

needed only if the domain index has extra metadata to be moved.

Operators
A user-defined operator is a top-level schema object. It is identified by a name

which is in the same namespace as tables, views, types and stand-alone functions.

Operator Bindings
An operator binding identifies the operator with a unique signature (via argument

data types), and allows associating a function that provides an implementation for

the operator. This enables Oracle to execute the function when the operator is

invoked. Multiple operator bindings can be defined as long as they differ in their

signatures.

■ Signature: is the sequence of datatypes of the arguments to the function
Building Domain Indexes 7-25

The Extensible Indexing API
Thus, any operator has an associated set of one or more bindings. Each of this

binding can be evaluated using an user-defined function which could be one of

■ Stand-alone functions

■ Package functions or

■ OBJECT member methods.

An operator created in a schema can be evaluated using functions defined in the

same or different schemas. The operator bindings can be specified at the time of

creating the operator. It is ensured that the signatures of the bindings are unique.

Creating operators
An operator can be created by specifying the operator name and its bindings.

For example, an operator Contains can be created in the Ordsys schema with two

bindings and the corresponding functions that providing the implementation in

Text and Spatial domains.

CREATE OPERATOR Ordsys.Contains
BINDING
(VARCHAR2, VARCHAR2) RETURN NUMBER USING text.contains,
(Spatial.Geo, Spatial.Geo) RETURN NUMBER USING Spatial.contains;

Dropping operators
An existing operator and all its bindings can be dropped using the DROP OPERATOR
statement as follows:

DROP OPERATOR Contains;

The default DROP behavior is DROP RESTRICT semantics. Namely, if there are any

dependent indextypes for any of the operator bindings, then the DROP operation is

disallowed.

However, users can override the default behavior by using the FORCE option. For

example,

Note: Although the return data type is specified as part of

operator binding declaration, it is not considered to determine the

uniqueness of the binding, However, the specified function must

have the same argument and return datatypes as the operator

binding.
7-26 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
DROP OPERATOR Contains FORCE;

drops operator Contains and all its binding marks any dependent indextype objects

(if any) invalid.

Operator Invocation
Operator Usage
User-defined operators can be invoked anywhere built-in operators can be used. i.e.

wherever expressions can occur. For example, user-defined operators can be used in

the following:

■ the select list of a SELECT command

■ the condition of a WHERE clause

■ the ORDER BY and GROUP BY clauses

Operator Execution
When an operator is invoked, the evaluation of the operator is transformed to the

execution of one of the functions bound to it. This transformation is based on the

datatypes of the arguments to the operator. If none of the functions bound to the

operator satisfy the signature with which the operator is invoked, an error is raised.

There might be some implicit type conversions present during the transformation

process.

Examples
Consider the operator created with the following statement:

CREATE OPERATOR Ordsys.Contains
BINDING
(VARCHAR2, VARCHAR2) RETURN NUMBER
USING text.contains,
(spatial.geo, spatial.geo) RETURN NUMBER
USING spatial.contains;

Consider the operator Contains being used in the following SQL statements:

SELECT * FROM Employee
WHERE Contains(resume, ’Oracle’)=1 AND Contains(location, :bay_area)=1;

The invocation of the operator Contains(resume, ’Oracle’) is transformed

into the execution of the function text.contains(resume, ’Oracle’) since

the signature of the function matches the datatypes of the operator arguments.

Similarly, the invocation of the operator Contains(location , :bay_area) is
Building Domain Indexes 7-27

The Extensible Indexing API
transformed into the execution of the function spatial.contains(location ,
:bay_area) .

The following statement would raise an error since none of the operator bindings

satisfy the argument datatypes:

SELECT * FROM Employee
WHERE Contains(salary, 10000)=1;

Operator Privileges
There are system privileges for operator schema objects. They are:

■ CREATE OPERATOR

■ CREATE ANY OPERATOR

■ DROP ANY OPERATOR

See the Oracle8i SQL Reference for details.

To use a user-defined operator in an expression, you must own the operator or have

EXECUTE privilege on it.

Operators and Indextypes
An operator can be optionally supported by one or more user-defined indextypes.

An indextype can support one or more operators. This means that a domain index

of this indextype can be used in efficiently evaluating these operators. For example,

B-tree indexes can be used to evaluate the relational operators like =, < and >.

Operators can also be bound to regular functions. For example, an operator Equal

can be bound to a function eq(number, number) that compares two numbers.

The DDL for this would be:

CREATE OPERATOR Equal
BINDING(NUMBER, NUMBER) RETURN NUMBER USING eq;

Thus, an indextype designer should first design the set of operators to be supported

by the indextype. For each of these operators, a functional implementation should

be provided.

The list of operators supported by an indextype are specified when the indextype

schema object is created (as described above). The evaluation of operators using

indextype is different for operators occurring in WHERE clause compared to

operators occurring elsewhere in a SQL statement. Below we consider index-based

evaluation of the operators in both these cases.
7-28 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
Operators in WHERE clause
The operators appearing in the WHERE clause can be evaluated efficiently by

performing an index scan using the scan methods provided as part of indextype

implementation. This involves recognizing operator predicates of a certain form,

selection of a domain index, setting up of appropriate index scan, and finally,

execution of index scan methods. Let’s consider each one of these steps in detail.

Operator Predicates
Indextype supports efficient evaluation of those operator predicates, which can be

represented by a range of lower and upper bounds on the operator return values.

Specifically, predicates of the form

op(...) relop <value expression>, where relop in {<, <=, =, >=,>}

op(...) LIKE <value_expression>

are possible candidates for index scan based evaluation.

Use of the operators in any expression, for example

op(...) + 2 = 3

precludes index-scan based evaluation.

Predicates of the form,

op() is NULL

will not be evaluated using index scan. It will always be evaluated using the

functional implementation.

Finally, any other operator predicates which can internally be converted into one of

the above forms by Oracle can also make use of the index scan based evaluation.

Operator Resolution
The index scan based evaluation of the operator is a possible candidate for

predicate evaluation only if the operator occurring in the predicate (as described

above) operates on a column or OBJECT attribute indexed using an indextype. The

final decision to choose between the indexed implementation and the functional

implementation is made by the optimizer. The optimizer takes into account the

selectivity and cost while generating the query execution plan.

As an example, consider the query

SELECT * FROM Employees WHERE Contains(resume, ’Oracle’) = 1;
Building Domain Indexes 7-29

The Extensible Indexing API
The optimizer can choose to use a domain index in evaluating the Contains
operator if

■ The resume column has an index defined on it.

■ The index is of type TextIndexType .

■ TextIndexType supports the appropriate Contains () operator.

If any of the above conditions do not hold, a complete scan of the Employees table

is performed and the functional implementation of Contains is applied as a

post-filter. If the above conditions are met, the optimizer uses selectivity and cost

functions to compare the cost of index-based evaluation with the full table scan and

appropriately generates the execution plan.

Consider a slightly different query,

SELECT * FROM Employees WHERE Contains(resume, ’Oracle’) =1 AND id =100;

In this query, the Employees table could be accessed through an index on the id
column or one on the resume column. The optimizer estimates the costs of the two

plans and picks the cheaper one, which could be to use the index on id and apply

the Contains operator on the resulting rows. In this case, the functional

implementation of Contains () is used and the domain index is not used.

Index scan Setup
If a domain index is selected for the evaluation of an operator predicate, an index

scan is set-up. The index scan is performed by the scan methods

(ODCIIndexStart (), ODCIIndexFetch (), ODCIIndex Close ()) specified as part

of the corresponding indextype implementation. The ODCIIndexStart () method

is invoked with the operator related information including name and arguments

and the lower and upper bounds describing the predicate. After the

ODCIIndexStart () call, a series of fetches are performed to obtain row identifiers

of rows satisfying the predicate, and finally the ODCIIndex Close () is called when

the SQL cursor is destroyed.

Execution Model for Index Scan Methods
The index scan routines must be implemented with an understanding of how the

routines’ invocations are ordered and how multiple sets of invocations can be

interleaved.

As an example, consider the query

SELECT * FROM Emp1, Emp2 WHERE
Contains(Emp1.resume, ’Oracle’) =1 AND Contains(Emp2.resume, ’Unix’) =1
AND Emp1.id = Emp2.id;
7-30 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
If the optimizer decides to use the domain indexes on the resume columns of both

tables, the indextype routines may be invoked in the following sequence:

start(ctx1, ...); /* corr. to Contains(Emp1.resume, ’Oracle’) */
start(ctx2, ...); /* corr. to Contains(Emp2.resume, ’Unix’);
fetch(ctx1, ...);
fetch(ctx2, ...);
fetch(ctx1, ...);
...
close(ctx1);
close(ctx2);

Thus, the same indextype routine may be invoked but for different instances of

operators. At any time, many operators are being evaluated through the same

indextype routines. In case of routines that do not need to maintain any state across

calls i.e. all the information is obtained through its parameters (like the create

routine), this is not a problem. However, in case of routines needing to maintain

state across calls (like the fetch routine which needs to know which row to return

next), the state should be maintained in the SELF parameter that is passed in to

each call. The SELF parameter (which is an instance of the implementation type)

can be used to store either the entire state (if it is not too big) or a handle to the

cursor-duration memory that stores the state.

Operators elseWHERE
Using Functional Implementation
Operators occurring in expressions other than in the WHERE clause are evaluated

using the functional implementation. For example,

SELECT Contains(resume, ’Oracle’) FROM Employee;

would be executed by scanning the Employee table and invoking the functional

implementation for Contains on each instance of resume. The function is invoked

by passing it the actual value of the resume (text data) in the current row. Note that

this function would not make use of any domain indexes that may have been built

on the resume column.

However, it’s possible to have a functional implementation for an operator that

makes use of a domain index. The following sections discuss how functions that use

domain indexes can be written and how they are invoked by the system.

Creating Index-based Functional Implementation
Building Domain Indexes 7-31

The Extensible Indexing API
For many domain-specific operators, such as Contains , the functional

implementation can work in two ways:

1. If the operator is operating on a column (or OBJECT attribute) that has a

domain index of a particular indextype, the function can evaluate the operator

by looking at the index data rather than the actual argument value.

For example, when Contains(resume , ’Oracle’) is invoked on a particular

row of the Employee table, it is easier for the function to look up the text

domain index defined on the resume column and evaluate the operator based

on the row identifier for the row containing the resume - rather than work on

the resume text data argument.

2. If the operator is operating on a column that does not have an appropriate

domain index defined on it or if the operator is invoked with literal values

(non-columns), the functional implementation evaluates the operator based on

only the argument values. This is the default behavior for all operator bindings.

To achieve both the behaviors of (1) and (2) above, the functional implementation is

provided using a regular function which has three additional arguments - in

addition to all the original arguments to the operator. The additional arguments are:

■ Index context — containing domain index information and the row identifier of

the row on which operator is being evaluated and

■ Scan context — a context value to share state with subsequent invocations of the

same operator (operating on other rows of the table).

■ Scan flag — indicates whether the current call is the last invocation during

which all clean up operations should be done.

For example, the index-based functional implementation for the Contains operator

is provided by the following function.

CREATE FUNCTION TextContains (Text IN VARCHAR2, Key IN VARCHAR2,
indexctx IN ODCIIndexCtx, scanctx IN OUT TextIndexMethods, scanflg IN NUMBER)
RETURN NUMBER AS
BEGIN
.......
END TextContains;

The Contains operator is bound to the above functional implementation as

follows:

CREATE OPERATOR Contains
BINDING (VARCHAR2, VARCHAR2) RETURN NUMBER
WITH INDEX CONTEXT, SCAN CONTEXT TextIndexMethods
7-32 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
USING TextContains;

The WITH INDEX CONTEXTclause specifies that the functional implementation can

make use of any applicable domain indexes. The SCAN CONTEXT specifies the

datatype of the scan context argument. It must be the same as the implementation

type of the relevant indextype that supports this operator.

Operator Resolution
Oracle will invoke the functional implementation for the operator if the operator

appears elseWHERE i.e. anywhere other than the WHERE clause. If the functional

implementation is index-based (i.e. defined to use an indextype), the additional

index information will be passed in as arguments only if the operator’s first

argument is a column (or OBJECTattribute) with a domain index of the appropriate

indextype defined on it.

For example, in the query

SELECT Contains(resume, ’Oracle & Unix’) FROM Employees;

the Operator Contains will be evaluated using the index-based functional

implementation by passing the index information about the domain index on

resume column instead of the resume data.

Operator Execution
To execute the index-based functional implementation, Oracle RDBMS will set-up

the arguments in the following manner:

■ The initial set of arguments are the same as those specified by the user for the

operator.

■ If the first argument is not a column, the ODCIIndexCtx attributes are set to

NULL.

■ If the first argument is a column, the ODCIIndexCtx attributes are set up as

follows.

– If there are no applicable domain indexes, the ODCIIndexInfo attribute is

set to NULL, else it is set up with the information about the domain index.

– The rowid attribute holds the row identifier of the row being operated on.

■ The scan context is passed as NULL to the first invocation of the operator. Since

it is an IN /OUT parameter, the return value from the first invocation is passed

in to the second invocation and so on.

■ The scan flag is set to RegularCall for all normal invocations of the operator.

After the last invocation, the functional implementation is invoked once more
Building Domain Indexes 7-33

The Extensible Indexing API
during which any cleanup actions can be performed. During this call, the scan

flag is set to CleanupCall and all other arguments except the scan context are

set to NULL.

When index information is passed in, the implementation can compute the operator

value by doing a domain index lookup using the row identifier as key. The index

metadata is used to identify the index structures associated with the domain index.

The scan context is typically used to share state with the subsequent invocations of

the same operator.

Ancillary Data
Apart from filtering rows, the operator occurring in WHERE clause might need to

support returning ancillary data. The ancillary data is modeled as an operator (or

multiple operators) with a single literal number argument. It has a functional

implementation that has access to state generated by the index-scan based

implementation of the primary operator occurring in the WHERE clause.

For example, in the following query,

SELECT Score(1) FROM Employees
WHERE Contains(resume, ’OCI & UNIX’, 1) =1;

Contains is the primary operator which can be evaluated using an index-scan which

in addition to determining the rows that satisfy the predicate, also computes a score

value for each row. The functional implementation for Score operator simply

accesses the state generated by the index-scan to obtain score for a given row

identified by its row identifier. The literal argument 1 associates the ancillary

operator Score to the corresponding primary operator Contains which generates the

ancillary data.

In summary, ancillary data is modeled as independent operator(s), which is

invoked by the user with a single number argument that ties it with the

corresponding primary operator. Its functional implementation makes use of either

the domain index or the state generated by the primary operator occurring in

WHERE clause. The functional implementation is invoked with extra arguments: the

index context containing the domain index information and the scan context which

provides access to the state generated by the primary operator. The following

sections discuss how operators modeling ancillary data are defined and invoked.

Creating Operator Binding that Computes Ancillary Data
An indextype designer needs to specify that an operator binding computes ancillary

data. Such a binding is referred to as a primary binding. For example, a primary

binding for Contains can be defined as follows:
7-34 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
CREATE OPERATOR Contains
BINDING (VARCHAR2, VARCHAR2) RETURN NUMBER
WITH INDEX CONTEXT, SCAN TextIndexMethods COMPUTE ANCILLARY DATA
USING TextContains;

The above definition registers two bindings for Contains, namely:

■ CONTAINS(VARCHAR2, VARCHAR2) — This can be used as before.

■ CONTAINS(VARCHAR2, VARCHAR2, NUMBER) — When ancillary data is

required elsewhere in SQL query, the operator can be invoked with the above

signature. The NUMBER argument is used to associate the corresponding

ancillary operator binding.

However, the indextype designer needs to define a single functional

implementation:

TextContains(VARCHAR2, VARCHAR2, ODCIIndexCtx, TextIndexMethods, NUMBER).

Creating Operator Binding that Models Ancillary Data
An indextype designer has to implement the functional implementation for

ancillary data operators in a manner similar to the index-based functional

implementation. As discussed earlier, the function takes extra arguments. After the

function is defined, the indextype designer can bind it to the operator with an

additional ANCILLARY TO attribute, which indicates that the functional

implementation needs to share state with the primary operator binding. The binding

that is used for modeling ancillary data is referred to as the ancillary operator

binding.

For example, let TextScore () function contain code to evaluate the Score
ancillary operator.

CREATE FUNCTION TextScore (Text IN VARCHAR2, Key IN VARCHAR2,
indexctx IN ODCIIndexCtx, scanctx IN OUT TextIndexMethods, scanflg IN NUMBER)
RETURN NUMBER AS
BEGIN
.......
END TextScore;

An ancillary operator binding can be created as follows:

CREATE OPERATOR Score
BINDING (NUMBER) RETURN NUMBER
ANCILLARY TO Contains(VARCHAR2, VARCHAR2)
USING TextScore;
Building Domain Indexes 7-35

The Extensible Indexing API
■ The ANCILLARY TOclause specifies that it shares state with the implementation

of corresponding primary operator binding CONTAINS(VARCHAR2,
VARCHAR2).

■ Note that the functional implementation for the ancillary operator binding must

have the same signature as the functional implementation for the primary

operator binding.

■ The ancillary operator binding is invoked with a single literal number

argument, e.g Score (1), Score (2), etc.

Operator Resolution
The operators corresponding to ancillary data are invoked by the user with a single

number argument.

The corresponding primary operator invocation in the query is determined by

matching it with the number passed in as the last argument to the primary operator.

After the matching primary operator invocation is found (it is an error to find zero

or more than one matching primary operator invocation):

■ The arguments to the primary operator are also made operands to the ancillary

operator.

■ The ancillary and primary operator executions are passed in the same scan

context.

For example, consider the query

SELECT Score(1) FROM Employees
WHERE Contains(resume, ’ Oracle & Unix’, 1) =1;

The invocation of Score is determined to be ancillary to Contains based on the

number argument "1" and the functional implementation for Score gets the

following operands: (resume , ’Oracle&Unix’ , indexctx , scanctx,
scanflg) where scanctx is shared with the invocation of Contains .

Operator Execution
The execution would involve using an index scan to process the Contains
operator. For each of the rows returned by the fetch () call of the index scan, the

Note: The number argument must be a literal in both the ancillary

operation and the primary operator invocation. This is required so

that the operator association can be done at the query compilation

time.
7-36 Oracle8i Data Cartridge Developer’s Guide

The Extensible Indexing API
functional implementation of Score is invoked by passing it the ODCIIndexCtx
argument, which contains the index information, row identifier, and a handle to the

index scan state. The functional implementation can use the handle to the index

scan state to compute the score.

Object Dependencies, Drop Semantics, and Validation

Dependencies
The dependencies between various objects are as follows:

■ Functions, Packages, and Object Types: Referenced by Operators and

Indextypes.

■ Operators: Referenced by Indextypes, DML and Query SQL Statements.

■ Indextypes: Referenced by Domain Indexes.

■ Domain Indexes: Referenced (used implicitly) by DML and Query SQL

Statements

Thus, the order in which these objects must be created, or their definitions exported

for future Import are:

■ Functions, Packages, and Object Types, followed by Operators, followed by

Indextypes.

Drop Semantics
The drop behavior for an object is as follows:

■ RESTRICT semantics: If there are any dependent objects the drop operation is

disallowed.

■ FORCE semantics: The object is dropped even in the presence of dependent

objects and the dependent objects if any are recursively marked invalid.

The table below shows the default and explicit drop options supported for

operators and indextypes. The other schema objects are included for completeness

and the corresponding drop behavior already available in Oracle8i.

Schema Object Default Drop Behavior Explicit Options Supported

Function FORCE None

Package FORCE None
Building Domain Indexes 7-37

The Extensible Indexing API
Object Validation
Invalid object are automatically revalidated whenever the object is subsequently

referenced.

Privileges
■ For creating an operator and its bindings, the user must have EXECUTE

privilege on the function, operator, package, or the type referenced in addition

to CREATE OPERATOR or CREATE ANY OPERATOR privilege.

■ For creating an indextype, the user must have EXECUTE privilege on the type

that implements the indextype in addition to CREATE INDEXTYPE or CREATE
ANY INDEXTYPEprivilege. Also, the user must have EXECUTEprivileges on the

operators that the indextype supports.

■ For creating domain index the user must EXECUTE privilege on the indextype

in addition to CREATE INDEX or CREATE ANY INDEX privilege.

■ For using the operators in queries and/or DML statements user must have

EXECUTE privilege on the operator and the associated function/package/type.

Object Types RESTRICT FORCE

Operator RESTRICT FORCE

Indextype RESTRICT FORCE

Schema Object Default Drop Behavior Explicit Options Supported
7-38 Oracle8i Data Cartridge Developer’s Guide

Query Optimiz
8

Query Optimization

■ This chapter describes query optimization, including:

■ Overview

■ Defining Statistics, Selectivity, and Cost Functions

■ Using User-defined Statistics, Selectivity, and Cost

■ Predicate Ordering
ation 8-1

Overview
Overview
Query Optimization is the process of choosing the most efficient way to execute a

SQL statement. When the cost-based optimizer was offered for the first time with

Oracle7, Oracle supported only standard relational data. The introduction of objects

with Oracle8i extended the supported datatypes and functions. The Extensible
Indexing feature discussed in the previous chapter, introduces user-defined access

methods.

The extensible optimizer feature allows authors of user-defined functions and

indexes to create statistics collection, selectivity, and cost functions that are used by

the optimizer in choosing a query plan. The optimizer cost model is extended to

integrate information supplied by the user. Specifically, you now can:

■ Associate cost function and default costs with domain indexes, indextypes,

packages, and stand-alone functions.

■ Associate selectivity function and default selectivity with methods of object

types, package functions, and stand-alone functions.

■ Associate statistics collection functions with domain indexes and columns of

tables.

■ Order predicates with functions based on cost.

■ Select a user-defined access method (domain index) for a table based on access

cost.

■ Use the ANALYZE command to invoke user-defined statistics collection and

deletion functions.

■ Use new data dictionary views to include information about the statistics

collection, cost, or selectivity functions associated with columns, domain

indexes, indextypes or functions.

■ Add a hint to preserve the order of evaluation for function predicates.

Please note that only the cost-based optimizer has been enhanced; Oracle has not

altered the operation of the rule-based optimizer.

For more information regarding optimization see:

■ Oracle8i Concepts — for an introduction to optimization

■ Oracle8i Tuning — for information about using hints in SQL

statements
8-2 Oracle8i Data Cartridge Developer’s Guide

Overview
The optimizer generates an execution plan for a SQL DML statement: SELECT,
INSERT, UPDATE, or DELETE. For simplicity, we describe the generation of an

execution plan in terms of a SELECT statement, but the same process applies to

other DML statements.

An execution plan includes an access method for each table in the FROM clause, and

an ordering, called the join order, of the tables in the FROM clause. System-defined

access methods include indexes, hash clusters, and table scans. The optimizer

chooses a plan by generating a set of join orders, or permutations, by computing the

cost of each, and then by selecting the process with the lowest cost. For each table in

the join order, the optimizer computes the cost of each possible access method and

join method and chooses the one with the lowest cost. The cost of the join order is

the sum of the access method and join method costs. The costs are calculated using

algorithms which together comprise the cost model. The cost model includes varying

level of detail about the physical environment in which the query is executed.

The optimizer uses statistics about the objects referenced in the query to compute

the selectivity and costs. The statistics are gathered using the ANALYZE command.

The selectivity of a predicate is the fraction of rows in a table that is chosen by the

predicate. It is a number between 0 and 1.

The Extensible Indexing feature allows users to define new operators, indextypes,

and domain indexes. For user-defined operators and domain indexes, the Extensible
Optimizer feature allows you to control the three main components used by the

optimizer to select an execution plan:

■ Statistics

■ Selectivity

■ Cost

In the following sections, we describe each of these components in greater detail.

Statistics
Statistics are collected using the ANALYZE command. Statistics can be collected for

tables and indexes. In general, the more accurate the statistics, the better the

execution plan generated by the optimizer. We call the statistics generated by the

current ANALYZE command standard statistics. However, with the addition of

user-defined domain indexes in Oracle8i.release 8.1.5, the standard ANALYZE
statement cannot generate any statistics on the domain index since the database

does not know the index storage structure.
Query Optimization 8-3

Overview
User-Defined Statistics
The Extensible Optimizer feature lets you define statistics collection functions for

domain indexes and columns. The extension to the ANALYZE command has the

effect that whenever a domain index is analyzed, a call is made to the user-specified

statistics collection function. The database does not know the representation and

meaning of the user-collected statistics.

In addition to domain indexes, Oracle supports user-defined statistics collection

functions for individual columns of a table, and for user-defined datatypes. In the

former case, whenever a column is analyzed, the user-defined statistics collection

function is called to collect statistics in addition to any standard statistics that the

database collects. If a statistics collection function exists for a datatype, it is called

for each column of the table being analyzed that has the required type.

Thus, the Extensible Optimizer feature extends ANALYZE to allow user-defined

statistics collection functions for domain indexes, indextypes, datatypes, and

individual table columns.

The cost of evaluating a user-defined function depends on the algorithm and the

statistical properties of its arguments. It is not practical to store statistics for all

possible combinations of columns that could be used as arguments for all functions.

Therefore, Oracle maintains only statistics on individual columns. It is also possible

that function costs depend on the different statistical properties of each argument.

Every column could require statistics for every argument position of every

applicable function. Oracle does not support such a proliferation of statistics and

cost functions because it would decrease performance.

A user-defined function to drop statistics is required whenever there is a

user-defined statistics collection function; it is called by ANALYZE DELETE.

User-Defined Statistics for Partitioned Objects
Since domain indexes cannot be partitioned in Oracle8i, release 8.1.5, a user-defined

statistics collection function collects only global statistics on the non-partitioned

index.

When an ANALYZE command specifies a list of partitions, this information is not

passed to user-defined statistics collection functions.

Selectivity
The optimizer uses statistics to calculate the selectivity of predicates. The selectivity

is the fraction of rows in a table that is chosen by the predicate. It is a number

between 0 and 1. The selectivity of a predicate is used to estimate the cost of a
8-4 Oracle8i Data Cartridge Developer’s Guide

Overview
particular access method; it is also used to determine the optimal join order. A poor

choice of join order by the optimizer could result in a very expensive execution

plan.

Currently, the optimizer uses a standard algorithm to estimate the selectivity of

selection and join predicates. However, the algorithm does not always work well in

cases in which predicates contain functions or type methods. In addition, in

Oracle8i, release 8.1.5, 1 predicates can contain user-defined operators about which

the optimizer does not have any information. In that case the optimizer cannot

compute an accurate selectivity.

User-defined Selectivity
For greater control over the optimizer’s selectivity estimation, this feature lets you

specify user-defined selectivity functions for predicates containing user-defined

operators, stand-alone functions, package functions, or type methods. The

user-defined selectivity function is called by the optimizer whenever it encounters a

predicate with one of the following forms:

operator(...) relational_operator <constant>

<constant> relational_operator operator(...)

operator(...) LIKE <constant>

where

■ operator(...) is a user-defined operator, stand-alone function, package

function, or type method,

■ relational_operator is one of {<, <=, =, >=, >} , and

■ <constant> is a constant value expression or bind variable.

For such cases, users can define selectivity functions associated with

operator(...) . The arguments to operator can be columns, constants, bind

variables, or attribute references. When optimizer encounters such a predicate, it

calls the user-defined selectivity function and passes the entire predicate as an

argument (including the operator, function, or type method and its arguments, the

relational operator relational_operator , and the constant expression or bind

variable). The return value of the user-defined selectivity function must be

expressed as a percent, and be between 0 and 100 inclusive; the optimizer ignores

values outside this range.
Query Optimization 8-5

Overview
Wherever possible, the optimizer uses user-defined selectivity values. However, this

is not possible in the following cases:

■ The user-defined selectivity function returns an invalid value (less than 0 or

greater than 100)

■ There is no user-defined selectivity function defined for the operator, function,

or method in the predicate

■ The predicate does not have one of the above forms, e.g., operator(...) + 3
relational_operator <constant>

In each of these cases, the optimizer uses heuristics to estimate the selectivity.

Cost
The optimizer estimates the cost of various access paths to choose an optimal plan.

For example, it computes the cost of using an index and a full table scan to choose

between the two. However, with regard to domain indexes, the optimizer does not

know the internal storage structure of the index, and so it cannot compute a good

estimate of the cost of a domain index.

User-Defined Cost
For greater flexibility, the cost model has been extended to let you define costs for

domain indexes and user-defined stand-alone functions, package functions, and

type methods. The user-defined costs can be in the form of default costs that the

optimizer looks up, or they can be full-fledged cost functions which the optimizer

calls to compute the cost.

As is the case with user-defined selectivity, user-defined cost is optional. If no

user-defined cost is available, the optimizer uses heuristics to compute an estimate.

However, in the absence of sufficient useful information about the storage

structures in user-defined domain indexes and functions, such estimates can be

very inaccurate and result in the choice of a sub-optimal execution plan.

User-defined cost functions for domain indexes are called by the optimizer only if a

domain index is a valid access path for a user-defined operator (for details

regarding when this is true, see the discussion of user-defined indexing in the

previous chapter). User-defined cost functions for functions, methods and domain

indexes are only called when a predicate has one of the following forms:

operator(...) relational_operator <constant>

<constant> relational_operator operator(...)
8-6 Oracle8i Data Cartridge Developer’s Guide

Overview
operator(...) LIKE <constant>

where

■ operator(...) is a user-defined operator, stand-alone function, package

function, or type method,

■ relational_operator is one of {<, <=, =, >=, >} , and

■ <constant> is a constant value expression or bind variable.

This is, of course, identical to the conditions for user-defined selectivity functions.

User-defined cost functions can return three cost values, each value representing the

cost of a single execution of a function or domain index implementation:

■ CPU — the number of machine instructions executed by the function or domain

index implementation. This does not include the overhead of invoking the

function.

■ I/O — the number of data blocks read by the function or domain index

implementation. For a domain index, this does not include accesses to the

Oracle table. The multiblock I/O factor is not passed to the user-defined cost

functions.

■ NETWORK— the number of data blocks transmitted. This is valid for distributed

queries as well as functions and domain index implementations. For Oracle8i
this cost component is not used and is ignored; however, as described below,

the user is required to stipulate a value so that backward compatibility is

facilitated when this feature is introduced.

The optimizer computes a composite cost from these cost values.

Optimizer Parameters
The cost of a query is a function of the cost values discussed above. These values

can be combined in one of three ways depending on the settings of optimizer

initialization parameters. The setting determines the function that is minimized.

■ If optimizer_mode is first_rows , the resource cost of returning a single

row is minimized. The optimizer mode is passed to user-defined cost functions.

■ If optimizer_percent_parallel is not zero, a combination of throughput

and resource costs is minimized.

■ If neither of the previous two conditions pertains, the resource cost of returning

all rows is minimized.
Query Optimization 8-7

Defining Statistics, Selectivity, and Cost Functions
Defining Statistics, Selectivity, and Cost Functions
You can compute and store user-defined statistics for domain indexes and columns.

These statistics are in addition to the standard statistics that are already collected by

ANALYZE. User-defined selectivity and cost functions for functions and domain

indexes can use standard and user-defined statistics in their computation. The

internal representation of these statistics need not be known to Oracle; we only

require that you provide methods for their access. You are solely responsible for

defining the representation of such statistics and for maintaining them. It is

important to note that user-collected statistics are only used by user-defined

selectivity and cost functions; the optimizer use s only its standard statistics.

User-defined statistics collection, selectivity, and cost functions must be defined in a

user-defined type. This type must have a form similar to a system-defined interface

called ODCIStats (Oracle Data Cartridge Interface Statistics) defined as follows:

CREATE INTERFACE ODCIStats AS (

-- Function to get current interface
 FUNCTION ODCIGetInterfaces(ifclist OUT ODCIObjectList) return NUMBER,

-- User-defined statistics functions
 FUNCTION ODCIStatsCollect(col ODCIColInfo, options ODCIStatsOptions,
 statistics OUT RAW) return NUMBER,
 FUNCTION ODCIStatsCollect(ia ODCIIndexInfo, options ODCIStatsOptions,
 statistics OUT RAW) return NUMBER,
 FUNCTION ODCIStatsDelete(col ODCIColInfo) return NUMBER,
 FUNCTION ODCIStatsDelete(ia ODCIIndexInfo) return NUMBER,

 -- User-defined selectivity function
 FUNCTION ODCIStatsSelectivity(pred ODCIPredInfo, sel OUT NUMBER, args
 ODCIArgDescList, start <function_return_type>,
 stop <function_return_type>,
 <list of function arguments>) return NUMBER,

-- User-defined cost function for functions and type methods
 FUNCTION ODCIStatsFunctionCost(func ODCIFuncInfo, cost OUT ODCICost,
 args ODCIArgDescList, <list of function arguments>) return NUMBER,

-- User-defined cost function for domain indexes
 FUNCTION ODCIStatsIndexCost(ia ODCIIndexInfo, sel NUMBER,
 cost OUT ODCICost, qi ODCIQueryInfo, pred ODCIPredInfo,
 args ODCIArgDescList, start <operator_return_type>,
 stop <operator_return_type>, <list of operator value arguments>)
 return NUMBER
8-8 Oracle8i Data Cartridge Developer’s Guide

Defining Statistics, Selectivity, and Cost Functions
)

You can define a new object type, referred to as a statistics type, with a subset of

functions from ODCIStats . Since user-defined statistics collection, selectivity, and

cost functions are all optional, a statistics type need not contain all the functions in

ODCIStats .

The types of the parameters of statistics type methods are system-defined ODCI
(Oracle Data Cartridge Interface) datatypes. Some of them are described in the

reference to Extensible Indexing, and the rest are described in the reference chapter

detailing the Extensible Optimizer.

The selectivity and cost functions must not change any database or package state.

To that end, they must be defined with appropriate purity level pragmas, otherwise

the optimizer will not call them.

Depending on the object that user-defined statistics are being associated with, not

all the functions defined in a statistics type will be used. The table below lists the

functions and default statistics that will be used by the optimizer.

Table 8–1 Statistics Type Methods and Default Statistics Used for Various Objects

ASSOCIATE
STATISTICS
WITH Statistics Type Methods Used

Default Statistics
Used

column ODCIStatsCollect, ODCIStatsDelete

object type ODCIStatsCollect, ODCIStatsDelete,
ODCIStatsFunctionCost, ODCIStatsSelectivity

cost, selectivity

function ODCIStatsFunctionCost, ODCIStatsSelectivity cost, selectivity

package ODCIStatsFunctionCost, ODCIStatsSelectivity cost, selectivity

index ODCIStatsCollect, ODCIStatsDelete,
ODCIIndexCost

cost

indextype ODCIStatsCollect, ODCIStatsDelete,
ODCIIndexCost

cost
Query Optimization 8-9

Defining Statistics, Selectivity, and Cost Functions
User-Defined Statistics Functions
There are two user-defined statistics collection functions, one for collecting statistics

and the other for deleting them.

The first, ODCIStatsCollect , is used to collect user-defined statistics; its interface

depends on whether a column or domain index is being analyzed. It is called when

analyzing a column of a table or a domain index and takes two parameters:

■ col for the column being analyzed, or

ia for the domain index being analyzed;

■ options for options specified in the ANALYZE command (e.g., the sample size

when ANALYZE ESTIMATE is used).

As mentioned, the database does not interpret statistics collected by

ODCIStatsCollect . You can store output in a user-managed format or in a

dictionary table (described in the Extensible Optimizer reference) provided for the

purpose. The statistics collected by the ODCIStatsCollect functions are returned

in the output parameter, statistics , as a RAW datatype.

When an ANALYZE DELETE command is issued, user-collected statistics are deleted

by calling the ODCIStatsDelete function whose interface depends on whether

the statistics for a column or domain index are being dropped. It takes a single

parameter: col , for the column whose user-defined statistics need to be deleted, or

ia , for the domain index whose statistics are to be deleted.

If a user-defined ODCIStatsCollect function is present in a statistics type, the

corresponding ODCIStatsDelete function must also be present.

The return values of the ODCIStatsCollect and ODCIStatsDelete functions

must be Success (indicating success), Error (indicating an error), or Warning
(indicating a warning); these return values are defined in a system package

ODCIConst (described in the Extensible Optimizer reference).

User-defined Selectivity Functions
You will recall that user-defined selectivity functions are used only for predicates of

the following forms:

operator(...) relational_operator <constant>

<constant> relational_operator operator(...)

operator(...) LIKE <constant>
8-10 Oracle8i Data Cartridge Developer’s Guide

Defining Statistics, Selectivity, and Cost Functions
A user-defined selectivity function, ODCIStatsSelectivity , takes five sets of

input parameters that describe the predicate:

■ pred describing the function operator and the relational operator

relational_operator ;

■ args describing the start and stop values (i.e., <constant >) of the function

and the actual arguments to the function operator ;

■ start whose datatype is the same as that of the function’s return value,

describing the start value of the function;

■ stop whose datatype is the same as that of the function’s return value,

describing the stop value of the function;

■ and a list of function arguments whose number, position, and type must match

the arguments of the function operator .

The computed selectivity is returned in the output parameter sel , in whole

numbers, as a percentage, between 0 and 100, inclusive. The optimizer ignores

invalid values.

The return value of the ODCIStatsSelectivity function must be

■ Success indicating success, or

■ Error indicating an error, or

■ Warning indicating a warning.

As an example, consider a function myFunction defined as follows:

myFunction (a NUMBER, b VARCHAR2(10)) return NUMBER

A user-defined selectivity function for the function myFunction would be as

follows:

ODCIStatsSelectivity(pred ODCIPredInfo, sel OUT NUMBER, args ODCIArgDescList,
 start NUMBER, stop NUMBER, a NUMBER, b VARCHAR2(10)) return NUMBER

If the function myFunction is called with literal arguments, e.g.,

myFunction (2, ’TEST’) > 5

then the selectivity function is called as follows:

ODCIStatsSelectivity(<ODCIPredInfo constructor>, sel,
 <ODCIArgDescList constructor>, 5, NULL, 2, ’TEST’)
Query Optimization 8-11

Defining Statistics, Selectivity, and Cost Functions
If, on the other hand, the function myFunction is called with some non-literals e.g.,

myFunction(Test_tab.col_a, ’TEST’)> 5

where col_a is a column in table Test_tab , then the selectivity function is called

as follows:

ODCIStatsSelectivity(<ODCIPredInfo constructor>, sel,
 <ODCIArgDescList constructor>, 5, NULL, NULL, ’TEST’)

In other words, the start, stop, and function argument values are passed to the

selectivity function only if they are literals; otherwise they are NULL. The

ODCIArgDescList descriptor describes all its following arguments.

User-defined Cost Functions for Functions
As already mentioned, user-defined cost functions are only used for predicates of

the following forms:

operator(...) relational_operator <constant>

<constant> relational_operator operator(...)

operator(...) LIKE <constant>

You can define a function, ODCIStatsFunctionCost , for computing the cost of

stand-alone functions, package functions, or type methods. This function takes

three sets of input parameters describing the predicate:

■ func describing the function operator ;

■ args describing the actual arguments to the function operator ;

■ and a list of function arguments whose number, position, and type must match

the arguments of the function operator .

The ODCIStatsFunctionCost function returns its computed cost in the cost
parameter. As mentioned, the returned cost can have two components — CPU and

I/O — which are combined by the optimizer to compute a composite cost. The costs

returned by user-defined cost functions must be positive whole numbers. Invalid

values are ignored by the optimizer.

The return value of the ODCIStatsFunctionCost function must be

■ Success indicating success, or

■ Error indicating an error, or
8-12 Oracle8i Data Cartridge Developer’s Guide

Defining Statistics, Selectivity, and Cost Functions
■ Warning indicating a warning.

Consider a function myFunction defined as follows:

myFunction (a NUMBER, b VARCHAR2(10)) return NUMBER

A user-defined cost function for the function myFunction would be coded as

follows:

ODCIStatsFunctionCost(func ODCIFuncInfo, cost OUT ODCICost,
 args ODCIArgDescList, a NUMBER, b VARCHAR2(10)) return NUMBER

If the function myFunction is called with literal arguments, e.g.,

myFunction(2, ’TEST’) > 5,

then the cost function is called as follows:

ODCIStatsFunctionCost(<ODCIFuncInfo constructor>, cost,
 <ODCIArgDescList constructor>, 2, ’TEST’)

If, on the other hand, the function myFunction is called with some non-literals,

e.g.,

myFunction(Test_tab.col_a, ’TEST’) > 5

where col_a is a column in table Test_tab , then the cost function is called as

follows:

ODCIStatsFunctionCost(<ODCIFuncInfo constructor>, cost,
 <ODCIArgDescList constructor>, NULL, ’TEST’)

In other words, function argument values are passed to the cost function only if

they are literals; otherwise they are NULL. The ODCIArgDescList descriptor

describes all its following arguments.

User-defined Cost Functions for Domain Indexes
User-defined cost functions for domain indexes are used for the same type of

predicates mentioned previously, except that operator must be a user-defined

operator for which a valid domain index access path exists.

The ODCIStatsIndexCost function takes eight sets of parameters:

■ ia describing the domain index;

■ sel representing the user-computed selectivity of the predicate;
Query Optimization 8-13

Defining Statistics, Selectivity, and Cost Functions
■ qi containing additional information about the query;

■ pred describing the predicate;

■ args describing the start and stop values (i.e., <constant >) of the operator

and the actual arguments to the operator operator ;

■ start , whose datatype is the same as that of the operator’s return value,

describing the start value of the operator;

■ stop whose datatype is the same as that of the operator’s return value,

describing the stop value of the operator; and

■ a list of operator value arguments whose number, position, and type must

match the arguments of the operator operator . The value arguments of an

operator are the arguments excluding the first argument.

The computed cost of the domain index is returned in the output parameter, cost .

ODCIStatsIndexCost returns

■ Success indicating success, or

■ Error indicating an error, or

■ Warning indicating a warning.

Consider an operator

Contains(a_stringVARCHAR2(2000) ,b_stringVARCHAR2(10))

that returns 1 or 0 depending on whether or not the string b_string is contained

in the string a_string . Further, assume that the operator is implemented by a

domain index. A user-defined index cost function for this domain index would be

coded as follows:

ODCIStatsIndexCost(ia ODCIIndexInfo, sel NUMBER, cost OUT ODCICost,
 qi ODCIQueryInfo, pred ODCIPredInfo, args ODCIArgDescList,
 start NUMBER, stop NUMBER, b_string VARCHAR2(10)) return NUMBER

Note that the first argument, a_string , of Contains does not appear as a

parameter of ODCIStatsIndexCost . This is because the first argument to an

operator must be a column for the domain index to be used, and this column

information is passed in via the ODCIIndexInfo parameter. Only the operator

arguments after the first (i.e., the "value" arguments) must appear as parameters to

the ODCIStatsIndexCost function.

If the operator is called, e.g.,
8-14 Oracle8i Data Cartridge Developer’s Guide

Using User-defined Statistics, Selectivity, and Cost
Contains(Test_tab.col_c,’TEST’) <= 1

then the index cost function is called as follows:

ODCIStatsIndexCost(<ODCIIndexInfo constructor>, sel, cost,
 <ODCIQueryInfo constructor>, <ODCIPredInfo constructor>,
 <ODCIArgDescList constructor>, NULL, 1, ’TEST’)

In other words, the start, stop, and operator argument values are passed to the

index cost function only if they are literals; otherwise they are NULL. The

ODCIArgDescList descriptor describes all its following arguments.

Using User-defined Statistics, Selectivity, and Cost
Statistics types act as interfaces for user-defined functions that influence the choice

of an execution plan by the optimizer. However, for the optimizer to be able to use a

statistics type requires a mechanism to bind the statistics type to a database object

(column, stand-alone function, object type, index, indextype or package). This is the

function of the new ASSOCIATE STATISTICS command. The following sections

describe this command in more detail.

User-defined Statistics
User-defined statistics functions are relevant for columns (both standard SQL

datatypes and object types) and domain indexes. Statistics types used to collect

user-defined statistics need not have the ODCIStatsSelectivity ,

ODCIStatsFunctionCost , and ODCIStatsIndexCost functions (they are

ignored). The sections below describe how column and index user-defined statistics

are collected.

User-collected statistics can either be stored in some predefined dictionary tables or

users could create their own tables. The latter approach requires that privileges on

these tables be administered properly, backup and restoration of these tables be

done along with other dictionary tables, and point-in-time recovery considerations

be resolved.

To ease the administration overhead, a predefined table, USTATS$, is created where

you can store statistics. These statistics are not interpreted by the system; they are

used by user-defined selectivity and cost functions. In addition to using these

predefined tables, nothing prevents you from creating and administering your own

tables to store the statistics. Details on the USTATS$ table are given in the Extensible
Optimizer reference.
Query Optimization 8-15

Using User-defined Statistics, Selectivity, and Cost
Column Statistics
Consider a table Test_tab defined as follows:

CREATE TABLE Test_tab (
 col_a NUMBER,
 col_b typ1,
 col_c VARCHAR2(2000)
)

where typ1 is an object type. Suppose that stat is a statistics type with

ODCIStatsCollect and ODCIStatsDelete functions. User-defined statistics are

collected by the ANALYZE command for the column col_b if we bind a statistics

type with the column as follows:

ASSOCIATE STATISTICS WITH COLUMNS Test_tab.col_b USING stat

A list of columns can be associated with the statistics type stat . Note that Oracle

supports only associations with top-level columns, not attributes of object types; if

you wish, the ODCIStatsCollect function can collect individual attribute

statistics by traversing the column.

Another way to collect user-defined statistics is to declare an association with a

datatype as follows:

ASSOCIATE STATISTICS WITH TYPES typ1 USING stat_typ1

which declares stat_typ1 as the statistics type for the type typ1 . When the table

Test_tab is analyzed with this association, user-defined statistics are collected for

the column col_b using the ODCIStatsCollect function of statistics type stat_
typ1 .

Individual column associations always have precedence over associations with

types. Thus, in the above example, if both ASSOCIATE STATISTICS commands are

issued, ANALYZEwould use the statistics type stat (and not stat_typ1) to collect

user-defined statistics for column col_b . It is also important to note that standard

statistics, if possible, are collected along with user-defined statistics.

User-defined statistics are deleted using the ODCIStatsDelete function from the

same statistics type that was used to collect the statistics.

Associations defined by the ASSOCIATE STATISTICS command are stored in a

new dictionary table called ASSOCIATION$ (details are given in the Extensible
Optimizer reference).

Only user-defined datatypes can have statistics types associated with them; you

cannot declare associations for standard SQL datatypes.
8-16 Oracle8i Data Cartridge Developer’s Guide

Using User-defined Statistics, Selectivity, and Cost
Domain Index Statistics
A domain index has an indextype. A statistics type for a domain index is defined by

associating it either with the index or its indextype. Consider the following example

using the table Test_tab we defined earlier:

CREATE INDEX Test_indx ON Test_tab(col_a)
INDEXTYPE IS indtype PARAMETERS(’example’);

CREATE OPERATOR userOp BINDING (NUMBER) RETURN NUMBER
USING userOp_func;

CREATE INDEXTYPE indtype
FOR userOp(NUMBER)
USING imptype;

Here, indtype is the indextype, userOp is a user-defined operator supported by

indtype , userOp_func is the functional implementation of userOp , and

imptype is the implementation type of the indextype indtype .

A statistics type stat_Test_indx can be associated with the index Test_indx as

follows:

ASSOCIATE STATISTICS WITH INDEXES Test_indx USING stat_Test_indx

When the domain index Test_indx is analyzed, user-defined statistics for the

index are collected by calling the ODCIStatsCollect function of stat_Test_
indx .

If a statistics type association is not defined for a specific index, Oracle looks for a

statistics type association for the indextype of the index. In the above example, a

statistics type stat_indtype can be associated with the indextype indtype as

follows:

ASSOCIATE STATISTICS WITH INDEXTYPES indtype USING stat_indtype

When the domain index Test_indx is analyzed and no statistics type association

has been defined for the index Test_indx , then user-defined statistics for the

index are collected by calling the ODCIStatsCollect function of stat_indtype .

Thus, individual domain index associations always have precedence over

associations with the corresponding indextypes.

Domain index statistics are dropped using the ODCIStatsDelete function from

the same statistics type that was used to collect the statistics.
Query Optimization 8-17

Using User-defined Statistics, Selectivity, and Cost
User-defined Selectivity
Selectivity functions are used by the optimizer to compute the selectivity of

predicates in a query. The predicates must have one of the appropriate forms and

can contain user-defined operators, stand-alone functions, package functions, or

type methods. Selectivity computation for each is described below.

User-defined Operators
Consider the example laid out earlier, and suppose that the following association is

declared:

ASSOCIATE STATISTICS WITH FUNCTIONS userOp_func USING stat_userOp_func

Now, if the following predicate

userOp(Test_tab.col_a) = 1

is encountered, the optimizer calls the ODCIStatsSelectivity function (if

present) in the statistics type stat_userOp_func that is associated with the

functional implementation of the userOp_func of the userOp operator.

Stand-Alone Functions
If the association

ASSOCIATE STATISTICS WITH FUNCTIONS myFunction USING stat_MyFunction

is declared for a stand-alone function myFunction , then the optimizer calls the

ODCIStatsSelectivity function (if present) in the statistics type stat_
myFunction for the following predicate (for instance):

myFunction(Test_tab.col_a, ’TEST’) = 1.

Package Functions
If the association

ASSOCIATE STATISTICS WITH PACKAGES Demo_pack USING stat_Demo_pack

is declared for a package Demo_pack, then the optimizer calls the

ODCIStatsSelectivity function (if present) in the statistics type stat_Demo_
pack for the following predicate (for instance):

Demo_pack.myDemoPackFunction(Test_tab.col_a, ’TEST’) = 1

where myDemoPackFunction is a function in Demo_pack.
8-18 Oracle8i Data Cartridge Developer’s Guide

Using User-defined Statistics, Selectivity, and Cost
Type Methods
If the association

ASSOCIATE STATISTICS WITH TYPES Example_typ USING stat_Example_typ

is declared for a type Example_typ , then the optimizer calls the

ODCIStatsSelectivity function (if present) in the statistics type stat_
Example_typ for the following predicate (for instance):

myExampleTypMethod(Test_tab.col_b) = 1

where myExampleTypMethod is a method in Example_typ .

Default Selectivity
An alternative to selectivity functions is user-defined default selectivity. The default

selectivity is a value (between 0% and 100%) that is looked up by the optimizer

instead of calling a selectivity function. Default selectivities can be used for

predicates with user-defined operators, stand-alone functions, package functions, or

type methods.

The following command:

ASSOCIATE STATISTICS WITH FUNCTIONS myFunction DEFAULT SELECTIVITY 20

declares that the following predicate, for instance,

myFunction(Test_tab.col_a) = 1

always has a selectivity of 20 percent (or 0.2) regardless of the parameters of

myFunction, or the comparison operator "=", or the constant "1". The optimizer

uses this default selectivity instead of calling a selectivity function.

An association can be declared using either a statistics type or a default selectivity,

but not both. Thus, the following statement is illegal:

ASSOCIATE STATISTICS WITH FUNCTIONS myFunction USING stat_myFunction
 DEFAULT SELECTIVITY 20

The following are some more examples of default selectivity declarations:

ASSOCIATE STATISTICS WITH PACKAGES Demo_pack DEFAULT SELECTIVITY 20
ASSOCIATE STATISTICS WITH TYPES Example_typ DEFAULT SELECTIVITY 20
Query Optimization 8-19

Using User-defined Statistics, Selectivity, and Cost
User-defined Cost
The optimizer uses user-defined cost functions to compute the cost of predicates in

a query. The predicates must have one of the forms listed earlier and can contain

user-defined operators, stand-alone functions, package functions, or type methods.

In addition, user-defined cost functions are also used to compute the cost of domain

indexes. Cost computation for each is described below.

User-defined Operators
Consider the example outlined above, and suppose that the following associations

are declared:

ASSOCIATE STATISTICS WITH INDEXES Test_indx USING stat_Test_indx
ASSOCIATE STATISTICS WITH FUNCTIONS userOp USING stat_userOp_func

Consider the following predicate:

userOp(Test_tab.col_a) = 1.

If the domain index Test_indx implementing userOp is being evaluated, the

optimizer calls the ODCIStatsIndexCost function (if present) in the statistics

type stat_Test_indx . If the domain index is not used, however, the optimizer

calls the ODCIStatsFunctionCost function (if present) in the statistics type

stat_userOp to compute the cost of the functional implementation of the operator

userOp .

Stand-Alone Functions
If the association

ASSOCIATE STATISTICS WITH FUNCTIONS myFunction USING stat_myFunction

is declared for a stand-alone function myFunction , then the optimizer calls the

ODCIStatsFunctionCost function (if present) in the statistics type stat_
myFunction for the following predicate (for instance):

myFunction(Test_tab.col_a, ’TEST’) = 1

User-defined function costs do not influence the choice of access methods; they are

only used for ordering predicates (described in the Extensible Optimizer reference).

Package Functions
If the association
8-20 Oracle8i Data Cartridge Developer’s Guide

Using User-defined Statistics, Selectivity, and Cost
ASSOCIATE STATISTICS WITH PACKAGES Demo_pack USING stat_Demo_pack;

is declared for a package Demo_pack, then the optimizer calls the

ODCIStatsFunctionCost function (if present) in the statistics type stat_Demo_
pack for the following predicate (for instance):

Demo_pack.myDemoPackFunction(Test_tab.col_a) = 1

where myDemoPackFunction is a function in Demo_pack.

Type Methods
If the association

ASSOCIATE STATISTICS WITH TYPES Example_typ USING stat_Example_typ;

is declared for a type Example_typ , then the optimizer calls the

ODCIStatsFunctionCost function (if present) in the statistics type stat_
Example_typ for the following predicate:

myExampleTypMethod(Test_tab.col_b) = 1

where myExampleTypMethod is a method in Example_typ .

Default Cost
Like default selectivity, default costs can be used for predicates with user-defined

operators, stand-alone functions, package functions, or type methods. So, the

following command

ASSOCIATE STATISTICS WITH INDEXES Test_indx DEFAULT COST (100, 5, 0)

declares that using the domain index Test_indx to implement the following

predicate (to select one example)

userOp(Test_tab.col_a) = 1

always has a CPU cost of 100, I/O of 5, and network of 0 (the network cost is

ignored in Oracle8i) regardless of the parameters of userOp , the comparison

operator "=", or the constant "1". The optimizer uses this default cost instead of

calling an ODCIStatsIndexCost cost function.

You can declare an association using either a statistics type or a default cost, not

both. Thus, the following statement is illegal:

ASSOCIATE STATISTICS WITH INDEXES Test_indx USING stat_Test_indx
 DEFAULT COST (100, 5, 0)
Query Optimization 8-21

Predicate Ordering
The following are some more examples of default cost declarations:

ASSOCIATE STATISTICS WITH FUNCTIONS myFunction DEFAULT COST (100, 5, 0)
ASSOCIATE STATISTICS WITH PACKAGES Demo_pack DEFAULT COST (100, 5, 0)
ASSOCIATE STATISTICS WITH TYPES Example_typ DEFAULT COST (100, 5, 0)
ASSOCIATE STATISTICS WITH INDEXTYPES indtype DEFAULT COST (100, 5, 0)

Predicate Ordering
In the absence of an ORDERED_PREDICATEShint (on page 17-4), predicates (except

those used for index keys) will be evaluated in the order specified by the following

rules:

■ Predicates without any user-defined functions, type methods, or subqueries are

evaluated first, in the order specified in the WHERE clause.

■ Predicates with user-defined functions and type methods which have

user-computed costs are evaluated in increasing order of their cost.

■ Predicates with user-defined functions and type methods that have no

user-computed cost are evaluated next, in the order specified in the WHERE
clause.

■ Predicates not specified in the WHERE clause (e.g., predicates transitively

generated by the optimizer) are evaluated next.

■ Predicates with subqueries are evaluated last in the order specified in the

WHERE clause.

Dependency Model
The dependency model reflects the actions that are taken when you issue any of the

SQL commands described in the table.

Table 8–2 Dependency Model for DDLs

Command Action

DROP statistics_type if an association is defined with statistics_type, the
command fails, otherwise the type is dropped

DROP statistics_type FORCE calls DISASSOCIATE FORCE for all objects associated
with the statistics_type ; drops statistics_type
8-22 Oracle8i Data Cartridge Developer’s Guide

Dependency Model
DROP object calls DISASSOCIATE, drops object_type if
DISASSOCIATE succeeds

ALTER TABLE DROP COLUMN if association is present for the column, this calls
DISASSOCIATE FORCE with column; if no entry in
ASSOCIATION$ but there are entries in type USATS$,
then ODCIStatsDelete for the columns is invoked

DISASSOCIATE if user-defined statistics collected with the statistics
type are present, the command fails

DISASSOCIATE FORCE deletes the entry in ASSOCIATION$ and calls
ODCIStatsDelete

ANALYZE TABLE DELETE
STATISICS

the ODCIStatsDelete function is invoked; if any
errors are raised, ANALYZE fails and the error is
reported

ASSOCIATE if an association or user-defined statistics are present
for the associated object, the command fails

Table 8–2 Dependency Model for DDLs (Cont.)

Command Action
Query Optimization 8-23

Restrictions and Suggestions
Restrictions and Suggestions
A statistics type is defined as a regular object type. Since object types must have at

least one attribute, a statistics type also must have at least one attribute. This will be

a dummy attribute, however, since it will never be set or accessed.

Parallel Query
In Oracle8i domain indexes are non-partitioned and serial. The optimizer computes

the composite cost of a domain index access path assuming a serial execution.

Distributed Execution
Oracle’s distributed implementation does not support adding functions to the

remote capabilities list. All functions referencing remote tables are executed as

filters. The placement of the filters occurs outside the optimizer. The cost model

reflects this implementation and does not attempt to optimize placement of these

predicates.

Since predicates are not shipped to the remote site, you cannot use domain indexes

on remote tables. Therefore, the DESCRIBE protocol is unchanged, and remote

domain indexes are not visible from the local site.

Performance
The cost of execution of the queries remains the same with the extensible optimizer

if the same plan is chosen. If a different plan is chosen, the execution time should be

better assuming that the user-defined cost, selectivity, and statistics collection

functions are accurate. In light of this, you are strongly encouraged to provide

statistics collection, selectivity, and cost functions for user-defined structures

because the optimizer defaults can be inaccurate and lead to an expensive execution

plan.
8-24 Oracle8i Data Cartridge Developer’s Guide

Using Cartridge Se
9

Using Cartridge Services

This chapter describes how to use cartridge services, including:

■ Cartridge Services — Introduction

■ Cartridge Handle

■ Memory Services

■ Memory Services

■ Maintaining Context

■ National Language Service (NLS)

■ Parameter Manager Interface

■ File I/O

■ String Formatting
rvices 9-1

Cartridge Services — Introduction
Cartridge Services — Introduction
This chapter describes a set of services that will help you create data cartridges in

the Oracle8i Extensibility framework.

Using Oracle Cartridge Services offers you these advantages:

Portability
Oracle Cartridge Services offers you the flexibility to work across different machine

architectures

Flexibility Within Oracle Environments
Another type of flexibility is offered to you in terms of the fact that all cartridge

services will work with your Oracle Database irrespective of the configuration of

operations that has been purchased by your client.

Language Independence
The use of the NLS services lets you internationalize your cartridge. Language

independence means that you can have different instances of your cartridge

operating in different language environments.

Tight Integration with the Server
Various cartridge services have been designed to facilitate access with Oracle

ORDBMS. This offers far superior performance to client -side programs attempting

to perform the same operations.

Guaranteed Compatibility
Oracle is a rapidly evolving technology and it is likely that your clients might be

operating with different releases of Oracle. The cartridge services will operate with

all versions of Oracle database.

Integration of Different Cartridges
The integration of cartridge services lets you produce a uniform integration of

different data cartridges.

The following sections provide a brief introduction to the set of services that you

can use as part of your data cartridge. The APIs that describe these interfaces are

described in Chapter 9, "Using Cartridge Services"
9-2 Oracle8i Data Cartridge Developer’s Guide

Cartridge Handle

es
 in an
Cartridge Handle
Cartridge services require various handles that are encapsulated inside two types of

OCI handles -

■ Environment handle (OCIEnv or OCI_HTYPE_ENV).

Various cartridge services are required at the process level when no session is

available. The OCIInitialize () should use the OCI_OBJECT option for

cartridge service.

■ User Session handle (OCISession or OCI_HTYPE_SESSION).

In a callout, the services can be used when the handle is allocated even without

opening a connection back to the database.

All cartridge service calls take a dvoid * OCI handle as one of the arguments that

may be either an environment or a session handle. While most service calls are

allowed with either of the handles, certain calls may not be valid with one of the

handles. For example, it may be an error to allocate OCI_DURATION_SESSIONwith

an environment handle. An error will typically be returned in an error handle.

Client Side Usage
Most of the cartridge service can also be used on the client side code. Refer to

individual services for restrictions. To use cartridge service on the client side, the

OCI environment has to be initialized with OCI_OBJECT option. This is

automatically effected in a cartridge.

Cartridge Side Usage
Most of the services listed in this document can be used in developing a database

cartridge, but please refer to documentation of each individual service for

restrictions. New service calls are available to obtain the session handle in a callout.

The session handle is available without opening a connection back to the server.

Service Calls
Before using any service, the OCI environment handle must be initialized. All the servic
take an OCI environment (or user_session) handle as an argument. Errors are returned
OCI error handle.The sub handles required for various service calls are not allocated

along with the OCI environment handle. Services which need to initialize an

environment provide methods to initialize it.
Using Cartridge Services 9-3

Memory Services
The following example demonstrates the initialization of these handles:

{
OCIEnv *envhp;
OCIError *errhp;
(void) OCIInitialize(OCI_OBJECT, (dvoid *)0, 0, 0, 0);
(void) OCIEnvInit(&envhp, OCI_OBJECT, (size_t)0, (dvoid **)0);
(void) OCIHandleAlloc((dvoid *)envhp, (dvoid **)errhp, OCI_HTYPE_ERROR, (size_
t)0, (dvoid **)0);
/* ... use the handles ... */
(void) OCIHandleFree((dvoid *)errhp, OCI_HTYPE_ERROR);
}

Error Handling
Routines that return errors will generally return OCI_SUCCESS or OCI_ERROR.
Some routines may return OCI_SUCCESS_WITH_INFO, OCI_INVALID_HANDLE, or

OCI_NO_DATA. If OCI_ERROR or OCI_SUCCESS_WITH_INFO is returned, then an

error code, an error facility, and possibly an error message can be retrieved by

calling OCIErrorGet :

{
OCIError *errhp;
ub4 errcode;
text buffer[512];
(void) OCIErrorGet((dvoid *)errhp, 1, (text *)NULL, &errcode, buffer,
 sizeof(buffer), OCI_HTYPE_ERROR);
}

Memory Services
Memory management is one of the services that is required by cartridge developers.

The memory service allows the client to allocate or free memory chunks. Each

memory chunk is associated with a duration. This allows clients to automatically

free all memory associated with a duration (at the end of the duration). The

duration determines the heap that is used to allocate the memory. The memory

service predefines three kinds of durations: call (OCI_DURATION_CALL), statement

(OCI_DURATION_STATEMENT) and session (OCI_DURATION_SESSION).

The client can also create a user duration. The client has to explicitly start and

terminate a user duration. Thus, the client can control the ’length’ of a user
9-4 Oracle8i Data Cartridge Developer’s Guide

Maintaining Context
duration. Like the predefined durations, a user duration can be used to specify the

allocation duration (e.g., memory chunks are freed at the end of the user duration).

Each user duration has a parent duration. A user duration terminates implicitly

when its parent duration terminates. A parent duration can be call, statement,

transaction, session or any other user duration. Memory allocated in the user

duration comes from the heap of its parent duration.

The Oracle RDBMS memory manager already supports a variety of memory

models. Currently callouts support memory for the duration of that callout. With

the extension of row sources to support external indexing, there is a need for

memory of durations greater than a callout.

The following functionality is supported:

■ Allocate (permanent and freeable) memory of following durations

– call to agent process

– statement

– session

– shared attributes (meta-data) for cartridges

■ Ability to re-allocate memory

■ Ability to create a subduration memory i.e., a sub heap which gets freed up

when the parent heap gets freed up. Memory for this sub heap can be allocated

and freed.

■ Ability to specify zeroed memory

■ Ability to allocate large contiguous memory

Maintaining Context
Context management allows the clients to store values across calls. Cartridge

services provide a mechanism for saving and restoring context.

Most operating systems which support threads have the concept of thread context.

Threads can store thread specific data in this context (or state) and retrieve it at any

point. This provides a notion of thread global variable. Typically a pointer which

points to the root of a structure is stored in the context.

When the row source mechanism is externalized, you will need a mechanism to

maintain state between multiple calls to the same row source.
Using Cartridge Services 9-5

National Language Service (NLS)
There is a need to maintain session, statement and process states. Session state

includes information about multiple statements that are open, message files based

on sessions NLS settings etc. Process state includes shared metadata, (this can also

be system wide shared), message files etc. Depending on whether the cartridge

application is truly multi threaded, information sharing can be at a process level or

system level.

Since a user can be using multiple cartridges at any time, the state that is

maintained has to be per cartridge. This is implemented by requiring the user to

supply a key for each duration.

Durations
There are various predefined types of durations supported on memory and context

management calls. An additional parameter in all these calls is a context.

■ OCI_DURATION_CALL. The duration of this operation is that of a callout.

■ OCI_DURATION_STATEMENT. The duration of this operation is the external row

source.

■ OCI_DURATION_SESSION. The duration of this operation is the user session.

■ OCI_DURATION_PROCESS. The duration of this is agent process.

National Language Service (NLS)
To support multilingual application, NLS functionality is required for cartridges

and callout. NLSRTL is multi-platform and multilingual library current used in

RDBMS and provides consistent NLS behavior to all Oracle products.

NLS basic services will provide the following language and cultural sensitive

functionality:

■ Locale information retrieval.

■ String manipulation in the format of Multi-byte and Wide-char.

■ Character set conversion including Unicode support.

■ Messaging mechanism.

NLS language information retrieval
An Oracle locale consists of language, territory and character set definitions. The

locale determines conventions such as native day and month names; and date, time,
9-6 Oracle8i Data Cartridge Developer’s Guide

Parameter Manager Interface
number, and currency formats. An internationalized application will obey a user’s

locale setting and cultural convention. For example, in a German locale setting,

users will expect to see day and month names in German spelling etc. The

following interface provides a simple way to retrieve local sensitive information.

String manipulation
Two types of data structure are supported for string manipulation: multi-byte string

and wide char string. Multi-byte string is in native Oracle character set encoding

and functions operated on it take the string as a whole unit. Wide char string

function provides more flexibility in string manipulation and supports

character-based and string-based operations.

The wide char data type we use here is Oracle specific and not to be confuse with

the wchar_t defined by ANSI/ISO C standard. The Oracle wide char is always 4

bytes in all the platform, while wchar_t is implementation/platform dependent.

The idea of Oracle wide char is to normalize multibyte character to have a

fixed-width for easy processing. Round-trip conversion between Oracle wide char

and native character set is guaranteed.

The string manipulation can be classified into the following categories:

■ Conversion of string between multibyte and wide char.

■ Character classifications.

■ Case conversion.

■ Display length calculation.

■ General string manipulation, such as compare, concatenation and searching.

Parameter Manager Interface
The parameter manager provides a set of routines to process parameters from a file

or a string. Routines are provided to process the input and to obtain key and value

pairs. These key and value pairs are stored in memory and routines are provided

which can access the values of the stored parameters.

The input processing routines match the contents of the file or the string against an

existing grammar and compare the key names found in the input against the list of

known keys that the user has registered. The behavior of the input processing

routines can be configured depending on the bits that are set in the flag argument.
Using Cartridge Services 9-7

Parameter Manager Interface
The parameters can be retrieved either one at a time or all at once by calling a

function that iterates over the stored parameters.

Input Processing
Parameters consist of a key, or parameter name, type, and a value and must be

specified in the following format:

key = value

Parameters can optionally accept lists of values which may be surrounded by

parentheses. The following two formats are acceptable for specifying a value list:

key = (value1 value2 ... valuen)
key = value1 value2 ... valuen

A value can be a string, integer, OCINumber, or Boolean. A boolean value starting

with 'y ' or 't ' maps to TRUE and a boolean value starting with 'n' or 'f ' maps to

FALSE. The matching for boolean values is case insensitive.

The parameter manager views certain characters as “special characters” which are

not parsed literally. The special characters and their meanings are indicated below:

If a special character must be treated literally, then it must either be prefaced by the

escape character or the entire string must be surrounded by single or double quotes.

A key string can contain alphanumeric characters only. A value can contain any

characters. However, the value cannot contain special characters unless they are

quoted or escaped.

Table 9–1 Special Characters and their Meanings

Character Meaning

Comment (only for files)

(Start a list of values

) End a list of values

" Start or end of quoted string

' Start or end of quoted string

= Separator of keyword and value

\ Escape character
9-8 Oracle8i Data Cartridge Developer’s Guide

Parameter Manager Interface
Parameter Manager Behavior Flag
The routines to process a file or a string take a behavior flag that can alter certain

default characteristics of the parameter manager. The following bits can be set in the

flag to produce the new behavior:

■ OCI_EXTRACT_CASE_SENSITIVE. All comparisons are case sensitive. The

default is to use case insensitive comparisons.

■ OCI_EXTRACT_UNIQUE_ABBREVS. Unique abbreviations are allowed for keys.

The default is that unique abbreviations are not allowed.

■ OCI_EXTRACT_APPEND_VALUES. If a value or values are already stored for a

particular key, then any new values for this key should be appended. The

default is to return an error.

Key Registration
Before invoking the input processing routines (OCIExtractFromFile or

OCIExtractFromString), all of the keys must be registered by calling

OCIExtractSetNumKeys followed by OCIExtractSetKey .

OCIExtractSetKey requires the following information for each key:

■ Name of the key

■ Type of the key (integer , string , boolean , OCINumber)

■ OCI_EXTRACT_MULTIPLE is set for the flag value if multiple values are

allowed (default: only one value allowed)

■ Default value to be used for the key (may be NULL)

■ Range of allowable integer values given by the starting and ending value,

inclusive (may be NULL)

■ List of allowable string values (may be NULL)

Parameter Storage and Retrieval
The results of processing the input into a set of keys and values are stored. The

validity of the parameters is checked before storing the parameters in memory. The

values are checked to see if they are of the proper type. In addition, if you wish, the

values can be checked to see if they fall within a certain range of integer values or

are members of a list of enumerated string values. Also, if you do not specify that a

key can accept multiple values, then an error will be returned if a key is specified
Using Cartridge Services 9-9

File I/O
more than once in a particular input source. Also, an error will be returned if the

key is unknown.

After the processing is completed, the value(s) for a particular key can be queried.

Separate routines are available to retrieve a string value, an integer value, an

OCINumber value, and a boolean value.

It is possible to retrieve all parameters at once. The function OCIExtractToList
must first be called to generate a list of parameters that is created from the

parameter structures stored in memory. OCIExtractToList will return the

number of unique keys stored in memory, and then OCIExtractFromList can be

called to return the list of values associated with each key.

Parameter Manager Context
The parameter manager maintains its own context within the OCI environment

handle. This context stores all the processed parameter information and some

internal information. It must be initialized with a call to OCIExtractInit and

cleaned up with a call to OCIExtractTerm .

File I/O
The OCI file I/O package is designed to make it easier for you to write portable

code that interacts with the file system by providing a consistent view of file I/O

across multiple platforms.

You need to be aware of two issues when using this package in a data cartridge

environment. The first issue is that this package does not provide any security when

opening files for writing or when creating new files in a directory other than the

security provided by the operating system protections on the file and directory. The

second issue is that this package will not support the use of file descriptors across

calls in a multi-threaded server environment.

String Formatting
The OCI string formatting package facilitates writing portable code that handles

string manipulation by means of the OCIFormatString routine. This is an

improved and portable version of sprintf that incorporates additional

functionality and error checking that the standard sprintf does not. This

additional functionality includes:

■ Arbitrary argument selection.
9-10 Oracle8i Data Cartridge Developer’s Guide

String Formatting
■ Variable width and precision specification.

■ Length checking of the buffer.

■ Oracle National Language Support for internationalization.
Using Cartridge Services 9-11

String Formatting
9-12 Oracle8i Data Cartridge Developer’s Guide

Part III

Advanced Topics

Chapter 10, "Design Considerations"

Design Conside
10

Design Considerations

This chapter describes various design considerations, including:

■ Designing the types

■ Callouts

■ Designing Indexes

■ Designing Operators

■ Talking to the Optimizer

■ Design for maintenance

■ Miscellaneous
rations 10-1

Designing the types
Designing the types

Structured and Unstructured Data
Structured data is one whose type is expressible to Oracle in the form of an Object

Type. Unstructured data is one which is un-interpretable by Oracle, that is, whose

type is a RAW or a BLOB. The choice of modeling cartridge data as structured or

unstructured depends on the following considerations:

1. Structured data can be shared by different applications since the structure is

published in Oracle.

2. Structured types provide strong type checking whereas unstructured data does

not.

3. Structured data is easily queried whereas unstructured data is not. One has to

publish user-defined functions to facilitate querying the unstructured data.

4. Constraints are easily supported on structured data but not on unstructured

data.

5. Indexes are easily supported on structured data, whereas, on unstructured data

indices on user-defined functions would need to be created, or extensible

indexes would need to be defined.

6. Structured data needs to be marshalled by Oracle to be retrieved to client as a

value, whereas, unstructured data is easily retrievable as a value.

Using Nested Tables or VARRAYs
In deciding whether to use a nested table or a VARRAY type to model a collection, it

is important to understand how these are implemented in Oracle to make the right

design choice. Logically, nested tables differ from VARRAYs in one fundamental

way: VARRAYs represent ordered set of items whereas nested tables do not. But,

physically, nested tables can only be represented as tables, whereas VARRAYs can

only be represented as raw columns or LOB columns. The implications of their

physical representation is the following:

Nested Tables
■ Nested tables are better suited for querying since elements are represented as

rows.

■ Indices may be created on columns of nested tables for faster searches.
10-2 Oracle8i Data Cartridge Developer’s Guide

Designing the types
■ Constraints may be specified for nested tables.

■ Clustering of nested elements belonging to a common parent row is possible

when the storage table is specified as an Index Organized Table, furthermore,

specifying key compression reduces the overhead of the system assigned

NESTED_TABLE_ID values.

■ When stored as a Heap Organized Table, creating an index on the NESTED_
TABLE_ID column enhances retrieval of nested tables.

■ Retrieving the nested table as a value for a given parent incurs the overhead of

selecting and marshalling the individual rows to form the collection value.

■ Even though parent tables may be partitioned, storage tables corresponding to

their nested tables cannot be partitioned.

VARRAYs
■ A VARRAYs is better suited for retrieval as a value since that is s how it is stored.

■ Support for indexing, specification of constraints on VARRAYs is not available.

■ Querying of VARRAYs is sub-optimal since rows have to materialized from

collection value.

■ Partitioning of VARRAYs stored as LOBs is permitted when the parent table is

partitioned.

Based on the above implications, if the ability to query of update individual

collection elements is important, then nested tables are a better choice to model

your collection data. On the other hand, if your application is requires fetching the

entire collection as a whole and then operating on it, modeling the collection data as

a VARRAY will yield better retrieval performance.

Working Around Inheritance
Inheritance is a technique used in object-oriented development to create objects that

contain generalized attributes and behavior for groups of related objects. The more

general objects created using inheritance are referred to as a super-types. The

objects that "inherit" from the super-types (i.e. are more specific cases of the

super-type) are called subtypes.

A common case of inheritance is that of Person and Employee . Some instances of

person are employees. The more general case, Person , is the super-type and the

special case, Employee , the sub-type. Another example could involve a Vehicle
as super-type and Car , Truck as its sub-types.
Design Considerations 10-3

Designing the types
Figure 10–1 Class Diagram: Vehicle as Super-type, Car and Truck as Subtypes

Inheritance Implementation Consequences
Inheritance can imply various levels of encapsulation for super-types. In cases

where the super-type should not be exposed to other objects, a subtype should

contain the methods and attributes necessary to make the super-type invisible. To

understand the implementation consequences of the inheritance, it is also important

to remember that Oracle8i is a strongly-typed system. A strongly-typed system

requires that the type of an attribute is declared when the attribute is declared. Only

values of the declared type may be stored in the attribute. For example, the Oracle8i
collections are strongly-typed. Oracle8i does not allow the implementation of

heterogeneous collections (collections of multiple types).

Simulating Inheritance
Inheritance can be implemented in Oracle8i using one of the following three

techniques:

■ Subtype Contains Super-type

■ Super-type Contains or References All Subtypes

■ Dual Subtype / Super-type Reference.

See Also:

■ WORKING WITH USER-DEFINED TYPES in Oracle8i Application
Developer’s Guide - Fundamentals

Vehicle

Car Truck
10-4 Oracle8i Data Cartridge Developer’s Guide

Designing the types
Subtype Contains Super-type

Figure 10–2 Object-Relational Schema — Subtype Contains Super-type

The Subtype Contains Super-type technique hides the implementation of the

Table SUBSCONTAINSUPER_TAB

CAR_OBJ TRUCK_OBJ . . .

Object Type
CAR_OBJTYP

. . .

Object Type
TRUCK_OBJ

VEHICLE_OBJ (of VEHICLE_OBJTYP)

MODE OF TRAVEL WHEELS . . .

Text
VARCHAR2(20)

. . .

Boolean
BOOLEAN

Column Object CAR_OBJ (of CAR_OBJTYP)

VEHICLE_OBJ . . .

Object Type
VEHICLE_OBJTYP

. . .

Column Object TRUCK_OBJ (of TRUCK_OBJTYP)

VEHICLE_OBJ . . .

Object Type
VEHICLE_OBJTYP

. . .

Column
object of the
defined type

Column
object of the
defined type

Column
object of the
defined type

Column
object of the
defined type

MEMBER FUNCTION get Mode Of Travel
RETURN VARCHAR2(20)

MEMBER FUNCTION get Mode Of Travel
RETURN VARCHAR2(20)
Design Considerations 10-5

Designing the types
abstractions/generalizations for a subtype. Each of the subtypes are exposed to

other types in the object model. The super-types are not exposed to other types. To

simulate inheritance, the super-type in the design object model is created as an

object type. The subtype is also created as an object type. The super-type is defined

as an embedded attribute in the subtype. All of the methods that can be executed

for the subtype and it's super-type must be defined in the subtype.

The Subtype Contains Super-type technique is used when each subtype has specific

relationships to other objects in the object model. For example, a super-type of

Customer may have subtypes of Private Customer and Corporate Customer .

Private Customers have relationships with the Personal Banking objects,

while Corporate Customers have relationships with the Commercial Banking
objects. In this environment, the Customer super-type is not visible to the rest of

the object model.

In the Vehicle -Car /Truck example, the Vehicle (super-type) is embedded in

the sub-types Car and Truck .
10-6 Oracle8i Data Cartridge Developer’s Guide

Designing the types
Super-type Contains All Subtypes

Figure 10–3 Object-Relational Schema — Super-type Contains All Subtypes

The Super-type Contains All Subtypes technique hides the implementation of the

subtypes and only exposes the super-type. To simulate inheritance, all of the

subtypes for a given super-type in the design object model are created as object

types. The super-type is created as an object type as well. The super-type declares

an attribute for each subtype. The super-type also declares the constraints to enforce

the one-and-only-one rules for the subtype attributes. All of the methods that can be

executed for the subtype must defined in the super-type.

The Super-type Contains All Subtypes technique is used when objects have

relationships with other objects that are predominately one-to-many in multiplicity.

For example, a Customer can have many Accounts and a Bank can have many

Accounts . The many relationships require a collection for each subtype if the

Subtype Contains Super-type technique is used. If the Account is a super-type and

Checking and Savings are subtypes, both Bank and Customer must implement

a collection of Checking and Savings (4 collections). Adding a new account

Table SUPERCONTAINSUBS_TAB (of VEHICLE_OBJTYP)

CAR_OBJ TRUCK_OBJ . . .

Column Object
CAR_OBJTYP

. . .

Column Object
TRUCK_OBJTYP

Column Object CAR_OBJ (of CAR_OBJTYP)

WHEELS . . .

Number
NUMBER

ARMOR PLATED

Boolean
BOOLEAN

. . .

Column Object TRUCK_OBJ (of TRUCK_OBJTYP)

WHEELS . . .

Number
NUMBER

ARMOR PLATED

Boolean
BOOLEAN

. . .

Column
object of the
defined type

Column
object of the
defined type

MEMBER FUNCTION is Stick Shift
RETURN BOOLEAN
Design Considerations 10-7

Designing the types
subtype requires that both Customer and Bank add the collection to support the

new account subtype (2 collections per addition). Using the Super-type Contains All
Subtypes technique means that the customer and bank have a collection of

Account . Adding a subtype to Accounts means that only account changes.

In the case of the Vehicle -Car /Truck , the Vehicle is created with Car and

Truck as embedded attributes of Vehicle .

Dual Subtype / Super-type Reference

Figure 10–4 Object-Relational Schema — Dual Subtype / Super-type Reference

In cases where the super-type is involved in multiple object-relationships with

many for a multiplicity and the subtypes have specific relationships in the object

model, the implementation of Inheritance is a combination of the two inheritance

techniques. The super-type is implemented as an object type. Each subtype is

implemented as an object type. The super-type implements a referenced attribute

for each subtype (zero referenced relationship). The super-type also implements an

Table DUALSUBSREFSUPER_TAB (of VEHICLE_OBJTYP)

CAR_REF TRUCK_REF . . .

Reference
CAR_OBJTYP

VIN

PK

Number
NUMBER

Reference
TRUCK_OBJTYP

Table CAR_TAB (of CAR_OBJTYP)

WHEELS . . .

Number
NUMBER

SEATS

Number
NUMBER

VIN

PK

Number
NUMBER

Table TRUCK_TAB (of TRUCK_OBJTYP)

WHEELS . . .

Number
NUMBER

HAULS

Weight
NUMBER

VIN

Number
NUMBER

References a row
in the table of the
defined type

References a row
in the table of the
defined type

References
10-8 Oracle8i Data Cartridge Developer’s Guide

Designing the types
or-association for the group of subtype attributes. Each subtype implements a

referenced attribute for the super-type (one referenced relationship). In this way,

both the super-type and sub-type are visible to the rest of the object model.

In the case of the Vehicle -Car /Truck , the Vehicle is created as an type. The

Car and Truck are created as types. The Vehicle type implements a reference to

both Car and Truck , with the or-constraint on the Car and Truck attributes. The

Car implements an attribute that references Vehicle . The Truck implements an

attribute that references Vehicle .

Writing Methods: PL/SQL, C or Java?
When writing methods for object types, you have multiple implementation choices

– PL/SQL, C/C++ and Java. Of these, PL/SQL and Java methods run within the

address space of the server. C/C++ methods are dispatched as external procedures

and run outside the address space of the server.

The best implementation choice varies from situation to situation. The following

rules of thumb might be of help.

1. A callout involving C or C++ is, in general, the fastest if the nature of

processing is substantially CPU-bound. However, callouts incur the cost of

dispatch, and if the amount of processing in C/C++ is not large then the cost of

dispatch does not amortize very well.

2. PL/SQL tends to offer the best price-performance for methods that are not

computation-intensive. The other implementation options are typically favored

over PL/SQL if you have a large body of code already implemented in another

language that you want to use a part of the data cartridge

3. Java is a relatively open implementation choice. The interpreted nature of Java

implies that for high performance applications, some sort of compilation of

methods written in Java will be needed.

Invokers Rights — Why, When, How
Until release 8.1.5, stored procedures and SQL methods could only execute with the

privileges of the definer. Such definer-rights routines are bound to the schema in

which they reside, and this remains the default. Under this condition, a routine

executes with the rights of the definer of the function, not the user invoking it.

However, this is a limitation if the function statically or dynamically issues SQL

statements.
Design Considerations 10-9

Callouts
For example, if the function had a static cursor that performs a SELECT from USER_
TABLES, the USER_TABLES it would retrieve would be that of the definer

irrespective of which user was using the function. For the function to be used

against data not owned by the definer, explicit GRANTs had to be issued from the

owner to the definer, or the function needed to be defined in the same schema

where the data resided. The former course creates security and administration

problems; the latter forces the function to be redefined in each schema that needs to

use it.

The invoker-rights mechanism, introduced in Orace8i release 8.1.5, permits a

function to execute with the privileges of the invoker. This permits cartridges to live

within a schema dedicated to the cartridge and to be used by other schemas

without requiring privileges be granted to operate on objects in the schema where

the cartridge resides.

Callouts

When to Callout
You should consider utilizing callouts in the following circumstances:

■ When it would be impractical or impossible to code the algorithm you require

in SQL.

■ When the performance gains of a compiled language (e.g., C) outweigh the

extproc callout overhead

■ When you wish to leverage existing 3GL code

When to Callback
You should consider utilizing callbacks in the following circumstances:

■ When you need data that was not passed as an argument to the call out.

■ When it isn’t practical to pass the data to the call out (e.g., the number and size

of the parameters exceeds that which is allowed or performs well).

Consider making a single callout which does multiple callbacks rather than

multiple callouts (e.g. instead of a factorial callout which takes a single number and

computes a the factorial for it, consider making a callout which takes a VARRAY and

repeatedly calls back to get next number to compute the factorial for. You always do

performance testing to see at what at point the multi-call back approach

out-performs the multi-callout approach
10-10 Oracle8i Data Cartridge Developer’s Guide

Designing Indexes
Callouts and LOB
■ It may be to your advantage to code your callout so that it is independent of

LOB type (BFILE /BLOB).

■ The PL/SQL layer of your cartridge can "open" your BFILE so that no

BFILE -specific logic is required in your callout (other than error recovery from

OCILob calls that do not operate on BFILEs).

■ With the advent of temporary LOBs in Orace8i release 8.1.5, you need to be

aware of the deep copy that can occur when assignments and calls are done

with temporary LOBs. Use "NOCOPY" (by REF) on BLOB parameters as

appropriate.

Saving and Passing State
External procedures under Oracle 8.0 have a "state-less" model. All Statement

handles opened during the invocation of an external procedure are closed implicitly

at the end of the call.

In Oracle 8.1, we allow "state" (OCI Statement handles etc. and associated state in

the DBMS) to be saved and used across invocations of external procedures in a

session.B y default cartridges are still stateless, however, OCIMemory services and

OCIContext services can be used with OCI_DURATION_SESSION or other

appropriate duration to save state. Statement handles created in one external

procedure invocation can get re-used in another. The Data Cartridge developer

needs to explicitly free these handles. It is recommended that this is done as soon as

the statement handle is no longer needed. All state maintained for the statement in

the OCI handles and in the DBMS would get freed as a result. This should help in

improving the scalability of the Data Cartridge.

Designing Indexes

Influencing Index Performance
It is wrong to assume that creating domain index is always the best course. If, after

careful consideration, you determine that you need to create domain index, you

should keep the following factors in mind. For one, if the domain index is complex,

the functional implementation will work better

■ When the data size is small

■ When the result is a large percentage of the total data size.
Design Considerations 10-11

Designing Indexes
Judicious use of the extensible optimizer can lead to good performance.

Influencing Index Performance
Naming of internal components can be an issue. Naming of internal data objects for

a domain index implementation and are typically based on names you provide for

table and indexes. The problem is that the derived names for the internal objects

should not conflict with any other user defined object or system object. You may

have to develop some policy that restricts names, or implement some metadata

management scheme to avoid errors duringDROP,CREATEetc.

When to Use IOTs
You can create only one index on IOTs in 8.0.x releases. However, if most of your

data is in the index, it’s more efficient than storing your data in both the table and

then an additional index.

You can create secondary indexes on IOTs in Orace8i release 8.1.5 which offers a big

advantage if you are accessing the data different ways.

Can Index Structures Be Stored in LOBs
Index structures can be stored in LOBs but take care to tune the LOB for best

performance. If you are accessing a particular LOBfrequently, create your table with

the CACHE option and place the LOB index in a separate tablespace. If you are

updating a LOB frequently, TURN OFF LOGGING and read/write in multiples of

CHUNKsize. If you are accessing a particular portion of a LOBfrequently, buffer your

reads/writes using LOB buffering or your own buffering scheme.

External Index Structures
With the extensible indexing framework, the meaning and representation of a

user-defined index is left to the cartridge developer. We do provide basic index

implementations such as IOTs. In certain cases, binary or character LOBs can also be

used to store complex index structures. IOTs, BLOBs and CLOBs all live within the

database. In addition to them, you may also store a user-defined index as a

structure external to the database, say in a BFILE .

The external index structure gives you the most flexibility in terms of how your

index is represented. It is useful if you have already invested in the development of

in-memory indexing structures. For example, an operating system file may store

index data, which is read into a memory mapped file at run time. Such cases may be

handled as BFILEs in the external index routines.
10-12 Oracle8i Data Cartridge Developer’s Guide

Designing Indexes
External index structures may provide superior performance. However, this comes

at some cost. Index structures external to the database do not participate in the

transaction semantics of the database which, in the case of index structures inside

the database, make data and concomitant index updates atomic. This means that if

update to the data causes an update for the external index to be invoked via the

extensible indexing interface, any failures may cause the data updates to be rolled

back but not the index updates. The database can only roll back what is internal to it

— external index structures cannot be rolled back in synchronization with a

database rollback.

External index structures can be very useful for read-only access. Their semantics

become complex if updates to data are involved.

Multi-Row Fetch
ODCIIndexFetch(self IN [OUT] <impltype>, nrows IN NUMBER, rids OUT ODCIRidList)
RETURN NUMBER

When the ODCIIndexFetch routine is called, the ROWIDs of all the rows that

satisfy the operator predicate are returned. The maximum number of rows that can

be returned by the ODCIIndexFetch routine is nrows (nrows being an argument

to the ODCIIndexFetch routine). The value of nrows is decided by Oracle based

on some internal factors. If you have a better idea of the number of rows that ought

to be returned to achieve optimal query performance, you can determine that this

number of rows is returned in the ODCIRidList VARRAY instead of nrows . Note

that the number of values in the ODCIRidList has to be less than or equal to

nrows .

You, as cartridge designer, are in the best position to make a judgement regarding

the number of rows to be returned. For example, if in the index the number of (say

1500) rowids are stored together and nrows = 2000, then it may be optimal to return

1500 rows in lieu of 2000 rows. Otherwise the user would have to retrieve 3000

rowids, return 2000 if them and note which 1000 rowids were not returned.

If you not have any specific optimization in mind, you can use the value of nrows
to determine the number of rows to be returned. Currently the value of nrows has

been set to 2000.

Anyone implementing indexes which use callouts should use multirow fetch to fetch

the largest number of rows back to the server. This offsets the cost of making the

callout.
Design Considerations 10-13

Designing Operators
Designing Operators

Functional and Index Implementations
All indexes should contain an indexed and functional implementation of the

operator, in case the optimizer chooses not to use the indexed implementation.

You can, however, use the indexing structures to produce the functional result.

Talking to the Optimizer

Weighing Cost and Selectivity

Estimating Cost
In Orace8i release 8.1.5 only the CPU and I/O costs are considered.

Cost for functions The cost of executing a C function can be determined using

common profilers or tools. For SQL queries, an explain plan of the query would

give a rough estimate of the cost of the query. In addition the tkprof utility can be

used to gather information about the CPU and the I/O cost involved in the

operation. The cost of executing a callout could also be determined by using it in a

SQL query which "selects from dual" and then estimating its cost from the tkprof
utility.

Cost for Indexes The cost of the index is a function of the selectivity of the predicate

(which is passed as an argument to the cost function) * the total number of data

blocks in the index structures. Hence the index cost function should be one which

increases with the increase in selectivity of the predicate. With a selectivity of 100%,

the cost of accessing the index should be the cost of accessing all the data in all the

structures that comprise the domain index.

The total cost of accessing the index is the cost of performing the

ODCIIndexStart , N * ODCIIndexFetch and ODCIIndexClose operators,

where N is the number of times the ODCIIndexFetch routine will be called based

on the selectivity of the predicate. The cost of ODCIIndexStart ,

ODCIIndexFetch and ODCIIndexClose functions can be determined as

discussed above.
10-14 Oracle8i Data Cartridge Developer’s Guide

Talking to the Optimizer
Estimating Selectivity

Selectivity for Functions The selectivity of a predicate is the percentage of rows

returned by the predicate divided by the total number of rows in the table(s).

The selectivity function should use the statistics collected for the table to determine

what percentage of rows of the table will be returned by the predicate with the

given list of arguments. For example, to compute the selectivity of a predicate

IMAGE_GREATER_THAN (Image SelectedImage) which determines the images

that are greater than the Image SelectedImage , a histogram of the sizes of the

images in the database can be a useful statistics to compute the selectivity.

Collecting Statistics
Statistics can affect the calculation of selectivity for predicates and also the cost of

domain indexes.

Statistics for Tables The statistics collected for a table can affect the computation of

selectivity of a predicate. So statistics that can help the user make a better

judgement about the selectivity of a predicate should be collected for a

table/column. Knowing the predicates that would operate on the data will be

helpful to determine what statistics would be good to collect.

Some example of statistics that can be useful in spatial domain for example could be

the average/min/max number of elements in a VARRAY that contains the nodes of

the spatial objects.

Note that standard statistics are collected in addition to the user defined statistics

when the ANALYZE command is invoked.

Statistics for Indexes When a domain index is analyzed statistics for the underlying

objects which constitute the domain index should be analyzed. For example if the

domain index is comprised of tables, the statistics collection function should

ANALYZE the tables when the domain index is analyzed. The cost of accessing the

domain index can be influenced by the statistics that have been collected for the

index. For example the cost of accessing a domain index could be approximated to

the selectivity * the total number of data blocks (in the various tables) being

accessed when the domain index is accessed.

To accurately define cost, selectivity and statistics functions, a good understanding

of the domain is required. The above guidelines are meant to help you understand

some of the issues you need to take into account while working on the cost,

selectivity and statistics functions. In general it may be a good idea to start of by
Design Considerations 10-15

Design for maintenance
using the default cost and selectivity and observe how the queries of interest

behave.

Design for maintenance
■ Carefully design your object types and methods. Object types are difficult to

upgrade once they are in use by applications.

■ Use OIDs in all of your object types so users can import/export data easily

across databases.

■ It is easy to add a method to a type; it’s hard to remove it.

■ You are likely get more use out of the cartridge and the existing tool stack if you

support functions against a traditional relational model in addition to an object

model.

■ Expose significant and frequently used data from your complex objects in object

types as attributes so that you can build an index on them.

■ If your cartridge maintains a large number of objects, views, tables, etc.,

consider making a metadata table to maintain the relationships among the

objects for the user. This will ease the complexity of developing and

maintaining the cartridge when it is in use.

How to Make Your Cartridge Extensible
■ Keep your interface simple, and document it thoroughly.

■ Use OO concepts appropriately.

■ Ensure that your methods do not have side affects

How to Make Your Cartridge Installable
■ Include a README with your cartridge to tell users how to install the cartridge

■ Make the cartridge installable in one step in the database, if possible:

sqlplus @imginst

■ Tell users how to start the listener if you are using callouts.

■ Tell users how to setup extproc . Most users have never heard of extproc and

many users have never set up a listener. This is the primary problem when

deploying cartridges.
10-16 Oracle8i Data Cartridge Developer’s Guide

Miscellaneous
■ In Orace8i release 8.1.5 using the software packager, you can easily create

custom SQL install scripts by using the ’instantiate_file’ action. This is a

great feature that allows you to substitute variables in your files when they are

installed and it leaves your user with scripts and files that are customized for

their machine.

Miscellaneous

How to Write Portable Cartridge Code
You should:

■ Use the datatypes in oratypes.h

■ Use OCI calls where ever possible.

■ Use the switches which enforce ANSI C conformance when possible

■ Use ANSI C function prototypes

■ Build and test on your target platforms as early in your development cycle as

possible (flush out platform specific code and allow as much time to redesign as

possible).

You should avoid:

■ Storing endian (big/little) specific data

■ Storing floating point data (IEEE/VAX/other)

■ Operating System specific calls (if they can’t be avoided, isolate them in an OS

specific layer, however the calls you require are not in the OCI, and also are not

in POSIX, then you are likely to encounter intractable problems)

■ int <-> size_t implicit casts on a 64 bit platform
Design Considerations 10-17

Miscellaneous
10-18 Oracle8i Data Cartridge Developer’s Guide

Part IV

Scenarios and Examples

This section includes two examples:

■ A comprehensive example based on a hypothetical cartridge coded in PL/SQL

— Chapter 11, "Power Demand Cartridge Example"

■ An example of extensible indexing coded in C — Chapter 12, "SBTREE: An

Example of Extensible Indexing"

Power Demand Cartridge E
11

 Power Demand Cartridge Example

This chapter explains the power demand sample data cartridge that is included

with the Oracle8i Data Cartridge Software Development Kit (SDK). The power

demand cartridge includes a user-defined object type, extensible indexing, and

optimization. This chapter covers the following topics:

■ "Modeling the Application" on page 11-9, including the technical and business

scenario

■ "Queries and Extensible Indexing" on page 11-13, describing kinds of queries

that benefit from domain indexes

■ "Creating the Domain Index" on page 11-15, explaining how the index and

related structures for the example were created.

■ "Creating the Extensible Optimizer Methods" on page on page 11-40,

explaining how the methods for the extensible optimizer were created.

■ "Testing the Domain Index" on page 11-64, explaining how to test the domain

index and see if it is causing more efficient execution of queries than would

occur without an index

■ "Using Time Series with the Power Demand Cartridge" on page 11-74, showing

how to define Time Series objects and run time series queries with power

demand data

■ "Using Spatial with the Power Demand Cartridge" on page 11-81, showing how

to define Spatial objects and run spatial queries with power demand data

This chapter does not explain in detail the concepts related to the features

illustrated. For information about extensible indexing, see Chapter 7, "Building

Domain Indexes". For information about extensible query optimization, see Chapter

8, "Query Optimization". For information about cartridge services, see Chapter 9,

"Using Cartridge Services"].
xample 11-1

This chapter divides the example into segments and provides commentary. The

entire cartridge definition is available online in the following location:

...directory-path?.../tkqxpwr.sql [location and name TBS]

Feature Requirements
A power utility, Power-To-The-People, develops a sophisticated model to decide how

to deploy its resources. The region served by the utility is represented by a grid laid

over a geographic area.

This region may be surrounded by other regions some of whose power needs are

supplied by other utilities. As pictured above, every region is composed of

geographic quadrants referred to as "cells" on a 10x10 grid. There are a number of

ways of identifying cells — by spatial coordinates (longitude/latitude), by a matrix

numbering (1,1; 1,2;...), and by numbering them sequentially:

ClintonVicksburg
11-2 Oracle8i Data Cartridge Developer’s Guide

Figure 11–1 Regional Grid Cells in Numbered Sequence

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100
Power Demand Cartridge Example 11-3

Within the area represented by each cell, the power used by consumers in that area

is recorded each hour. For example, the power demand readings for a particular

hour might be represented by Table 11–2 (cells here represented on a matrix):

The power stations also receives reports from two other sources:

■ Sensors on the ground provide temperature readings for every cell

By analyzing the correlation between historical power demand from cells and

the temperature readings for those regions, the utility is able to determine with

a close approximation what the demand will be, given specific temperatures.

■ Satellite cameras provide images regarding current conditions that are converted

into grayscale images that match the grid:

Table 11–1 Sample Power Demand Readings for an Hour

1 2 3 4 5 6 7 8 9 10

1 23 21 25 23 24 25 27 32 31 30

2 33 32 31 33 34 32 23 22 21 34

3 45 44 43 33 44 43 42 41 45 46

4 44 45 45 43 42 26 19 44 33 43

5 45 44 43 42 41 44 45 46 47 44

6 43 45 98 55 54 43 44 33 34 44

7 33 45 44 43 33 44 34 55 46 34

8 87 34 33 32 31 34 35 38 33 39

9 30 40 43 42 33 43 34 32 34 46

10 43 42 34 12 43 45 48 45 43 32
11-4 Oracle8i Data Cartridge Developer’s Guide

Figure 11–2 Grayscale Representation of Satellite Image

These images are designed so that ’lighter is colder’. The image above shows a cold

front moving into the region from the south-west. By correlating the data provided

by the grayscale images with temperature readings taken at the same time, the

utility has been able to determine what the power demand is given weather

conditions viewed from the stratosphere.

The reason that this is important is that a crucial part of this modeling has to do

with noting the rapidity and degree of change in the incoming reports as weather

changes and power is deployed. The following diagram shows same cold front at a

second recording:
Power Demand Cartridge Example 11-5

Figure 11–3 Grayscale Representation of Weather Conditions at Second Recording

By analyzing the extent and speed of the cold front, the utility is able to project what

the conditions are likely to be in the short and medium term:
11-6 Oracle8i Data Cartridge Developer’s Guide

Figure 11–4 Grayscale Representation of Conditions as Projected

By combing this data about these conditions, and other anomalous situations (such

as the failure of a substation) the utility must be able to organize the most optimal

deployment of its resources. The following drawing reflects the distribution of

substations across the region:
Power Demand Cartridge Example 11-7

Figure 11–5 Distribution of Power Stations Across the Region

The distribution of power stations means that the utility can redirect its deployment

of electricity to the areas of greatest need. The following figure gives a pictorial

representation of the overlap between three stations:

ClintonVicksburg
11-8 Oracle8i Data Cartridge Developer’s Guide

Modeling the Application
Figure 11–6 Areas Served by Three Power Stations

Depending on fluctuating requirements, the utility must be able to decide how to

deploy its resources, and even whether to purchase power from a neighboring

utility in the event of shortfall.

Modeling the Application
The following Class Diagram describes the application objects using the Unified

Modelling Language (UML) notation.

��
��
��
��
��

�����
�����
���
���
���
Power Demand Cartridge Example 11-9

Modeling the Application
Figure 11–7 Use Case Diagram for Power Demand Cartridge

Sample Queries
Modelling the application in this way, makes possible the following specific queries:

■ Find the cell (geographic quadrant) with the highest demand for a specified

time-period.

*1
Hourly Demand Status

calcTotalGridDemand
getMaxCellDemand
getMinCellDemand
isEqualToSpecificCell
isEqualToAnyCell

Date
Time
TotalGridDemand
MaxCellDemand
MinCellDemand

retrieves, stores

*1

is associated with

Cell Demand Reading

CellNo
Demand

Cell

CellNo

Meter

Power Cartridge User

Regional Grid

Grid No

Locator

NW
NE
SW
SE

has

has

1

100

has

1

2

reads
dem

and
for

1

1

Grid Coordinate

x
y

1

1

reads
temperature

for

provides
matching

image

has
Cell Temperature Reading

Temperature

Sensor
senses

Satellite Image

GreyScaleValue

Camera photographs 1

1

11
11

1*

11
11-10 Oracle8i Data Cartridge Developer’s Guide

Modeling the Application
■ Find the time-period with the highest total demand.

■ Find all cells where demand is greater than some specified value.

■ Find any cell at any time where the demand equals some specified value.

■ Find any time-period for which 3 or more cells had/have a demand greater

than some specified

■ Find the time-period for which there was the greatest disparity (difference)

between the cell with the minimum demand and the cell with the maximum

demand.

■ Find the times for which 10 or more cells had demand not less than some

specified value.

■ Find the times for which the average cell demand was greater than some

specified value. (Note: it is assumed that the average is easily computable by

TotalPowerDemand/100.)

■ Find the time-periods for which the median cell demand was greater than some

specified value. (Note: It is assumed that the median value is not easily

computable).

■ Find all time-periods for which the total demand rose 10 percent or more over

the preceding time's total demand.

These queries are, of course, only a short list of the possible information that could

be gleaned from the system. For instance, it is obvious that the developer of such an

application would want to build queries that are based on the information derived

from prior queries e.g.,

■ What is the percentage change in demand for a particular cell as compared to a

previous time-period?

■ Which cells demonstrate rapid increase / decrease in demand measured as

percentages greater / lesser than specified values.

The Power Demand cartridge as implemented is described in the class diagram

below.
Power Demand Cartridge Example 11-11

Modeling the Application
Figure 11–8 Use Case Diagram for Power Demand Cartridge

The utility gets ongoing reports from weather centers about current conditions and

from power stations about ongoing power utilization for specific geographical areas

(represented by cells on a 10x10 grid). It then compares this information to historical

data in order to predict demand for power in the different geographic areas for

given time periods.

*1
Hourly Demand Status

calcTotalGridDemand
getMaxCellDemand
getMinCellDemand
isEqualToSpecificCell
isEqualToAnyCell

Date
Time
TotalGridDemand
MaxCellDemand
MinCellDemand

retrieves, stores

*1

is associated with

Cell Demand Reading

CellNo
Demand

Cell

CellNo

Meter

Power Cartridge User

Regional Grid

Grid No

Locator

NW
NE
SW
SE

has

has

1

100

has

1

2

reads
dem

and
for

1

1

Grid Coordinate

x
y

1

1 has
11-12 Oracle8i Data Cartridge Developer’s Guide

Queries and Extensible Indexing
Each service area for the utility is considered as a 10x10 grid of cells, where each

cell’s boundaries are associated with spatial coordinates (longitude/latitude). The

geographical areas represented by the cells can be uniform or can have different

shapes and sizes. Within the area represented by each cell, the power used by

consumers in that area is recorded each hour. For example, the power demand

readings for a particular hour might be represented by Table 11–2.

The numbers in each cell reflect power demand (in some unit of measurement

determined by the electric utility) for the hour for that area. For example, the

demand for the first cell (1,1) was 23, the demand for the second cell (1,2) was 21,

and so on. The demand for the last cell (10, 10) was 32.

The utility uses this data for many monitoring and analytical applications. Readings

for individual cells are monitored for unusual surges or decreases in demand. For

example, the readings of 98 for (6,3) and 87 for (8,1) might be unusually high, and

the readings of 19 for (4,7) and 12 for (10,4) might be unusually low. Trends are also

analyzed, such as significant increases or decreases in total, per-neighborhood, and

per-station demand over time.

Queries and Extensible Indexing
Before you use extensible indexing, you should first ask whether the users of the

table will benefit from having the domain index. That is, will they execute queries

Table 11–2 Sample Power Demand Readings for an Hour

1 2 3 4 5 6 7 8 9 10

1 23 21 25 23 24 25 27 32 31 30

2 33 32 31 33 34 32 23 22 21 34

3 45 44 43 33 44 43 42 41 45 46

4 44 45 45 43 42 26 19 44 33 43

5 45 44 43 42 41 44 45 46 47 44

6 43 45 98 55 54 43 44 33 34 44

7 33 45 44 43 33 44 34 55 46 34

8 87 34 33 32 31 34 35 38 33 39

9 30 40 43 42 33 43 34 32 34 46

10 43 42 34 12 43 45 48 45 43 32
Power Demand Cartridge Example 11-13

Queries and Extensible Indexing
that could run just as efficiently using a standard Oracle index, or using no index at

all.

Queries Not Benefiting from Extensible Indexing
A query does not require a domain index if both of the following are true:

■ The desired information can be made an attribute (column) of the table and a

standard index can be defined on that column.

■ The operations in queries on the data are limited to those operations supported

by the standard index, such as equals , lessthan , greaterthan , max, and

min for a b-tree index.

In the PowerDemand_Typ object type cartridge example, the values for three

columns (TotGridDemand , MaxCellDemand , and MinCellDemand) are set by

functions, after which the values do not change. (For example, the total grid power

demand for 13:00 on 01-Jan-1998 does not change after it has been computed.) For

queries that use these columns, a standard b-tree index on each column is sufficient

and recommended for operations like equals , lessthan , greaterthan , max,

and min .

Examples of queries that would not benefit from extensible indexing (using the

power demand cartridge) include:

■ Find the cell with the highest power demand for a specific time.

■ Find the time when the total grid power demand was highest.

■ Find all cells where the power demand is greater than a specified value.

■ Find the times for which the average cell demand or the median cell demand

was greater than a specified value.

To make this query run efficiently, define two additional columns in the

PowerDemand_Typ object type (AverageCellDemand and

MedianCellDemand), and create functions to set the values of these columns.

(For example, AverageCellDemand is TotGridDemand divided by 100.)

Then, create b-tree indexes on the AverageCellDemand and

MedianCellDemand columns.

Queries Benefiting from Extensible Indexing
A query benefits from a domain index if the data being queried against cannot be

made a simple attribute of a table or if the operation to be performed on the data is

not one of the standard operations supported by Oracle indexes.
11-14 Oracle8i Data Cartridge Developer’s Guide

Creating the Domain Index
Examples of queries that would benefit from extensible indexing (using the power

demand cartridge) include:

■ Find the first cell for a specified time where the power demand was equal to a

specified value.

By asking for the first cell, the query goes beyond a simple true-false check (such

as finding out whether any cell for a specified time had a demand equal to a

specified value), and thus benefits from a domain index.

■ Find the time for which there was the greatest disparity (difference) between

the cell with the minimum demand and the cell with the maximum demand.

■ Find all times for which 3 or more cells had a demand greater than a specified

value.

■ Find all times for which 10 or more cells had a demand not less than a specified

value.

■ Find all times for which the total grid demand rose 10 percent or more over the

preceding time’s total grid demand.

Creating the Domain Index
This section explains the parts of the power demand cartridge as they relate to

extensible indexing. Explanatory text and code segments are mixed.

The entire cartridge definition is available online as extdemo1.sql in the standard

Oracle demo directory (location is platform-dependent).

Creating the Schema to Own the Index
Before you create a domain index, create a database user (schema) to own the index.

In the power demand example, the user PowerCartUser is created and granted

the appropriate privileges. All database structures related to the cartridge are

created under this user (that is, while the cartridge developer or DBA is connected

to the database as PowerCartUser).

set echo on
connect sys/knl_test7 as sysdba;
drop user PowerCartUser cascade;
create user PowerCartUser identified by PowerCartUser;

-- INITIAL SET-UP
Power Demand Cartridge Example 11-15

Creating the Domain Index

-- grant privileges --
grant connect, resource to PowerCartUser;
-- do we need to grant these privileges --
grant create operator to PowerCartUser;
grant create indextype to PowerCartUser;
grant create table to PowerCartUser;

Creating the Object Type (PowerDemand_Typ)
The object type PowerDemand_Typ is used to store the hourly power grid readings.

This type is used to define a column in the table in which the readings are stored.

First, two types are defined for later use:

■ PowerGrid_Typ , to define the cells in PowerDemand_Typ

■ NumTab_Typ, to be used in the table in which the index entries are stored

CREATE OR REPLACE TYPE PowerGrid_Typ as VARRAY(100) of NUMBER;
CREATE OR REPLACE TYPE NumTab_Typ as TABLE of NUMBER;

The PowerDemand_Typ type includes:

■ Three attributes (TotGridDemand , MaxCellDemand , MinCellDemand) that

are set by three member procedures

■ Power demand readings (100 cells in a grid)

■ The date/time of the power demand readings. (Every hour, 100 areas transmit

their power demand readings.)

CREATE OR REPLACE TYPE PowerDemand_Typ AS OBJECT (
 -- Total power demand for the grid
 TotGridDemand NUMBER,
 -- Cell with maximum/minimum power demand for the grid
 MaxCellDemand NUMBER,
 MinCellDemand NUMBER,
 -- Power grid: 10X10 array represented as Varray(100)
 -- using previously defined PowerGrid_Typ
 CellDemandValues PowerGrid_Typ,
 -- Date/time for power-demand samplings: Every hour,
 -- 100 areas transmit their power demand readings.
 SampleTime DATE,
 --
 -- Methods (Set...) for this type:
 -- Total demand for the entire power grid for a
11-16 Oracle8i Data Cartridge Developer’s Guide

Creating the Domain Index
 -- SampleTime: sets the value of TotGridDemand.
 Member Procedure SetTotalDemand,
 -- Maximum demand for the entire power grid for a
 -- SampleTime: sets the value of MaxCellDemand.
 Member Procedure SetMaxDemand,
 -- Minimum demand for the entire power grid for a
 -- SampleTime: sets the value of MinCellDemand.
 Member Procedure SetMinDemand
);
/

Defining the Object Type Methods
The PowerDemand_Typ object type has methods that set the first three attributes in

the type definition:

■ TotGridDemand , the total demand for the entire power grid for the hour in

question (identified by SampleTime)

■ MaxCellDemand , the highest power demand value for all cells for the

SampleTime

■ MinCellDemand , the lowest power demand value for all cells for the

SampleTime

The logic for each procedure is not complicated. SetTotDemand loops through the

cell values and creates a running total. SetMaxDemand compares the first two cell

values and saves the higher as the current highest value; it then examines each

successive cell, comparing it against the current highest value and saving the higher

of the two as the current highest value, until it reaches the end of the cell values.

SetMinDemand uses the same approach as SetMaxDemand, but it continually

saves the lower value in comparisons to derive the lowest value overall.

CREATE OR REPLACE TYPE BODY PowerDemand_Typ
IS
 --
 -- Methods (Set...) for this type:
 -- Total demand for the entire power grid for a
 -- SampleTime: sets the value of TotGridDemand.
 Member Procedure SetTotalDemand
 IS
 I BINARY_INTEGER;
 Total NUMBER;
 BEGIN
 Total :=0;
Power Demand Cartridge Example 11-17

Creating the Domain Index
 I := CellDemandValues.FIRST;
 WHILE I IS NOT NULL LOOP
 Total := Total + CellDemandValues(I);
 I := CellDemandValues.NEXT(I);
 END LOOP;
 TotGridDemand := Total;
 END;

 -- Maximum demand for the entire power grid for a
 -- SampleTime: sets the value of MaxCellDemand.
 Member Procedure SetMaxDemand
 IS
 I BINARY_INTEGER;
 Temp NUMBER;
 BEGIN
 I := CellDemandValues.FIRST;
 Temp := CellDemandValues(I);
 WHILE I IS NOT NULL LOOP
 IF Temp < CellDemandValues(I) THEN
 Temp := CellDemandValues(I);
 END IF;
 I := CellDemandValues.NEXT(I);
 END LOOP;
 MaxCellDemand := Temp;
 END;

 -- Minimum demand for the entire power grid for a
 -- SampleTime: sets the value of MinCellDemand.
 Member Procedure SetMinDemand
 IS
 I BINARY_INTEGER;
 Temp NUMBER;
 BEGIN
 I := CellDemandValues.FIRST;
 Temp := CellDemandValues(I);
 WHILE I IS NOT NULL LOOP
 IF Temp > CellDemandValues(I) THEN
 Temp := CellDemandValues(I);
 END IF;
 I := CellDemandValues.NEXT(I);
 END LOOP;
 MinCellDemand := Temp;
 END;
END;
/

11-18 Oracle8i Data Cartridge Developer’s Guide

Creating the Domain Index
Creating the Functions and Operators
The power demand cartridge is designed so that users can query the power grid for

relationships of equality , greaterthan , or lessthan . However, because of the

way the cell demand data is stored, the standard operators (=, >, <) cannot be used.

Instead, new operators must be created, and a function must be created to define

the implementation for each new operator (that is, how the operator is to be

interpreted by Oracle).

For this cartridge, each of the three relationships can be checked in two ways:

■ Whether a specific cell in the grid satisfies the relationship. (For example, are

there grids where cell (3,7) has demand equal to 25?)

These operators have names in the form Power_XxxxxSpecific (such as

Power_EqualsSpecific), and the implementing functions have names in the

form Power_XxxxxSpecific_Func .

■ Whether any cell in the grid satisfies the relationship. (For example, are there

grids where any cell has demand equal to 25?)

These operators have names in the form Power_XxxxxAny (such as Power_
EqualsAny), and the implementing functions have names in the form Power_
XxxxxAny_Func .

For each operator-function pair, the function is defined first and then the operator

as using the function. The function is the implementation that would be used if

there were no index defined. This implementation must be specified so that the

Oracle optimizer can determine costs, decide whether the index should be used,

and create an execution plan.

Table 11–3 shows the operators and implementing functions:

Table 11–3 Operators and Implementing Functions

Operator Implementing Function

Power_EqualsSpecific Power_EqualsSpecific_Func

Power_EqualsAny Power_EqualsAny_Func

Power_LessThanSpecific Power_LessThanSpecific_Func

Power_LessThanAny Power_LessThanAny_Func

Power_
GreaterThanSpecific

Power_GreaterThanSpecific_Func

Power_GreaterThanAny Power_GreaterThanAny_Func
Power Demand Cartridge Example 11-19

Creating the Domain Index
Each function and operator returns a numeric value of 1 if the condition is true (for

example, if the specified cell is equal to the specified value), 0 if the condition is not

true, or null if the specified cell number is invalid.

The following statements create the implementing functions (Power_xxx_Func),

first the specific and then the any implementations.

CREATE FUNCTION Power_EqualsSpecific_Func(
 object PowerDemand_Typ, cell NUMBER, value NUMBER)
RETURN NUMBER AS
 BEGIN
 IF cell <= object.CellDemandValues.LAST
 THEN
 IF (object.CellDemandValues(cell) = value) THEN
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
 ELSE
 RETURN NULL;
 END IF;
 END;
/
CREATE FUNCTION Power_GreaterThanSpecific_Func(
 object PowerDemand_Typ, cell NUMBER, value NUMBER)
RETURN NUMBER AS
 BEGIN
 IF cell <= object.CellDemandValues.LAST
 THEN
 IF (object.CellDemandValues(cell) > value) THEN
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
 ELSE
 RETURN NULL;
 END IF;
 END;
/
CREATE FUNCTION Power_LessThanSpecific_Func(
 object PowerDemand_Typ, cell NUMBER, value NUMBER)
RETURN NUMBER AS
 BEGIN
 IF cell <= object.CellDemandValues.LAST
 THEN
11-20 Oracle8i Data Cartridge Developer’s Guide

Creating the Domain Index
 IF (object.CellDemandValues(cell) < value) THEN
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
 ELSE
 RETURN NULL;
 END IF;
 END;
/
CREATE FUNCTION Power_EqualsAny_Func(
 object PowerDemand_Typ, value NUMBER)
RETURN NUMBER AS
 idx NUMBER;
 BEGIN
 FOR idx IN object.CellDemandValues.FIRST..object.CellDemandValues.LAST LOOP
 IF (object.CellDemandValues(idx) = value) THEN
 RETURN 1;
 END IF;
 END LOOP;
 RETURN 0;
 END;
/
CREATE FUNCTION Power_GreaterThanAny_Func(
 object PowerDemand_Typ, value NUMBER)
RETURN NUMBER AS
 idx NUMBER;
 BEGIN
 FOR idx IN object.CellDemandValues.FIRST..object.CellDemandValues.LAST LOOP
 IF (object.CellDemandValues(idx) > value) THEN
 RETURN 1;
 END IF;
 END LOOP;
 RETURN 0;
 END;
/
CREATE FUNCTION Power_LessThanAny_Func(
 object PowerDemand_Typ, value NUMBER)
RETURN NUMBER AS
 idx NUMBER;
 BEGIN
 FOR idx IN object.CellDemandValues.FIRST..object.CellDemandValues.LAST LOOP
 IF (object.CellDemandValues(idx) < value) THEN
 RETURN 1;
 END IF;
Power Demand Cartridge Example 11-21

Creating the Domain Index
 END LOOP;
 RETURN 0;
 END;
/

The following statements create the operators (Power_xxx). Each statement

specifies an implementing function.

CREATE OPERATOR Power_Equals BINDING(PowerDemand_Typ, NUMBER, NUMBER)
 RETURN NUMBER USING Power_EqualsSpecific_Func;
CREATE OPERATOR Power_GreaterThan BINDING(PowerDemand_Typ, NUMBER, NUMBER)
 RETURN NUMBER USING Power_GreaterThanSpecific_Func;
CREATE OPERATOR Power_LessThan BINDING(PowerDemand_Typ, NUMBER, NUMBER)
 RETURN NUMBER USING Power_LessThanSpecific_Func;

CREATE OPERATOR Power_EqualsAny BINDING(PowerDemand_Typ, NUMBER)
 RETURN NUMBER USING Power_EqualsAny_Func;
CREATE OPERATOR Power_GreaterThanAny BINDING(PowerDemand_Typ, NUMBER)
 RETURN NUMBER USING Power_GreaterThanAny_Func;
CREATE OPERATOR Power_LessThanAny BINDING(PowerDemand_Typ, NUMBER)
 RETURN NUMBER USING Power_LessThanAny_Func;

Creating the Indextype Implementation Methods
The power demand cartridge creates an object type for the indextype that specifies

methods for the domain index. These methods are part of the ODCIIndex (Oracle

Data Cartridge Interface Index) interface, and they collectively define the behavior

of the index in terms of the methods for defining, manipulating, scanning, and

exporting the index.

Table 11–4 shows the method functions (all but one starting with ODCIIndex)

created for the power demand cartridge.

Table 11–4 Indextype Methods

Method Description

ODCIGetInterfaces Returns the list of names of the interfaces implemented by the
type.
11-22 Oracle8i Data Cartridge Developer’s Guide

Creating the Domain Index
Type Definition
The following statement creates the power_idxtype_im object type. The methods

of this type are the ODCI methods to define, manipulate, and scan the domain

index. The curnum attribute is the cursor number used as context for the scan

routines (ODCIIndexStart , ODCIIndexFetch , and ODCIIndexClose).

CREATE OR REPLACE TYPE power_idxtype_im AS OBJECT
(
 curnum NUMBER,

ODCIIndexCreate Creates a table to store index data. If the base table containing
data to be indexed is not empty, this method builds the index
for existing data.

This method is called when a CREATE INDEX statement is
issued that refers to the indextype. Upon invocation, any
parameters specified in the PARAMETERS clause are passed in
along with a description of the index.

ODCIIndexDrop Drops the table that stores the index data. This method is called
when a DROP INDEX statement specifies the index.

ODCIIndexStart Initializes the scan of the index for the operator predicate. This
method is invoked when a query is submitted involving an
operator that can be executed using the domain index.

ODCIIndexFetch Returns the ROWID of each row that satisfies the operator
predicate.

ODCIIndexClose Ends the current use of the index. This method can perform
any necessary clean-up.

ODCIIndexInsert Maintains the index structure when a record is inserted in a
table that contains columns or object attributes indexed by the
indextype.

ODCIIndexDelete Maintains the index structure when a record is deleted from a
table that contains columns or object attributes indexed by the
indextype.

ODCIIndexUpdate Maintains the index structure when a record is updated
(modified) in a table that contains columns or object attributes
indexed by the indextype.

ODCIIndexGet
Metadata

Allows the export and import of implementation-specific
metadata associated with the index.

Table 11–4 Indextype Methods

Method Description
Power Demand Cartridge Example 11-23

Creating the Domain Index
 STATIC FUNCTION ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexCreate (ia sys.ODCIIndexInfo, parms VARCHAR2)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexDrop(ia sys.ODCIIndexInfo) RETURN NUMBER,
 STATIC FUNCTION ODCIIndexStart(self IN OUT power_idxtype_im,
 ia sys.ODCIIndexInfo,
 op sys.ODCIPredInfo, qi sys.ODCIQueryInfo,
 strt NUMBER, stop NUMBER,
 cmppos NUMBER, cmpval NUMBER)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexStart(self IN OUT power_idxtype_im,
 ia sys.ODCIIndexInfo,
 op sys.ODCIPredInfo, qi sys.ODCIQueryInfo,
 strt NUMBER, stop NUMBER,
 cmpval NUMBER) RETURN NUMBER,
 MEMBER FUNCTION ODCIIndexFetch(nrows NUMBER, rids OUT sys.ODCIRidList)
 RETURN NUMBER,
 MEMBER FUNCTION ODCIIndexClose RETURN NUMBER,
 STATIC FUNCTION ODCIIndexInsert(ia sys.ODCIIndexInfo, rid VARCHAR2,
 newval PowerDemand_Typ) RETURN NUMBER,
 STATIC FUNCTION ODCIIndexDelete(ia sys.ODCIIndexInfo, rid VARCHAR2,
 oldval PowerDemand_Typ) RETURN NUMBER,
 STATIC FUNCTION ODCIIndexUpdate(ia sys.ODCIIndexInfo, rid VARCHAR2,
 oldval PowerDemand_Typ,
 newval PowerDemand_Typ)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexGetMetadata(ia sys.ODCIIndexInfo,
 expversion VARCHAR2,
 newblock OUT PLS_INTEGER)
 RETURN VARCHAR2
);
/

The CREATE TYPE statement is followed by a CREATE TYPE BODY statement that

specifies the implementation for each member function:

CREATE OR REPLACE TYPE BODY power_idxtype_im
IS
...

Each type method is described in a separate section, but the method definitions

(except for ODCIIndexGetMetadata , which returns a VARCHAR2 string) have the

following general form:
11-24 Oracle8i Data Cartridge Developer’s Guide

Creating the Domain Index
 STATIC FUNCTION function-name (...)
 RETURN NUMBER
 IS
 ...
 END;

ODCIGetInterfaces Method
The ODCIGetInterfaces function returns the list of names of the interfaces

implemented by the type. In release 8.1, there is only one set of the extensible

indexing interface routines, called SYS.ODCIINDEX1. Thus, in release 8.1, the

ODCIGetInterfaces routine must return 'SYS'.'ODCIINDEX1' as one of the

implemented interfaces.

 STATIC FUNCTION ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)
 RETURN NUMBER IS
 BEGIN
 ifclist := sys.ODCIObjectList(sys.ODCIObject('SYS','ODCIINDEX1'));
 return ODCIConst.Success;
 END ODCIGetInterfaces;

ODCIIndexCreate Method
The ODCIIndexCreate function creates the table to store index data. If the base

table containing data to be indexed is not empty, this method inserts the index data

entries for existing data.

The function takes the index information as an object parameter whose type is

SYS.ODCIINDEXINFO. The type attributes include the index name, owner name,

and so forth. The PARAMETERS string specified in the CREATE INDEX statement is

also passed in as a parameter to the function.

 STATIC FUNCTION ODCIIndexCreate (ia sys.ODCIIndexInfo, parms VARCHAR2)
 RETURN NUMBER IS
 i INTEGER;
 r ROWID;
 p NUMBER;
 v NUMBER;
 stmt1 VARCHAR2(1000);
 stmt2 VARCHAR2(1000);
 stmt3 VARCHAR2(1000);
 cnum1 INTEGER;
 cnum2 INTEGER;
 cnum3 INTEGER;
 junk NUMBER;
Power Demand Cartridge Example 11-25

Creating the Domain Index
The SQL statement to create the table for the index data is constructed and

executed. The table includes the ROWID of the base table (r), the cell position

number (cpos) in the grid from 1 to 100, and the power demand value in that cell

(cval).

BEGIN
 -- Construct the SQL statement.
 stmt1 := 'CREATE TABLE ' || ia.IndexSchema || '.' || ia.IndexName ||
 '_pidx' || '(r ROWID, cpos NUMBER, cval NUMBER)';

 -- Dump the SQL statement.
 dbms_output.put_line('ODCIIndexCreate>>>>>');
 sys.ODCIIndexInfoDump(ia);
 dbms_output.put_line('ODCIIndexCreate>>>>>'||stmt1);

 -- Execute the statement.
 cnum1 := dbms_sql.open_cursor;
 dbms_sql.parse(cnum1, stmt1, dbms_sql.native);
 junk := dbms_sql.execute(cnum1);
 dbms_sql.close_cursor(cnum1);

The function populates the index by inserting rows into the table. The function

"unnests" the VARRAY attribute and inserts a row for each cell into the table. Thus,

each 10 X 10 grid (10 rows, 10 values per row) becomes 100 rows in the table (one

row per cell).

 -- Now populate the table.
 stmt2 := ' INSERT INTO '|| ia.IndexSchema || '.' ||
 ia.IndexName || '_pidx' ||
 ' SELECT :rr, ROWNUM, column_value FROM THE' ||
 ' (SELECT CAST (P.'|| ia.IndexCols(1).ColName||'.CellDemandValues
 AS NumTab_Typ)'||
 ' FROM ' || ia.IndexCols(1).TableSchema || '.' ||
 ia.IndexCols(1).TableName || ' P' ||
 ' WHERE P.ROWID = :rr)';

 -- Execute the statement.
 dbms_output.put_line('ODCIIndexCreate>>>>>'||stmt2);

 -- Parse the statement.
 cnum2 := dbms_sql.open_cursor;
 dbms_sql.parse(cnum2, stmt2, dbms_sql.native);

 stmt3 := 'SELECT ROWID FROM '|| ia.IndexCols(1).TableSchema
 || '.' || ia.IndexCols(1).TableName;
11-26 Oracle8i Data Cartridge Developer’s Guide

Creating the Domain Index
 dbms_output.put_line('ODCIIndexCreate>>>>>'||stmt3);
 cnum3 := dbms_sql.open_cursor;
 dbms_sql.parse(cnum3, stmt3, dbms_sql.native);
 dbms_sql.define_column_rowid(cnum3, 1, r);
 junk := dbms_sql.execute(cnum3);

 WHILE dbms_sql.fetch_rows(cnum3) > 0 LOOP
 -- Get column values of the row. --
 dbms_sql.column_value_rowid(cnum3, 1, r);
 -- Bind the row into the cursor for the next insert. --
 dbms_sql.bind_variable_rowid(cnum2, ':rr', r);
 junk := dbms_sql.execute(cnum2);
 END LOOP;

The function concludes by closing the cursors and returning a success status.

 dbms_sql.close_cursor(cnum2);
 dbms_sql.close_cursor(cnum3);
 RETURN ODCICONST.SUCCESS;
 END;

ODCIIndexDrop Method
The ODCIIndexDrop function drops the table that stores the index data. This

method is called when a DROP INDEX statement is issued.

 STATIC FUNCTION ODCIIndexDrop(ia sys.ODCIIndexInfo) RETURN NUMBER IS
 stmt VARCHAR2(1000);
 cnum INTEGER;
 junk INTEGER;
 BEGIN
 -- Construct the SQL statement.
 stmt := 'drop table ' || ia.IndexSchema || '.' || ia.IndexName
 || '_pidx';

 dbms_output.put_line('ODCIIndexDrop>>>>>');
 sys.ODCIIndexInfoDump(ia);
 dbms_output.put_line('ODCIIndexDrop>>>>>'||stmt);

 -- Execute the statement.
 cnum := dbms_sql.open_cursor;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 dbms_sql.close_cursor(cnum);

 RETURN ODCICONST.SUCCESS;
Power Demand Cartridge Example 11-27

Creating the Domain Index
 END;

ODCIIndexStart Method (for Specific Queries)
The first definition of the ODCIIndexStart function initializes the scan of the

index to return all rows that satisfy the operator predicate. For example, if a query

asks for all instances where cell (3,7) has a value equal to 25, the function initializes

the scan to return all rows in the index-organized table for which that cell has that

value. (This definition of ODCIIndexStart differs from the definition in the next

section in that it includes the cmppos parameter for the position of the cell.)

The self parameter is the context that is shared with the ODCIIndexFetch and

ODCIIndexClose functions. The ia parameter contains the index information (an

object instance of type SYS.ODCIINDEXINFO), and the op parameter contains the

operator information (an object instance of type SYS.ODCIOPERINFO). The strt
and stop parameters are the lower and upper boundary points for the operator

return value. The cmppos parameter is the cell position and cmpval is the value in

the cell specified by the operator (Power_XxxxxSpecific).

 STATIC FUNCTION ODCIIndexStart(self IN OUT power_idxtype_im,
 ia sys.ODCIIndexInfo,
 op sys.ODCIPredInfo, qi sys.ODCIQueryInfo,
 strt NUMBER, stop NUMBER,
 cmppos NUMBER, cmpval NUMBER) RETURN NUMBER IS
 cnum INTEGER;
 rid ROWID;
 nrows INTEGER;
 relop VARCHAR2(2);
 stmt VARCHAR2(1000);
 BEGIN
 dbms_output.put_line('ODCIIndexStart>>>>>');
 sys.ODCIIndexInfoDump(ia);
 sys.ODCIPredInfoDump(op);
 dbms_output.put_line('start key : '||strt);
 dbms_output.put_line('stop key : '||stop);
 dbms_output.put_line('compare position : '||cmppos);
 dbms_output.put_line('compare value : '||cmpval);

The function checks for errors in the predicate.

 -- Take care of some error cases.
 -- The only predicates in which btree operators can appear are
 -- op() = 1 OR op() = 0
 if (strt != 1) and (strt != 0) then
 raise_application_error(-20101, 'Incorrect predicate for operator');
11-28 Oracle8i Data Cartridge Developer’s Guide

Creating the Domain Index
 END if;

 if (stop != 1) and (stop != 0) then
 raise_application_error(-20101, 'Incorrect predicate for operator');
 END if;

The function generates the SQL statement to be executed. It determines the operator

name and the lower and upper index value bounds (the start and stop keys). The

start and stop keys can both be 1 (= TRUE) or both be 0 (= FALSE).

 -- Generate the SQL statement to be executed.
 -- First, figure out the relational operator needed for the statement.
 -- Take into account the operator name and the start and stop keys.
 -- For now, the start and stop keys can both be 1 (= TRUE) or
 -- both be 0 (= FALSE).
 if op.ObjectName = 'POWER_EQUALS' then
 if strt = 1 then
 relop := '=';
 else
 relop := '!=';
 end if;
 elsif op.ObjectName = 'POWER_LESSTHAN' then
 if strt = 1 then
 relop := '<';
 else
 relop := '>=';
 end if;
 elsif op.ObjectName = 'POWER_GREATERTHAN' then
 if strt = 1 then
 relop := '>';
 else
 relop := '<=';
 end if;
 else
 raise_application_error(-20101, 'Unsupported operator');
 end if;

 stmt := 'select r from '||ia.IndexSchema||'.'||ia.IndexName||'_pidx'||
 ' where cpos '|| '=' ||''''||cmppos||''''||
 ' and cval '||relop||''''||cmpval||'''';

 dbms_output.put_line('ODCIIndexStart>>>>>' || stmt);
 cnum := dbms_sql.open_cursor;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 dbms_sql.define_column_rowid(cnum, 1, rid);
Power Demand Cartridge Example 11-29

Creating the Domain Index
 nrows := dbms_sql.execute(cnum);

The function stores the cursor number in the context, which is used by the

ODCIIndexFetch function, and sets a success return status.

 -- Set context as the cursor number.
 self := power_idxtype_im(cnum);

 -- Return success.
 RETURN ODCICONST.SUCCESS;
 END;

ODCIIndexStart Method (for Any Queries)
This definition of the ODCIIndexStart function initializes the scan of the index to

return all rows that satisfy the operator predicate. For example, if a query asks for

all instances where any cell has a value equal to 25, the function initializes the scan

to return all rows in the index-organized table for which that cell has that value.

(This definition of ODCIIndexStart differs from the definition in the preceding

section in that it does not include the cmppos parameter.)

The self parameter is the context that is shared with the ODCIIndexFetch and

ODCIIndexClose functions. The ia parameter contains the index information (an

object instance of type SYS.ODCIINDEXINFO), and the op parameter contains the

operator information (an object instance of type SYS.ODCIOPERINFO). The strt
and stop parameters are the lower and upper boundary points for the operator

return value. The cmpval parameter is the value in the cell specified by the

operator (Power_Xxxxx).

 STATIC FUNCTION ODCIIndexStart(self IN OUT power_idxtype_im,
 ia sys.ODCIIndexInfo,
 op sys.ODCIPredInfo, qi sys.ODCIQueryInfo,
 strt NUMBER, stop NUMBER,
 cmpval NUMBER) RETURN NUMBER IS
 cnum INTEGER;
 rid ROWID;
 nrows INTEGER;
 relop VARCHAR2(2);
 stmt VARCHAR2(1000);
 BEGIN
 dbms_output.put_line('ODCIIndexStart>>>>>');
 sys.ODCIIndexInfoDump(ia);
 sys.ODCIPredInfoDump(op);
 dbms_output.put_line('start key : '||strt);
 dbms_output.put_line('stop key : '||stop);
11-30 Oracle8i Data Cartridge Developer’s Guide

Creating the Domain Index
 dbms_output.put_line('compare value : '||cmpval);

The function checks for errors in the predicate.

 -- Take care of some error cases.
 -- The only predicates in which btree operators can appear are
 -- op() = 1 OR op() = 0
 if (strt != 1) and (strt != 0) then
 raise_application_error(-20101, 'Incorrect predicate for operator');
 END if;

 if (stop != 1) and (stop != 0) then
 raise_application_error(-20101, 'Incorrect predicate for operator');
 END if;

The function generates the SQL statement to be executed. It determines the operator

name and the lower and upper index value bounds (the start and stop keys). The

start and stop keys can both be 1 (= TRUE) or both be 0 (= FALSE).

 -- Generate the SQL statement to be executed.
 -- First, figure out the relational operator needed for the statement.
 -- Take into account the operator name and the start and stop keys.
 -- For now, the start and stop keys can both be 1 (= TRUE) or
 -- both be 0 (= FALSE).
 if op.ObjectName = 'POWER_EQUALSANY' then
 relop := '=';
 elsif op.ObjectName = 'POWER_LESSTHANANY' then
 relop := '<';
 elsif op.ObjectName = 'POWER_GREATERTHANANY' then
 relop := '>';
 else
 raise_application_error(-20101, 'Unsupported operator');
 end if;

 -- This statement returns the qualifying rows for the TRUE case.
 stmt := 'select distinct r from '||ia.IndexSchema||'.'||ia.IndexName||
 '_pidx'||' where cval '||relop||''''||cmpval||'''';
 -- In the FALSE case, we need to find the complement of the rows.
 if (strt = 0) then
 stmt := 'select distinct r from '||ia.IndexSchema||'.'||
 ia.IndexName||'_pidx'||' minus '||stmt;
 end if;

 dbms_output.put_line('ODCIIndexStart>>>>>' || stmt);
 cnum := dbms_sql.open_cursor;
Power Demand Cartridge Example 11-31

Creating the Domain Index
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 dbms_sql.define_column_rowid(cnum, 1, rid);
 nrows := dbms_sql.execute(cnum);

The function stores the cursor number in the context, which is used by the

ODCIIndexFetch function, and sets a success return status.

 -- Set context as the cursor number.
 self := power_idxtype_im(cnum);

 -- Return success.
 RETURN ODCICONST.SUCCESS;
 END;

ODCIIndexFetch Method
The ODCIIndexFetch function returns a batch of ROWIDs for the rows that satisfy

the operator predicate. Each time ODCIIndexFetch is invoked, it returns the next

batch of rows (rids parameter, a collection of type SYS.ODCIRIDLIST) that satisfy

the operator predicate. The maximum number of rows that can be returned on each

invocation is specified by the nrows parameter.

Oracle invokes ODCIIndexFetch repeatedly until all rows that satisfy the operator

predicate have been returned.

 MEMBER FUNCTION ODCIIndexFetch(nrows NUMBER, rids OUT sys.ODCIRidList)
 RETURN NUMBER IS
 cnum INTEGER;
 idx INTEGER := 1;
 rlist sys.ODCIRidList := sys.ODCIRidList();
 done boolean := FALSE;

The function loops through the collection of rows selected by the

ODCIIndexStart function, using the same cursor number (cnum) as in the

ODCIIndexStart function, and returns the ROWIDs.

 BEGIN
 dbms_output.put_line('ODCIIndexFetch>>>>>');
 dbms_output.put_line('Nrows : '||round(nrows));

 cnum := self.curnum;

 WHILE not done LOOP
 if idx > nrows then
 done := TRUE;
 else
11-32 Oracle8i Data Cartridge Developer’s Guide

Creating the Domain Index
 rlist.extEND;
 if dbms_sql.fetch_rows(cnum) > 0 then
 dbms_sql.column_value_rowid(cnum, 1, rlist(idx));
 idx := idx + 1;
 else
 rlist(idx) := null;
 done := TRUE;
 END if;
 END if;
 END LOOP;

 rids := rlist;
 RETURN ODCICONST.SUCCESS;
 END;

ODCIIndexClose Method
The ODCIIndexClose function closes the cursor used by the ODCIIndexStart
and ODCIIndexFetch functions.

 MEMBER FUNCTION ODCIIndexClose RETURN NUMBER IS
 cnum INTEGER;
 BEGIN
 dbms_output.put_line('ODCIIndexClose>>>>>');

 cnum := self.curnum;
 dbms_sql.close_cursor(cnum);
 RETURN ODCICONST.SUCCESS;
 END;

ODCIIndexInsert Method
The ODCIIndexInsert function is called when a record is inserted in a table that

contains columns or OBJECT attributes indexed by the indextype. The new values

in the indexed columns are passed in as arguments along with the corresponding

row identifier.

 STATIC FUNCTION ODCIIndexInsert(ia sys.ODCIIndexInfo, rid VARCHAR2,
 newval PowerDemand_Typ)
 RETURN NUMBER AS
 cid INTEGER;
 i BINARY_INTEGER;
 nrows INTEGER;
 stmt VARCHAR2(1000);
 BEGIN
 dbms_output.put_line(' ');
Power Demand Cartridge Example 11-33

Creating the Domain Index
 dbms_output.put_line('ODCIIndexInsert>>>>>'||
 ' TotGridDemand= '||newval.TotGridDemand ||
 ' MaxCellDemand= '||newval.MaxCellDemand ||
 ' MinCellDemand= '||newval.MinCellDemand) ;
 sys.ODCIIndexInfoDump(ia);

 -- Construct the statement.
 stmt := ' INSERT INTO '|| ia.IndexSchema || '.' || ia.IndexName
 || '_pidx' ||' VALUES (:rr, :pos, :val)';

 -- Execute the statement.
 dbms_output.put_line('ODCIIndexInsert>>>>>'||stmt);
 -- Parse the statement.
 cid := dbms_sql.open_cursor;
 dbms_sql.parse(cid, stmt, dbms_sql.native);
 dbms_sql.bind_variable_rowid(cid, ':rr', rid);

 -- Iterate over the rows of the Varray and insert them.
 i := newval.CellDemandValues.FIRST;
 WHILE i IS NOT NULL LOOP
 -- Bind the row into the cursor for insert.
 dbms_sql.bind_variable(cid, ':pos', i);
 dbms_sql.bind_variable(cid, ':val', newval.CellDemandValues(i));
 -- Execute.
 nrows := dbms_sql.execute(cid);
 dbms_output.put_line('ODCIIndexInsert>>>>>('||
 'RID' ||' , '||
 i || ' , '||
 newval.CellDemandValues(i)|| ')');
 i := newval.CellDemandValues.NEXT(i);
 END LOOP;
 dbms_sql.close_cursor(cid);
 RETURN ODCICONST.SUCCESS;
 END ODCIIndexInsert;

ODCIIndexDelete Method
The ODCIIndexDelete function is called when a record is deleted from a table

that contains columns or object attributes indexed by the indextype. The old values

in the indexed columns are passed in as arguments along with the corresponding

row identifier.

 STATIC FUNCTION ODCIIndexDelete(ia sys.ODCIIndexInfo, rid VARCHAR2,
oldval PowerDemand_Typ)
 RETURN NUMBER AS
11-34 Oracle8i Data Cartridge Developer’s Guide

Creating the Domain Index
 cid INTEGER;
 stmt VARCHAR2(1000);
 nrows INTEGER;
 BEGIN
 dbms_output.put_line(' ');
 dbms_output.put_line('ODCIIndexDelete>>>>>'||
 ' TotGridDemand= '||oldval.TotGridDemand ||
 ' MaxCellDemand= '||oldval.MaxCellDemand ||
 ' MinCellDemand= '||oldval.MinCellDemand) ;
 sys.ODCIIndexInfoDump(ia);

 -- Construct the statement.
 stmt := ' DELETE FROM '|| ia.IndexSchema || '.' || ia.IndexName
 || '_pidx' || ' WHERE r=:rr';
 dbms_output.put_line('ODCIIndexDelete>>>>>'||stmt);

 -- Parse and execute the statement.
 cid := dbms_sql.open_cursor;
 dbms_sql.parse(cid, stmt, dbms_sql.native);
 dbms_sql.bind_variable_rowid(cid, ':rr', rid);
 nrows := dbms_sql.execute(cid);
 dbms_sql.close_cursor(cid);

 RETURN ODCICONST.SUCCESS;
 END ODCIIndexDelete;

ODCIIndexUpdate Method
The ODCIIndexUpdate function is called when a record is updated in a table that

contains columns or object attributes indexed by the indextype. The old and new

values in the indexed columns are passed in as arguments along with the row

identifier.

 STATIC FUNCTION ODCIIndexUpdate(ia sys.ODCIIndexInfo, rid VARCHAR2,
 oldval PowerDemand_Typ, newval PowerDemand_Typ)
 RETURN NUMBER AS
 cid INTEGER;
 cid2 INTEGER;
 stmt VARCHAR2(1000);
 stmt2 VARCHAR2(1000);
 nrows INTEGER;
 i NUMBER;
 BEGIN
 dbms_output.put_line(' ');
 dbms_output.put_line('ODCIIndexUpdate>>>>> Old'||
Power Demand Cartridge Example 11-35

Creating the Domain Index
 ' TotGridDemand= '||oldval.TotGridDemand ||
 ' MaxCellDemand= '||oldval.MaxCellDemand ||
 ' MinCellDemand= '||oldval.MinCellDemand) ;
 dbms_output.put_line('ODCIIndexUpdate>>>>> New'||
 ' TotGridDemand= '||newval.TotGridDemand ||
 ' MaxCellDemand= '||newval.MaxCellDemand ||
 ' MinCellDemand= '||newval.MinCellDemand) ;
 sys.ODCIIndexInfoDump(ia);

 -- Delete old entries.
 stmt := ' DELETE FROM '|| ia.IndexSchema || '.' || ia.IndexName
 || '_pidx' || ' WHERE r=:rr';
 dbms_output.put_line('ODCIIndexUpdate>>>>>'||stmt);

 -- Parse and execute the statement.
 cid := dbms_sql.open_cursor;
 dbms_sql.parse(cid, stmt, dbms_sql.native);
 dbms_sql.bind_variable_rowid(cid, ':rr', rid);
 nrows := dbms_sql.execute(cid);
 dbms_sql.close_cursor(cid);

 -- Insert new entries.
 stmt2 := ' INSERT INTO '|| ia.IndexSchema || '.' || ia.IndexName
 || '_pidx' || ' VALUES (:rr, :pos, :val)';
 dbms_output.put_line('ODCIIndexUpdate>>>>>'||stmt2);

 -- Parse and execute the statement.
 cid2 := dbms_sql.open_cursor;
 dbms_sql.parse(cid2, stmt2, dbms_sql.native);
 dbms_sql.bind_variable_rowid(cid2, ':rr', rid);

 -- Iterate over the rows of the Varray and insert them.
 i := newval.CellDemandValues.FIRST;
 WHILE i IS NOT NULL LOOP
 -- Bind the row into the cursor for insert.
 dbms_sql.bind_variable(cid2, ':pos', i);
 dbms_sql.bind_variable(cid2, ':val', newval.CellDemandValues(i));
 nrows := dbms_sql.execute(cid2);
 dbms_output.put_line('ODCIIndexUpdate>>>>>('||
 'RID' || ' , '||
 i || ' , '||
 newval.CellDemandValues(i)|| ')');
 i := newval.CellDemandValues.NEXT(i);
 END LOOP;
 dbms_sql.close_cursor(cid2);
11-36 Oracle8i Data Cartridge Developer’s Guide

Creating the Domain Index
 RETURN ODCICONST.SUCCESS;
 END ODCIIndexUpdate;

ODCIIndexUpdate is the last method defined in the CREATE TYPE BODY
statement, which ends as follows:

END;
/

ODCIIndexGetMetadata Method
The optional ODCIIndexGetMetadata function, if present, is called by the Export

utility in order to write implementation-specific metadata (which is not stored in

the system catalogs) into the export dump file. This metadata might be policy

information, version information, per-user settings, and so on. This metadata is

written to the dump file as anonymous PL/SQL blocks that are executed at import

time, immediately before the associated index is created.

This method returns strings to the Export utility that comprise the code of the

PL/SQL blocks. The Export utility repeatedly calls this method until a zero-length

string is returned, thus allowing the creation of any number of PL/SQL blocks of

arbitrary complexity. Normally, this method calls functions within a PL/SQL

package in order to make use of package-level variables, such as cursors and

iteration counters, that maintain state across multiple calls by Export.

For information about the Export and Import utilities, see the Oracle8i Utilities
manual.

In the power demand cartridge, the only metadata that is passed is a version string

of V1.0, identifying the current format of the index-organized table that underlies

the domain index. The power_pkg .getversion function generates a call to the

power_pkg .checkversion procedure, to be executed at import time to check that

the version string is V1.0.

STATIC FUNCTION ODCIIndexGetMetadata(ia sys.ODCIIndexInfo, expversion
VARCHAR2, newblock OUT PLS_INTEGER)
 RETURN VARCHAR2 IS

BEGIN
-- Let getversion do all the work since it has to maintain state across calls.

 RETURN power_pkg.getversion (ia.IndexSchema, ia.IndexName, newblock);

EXCEPTION
Power Demand Cartridge Example 11-37

Creating the Domain Index
 WHEN OTHERS THEN
 RAISE;

END ODCIIndexGetMetaData;

The power_pkg package is defined as follows:

CREATE OR REPLACE PACKAGE power_pkg AS
 FUNCTION getversion(idxschema IN VARCHAR2, idxname IN VARCHAR2,
 newblock OUT PLS_INTEGER) RETURN VARCHAR2;
 PROCEDURE checkversion (version IN VARCHAR2);
END power_pkg;
/
SHOW ERRORS;

CREATE OR REPLACE PACKAGE BODY power_pkg AS

-- iterate is a package-level variable used to maintain state across calls
-- by Export in this session.

iterate NUMBER := 0;

FUNCTION getversion(idxschema IN VARCHAR2, idxname IN VARCHAR2,
 newblock OUT PLS_INTEGER) RETURN VARCHAR2 IS

BEGIN

-- We are generating only one PL/SQL block consisting of one line of code.
 newblock := 1;

 IF iterate = 0
 THEN
-- Increment iterate so we'll know we're done next time we're called.
 iterate := iterate + 1;

-- Return a string that calls checkversion with a version 'V1.0'
-- Note that export adds the surrounding BEGIN/END pair to form the anon.
-- block... we don't have to.

 RETURN 'power_pkg.checkversion(''V1.0'');';
 ELSE
-- reset iterate for next index
 iterate := 0;
-- Return a 0-length string; we won't be called again for this index.
 RETURN '';
11-38 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
 END IF;
END getversion;

PROCEDURE checkversion (version IN VARCHAR2) IS

 wrong_version EXCEPTION;

BEGIN
 IF version != 'V1.0' THEN
 RAISE wrong_version;
 END IF;
END checkversion;

END power_pkg;

Creating the Indextype
The power demand cartridge creates the indextype for the domain index. The

specification includes the list of operators supported by the indextype. It also

identifies the implementation type containing the OCDI index routines.

CREATE OR REPLACE INDEXTYPE power_idxtype
FOR
 Power_Equals(PowerDemand_Typ, NUMBER, NUMBER),
 Power_GreaterThan(PowerDemand_Typ, NUMBER, NUMBER),
 Power_LessThan(PowerDemand_Typ, NUMBER, NUMBER),
 Power_EqualsAny(PowerDemand_Typ, NUMBER),
 Power_GreaterThanAny(PowerDemand_Typ, NUMBER),
 Power_LessThanAny(PowerDemand_Typ, NUMBER)
USING power_idxtype_im;

Testing the Domain Index
This section explains the parts of the power demand cartridge as they relate to

extensible optimization. Explanatory text and code segments are mixed.

Creating the Statistics Table (PowerCartUserStats)
The table PowerCartUserStats is used to store statistics about the hourly power

grid readings. These statistics will be used by the method

ODCIStatsSelectivity (described later) to estimate the selectivity of operator

predicates. Because of the types of statistics collected, it is more convenient to use a

separate table instead of letting Oracle store the statistics.
Power Demand Cartridge Example 11-39

Testing the Domain Index
The PowerCartUserStats table contains the following columns:

■ The table and column for which statistics are collected

■ The cell for which the statistics are collected

■ The minimum and maximum power demand for the given cell over all power

grid readings

■ The number of non-null readings for the given cell over all power grid readings

CREATE TABLE PowerCartUserStats (
 -- Table for which statistics are collected
 tab VARCHAR2(30),
 -- Column for which statistics are collected
 col VARCHAR2(30),
 -- Cell position
 cpos NUMBER,
 -- Minimum power demand for the given cell
 lo NUMBER,
 -- Maximum power demand for the given cell
 hi NUMBER,
 -- Number of (non-null) power demands for the given cell
 nrows NUMBER
);
/

Creating the Extensible Optimizer Methods
The power demand cartridge creates an object type that specifies methods that will

be used by the extensible optimizer. These methods are part of the ODCIStats
(Oracle Data Cartridge Interface STATisticS) interface and they collectively define

the methods that are called when an ANALYZE command is issued or when the

optimizer is deciding on the best execution plan for a query.

Table 11-5 shows the method functions (all but one starting with ODCIStats) created

for the power demand cartridge.

Table 11–5 Extensible Optimizer Methods

Method Description

ODCIGetInterfaces Returns the list of names of the interfaces implemented by the
type.
11-40 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
Type Definition
The following statement creates the power_statistics object type. This object

type’s ODCI methods are used to collect and delete statistics about columns and

indexes, compute selectivities of predicates with operators or functions, and to

compute costs of domain indexes and functions. The curnum attribute is a dummy

attribute that is not used.

CREATE OR REPLACE TYPE power_statistics AS OBJECT
(
 curnum NUMBER,
 STATIC FUNCTION ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)
 RETURN NUMBER,
 STATIC FUNCTION ODCIStatsCollect(col sys.ODCIColInfo,
 options sys.ODCIStatsOptions, rawstats OUT RAW) RETURN NUMBER,

ODCIStatsCollect Collects statistics for columns of type PowerDemand_Typ or
domain indexes of indextype power_idxtype.

This method is called when an ANALYZE statement is issued
that refers to a column of the PowerDemand_Typ type or an
index of the power_idxtype indextype. Upon invocation, any
options specified in the ANALYZE statement are passed in
along with a description of the column or index.

ODCIStatsDelete Deletes statistics for columns of type PowerDemand_Typ or
domain indexes of indextype power_idxtype.

This method is called when an ANALYZE statement is issued
to delete statistics for a column of the appropriate type or an
index of the appropriate indextype.

ODCIStatsSelecti
vity

Computes the selectivity of a predicate involving an operator
or its functional implementation.

This method is called by the optimizer when a predicate of the
appropriate type appears in the WHERE clause of a query.

ODCIStatsIndexCo
st

Computes the cost of a domain index access path.

This method is called by the optimizer to get the cost of a
domain index access path assuming the index can be used for
the query.

ODCIStatsFunctio
nCost

Computes the cost of a function.

This method is called by the optimizer to get the cost of
executing a function. The function need not necessarily be an
implementation of an operator.

Method Description
Power Demand Cartridge Example 11-41

Testing the Domain Index
 STATIC FUNCTION ODCIStatsDelete(col sys.ODCIColInfo) RETURN NUMBER,
 STATIC FUNCTION ODCIStatsCollect(ia sys.ODCIIndexInfo,
 options sys.ODCIStatsOptions, rawstats OUT RAW) RETURN NUMBER,
 STATIC FUNCTION ODCIStatsDelete(ia sys.ODCIIndexInfo) RETURN NUMBER,
 STATIC FUNCTION ODCIStatsSelectivity(pred sys.ODCIPredInfo,
 sel OUT NUMBER, args sys.ODCIArgDescList, strt NUMBER, stop NUMBER,
 object PowerDemand_Typ, cell NUMBER, value NUMBER) RETURN NUMBER,
 PRAGMA restrict_references(ODCIStatsSelectivity, WNDS, WNPS),
 STATIC FUNCTION ODCIStatsSelectivity(pred sys.ODCIPredInfo,
 sel OUT NUMBER, args sys.ODCIArgDescList, strt NUMBER, stop NUMBER,
 object PowerDemand_Typ, value NUMBER) RETURN NUMBER,
 PRAGMA restrict_references(ODCIStatsSelectivity, WNDS, WNPS),
 STATIC FUNCTION ODCIStatsIndexCost(ia sys.ODCIIndexInfo,
 sel NUMBER, cost OUT sys.ODCICost, qi sys.ODCIQueryInfo,
 pred sys.ODCIPredInfo, args sys.ODCIArgDescList,
 strt NUMBER, stop NUMBER, cmppos NUMBER, cmpval NUMBER)
 RETURN NUMBER,
 PRAGMA restrict_references(ODCIStatsIndexCost, WNDS, WNPS),
 STATIC FUNCTION ODCIStatsIndexCost(ia sys.ODCIIndexInfo,
 sel NUMBER, cost OUT sys.ODCICost, qi sys.ODCIQueryInfo,
 pred sys.ODCIPredInfo, args sys.ODCIArgDescList,
 strt NUMBER, stop NUMBER, cmpval NUMBER) RETURN NUMBER,
 PRAGMA restrict_references(ODCIStatsIndexCost, WNDS, WNPS),
 STATIC FUNCTION ODCIStatsFunctionCost(func sys.ODCIFuncInfo,
 cost OUT sys.ODCICost, args sys.ODCIArgDescList,
 object PowerDemand_Typ, cell NUMBER, value NUMBER) RETURN NUMBER,
 PRAGMA restrict_references(ODCIStatsFunctionCost, WNDS, WNPS),
 STATIC FUNCTION ODCIStatsFunctionCost(func sys.ODCIFuncInfo,
 cost OUT sys.ODCICost, args sys.ODCIArgDescList,
 object PowerDemand_Typ, value NUMBER) RETURN NUMBER,
 PRAGMA restrict_references(ODCIStatsFunctionCost, WNDS, WNPS)
);
/

The CREATE TYPE statement is followed by a CREATE TYPE BODY statement that

specifies the implementation for each member function:

CREATE OR REPLACE TYPE BODY power_statistics
IS
...

Each member function is described in a separate section, but the function

definitions have the following general form:

 STATIC FUNCTION function-name (...)
 RETURN NUMBER IS
11-42 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
 END;

ODCIGetInterfaces Method
The ODCIGetInterfaces function returns the list of names of the interfaces

implemented by the type. In release 8.1, there is only one set of the extensible

optimizer interface routines, called SYS.ODCISTATS1. Thus, in release 8.1, the

ODCIGetInterfaces routine must return’SYS’.’ODCISTATS1’ as one of the

implemented interfaces.

 STATIC FUNCTION ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)
 RETURN NUMBER IS
 BEGIN
 ifclist := sys.ODCIObjectList(sys.ODCIObject(’SYS’,’ODCISTATS1’));
 RETURN ODCIConst.Success;
 END ODCIGetInterfaces;

ODCIStatsCollect Method (for PowerDemand_Typ columns)
The ODCIStatsCollect function collects statistics for columns whose datatype is

the PowerDemand_Typ object type. The statistics are collected for each cell in the

column over all power grid readings. For a given cell, the statistics collected are the

minimum and maximum power grid readings, and the number of non-null

readings.

The function takes the column information as an object parameter whose type is

SYS.ODCICOLINFO. The type attributes include the table name, column name, and

so on. Options specified in the ANALYZE command used to collect the column

statistics are also passed in as parameters. For example, if ANALYZE ESTIMATE is

used, then the percentage or number of rows specified in the ANALYZE command is

passed in to ODCIStatsCollect . Since the power demand cartridge uses a table

to store the statistics, the output parameter rawstats is not used in this cartridge.

 STATIC FUNCTION ODCIStatsCollect(col sys.ODCIColInfo,
 options sys.ODCIStatsOptions,
 rawstats OUT RAW)
 RETURN NUMBER IS
 cnum INTEGER;
 stmt VARCHAR2(1000);
 junk INTEGER;

 cval NUMBER;
 colname VARCHAR2(30) := rtrim(ltrim(col.colName, ’"’), ’"’);
 statsexists BOOLEAN := FALSE;
 pdemands PowerDemand_Tab%ROWTYPE;
Power Demand Cartridge Example 11-43

Testing the Domain Index
 user_defined_stats PowerCartUserStats%ROWTYPE;
 CURSOR c1(tname VARCHAR2, cname VARCHAR2) IS
 SELECT * FROM PowerCartUserStats
 WHERE tab = tname
 AND col = cname;
 CURSOR c2 IS
 SELECT * FROM PowerDemand_Tab;

 BEGIN
 sys.ODCIColInfoDump(col);
 sys.ODCIStatsOptionsDump(options);

 IF (col.TableSchema IS NULL OR col.TableName IS NULL
 OR col.ColName IS NULL) THEN
 RETURN ODCIConst.Error;
 END IF;

 dbms_output.put_line(’ODCIStatsCollect>>>>>’);
 dbms_output.put_line(’**** Analyzing column ’
 || col.TableSchema
 || ’.’ || col.TableName
 || ’.’ || col.ColName);

 -- Check if statistics exist for this column
 FOR user_defined_stats IN c1(col.TableName, colname) LOOP
 statsexists := TRUE;
 EXIT;
 END LOOP;

The function checks whether statistics for this column already exist. If so, it

initializes them to NULL; otherwise, it creates statistics for each of the 100 cells and

initializes them to NULL.

 IF not statsexists THEN
 -- column statistics don’t exist; create entries for
 -- each of the 100 cells
 cnum := dbms_sql.open_cursor;
 FOR i in 1..100 LOOP
 stmt := ’INSERT INTO PowerCartUserStats VALUES(’
 || ’’’’ || col.TableName || ’’’, ’
 || ’’’’ || colname || ’’’, ’
 || to_char(i) || ’, ’
 || ’NULL, NULL, NULL)’;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
11-44 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
 END LOOP;
 dbms_sql.close_cursor(cnum);
 ELSE
 -- column statistics exist; initialize to NULL
 cnum := dbms_sql.open_cursor;
 stmt := ’UPDATE PowerCartUserStats’
 || ’ SET lo = NULL, hi = NULL, nrows = NULL’
 || ’ WHERE tab = ’ || col.TableName
 || ’ AND col = ’ || colname;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 dbms_sql.close_cursor(cnum);
 END IF;

The function collects statistics for the column by reading rows from the table that is

being analyzed. This is done by constructing and executing a SQL statement.

 -- For each cell position, the following statistics are collected:
 -- maximum value
 -- minimum value
 -- number of rows (excluding NULLs)
 cnum := dbms_sql.open_cursor;
 FOR i in 1..100 LOOP
 FOR pdemands IN c2 LOOP
 IF i BETWEEN pdemands.sample.CellDemandValues.FIRST AND
 pdemands.sample.CellDemandValues.LAST THEN
 cval := pdemands.sample.CellDemandValues(i);
 stmt := ’UPDATE PowerCartUserStats SET ’
 || ’lo = least(’ || ’NVL(’ || to_char(cval) || ’, lo), ’
 || ’NVL(’ || ’lo, ’ || to_char(cval) || ’)), ’
 || ’hi = greatest(’ || ’NVL(’ || to_char(cval) || ’, hi), ’
 || ’NVL(’ || ’hi, ’ || to_char(cval) || ’)), ’
 || ’nrows = decode(nrows, NULL, decode(’
 || to_char(cval) || ’, NULL, NULL, 1), decode(’
 || to_char(cval) || ’, NULL, nrows, nrows+1)) ’
 || ’WHERE cpos = ’ || to_char(i)
 || ’ AND tab = ’’’ || col.TableName || ’’’’
 || ’ AND col = ’’’ || colname || ’’’’;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 END IF;
 END LOOP;
 END LOOP;

The function concludes by closing the cursor and returning a success status.
Power Demand Cartridge Example 11-45

Testing the Domain Index
 dbms_sql.close_cursor(cnum);

 rawstats := NULL;

 return ODCIConst.Success;

 END;

ODCIStatsDelete Method (for PowerDemand_Typ columns)
The ODCIStatsCollect function deletes statistics of columns whose datatype is

the PowerDemand_Typ object type.

The function takes the column information as an object parameter whose type is

SYS.ODCICOLINFO. The type attributes include the table name, column name, and

so on.

 STATIC FUNCTION ODCIStatsDelete(col sys.ODCIColInfo)
 RETURN NUMBER IS
 cnum INTEGER;
 stmt VARCHAR2(1000);
 junk INTEGER;

 colname VARCHAR2(30) := rtrim(ltrim(col.colName, ’"’), ’"’);
 statsexists BOOLEAN := FALSE;
 user_defined_stats PowerCartUserStats%ROWTYPE;
 CURSOR c1(tname VARCHAR2, cname VARCHAR2) IS
 SELECT * FROM PowerCartUserStats
 WHERE tab = tname
 AND col = cname;
 BEGIN
 sys.ODCIColInfoDump(col);

 IF (col.TableSchema IS NULL OR col.TableName IS NULL
 OR col.ColName IS NULL) THEN
 RETURN ODCIConst.Error;
 END IF;

 dbms_output.put_line(’ODCIStatsDelete>>>>>’);
 dbms_output.put_line(’**** Analyzing (delete) column ’
 || col.TableSchema
 || ’.’ || col.TableName
 || ’.’ || col.ColName);
11-46 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
The function verifies that statistics for the column exist by checking the statistics

table. If statistics were not collected, then there is nothing to be done. If, however,

statistics are present, it constructs and executes a SQL statement to delete the

relevant rows from the statistics table.

 -- Check if statistics exist for this column
 FOR user_defined_stats IN c1(col.TableName, colname) LOOP
 statsexists := TRUE;
 EXIT;
 END LOOP;

 -- If user-defined statistics exist, delete them
 IF statsexists THEN
 stmt := ’DELETE FROM PowerCartUserStats’
 || ’ WHERE tab = ’’’ || col.TableName || ’’’’
 || ’ AND col = ’’’ || colname || ’’’’;
 cnum := dbms_sql.open_cursor;
 dbms_output.put_line(’ODCIStatsDelete>>>>>’);
 dbms_output.put_line(’ODCIStatsDelete>>>>>’ || stmt);
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 dbms_sql.close_cursor(cnum);
 END IF;

 RETURN ODCIConst.Success;
 END;

ODCIStatsCollect Method (for power_idxtype Domain Indexes)
The ODCIStatsCollect function collects statistics for domain indexes whose

indextype is power_idxtype . In the power demand cartridge, this function simply

analyzes the index-organized table that stores the index data.

The function takes the index information as an object parameter whose type is

SYS.ODCIINDEXINFO. The type attributes include the index name, owner name,

and so on. Options specified in the ANALYZE command used to collect the index

statistics are also passed in as parameters. For example, if ANALYZE ESTIMATE is

used, then the percentage or number of rows is passed in. The output parameter

rawstats is not used.

 STATIC FUNCTION ODCIStatsCollect (ia sys.ODCIIndexInfo,
 options sys.ODCIStatsOptions, rawstats OUT RAW)
 RETURN NUMBER IS
 cnum INTEGER;
 stmt VARCHAR2(1000);
Power Demand Cartridge Example 11-47

Testing the Domain Index
 junk INTEGER;
 BEGIN
 -- To analyze a domain index, simply analyze the table that
 -- implements the index

 sys.ODCIIndexInfoDump(ia);
 sys.ODCIStatsOptionsDump(options);

 stmt := ’ANALYZE TABLE ’
 || ia.IndexSchema || ’.’ || ia.IndexName || ’_pidx’
 || ’ COMPUTE STATISTICS’;

 dbms_output.put_line(’**** Analyzing index ’
 || ia.IndexSchema || ’.’ || ia.IndexName);
 dbms_output.put_line(’SQL Statement: ’ || stmt);

 cnum := dbms_sql.open_cursor;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 dbms_sql.close_cursor(cnum);

 rawstats := NULL;

 RETURN ODCIConst.Success;
 END;

ODCIStatsDelete Method (for power_idxtype domain indexes)
The ODCIStatsDelete function deletes statistics for domain indexes whose

indextype is power_idxtype . In the power demand cartridge, this function simply

deletes the statistics of the index-organized table that stores the index data.

The function takes the index information as an object parameter whose type is

SYS.ODCIINDEXINFO. The type attributes include the index name, owner name,

and so on.

 STATIC FUNCTION ODCIStatsDelete(ia sys.ODCIIndexInfo)
 RETURN NUMBER IS
 cnum INTEGER;
 stmt VARCHAR2(1000);
 junk INTEGER;
 BEGIN
 -- To delete statistics for a domain index, simply delete the
 -- statistics for the table implementing the index

 sys.ODCIIndexInfoDump(ia);
11-48 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
 stmt := ’ANALYZE TABLE ’
 || ia.IndexSchema || ’.’ || ia.IndexName || ’_pidx’
 || ’ DELETE STATISTICS’;

 dbms_output.put_line(’**** Analyzing (delete) index ’
 || ia.IndexSchema || ’.’ || ia.IndexName);
 dbms_output.put_line(’SQL Statement: ’ || stmt);

 cnum := dbms_sql.open_cursor;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 dbms_sql.close_cursor(cnum);

 RETURN ODCIConst.Success;
 END;

ODCIStatsSelectivity Method (for Specific Queries)
The first definition of the ODCIStatsSelectivity function estimates the

selectivity of operator or function predicates for Specific queries. For example, if

a query asks for all instances where cell (3,7) has a value equal to 25, the function

estimates the percentage of rows in which the given cell has the specified value.

(This definition of ODCIStatsSelectivity differs from the definition in the next

section in that it includes the cell parameter for the position of the cell.)

The pred parameter contains the function information (the functional

implementation of an operator in an operator predicate); this parameter is an object

instance of type SYS.ODCIPREDINFO. The selectivity is returned as a percentage in

the sel output parameter. The args parameter (an object instance of type

SYS.ODCIARGDESCLIST) contains a descriptor for each argument of the function

as well as the start and stop values of the function. For example, an argument might

be a column in which case the argument descriptor will contain the table name,

column name, and so forth. The strt and stop parameters are the lower and

upper boundary points for the function return value. If the function in a predicate

contains a literal of type PowerDemand_Typ , the object parameter will contain

the value in the form of an object constructor. The cell parameter is the cell

position and the value parameter is the value in the cell specified by the function

(PowerXxxxxSpecific_Func).

The selectivity is estimated by using a technique similar to that used for simple

range predicates. For example, a simple estimate for the selectivity of a predicate

like
Power Demand Cartridge Example 11-49

Testing the Domain Index
 c > v

is (M-v)/(M-m) where m and M are the minimum and maximum values,

respectively, for the column c (as determined from the column statistics), provided

the value v lies between m and M.

The get_selectivity function computes the selectivity of a simple range

predicate given the minimum and maximum values of the column in the predicate.

It assumes that the column values in the table are uniformly distributed between

the minimum and maximum values.

CREATE FUNCTION get_selectivity(relop VARCHAR2, value NUMBER,
 lo NUMBER, hi NUMBER)
 RETURN NUMBER AS
 sel NUMBER := NULL;
 ndv NUMBER;
BEGIN
 -- This function computes the selectivity (as a percentage)
 -- of a predicate
 -- col <relop> <value>
 -- where <relop> is one of: =, !=, <, <=, >, >=
 -- <value> is one of: 0, 1
 -- lo and hi are the minimum and maximum values of the column in
 -- the table. This function performs a simplistic estimation of the
 -- selectivity by assuming that the range of distinct values of
 -- the column is distributed uniformly in the range lo..hi and that
 -- each distinct value occurs nrows/(hi-lo+1) times (where nrows is
 -- the number of rows).

 ndv := hi-lo+1;

 IF ndv IS NULL OR ndv <= 0 THEN
 RETURN 0;
 END IF;

 -- col != <value>
 IF relop = ’!=’ THEN
 IF value between lo and hi THEN
 sel := 1 - 1/ndv;
 ELSE
 sel := 1;
 END IF;

 -- col = <value>
 ELSIF relop = ’=’ THEN
11-50 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
 IF value between lo and hi THEN
 sel := 1/ndv;
 ELSE
 sel := 0;
 END IF;

 -- col >= <value>
 ELSIF relop = ’>=’ THEN
 IF lo = hi THEN
 IF value <= lo THEN
 sel := 1;
 ELSE
 sel := 0;
 END IF;
 ELSIF value between lo and hi THEN
 sel := (hi-value)/(hi-lo) + 1/ndv;
 ELSIF value < lo THEN
 sel := 1;
 ELSE
 sel := 0;
 END IF;

 -- col < <value>
 ELSIF relop = ’<’ THEN
 IF lo = hi THEN
 IF value > lo THEN
 sel := 1;
 ELSE
 sel := 0;
 END IF;
 ELSIF value between lo and hi THEN
 sel := (value-lo)/(hi-lo);
 ELSIF value < lo THEN
 sel := 0;
 ELSE
 sel := 1;
 END IF;

 -- col <= <value>
 ELSIF relop = ’<=’ THEN
 IF lo = hi THEN
 IF value >= lo THEN
 sel := 1;
 ELSE
 sel := 0;
Power Demand Cartridge Example 11-51

Testing the Domain Index
 END IF;
 ELSIF value between lo and hi THEN
 sel := (value-lo)/(hi-lo) + 1/ndv;
 ELSIF value < lo THEN
 sel := 0;
 ELSE
 sel := 1;
 END IF;

 -- col > <value>
 ELSIF relop = ’>’ THEN
 IF lo = hi THEN
 IF value < lo THEN
 sel := 1;
 ELSE
 sel := 0;
 END IF;
 ELSIF value between lo and hi THEN
 sel := (hi-value)/(hi-lo);
 ELSIF value < lo THEN
 sel := 1;
 ELSE
 sel := 0;
 END IF;

 END IF;

 RETURN least(100, ceil(100*sel));

END;
/

The ODCIStatsSelectivity function estimates the selectivity for function

predicates which have constant start and stop values. Further, the first argument of

the function in the predicate must be a column of type PowerDemand_Typ and the

remaining arguments must be constants.

 STATIC FUNCTION ODCIStatsSelectivity(pred sys.ODCIPredInfo,
 sel OUT NUMBER, args sys.ODCIArgDescList, strt NUMBER, stop NUMBER,
 object PowerDemand_Typ, cell NUMBER, value NUMBER)
 RETURN NUMBER IS
 fname varchar2(30);
 relop varchar2(2);
 lo NUMBER;
 hi NUMBER;
11-52 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
 nrows NUMBER;
 colname VARCHAR2(30);
 statsexists BOOLEAN := FALSE;
 stats PowerCartUserStats%ROWTYPE;
 CURSOR c1(cell NUMBER, tname VARCHAR2, cname VARCHAR2) IS
 SELECT * FROM PowerCartUserStats
 WHERE cpos = cell
 AND tab = tname
 AND col = cname;
 BEGIN
 -- compute selectivity only when predicate is of the form:
 -- fn(col, <cell>, <value>) <relop> <val>
 -- In all other cases, return an error and let the optimizer
 -- make a guess. We also assume that the function "fn" has
 -- a return value of 0, 1, or NULL.

 -- start value
 IF (args(1).ArgType != ODCIConst.ArgLit AND
 args(1).ArgType != ODCIConst.ArgNull) THEN
 RETURN ODCIConst.Error;
 END IF;

 -- stop value
 IF (args(2).ArgType != ODCIConst.ArgLit AND
 args(2).ArgType != ODCIConst.ArgNull) THEN
 RETURN ODCIConst.Error;
 END IF;

 -- first argument of function
 IF (args(3).ArgType != ODCIConst.ArgCol) THEN
 RETURN ODCIConst.Error;
 END IF;

 -- second argument of function
 IF (args(4).ArgType != ODCIConst.ArgLit AND
 args(4).ArgType != ODCIConst.ArgNull) THEN
 RETURN ODCIConst.Error;
 END IF;

 -- third argument of function
 IF (args(5).ArgType != ODCIConst.ArgLit AND
 args(5).ArgType != ODCIConst.ArgNull) THEN
 RETURN ODCIConst.Error;
 END IF;
Power Demand Cartridge Example 11-53

Testing the Domain Index
 colname := rtrim(ltrim(args(3).colName, ’"’), ’"’);

The first (column) argument of the function in the predicate must have statistics

collected for it (by issuing the ANALYZE command which will call

ODCIStatsCollect for the column). If statistics have not been collected,

ODCIStatsSelectivity returns an error status.

 -- Check if the statistics table exists (we are using a
 -- user-defined table to store the user-defined statistics).
 -- Get user-defined statistics: MIN, MAX, NROWS
 FOR stats IN c1(cell, args(3).TableName, colname) LOOP
 -- Get user-defined statistics: MIN, MAX, NROWS
 lo := stats.lo;
 hi := stats.hi;
 nrows := stats.nrows;
 statsexists := TRUE;
 EXIT;
 END LOOP;

 -- If no user-defined statistics were collected, return error
 IF not statsexists THEN
 RETURN ODCIConst.Error;
 END IF;

Each Specific function predicate corresponds to an equivalent range predicate.

For example, the predicate:

 Power_EqualsSpecific_Func(col, 21, 25) = 0

which checks that the reading in cell 21 is not equal to 25, corresponds to the

equivalent range predicate:

 col[21] != 25

The ODCIStatsSelectivity function finds the corresponding range predicates

for each Specific function predicate. There are several boundary cases where the

selectivity can be immediately determined.

 -- selectivity is 0 for "fn(col, <cell>, <value>) < 0"
 IF (stop = 0 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStop) = 0) THEN
 sel := 0;
 RETURN ODCIConst.Success;
 END IF;

 -- selectivity is 0 for "fn(col, <cell>, <value>) > 1"
11-54 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
 IF (strt = 1 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStart) = 0) THEN
 sel := 0;
 RETURN ODCIConst.Success;
 END IF;

 -- selectivity is 100% for "fn(col, <cell>, <value>) >= 0"
 IF (strt = 0 AND
 bitand(pred.Flags, ODCIConst.PredExactMatch) = 0 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStart) > 0) THEN
 sel := 100;
 RETURN ODCIConst.Success;
 END IF;

 -- selectivity is 100% for "fn(col, <cell>, <value>) <= 1"
 IF (stop = 1 AND
 bitand(pred.Flags, ODCIConst.PredExactMatch) = 0 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStop) > 0) THEN
 sel := 100;
 RETURN ODCIConst.Success;
 END IF;

 -- get function name
 IF bitand(pred.Flags, ODCIConst.PredObjectFunc) > 0 THEN
 fname := pred.ObjectName;
 ELSE
 fname := pred.MethodName;
 END IF;

 -- convert prefix relational operator to infix;
 -- e.g., "Power_EqualsSpecific_Func(col, <cell>, <value>) = 1"
 -- becomes "col[<cell>] = <value>"

 -- Power_EqualsSpecific_Func(col, <cell>, <value>) = 0
 -- Power_EqualsSpecific_Func(col, <cell>, <value>) <= 0
 -- Power_EqualsSpecific_Func(col, <cell>, <value>) < 1
 -- can be transformed to
 -- col[<cell>] != <value>
 IF (fname LIKE upper(’Power_Equals%’) AND
 (stop = 0 OR
 (stop = 1 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStop) = 0))) THEN
 relop := ’!=’;

 -- Power_LessThanSpecific_Func(col, <cell>, <value>) = 0
Power Demand Cartridge Example 11-55

Testing the Domain Index
 -- Power_LessThanSpecific_Func(col, <cell>, <value>) <= 0
 -- Power_LessThanSpecific_Func(col, <cell>, <value>) < 1
 -- can be transformed to
 -- col[<cell>] >= <value>
 ELSIF (fname LIKE upper(’Power_LessThan%’) AND
 (stop = 0 OR
 (stop = 1 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStop) = 0))) THEN
 relop := ’>=’;

 -- Power_GreaterThanSpecific_Func(col, <cell>, <value>) = 0
 -- Power_GreaterThanSpecific_Func(col, <cell>, <value>) <= 0
 -- Power_GreaterThanSpecific_Func(col, <cell>, <value>) < 1
 -- can be transformed to
 -- col[<cell>] <= <value>
 ELSIF (fname LIKE upper(’Power_GreaterThan%’) AND
 (stop = 0 OR
 (stop = 1 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStop) = 0))) THEN
 relop := ’<=’;

 -- Power_EqualsSpecific_Func(col, <cell>, <value>) = 1
 -- Power_EqualsSpecific_Func(col, <cell>, <value>) >= 1
 -- Power_EqualsSpecific_Func(col, <cell>, <value>) > 0
 -- can be transformed to
 -- col[<cell>] = <value>
 ELSIF (fname LIKE upper(’Power_Equals%’) AND
 (strt = 1 OR
 (strt = 0 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStart) = 0))) THEN
 relop := ’=’;

 -- Power_LessThanSpecific_Func(col, <cell>, <value>) = 1
 -- Power_LessThanSpecific_Func(col, <cell>, <value>) >= 1
 -- Power_LessThanSpecific_Func(col, <cell>, <value>) > 0
 -- can be transformed to
 -- col[<cell>] < <value>
 ELSIF (fname LIKE upper(’Power_LessThan%’) AND
 (strt = 1 OR
 (strt = 0 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStart) = 0))) THEN
 relop := ’<’;

 -- Power_GreaterThanSpecific_Func(col, <cell>, <value>) = 1
 -- Power_GreaterThanSpecific_Func(col, <cell>, <value>) >= 1
11-56 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
 -- Power_GreaterThanSpecific_Func(col, <cell>, <value>) > 0
 -- can be transformed to
 -- col[<cell>] > <value>
 ELSIF (fname LIKE upper(’Power_GreaterThan%’) AND
 (strt = 1 OR
 (strt = 0 AND
 bitand(pred.Flags, ODCIConst.PredIncludeStart) = 0))) THEN
 relop := ’>’;

 ELSE
 RETURN ODCIConst.Error;

 END IF;

After the Specific function predicate is transformed into a simple range

predicate, ODCIStatsSelectivity calls get_selectivity to compute the

selectivity for the range predicate (and thus, equivalently, for the Specific
function predicate). It returns with a success status.

 sel := get_selectivity(relop, value, lo, hi);
 RETURN ODCIConst.Success;
 END;

ODCIStatsSelectivity Method (for Any Queries)
The second definition of the ODCIStatsSelectivity function estimates the

selectivity of operator or function predicates for Any queries. For example, if a

query asks for all instances where any cell has a value equal to 25, the function

estimates the percentage of rows in which any cell has the specified value. (This

definition of ODCIStatsSelectivity differs from the definition in the preceding

section in that it does not include the cell parameter.)

The pred parameter contains the function information (the functional

implementation of an operator in an operator predicate); this parameter is an object

instance of type SYS.ODCIPREDINFO. The selectivity is returned as a percentage in

the sel output parameter. The args parameter (an object instance of type

SYS.ODCIARGDESCLIST) contains a descriptor for each argument of the function

as well as the start and stop values of the function. For example, an argument might

be a column in which case the argument descriptor will contain the table name,

column name, and so forth. The strt and stop parameters are the lower and

upper boundary points for the function return value. If the function in a predicate

contains a literal of type PowerDemand_Typ , the object parameter will contain
Power Demand Cartridge Example 11-57

Testing the Domain Index
the value in the form of an object constructor. The value parameter is the value in

the cell specified by the function (Power_XxxxxAny_Func).

The selectivity for Any queries can be calculated as the complement of the

probability that none of the cells has the specified value. Thus, if s[i] is the

selectivity of the i th cell having the given value, then the selectivity of the Any
function predicate can be estimated as:

 1 - (1-s[1])(1-s[2])...(1-s[100])

assuming that the value of each cell is independent of the values in other cells. This

means that this version of the ODCIStatsSelectivity function (for Any queries)

can compute its selectivity by calling the first definition of the

ODCIStatsSelectivity function (for Specific queries).

 STATIC FUNCTION ODCIStatsSelectivity(pred sys.ODCIPredInfo,
 sel OUT NUMBER, args sys.ODCIArgDescList, strt NUMBER, stop NUMBER,
 object PowerDemand_Typ, value NUMBER)
 RETURN NUMBER IS
 cellsel NUMBER;
 i NUMBER;
 specsel NUMBER;
 newargs sys.ODCIArgDescList
 := sys.ODCIArgDescList(NULL, NULL, NULL,
 NULL, NULL);
 BEGIN
 -- To compute selectivity for the ANY functions, call the
 -- selectivity function for the SPECIFIC functions. For example,
 -- the selectivity of the ANY predicate
 --
 -- Power_EqualsAnyFunc(object, value) = 1
 --
 -- is computed as
 --
 -- 1 - (1-s[1])(1-s[2])...(1-s[100])
 --
 -- where s[i] is the selectivity of the SPECIFIC predicate
 --
 -- Power_EqualsSpecific_Func(object, i, value) = 1
 --

 sel := 1;
 newargs(1) := args(1);
 newargs(2) := args(2);
 newargs(3) := args(3);
11-58 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
 newargs(4) := sys.ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL);
 newargs(5) := args(4);
 FOR i in 1..100 LOOP
 cellsel := NULL;
 specsel := power_statistics.ODCIStatsSelectivity(pred, cellsel,
 newargs, strt, stop, object, i, value);
 IF specsel = ODCIConst.Success THEN
 sel := sel * (1 - cellsel/100);
 END IF;
 END LOOP;

 sel := sel*100;
 RETURN ODCIConst.Success;
 END;

ODCIStatsIndexCost Method (for Specific Queries)
The first definition of the ODCIStatsIndexCost function estimates the cost of the

domain index for Specific queries. For example, if a query asks for all instances

where cell (3,7) has a value equal to 25, the function estimates the cost of the domain

index access path to evaluate this query. (This definition of ODCIStatsIndexCost
differs from the definition in the next section in that it includes the cmppos
parameter for the position of the cell.)

The ia parameter contains the index information (an object instance of type

SYS.ODCIINDEXINFO). The sel parameter is the selectivity of the operator

predicate as estimated by the ODCIStatsSelectivity function for Specific
queries. The estimated cost is returned in the cost output parameter. The qi
parameter contains some information about the query and its environment (for

example, whether the ALL_ROWS or FIRST_ROWS optimizer mode is being used).

The pred parameter contains the operator information (an object instance of type

SYS.ODCIPREDINFO). The args parameter contains descriptors of the value

arguments of the operator as well as the start and stop values of the operator. The

strt and stop parameters are the lower and upper boundary points for the

operator return value. The cmppos parameter is the cell position and cmpval is the

value in the cell specified by the operator (Power_XxxxxSpecific).

In the power demand cartridge, the domain index cost for Specific queries is the

same as the domain index cost for Any queries, so this version of the

ODCIStatsIndexCost function simply calls the second definition of the function

(described in the next section).

 STATIC FUNCTION ODCIStatsIndexCost(ia sys.ODCIIndexInfo,
 sel NUMBER, cost OUT sys.ODCICost, qi sys.ODCIQueryInfo,
Power Demand Cartridge Example 11-59

Testing the Domain Index
 pred sys.ODCIPredInfo, args sys.ODCIArgDescList,
 strt NUMBER, stop NUMBER, cmppos NUMBER, cmpval NUMBER)
 RETURN NUMBER IS
 BEGIN
 -- This is the cost for queries on a specific cell; simply
 -- use the cost for queries on any cell.
 RETURN ODCIStatsIndexCost(ia, sel, cost, qi, pred, args,
 strt, stop, cmpval);
 END;

ODCIStatsIndexCost Method (for Any Queries)
The second definition of the ODCIStatsIndexCost function estimates the cost of

the domain index for Any queries. For example, if a query asks for all instances

where any cell has a value equal to 25, the function estimates the cost of the domain

index access path to evaluate this query. (This definition of ODCIStatsIndexCost
differs from the definition in the preceding section in that it does not include the

cmppos parameter.)

The ia parameter contains the index information (an object instance of type

SYS.ODCIINDEXINFO). The sel parameter is the selectivity of the operator

predicate as estimated by the ODCIStatsSelectivity function for Any queries.

The estimated cost is returned in the cost output parameter. The qi parameter

contains some information about the query and its environment (for example,

whether the ALL_ROWS or FIRST_ROWS optimizer mode is being used). The pred
parameter contains the operator information (an object instance of type

SYS.ODCIPREDINFO). The args parameter contains descriptors of the value

arguments of the operator as well as the start and stop values of the operator. The

strt and stop parameters are the lower and upper boundary points for the

operator return value. The cmpval parameter is the value in the cell specified by

the operator (Power_XxxxxAny).

The index cost is estimated as the number of blocks in the index-organized table

implementing the index multiplied by the selectivity of the operator predicate times

a constant factor.

 STATIC FUNCTION ODCIStatsIndexCost(ia sys.ODCIIndexInfo,
 sel NUMBER, cost OUT sys.ODCICost, qi sys.ODCIQueryInfo,
 pred sys.ODCIPredInfo, args sys.ODCIArgDescList,
 strt NUMBER, stop NUMBER, cmpval NUMBER)
 RETURN NUMBER IS
 ixtable VARCHAR2(40);
 numblocks NUMBER := NULL;
 get_table user_tables%ROWTYPE;
 CURSOR c1(tab VARCHAR2) IS
11-60 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
 SELECT * FROM user_tables WHERE table_name = tab;
 BEGIN
 -- This is the cost for queries on any cell.

 -- To compute the cost of a domain index, multiply the
 -- number of blocks in the table implementing the index
 -- with the selectivity

 -- Return if we don’t have predicate selectivity
 IF sel IS NULL THEN
 RETURN ODCIConst.Error;
 END IF;

 cost := sys.ODCICost(NULL, NULL, NULL);

 -- Get name of table implementing the domain index
 ixtable := ia.IndexName || ’_pidx’;

 -- Get number of blocks in domain index
 FOR get_table IN c1(upper(ixtable)) LOOP
 numblocks := get_table.blocks;
 EXIT;
 END LOOP;

 IF numblocks IS NULL THEN
 -- Exit if there are no user-defined statistics for the index
 RETURN ODCIConst.Error;
 END IF;

 cost.CPUCost := ceil(400*(sel/100)*numblocks);
 cost.IOCost := ceil(1.5*(sel/100)*numblocks);
 RETURN ODCIConst.Success;
 END;

ODCIStatsFunctionCost Method
The ODCIStatsFunctionCost function estimates the cost of evaluating a

function (Power_XxxxxSpecific_Func or Power_XxxxxAny_Func).

The func parameter contains the function information; this parameter is an object

instance of type SYS.ODCIFUNCINFO. The estimated cost is returned in the output

cost parameter. The args parameter (an object instance of type

SYS.ODCIARGDESCLIST) contains a descriptor for each argument of the function.

If the function contains a literal of type PowerDemand_Typ as its first argument,

the object parameter will contain the value in the form of an object constructor.
Power Demand Cartridge Example 11-61

Testing the Domain Index
The value parameter is the value in the cell specified by the function

(PowerXxxxxSpecific_Func or Power_XxxxxAny_Func).

The function cost is simply estimated as some default value depending on the

function name. Since the functions don’t read any data from disk, the I/O cost is set

to zero.

 STATIC FUNCTION ODCIStatsFunctionCost(func sys.ODCIFuncInfo,
 cost OUT sys.ODCICost, args sys.ODCIArgDescList,
 object PowerDemand_Typ, value NUMBER)
 RETURN NUMBER IS
 fname VARCHAR2(30);
 BEGIN
 cost := sys.ODCICost(NULL, NULL, NULL);

 -- Get function name
 IF bitand(func.Flags, ODCIConst.ObjectFunc) > 0 THEN
 fname := func.ObjectName;
 ELSE
 fname := func.MethodName;
 END IF;

 IF fname LIKE upper(’Power_LessThan%’) THEN
 cost.CPUCost := 500;
 cost.IOCost := 0;
 RETURN ODCIConst.Success;
 ELSIF fname LIKE upper(’Power_Equals%’) THEN
 cost.CPUCost := 700;
 cost.IOCost := 0;
 RETURN ODCIConst.Success;
 ELSIF fname LIKE upper(’Power_GreaterThan%’) THEN
 cost.CPUCost := 100;
 cost.IOCost := 0;
 RETURN ODCIConst.Success;
 ELSE
 RETURN ODCIConst.Error;
 END IF;
 END;

Associating the Extensible Optimizer Methods with Database Objects
In order for the optimizer to use the methods defined in the power_statistics
object type, they have to be associated with the appropriate database objects. The

following statements do this.
11-62 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
-- Associate statistics type with types, indextypes, and functions
ASSOCIATE STATISTICS WITH TYPES PowerDemand_Typ USING power_statistics;
ASSOCIATE STATISTICS WITH INDEXTYPES power_idxtype USING power_statistics;
ASSOCIATE STATISTICS WITH FUNCTIONS
 Power_EqualsSpecific_Func,
 Power_GreaterThanSpecific_Func,
 Power_LessThanSpecific_Func,
 Power_EqualsAny_Func,
 Power_GreaterThanAny_Func,
 Power_LessThanAny_Func
 USING power_statistics;

Analyzing the Database Objects
Analyzing tables, columns, and indexes ensures that the optimizer has the relevant

statistics to estimate accurate costs for various access paths and choose a good plan.

Further, the selectivity and cost functions defined in the power_statistics
object type rely on the presence of statistics. The following statements analyze the

database objects and verify that statistics were indeed collected.

-- Analyze the table
ANALYZE TABLE PowerDemand_Tab COMPUTE STATISTICS;

-- Verify that user-defined statistics were collected
SELECT tab tablename, col colname, cpos, lo, hi, nrows
FROM PowerCartUserStats
WHERE nrows IS NOT NULL
ORDER BY cpos;

-- Delete the statistics
ANALYZE TABLE PowerDemand_Tab DELETE STATISTICS;

-- Verify that user-defined statistics were deleted
SELECT tab tablename, col colname, cpos, lo, hi, nrows
FROM PowerCartUserStats
WHERE nrows IS NOT NULL
ORDER BY cpos;

-- Re-analyze the table
ANALYZE TABLE PowerDemand_Tab COMPUTE STATISTICS;

-- Verify that user-defined statistics were re-collected
SELECT tab tablename, col colname, cpos, lo, hi, nrows
FROM PowerCartUserStats
WHERE nrows IS NOT NULL
Power Demand Cartridge Example 11-63

Testing the Domain Index
ORDER BY cpos;

Testing the Domain Index
This section explains the parts of the power demand example that perform some

simple tests of the domain index. These tests consist of:

■ Creating the power demand table (PowerDemand_Tab) and populating it with

a small amount of data

■ Executing some queries before the index is created (and showing the execution

plans without an index being used)

The execution plans show that a full table scan is performed in each case.

■ Creating the index on the grid

■ Executing the same queries after the index is created (and showing the

execution plans with the index being used)

The execution plans show that Oracle is using the index and not performing full

table scans, thus resulting in more efficient execution.

The statements in this section are available online in the example file (tkqxpwr.sql).

Creating and Populating the Power Demand Table
The power demand table is created with two columns:

■ region , to allow the electric utility to use the grid scheme in multiple areas or

states. Each region (for example, New York, New Jersey, Pennsylvania, and so

on) is represented by a 10x10 grid.

■ sample , a collection of samplings (power demand readings from each cell in

the grid), defined using the PowerDemand_Typ object type.

CREATE TABLE PowerDemand_Tab (
 -- Region for which these power demand readings apply
 region NUMBER,
 -- Values for each "sampling" time (for a given hour)
 sample PowerDemand_Typ
);

Several rows are inserted, representing power demand data for two regions (1 and

2) for several hourly timestamps. For simplicity, values are inserted only into the

first 5 positions of each grid (the remaining 95 values are set to null).
11-64 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
-- The next INSERT statements "cheat" by supplying
-- only 5 grid values (instead of 100).

-- First 5 INSERT statements are for region 1 (1 AM to 5 AM on
-- 01-Feb-1998), to get enough timestamps for a moving
-- average using Time Series. (Time Series
-- cartridge tests are in a separate file.)

INSERT INTO PowerDemand_Tab VALUES(1,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(55,8,13,9,5),
 to_date('02-01-1998 01','MM-DD-YYYY HH'))
);

INSERT INTO PowerDemand_Tab VALUES(1,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(56,8,13,9,3),
 to_date('02-01-1998 02','MM-DD-YYYY HH'))
);

INSERT INTO PowerDemand_Tab VALUES(1,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(55,8,13,9,3),
 to_date('02-01-1998 03','MM-DD-YYYY HH'))
);

INSERT INTO PowerDemand_Tab VALUES(1,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(54,8,13,9,3),
 to_date('02-01-1998 04','MM-DD-YYYY HH'))
);

INSERT INTO PowerDemand_Tab VALUES(1,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(54,8,12,9,3),
 to_date('02-01-1998 05','MM-DD-YYYY HH'))
);

-- Also insert some rows for region 2.

INSERT INTO PowerDemand_Tab VALUES(2,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(9,8,11,16,5),
 to_date('02-01-1998 01','MM-DD-YYYY HH'))
);

INSERT INTO PowerDemand_Tab VALUES(2,
 PowerDemand_Typ(NULL, NULL, NULL, PowerGrid_Typ(9,8,11,20,5),
 to_date('02-01-1998 02','MM-DD-YYYY HH'))
);
Power Demand Cartridge Example 11-65

Testing the Domain Index
Finally, the values for TotGridDemand , MaxCellDemand , and MinCellDemand
are computed and set for each of the newly inserted rows, and these values are

displayed.

DECLARE
CURSOR c1 IS SELECT Sample, Region FROM PowerDemand_Tab FOR UPDATE;
s PowerDemand_Typ;
r NUMBER;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO s,r;
 EXIT WHEN c1%NOTFOUND;
 s.SetTotalDemand;
 s.SetMaxDemand;
 s.SetMinDemand;
 dbms_output.put_line(s.TotGridDemand);
 dbms_output.put_line(s.MaxCellDemand);
 dbms_output.put_line(s.MinCellDemand);
 UPDATE PowerDemand_Tab SET Sample = s WHERE CURRENT OF c1;
 END LOOP;
 CLOSE c1;
END;
/

-- Examine the values.
SELECT region, P.Sample.TotGridDemand, P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand,
 to_char(P.sample.sampletime, 'MM-DD-YYYY HH')
 FROM PowerDemand_Tab P;

Querying without the Index
The queries is this section are executed by applying the underlying function

(PowerEqualsSpecific_Func) for every row in the table, because the index has

not yet been defined.

The example file includes queries that check, both for a specific cell number and for

any cell number, for values equal to, greater than, and less than a specified value.

For example, the equality queries are as follows:

SET SERVEROUTPUT ON

-- Query, referencing the operators (without index)

11-66 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
explain plan for
SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_Equals(P.Sample,2,10) = 1;
@tkoqxpll

SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_Equals(P.Sample,2,10) = 1;

explain plan for
SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_Equals(P.Sample,1,25) = 1;
@tkoqxpll

SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_Equals(P.Sample,1,25) = 1;

explain plan for
SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_Equals(P.Sample,2,8) = 1;
@tkoqxpll

SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_Equals(P.Sample,2,8) = 1;

explain plan for
SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
 FROM PowerDemand_Tab P
 WHERE Power_EqualsAny(P.Sample,9) = 1;
@tkoqxpll

SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 P.Sample.MinCellDemand
Power Demand Cartridge Example 11-67

Testing the Domain Index
 FROM PowerDemand_Tab P
 WHERE Power_EqualsAny(P.Sample,9) = 1;

The execution plans show that a full table scan is performed in each case:

OPERATIONS OPTIONS OBJECT_NAME
--------------- --------------- ---------------
SELECT STATEMEN
TABLE ACCESS FULL POWERDEMAND_TAB

Creating the Index
The index is created on the sample column in the power demand table.

CREATE INDEX PowerIndex ON PowerDemand_Tab(Sample)
 INDEXTYPE IS power_idxtype;

Querying with the Index
The queries in this section are the same as those in "Querying without the Index" on

page 11-66, but this time the index is used.

The execution plans show that Oracle is using the domain index and not

performing full table scans, thus resulting in more efficient execution. For example:

SVRMGR> ---
SVRMGR> -- Query, referencing the operators (with index)
SVRMGR> ---
SVRMGR> explain plan for
 2> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 3> P.Sample.MinCellDemand
 4> FROM PowerDemand_Tab P
 5> WHERE Power_Equals(P.Sample,2,10) = 1;
Statement processed.
SVRMGR> @tkoqxpll
SVRMGR> set echo off
Echo OFF
Charwidth 15
OPERATIONS OPTIONS OBJECT_NAME
--------------- --------------- ---------------
SELECT STATEMEN
TABLE ACCESS BY ROWID POWERDEMAND_TAB
DOMAIN INDEX POWERINDEX
3 rows selected.
Statement processed.
Echo ON
11-68 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
SVRMGR>
SVRMGR> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 2> P.Sample.MinCellDemand
 3> FROM PowerDemand_Tab P
 4> WHERE Power_Equals(P.Sample,2,10) = 1;
REGION SAMPLE.TOT SAMPLE.MAX SAMPLE.MIN
---------- ---------- ---------- ----------
0 rows selected.
ODCIIndexStart>>>>>
ODCIIndexInfo
Index owner : POWERCARTUSER
Index name : POWERINDEX
Table owner : POWERCARTUSER
Table name : POWERDEMAND_TAB
Indexed column : "SAMPLE"
Indexed column type :POWERDEMAND_TYP
Indexed column type schema:POWERCARTUSER
ODCIPredInfo
Object owner : POWERCARTUSER
Object name : POWER_EQUALS
Method name :
Predicate bounds flag :
 Exact Match
 Include Start Key
 Include Stop Key
start key : 1
stop key : 1
compare position : 2
compare value : 10
ODCIIndexStart>>>>>select r from POWERCARTUSER.POWERINDEX_pidx where cpos ='2'
and cval ='10'
ODCIIndexFetch>>>>>
Nrows : 2000
ODCIIndexClose>>>>>
SVRMGR>
SVRMGR> explain plan for
 2> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 3> P.Sample.MinCellDemand
 4> FROM PowerDemand_Tab P
 5> WHERE Power_Equals(P.Sample,2,8) = 1;
Statement processed.
SVRMGR> @tkoqxpll
SVRMGR> set echo off
Echo OFF
Charwidth 15
Power Demand Cartridge Example 11-69

Testing the Domain Index
OPERATIONS OPTIONS OBJECT_NAME
--------------- --------------- ---------------
SELECT STATEMEN
TABLE ACCESS BY ROWID POWERDEMAND_TAB
DOMAIN INDEX POWERINDEX
3 rows selected.
Statement processed.
Echo ON
SVRMGR>
SVRMGR> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 2> P.Sample.MinCellDemand
 3> FROM PowerDemand_Tab P
 4> WHERE Power_Equals(P.Sample,2,8) = 1;
REGION SAMPLE.TOT SAMPLE.MAX SAMPLE.MIN
---------- ---------- ---------- ----------
 1 90 55 5
 1 89 56 3
 1 88 55 3
 1 87 54 3
 1 86 54 3
 2 49 16 5
 2 53 20 5
7 rows selected.
ODCIIndexStart>>>>>
ODCIIndexInfo
Index owner : POWERCARTUSER
Index name : POWERINDEX
Table owner : POWERCARTUSER
Table name : POWERDEMAND_TAB
Indexed column : "SAMPLE"
Indexed column type :POWERDEMAND_TYP
Indexed column type schema:POWERCARTUSER
ODCIPredInfo
Object owner : POWERCARTUSER
Object name : POWER_EQUALS
Method name :
Predicate bounds flag :
 Exact Match
 Include Start Key
 Include Stop Key
start key : 1
stop key : 1
compare position : 2
compare value : 8
ODCIIndexStart>>>>>select r from POWERCARTUSER.POWERINDEX_pidx where cpos ='2'
11-70 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
and cval ='8'
ODCIIndexFetch>>>>>
Nrows : 2000
ODCIIndexClose>>>>>
SVRMGR>
SVRMGR> explain plan for
 2> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 3> P.Sample.MinCellDemand
 4> FROM PowerDemand_Tab P
 5> WHERE Power_EqualsAny(P.Sample,9) = 1;
Statement processed.
SVRMGR> @tkoqxpll
SVRMGR> set echo off
Echo OFF
Charwidth 15
OPERATIONS OPTIONS OBJECT_NAME
--------------- --------------- ---------------
SELECT STATEMEN
TABLE ACCESS BY ROWID POWERDEMAND_TAB
DOMAIN INDEX POWERINDEX
3 rows selected.
Statement processed.
Echo ON
SVRMGR>
SVRMGR> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 2> P.Sample.MinCellDemand
 3> FROM PowerDemand_Tab P
 4> WHERE Power_EqualsAny(P.Sample,9) = 1;
REGION SAMPLE.TOT SAMPLE.MAX SAMPLE.MIN
---------- ---------- ---------- ----------
 1 90 55 5
 1 89 56 3
 1 88 55 3
 1 87 54 3
 1 86 54 3
 2 49 16 5
 2 53 20 5
7 rows selected.
ODCIIndexStart>>>>>
ODCIIndexInfo
Index owner : POWERCARTUSER
Index name : POWERINDEX
Table owner : POWERCARTUSER
Table name : POWERDEMAND_TAB
Indexed column : "SAMPLE"
Power Demand Cartridge Example 11-71

Testing the Domain Index
Indexed column type :POWERDEMAND_TYP
Indexed column type schema:POWERCARTUSER
ODCIPredInfo
Object owner : POWERCARTUSER
Object name : POWER_EQUALSANY
Method name :
Predicate bounds flag :
 Exact Match
 Include Start Key
 Include Stop Key
start key : 1
stop key : 1
compare value : 9
ODCIIndexStart>>>>>select distinct r from POWERCARTUSER.POWERINDEX_pidx where
cval ='9'
ODCIIndexFetch>>>>>
Nrows : 2000
ODCIIndexClose>>>>>
SVRMGR>
SVRMGR> explain plan for
 2> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 3> P.Sample.MinCellDemand
 4> FROM PowerDemand_Tab P
 5> WHERE Power_GreaterThanAny(P.Sample,50) = 1;
Statement processed.
SVRMGR> @tkoqxpll
SVRMGR> set echo off
Echo OFF
Charwidth 15
OPERATIONS OPTIONS OBJECT_NAME
--------------- --------------- ---------------
SELECT STATEMEN
TABLE ACCESS BY ROWID POWERDEMAND_TAB
DOMAIN INDEX POWERINDEX
3 rows selected.
Statement processed.
Echo ON
SVRMGR>
SVRMGR> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 2> P.Sample.MinCellDemand
 3> FROM PowerDemand_Tab P
 4> WHERE Power_GreaterThanAny(P.Sample,50) = 1;
REGION SAMPLE.TOT SAMPLE.MAX SAMPLE.MIN
---------- ---------- ---------- ----------
 1 90 55 5
11-72 Oracle8i Data Cartridge Developer’s Guide

Testing the Domain Index
 1 89 56 3
 1 88 55 3
 1 87 54 3
 1 86 54 3
5 rows selected.
ODCIIndexStart>>>>>
ODCIIndexInfo
Index owner : POWERCARTUSER
Index name : POWERINDEX
Table owner : POWERCARTUSER
Table name : POWERDEMAND_TAB
Indexed column : "SAMPLE"
Indexed column type :POWERDEMAND_TYP
Indexed column type schema:POWERCARTUSER
ODCIPredInfo
Object owner : POWERCARTUSER
Object name : POWER_GREATERTHANANY
Method name :
Predicate bounds flag :
 Exact Match
 Include Start Key
 Include Stop Key
start key : 1
stop key : 1
compare value : 50
ODCIIndexStart>>>>>select distinct r from POWERCARTUSER.POWERINDEX_pidx where cv
al >’50’
ODCIIndexFetch>>>>>
Nrows : 2000
ODCIIndexClose>>>>>
SVRMGR>
SVRMGR> explain plan for
 2> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 3> P.Sample.MinCellDemand
 4> FROM PowerDemand_Tab P
 5> WHERE Power_LessThanAny(P.Sample,50) = 0;
Statement processed.
SVRMGR> @tkoqxpll
SVRMGR> set echo off
Echo OFF
Charwidth 15
OPERATIONS OPTIONS OBJECT_NAME
--------------- --------------- ---------------
SELECT STATEMEN
TABLE ACCESS BY ROWID POWERDEMAND_TAB
Power Demand Cartridge Example 11-73

Using Time Series with the Power Demand Cartridge
DOMAIN INDEX POWERINDEX
3 rows selected.
Statement processed.
Echo ON
SVRMGR>
SVRMGR> SELECT P.Region, P.Sample.TotGridDemand ,P.Sample.MaxCellDemand,
 2> P.Sample.MinCellDemand
 3> FROM PowerDemand_Tab P
 4> WHERE Power_LessThanAny(P.Sample,50) = 0;
REGION SAMPLE.TOT SAMPLE.MAX SAMPLE.MIN
---------- ---------- ---------- ----------
0 rows selected.
ODCIIndexStart>>>>>
ODCIIndexInfo
Index owner : POWERCARTUSER
Index name : POWERINDEX
Table owner : POWERCARTUSER
Table name : POWERDEMAND_TAB
Indexed column : "SAMPLE"
Indexed column type :POWERDEMAND_TYP
Indexed column type schema:POWERCARTUSER
ODCIPredInfo
Object owner : POWERCARTUSER
Object name : POWER_LESSTHANANY
Method name :
Predicate bounds flag :
 Exact Match
 Include Start Key
 Include Stop Key
start key : 0
stop key : 0
compare value : 50
ODCIIndexStart>>>>>select distinct r from POWERCARTUSER.POWERINDEX_pidx minus se
lect distinct r from POWERCARTUSER.POWERINDEX_pidx where cval <’50’
ODCIIndexFetch>>>>>
Nrows : 2000
ODCIIndexClose>>>>>

Using Time Series with the Power Demand Cartridge
This section describes how Oracle Time Series can be used with the Power Demand

cartridge. With Time Series, you can apply the many time series and time scaling

functions, such as various averages (arithmetic, cumulative, moving) and scaleup,

to the power demand data.
11-74 Oracle8i Data Cartridge Developer’s Guide

Using Time Series with the Power Demand Cartridge
This section assumes that you are familiar with time series concepts and basic usage

information for Time Series. For detailed conceptual and usage information, see the

Oracle8i Time Series User’s Guide.

To use Time Series with the power demand data, you must perform the following

steps:

1. Identify the timestamp column and other columns of interest in the power

demand table.

2. Define the calendars to be used.

3. Create a mapping table to map regions to an hourly calendar.

4. Create a reference-based view.

5. Formulate time series queries.

This section does not discuss creating the underlying table for time series data or

loading the data, because these operations were done in "Creating and Populating

the Power Demand Table" on page 11-64.

The following operations are not illustrated in this section, but should be included

for use in a production environment:

■ Creating a security view that uses INSTEAD OF triggers for actions that can

modify time series data

■ Validating the consistency of time series data

Identifying Columns to be Used
Time Series requires that each data row include the following:

■ A timestamp

Note: The PowerDemand_Tab table is not defined as an

index-organized table, but as a regular table. Although

index-organized tables are recommended for use with Time Series

for performance reasons, such tables cannot include columns of the

VARRAY datatype, which is used to define the power demand grid

(Sample.CellDemandValues , defined using the PowerGrid_
Typ object type, which is VARRAY(100) of NUMBER).
Power Demand Cartridge Example 11-75

Using Time Series with the Power Demand Cartridge
In this example, the timestamp is the SampleTime attribute of the

PowerDemand_Typ object type, which is used to define the Samples column

of the PowerDemand_Tab table.

■ A qualifier

In this example, the qualifier is the region column of the PowerDemand_Tab
table. In a financial time series, the qualifier might be the stock ticker symbol

(for example, ACME for Acme Corporation.)

■ One or more columns with data to be operated on by Time Series functions.

In this example, the TotGridDemand , MaxCellDemand , MinCellDemand ,

and CellDemandValues attributes of the PowerDemand_Typ object type can

be used with Time Series functions. In a financial time series of daily stock

market data, the columns to be operated on by Time Series functions might

include the opening, closing, high, and low prices, and the total volume of

shares traded.

Defining the Calendars
To define the calendars, you must create their definitions in a table of calendars. If

the table of calendars does not already exist, create it first. (The calendar table might

not exist because this is your first use of Time Series; or a calendar table might exist

for another application, but you choose to place power demand calendars in a

separate table.)

The following statements create a table named PowerDemand_calendars and

defines the first of three calendars, this one named PowerReadingsCal_Hourly .

Explanatory notes follow the example.

-- Create the table for the calendars.
CREATE TABLE PowerDemand_calendars of ORDSYS.ORDTCalendar;

-- Create three calendars: first one for hourly readings, the
-- other two for daily and monthly scaleup operations.
INSERT INTO PowerDemand_calendars
VALUES(
 ORDSYS.ORDTCalendar(
 0,
 'PowerReadingsCal_Hourly',
 3,
 ORDSYS.ORDTPattern(ORDSYS.ORDTPatternBits(1),
 to_date('01-01-1998 01','MM-DD-YYYY HH')),
 to_date('01-01-1998 01','MM-DD-YYYY HH'),

1

2
3

4
5

6

11-76 Oracle8i Data Cartridge Developer’s Guide

Using Time Series with the Power Demand Cartridge
 to_date('01-01-2008 01','MM-DD-YYYY HH'),
 ORDSYS.ORDTExceptions(),
 ORDSYS.ORDTExceptions()
)
);

Notes on the preceding example:

PowerDemand_calendars is a table of ORDSYS.ORDTCalendar objects.

0 (zero) for calendar type (caltype) indicates that this is an exception-based

calendar.

PowerReadingsCal_Hourly is the name of this calendar.

3 is the frequency code for hour .

The pattern is defined as having all timestamps included (1). Because there are

no off timestamps (that is, power readings are taken for all hours), any hourly

timestamp can be used for the anchor date (’01-01-1998 01’ is used in this

example).

The calendar begins at 1:00 AM on 01-Jan-1998 and ends at 1:00 AM on

01-Jan-2008

There are no off-exceptions (that is, no hours when readings are not taken) and

no on-exceptions (which are impossible in this case anyway, because there are

no zeroes in the calendar pattern).

The following statements create two additional calendars, for use with scaleup

operations in which hourly power demand readings are scaled up to compute daily

and monthly values:

INSERT INTO PowerDemand_calendars
VALUES(
 ORDSYS.ORDTCalendar(
 0,
 'PowerReadingsCal_Daily',
 4,
 ORDSYS.ORDTPattern(ORDSYS.ORDTPatternBits(1),
 to_date('01-01-1998','MM-DD-YYYY')),
 to_date('01-01-1998','MM-DD-YYYY'),
 to_date('01-01-2008','MM-DD-YYYY'),
 ORDSYS.ORDTExceptions(),
 ORDSYS.ORDTExceptions()
)
);

7

1

2

3

4

5

6

7

Power Demand Cartridge Example 11-77

Using Time Series with the Power Demand Cartridge
INSERT INTO PowerDemand_calendars
VALUES(
 ORDSYS.ORDTCalendar(
 0,
 'PowerReadingsCal_Monthly',
 6,
 ORDSYS.ORDTPattern(ORDSYS.ORDTPatternBits(1),
 to_date('01-01-1998','MM-DD-YYYY')),
 to_date('01-01-1998','MM-DD-YYYY'),
 to_date('01-01-2008','MM-DD-YYYY'),
 ORDSYS.ORDTExceptions(),
 ORDSYS.ORDTExceptions()
)
);

Creating the Mapping Table
Create a table to map regions to calendars, and insert a row for each region. In this

example, regions 1 and 2 are associated with the PowerReadingsCal_Hourly
calendar. This mapping allows the reference-based view to be used.

-- Create the metadata table and insert rows for two regions.

CREATE TABLE PowerDemand_metadata (
 region number,
 calendarname varchar2(30),
 constraint pk_PowerDemand_metadata primary key (region));

INSERT INTO PowerDemand_metadata VALUES(1, 'PowerReadingsCal_Hourly');
INSERT INTO PowerDemand_metadata VALUES(2, 'PowerReadingsCal_Hourly');

Creating the Reference-Based View
Create a reference-based view for convenient and efficient access to time series data.

The following statements create a reference-based view for the power demand data:

-- Create the reference view.

CREATE OR REPLACE VIEW PowerDemand_rv(region,TotGridDemand,
 MaxCellDemand,MinCellDemand,CellDemandValues) AS
 SELECT meta.region,
 ORDSYS.ORDTNumSeriesIOTRef(
 'TotGridDemand_ts', Ref(cal), 'PowerCartUser.PowerDemand_Tab T',
 'T.sample.SampleTime',
11-78 Oracle8i Data Cartridge Developer’s Guide

Using Time Series with the Power Demand Cartridge
 'T.sample.TotGridDemand',
 'region', meta.region),
 ORDSYS.ORDTNumSeriesIOTRef(
 'MaxCellDemand_ts', Ref(cal), 'PowerCartUser.PowerDemand_Tab T',
 'T.sample.SampleTime',
 'T.sample.MaxCellDemand',
 'region', meta.region),
 ORDSYS.ORDTNumSeriesIOTRef(
 'MinCellDemand_ts', Ref(cal), 'PowerCartUser.PowerDemand_Tab T',
 'T.sample.SampleTime',
 'T.sample.MinCellDemand',
 'region', meta.region),
 ORDSYS.ORDTNumSeriesIOTRef(
 'CellDemandValues_ts', Ref(cal), 'PowerCartUser.PowerDemand_Tab T',
 'T.sample.SampleTime',
 'T.sample.CellDemandValues',
 'region', meta.region)
 FROM PowerDemand_metadata meta, PowerDemand_calendars cal
 WHERE meta.calendarname = cal.name;

Formulating Time Series Queries
Formulating time series queries involves invoking time series or time scaling

functions, or both. The power demand example includes SQL and PL/SQL queries

that return the following information:

■ Hourly power demand for the grid (TotGridDemand) for region 1

■ Average TotGridDemand for region 1

■ Cumulative average TotGridDemand for region 1

■ A time series that leads a specified time series by one day (that is, uses the

hourly values for one day to create corresponding hourly values for the next

day)

■ Moving average of TotGridDemand for region 1

■ Scaleup of TotGridDemand readings for region 1 from hourly to daily

■ A time series reflecting the addition of two time series (MinCellDemand and

MaxCellDemand)

The following example shows the execution of the Lead and Moving average

functions with power demand data. This example includes the SQL statements and

the output with ECHO and SERVEROUTPUT turned on.
Power Demand Cartridge Example 11-79

Using Time Series with the Power Demand Cartridge
SVRMGR> -- Lead: Using timestamps from 1:00 through 5:00 AM on 01-Feb-1998,
SVRMGR> -- create a time series of the number of timestamps 24 hours later.
SVRMGR> -- The result is a time series from 1:00 through 5:00 AM on 02-Feb-1998
SVRMGR> -- containing the same TotGridDemand values as the corresponding
SVRMGR> -- timestamps on 01-Feb-1998.
SVRMGR> --
SVRMGR> SELECT * FROM the
 2> (SELECT CAST(ORDSYS.TIMESERIES.ExtractTable(
 3> ORDSYS.TIMESERIES.Lead(ts.TotGridDemand, 24,
 4> to_date('01-FEB-98 01','DD-MON-YY HH'),
 5> to_date('01-FEB-98 05','DD-MON-YY HH'))
 6>) AS ordsys.ordtNumTab)
 7> FROM PowerCartUser.powerdemand_rv ts
 8> WHERE region = 1);
TSTAMP VALUE
--------- ----------
02-FEB-98 90
02-FEB-98 89
02-FEB-98 88
02-FEB-98 87
02-FEB-98 86
5 rows selected.
SVRMGR>
SVRMGR> --
SVRMGR> -- Compute a moving average over a window of 3 timestamps
SVRMGR> -- for region 1.
SVRMGR> --
SVRMGR>
SVRMGR> SELECT * FROM the
 2> (SELECT CAST(ORDSYS.TIMESERIES.ExtractTable(
 3> ORDSYS.TIMESERIES.Mavg(ts.TotGridDemand,3)
 4>) AS ordsys.ordtNumTab)
 5> FROM PowerCartUser.powerdemand_rv ts
 6> WHERE region = 1);
TSTAMP VALUE
--------- ----------
01-FEB-98
01-FEB-98
01-FEB-98 89
01-FEB-98 88
01-FEB-98 87
5 rows selected.
11-80 Oracle8i Data Cartridge Developer’s Guide

Using Spatial with the Power Demand Cartridge
Figure 11–9 Power Regions and Area of Interest (Spatial)

Using Spatial with the Power Demand Cartridge
This section describes how the Oracle Spatial can be used with the Power Demand

cartridge. With Spatial, you can perform geospatial queries against the power

demand regions to select power demand data from areas of interest.

This example defines some regions with rectangular coordinates, and it also defines

a rectangular area of interest that partially overlaps region 1 but does not touch

regions 2 or 3. This area of interest might reflect the extent of some natural

phenomenon, such as a mass of cold air or the path of a tornado (although an actual

representation would require more than a simple rectangle). Figure 11–9 shows four

regions, each represented as a square on a grid, and the area of interest represented

as a gray rectangle. The figure uses a very simple (and arbitrary) coordinate system.

The queries select power demand data from regions that are overlapped in any way

by the area of interest. In this example, the queries return data only from region 1.

Note that this simple example considers the entire region; it does not provide

 y-axis

x-axis

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

1 2 3 4
Power Demand Cartridge Example 11-81

Using Spatial with the Power Demand Cartridge
coordinates for individual cells (neighborhoods), and it does not check which

specific cells within region 1 are inside the area of interest.

This section assumes that you are familiar with the concepts and basic usage

information for Spatial. For detailed conceptual and usage information, see the

Oracle Spatial User’s Guide and Reference.

To use Spatial with the power demand data, you must perform the following steps:

1. Create a Spatial layer consisting of four tables, with the geometry table related

to the PowerDemand_tab table by region.

2. Create coordinates (x,y) for the power demand regions.

3. Populate the power demand regions index.

4. Create coordinates (x,y) for the area of interest to be used in queries against the

power demand regions.

5. Populate the windows index.

6. Perform spatial queries.

Creating the Spatial Layer (PowerDemandRegions)
To use Spatial with power demand data, create a Spatial layer (called

PowerDemandRegions in this example) consisting of four tables, with the

geometry table (PowerDemandRegions_SDOGEOM) related to the PowerDemand_
tab table by the region attribute.

The following statements define this layer.

-- Simple scenario for integrating Spatial.
-- Regions have spatial extent (e.g., states of the U.S.).
-- A person wanting to select data may either want data for
-- predefined regions or data for those units (such as
-- states) that intersect a dynamically created
-- area-of-interest (such as one you would draw when choosing
-- a zoom area from a Web-based mapping service).

-- Create a Spatial layer called PowerDemandRegions. This
-- consists of four tables, and the geometry table is related to
-- the PowerDemand_Tab table by Region.
set serveroutput on
set echo on

CREATE TABLE PowerDemandRegions_SDODIM (
 sdo_dimnum number,
11-82 Oracle8i Data Cartridge Developer’s Guide

Using Spatial with the Power Demand Cartridge
 sdo_dimname varchar2(32),
 sdo_lb number,
 sdo_ub number,
 sdo_tolerance number);

CREATE TABLE PowerDemandRegions_SDOLAYER (
 sdo_ordcnt number,
 sdo_level number,
 sdo_numtiles number);

-- In the following definition of PowerDemandRegions_SDOGEOM,
-- sdo_gid equates to Region in PowerDemand_Tab.
CREATE TABLE PowerDemandRegions_SDOGEOM (
 sdo_gid number,
 sdo_eseq number,
 sdo_etype number,
 sdo_seq number,
 sdo_x1 number,
 sdo_y1 number,
 sdo_x2 number,
 sdo_y2 number,
 sdo_x3 number,
 sdo_y3 number,
 sdo_x4 number,
 sdo_y4 number,
 sdo_x5 number,
 sdo_y5 number) ;
CREATE TABLE PowerDemandRegions_SDOINDEX (
 sdo_gid number,
 sdo_code raw(255),
 sdo_meta raw(255));

-- Create some coordinates for the example and show how an
-- index is created etc. We will also assume that some windows of
-- interest have been pre-defined and stored in a Window_layer.

CREATE TABLE Windows_SDODIM (
 sdo_dimnum number,
 sdo_dimname varchar2(32),
 sdo_lb number,
 sdo_ub number,
 sdo_tolerance number);

CREATE TABLE Windows_SDOLAYER (
 sdo_ordcnt number,
Power Demand Cartridge Example 11-83

Using Spatial with the Power Demand Cartridge
 sdo_level number,
 sdo_numtiles number);

CREATE TABLE Windows_SDOGEOM (
 sdo_gid number,
 sdo_eseq number,
 sdo_etype number,
 sdo_seq number,
 sdo_x1 number,
 sdo_y1 number,
 sdo_x2 number,
 sdo_y2 number,
 sdo_x3 number,
 sdo_y3 number,
 sdo_x4 number,
 sdo_y4 number,
 sdo_x5 number,
 sdo_y5 number);

CREATE TABLE Windows_SDOINDEX (
 sdo_gid number,
 sdo_code raw(255),
 sdo_meta raw(255));

Creating Coordinates for the Power Demand Regions
To enable Spatial to recognize and work with the power demand regions, populate

the Spatial layer tables with the necessary data. The following statements provide

data, including x,y coordinates for region boundary corners, for three regions.

-- Populate the tables for power regions.
INSERT INTO PowerDemandRegions_SDODIM VALUES(
 1,
 'x-axis',
 0,
 100,
 0.0005);
INSERT INTO PowerDemandRegions_SDODIM VALUES(
 2,
 'y-axis',
 0,
 100,
 0.0005);
INSERT INTO PowerDemandRegions_SDOLAYER VALUES(
 10,
11-84 Oracle8i Data Cartridge Developer’s Guide

Using Spatial with the Power Demand Cartridge
 5,
 NULL);
INSERT INTO PowerDemandRegions_SDOGEOM VALUES(
 1,
 0,
 3,
 1,
 2,2,
 4,2,
 4,4,
 2,4,
 2,2);
INSERT INTO PowerDemandRegions_SDOGEOM VALUES(
 2,
 0,
 3,
 1,
 4,2,
 6,2,
 6,4,
 4,4,
 4,2);
INSERT INTO PowerDemandRegions_SDOGEOM VALUES(
 3,
 0,
 3,
 1,
 6,2,
 8,2,
 8,4,
 6,4,
 6,2);

Populating the Power Demand Regions Index
The following statement populates the index for the Spatial layer

PowerDemandRegions .

-- Populate the index for Spatial layer PowerDemandRegions
EXECUTE sdo_admin.populate_index('POWERDEMANDREGIONS');
Power Demand Cartridge Example 11-85

Using Spatial with the Power Demand Cartridge
Creating Coordinates for the Area of Interest
To enable Spatial to recognize and work with the area of interest, populate the

Windows layer tables with the necessary data. The following statements provide

data, including x,y coordinates for the boundary corners, for the area of interest.

-- Populate the tables for region of interest.
INSERT INTO Windows_SDODIM VALUES(
 1,
 'x-axis',
 0,
 100,
 0.0005);
INSERT INTO Windows_SDODIM VALUES(
 2,
 'y-axis',
 0,
 100,
 0.0005);
INSERT INTO Windows_SDOLAYER VALUES(
 10,
 5,
 NULL);

-- The next INSERT creates a small rectangle that
-- partially overlaps region 1 but does not touch
-- regions 2 or 3.

INSERT INTO Windows_SDOGEOM VALUES(
 1,
 0,
 3,
 1,
 2,3,
 3,3,
 3,5,
 2,5,
 2,3);

Populating the Windows Index
The following statement populates the index for the Windows layer.

-- Populate the index for the WINDOWS layer (Windows)
EXECUTE sdo_admin.populate_index('WINDOWS');
11-86 Oracle8i Data Cartridge Developer’s Guide

Using Spatial with the Power Demand Cartridge
Performing Spatial Queries
The following queries use the SDOGEOM.Relate function to retrieve data from

regions that are within or overlapping the area of interest. Because only region 1

overlaps the area of interest, only rows from region 1 are considered. Each row

returned reflects power demand data for a particular hourly timestamp (for

example, aggregate data for region 1 at 5 AM on 01-Feb-1998).

The first query returns only rows for which the third cell has a power demand

reading of 12. Given the actual sample data (see the INSERT statements in "Creating

and Populating the Power Demand Table" on page 11-64), only one row meets this

criterion.

Each of the following statements performs this query, but the second one uses the

spatial index for primary filtering (for performance reasons).

-- Now some queries.
-- Query 1:
-- Find Regions Within_Or_Overlapping the Area-of-Interest 1
-- whose 3rd Cell has a power demand value of 12.

Select P.Region, P.Sample.TotGridDemand, P.Sample.MaxCellDemand,
P.Sample.MinCellDemand
FROM PowerDemand_Tab P
WHERE Power_Equals(P.Sample, 3, 12) = 1
AND P.Region IN (
Select S.sdo_gid
from powerdemandregions_sdogeom S, windows_sdogeom
where
sdo_geom.Relate('PowerDemandRegions', S.sdo_gid, 'ANYINTERACT', 'WINDOWS', 1) =
'TRUE');

-- Use the spatial index for primary filtering (for performance reasons)

Select P.Region, P.Sample.TotGridDemand, P.Sample.MaxCellDemand,
P.Sample.MinCellDemand
FROM PowerDemand_Tab P
WHERE Power_Equals(P.Sample, 3, 12) = 1
AND P.Region IN (
Select sdo_gid gid1
from (select distinct s.sdo_gid from powerdemandregions_sdoindex S,
 windows_sdoindex w
 where s.sdo_code = w.sdo_code and w.sdo_gid = 1)
where
sdo_geom.Relate('PowerDemandRegions', sdo_gid, 'ANYINTERACT', 'WINDOWS', 1) =
Power Demand Cartridge Example 11-87

Using Spatial with the Power Demand Cartridge
'TRUE');

Both queries return the following result:

REGION SAMPLE.TOT SAMPLE.MAX SAMPLE.MIN
---------- ---------- ---------- ----------
 1 86 54 3
1 row selected.

The second query returns only rows for which any cell has a power demand

reading of 9. Given the actual sample data (see the INSERT statements in "Creating

and Populating the Power Demand Table" on page 11-64), five rows meets this

criterion.

-- Query 2: Same thing for PowerEqualsAny() - in this case where
-- any cell has a power demand value of 9.

Select P.Region, P.Sample.TotGridDemand, P.Sample.MaxCellDemand,
P.Sample.MinCellDemand
FROM PowerDemand_Tab P
WHERE Power_EqualsAny(P.Sample, 9) = 1
AND P.Region IN (
Select S.sdo_gid
from powerdemandregions_sdogeom S, windows_sdogeom
where
sdo_geom.Relate('PowerDemandRegions', S.sdo_gid, 'ANYINTERACT', 'WINDOWS', 1) =
'TRUE');

This query returns the following result:

REGION SAMPLE.TOT SAMPLE.MAX SAMPLE.MIN
---------- ---------- ---------- ----------
 1 90 55 5
 1 89 56 3
 1 88 55 3
 1 87 54 3
 1 86 54 3
5 rows selected.
11-88 Oracle8i Data Cartridge Developer’s Guide

SBTREE: An Example of Extensible In
12

 SBTREE: An Example of Extensible

Indexing

This chapter presents an extensible indexing example in which some of the

ODCIIndex interface routines are implemented in C:

■ Introduction

■ Design of the indextype

■ Implementing Operators

■ Implementing the Index routines

■ The C Code

■ Implementing the Indextype

■ Usage examples
dexing 12-1

Introduction
Introduction
This example is meant as an illustration of how to implement the interface routines

in C, but does not go into the complex domain details of actually implementing an

indextype for a specific domain. The code for the example described here is in the

demo directory (See file extdemo2.sql).

Design of the indextype
The indextype implemented here, called sbtree, operates similar to btree
indexes. It supports the evaluation of three user-defined operators

■ gt(Greater Than)

■ lt(Less Than)

■ eq(EQuals)

These operators can operate on the operands of VARCHAR2 datatype.

The index data consists of records of the form <key, rid> where key is the value of

the indexed column and rid is the row identifier of the corresponding row. To

simplify the implementation of the indextype, the index data will be stored in a

regular table. Thus, the index manipulation routines merely translate operations on

the SBtree into operations on the table storing the index data. When a user creates

a SBtree index, a table is created consisting of the indexed column and a rowid
column. Inserts into the base table will cause appropriate insertions into the index

table. Deletes and updates are handled similarly. When the SBtree is queried

based on a user-defined operator (one of gt , lt and eq), an appropriate query will

be issued against the index table to retrieve all the satisfying rows.

Implementing Operators
The SBtree indextype supports three operators. Each operator has a

corresponding functional implementation. The functional implementations of the

eq , gt and lt operators are presented next.

Create Functional Implementations

Functional Implementation of EQ (EQUALS)
The functional implementation for eq is provided by a function (bt_eq) that takes

in two VARCHAR2 parameters and returns 1 if they are equal and 0 otherwise.
12-2 Oracle8i Data Cartridge Developer’s Guide

Implementing Operators
CREATE FUNCTION bt_eq(a VARCHAR2, b VARCHAR2) RETURN NUMBER AS
BEGIN
 IF a = b then
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
END;

Functional Implementation of LT (LESS THAN)
The functional implementation for lt is provided by a function (lt_eq) that takes

in two VARCHAR2 parameters and returns 1 if the first parameter is less than the

second, 0 otherwise.

CREATE FUNCTION bt_lt(a VARCHAR2, b VARCHAR2) RETURN NUMBER AS
BEGIN
 IF a < b then
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
END;

Functional Implementation of GT (GREATER THAN)
The functional implementation for gt is provided by a function (gt_eq) that takes

in two VARCHAR2 parameters and returns 1 if the first parameter is greater than the

second, 0 otherwise.

CREATE FUNCTION bt_gt(a VARCHAR2, b VARCHAR2) RETURN NUMBER AS
BEGIN
 IF a > b then
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
END;
SBTREE: An Example of Extensible Indexing 12-3

Implementing the Index routines
Create Operators
To create the operator, you need to specify the signature of the operator along with

its return type and also its functional implementation.

Operator EQ
CREATE OPERATOR eq
BINDING (VARCHAR2, VARCHAR2) RETURN NUMBER
USING bt_eq;

Operator LT
CREATE OPERATOR lt
BINDING (VARCHAR2, VARCHAR2) RETURN NUMBER
USING bt_lt;

Operator GT
CREATE OPERATOR gt
BINDING (VARCHAR2, VARCHAR2) RETURN NUMBER
USING bt_gt;

Implementing the Index routines
1. Define an implementation type that implements the ODCIIndex interface

routines.

CREATE TYPE sbtree_im AS OBJECT
(
 scanctx RAW(4),
 STATIC FUNCTION ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexCreate (ia sys.odciindexinfo, parms VARCHAR2)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexDrop(ia sys.odciindexinfo) RETURN NUMBER,
 STATIC FUNCTION ODCIIndexInsert(ia sys.odciindexinfo, rid VARCHAR2,
 newval VARCHAR2)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexDelete(ia sys.odciindexinfo, rid VARCHAR2,
 oldval VARCHAR2)
 RETURN NUMBER,
12-4 Oracle8i Data Cartridge Developer’s Guide

Implementing the Index routines
 STATIC FUNCTION ODCIIndexUpdate(ia sys.odciindexinfo, rid VARCHAR2,
 oldval VARCHAR2, newval VARCHAR2)
 RETURN NUMBER,
 STATIC FUNCTION ODCIIndexStart(sctx IN OUT sbtree_im, ia sys.odciindexinfo,
 op sys.odciPredInfo, qi sys.ODCIQueryInfo,
 strt number, stop number,
 cmpval VARCHAR2) RETURN NUMBER,
 MEMBER FUNCTION ODCIIndexFetch(nrows number, rids OUT sys.odciridlist)
 RETURN NUMBER,
 MEMBER FUNCTION ODCIIndexClose RETURN NUMBER
);

2. Define the implementation type body

You have a choice of implementing the index routines in any of the languages

supported by Oracle. For this example, we will implement the get interfaces routine

and the index definition routines in PL/SQL. The index manipulation and query

routines are implemented in C.

CREATE OR REPLACE TYPE BODY sbtree_im
IS

The get interfaces routine returns the expected interface name through its OUT
parameter.

 STATIC FUNCTION ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)
 RETURN NUMBER IS
 BEGIN
 ifclist := sys.ODCIObjectList(sys.ODCIObject('SYS','ODCIINDEX1'));
 RETURN ODCIConst.Success;
 END ODCIGetInterfaces;

The ODCIIndexCreate routine creates an "index storage" table with two columns.

The first column stores the VARCHAR2indexed column value. The second column in

the index table stores the rowid of the corresponding row in the base table. DBMS_
SQL is used to execute the dynamically constructed SQL statement.

 STATIC FUNCTION ODCIIndexCreate (ia sys.odciindexinfo, parms VARCHAR2)
 RETURN NUMBER
 is
 i INTEGER;
 stmt VARCHAR2(1000);
 cnum INTEGER;
 junk INTEGER;
 BEGIN
 -- construct the sql statement
SBTREE: An Example of Extensible Indexing 12-5

Implementing the Index routines
 stmt := 'create table ' || ia.IndexSchema || '.' ||
 ia.IndexName || '_sbtree' ||
 '(f1 , f2) as select ' ||
 ia.IndexCols(1).ColName || ', ROWID from ' ||
 ia.IndexCols(1).TableSchema || '.' || ia.IndexCols(1).TableName;

 DBMS_OUTPUT.PUT_LINE('CREATE');
 DBMS_OUTPUT.PUT_LINE(stmt);

 -- execute the statement
 cnum := dbms_sql.open_cursor;
 DBMS_SQL.PARSE(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 DBMS_SQL.CLOSE_CURSOR(cnum);

 RETURN ODCIConst.Success;
 END;

 The ODCIIndexDrop routine drops the index storage table.

 STATIC FUNCTION ODCIIndexDrop(ia sys.odciindexinfo) RETURN NUMBER is
 stmt VARCHAR2(1000);
 cnum INTEGER;
 junk INTEGER;
 BEGIN
 -- construct the sql statement
 stmt := 'drop table ' || ia.IndexSchema || '.' || ia.IndexName || '_sbtree';

 DBMS_OUTPUT.PUT_LINE('DROP');
 DBMS_OUTPUT.PUT_LINE(stmt);

 -- execute the statement
 cnum := dbms_sql.open_cursor;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 DBMS_SQL.CLOSE_CURSOR(cnum);

 RETURN ODCIConst.Success;
 END;

The index manipulation and query routines are implemented in C. This requires

some setup to be done before this statement. Specifically, you need to create a

library object called extdemo2l for your compiled C code.
12-6 Oracle8i Data Cartridge Developer’s Guide

Implementing the Index routines
 After the setup, the foll . statements register the implementation of the index

manipulation and query routines in terms of their corresponding C functions.

Register the implementation of the ODCIIndexInsert routine.

 STATIC FUNCTION ODCIIndexInsert(ia sys.odciindexinfo, rid VARCHAR2,
 newval VARCHAR2)
 RETURN NUMBER AS external
 name "qxiqtbi"
 library extdemo2l
 WITH context
 parameters (
 context,
 ia,
 ia indicator struct,
 rid,
 rid indicator,
 newval,
 newval indicator,
 RETURN ocinumber
);

Register the implementation of the ODCIIndexDelete routine.

STATIC FUNCTION ODCIIndexDelete(ia sys.odciindexinfo, rid VARCHAR2,
 oldval VARCHAR2)
 RETURN NUMBER AS external
 name "qxiqtbd"
 library extdemo2l
 WITH context
 parameters (
 context,
 ia,
 ia indicator struct,
 rid,
 rid indicator,
 oldval,
 oldval indicator,
 RETURN ocinumber
);

Register the implementation of the ODCIIndexUpdate routine.

STATIC FUNCTION ODCIIndexUpdate(ia sys.odciindexinfo, rid VARCHAR2,
 oldval VARCHAR2, newval VARCHAR2)
 RETURN NUMBER AS external
SBTREE: An Example of Extensible Indexing 12-7

Implementing the Index routines
 name "qxiqtbu"
 library extdemo2l
 WITH context
 parameters (
 context,
 ia,
 ia indicator struct,
 rid,
 rid indicator,
 oldval,
 oldval indicator,
 newval,
 newval indicator,
 RETURN ocinumber
);

Register the implementation of the ODCIIndexStart routine.

 STATIC FUNCTION ODCIIndexStart(sctx in out sbtree_im, ia sys.odciindexinfo,
 op sys.odciPredInfo,
 qi sys.ODCIQueryInfo,
 strt number,
 stop number,
 cmpval VARCHAR2)
 RETURN NUMBER as external
 name "qxiqtbs"
 library extdemo2l
 with context
 parameters (
 context,
 sctx,
 sctx INDICATOR STRUCT,
 ia,
 ia INDICATOR STRUCT,
 op,
 op INDICATOR STRUCT,
 qi,
 qi INDICATOR STRUCT,
 strt,
 strt INDICATOR,
 stop,
 stop INDICATOR,
 cmpval,
 cmpval INDICATOR,
 RETURN OCINumber
12-8 Oracle8i Data Cartridge Developer’s Guide

The C Code
);

Register the implementation of the ODCIIndexFetch routine.

 member function ODCIIndexFetch(nrows number, rids OUT sys.odciridlist)
 RETURN NUMBER as external
 name "qxiqtbf"
 library extdemo2l
 with context
 parameters (
 context,
 self,
 self INDICATOR STRUCT,
 nrows,
 nrows INDICATOR,
 rids,
 rids INDICATOR,
 RETURN OCINumber
);

Register the implementation of the ODCIIndexClose routine.

 member function ODCIIndexClose RETURN NUMBER as external
 name "qxiqtbc"
 library extdemo2l
 with context
 parameters (
 context,
 self,
 self INDICATOR STRUCT,
 RETURN OCINumber
);

The C Code

General Notes
The C structs for mapping the ODCI types are all defined in the file "odci.h" . For

example, the C struct ODCIIndexInfo is the mapping for the corresponding ODCI

object type. Further, the C struct ODCIIndexInfo_ind is the mapping for null

object.
SBTREE: An Example of Extensible Indexing 12-9

The C Code
Common Error Processing Routine
This function is used to check and process the return code from all OCI routines.

It checks the status code and raises an exception in case of errors.

static int qxiqtce(ctx, errhp, status)
OCIExtProcContext *ctx;
OCIError *errhp;
sword status;
{
 text errbuf[512];
 sb4 errcode = 0;
 int errnum = 29400; /* choose some oracle error number */
 int rc = 0;

 switch (status)
 {
 case OCI_SUCCESS:
 rc = 0;
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *)errhp, (ub4)1, (text *)NULL, &errcode,
 errbuf, (ub4)sizeof(errbuf), OCI_HTYPE_ERROR);
 /* Raise exception */
 OCIExtProcRaiseExcpWithMsg(ctx, errnum, errbuf, strlen((char *)errbuf));
 rc = 1;
 break;
 default:
 (void) sprintf((char *)errbuf, "Warning - some error\n");
 /* Raise exception */
 OCIExtProcRaiseExcpWithMsg(ctx, errnum, errbuf, strlen((char *)errbuf));
 rc = 1;
 break;
 }
 return (rc);
}

Implementation Of The ODCIIndexInsert Routine
The insert routine parses and executes a statement that inserts a new row into the

index table. The new row consists of the new value of the indexed column and the

rowid that have been passed in as parameters.

OCINumber *qxiqtbi(ctx, ix, ix_ind, rid, rid_ind,
 newval, newval_ind)
OCIExtProcContext *ctx;
12-10 Oracle8i Data Cartridge Developer’s Guide

The C Code
ODCIIndexInfo *ix;
ODCIIndexInfo_ind *ix_ind;
char *rid;
short rid_ind;
char *newval;
short newval_ind;
{
 OCIEnv *envhp = (OCIEnv *) 0; /* env. handle */
 OCISvcCtx *svchp = (OCISvcCtx *) 0; /* service handle */
 OCIError *errhp = (OCIError *) 0; /* error handle */
 OCIStmt *stmthp = (OCIStmt *) 0; /* statement handle */
 OCIBind *bndp = (OCIBind *) 0; /* bind handle */
 OCIBind *bndp1 = (OCIBind *) 0; /* bind handle */

 int retval = (int)ODCI_SUCCESS; /* return from this function */
 OCINumber *rval = (OCINumber *)0;
 ub4 key; /* key value set in "self" */

 char insstmt[2000]; /* sql insert statement */

 /* allocate memory for OCINumber first */
 rval = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));

 /* Get oci handles */
 if (qxiqtce(ctx, errhp, OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp)))
 return(rval);

 /* set up return code */
 if (qxiqtce(ctx, errhp, OCINumberFromInt(errhp, (dvoid *)&retval,
 sizeof(retval),
 OCI_NUMBER_SIGNED, rval)))
 return(rval);

 /******************************
 * Construct insert Statement *
 ******************************/

 sprintf(insstmt,
 "INSERT into %s.%s_sbtree values (:newval, :mrid)",
 OCIStringPtr(envhp, ix->IndexSchema),
 OCIStringPtr(envhp, ix->IndexName));
SBTREE: An Example of Extensible Indexing 12-11

The C Code
 /**
 * Parse and Execute Create Statement *
 **/

 /* allocate stmt handle */
 if (qxiqtce(ctx, errhp, OCIHandleAlloc((dvoid *)envhp,
 (dvoid **)&stmthp,
 (ub4)OCI_HTYPE_STMT, (size_t)0,
 (dvoid **)0)))
 return(rval);

 /* prepare the statement */
 if (qxiqtce(ctx, errhp, OCIStmtPrepare(stmthp, errhp, (text *)insstmt,
 (ub4)strlen(insstmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT)))
 return(rval);

 /* Set up bind for newval */
 if (qxiqtce(ctx, errhp, OCIBindByPos(stmthp, &bndp, errhp, (ub4)1,
 (dvoid *)newval,
 (sb4)(strlen(newval)+1),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /* Set up bind for rid */
 if (qxiqtce(ctx, errhp, OCIBindByPos(stmthp, &bndp, errhp, (ub4)2,
 (dvoid *)rid,
 (sb4)(strlen(rid)+1),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /* Execute statement */
 if (qxiqtce(ctx, errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4)1,
 (ub4)0, (OCISnapshot *)NULL,
 (OCISnapshot *)NULL,
 (ub4)OCI_DEFAULT)))
 return(rval);
12-12 Oracle8i Data Cartridge Developer’s Guide

The C Code
 return(rval);
}

Implementation of the ODCIIndexDelete Routine
The delete routine constructs a SQL statement to delete a row from the index table

corresponding to the row being deleted from the base table. The row in the index

table is identified by the value of rowid that is passed in as a parameter to this

routine.

OCINumber *qxiqtbd(ctx, ix, ix_ind, rid, rid_ind,
 oldval, oldval_ind)
OCIExtProcContext *ctx;
ODCIIndexInfo *ix;
ODCIIndexInfo_ind *ix_ind;
char *rid;
short rid_ind;
char *oldval;
short oldval_ind;
{
 OCIEnv *envhp = (OCIEnv *) 0; /* env. handle */
 OCISvcCtx *svchp = (OCISvcCtx *) 0; /* service handle */
 OCIError *errhp = (OCIError *) 0; /* error handle */
 OCIStmt *stmthp = (OCIStmt *) 0; /* statement handle */
 OCIBind *bndp = (OCIBind *) 0; /* bind handle */
 OCIBind *bndp1 = (OCIBind *) 0; /* bind handle */

 int retval = (int)ODCI_SUCCESS; /* return from this function */
 OCINumber *rval = (OCINumber *)0;
 ub4 key; /* key value set in "self" */

 char delstmt[2000]; /* sql insert statement */

 /* Get oci handles */
 if (qxiqtce(ctx, errhp, OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp)))
 return(rval);

 /* set up return code */
 rval = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));
 if (qxiqtce(ctx, errhp, OCINumberFromInt(errhp, (dvoid *)&retval,
 sizeof(retval),
 OCI_NUMBER_SIGNED, rval)))
 return(rval);
SBTREE: An Example of Extensible Indexing 12-13

The C Code
 /******************************
 * Construct delete Statement *
 ******************************/

 sprintf(delstmt,
 "DELETE FROM %s.%s_sbtree WHERE f2 = :rr",
 OCIStringPtr(envhp, ix->IndexSchema),
 OCIStringPtr(envhp, ix->IndexName));

 /**
 * Parse and Execute delete Statement *
 **/

 /* allocate stmt handle */
 if (qxiqtce(ctx, errhp, OCIHandleAlloc((dvoid *)envhp,
 (dvoid **)&stmthp,
 (ub4)OCI_HTYPE_STMT, (size_t)0,
 (dvoid **)0)))
 return(rval);

 /* prepare the statement */
 if (qxiqtce(ctx, errhp, OCIStmtPrepare(stmthp, errhp, (text *)delstmt,
 (ub4)strlen(delstmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT)))
 return(rval);

 /* Set up bind for rid */
 if (qxiqtce(ctx, errhp, OCIBindByPos(stmthp, &bndp, errhp, (ub4)1,
 (dvoid *)rid,
 (sb4)(strlen(rid)+1),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /* Execute statement */
 if (qxiqtce(ctx, errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4)1,
 (ub4)0, (OCISnapshot *)NULL,
 (OCISnapshot *)NULL,
 (ub4)OCI_DEFAULT)))
 return(rval);

 return(rval);
12-14 Oracle8i Data Cartridge Developer’s Guide

The C Code
}

Implementation of the ODCIIndexUpdate Routine
The update routine constructs a SQL statement to update a row in the index table

corresponding to the row being updated in the base table. The row in the index

table is identified by the value of rowid that is passed in as a parameter to this

routine. The old column value (oldval) is replaced by the new value (newval).

OCINumber *qxiqtbu(ctx, ix, ix_ind, rid, rid_ind,
 oldval, oldval_ind, newval, newval_ind)
OCIExtProcContext *ctx;
ODCIIndexInfo *ix;
ODCIIndexInfo_ind *ix_ind;
char *rid;
short rid_ind;
char *oldval;
short oldval_ind;
char *newval;
short newval_ind;
{
 OCIEnv *envhp = (OCIEnv *) 0; /* env. handle */
 OCISvcCtx *svchp = (OCISvcCtx *) 0; /* service handle */
 OCIError *errhp = (OCIError *) 0; /* error handle */
 OCIStmt *stmthp = (OCIStmt *) 0; /* statement handle */
 OCIBind *bndp = (OCIBind *) 0; /* bind handle */
 OCIBind *bndp1 = (OCIBind *) 0; /* bind handle */

 int retval = (int)ODCI_SUCCESS; /* return from this function */
 OCINumber *rval = (OCINumber *)0;
 ub4 key; /* key value set in "self" */

 char updstmt[2000]; /* sql insert statement */

 /* Get oci handles */
 if (qxiqtce(ctx, errhp, OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp)))
 return(rval);

 /* set up return code */
 rval = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));
 if (qxiqtce(ctx, errhp, OCINumberFromInt(errhp, (dvoid *)&retval,
 sizeof(retval),
 OCI_NUMBER_SIGNED, rval)))
 return(rval);
SBTREE: An Example of Extensible Indexing 12-15

The C Code
 /******************************
 * Construct update Statement *
 ******************************/

 sprintf(updstmt,
 "UPDATE %s.%s_sbtree SET f1 = :newval, f2 = :rr WHERE f1 = :oldval",
 OCIStringPtr(envhp, ix->IndexSchema),
 OCIStringPtr(envhp, ix->IndexName));

 /**
 * Parse and Execute Create Statement *
 **/

 /* allocate stmt handle */
 if (qxiqtce(ctx, errhp, OCIHandleAlloc((dvoid *)envhp,
 (dvoid **)&stmthp,
 (ub4)OCI_HTYPE_STMT, (size_t)0,
 (dvoid **)0)))
 return(rval);

 /* prepare the statement */
 if (qxiqtce(ctx, errhp, OCIStmtPrepare(stmthp, errhp, (text *)updstmt,
 (ub4)strlen(updstmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT)))
 return(rval);

 /* Set up bind for newval */
 if (qxiqtce(ctx, errhp, OCIBindByPos(stmthp, &bndp, errhp, (ub4)1,
 (dvoid *)newval,
 (sb4)(strlen(newval)+1),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /* Set up bind for rid */
 if (qxiqtce(ctx, errhp, OCIBindByPos(stmthp, &bndp, errhp, (ub4)2,
 (dvoid *)rid,
 (sb4)(strlen(rid)+1),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);
12-16 Oracle8i Data Cartridge Developer’s Guide

The C Code
 /* Set up bind for oldval */
 if (qxiqtce(ctx, errhp, OCIBindByPos(stmthp, &bndp, errhp, (ub4)3,
 (dvoid *)oldval,
 (sb4)(strlen(oldval)+1),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /* Execute statement */
 if (qxiqtce(ctx, errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4)1,
 (ub4)0, (OCISnapshot *)NULL,
 (OCISnapshot *)NULL,
 (ub4)OCI_DEFAULT)))
 return(rval);

 return(rval);
}

Implementation of the ODCIIndexStart Routine
The start routine performs the setup for an sbtree index scan. The query

information in terms of the operator predicate, its arguments and the bounds on

return values are passed in as parameters to this function. The scan context that is

shared amongst the index scan routines is an instance of the type sbtree_im . We

have defined a C struct (qxiqtim) as a mapping for the object type. In addition,

there is a C struct (qxiqtin) for the corresponding null object. Note that the C

structs for the object type and its null object can be generated by using the Object

Type Translator (OTT).

/* The index implementation type is an object type with a single RAW attribute
 * which will be used to store the context key value.
 * C mapping of the implementation type :
 */
struct qxiqtim
{
 OCIRaw *sctx_qxiqtim;
};
typedef struct qxiqtim qxiqtim;

struct qxiqtin
{

SBTREE: An Example of Extensible Indexing 12-17

The C Code
 short atomic_qxiqtin;
 short scind_qxiqtin;
};
typedef struct qxiqtin qxiqtin;

This function sets up a cursor that scans the index table. The scan retrieves the

stored rowids for the rows in the index table that satisfy the specified predicate. The

predicate for the index table is generated based on the operator predicate

information that is passed in as parameters. For example, if the operator predicate is

of the form:

eq(col, ’joe’) = 1

the predicate on the index table is set up to be

f1 = ’joe’

There are a set of OCI handles that need to be cached away and retrieved on the

next fetch call. A C struct qxiqtcx is defined to hold all the necessary scan state.

This structure is allocated out of OCI_DURATION_STATEMENT memory to ensure

that it persists till the end of fetch . After populating the structure with the

required info, a pointer to the structure is saved in OCI context. The context is

identified by a 4-byte key that is generated by calling an OCI routine. The 4-byte

key is stashed away in the scan context - exiting . This object is returned back to

the Oracle server and will be passed in as a parameter to the next fetch call.

/* The index scan context - should be stored in "statement" duration memory
 * and used by start, fetch and close routines.
 */
struct qxiqtcx
{
 OCIStmt *stmthp;
 OCIDefine *defnp;
 OCIBind *bndp;
 char ridp[19];
};

typedef struct qxiqtcx qxiqtcx;

OCINumber *qxiqtbs(ctx, sctx, sctx_ind, ix, ix_ind, pr, pr_ind, qy, qy_ind,
 strt, strt_ind, stop, stop_ind, cmpval, cmpval_ind)
OCIExtProcContext *ctx;
qxiqtim *sctx;
qxiqtin *sctx_ind;
ODCIIndexInfo *ix;
12-18 Oracle8i Data Cartridge Developer’s Guide

The C Code
dvoid *ix_ind;
ODCIPredInfo *pr;
dvoid *pr_ind;
ODCIQueryInfo *qy;
dvoid *qy_ind;
OCINumber *strt;
short strt_ind;
OCINumber *stop;
short stop_ind;
char *cmpval;
short cmpval_ind;
{
 sword status;
 OCIEnv *envhp; /* env. handle */
 OCISvcCtx *svchp; /* service handle */
 OCIError *errhp; /* error handle */
 OCISession *usrhp; /* user handle */
 qxiqtcx *icx; /* state to be saved for later calls */

 int strtval; /* start bound */
 int stopval; /* stop bound */

 int errnum = 29400; /* choose some oracle error number */
 char errmsg[512]; /* error message buffer */
 size_t errmsglen; /* Length of error message */

 char relop[3]; /* relational operator used in sql stmt */
 char selstmt[2000]; /* sql select statement */

 int retval = (int)ODCI_SUCCESS; /* return from this function */
 OCINumber *rval = (OCINumber *)0;
 ub4 key; /* key value set in "sctx" */

 /* Get oci handles */
 if (qxiqtce(ctx, errhp, OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp)))
 return(rval);

 /* set up return code */
 rval = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));
 if (qxiqtce(ctx, errhp, OCINumberFromInt(errhp, (dvoid *)&retval,
 sizeof(retval),
 OCI_NUMBER_SIGNED, rval)))
 return(rval);

 /* get the user handle */
SBTREE: An Example of Extensible Indexing 12-19

The C Code
 if (qxiqtce(ctx, errhp, OCIAttrGet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)&usrhp, (ub4 *)0,
 (ub4)OCI_ATTR_SESSION,
 errhp)))
 return(rval);

 /**/
 /* Allocate memory to hold index scan context */
 /**/
 if (qxiqtce(ctx, errhp, OCIMemoryAlloc((dvoid *)usrhp, errhp,
 (dvoid **)&icx,
 OCI_DURATION_STATEMENT,
 (ub4)(sizeof(qxiqtcx)),
 OCI_MEMORY_CLEARED)))
 return(rval);

 icx->stmthp = (OCIStmt *)0;
 icx->defnp = (OCIDefine *)0;
 icx->bndp = (OCIBind *)0;

 /***********************************/
 /* Check that the bounds are valid */
 /***********************************/
 /* convert from oci numbers to native numbers */
 if (qxiqtce(ctx, errhp, OCINumberToInt(errhp, strt,
 sizeof(strtval), OCI_NUMBER_SIGNED,
 (dvoid *)&strtval)))
 return(rval);
 if (qxiqtce(ctx, errhp, OCINumberToInt(errhp, stop,
 sizeof(stopval),
 OCI_NUMBER_SIGNED,
 (dvoid *)&stopval)))
 return(rval);

 /* verify that strtval/stopval are both either 0 or 1 */
 if (!(((strtval == 0) && (stopval == 0)) ||
 ((strtval == 1) && (stopval == 1))))
 {
 strcpy(errmsg, "Incorrect predicate for sbtree operator");
 errmsglen = (size_t)strlen(errmsg);
 if (OCIExtProcRaiseExcpWithMsg(ctx, errnum, (text *)errmsg, errmsglen)
 != OCIEXTPROC_SUCCESS)
 /* Use cartridge error services here */;
 return(rval);
12-20 Oracle8i Data Cartridge Developer’s Guide

The C Code
 }

 /***/
 /* Generate the SQL statement to be executed */
 /***/
 if (memcmp((dvoid *)OCIStringPtr(envhp, pr->ObjectName), "EQ", 2)
 == 0)
 if (strtval == 1)
 strcpy(relop, "=");
 else
 strcpy(relop, "!=");
 else if (memcmp((dvoid *)OCIStringPtr(envhp, pr->ObjectName), "LT",
 2) == 0)
 if (strtval == 1)
 strcpy(relop, "<");
 else
 strcpy(relop, ">=");
 else
 if (strtval == 1)
 strcpy(relop, ">");
 else
 strcpy(relop, "<=");

 sprintf(selstmt, "select f2 from %s.%s_sbtree where f1 %s :val",
 OCIStringPtr(envhp, ix->IndexSchema),
 OCIStringPtr(envhp, ix->IndexName), relop);

 /***********************************/
 /* Parse, bind, define and execute */
 /***********************************/
 /* allocate stmt handle */
 if (qxiqtce(ctx, errhp, OCIHandleAlloc((dvoid *)envhp, (dvoid **)
 &(icx->stmthp),
 (ub4)OCI_HTYPE_STMT, (size_t)0,
 (dvoid **)0)))
 return(rval);
 /* prepare the statement */
 if (qxiqtce(ctx, errhp, OCIStmtPrepare(icx->stmthp, errhp, (text *)selstmt,
 (ub4)strlen(selstmt), OCI_NTV_SYNTAX,
 OCI_DEFAULT)))
 return(rval);

 /* Set up bind */
 if (qxiqtce(ctx, errhp, OCIBindByPos(icx->stmthp, &(icx->bndp), errhp, (ub4)1,
 (dvoid *)cmpval,
SBTREE: An Example of Extensible Indexing 12-21

The C Code
 (sb4)(strlen(cmpval)+1),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)0, (ub4 *)0,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /* Set up define */
 if (qxiqtce(ctx, errhp, OCIDefineByPos(icx->stmthp, &(icx->defnp), errhp,
 (ub4)1, (dvoid *)(icx->ridp),
 (sb4) sizeof(icx->ridp),
 (ub2)SQLT_STR, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)OCI_DEFAULT)))
 return(rval);

 /* execute */
 if (qxiqtce(ctx, errhp, OCIStmtExecute(svchp, icx->stmthp, errhp, (ub4)0,
 (ub4)0, (OCISnapshot *)NULL,
 (OCISnapshot *)NULL,
 (ub4)OCI_DEFAULT)))
 return(rval);

 /************************************/
 /* Set index context to be returned */
 /************************************/
 /* generate a key */
 if (qxiqtce(ctx, errhp, OCIContextGenerateKey((dvoid *)usrhp, errhp, &key)))
 return(rval);

 /* set the memory address of the struct to be saved in the context */
 if (qxiqtce(ctx, errhp, OCIContextSetValue((dvoid *)usrhp, errhp,
 OCI_DURATION_STATEMENT,
 (ub1 *)&key, (ub1)sizeof(key),
 (dvoid *)icx)))
 return(rval);
 /* set the key as the member of "sctx" */
 if (qxiqtce(ctx, errhp, OCIRawAssignBytes(envhp, errhp, (ub1 *)&key,
 (ub4)sizeof(key),
 &(sctx->sctx_qxiqtim))))
 return(rval);

 sctx_ind->atomic_qxiqtin = OCI_IND_NOTNULL;
 sctx_ind->scind_qxiqtin = OCI_IND_NOTNULL;

 return(rval);
}

12-22 Oracle8i Data Cartridge Developer’s Guide

The C Code
Implementation of the ODCIIndexFetch Routine
The scan context set up by the start routine is passed in as a parameter to the fetch

routine. This function first retrieves the 4-byte key from the scan context. The C

mapping for the scan context is qxiqtim . Next, the OCI context is looked up based

on the key. This gives the memory address of the structure that holds the OCI

handles - the qxiqtcx structure.

This function returns the next batch of rowids that satisfy the operator predicate. It

uses the value of the nrows parameter as the size of the batch. It repeatedly fetches

rowids from the open cursor and populates the rowid list with them. When the

batch is full or when there are no more rowids left, the function returns them back

to the Oracle server.

OCINumber *qxiqtbf(ctx, self, self_ind, nrows, nrows_ind, rids, rids_ind)
OCIExtProcContext *ctx;
qxiqtim *self;
qxiqtin *self_ind;
OCINumber *nrows;
short nrows_ind;
OCIArray **rids;
short *rids_ind;
{
 sword status;
 OCIEnv *envhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 OCISession *usrhp; /* user handle */
 qxiqtcx *icx;

 int idx = 1;
 int nrowsval;

 OCIArray *ridarrp = *rids; /* rowid collection */
 OCIString *ridstr = (OCIString *)0;

 int done = 0;
 int retval = (int)ODCI_SUCCESS;
 OCINumber *rval = (OCINumber *)0;

 ub1 *key; /* key to retrieve context */
 ub4 keylen; /* length of key */
SBTREE: An Example of Extensible Indexing 12-23

The C Code
 /*******************/
 /* Get OCI handles */
 /*******************/
 if (qxiqtce(ctx, errhp, OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp)))
 return(rval);

 /* set up return code */
 rval = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));
 if (qxiqtce(ctx, errhp, OCINumberFromInt(errhp, (dvoid *)&retval,
sizeof(retval),
 OCI_NUMBER_SIGNED, rval)))
 return(rval);

 /* get the user handle */
 if (qxiqtce(ctx, errhp, OCIAttrGet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)&usrhp, (ub4 *)0,
 (ub4)OCI_ATTR_SESSION, errhp)))
 return(rval);

 /********************************/
 /* Retrieve context from key */
 /********************************/
 key = OCIRawPtr(envhp, self->sctx_qxiqtim);
 keylen = OCIRawSize(envhp, self->sctx_qxiqtim);

 if (qxiqtce(ctx, errhp, OCIContextGetValue((dvoid *)usrhp, errhp,
 key, (ub1)keylen,
 (dvoid **)&(icx))))
 return(rval);

 /* get value of nrows */
 if (qxiqtce(ctx, errhp, OCINumberToInt(errhp, nrows, sizeof(nrowsval),
 OCI_NUMBER_SIGNED, (dvoid
*)&nrowsval)))
 return(rval);

 /****************/
 /* Fetch rowids */
 /****************/
 while (!done)
 {
 if (idx > nrowsval)
 done = 1;
 else
 {
12-24 Oracle8i Data Cartridge Developer’s Guide

The C Code
 status = OCIStmtFetch(icx->stmthp, errhp, (ub4)1, (ub2) 0,
 (ub4)OCI_DEFAULT);
 if (status == OCI_NO_DATA)
 {
 short col_ind = OCI_IND_NULL;
 /* have to create dummy oci string */
 OCIStringAssignText(envhp, errhp, (text *)"dummy",
 (ub2)5, &ridstr);
 /* append null element to collection */
 if (qxiqtce(ctx, errhp, OCICollAppend(envhp, errhp,(dvoid *)ridstr,
 (dvoid *)&col_ind,
 (OCIColl *)ridarrp)))
 return(rval);
 done = 1;
 }
 else if (status == OCI_SUCCESS)
 {
 OCIStringAssignText(envhp, errhp, (text *)icx->ridp,
 (ub2)18, (OCIString **)&ridstr);
 /* append rowid to collection */
 if (qxiqtce(ctx, errhp, OCICollAppend(envhp, errhp, (dvoid *)ridstr,
 (dvoid *)0, (OCIColl *)ridarrp)))
 return(rval);
 idx++;
 }
 else if (qxiqtce(ctx, errhp, status))
 return(rval);
 }
 }

 /* free ridstr finally */
 if (ridstr &&
 (qxiqtce(ctx, errhp, OCIStringResize(envhp, errhp, (ub4)0,
 &ridstr))))
 return(rval);

 *rids_ind = OCI_IND_NOTNULL;

 return(rval);
}

SBTREE: An Example of Extensible Indexing 12-25

The C Code
Implementation of the ODCIIndexClose Routine
The scan context set up by the start routine is passed in as a parameter to the close

routine. This function first retrieves the 4-byte key from the scan context. The C

mapping for the scan context is qxiqtim . Next, the OCI context is looked up based

on the key. This gives the memory address of the structure that holds the OCI

handles - the qxiqtcx structure.

The function closes and frees all the OCI handles. It also frees the memory that was

allocated in the start routine.

OCINumber *qxiqtbc(ctx, self, self_ind)
OCIExtProcContext *ctx;
qxiqtim *self;
qxiqtin *self_ind;
{
 sword status;
 OCIEnv *envhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 OCISession *usrhp; /* user handle */

 qxiqtcx *icx;

 int retval = (int) ODCI_SUCCESS;
 OCINumber *rval = (OCINumber *)0;

 ub1 *key; /* key to retrieve context */
 ub4 keylen; /* length of key */

 if (qxiqtce(ctx, errhp, OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp)))
 return(rval);

 /* set up return code */
 rval = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));
 if (qxiqtce(ctx, errhp, OCINumberFromInt(errhp, (dvoid *)&retval,
 sizeof(retval),
 OCI_NUMBER_SIGNED, rval)))
 return(rval);

 /* get the user handle */
 if (qxiqtce(ctx, errhp, OCIAttrGet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)&usrhp, (ub4 *)0,
 (ub4)OCI_ATTR_SESSION, errhp)))
 return(rval);
12-26 Oracle8i Data Cartridge Developer’s Guide

Usage examples
 /********************************/
 /* Retrieve context using key */
 /********************************/
 key = OCIRawPtr(envhp, self->sctx_qxiqtim);
 keylen = OCIRawSize(envhp, self->sctx_qxiqtim);

 if (qxiqtce(ctx, errhp, OCIContextGetValue((dvoid *)usrhp, errhp,
 key, (ub1)keylen,
 (dvoid **)&(icx))))
 return(rval);

 /* Free handles and memory */
 if (qxiqtce(ctx, errhp, OCIHandleFree((dvoid *)icx->stmthp,
 (ub4)OCI_HTYPE_STMT)))
 return(rval);

 if (qxiqtce(ctx, errhp, OCIMemoryFree((dvoid *)usrhp, errhp, (dvoid *)icx)))
 return(rval);

 return(rval);
}

Implementing the Indextype
Create the indextype object and specify the list of operators that it supports. In

addition, specify the name of the implementation type that implements the

ODCIIndex interface routines.

CREATE INDEXTYPE sbtree
FOR
eq(VARCHAR2, VARCHAR2),
lt(VARCHAR2, VARCHAR2),
gt(VARCHAR2, VARCHAR2)
USING sbtree_im;

Usage examples
One typical usage scenario is described below. Create a table and populate it.

CREATE TABLE t1 (f1 number, f2 VARCHAR2(200));
INSERT INTO t1 VALUES (1, 'adam');
insert into t1 VALUES (3, 'joe');
SBTREE: An Example of Extensible Indexing 12-27

Usage examples
Create a sbtree index on column f2. The create index statement specifies the

indextype to be used.

create index it1 on t1(f2)
indextype is sbtree;

Execute a query that uses one of the sbtree operators. The explain plan output for

the same shows that the domain index is being used to efficiently evaluate the

query.

SELECT * FROM t1 WHERE eq(f2, 'joe') = 1;

Explain Plan Output
OPERATIONS OPTIONS OBJECT_NAME

 ------------------------------ ------------------------------ -------------
SELECT STATEMENT
TABLE ACCESS BY ROWID T1
DOMAIN INDEX IT1
12-28 Oracle8i Data Cartridge Developer’s Guide

Part V

Reference

This section includes four references:

■ Chapter 13, "Reference: Cartridge Services Using C"

■ Chapter 14, "Reference: Cartridge Service Using Java"

■ Chapter 15, "Reference: Extensibility Constants, Types, & Mappings"

■ Chapter 16, "Reference: Extensible Indexing Interface"

■ Chapter 17, "Reference: Extensible Optimizer Interface"

Reference: Cartridge Services U
13

 Reference: Cartridge Services Using C

This reference chapter includes the following information:

■ Cartridge Services — OCI External Procedures

■ Cartridge Services — Memory Services

■ Cartridge Services — Maintaining Context

■ Cartridge Services — Parameter Manager Interface

■ Cartridge Services — File I/O Interface

■ Cartridge Services — String Formatting Interface

This chapter first describes the OCI external procedure functions. These functions

enable users of external procedures to raise errors, allocate some memory, and get

OCI context information. For more information about using these functions, see the

Oracle8i Application Developer’s Guide - Fundamentals. Lastly, this chapter describes

cartridge services functions.
sing C 13-1

The Function Syntax
 For each function, the following information is listed:

Purpose
A brief description of the action performed by the function.

Syntax
A code snippet showing the syntax for calling the function, including the ordering

and types of the parameters.

Parameters
A description of each of the function’s parameters. This includes the parameter’s

mode. The mode of a parameter has three possible values, as described below:

Comments
More detailed information about the function (if available). This may include

restrictions on the use of the function, or other information that might be useful

when using the function in an application.

Returns
A list of possible return values for the function.

Related Functions
A list of related function calls. For cartridge services, see all the other functions in

the group being documented.

Return Codes
Success and error return codes are defined for certain external procedure interface

functions. If a particular interface function returns OCIEXTPROC_SUCCESS or

OCIEXTPROC_ERROR, then applications must use these macros to check for return

values.

Mode Description

IN A parameter that passes data to Oracle

OUT A parameter that receives data from Oracle on this or a subsequent call

IN/OUT A parameter that passes data on the call and receives data on the return
from this or a subsequent call.
13-2 Oracle8i Data Cartridge Developer’s Guide

■ OCIEXTPROC_SUCCESS - External Procedure Success Return Code

■ OCIEXTPROC_ERROR - External Procedure Failure Return Code

With_Context Type
The C callable interface to PL/SQL external procedures requires the with_context
parameter to be passed. The type of this structure is OCIExtProcContext, which is

opaque to the user.

The user can declare the with_context parameter in the application as

OCIExtProcContext *with_context;
Reference: Cartridge Services Using C 13-3

Cartridge Services — OCI External Procedures
Cartridge Services — OCI External Procedures
The following are OCI external procedure functions for C:

Table 13–1 OCI External Procedure Functions Quick Reference

Function/Page Purpose

OCIExtProcAllocCallMemory() on page 13-5 Allocates memory for the duration of the External Procedure

OCIExtProcRaiseExcp() on page 13-7 Raises an Exception to PL/SQL

OCIExtProcRaiseExcpWithMsg() on page 13-9 Raises an exception with a message

OCIExtProcGetEnv() on page 13-11 Gets the OCI environment, service context, and error handles
13-4 Oracle8i Data Cartridge Developer’s Guide

OCIExtProcAllocCallMemory()
OCIExtProcAllocCallMemory()

Purpose
Allocate N bytes of memory for the duration of the External Procedure.

Syntax
dvoid * OCIExtProcAllocCallMemory (OCIExtProcContext *with_context,
 size_t amount)

Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure. See "With_

Context Type"[XXX ADD PAGE REF? XXX] on page 13-3.

amount (IN)
The number of bytes to allocate.

Comments
This call allocates amount bytes of memory for the duration of the call of the external

procedure.

Any memory allocated by this call is freed by PL/SQL upon return from the

external procedure. The application must not use any kind of free function on

memory allocated by OCIExtProcAllocCallMemory(). Use this function to allocate

memory for function returns.

A zero return value should be treated as an error
Reference: Cartridge Services Using C 13-5

OCIExtProcAllocCallMemory()
Returns
An untyped (opaque) Pointer to the allocated memory.

Example
text *ptr = (text *)OCIExtProcAllocCallMemory(wctx, 1024)

Related Functions
OCIErrorGet(), OCIMemoryAlloc(). See Oracle8i Application Developer’s Guide -
Fundamentals for details on these calls.

Table 13–2 OCIExtProcAllocCallMemory Keywords/Parameters

Keyword/Parameter Meaning

with_context (IN) the with_context pointer that is passed to the C External
Procedure

amount (IN) the number of bytes to allocate
13-6 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — OCI External Procedures
OCIExtProcRaiseExcp()

Purpose
Raise an Exception to PL/SQL.

Syntax
size_t OCIExtProcRaiseExcp (OCIExtProcContext *with_context,
 int errnum)

Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure. See "With_

Context Type"[XXX ADD PAGE REF? XXX] on page 13-3.

errnum (IN)
Oracle Error number to signal to PL/SQL. errnum must be a positive number and in

the range 1 to 32767.

Comments
Calling this function signals an exception back to PL/SQL. After a successful return

from this function, the external procedure must start its exit handling and return

back to PL/SQL. Once an exception is signalled to PL/SQL, IN/OUT and OUT

arguments, if any, are not processed at all.

Returns
■ This function returns OCIEXTPROC_SUCCESS if the call was successful. It

returns OCIEXTPROC_ERROR if the call has failed.

Table 13–3 OCIExtProcRaiseExcp Keywords/Parameters

Keyword/Parameter Meaning

with_context (IN) the with_context pointer that is passed to the C external
procedure

errnum (IN) Oracle Error number to signal to PL/SQL errnum must be a
positive number and in the range 1 to 32767
Reference: Cartridge Services Using C 13-7

OCIExtProcRaiseExcp()
Related Functions
OCIExtProcRaiseExcpWithMsg()
13-8 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — OCI External Procedures
OCIExtProcRaiseExcpWithMsg()

Purpose
Raise an exception with a message.

Syntax
size_t OCIExtProcRaiseExcpWithMsg (OCIExtProcContext *with_context,
 int errnum,
 char *errmsg,
 size_t msglen)

Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure. See "With_

Context Type"[XXX ADD PAGE REF? XXX] on page 13-3.

errnum (IN)
Oracle Error number to signal to PL/SQL. The value of errnum must be a positive

number and in the range 1 to 32767

errmsg (IN)
The error message associated with the errnum.

len (IN)
The length of the error message. Pass zero if errmsg is a null terminated string.

Comments
Raise an exception to PL/SQL. In addition, substitute the following error message

string within the standard Oracle error message string. See the description of

OCIExtProcRaiseExcp() for more information.

Returns
This function returns OCIEXTPROC_SUCCESS if the call was successful. It returns

OCIEXTPROC_ERROR if the call has failed.

Table 13–4 OCIExtProcRaiseExcpWithMsg Keywords/Parameters

Keyword/Parameter Meaning

with_context (IN) the with_context pointer that is passed to the C external
procedure
Reference: Cartridge Services Using C 13-9

OCIExtProcRaiseExcpWithMsg()
Related Functions
OCIExtProcRaiseExcp()

errnum (IN) Oracle Error number to signal to PL/SQL; errnum must be a
positive number and in the range 1 to 32767

errmsg (IN) the error message associated with the errnum

len (IN) the length of the error message; pass zero if errmsg is a null
terminated string

Table 13–4 OCIExtProcRaiseExcpWithMsg Keywords/Parameters

Keyword/Parameter Meaning
13-10 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — OCI External Procedures
OCIExtProcGetEnv()

Purpose
Gets the OCI environment, service context, and error handles.

Syntax
sword OCIExtProcGetEnv (OCIExtProcContext *with_context,
 OCIEnv envh,
 OCISvcCtx svch,
 OCIError errh)

Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure. See "With_

Context Type"[XXX ADD PAGE REF? XXX] on page 13-3.

envh (OUT)
The OCI Environment handle.

svch (OUT)
The OCI Service handle.

errh (OUT)
The OCI Error handle.

Comments
The primary purpose of this function is to allow OCI callbacks to use the database

in the same transaction. The OCI handles obtained by this function should be used

in OCI callbacks to the database. If these handles are obtained through standard

OCI calls, then these handles use a new connection to the database and cannot be

used for callbacks in the same transaction. In one external procedure you can use

either callbacks or a new connection, but not both.

Returns
This function returns OCI_SUCCESS if the call was successful; otherwise, it returns

OCI_ERROR.

Related Functions
OCIEnvCreate(), OCIAttrGet(), OCIHandleAlloc(). See Oracle8i Application Developer’s
Guide - Fundamentals for details on these calls.
Reference: Cartridge Services Using C 13-11

Cartridge Services — Memory Services
Cartridge Services — Memory Services

Table 13–5 OCI Parameter Manager Interface Functions Quick Reference

Function/Page Purpose

OCIDurationBegin() on page 13-13 Starts a user duration.

OCIDurationEnd() on page 13-15 Terminates a user duration.

OCIMemoryAlloc() on page 13-17 Allocates memory of a given size from a given duration.

OCIMemoryResize() on page 13-19 Resizes a memory chunk.

OCIMemoryFree() on page 13-21 Frees a memory chunk.
13-12 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Memory Services
OCIDurationBegin()

Purpose
Start a user duration

Syntax
sword OCIDurationBegin (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCIDuration parent,
 OCIDuration *duration);

Parameters
env (IN/OUT)
The OCI environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in <Emphasis>err and this

function returns OCI_ERROR. Diagnostic information can be obtained by calling

<Emphasis>OCIErrorGet().

svc (IN)
The OCI service context handle. This should be passed as NULL for cartridge

services.

parent (IN)
The duration number of the parent duration. One of these:

■ A user duration that was previously created.

■ OCI_DURATION_STATEMENT

■ OCI_DURATION_SESSION

duration (OUT)
An identifier unique to the newly created user duration.

Table 13–6 OCIDurationBegin Keywords/Parameters

Keyword/Parameter Meaning

env (IN) the OCI environment handle

err (IN) the error handle

errhps (IN) the OCI error handle stack
Reference: Cartridge Services Using C 13-13

OCIDurationBegin()
Comments
This function starts an user duration. A user can have multiple active user

durations simultaneously. The user durations do not have to be nested. The duration
parameter is used to return a number which uniquely identifies the duration

created by this call.

Note that the environment and service context parameters cannot both be NULL.

Related Functions
OCIDurationEnd()

OCISvcCtx (IN) the OCI Service Context (this should be passed as NULL for
cartridge services)

parent (IN) one of the following:

 a previously created user duration

 OCI_DURATION_STATEMENT

 OCI_DURATION_SESSION

dur (OUT) newly created user duration

Table 13–6 OCIDurationBegin Keywords/Parameters

Keyword/Parameter Meaning
13-14 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Memory Services
OCIDurationEnd()

Purpose
Terminates a user duration

Syntax
sword OCIDurationEnd (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCIDuration duration,
 CONST OCISvcCtx *svc);

Parameters
env (IN/OUT)
The OCI environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in <Emphasis>err and this

function returns OCI_ERROR. Diagnostic information can be obtained by calling

<Emphasis>OCIErrorGet().

duration (IN)
A user duration previously created by OCIDurationBegin().

svc (IN)
OCI service context (this should be passed as NULL for cartridge services,

otherwise non-NULL).

Comments
This function terminates an user duration.

Note that the environment and service context parameters cannot both be NULL.

Table 13–7 OCIDurationEnd Keywords/Parameters

Keyword/Parameter Meaning

env (IN) the OCI environment handle

err (IN) the error handle

dur (IN) a previously created user duration using
OCIDurationBegin ()

OCISvcCtx (IN) OCI Service Context (this should be passed as NULL for
cartridge services)
Reference: Cartridge Services Using C 13-15

OCIDurationEnd()
Related Functions
OCIDurationBegin()
13-16 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Memory Services
OCIMemoryAlloc()

Purpose
This call allocates memory of a given size from a given duration.

Syntax
sword OCIMemoryAlloc(dvoid *hndl,
 OCIError *err,
 dvoid **mem,
 OCIDuration dur,
 ub4 size,
 ub4 flags);

Parameters

hndl (IN)
The OCI environment handle.

err (IN)
The error handle.

mem (OUT)
Memory allocated.

dur (IN)
One of the following (a previously created user duration):

OCI_DURATION_CALLOUT

OCI_DURATION_STATEMENT

OCI_DURATION_SESSION

 OCI_DURATION_PROCESS

size (IN)
Size of memory to be allocated.

flags (IN)
Set OCI_MEMORY_CLEARED bit to get memory that has been cleared.
Reference: Cartridge Services Using C 13-17

OCIMemoryAlloc()
Comments
To allocate memory for duration of callout of agent, i.e., external procedure

duration, use OCIExtProcAllocCallMemory() or OCIMemoryAlloc() with dur as OCI_

DURATION_CALLOUT.

 Returns
Error code.

Table 13–8 OCIMemoryAlloc Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN) the OCI environment handle

err (IN) the error handle

mem (OUT) memory allocated

dur (IN) one of the following:

 a previously created user duration

 OCI_DURATION_STATEMENT

 OCI_DURATION_SESSION

OCI_DURATION_PROCESS

size (IN) size of memory to be allocated

flags (IN) set OCI_MEMORY_CLEARED bit to get memory that has been
cleared
13-18 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Memory Services
OCIMemoryResize()

Purpose
This call resizes a memory chunk to a new size.

Syntax
sword OCIMemoryResize(dvoid *hndl,
 OCIError *err,
 dvoid **mem,
 ub4 newsize,
 ub4 flags);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

mem (IN/OUT)
Pointer to memory allocated previously using OCIMemoryAlloc().

newsize (IN)
Size of memory requested.

flags (IN)
Set OCI_MEMORY_CLEARED bit to get memory that has been cleared.

Table 13–9 OCIMemoryResize Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN) the OCI environment or user session handle

err (IN) the error handle

mem (IN/OUT) pointer to memory pointer allocated previously using
OCIMemoryAlloc ()

newsize (IN) size of memory requested

flags (IN) set OCI_MEMORY_CLEARED bit to get memory that has been
cleared
Reference: Cartridge Services Using C 13-19

OCIMemoryResize()
Comments
Memory must have been allocated before this function can be called to resize.

Returns
Error code.
13-20 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Memory Services
OCIMemoryFree()

Purpose
This call frees a memory chunk.

Syntax
sword OCIMemoryFree(dvoid *hndl,
 OCIError *err,
 dvoid *mem);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

mem (IN/OUT)
Pointer to memory allocated previously using OCIMemoryAlloc().

Returns
Error code.

Table 13–10 OCIMemoryFree Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN) the OCI environment or user session handle

err (IN) the error handle

mem (IN/OUT) pointer to a previously allocated memory
Reference: Cartridge Services Using C 13-21

Cartridge Services — Maintaining Context
Cartridge Services — Maintaining Context

Table 13–11 OCI Parameter Manager Interface Functions Quick Reference

Function/Page Purpose

OCIContextSetValue() on page 13-23 Save a value (or address) for a particular duration.

OCIContextGetValue() on page 13-25 Return the value stored in the context.

OCIContextClearValue() on page 13-27 Remove the value stored in the context.

OCIContextGenerateKey() on page 13-29 Returns a unique 4-byte value each time it is called.
13-22 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Maintaining Context
OCIContextSetValue()

Purpose
This call is used to save a value (or address) for a particular duration.

Syntax
sword OCIContextSetValue(dvoid *hndl,
 OCIError *err,
 OCIDuration duration,
 ub1 *key,
 ub1 keylen,
 dvoid *ctx_value);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

duration (IN)
One of the following (a previously created user duration):

OCI_DURATION_STATEMENT

OCI_DURATION_SESSION

key (IN)
Unique key value.

keylen (IN)
Length of the key. Maximum is 64 bits.

ctx_value (IN)
Pointer that will be saved in the context.

Comments
The context value being stored must be allocated out of memory of duration greater

than or equal to the duration being passed in. The key being passed in should be

unique in this session. Trying to save a context value under the same key and

duration again will result in overwriting the old context value with the new one.

Typically, a client will allocate a structure, store its address in the context using this
Reference: Cartridge Services Using C 13-23

OCIContextSetValue()
call, and get this address in a separate call using OCIContextGetValue(). The (key,

value) association can be explicitly removed by calling OCIContextClearValue() or

else it will go away at the end of the duration.

Returns
■ If operation succeeds, return OCI_SUCCESS.

■ If operation fails, return OCI_ERROR.

Table 13–12 OCIContextSetValue Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN) the OCI environment or user session handle

err (IN) the error handle

duration (IN) any user created duration

 OCI_DURATION_STATEMENT

 OCI_DURATION_SESSION

key (IN)) unique key value

keylen (IN) length of the above key (maximum length is 64 bits)

ctx_value (IN) pointer that will be saved in the context
13-24 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Maintaining Context
OCIContextGetValue()

Purpose
This call is used to return the value that is stored in the context associated with the

given key (by calling OCIContextSetValue()).

Syntax
sword OCIContextGetValue(dvoid *hndl,
 OCIError *err,
 ub1 *key,
 ub1 keylen,
 dvoid **ctx_value);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

key (IN)
Unique key value.

keylen (IN)
Length of the key. Maximum is 64 bits.

ctx_value (IN)
Pointer to the value stored in the context (NULL if no value was stored).

Comments
For ctx_value: a pointer to a preallocated pointer for the stored context to be

returned is required.

Returns
■ If operation succeeds, return OCI_SUCCESS.

■ If operation fails, return OCI_ERROR.
Reference: Cartridge Services Using C 13-25

OCIContextGetValue()
Table 13–13 OCIContextSetValue Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN) the OCI environment or user session handle

err (IN) the error handle

key (IN)) key value previously registered via OCIContextSetValue ()

keylen (IN) length of the above key (maximum length is 64 bits)

ctx_value (IN) pointer to the value stored in the context or NULL if no value
was stored
13-26 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Maintaining Context
OCIContextClearValue()

Purpose
This call is used to remove the value that is stored in the context associated with the

given key (by calling OCIContextSetValue()).

Syntax
sword OCIContextClearValue(dvoid *hndl,
 OCIError *err,
 ub1 *key,
 ub1 keylen);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

key (IN)
Unique key value.

keylen (IN)
Length of the key. Maximum is 64 bits.

Comments
 An error is returned when a non-existent key is passed.

Returns
■ If operation succeeds, returns OCI_SUCCESS.

■ If operation fails, returns OCI_ERROR.

Table 13–14 OCIContextClearValue Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN) the OCI environment or user session handle

err (IN) the error handle

key (IN)) unique key value
Reference: Cartridge Services Using C 13-27

OCIContextClearValue()
keylen (IN) length of the above key (maximum length is 64 bits)

Table 13–14 OCIContextClearValue Keywords/Parameters (Cont.)

Keyword/Parameter Meaning
13-28 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Maintaining Context
OCIContextGenerateKey()

Purpose
This call will return a unique, 4-byte value each time it is called.

Syntax
sword OCIContextGenerateKey(dvoid *hndl,
 OCIError *err,
 ub4 *key);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

key (IN)
Unique key value.

keylen (IN)
Length of the key. Maximum is 64 bits.

Comments
This value is going to be unique on a per session basis.

Returns
■ If operation succeeds, return OCI_SUCCESS.

■ If operation fails, return OCI_ERROR.

.

Table 13–15 OCIContextGenerateKey Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN) the OCI environment or user session handle

err (IN) the error handle

key (OUT)) pointer to a unique, 4 byte value
Reference: Cartridge Services Using C 13-29

Cartridge Services — Parameter Manager Interface
Cartridge Services — Parameter Manager Interface

Table 13–16 OCI Parameter Manager Interface Functions Quick Reference

Function/Page Purpose

OCIExtractInit() on page 13-31 Initializes the parameter manager.

OCIExtractTerm() on page 13-32 Releases all dynamically allocated storage.

OCIExtractReset() on page 13-33 Re-initializes memory.

OCIExtractSetNumKeys() on page 13-34 Informs the parameter manager of the number of keys that will
be registered.

OCIExtractSetKey() on page 13-35 Registers information about a key with the parameter manager.

OCIExtractFromFile() on page 13-38 The keys and their values in the given file are processed.

OCIExtractFromStr() on page 13-40 The keys and the their values in the given string are processed.

OCIExtractToInt() on page 13-42 Gets the integer value for the specified key.

OCIExtractToBool() on page 13-44 Gets the boolean value for the specified key.

OCIExtractToStr() on page 13-46 Gets the string value for the specified key.

OCIExtractToOCINum() on page 13-48 Gets the number value for the specified key.

OCIExtractToList() on page 13-50 Generates a list of parameters from the parameter structures
that are stored in memory.

OCIExtractFromList() on page 13-51 Generates a list of values for the parameter denoted by index in
the parameter list.
13-30 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Parameter Manager Interface
OCIExtractInit()

Purpose
This function initializes the parameter manager.

Syntax
sword OCIExtractInit(dvoid *hndl,
 OCIError *err)

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet()

Comments
This function must be called before calling any other parameter manager routine

and it must only be called once. The NLS information is stored inside the parameter

manager context and used in subsequent calls to OCIExtract routines.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–17 OCIExtractInit Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()
Reference: Cartridge Services Using C 13-31

OCIExtractTerm()
OCIExtractTerm()

Purpose
This function releases all dynamically allocated storage.

Syntax
sword OCIExtractTerm(dvoid *hndl,
 OCIError *err);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

Comments
This function may perform other internal bookkeeping functions. It must be called

when the parameter manager is no longer being used and it must only be called

once

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–18 OCIExtractTerm Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle. If there is an error, it is recorded in
err and this function returns OCI_ERROR. Diagnostic
information can be obtained by calling OCIErrorGet ().
13-32 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Parameter Manager Interface
OCIExtractReset()

Purpose
The memory currently used for parameter storage, key definition storage, and

parameter value lists is freed and the structure is re-initialized.

Syntax
sword OCIExtractReset(dvoid *hndl,
 OCIError *err);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–19 OCIExtractReset Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()
Reference: Cartridge Services Using C 13-33

OCIExtractSetNumKeys()
OCIExtractSetNumKeys()

Purpose
Informs the parameter manager of the number of keys that will be registered.

Syntax
sword OCIExtractSetNumKeys(dvoid *hndl,
 CIError *err,
 uword numkeys);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function

returns OCI_ERROR. Diagnostic information can be obtained by calling

OCIErrorGet().

numkeys (IN)
The number of keys that will be registered with OCIExtractSetKey().

Comments
This routine must be called prior to the first call of OCIExtractSetKey().

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–20 OCIExtractSetNumKeys Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle. If there is an error, it is recorded in err
and this function returns OCI_ERROR. Diagnostic information
can be obtained by calling OCIErrorGet ().

numkeys (IN) the number of keys that will be registered with
OCIExtractSetKey ()
13-34 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Parameter Manager Interface
OCIExtractSetKey()

Purpose
Registers information about a key with the parameter manager.

Syntax
sword OCIExtractSetKey(dvoid *hndl,
 OCIError *err,
 CONST text *name,
 ub1 type,
 ub4 flag,
 CONST dvoid *defval,
 CONST sb4 *intrange,
 CONST text *CONST *strlist);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

name (IN)
The name of the key.

type (IN)
The type of the key:

OCI_EXTRACT_TYPE_INTEGER,

OCI_EXTRACT_TYPE_OCINUM,

OCI_EXTRACT_TYPE_STRING,

OCI_EXTRACT_TYPE_BOOLEAN.

flag (IN)
Set to OCI_EXTRACT_MULTIPLE if the key can take multiple values or 0

otherwise.
Reference: Cartridge Services Using C 13-35

OCIExtractSetKey()
defval (IN)
Set to the default value for the key. It may be NULL if there is no default. A string

default must be a (text*) type, an integer default must be an (sb4*) type, and a

boolean default must be a (ub1*) type.

intrange (IN)
Starting and ending values for the allowable range of integer values; may be NULL

if the key is not an integer type or if all integer values are acceptable.

strlist (IN)
List of all acceptable text strings for the key ended with 0 (or NULL); may be NULL

if the key is not a string type or if all text values are acceptable.

Comments
This routine must be called after calling OCIExtractNumKeys() and before calling

OCIExtractFromFile() or OCIExtractFromString().

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–21 OCIExtractSetKey Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

name (IN) the name of the key

type (IN) the type of the key (OCI_EXTRACT_TYPE_INTEGER, OCI_
EXTRACT_TYPE_OCINUM, OCI_EXTRACT_TYPE_STRING,
or OCI_EXTRACT_TYPE_BOOLEAN)

flag (IN) set to OCI_EXTRACT_MULTIPLE if the key can take multiple
values or 0 otherwise

defval (IN) set to the default value for the key; may be NULL if there is no
default; a string default must be a (text*) type, an integer
default must be an (sb4*) type, and a boolean default must be
a (ub1*) type.
13-36 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Parameter Manager Interface
intrange (IN) starting and ending values for the allowable range of integer
values; may be NULL if the key is not an integer type or if all
integer values are acceptable

strlist (IN) list of all acceptable text strings for the key ended with 0 (or
NULL); may be NULL if the key is not a string type or if all text
values are acceptable

Table 13–21 OCIExtractSetKey Keywords/Parameters (Cont.)

Keyword/Parameter Meaning
Reference: Cartridge Services Using C 13-37

OCIExtractFromFile()
OCIExtractFromFile()

Purpose
The keys and their values in the given file are processed.

Syntax
sword OCIExtractFromFile(dvoid *hndl,
 OCIError *err,
 ub4 flag,
 text *filename);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

flag (IN)
Zero or has one or more of the following bits set:

 OCI_EXTRACT_CASE_SENSITIVE,

OCI_EXTRACT_UNIQUE_ABBREVS,

OCI_EXTRACT_APPEND_VALUES.

filename (IN)
A null-terminated filename string.

Comments
OCIExtractSetNumKeys() and OCIExtractSetKey() routines must be called to define

all of the keys before calling this routine.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.
13-38 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Parameter Manager Interface
Table 13–22 OCIExtractFromFile Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

flag (IN) zero or has one or more of the following bits set: OCI_
EXTRACT_CASE_SENSITIVE, OCI_EXTRACT_UNIQUE_
ABBREVS, or OCI_EXTRACT_APPEND_VALUES

filename (IN) NULL-terminated filename string
Reference: Cartridge Services Using C 13-39

OCIExtractFromStr()
OCIExtractFromStr()

Purpose
The keys and their values in the given string are processed.

Syntax
sword OCIExtractFromStr(dvoid *hndl,
 OCIError *err,
 ub4 flag,
 text *input);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

flag (IN)
Zero or has one or more of the following bits set:

 OCI_EXTRACT_CASE_SENSITIVE,

OCI_EXTRACT_UNIQUE_ABBREVS,

or OCI_EXTRACT_APPEND_VALUES.

input (IN)
A null-terminated input string.

Comments
OCIExtractSetNumKeys() and OCIExtractSetKey() routines must be called to define

all of the keys before calling this routine.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.
13-40 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Parameter Manager Interface
Table 13–23 OCIExtractFromStr Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ().

flag (IN) zero or has one or more of the following bits set: OCI_
EXTRACT_CASE_SENSITIVE, OCI_EXTRACT_UNIQUE_
ABBREVS, or OCI_EXTRACT_APPEND_VALUES

input (IN) NULL-terminated input string
Reference: Cartridge Services Using C 13-41

OCIExtractToInt()
OCIExtractToInt()

Purpose
Gets the integer value for the specified key. The valno 'th value (starting with 0) is

returned.

Syntax
sword OCIExtractToInt(dvoid *hndl,
 OCIError *err,
 text *keyname,
 uword valno,
 sb4 *retval);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

keyname (IN)
Keyname (IN).

valno (IN)
Which value to get for this key.

retval (OUT)
The actual integer value.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_NO_DATA,

OCI_ERROR.

 OCI_NO_DATA means that there is no valno'th value for this key.
13-42 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Parameter Manager Interface
Table 13–24 OCIExtractToInt Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

keyname (IN) key name

valno (IN) which value to get for this key

retval (OUT) the actual integer value
Reference: Cartridge Services Using C 13-43

OCIExtractToBool()
OCIExtractToBool()

Purpose
Gets the boolean value for the specified key. The valno'th value (starting with 0) is

returned.

Syntax
sword OCIExtractToBool(dvoid *hndl,
 OCIError *err,
 text *keyname,
 uword valno,
 ub1 *retval);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

keyname (IN)
Key name.

valno (IN)
Which value to get for this key.

retval (OUT)
The actual boolean value.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_NO_DATA,

OCI_ERROR.

 OCI_NO_DATA means that there is no valno'th value for this key.
13-44 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Parameter Manager Interface
Table 13–25 OCIExtractToBool Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

keyname (IN) key name

valno (IN) which value to get for this key

retval (OUT) the actual boolean value
Reference: Cartridge Services Using C 13-45

OCIExtractToStr()
OCIExtractToStr()

Purpose
Gets the string value for the specified key. The valno 'th value (starting with 0) is

returned.

Syntax
sword OCIExtractToStr(dvoid *hndl,
 OCIError *err,
 text *keyname,
 uword valno,
 text *retval,
 uword buflen);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

keyname (IN)
Key name.

valno (IN)
Which value to get for this key.

retval (OUT)
The actual null-terminated string value.

buflen
The length of the buffer for retval.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_NO_DATA,
13-46 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Parameter Manager Interface
OCI_ERROR.

 OCI_NO_DATA means that there is no valno value for this key.

Table 13–26 OCIExtractToStr Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

keyname (IN) key name

valno (IN) which value to get for this key

retval (OUT) the actual NULL-terminated string value

bufflen (IN) the length of the buffer for retval
Reference: Cartridge Services Using C 13-47

OCIExtractToOCINum()
OCIExtractToOCINum()

Purpose
Gets the OCINumber value for the specified key. The valno'th value (starting with

0) is returned.

Syntax
sword OCIExtractToOCINum(dvoid *hndl,
 OCIError *err,
 text *keyname,
 uword valno,
 OCINumber *retval);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

keyname (IN)
Key name.

valno (IN)
Which value to get for this key.

retval (OUT)
The actual OCINumber value.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_NO_DATA, or OCI_ERROR.

 OCI_NO_DATA means that there is no valno'th value for this key.
13-48 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Parameter Manager Interface
Table 13–27 OCIExtractToOCINum Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

keyname (IN) key name

valno (IN) which value to get for this key

retval (OUT) the actual OCINumber string value
Reference: Cartridge Services Using C 13-49

OCIExtractToList()
OCIExtractToList()

Purpose
Generates a list of parameters from the parameter structures that are stored in

memory. Must be called before OCIExtractValues() is called.

Syntax
sword OCIExtractToList(dvoid *hndl,
 OCIError *err,
 uword *numkeys);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

numkeys (OUT)
The number of distinct keys stored in memory.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–28 OCIExtractToList Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

numkeys (OUT) number of distinct keys stored in memory
13-50 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — Parameter Manager Interface
OCIExtractFromList()

Purpose
Generates a list of values for the parameter denoted by index in the parameter list.

Syntax
sword OCIExtractFromList(dvoid *hndl,
 OCIError *err,
 uword index,
 text **name,
 ub1 *type,
 uword *numvals,
 dvoid ***values);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

index (IN)
Which parameter to retrieve from the parameter list.

name (OUT)
The name of the key for the current parameter.

type (OUT)
Type of the current parameter:

(OCI_EXTRACT_TYPE_STRING,

OCI_EXTRACT_TYPE_INTEGER,

OCI_EXTRACT_TYPE_OCINUM,

OCI_EXTRACT_TYPE_BOOLEAN).

numvals (OUT)
Number of values for this parameter.
Reference: Cartridge Services Using C 13-51

OCIExtractFromList()
values (OUT)
The values for this parameter.

Comments
OCIExtractToList() must be called prior to calling this routine to generate the

parameter list from the parameter structures that are stored in memory.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–29 OCIExtractFromList Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

index (IN) which parameter to retrieve from the parameter list

name (OUT) name of the key for the current parameter

type (OUT) type of the current parameter (OCI_EXTRACT_TYPE_STRING,
OCI_EXTRACT_TYPE_INTEGER, OCI_EXTRACT_TYPE_
OCINUM, or OCI_EXTRACT_TYPE_BOOLEAN)

numvals (OUT) number of values for this parameter

values (OUT) the values for this parameter
13-52 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — File I/O Interface
Cartridge Services — File I/O Interface
.

OCIFileObject
The OCIFileObject data structure holds information about the way in which a file

should be opened and the way in which it will be accessed once it has been opened.

When this structure is initialized by OCIFileOpen(), it becomes an identifier through

which operations can be performed on that file. It is a necessary parameter to every

function that operates on open files. This data structure is opaque to OCIFile clients.

It is initialized by OCIFileOpen() and terminated by OCIFileClose().

Table 13–30 OCI File I/O Interface Functions Quick Reference

Function/Page Purpose

OCIFileInit() on page 13-54 Initializes the OCIFile package.

OCIFileTerm() on page 13-55 Terminates the OCIFile package.

OCIFileOpen() on page 13-56 Opens a file.

OCIFileClose() on page 13-59 Closes a previously opened file.

OCIFileRead() on page 13-61 Reads from a file into a buffer.

OCIFileWrite() on page 13-63 Writes buflen bytes into the file.

OCIFileSeek() on page 13-65 Changes the current position in a file.

OCIFileExists() on page 13-67 Tests to see if the file exists.

OCIFileGetLength() on page 13-69 Gets the length of a file.

OCIFileFlush() on page 13-71 Writes buffered data to a file.
Reference: Cartridge Services Using C 13-53

OCIFileInit()
OCIFileInit()

Purpose
Initializes the OCIFile package. It must be called before any other OCIFile routine is

called.

Syntax
sword OCIFileInit(dvoid *hndl,
 OCIError *err);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–31 OCIFileInit Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle. If there is an error, it is recorded in err
and this function returns OCI_ERROR. Diagnostic information
can be obtained by calling OCIErrorGet ().
13-54 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — File I/O Interface
OCIFileTerm()

Purpose
Terminates the OCIFile package. It must be called after the OCIFile package is no

longer being used.

Syntax
sword OCIFileTerm(dvoid *hndl,
 OCIError *err);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–32 OCIFileTerm Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()
Reference: Cartridge Services Using C 13-55

OCIFileOpen()
OCIFileOpen()

Purpose
Opens a file.

Syntax
sword OCIFileOpen(dvoid *hndl,
 OCIError *err,
 OCIFileObject **filep,
 OraText *filename,
 OraText *path,
 ub4 mode,
 ub4 create,
 ub4 type);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

filep (IN/OUT)
The file identifier.

filename (IN)
The file name as a null-terminated string.

path (IN)
The path of the file as a null-terminated string.

mode (IN)
The mode in which to open the file. Valid modes are

OCI_FILE_READ_ONLY,

OCI_FILE_WRITE_ONLY,

OCI_FILE_READ_WRITE.
13-56 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — File I/O Interface
create (IN)
Indicates if the file be created if it does not exist — valid values are:

OCI_FILE_TRUNCATE — create a file regardless of whether or not it exists. If the

file already exists overwrite the existing file.

OCI_FILE_EXCL — fail if the file exists, else create.

OCI_FILE_CREATE — open the file if it exists, and create it if it does not.

OCI_FILE_APPEND — set the file pointer to the end of the file prior to writing.

This flag can be OR'ed with OCI_FILE_CREATE

type (IN)
File type. Valid values are

OCI_FILE_TEXT,

OCI_FILE_BIN,

OCI_FILE_STDIN,

 OCI_FILE_STDOUT,

OCI_FILE_STDERR.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–33 OCIFileOpen Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

filep (IN/OUT) the file identifier

filename (IN) the file name as a NULL-terminated string

path (IN) the path of the file as a NULL-terminated string
Reference: Cartridge Services Using C 13-57

OCIFileOpen()
mode (IN) the mode in which to open the file. Valid modes are OCI_
FILE_READ_ONLY, OCI_FILE_WRITE_ONLY, OCI_FILE_
READ_WRITE

create (IN) indicates if the file be created if it does not exist — valid values
are:

■ OCI_FILE_TRUNCATE — create a file regardless of
whether or not it exists. If the file already exists overwrite
the existing file

■ OCI_FILE_EXCL — fail if the file exists, else create.

■ OCI_FILE_CREATE — open the file if it exists, and create
it if it doesn't

■ OCI_FILE_APPEND— set the file pointer to the end of the
file prior to writing. This flag can be OR'ed with OCI_
FILE_CREATE

type (IN) file type; valid values are OCI_FILE_TEXT , OCI_FILE_BIN ,
OCI_FILE_STDIN , OCI_FILE_STDOUT and OCI_FILE_
STDERR

Table 13–33 OCIFileOpen Keywords/Parameters (Cont.)

Keyword/Parameter Meaning
13-58 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — File I/O Interface
OCIFileClose()

Purpose
Closes a previously opened file.

Syntax
sword OCIFileClose(dvoid *hndl,
 OCIError *err,
 OCIFileObject *filep);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

filep (IN/OUT)
A pointer to a file identifier to be closed.

Comments
Once this returns, the OCIFileObject structure pointed to by filep will have been

destroyed. Therefore, you should not attempt to access this structure after this

returns.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–34 OCIFileClose Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()
Reference: Cartridge Services Using C 13-59

OCIFileClose()
filep (IN/OUT) a pointer to a file identifier to be closed

Table 13–34 OCIFileClose Keywords/Parameters (Cont.)

Keyword/Parameter Meaning
13-60 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — File I/O Interface
OCIFileRead()

Purpose
Reads from a file into a buffer.

Syntax
sword OCIFileRead(dvoid *hndl,
 OCIError *err,
 OCIFileObject *filep,
 dvoid *bufp,
 ub4 bufl,
 ub4 *bytesread);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

filep (IN/OUT)
A file identifier that uniquely references the file.

bufp(IN)
The pointer to a buffer into which the data will be read. The length of the allocated

memory is assumed to be bufl.

bufl (IN)
The length of the buffer in bytes.

bytesread (OUT)
The number of bytes read.

Comments
As many bytes as possible will be read into the user buffer. The read will end either

when the user buffer is full, or when it reaches end-of-file.

Returns
OCI_SUCCESS,
Reference: Cartridge Services Using C 13-61

OCIFileRead()
OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–35 OCIFileRead Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

filep (IN/OUT) a file identifier that uniquely references the file

bufp (IN) the pointer to a buffer into which the data will be read. The
length of the allocated memory is assumed to be bufl

bufl (IN) the length of the buffer in bytes

bytesread (OUT) the number of bytes read
13-62 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — File I/O Interface
OCIFileWrite()

Purpose
Writes buflen bytes into the file.

Syntax
sword OCIFileWrite(dvoid *hndl,
 OCIError *err,
 OCIFileObject *filep,
 dvoid *bufp,
 ub4 buflen,
 ub4 *byteswritten);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

filep (IN/OUT)
A file identifier that uniquely references the file.

bufp(IN)
The pointer to a buffer from into which the data will be written. The length of the

allocated memory is assumed to be buflen.

buflen (IN)
The length of the buffer in bytes.

bytesread (OUT)
The number of bytes written.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.
Reference: Cartridge Services Using C 13-63

OCIFileWrite()
Table 13–36 OCIFileWrite Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

filep (IN/OUT) a file identifier that uniquely references the file

bufp (IN) the pointer to a buffer into which the data will be written; the
length of the allocated memory is assumed to be buflen

buflen (IN) the length of the buffer in bytes

byteswritten (OUT) t he number of bytes written
13-64 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — File I/O Interface
OCIFileSeek()

Purpose
Changes the current position in a file.

Syntax
sword OCIFileSeek(dvoid *hndl,
 OCIError *err,
 OCIFileObject *filep,
 uword origin,
 ubig_ora offset,
 sb1 dir);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

filep (IN/OUT)
A file identifier that uniquely references the file.

origin(IN)
The starting point we want to seek from. The starting point may be

 OCI_FILE_SEEK_BEGINNING (beginning),

OCI_FILE_SEEK_CURRENT (current position),

OCI_FILE_SEEK_END (end of file).

offset (IN)
The number of bytes from the origin you want to start reading from.

dir (IN)
The direction to go from the origin.

NOTE: The direction can be either OCIFILE_FORWARD or OCIFILE_BACKWARD.
Reference: Cartridge Services Using C 13-65

OCIFileSeek()
Comments
This will allow a seek past the end of the file. Reading from such a position will

cause an end-of-file condition to be reported. Writing to such a position will not

work on all file systems. This is because some systems do not allow files to grow

dynamically. They require that files be preallocated with a fixed size. Note that this

function performs a seek to a byte location.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–37 OCIFileSeek Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

filep (IN/OUT) a file identifier that uniquely references the file

origin (IN) the starting point we want to seek from. The starting point may
be OCI_FILE_SEEK_BEGINNING (beginning), OCI_FILE_
SEEK_CURRENT (current position), or OCI_FILE_SEEK_END
(end of file)

offset (IN) the number of bytes from the origin you want to start reading
from

dir (IN) the direction we want to go from the origin. NOTE: The
direction can be either OCIFILE_FORWARD or OCIFILE_
BACKWARD
13-66 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — File I/O Interface
OCIFileExists()

Purpose
Tests to see if the file exists.

Syntax
sword OCIFileExists(dvoid *hndl,
 OCIError *err,
 OraText *filename,
 OraText *path,
 ub1 *flag);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

filename (IN)
The file name as a null-terminated string.

path (IN)
The path of the file as a null-terminated string.

flag (OUT)
Set to TRUE if the file exists or FALSE if it does not.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–38 OCIFileExists Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle
Reference: Cartridge Services Using C 13-67

OCIFileExists()
err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ().

filename (IN) the file name as a NULL-terminated string

path (IN) the path of the file as a NULL-terminated string

flag (OUT) set to TRUE if the file exists or FALSE if it does not

Table 13–38 OCIFileExists Keywords/Parameters (Cont.)

Keyword/Parameter Meaning
13-68 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — File I/O Interface
OCIFileGetLength()

Purpose
Gets the length of a file.

Syntax
sword OCIFileGetLength(dvoid *hndl,
 OCIError *err,
 OraText *filename,
 OraText *path,
 ubig_ora *lenp);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

filename (IN)
The file name as a null-terminated string.

path (IN)
The path of the file as a null-terminated string.

lenp (OUT)
Set to the length of the file in bytes.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–39 OCIFileGetLength Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle
Reference: Cartridge Services Using C 13-69

OCIFileGetLength()
err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

filename (IN) the file name as a NULL-terminated string

path (IN) the path of the file as a NULL-terminated string

lenp (OUT) set to the length of the file in bytes

Table 13–39 OCIFileGetLength Keywords/Parameters (Cont.)

Keyword/Parameter Meaning
13-70 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — File I/O Interface
OCIFileFlush()

Purpose
Writes buffered data to a file.

Syntax
sword OCIFileFlush(dvoid *h
 OCIError *err,
 OCIFileObject *filep);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function

returns OCI_ERROR; diagnostic information can be obtained by calling

OCIErrorGet().

filep (IN/OUT)
A file identifier that uniquely references the file.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Table 13–40 OCIFileFlush Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

filep (IN/OUT) a file identifier that uniquely references the file
Reference: Cartridge Services Using C 13-71

Cartridge Services — File I/O Interface
Cartridge Services — File I/O Interface

OCIFileObject

The OCIFileObject data structure holds information about the way in which a file

should be opened and the way in which it will be accessed once it has been opened.

When this structure is initialized by OCIFileOpen (), it becomes an identifier

through which operations can be performed on that file. It is a necessary parameter

to every function that operates on open files. This data structure is opaque to

OCIFile clients. It is initialized by OCIFileOpen () and terminated by

OCIFileClose ().
13-72 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — String Formatting Interface
Cartridge Services — String Formatting Interface

OCIFormatInit

Syntax
sword OCIFormatInit(dvoid *hndl, OCIError *err)

Remarks
Initializes the OCIFormat package. This routine must be called before calling any

other OCIFormat routine and it must only be called once.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR.

Table 13–41 OCIFormatInit Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()
Reference: Cartridge Services Using C 13-73

OCIFormatTerm
OCIFormatTerm

Syntax
sword OCIFormatTerm(dvoid *hndl, OCIError *err)

Remarks
Terminates the OCIFormat package. It must be called after the OCIFormat
package is no longer being used and it must only be called once.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR.

Table 13–42 OCIFormatTerm Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle. If there is an error, it is recorded in
err and this function returns OCI_ERROR. Diagnostic
information can be obtained by calling OCIErrorGet ().
13-74 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — String Formatting Interface
OCIFormatString

Syntax
sword OCIFormatString(dvoid *hndl, OCIError *err, text *buffer,
 sbig_ora bufferLength, sbig_ora *returnLength,
 CONST text *formatString,...);

Remarks
Writes a text string into the supplied text buffer using the argument list submitted

to it and in accordance with the format string given. The first call to this routine

must be preceded by a call to the OCIFormatInit routine that initializes the

OCIFormat package for use. When this routine is no longer needed terminate the

OCIFormat package by a call to the OCIFormatTerm routine.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR.

Table 13–43 OCIFormatString Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle

err (IN/OUT) the OCI error handle; if there is an error, it is recorded in err
and this function returns OCI_ERROR; diagnostic information
can be obtained by calling OCIErrorGet ()

buffer (OUT) the buffer that contains the string

bufferLength (IN) the length of the buffer in bytes

returnLength (OUT) the number of bytes written to buffer (excluding the
terminating NULL)

formatString (IN) the format string which can be any combination of literal text
and format specifications. A format specification is delimited
by the '%' character and is followed by any number (including
none) of optional format modifiers and terminated by a
mandatory format code. If the format string ends with '%', i.e.
with no format modifiers or format specifier following it, then
no action is taken. The format modifiers and format codes
available are described below.
Reference: Cartridge Services Using C 13-75

OCIFormatString
... (IN) variable number of arguments of the form <OCIFormat type
wrapper >(<variable >) where <variable > must be a
variable containing the value to be used - no constant values or
expressions are allowed as arguments to the OCIFormat type
wrappers; the OCIFormat type wrappers that are available are
listed below; the argument list must be terminated with
OCIFormatEnd

OCIFormatUb1(ub1 variable);

OCIFormatUb2(ub2 variable);

OCIFormatUb4(ub4 variable);

OCIFormatUword(uword variable);

OCIFormatUbig_ora(ubig_ora variable);

OCIFormatSb1(sb1 variable);

OCIFormatSb2(sb2 variable);

OCIFormatSb4(sb4 variable);

OCIFormatSword(sword variable);

OCIFormatSbig_ora(sbig_ora variable);

OCIFormatEb1(eb1 variable);

OCIFormatEb2(eb2 variable);

OCIFormatEb4(eb4 variable);

OCIFormatEword(eword variable);

OCIFormatChar (text variable);

OCIFormatText(CONST text *variable);

OCIFormatDouble(double variable);

OCIFormatDvoid(CONST dvoid *variable);

OCIFormatEnd

Table 13–43 OCIFormatString Keywords/Parameters (Cont.)

Keyword/Parameter Meaning
13-76 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — String Formatting Interface
Format Modifiers

A format modifier alters or extends the format specification, allowing more

specialized output. The format modifiers may be in any order and are all optional.

Flags (in any order)

■ If both the ’+’ and ’ ’ flags are used in the same format specification then the

’ ’ flag is ignored.

■ If both the ’-’ and ’0’ flags are used in the same format specification then the

’-’ flag is ignored.

Alternate output:
■ For the octal format code add a leading zero.

■ For the hexadecimal format code add a leading '0x'.

■ For floating point format codes the output will always have a radix character.

Field Width
<w> where <w> is a number specifying a minimum field width. The converted

argument will be printed in a field at least this wide, and wider if necessary. If the

converted argument takes up fewer display positions than the field width, it will be

padded on the left (or right for left justification) to make up the field width. The

padding character is normally a space, but it is a zero if the zero padding flag was

specified. The special character ’*’ may be used in place of <w> and indicates the

current argument is to be used for the field width value, the actual field or precision

follows as the next sequential argument.

Flag Operation

’-’ left-justify the output in the field

’+’ always print a sign ('+' or '-') for numeric types

’ ’ if a number's sign is not printed then print a space in the sign
position

’0’ pad numeric output with zeros not spaces
Reference: Cartridge Services Using C 13-77

Format Modifiers
Precision
.<p> specifies a period followed by the number <p> , specifying the maximum

number of display positions to print from a string, or digits after the radix point for

a decimal number, or the minimum number of digits to print for an integer type

(leading zeroes will be added to make up the difference). The special character ’*’
may be used in place of <p> indicating the current argument contains the precision

value.

Argument Index
(<n>) where <n> is an integer index into the argument list with the first argument

being 1. If no argument index is specified in a format specification the first

argument is selected. The next time no argument index is specified in a format

specification the second argument is selected and so on. Format specifications with

and without argument indexes can be in any order and are independent of each

other in operation.

For example, the format string "%u %(4)u %u %(2)u %u" selects the first, fourth,

second, second, and third arguments given to OCIFormatString .
13-78 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — String Formatting Interface
Format Codes

A format code specifies how to format an argument that is being written to a string.

Note that these codes can appear in upper case, which will cause all alphabetic

characters in the output to appear in upper case except for text strings, which are

not converted.

Codes Operation

’c’ single-byte character in the compiler character set

’d’ signed decimal integer

’e’ exponential (scientific) notation of the form
[-]<d><r>[<d>...]e+[<d>]<d><d> where <r> is the radix
character for the current language and <d> is any single digit;
the default precision is given by the constant OCIFormatDP . the
precision may be optionally specified as a format modifier -
using a precision of 0 suppresses the radix character; the
exponent is always printed in at least 2 digits, and can take up to
3 e.g. 1e+01, 1e+10, and 1e+100

’f’ fixed decimal notation of the form
[-]<d>[<d>...]<r>[<d>...] where <r> is the appropriate
radix character for the current language and <d> is any single
digit; the precision may be optionally specified as a format
modifier- using a precision of 0 suppresses the radix character.
the default precision is given by the constant OCIFormatDP

’g’ variable floating-point notation; chooses ’e’ or ’f’ , selecting
’f’ ' if the number will fit in the specified precision (default
precision if unspecified), and choosing ’e’ only if exponential
format will allow more significant digits to be printed; does not
print a radix character if number has no fractional part

’i’ identical to ’d’

’o’ unsigned octal integer

’p’ platform specific pointer printout
Reference: Cartridge Services Using C 13-79

Format Codes
’s’ prints an argument using the default format code for its type:

ociformatub<n> , ociformatuword , ociformatubig_
ora , ociformateb<n> , and ociformateword .

the format code used is 'u'.

ociformatsb<n> , ociformatsword , and ociformatsbig_
ora .

the format code used is 'd'.

ociformatchar

the format code used is 'c'.

ociformattext

prints text until trailing null is found.

ociformatdouble

the format code used is 'g'.

ociformatdvoid

the format code used is 'p'.

' %' - print a '%'.

’u’ unsigned decimal integer

’x’ unsigned hexadecimal integer

Codes Operation
13-80 Oracle8i Data Cartridge Developer’s Guide

Cartridge Services — String Formatting Interface
Example

/* This example shows the power of arbitrary argument */
/* selection in the context of internationalization. A */
/* date is formatted in 2 different ways for 2 different */
/* countries according to the format string yet the */
/* argument list submitted to OCIFormatString remains */
/* invariant. */

text buffer[255];
ub1 day, month, year;
OCIError *err;
dvoid *hndl;

/* Set the date. */

day = 10;
month = 3;
year = 97;

/* Work out the date in United States' style: mm/dd/yy *:/
OCIFormatString(hndl, err,
 buffer, (sbig_ora)sizeof(buffer),
 (CONST text *)"%(2)02u/%(1)02u/%(3)02u",
 OCIFormatUb1(day),
 OCIFormatUb1(month),
 OCIFormatUb1(year),
 OCIFormatEnd); /* Buffer is "03/10/97". */

/* Work out the date in New Zealand style: dd/mm/yy *:/
OCIFormatString(hndl, err,
 buffer, (sbig_ora)sizeof(buffer),
 (CONST text *)"%(1)02u/%(2)02u/%(3)02u",
 OCIFormatUb1(day),
 OCIFormatUb1(month),
 OCIFormatUb1(year),
 OCIFormatEnd); /* Buffer is "10/03/97". */
Reference: Cartridge Services Using C 13-81

Example
13-82 Oracle8i Data Cartridge Developer’s Guide

Reference: Cartridge Service Usin
14

 Reference: Cartridge Service Using Java

This reference chapter describes a Java language cartridge service. For more

complete details on Java functionality, refer to the Oracle8i Supplied Java Packages
Reference, and the Oracle8i Java Stored Procedures Developer’s Guide.

■ File Installation

■ Cartridge Service — Maintaining Context
g Java 14-1

File Installation
File Installation
The ODCI.jar and CartridgeServices.jar files must be installed into the SYS schema

in order to use the Java classes described in this chapter.

If you installed the Java option, then you must install the ODCI.jar and

CartridgeServices.jar files. You do not need to perform this task if you did not

install the Java option.

To install ODCI.jar and CartridgeServices.jar files, run the following commands

from the command line:

loadjava -user sys/PASSWORD -resolve -synonym -grant public
-verbose ORACLE_HOME/vobs/jlib/CartridgeServices.jar

loadjava -user sys/PASSWORD -resolve -synonym -grant public
-verbose ORACLE_HOME/vobs/jlib/ODCI.jar

Substitute the SYS password for PASSWORD, and substitute the Oracle home

directory for ORACLE_HOME. These commands install the classes and create the

synonyms in the SYS schema. See Chapter 8 of Oracle8i Migration for further details.
14-2 Oracle8i Data Cartridge Developer’s Guide

Cartridge Service — Maintaining Context
Cartridge Service — Maintaining Context

The Java cartridge service is used for maintaining context. It is similar to the OCI

context management service. This class should be used when switching context

between the server and the cartridge code. See Appendix A, "Java Demo Script" for

an example of the use of the Context Manager in a domain index case.

For additional detail on Java functionality, see the Oracle8i Java Stored Procedures
Developer’s Guide.
Reference: Cartridge Service Using Java 14-3

Cartridge Service — Maintaining Context
ContextManager
ContextManager is a Constructor in class Oracle that extends Object.

Class Interface
public static Hashtable ctx

extends Object

Variable
ctx

 public static Hashtable ctx

Constructors
ContextManager

 public ContextManager()

Methods
The following methods are available:

setContext (static method in class oracle)
getContext (static method in class oracle)
clearContext (static method in class oracle)
14-4 Oracle8i Data Cartridge Developer’s Guide

Cartridge Service — Maintaining Context
CountException()

CountException is a Constructor for class Oracle that extends Exception.

Class oracle.CartridgeServices.CountException
Reference: Cartridge Service Using Java 14-5

CountException(String)
CountException(String)

CountException is a Constructor for class Oracle that extends Exception.

public CountException(String s)
14-6 Oracle8i Data Cartridge Developer’s Guide

Cartridge Service — Maintaining Context
InvalidKeyException()

InvalidKeyException() is a Constructor for class Oracle that extends Exception.

public InvalidKeyException(String s)
Reference: Cartridge Service Using Java 14-7

InvalidKeyException(String)
InvalidKeyException(String)

InvalidKeyException(String) is a Constructor for class Oracle that extends
Exception.

public InvalidKeyException(String s)
14-8 Oracle8i Data Cartridge Developer’s Guide

Reference: Extensibility Constants, Types, & Ma
15

 Reference: Extensibility Constants, Types,

& Mappings

■ System Defined Constants

■ System Defined Types

■ Mappings in PL/SQL

■ Mappings in C

■ Mappings in Java
ppings 15-1

Extensibility Constants, Types, & Mappings
Extensibility Constants, Types, & Mappings
This chapter first describes System Defined Constants and System Defined Types.

Both of these apply generically to all supported languages. Next, in three

subsections, this chapter describes mappings that are specific to the PL/SQL, C, and

Java languages.

System Defined Constants
All the constants referred to in this chapter are defined in the ODCIConst package

installed as part of the catodci.sql script. There are equivalent definitions for use

within C routines in odci.h.

We strongly recommend that you use these constants instead of hard coding their

underlying values in your routines.
15-2 Oracle8i Data Cartridge Developer’s Guide

Extensibility Constants, Types, & Mappings
Alter Options Values

■ AlterOptionNone

■ AlterOptionRename

■ AlterOptionRebuild
Reference: Extensibility Constants, Types, & Mappings 15-3

ODCIArgDesc.ArgType Bits
ODCIArgDesc.ArgType Bits

■ ArgOther

■ ArgCol

■ ArgLit

■ ArgAttr

■ ArgNull
15-4 Oracle8i Data Cartridge Developer’s Guide

Extensibility Constants, Types, & Mappings
ODCIPredInfo.Flag Bits

■ PredExactMatch

■ PredPrefixMatch

■ PredIncludeStart

■ PredIncludeStop

■ PredObjectFunc

■ PredObjectPkg

■ PredObjectType
Reference: Extensibility Constants, Types, & Mappings 15-5

ODCIFuncInfo.Flags Bits
ODCIFuncInfo.Flags Bits

■ ObjectFunc

■ ObjectPkg

■ ObjectType
15-6 Oracle8i Data Cartridge Developer’s Guide

Extensibility Constants, Types, & Mappings
ODCIQueryInfo.Flags Bits

■ QueryFirstRows

■ QueryAllRows
Reference: Extensibility Constants, Types, & Mappings 15-7

ODCIStatsOptions.Flags Bits
ODCIStatsOptions.Flags Bits

■ EstimateStats

■ ComputeStats

■ Validate
15-8 Oracle8i Data Cartridge Developer’s Guide

Extensibility Constants, Types, & Mappings
ODCIStatsOptions.Options Bits

■ PercentOption

■ RowOption
Reference: Extensibility Constants, Types, & Mappings 15-9

ScnFlg (Function with Index Context) Values
ScnFlg (Function with Index Context) Values

■ RegularCall

■ CleanupCall
15-10 Oracle8i Data Cartridge Developer’s Guide

Extensibility Constants, Types, & Mappings
Status Values

■ Success

■ Error

■ Warning
Reference: Extensibility Constants, Types, & Mappings 15-11

System Defined Types
System Defined Types

A number of system-defined types are defined by Oracle and need to be created by

running the catodci.sql catalog script. The C mappings for these object types are

defined odci.h The ODCIIndex routines use these types as parameters, and

ODCIStats described in Chapters 16 and 17.

Unless otherwise mentioned, the names parsed as type attributes are unquoted

identifiers.
15-12 Oracle8i Data Cartridge Developer’s Guide

System Defined Types
ODCIArgDesc

Name
ODCIArgDesc

Datatype
Object type.

Purpose
Stores function/operator arguments.

Table 15–1 Function/Operator Argument Description — Attributes

Name Datatype Purpose

ArgType NUMBER Argument type - see "ODCICost" on
page 15-18

TableName VARCHAR2(30) Name of table

TableSchema VARCHAR2(30) Schema containing the table

ColName VARCHAR2(4000) Name of column. This could be top level column
name such as "A", or a nested column "A"."B"
Note that the column name are quoted
identifiers.
Reference: Extensibility Constants, Types, & Mappings 15-13

ODCIArgDescList
ODCIArgDescList

Name
ODCIArgDesc

Datatype
VARRAY(32767) of ODCIArgDesc

Purpose
Lists descriptions of arguments.
15-14 Oracle8i Data Cartridge Developer’s Guide

System Defined Types
ODCIRidList

Name
ODCIRidList

Datatype
VARRAY(32767) OF VARCHAR2("M_URID_SZ")

Purpose
Stores list of rowids. The rowids are stored in their character format.
Reference: Extensibility Constants, Types, & Mappings 15-15

ODCIColInfo
ODCIColInfo

Name
ODCIColInfo

Datatype
Object type.

Purpose
Stores information related column.

Table 15–2 Column Related Information — Attributes

Name Datatype Purpose

TableSchema VARCHAR2(30) Schema containing table

TableName VARCHAR2(30) Name of table

ColName VARCHAR2(4000) Name of column. This could be top level column
name such as "A", or a nested column "A"."B"
Note that the column name are quoted
identifiers.

ColTypeName VARCHAR2(30) Datatype of column

ColTypeSchema VARCHAR2(30) Schema containing datatype if user-defined
datatype
15-16 Oracle8i Data Cartridge Developer’s Guide

System Defined Types
ODCIColInfoList

Name
ODCIColInfoList

Datatype
VARRAY(32) OF ODCIColInfo

Purpose
Stores information related to a list of columns.
Reference: Extensibility Constants, Types, & Mappings 15-17

ODCICost
ODCICost

Name
ODCICost

Datatype
Object type.

Purpose
Stores cost information.

Table 15–3 Cost Information — Attributes

Name Datatype Purpose

CPUCost NUMBER CPU cost

IOCost NUMBER I/O cost

NetworkCost NUMBER Communication cost
15-18 Oracle8i Data Cartridge Developer’s Guide

System Defined Types
ODCIFuncInfo

Name
ODCIFuncInfo

Datatype
Object type.

Purpose
Stores function information.

Table 15–4 Function Information — Attributes

Name Datatype Purpose

ObjectSchemaVARCHAR2(30)Object schema name

ObjectName VARCHAR2(30)Function/package/type name

MethodName VARCHAR2(30)Method name for package/type

Flags NUMBER Function flags - see ODCIConst
Reference: Extensibility Constants, Types, & Mappings 15-19

ODCIIndexInfo
ODCIIndexInfo

Name
ODCIIndexInfo

Datatype
Object type

Purpose
Stores the metadata information related to a domain index. It is passed as a

parameter to all ODCIIndex routines.

Table 15–5 Index Related Information — Attributes

Name Datatype Purpose

IndexSchema VARCHAR2(30) Schema containing domain index

IndexName VARCHAR2(30) Name of domain index

IndexCols ODCIColInfoList List of indexed columns
15-20 Oracle8i Data Cartridge Developer’s Guide

System Defined Types
ODCIPredInfo

Name
ODCIPredInfo

Datatype
Object type

Purpose
Stores the metadata information related to a predicate containing a user-defined

operator or function. It is also passed as a parameter to ODCIIndexStart () query

routine.

Table 15–6 Operator Related Information — Attributes

Name Datatype Purpose

ObjectSchema VARCHAR2(30) Schema of operator/function

ObjectName VARCHAR2(30) Name of operator/function

MethodName VARCHAR2(30) Name of method, applies only to package methods
type

Flags NUMBER The possible flags that could be set are:

 PredExactMatch - Exact Match

 PredPrefixMatch - Prefix Match

 PredIncludeStart - Bounds include the start key
value

 PredIncludeStop - Bounds include the stop key
value

 PredObjectFunc - Object is a function

 PredObjectPlg - Object is a package

 PredObjectType - Object is a type
Reference: Extensibility Constants, Types, & Mappings 15-21

ODCIIndexCtx
ODCIIndexCtx

Name
ODCIIndexCtx

Datatype
Object type

Purpose
Stores the index context, including the domain index metadata and the ROWID. It is
passed as parameter to the functional implementation of an operator that expects

index context.

Table 15–7 Index Context Related Information — Attributes

Name Datatype Purpose

IndexInfo ODCIIndexInfo Stores the metadata information about the domain
index

rid VARCHAR2("M_URID_
SZ")

Row identifier of the current row
15-22 Oracle8i Data Cartridge Developer’s Guide

System Defined Types
ODCIObject

Name
ODCIObject

Datatype
Object type

Purpose
Stores information about a schema object.

Table 15–8 Index Context Related Information — Attributes

Name Datatype Purpose

ObjectSchema VARCHAR2(30) Name of schema in which object is located

ObjectName VARCHAR2(30) Name of object
Reference: Extensibility Constants, Types, & Mappings 15-23

ODCIObjectList
ODCIObjectList

Name
ODCIObjectList

Datatype
VARRAY(32) OF ODCIObject

Purpose
Stores information about a list of schema objects.
15-24 Oracle8i Data Cartridge Developer’s Guide

System Defined Types
ODCIQueryInfo

Name
ODCIQueryInfo

Datatype
Object type

Purpose
Stores information about the context of a query. It is passed as a parameter to the

ODCIIndexStart routine.

Table 15–9 Index Context Related Information — Attributes

Name Datatype Purpose

Flags NUMBER The following flags can be set:

 QueryFirstRows —’FIRST_ROWS’ specified in the query

 QueryAllRows —’ALL_ROWS’ specified in the query

AncOps ODCIObjectList Ancillary operators referenced in the query
Reference: Extensibility Constants, Types, & Mappings 15-25

ODCIStatsOptions
ODCIStatsOptions

Name
ODCIStatsOptions

Datatype
Object type.

Purpose
Stores options information for ANALYZE.

Table 15–10 Cost Information — Attributes

Name Datatype Purpose

Sample NUMBER Sample size

Options NUMBER ANALYZE options - see "ODCICost" on
page 15-18

Flags NUMBER ANALYZE flags - see "ODCICost" on
page 15-18
15-26 Oracle8i Data Cartridge Developer’s Guide

System Defined Types
Mappings in PL/SQL
A variety of PL/SQL mappings are common to both Extensible Indexing and the

Extensible Optimizer.

■ Constants are defined in the ODCIConst package found in catodci.sql

■ Types are defined as object types found in catodci.sql
Reference: Extensibility Constants, Types, & Mappings 15-27

ODCIStatsOptions
Mappings in C
Mappings for C are defined in the public header file odci.h

C Constants
Constants for C are defined as macros in odci.h.

Table 15–11 C Constants

Category Macro Integer

Return Status odci_success 0

odci_error 1

odci_warning 2

ODCIPredInfo.Flags PredExactMatch 1

 PredPrefixMatch 2

PredIncludeStart 4

PredIncludeStop 8

PredObjectFunc 16

PredObjectPkg 32

PredObjectType 64

ODCIQueryInfo.Flags QueryFirstRows 1

QueryAllRows 2

QuerySortAsc 4

QuerySortDes 8

QueryBlocking 16

ScnFlg CleanupCall 1

RegularCall 2

ODCIFuncInfo.Flags ObjectFunc 1

ObjectPkg 2

ObjectType 4

ODCIArgDesc.ArgType ArgOther 1

ArgCol 2

ArgLit 3
15-28 Oracle8i Data Cartridge Developer’s Guide

System Defined Types
C Types
Structures are defined in odci.h. Note that each structure has a corresponding

indicator structure called structname_ind, and a reference definition called

structname_ref.

ArgAttr 4

ArgNull 5

ODCIStatsOptions.Options PercentOption 1

RowOption 2

ODCIStatsOptions.Flags EstimateStats 1

ComputeStats 2

Validate 4

ODCIIndexAlter parameter alter_
option

AlterIndexNone 1

AlterIndexRename 2

Table 15–12 C Types

Description Structure Name Indicator Structure Reference

Column Information ODCIColInfo ODCIColInfo_ind ODCIColInfo_ref

Index Information ODCIIndexInfo ODCIIndexInfo_ind ODCIIndexInfo_ref

Predicate (User-defined
operator or function)
Information

ODCIPredInfo ODCIPredInfo_ind ODCIPredInfo_ref

Row ID List ODCIRidList ODCIRidList_ind ODCIRidList_ref

Index Context ODCIIndexCtx ODCIIndexCtx_ind ODCIIndexCtx_ref

Schema Object ODCIObject ODCIObject_ind ODCIObject_ref

Query Information ODCIQueryInfo ODCIQueryInfo_ind ODCIQueryInfo_ref

Function ODCIFuncInfo ODCIFuncInfo_ind ODCIFuncInfo_ref

Table 15–11 C Constants

Category Macro Integer
Reference: Extensibility Constants, Types, & Mappings 15-29

ODCIStatsOptions
Cost ODCICost ODCICost_ind ODCICost_ref

Argument Descriptions ODCIArgDesc ODCIArgDesc_ind ODCIArgDesc_ref

Options for ANALYZE ODCIStatsOptions ODCIStatsOptions_ind ODCIStatsOptions_ref

Table 15–12 C Types

Description Structure Name Indicator Structure Reference
15-30 Oracle8i Data Cartridge Developer’s Guide

System Defined Types
Constants Definitions
The following constants create or replace the ODCIConst IS package.

To ensure that the database or packet state are not inadvertently corrupted, the

following statement is always used with these methods to restrict reads and writes:

 pragma restrict_references(ODCIConst, WNDS, RNDS, WNPS, RNPS);

Constants for Return Status
 Success CONSTANT INTEGER := 0;
 Error CONSTANT INTEGER := 1;
 Warning CONSTANT INTEGER := 2;

Constants for ODCIPredInfo.Flags
 PredExactMatch CONSTANT INTEGER := 1;
 PredPrefixMatch CONSTANT INTEGER := 2;
 PredIncludeStart CONSTANT INTEGER := 4;
 PredIncludeStop CONSTANT INTEGER := 8;
 PredObjectFunc CONSTANT INTEGER := 16;
 PredObjectPkg CONSTANT INTEGER := 32;
 PredObjectType CONSTANT INTEGER := 64;

 Constants for ODCIQueryInfo.Flags
 QueryFirstRows CONSTANT INTEGER := 1;
 QueryAllRows CONSTANT INTEGER := 2;
 QuerySortAsc CONSTANT INTEGER := 4;
 QuerySortDesc CONSTANT INTEGER := 8;
 QueryBlocking CONSTANT INTEGER := 16;

Constants for ScnFlg (Func with Index Context)
 CleanupCall CONSTANT INTEGER := 1;
 RegularCall CONSTANT INTEGER := 2;

Constants for ODCIFuncInfo.Flags
 ObjectFunc CONSTANT INTEGER := 1;
 ObjectPkg CONSTANT INTEGER := 2;
 ObjectType CONSTANT INTEGER := 4;

Constants for ODCIArgDesc.ArgType
 ArgOther CONSTANT INTEGER := 1;
Reference: Extensibility Constants, Types, & Mappings 15-31

ODCIStatsOptions
 ArgCol CONSTANT INTEGER := 2;
 ArgLit CONSTANT INTEGER := 3;
 ArgAttr CONSTANT INTEGER := 4;
 ArgNull CONSTANT INTEGER := 5;

Constants for ODCIStatsOptions.Options
 PercentOption CONSTANT INTEGER := 1;
 RowOption CONSTANT INTEGER := 2;

Constants for ODCIStatsOptions.Flags
 EstimateStats CONSTANT INTEGER := 1;
 ComputeStats CONSTANT INTEGER := 2;
 Validate CONSTANT INTEGER := 4;

Constants for ODCIIndexAlter parameter alter_option
 AlterIndexNone CONSTANT INTEGER := 0;
 AlterIndexRename CONSTANT INTEGER := 1;
 AlterIndexRebuild CONSTANT INTEGER := 2;
15-32 Oracle8i Data Cartridge Developer’s Guide

System Defined Types
Mappings in Java

The ODCI (Oracle Data Cartridge Interface) interfaces are described in the Oracle8i
Supplied Java Packages Reference., To use these classes, they must first be loaded. See

Chapter 14 for loading instructions.
Reference: Extensibility Constants, Types, & Mappings 15-33

15-34 Oracle8i Data Cartridge Developer’s Guide

Reference: Extensible Indexing Int
16

Reference: Extensible Indexing Interface

This chapter describes Java language ODCI (Oracle Data Cartridge Interface)

Extensible Indexing Interfaces. For more complete details on Java functionality, refer

to the Oracle8i Supplied Java Packages Reference.

The following interfaces are described:

■ ODCIGetInterfaces

■ ODCIIndexAlter

■ OCDIIndexCreate

■ ODCIIndexClose

■ ODCIIndexDelete

■ ODCIIndexDrop

■ ODCIIndexFetch

■ ODCIIndexGetMetadata

■ ODCIIndexInsert

■ ODCIIndexStart

■ ODCIIndexTruncate

■ OCIIndexUpdate
erface 16-1

Extensible Indexing — System Defined Interface Routines
Extensible Indexing — System Defined Interface Routines

Caution: These routines are invoked by Oracle at the appropriate

times based on SQL statements executed by the end user. The user

should not try to invoke these routines directly as this may result in

corruption of index data.
16-2 Oracle8i Data Cartridge Developer’s Guide

Extensible Indexing — System Defined Interface Routines
ODCIGetInterfaces

Syntax
ODCIGetInterfaces(ifclist OUT ODCIObjectList) RETURN NUMBER

Purpose
The ODCIGetInterfaces function is invoked when an INDEXTYPEis created by a

CREATE INDEXTYPE... statement.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Error on error.

Usage Notes
This function should be implemented as a static type method.

This function must return ’SYS.ODCIINDEX1’ in the ODCIObjectList . This

indicates that the indextype uses the first version of the ODCIIndex interface.

Table 16–1 OCDIGetInterfaces Arguments

Argument Meaning

ifclist Contains information about the list of interfaces it supports
Reference: Extensible Indexing Interface 16-3

ODCIIndexAlter
ODCIIndexAlter

Syntax
ODCIIndexAlter(ia ODCIIndexInfo, parms IN OUT VARCHAR2, alter_option NUMBER)
RETURN NUMBER

Purpose
The ODCIIndexAlter procedure is invoked when a domain index is altered using

an ALTER INDEX statement.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Warning on warning,

■ ODCIConst.Error on error.

Usage Notes
■ This function should be implemented as a static type method.

Table 16–2 ODCIIndexAlter Arguments

Argument Meaning

ia Contains information about the indexed column(s)

parms (IN) Parameter string

if ALTER INDEX PARAMETERS or ALTER INDEX REBUILD
contains the user specified parameter string

 if ALTER INDEX RENAME contain the new name of the domain
index

parms (OUT) Parameter string

is only valid if ALTER INDEX PARAMETERS or ALTER INDEX
REBUILD. Contains the resultant string to be stored in system
catalogs

alter_option Specifies one of the following options:

AlterIndexNone if ALTER INDEX PARAMETERS

AlterIndexRename if ALTER INDEX RENAME

AlterIndexRebuild if ALTER INDEX REBUILD
16-4 Oracle8i Data Cartridge Developer’s Guide

ODCIIndexAlter
■ An ALTER INDEX statement can be invoked for domain indexes in multiple

ways.

ALTER INDEX index_name
PARAMETERS (parms);

or

ALTER INDEX index_name
REBUILD PARAMETERS (parms);

The precise behavior in these two cases is defined by the implementor. One

possibility is that the first statement would merely reorganize the index based

on the parameters while the second would rebuild it from scratch.

■ The maximum length of the input parameters string is 1000 characters. The OUT
value of the parms argument can be set to resultant parameters string to be

stored in the system catalogs.

■ The ALTER INDEX statement can also be used to rename a domain index in the

following way:

ALTER INDEX index_name
RENAME TO new_index_name

In this case, the new name of the domain index is passed to the parms
argument.

■ If the ODCIIndexAlter routine returns with the ODCIConst .Success , the

index is valid and usable. If the ODCIIndexAlter routine returns with

ODCIConst .Warning , the index is valid and usable but a warning message is

returned to the user. If ODCIIndexAlter returns with an error (or exception),

the domain index will be marked FAILED .

■ When the ODCIIndexAlter routine is being executed, the domain index is

marked LOADING.

■ Every SQL statement executed by ODCIIndexAlter is treated as an independent

operation. The changes made by ODCIIndexCreate are not guaranteed to be

atomic.
Reference: Extensible Indexing Interface 16-5

OCDIIndexCreate
OCDIIndexCreate

Syntax
OCDIIndexCreate(ia ODCIIndexInfo, parms VARCHAR2) RETURN NUMBER

Purpose
The OCDIIndexCreate procedure is invoked when a domain index is created by a

CREATE INDEX ... INDEXTYPE IS PARAMETERS ... statement issued by the user.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Warning on warning,

■ ODCIConst.Error on error.

Usage Notes
■ This function should be implemented as a static type method.

■ The ODCIIndexCreate routine should create objects (such as tables) to the index

data, to generate index data, and to store it in the index data tables.

■ The OCDIIndexCreate procedure should handle creation of indexes on both

empty and non-empty tables. If the base table is not empty, the

OCDIIndexCreate procedure can scan the entire table and generate index

data.

■ Every SQL statement executed by OCDIIndexCreate is treated as an

independent operation. The changes made by OCDIIndexCreate are not

guaranteed to be atomic.

■ When the OCDIIndexCreate routine is being executed, the domain index is

marked LOADING.

Table 16–3 OCDIIndexCreate Arguments

Argument Meaning

ia Contains information about the indexed column

parms Is the PARAMETERS string passed in uninterpreted by Oracle.
The maximum size of the parameter string is 1000 characters.
16-6 Oracle8i Data Cartridge Developer’s Guide

Extensible Indexing — System Defined Interface Routines
■ If the ODCIIndexCreate routine returns with the ODCIConst .Success , the

index is valid and usable. If the ODCIIndexCreate routine returns with

ODCIConst .Warning , the index is valid and usable but a warning message is

returned to the user. If the OCDIIndexCreate routine returns with an

ODCIConst .Error (or exception), the domain index will be marked FAILED.

■ The only operations permitted on FAILED domain indexes is DROP INDEX,
TRUNCATE TABLE or ALTER INDEX REBUILD.

■ If a domain index is crated on an column of object type which contains a REF
attribute, you should not be dereferencing the REFs while building your index.

Dereferencing a REF fetches data from a different table instance. If the data in

the other table is modifieD, you Will not be notified and your domain index will

become incorrect.
Reference: Extensible Indexing Interface 16-7

ODCIIndexClose
ODCIIndexClose

Syntax
ODCIIndexClose(self IN <impltype>) RETURN NUMBER

Purpose
This procedure is invoked to end the processing of an operator.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Error on error.

Usage Notes
■ The index implementor can perform any appropriate actions to finish up the

processing of an domain index scan, such as freeing memory and other

resources.

Table 16–4 ODCIIndexClose Arguments

Argument Meaning

self(IN) Is the value of the context returned by the previous invocation
of ODCIIndexFetch
16-8 Oracle8i Data Cartridge Developer’s Guide

Extensible Indexing — System Defined Interface Routines
ODCIIndexDelete

Syntax
ODCIIndexDelete(ia ODCIIndexInfo, rid VARCHAR2, oldval <icoltype>) RETURN NUMBER

Purpose
This procedure is invoked when a row is deleted from a table that has a domain

index defined on one of its columns.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Error on error.

Usage Notes
■ This function should be implemented as a static type method.

■ This procedure should delete index data corresponding to the deleted row from

the appropriate tables/files storing index data.

Table 16–5 ODCIIndexDelete Arguments

Argument Meaning

ia Contains information about the indexed column

rid Is the row identifier of the deleted row

oldval Is the value of the indexed column in the deleted row. The
datatype is the same as that of the indexed column.
Reference: Extensible Indexing Interface 16-9

ODCIIndexDrop
ODCIIndexDrop

Syntax
ODCIIndexDrop(ia ODCIIndexInfo) RETURN NUMBER

Purpose
The ODCIIndexDrop procedure is invoked when a domain index is dropped

explicitly using a DROP INDEX statement, or implicitly through a DROP TABLE, or

DROP USER statement.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Warning on warning,

■ ODCIConst.Error on error.

Usage Notes
■ This function should be implemented as a static type method.

■ This procedure should drop the tables storing the domain index data.

■ Since it is possible that the domain index is marked FAILED (due to abnormal

termination of some DDL routine), the ODCIIndexDrop routine should be

capable of cleaning up partially created domain indexes. When the

ODCIIndexDrop routine is being executed, the domain index is marked

LOADING.

■ It should be noted that if the ODCIIndexDrop routine returns with an

ODCIConst.Error or exception, the DROP INDEX statement would fail and

the index would be marked FAILED . In that case, there is no mechanism to get

rid of the domain index except by using the FORCE option. If the

ODCIIndexDrop routine returns with ODCIConst .Warning in the case of an

explicit DROP INDEX statement, the operation succeeds but a warning message

is returned to the user.

Table 16–6 ODCIIndexDrop Arguments

Argument Meaning

ia Contains information about the indexed column
16-10 Oracle8i Data Cartridge Developer’s Guide

Extensible Indexing — System Defined Interface Routines
■ Every SQL statement executed by ODCIIndexDrop is treated as an independent

operation. The changes made by ODCIIndexCreate are not guaranteed to be

atomic.
Reference: Extensible Indexing Interface 16-11

ODCIIndexFetch
ODCIIndexFetch

Syntax
ODCIIndexFetch(self IN [OUT] <impltype>, nrows IN NUMBER, rids OUT ODCIRidList)
RETURN NUMBER

Purpose
This procedure is invoked repeatedly to retrieve the rows satisfying the operator

predicate.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Error on error.

Usage Notes
■ ODCIIndexFetch returns rows satisfying the operator predicate. i.e. it returns

the row identifiers of all the rows for which the operator return value falls

within the specified bounds.

■ Each call to ODCIIndexFetch can return a maximum of nrows number of

rows. The value of nrows passed in is decided by Oracle based on some internal

factors. However, the ODCIIndexFetch routine can return lesser than nrows
number of rows. The row identifiers are returned through the output rids array.

Table 16–7 ODCIIndexFetch Arguments

Argument Meaning

self(IN) Is the value of the context returned by the previous call (to
ODCIIndexFetch or to ODCIIndexStart if this is the first
time fetch is being called for this operator instance

self(OUT) The context that is passed to the next query-time call.Note that
this parameter does not have to be defined as OUT if the value
is not modified in this routine.

nrows Is the maximum number of result rows that can be returned to
Oracle in this call

rids Is the array of row identifiers for the result rows being returned
by this call
16-12 Oracle8i Data Cartridge Developer’s Guide

Extensible Indexing — System Defined Interface Routines
A NULL ROWID (as an element of the rids array) indicates that all satisfying

rows have been returned.

Assume that there are 3000 rows which satisfy the operator predicate, and that

the value of nrows = 2000. The first invocation of ODCIIndexFetch can return

the first 2000 rows. The second invocation can return a ridlist consisting of

the remaining 1000 rows followed by a NULL element. The NULL value in

ridlist indicates that all satisfying rows have now been returned.

■ If the context value is changed within this call, the new value will be passed in

to the subsequent query-time calls.
Reference: Extensible Indexing Interface 16-13

ODCIIndexGetMetadata
ODCIIndexGetMetadata

Syntax
ODCIIndexGetMetadata(ia IN ODCIIndexInfo, version IN VARCHAR2, new_block OUT
PLS_INTEGER) RETURN VARCHAR2;

Purpose
This routine is called repeatedly to return a series of strings of PL/SQL code that

comprise the non-dictionary metadata associated with the index in ia . The routine

can pass whatever information is required at import time; that is, policy, version,

preferences, and so on. This method on the ODCIIndex interface is required in

version 8.1.3 and must be implemented by all domain index implementation types.

If ODCIIndexGetMetadata is not found, export will abort the creation of the

index. However, for the final release of 8.1, this method will be optional if no

implementation-specific metadata is required.

Developers of domain index implementation types in 8.1.3 must implement

ODCIIndexGetMetadata even if only to indicate that no PL/SQL metadata exists

or that the index is not participating in fast rebuild.

Returns
■ A null-terminated string containing a piece of an opaque block of PL/SQL code.

■ A zero-length string indicates no more data; export stops calling the routine.

Table 16–8 ODCIIndexGetMetadata Arguments

Argument Description

ia Specifies the index on which export is currently working.

version Version of export making the call in the form
08.01.03.00.00 .

new_block Non-zero (TRUE): Returned string starts a new PL/SQL block.
Export will terminate the current block (if any) with END; and
open a new block with BEGIN before writing strings to the
dump file. The routine is called again.

0 (FALSE): Returned string continues current block. Export
writes only the returned string to the dump file then calls the
routine again.
16-14 Oracle8i Data Cartridge Developer’s Guide

Extensible Indexing — System Defined Interface Routines
Usage Notes
This function should be implemented as a static type method.

The routine will be called repeatedly until the return string length is 0. If an index

has no metadata to be exported using PL/SQL, it should return an empty string

upon first call.

This routine can be used to build one or more blocks of anonymous PL/SQL code

for execution by import.Each block returned will be invoked independently by

import. That is, if a block fails for any reason at import time, subsequent blocks will

still be invoked. Therefore any dependent code should be incorporated within a

single block. The size of an individual block of PL/SQL code is limited only by the

size of import’s read buffer controlled by its BUFFER parameter.

The execution of these PL/SQL blocks at import time will be considered part of the

associated domain index’s creation. Therefore, their execution will be dependent

upon the successful import of the index’s underlying base table and user’s setting of

import’s INDEXES=Y/N parameter, as is the creation of the index.

The routine should not pass back the BEGIN/END strings that open and close the

individual blocks of PL/SQL code; export will add these to mark the individual

units of execution.

The parameter version is the version number of the currently executing export

client. Since export and import can be used to downgrade a database to the

previous functional point release, it also represents the minimum server version you

can expect to find at import time; it may be higher, but never lower.

The cartridge developer can use this information to determine what version of

information should be written to the dump file. For example, assume the current

server version is 08.02.00.00.00 , but the export version handed in is

08.01.04.00.00 . If a cartridge’s metadata changed formats between 8.1 and 8.2,

it would know to write the data to the dump file in 8.1 format anticipating an

import into an 8.1.4 system. Server versions starting at 8.2 and higher will have to

know how to convert 8.1 format metadata.

Some points of caution:

1. The data contained within the strings handed back to export must be

completely platform-independent. That is, they should contain no binary

information that may reflect the endian nature of the export platform which

may be different from the import platform. Binary information may be passed

as hex strings and converted via RAWTOHEX and HEXTORAW.
Reference: Extensible Indexing Interface 16-15

ODCIIndexGetMetadata
2. The strings are translated from the export server to export client character set

and are written to the dump file as such. At import time, they are translated

from export client character set to import client character set, then from import

client char set to import server character set when handed over the UPI

interface.

3. Specifying a specific target schema in the execution of any of the PL/SQL

blocks should be avoided as it will most likely cause an error if you exercise

import’s FROMUSER -> TOUSER schema replication feature. For example, a

procedure prototype such as:

PROCEDURE AQ_CREATE (schema IN VARCHAR2, que_name IN VARCHAR2) ...
Should be avoided since this will fail if you have remapped schema A to

schema B on import. You can assume at import time that you are already

connected to the target schema.

4. Export dump files from a particular version must be importable into all future

versions. This means that all PL/SQL routines invoked within the anonymous

PL/SQL blocks written to the dump file must be supported for all time. You

may wish to encode some version information to assist with detecting when

conversion may be required.

5. Export will be operating in a read-only transaction if its parameter

CONSISTENT=Y. In this case, no writes are allowed from the export session.

Therefore, this method must not write any database state.

6. You can attempt to import the same dump file multiple times, especially when

using import’s IGNORE=Y parameter. Therefore, this method must produce

PL/SQL code that is idempotent, or at least deterministic when executed

multiple times.

7. Case on database object names must be preserved; that is, objects named ’Foo’

and ’FOO’ are distinct objects. Database object names should be enclosed within

double quotes ("") to preserve case.

Error Handling
Any unrecoverable error should raise an exception allowing it to propagate back to

get_domain_index_metadata and thence back to export. This will cause export

to abort the creation of the current index’s DDL in the dump file and to move on to

the next index.

At import time, failure of the execution of any metadata PL/SQL block will cause

the associated index to not be created under the assumption that the metadata

creation is an integral part of the index creation.
16-16 Oracle8i Data Cartridge Developer’s Guide

Extensible Indexing — System Defined Interface Routines
ODCIIndexInsert

Syntax
ODCIIndexInsert(ia ODCIIndexInfo, rid VARCHAR2, newval <icoltype>) RETURN NUMBER

Purpose
This procedure is invoked when a new row is inserted into a table that has a

domain index defined on one of its columns.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Error on error.

Usage Notes
This function should be implemented as a static type method.

This procedure should insert index data corresponding to the new row into the

appropriate tables/files storing index data.

Table 16–9 ODCIIndexInsert Arguments

Argument Meaning

ia Contains information about the indexed column

rid Is the row identifier of the new row in the table

newval Is the value of the indexed column in the inserted row.
Reference: Extensible Indexing Interface 16-17

ODCIIndexStart
ODCIIndexStart

Syntax
ODCIIndexStart(scanctx IN OUT <impltype>, ia ODCIIndexInfo, pi ODCIPredInfo, qi
ODCIQueryInfo, strt <opbndtype>, stop <opbndtype>, <valargs>) RETURN NUMBER

Purpose
This procedure is invoked to start the evaluation of an operator on an indexed

column.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Error on error.

Usage Notes
■ ODCIIndexStart is invoked to begin the evaluation of an operator on a

indexed column. In particular, the following conditions hold:

Table 16–10 ODCIIndexStart Arguments

Argument Meaning

scanctx(IN) Is the value of the context returned by some previous related
query-time call (e.g., the corresponding ancillary operator, if
invoked before the primary operator), NULL otherwise

scanctx(OUT) The context that is passed to the next query-time call; the next
query-time call will be to ODCIIndexFetch

ia Contains information about the indexed column

pi Contains information about the operator predicate

qi Contains query information (hints plus list of ancillary
operators referenced)

strt Is the start value of the bounds on the operator return value.
The datatype is the same as that of the operator’s return value

stop Is the stop value of the bounds on the operator return value.
The datatype is the same as that of the operator’s return value.

valargs Are the value arguments of the operator invocation. The
number and datatypes of these arguments are the same as
those of the value arguments to the operator.
16-18 Oracle8i Data Cartridge Developer’s Guide

Extensible Indexing — System Defined Interface Routines
– The first argument to the operator is a column which has a domain index

defined on it.

– The indextype of the domain index (specified in ODCIIndexInfo
parameter) supports the current operator.

– All other arguments to the operator are value arguments (literals) which are

passed in through the <valargs> parameters.

■ The ODCIIndexStart procedure should initialize the index scan as needed

(using the operator-related information in pi argument) and prepare for the

subsequent invocations of ODCIIndexFetch .

■ The strt , stop parameters together with the bndflg value in

ODCIPredInfo parameter specify the range of values within which the

operator return value should lie.

■ Bounds for operator return values are specified as follows:

– If the predicate to be evaluated is of the form op LIKE val , the

ODCIIndexPrefixMatch flag is set. In this case, the start key contains the

value <val> and the stop key value is irrelevant.

– If the predicate to be evaluated is of the form op = val , the

ODCIIndexExactMatch flag is set. In this case, the start key contains the

value <val> and the stop key value is irrelevant.

– If the predicate to be evaluated is of the form op > val , startkey contains

the value <val> and stop key value is set to NULL. If the predicate is of the

form op >= <val> , the flag ODCIIndexIncludeStart is also set.

– If the predicate to be evaluated is of the form op < val , stop key contains

the value <val> and the start key value is set to NULL. If the predicate is of

the form op <= val , the flag ODCIIndexIncludeStop is also set.

■ A context value can be returned back to Oracle (through the SELF argument)

which will then be passed back to the next query-time call. The next call will be

to ODCIIndexFetch , if the evaluation continues or to ODCIIndexStart if the

evaluation is restarted. The context value can be used to store the entire

evaluation state or just a handle to the memory containing the state.

■ Note that if the same indextype supports multiple operators with different

signatures, multiple ODCIIndexStart methods need to be implemented, one

for each distinct combination of value argument datatypes. For example, if an

indextype supports three operators:

1. op1(number, number)
Reference: Extensible Indexing Interface 16-19

ODCIIndexStart
2. op1(varchar2, varchar2)

3. op2(number, number)

two ODCIIndexStart routines would need to be implemented:

– ODCIIndexStart(...., NUMBER) — handles cases (1) and (3) which has

a NUMBER value argument

– ODCIIndexStart(...., VARCHAR2) — handles case (2) which has a

VARCHAR2 value argument

■ The query information in qi parameter can be used to optimize the domain

index scan, if possible. The query information includes hints that have been

specified for the query and the list of relevant ancillary operators referenced in

the query block.
16-20 Oracle8i Data Cartridge Developer’s Guide

Extensible Indexing — System Defined Interface Routines
ODCIIndexTruncate

Syntax
ODCIIndexTruncate(ia ODCIIndexInfo) RETURN NUMBER

Purpose
The ODCIIndexTruncate procedure is invoked when a TRUNCATE statement is

issued against a table that has a domain index defined on one of its columns.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Warning on warning,

■ ODCIConst.Error on error.

Usage Notes
■ This function should be implemented as a static type method.

■ After this function executes, the domain index should be empty (corresponding

to the empty base table).

■ While the ODCIIndexTruncate routine is being executed, the domain index is

marked LOADING. If the ODCIIndexTruncate routine returns with an

ODCIConst .Error (or exception), the domain index will be marked FAILED .

The only operation permitted on FAILED domain indexes is DROP INDEX,
TRUNCATE TABLEor ALTER INDEX REBUILD. If ODCIIndexTruncate returns

with ODCIConst .Warning , the operation succeeds but a warning message is

returned to the user.

■ Every SQL statement executed by ODCIIndexTruncate is treated as an

independent operation. The changes made by ODCIIndexCreate are not

guaranteed to be atomic.

Table 16–11 ODCIIndexTruncate Arguments

Argument Meaning

ia Contains information about the indexed column
Reference: Extensible Indexing Interface 16-21

OCIIndexUpdate
OCIIndexUpdate

Syntax
OCIIndexUpdate(ia ODCIIndexInfo, rid VARCHAR2, oldval <icoltype>, newval
<icoltype>) RETURN NUMBER

Purpose
This procedure is invoked when a column is updated that has a domain index

defined on it.

Returns
■ ODCIConst.Success on success

■ ODCIConst.Error on error.

Usage Notes
■ This procedure should update the index data (corresponding to the updated

row) in the appropriate tables/files storing index data.

■ In addition to a SQL UPDATE statement, a LOB value can be updated through a

variety of "WRITE" interfaces (see Oracle8i Application Developer’s Guide - Large
Objects (LOBs)). If a domain index is defined on a LOB column or an object type

containing a LOB attribute, the ODCIIndexUpdate routine is called when a

LOB locator is implicitly or explicitly closed after one or more write operations.

Table 16–12 OCIIndexUpdate Arguments

Argument Meaning

ia Contains information about the indexed column

rid Is the row identifier of the updated row

oldval Is the value of the indexed column before the update. The
datatype is the same as that of the indexed column.

newval Is the value of the indexed column after the update. The
datatype is the same as that of the indexed column.
16-22 Oracle8i Data Cartridge Developer’s Guide

Reference: Extensible Optimizer Int
17

Reference: Extensible Optimizer Interface

This chapter describes the interfaces that are visible to the user and specifies the

prototypes of all user-defined functions and procedures:

■ Extensible Optimizer — Interface

For more complete details on Java functionality, refer to the Oracle8i Supplied Java
Packages Reference.
erface 17-1

Extensible Optimizer — Interface
Extensible Optimizer — Interface

EXPLAIN PLAN

EXPLAIN PLAN has been enhanced to show the user-defined CPU and I/O costs for

domain indexes in the OTHER column of PLAN_TABLE. For example, suppose we

have a table Emp_tab and a user-defined operator Contains . Further, suppose

that there is a domain index EmpResume_indx on the Resume_col column of

Emp_tab , and that the indextype of EmpResume_indx supports the operator

Contains . Then, the query

SELECT * FROM Emp_tab WHERE Contains(Resume_col, ’Oracle’) = 1

might have the following plan:

OPERATION OPTIONS OBJECT_NAME OTHER

SELECT STATEMENT

TABLE ACCESS BY ROWID EMP_TAB

DOMAIN INDEX EMPRESUME_INDX CPU: 300, I/O:4
17-2 Oracle8i Data Cartridge Developer’s Guide

Extensible Optimizer — Interface
INDEX Hint

The index hint will apply to domain indexes. In other words, the index hint will

force the optimizer to use the hinted index for a user-defined operator, if possible.
Reference: Extensible Optimizer Interface 17-3

ORDERED_PREDICATES Hint
ORDERED_PREDICATES Hint

A new hint, called ORDERED_PREDICATES, will be introduced. This hint will force

the optimizer to preserve the order of predicate evaluation (except those used for

index keys) as specified in the WHERE clause of a SQL DML statement.
17-4 Oracle8i Data Cartridge Developer’s Guide

Extensible Optimizer — Interface
Example

Consider an example of how the statistics functions might be used. Suppose, in the

schema SCOTT, we define the following:

CREATE OPERATOR Contains binding (VARCHAR2(4000), VARCHAR2(30))
 RETURN NUMBER USING Contains_fn;

CREATE TYPE stat1 (
 ...,
 STATIC FUNCTION ODCIStatsSelectivity(pred ODCIPredInfo, sel OUT NUMBER,
 args ODCIArgDescList, start NUMBER, stop NUMBER, doc VARCHAR2(4000),
 key VARCHAR2(30)) return NUMBER,
 STACTIC FUNCTION ODCIStatsFunctionCost(func ODCIFuncInfo, cost OUT
 ODCICost, args ODCIArgDescList, doc VARCHAR2(4000), key VARCHAR2(30))
 return NUMBER,
 STATIC FUNCTION ODCIStatsIndexCost(ia ODCIIndexInfo, sel NUMBER,
 cost OUT ODCICost, qi ODCIQueryInfo, pred ODCIPredInfo,
 args ODCIArgDescList, start NUMBER, stop NUMBER,
 key VARCHAR2(30)) return NUMBER,
 ...
);

CREATE TABLE T (resume VARCHAR2(4000));

CREATE INDEX T_resume on T(resume) INDEXTYPE IS indtype;

ASSOCIATE STATISTICS WITH FUNCTIONS Contains_fn USING stat1;

ASSOCIATE STATISTICS WITH INDEXES T_resume USING stat1;

When the optimizer encounters the query

SELECT * FROM T WHERE Contains(resume, ’ORACLE’) = 1,

it will compute the selectivity of the predicate by invoking the user-defined

selectivity function for the functional implementation of the Contains operator. In

this case, the selectivity function is stat1.ODCIStatsSelectivity . It will be

called as follows:

stat1.ODCIStatsSelectivity (
 ODCIPredInfo(’SCOTT’, ’Contains_fn’, NULL, 29),
 sel,
 ODCIArgDescList(
Reference: Extensible Optimizer Interface 17-5

Example
 ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL),
 ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL),
 ODCIArgDesc(ODCIConst.ArgCol, ’T’, ’SCOTT’, ’"resume"’),
 ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL)),
 1,
 1,
 NULL,
 ’ORACLE’)

Suppose the selectivity function returns a selectivity of 3 (percent). When the

domain index is being evaluated, then the optimizer will call the user-defined index

cost function as follows:

stat1.ODCIStatsIndexCost (
 ODCIIndexInfo(’SCOTT’, ’T_resume’,
 ODCIColInfoList(ODCIColInfo(’SCOTT’, ’T’, ’"resume"’, NULL, NULL))),
 3,
 cost,
 NULL,
 ODCIPredInfo(’SCOTT’, ’Contains’, NULL, 13),
 ODCIArgDescList(ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL),
 ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL),
 ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL)),
 1,
 1,
 ’ORACLE’)

Suppose that the optimizer decides not to use the domain index because it is too

expensive. Then it will call the user-defined cost function for the functional

implementation of the operator as follows:

stat1.ODCIStatsFunctionCost (
 ODCIFuncInfo(’SCOTT’, ’Contains_fn’, NULL, 1),
 cost,
 ODCIArgDescList(ODCIArgDesc(ODCIConst.ArgCol, ’T’, ’SCOTT’, ’"resume"’),
 ODCIArgDesc(ODCIConst.ArgLit, NULL, NULL, NULL)),
 NULL,
 ’ORACLE’)

The following sections describe each statistics type function in greater detail.
17-6 Oracle8i Data Cartridge Developer’s Guide

Extensible Optimizer — Interface
User-Defined ODCIStats Functions

User-defined ODCIStats functions are used for table columns, functions, package,

type, indextype or domain indexes. These functions are described below.
Reference: Extensible Optimizer Interface 17-7

ODCIStatsCollect
ODCIStatsCollect

User-defined statistics are collected by defining a function with the prototypes:

FUNCTION ODCIStatsCollect(col ODCIColInfo, options ODCIStatsOptions,
 statistics OUT RAW) return NUMBER
FUNCTION ODCIStatsCollect(ia ODCIIndexInfo, options ODCIStatsOptions,
 statistics OUT RAW) return NUMBER

The function returns ODCIConst.Success , ODCIConst.Error , or

ODCIConst.Warning.

Usage Notes
This function should be implemented as a static type method.

Table 17–1 ODCIStatsCollect Parameters

Parameter Meaning

col column for which statistics are being collected

ia domain index for which statistics are being collected

options options passed to ANALYZE

statistics user-defined statistics collected
17-8 Oracle8i Data Cartridge Developer’s Guide

Extensible Optimizer — Interface
ODCIStatsDelete

User-defined statistics are deleted by the ANALYZE command by calling the

following user-defined functions:

 FUNCTION ODCIStatsDelete(col ODCIColInfo) return NUMBER
 FUNCTION ODCIStatsDelete(ia ODCIIndexInfo) return NUMBER

The function returns ODCIConst.Success , ODCIConst.Error , or
ODCIConst.Warning.

Usage Notes
This function should be implemented as a static type method.

Table 17–2 ODCIStatsDelete Parameters

Parameter Meaning

col column for which statistics are being deleted

ia domain index for which statistics are being deleted
Reference: Extensible Optimizer Interface 17-9

ODCIStatsSelectivity
ODCIStatsSelectivity

A user-defined selectivity function can be specified for a user-defined function or

type method. The prototype for a user-defined selectivity function is as follows:

FUNCTION ODCIStatsSelectivity(pred ODCIPredInfo, sel OUT NUMBER, args
 ODCIArgDescList, start <function_return_type>, stop <function_return_type>,
 <list of function arguments>) return NUMBER

The function returns ODCIConst.Success , ODCIConst.Error , or
ODCIConst.Warning.

Usage Notes
This function should be implemented as a static type method.

Table 17–3 ODCIStatsSelectivity Parameters

Parameter Meaning

pred predicate for which the selectivity is being computed

sel the computed selectivity, expressed as a percent, in whole
numbers between (and including) 0 and 100

args descriptor of start , stop , and actual arguments with which
the function, type method, or operator was called. If the
function has n arguments, the args array will contain n+2
elements, the first element describing the start value, the
second element describing the stop value, and the remaining n
elements describing the actual arguments of the function,
method, or operator

start lower bound of the function (e.g., 2 for a predicate fn(...) >
2)

stop upper bound of the function (e.g., 5 for a predicate fn(...) <
5)

<list of function
arguments>

list of actual parameters to the function or type method; the
number, position, and type of each argument must be the same
as in the function, type method, or operator
17-10 Oracle8i Data Cartridge Developer’s Guide

Extensible Optimizer — Interface
ODCIStatsFunctionCost

The cost of a function is computed by a function with the following prototype:

 FUNCTION ODCIStatsFunctionCost(func ODCIFuncInfo, cost OUT ODCICost,
 args ODCIArgDescList, <list of function arguments>) return NUMBER

The function returns ODCIConst.Success , ODCIConst.Error , or
ODCIConst.Warning.

Usage Notes
This function should be implemented as a static type method.

Table 17–4 ODCIStatsFunctionCost Parameters

Parameter Meaning

func function or type method for which the cost is being computed

cost computed cost (must be positive whole numbers)

args descriptor of actual arguments with which the function or type
method was called. If the function has n arguments, the args
array will contain n elements, each describing the actual
arguments of the function or type method

<list of function
arguments>

list of actual parameters to the function or type method; the
number, position, and type of each argument must be the same
as in the function or type method
Reference: Extensible Optimizer Interface 17-11

ODCIStatsIndexCost
ODCIStatsIndexCost

The cost of using a domain index is computed by a function with the following

prototype:

FUNCTION ODCIStatsIndexCost(ia ODCIIndexInfo, sel NUMBER,
 cost OUT ODCICost, qi ODCIQueryInfo, pred ODCIPredInfo, args
 ODCIArgDescList, start <operator_return_type>,
 stop <operator_return_type>, <list of operator value arguments>)
 return NUMBER

The function returns ODCIConst.Success , ODCIConst.Error , or
ODCIConst.Warning.

Usage Notes
This function should be implemented as a static type method.

Table 17–5 ODCIStatsIndexCost Parameters

Parameter Meaning

ia domain index for which statistics are being collected

sel the user-computed selectivity of the predicate

cost computed cost (must be positive whole numbers)

qi information about the query

args descriptor of start , stop , and actual value arguments with
which the operator was called. If the operator has n arguments,
the args array will contain n+1 elements, the first element
describing the start value, the second element describing the
stop value, and the remaining n-1 elements describing the
actual value arguments of the operator (i.e., the arguments
after the first)

start lower bound of the operator (e.g., 2 for a predicate fn(...) >
2)

stop upper bound of the operator (e.g., 5 for a predicate fn(...) <
5)

<list of function
arguments>

list of actual parameters to the operator (excluding the first);
the number, position, and type of each argument must be the
same as in the operator
17-12 Oracle8i Data Cartridge Developer’s Guide

Java Demo Scr
A

Java Demo Script

This appendix provides an annotated data cartridge demonstration script. The

script files are included in the 8.1.6 CD-ROM in the demo directory. Look for the

three following filenames:

■ extdemo3.sql

■ extdemo3.java

■ extdemo3a.java.

extdemo3.sql Demonstration Script
The extdemo3.sql script demonstrates extensible indexing, implemented as C
routines. It illustrates how to implement the interface routines in Java, but
does not go into the complex domain details of actually implementing an
indextype for a specific domain.

Design of the indextype

The indextype implemented here, called extdemo3, operates similar to btree
indexes. It supports the evaluation of three user-defined operators
 gt(Greater Than)

 lt(Less Than)

 eq(EQuals)

These operators can operate on the operands of VARCHAR2 datatype.

To simplify the implementation of the indextype, we will store
the index data in a regular table.
Thus, our code merely translates operations on the SB-tree into
ipt A-13

extdemo3.sql Demonstration Script
operations on the table storing the index data.
When a user creates a SB-tree index, we will create a table
consisting of the indexed column and a rowid column. Inserts into
the base table will cause appropriate insertions into the index table.
Deletes and updates are handled similarly.
When the SB-tree is queried based on a user-defined operator (one
of gt, lt and eq), we will fire off an appropriate query against
the index table to retrieve all the satisfying rows and return them.

Implementing Operators

The SBtree indextype supports three operators. Each operator has a corresponding
functional implementation. The functional implementations of the eq,
gt and lt operators are presented next.

Create Functional Implementations

Functional Implementation of EQ (EQUALS)

The functional implementation for eq is provided by a function (bt_eq) that
takes in two VARCHAR2 parameters and returns 1 if they are equal and 0
otherwise.

create function bt_eq(a varchar2, b varchar2) return number as
begin
 if a = b then
 return 1;
 else
 return 0;
 end if;
end;

Functional Implementation of LT (LESS THAN)

The functional implementation for lt is provided by a function (lt_eq) that
takes in two VARCHAR2 parameters and returns 1 if the first parameter is less
than the second, 0 otherwise.

create function bt_lt(a varchar2, b varchar2) return number as
begin
 if a < b then
 return 1;
 else
A-14 Oracle8i Data Cartridge Developer’s Guide

extdemo3.sql Demonstration Script
 return 0;
 end if;
end;

Functional Implementation of GT (GREATER THAN)

The functional implementation for gt is provided by a function (gt_eq) that
takes in two VARCHAR2 parameters and returns 1 if the first parameter is
greater than the second, 0 otherwise.

create function bt_gt(a varchar2, b varchar2) return number as
begin
 if a > b then
 return 1;
 else
 return 0;
 end if;
end;

Create Operators

To create the operator, you need to specify the signature of the operator along
with its return type and also its functional implementation.

Operator EQ
create operator eq binding (varchar2, varchar2) return number using bt_eq;

Operator LT
create operator lt binding (varchar2, varchar2) return number using bt_lt;

Operator GT
create operator gt binding (varchar2, varchar2) return number using bt_gt;

Implementing the Index Routines

 1.Define an implementation type that implements the ODCIIndex interface
routines. Note that the mapping between the function and the java class is done
at this point.

create or replace type extdemo3 as object
(
 scanctx integer,
 static function ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList) return
NUMBER,
Java Demo Script A-15

extdemo3.sql Demonstration Script
 static function ODCIIndexCreate (ia sys.odciindexinfo, parms varchar2) return
number,
 static function ODCIIndexDrop(ia sys.odciindexinfo) return number,

Register the implementation of the ODCIIndexInsert routine.

 STATIC FUNCTION odciindexinsert(ia sys.odciindexinfo, rid VARCHAR2,
 newval VARCHAR2)
 RETURN NUMBER AS LANGUAGE JAVA NAME
’extdemo3.ODCIInsert(oracle.ODCI.ODCIIndexInfo, java.lang.String,
java.lang.String) return java.math.BigDecimal’,

Register the implementation of the ODCIIndexDelete routine

 STATIC FUNCTION odciindexdelete(ia sys.odciindexinfo, rid VARCHAR2,
 oldval VARCHAR2)
 RETURN NUMBER AS LANGUAGE JAVA NAME
’extdemo3.ODCIDelete(oracle.ODCI.ODCIIndexInfo, java.lang.String,
java.lang.String) return java.math.BigDecimal’,

Register the implementation of the ODCIIndexUpdate routine

 STATIC FUNCTION odciindexupdate(ia sys.odciindexinfo, rid VARCHAR2,
 oldval VARCHAR2, newval VARCHAR2)
 RETURN NUMBER AS LANGUAGE JAVA NAME
’extdemo3.ODCIUpdate(oracle.ODCI.ODCIIndexInfo, java.lang.String,
java.lang.String, java.lang.String) return
java.math.BigDecimal’,

Register the implementation of the ODCIIndexStart routine

 static function ODCIIndexStart(sctx in out extdemo3, ia sys.odciindexinfo,
 op sys.odciPredInfo,
 qi sys.ODCIQueryInfo,
 strt number,
 stop number,
 cmpval varchar2)
A-16 Oracle8i Data Cartridge Developer’s Guide

extdemo3.sql Demonstration Script
 RETURN NUMBER AS LANGUAGE JAVA NAME
’extdemo3.ODCIStart(extdemo3[], oracle.ODCI.ODCIIndexInfo,
oracle.ODCI.ODCIPredInfo,
oracle.ODCI.ODCIQueryInfo, java.math.BigDecimal,
java.math.BigDecimal,
 java.lang.String) return java.math.BigDecimal’,

Register the implementation of the ODCIIndexFetch routine

 member function ODCIIndexFetch(nrows number, rids OUT sys.odciridlist)
 return number as LANGUAGE JAVA NAME
’extdemo3.ODCIFetch(java.math.BigDecimal,
oracle.ODCI.ODCIRidList[]) return java.math.BigDecimal’,

Register the implementation of the ODCIIndexClose routine.

 member function ODCIIndexClose return number as LANGUAGE JAVA NAME
’extdemo3.ODCIClose() return java.math.BigDecimal’

);

2.Define the implementation type body
You have a choice of implementing the index routines in any of the languages
supported by Oracle. For this example, we will implement the get interfaces
routine and the index definition routines in PL/SQL. The index manipulation and
query routines are implemented in Java.

load and resolve the java classes that provide the implementation of
certain functions defined in the type. See below for the implementation
details of extdemo3a.java and extdemo3.java.
This requires some setup to be done before this statement.
Specifically, you need to create a directory object called vmtestdir
that points to the location where your .class files reside.

CREATE OR REPLACE JAVA CLASS USING BFILE (vmtestdir, ’extdemo3a.class’)
/
CREATE OR REPLACE JAVA CLASS USING BFILE (vmtestdir, ’extdemo3.class’)
/

Java Demo Script A-17

extdemo3.sql Demonstration Script
ALTER JAVA CLASS "extdemo3a" RESOLVE;
ALTER JAVA CLASS "extdemo3" RESOLVE;

create or replace type body extdemo3
is

The get interfaces routine returns the expected interface name through its OUT
parameter.

 static function ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)
 return number is
 begin
 ifclist := sys.ODCIObjectList(sys.ODCIObject(’SYS’,’ODCIINDEX1’));
 return ODCIConst.Success;
 end ODCIGetInterfaces;

The ODCIIndexCreate routine creates an "index storage" table with two columns.
The first column stores the VARCHAR2 indexed column value. The
second column in the index table stores the rowid of the corresponding row in
the base table. DBMS_SQL is used to execute the dynamically constructed
SQL statement.

 static function ODCIIndexCreate (ia sys.odciindexinfo, parms varchar2) return
number
 is
 i integer;
 stmt varchar2(1000);
 cnum integer;
 junk integer;
 begin
 -- construct the sql statement
 stmt := ’create table ’ || ia.IndexSchema || ’.’ ||
 ia.IndexName || ’_sbtree’ ||
 ’(f1 , f2) as select ’ ||
 ia.IndexCols(1).ColName || ’, ROWID from ’ ||
 ia.IndexCols(1).TableSchema || ’.’ || ia.IndexCols(1).TableName;

 dbms_output.put_line(’CREATE’);
 dbms_output.put_line(stmt);
A-18 Oracle8i Data Cartridge Developer’s Guide

extdemo3.sql Demonstration Script
 -- execute the statement
 cnum := dbms_sql.open_cursor;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 dbms_sql.close_cursor(cnum);

 return ODCIConst.Success;
 end;

The ODCIIndexDrop routine drops the index storage table.

 static function ODCIIndexDrop(ia sys.odciindexinfo) return number is
 stmt varchar2(1000);
 cnum integer;
 junk integer;
 begin
 -- construct the sql statement
 stmt := ’drop table ’ || ia.IndexSchema || ’.’ || ia.IndexName || ’_sbtree’;

 dbms_output.put_line(’DROP’);
 dbms_output.put_line(stmt);

 -- execute the statement
 cnum := dbms_sql.open_cursor;
 dbms_sql.parse(cnum, stmt, dbms_sql.native);
 junk := dbms_sql.execute(cnum);
 dbms_sql.close_cursor(cnum);

 return ODCIConst.Success;
 end;

end;

Implementing the Indextype

Create the indextype object and specify the list of operators that it supports.
In addition, specify the name of the implementation type that implements the
ODCIIndex interface routines.
Java Demo Script A-19

extdemo3.sql Demonstration Script
create indextype sbtree
for
eq(varchar2, varchar2),
lt(varchar2, varchar2),
gt(varchar2, varchar2)
using extdemo3;

Usage examples

One typical usage scenario is described below. Create a table and populate it.

create table t1 (f1 number, f2 varchar2(200));
insert into t1 values (1, ’adam’);
insert into t1 values (3, ’joe’);

Create a sbtree index on column f2. The create index statement specifies the
indextype to be used.

create index it1 on t1(f2) indextype is sbtree parameters(’test’);

Execute a query that uses one of the sbtree operators. The explain plan output
for the same shows that the domain index is being used to efficiently
evaluate the query.

select * from t1 where eq(f2, ’joe’) = 1;

Explain Plan Output

 OPERATIONS OPTIONS
OBJECT_NAME

 ------------------------------ ------------------------------

SELECT STATEMENT
TABLE ACCESS BY ROWID T1
DOMAIN INDEX IT1
A-20 Oracle8i Data Cartridge Developer’s Guide

extdemo3.java Demonstration Script
extdemo3.java Demonstration Script
The extdemo3.java script demonstrates the class that implements the ODCIIndex
methods. This class was originally generated using JPUB, based on the type that
extensible indexing is based The methods were implemented after the class was
generated.

Class extdemo3

This class provides the implementation for several of the ODCI routines.
The original class was generated via jpub.

import java.sql.SQLException;
import oracle.jdbc.driver.OracleConnection;
import oracle.jdbc.driver.OracleTypes;
import oracle.sql.CustomDatum;
import oracle.sql.CustomDatumFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

import java.lang.*;
import java.sql.*;
import oracle.*;
import oracle.sql.*;
import oracle.jdbc.driver.*;
import sqlj.runtime.ref.DefaultContext;
import oracle.ODCI.*;
import oracle.CartridgeServices.*;

public class extdemo3 implements CustomDatum, CustomDatumFactory
{
 public static final String _SQL_NAME = "EXTDEMO.EXTDEMO3";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 final static java.math.BigDecimal SUCCESS = new java.math.BigDecimal("0");
 final static java.math.BigDecimal ERROR = new java.math.BigDecimal("1");
 final static int TRUE = 1;
 final static int FALSE = 0;
Java Demo Script A-21

extdemo3.java Demonstration Script
 static int[] _sqlType =
 {
 4
 };

 static CustomDatumFactory[] _factory = new CustomDatumFactory[1];

 MutableStruct _struct;

 static final extdemo3 _extdemo3Factory = new extdemo3();
 public static CustomDatumFactory getFactory()
 {
 return _extdemo3Factory;
 }

 /* constructor */
 public extdemo3()
 {
 _struct = new MutableStruct(new Object[1], _sqlType, _factory);
 }

 /* CustomDatum interface */
 public Datum toDatum(OracleConnection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* CustomDatumFactory interface */
 public CustomDatum create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 extdemo3 o = new extdemo3();
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }

 /* shallow copy method: give object same attributes as argument */
 void shallowCopy(extdemo3 d) throws SQLException
 {
 _struct = d._struct;
 }

 /* accessor methods */
 public Integer getScanctx() throws SQLException
 { return (Integer) _struct.getAttribute(0); }
A-22 Oracle8i Data Cartridge Developer’s Guide

extdemo3.java Demonstration Script
 public void setScanctx(Integer scanctx) throws SQLException
 { _struct.setAttribute(0, scanctx); }

Implementation of the ODCIIndexStart Routine

The start routine performs the setup for an sbtree index scan. The query
information in terms of the operator predicate, its arguments and the bounds on
return values are passed in as parameters to this function. The scan context
that is shared amongst the index scan routines is an instance of the type
extdemo3.

/* The index implementation type is an object type with a single number
 * attribute which will be used to store the context key value.
 */

This method sets up a ResultSet that scans the index table. The scan retrieves
the stored rowids for the rows in the index table that satisfy the specified
predicate. The predicate for the index table is generated based on the operator
predicate information that is passed in as parameters. For example, if the
operator predicate is of the form:

eq(col, 'joe') = 1

the predicate on the index table is set up to be

f1 = 'joe'

The ResultSet is stored away and retrieved on the next fetch call.
The oracle.ODCI.ContextManager class is a final class that holds
the context for the session duration. Since this class is declared
final, all statements in a session shared the same copy of the
ContextManager. An object which holds any information that needs
to be saved across calls is passed to the ContextManager. The
ContextManager class then returns a 4-byte which will be stored
with the object and will be passed in as a
parameter to the next fetch call.

 public static java.math.BigDecimal ODCIStart(extdemo3 sctx[],
ODCIIndexInfo ia, ODCIPredInfo op,
Java Demo Script A-23

extdemo3.java Demonstration Script
ODCIQueryInfo qi,
java.math.BigDecimal strt, java.math.BigDecimal stop,
String cmpval)
 throws java.sql.SQLException
 {
 String relop;
 String selstmt;
 int key;
 extdemo3a sbtctx; // cntxt obj that holds the ResultSet and Statement
 PreparedStatement ps;
 OracleResultSet rset;

 Connection conn =
 sqlj.runtime.RuntimeContext.getRuntime().getDefaultConnection();

 CallableStatement cstmt = conn.prepareCall
 ("{CALL dbms_output.put_line(\'Start \')}");
 cstmt.executeUpdate();

 //***********************************
 //* Check that the bounds are valid *
 //***********************************
 // verify that strtval/stopval are both either 0 or 1
 if (!(((strt.intValue() == 0) && (stop.intValue() == 0)) ||
 ((strt.intValue() == 1) && (stop.intValue() == 1))))
 {
// throw Application_Error
System.out.println("incorrect predicate for btree operator");
return ERROR;
 }

 String s = new String("start key: "+ strt.intValue() + " stop key: " +
stop.intValue() + " compare value: " + cmpval);
 cstmt = conn.prepareCall
 ("{CALL dbms_output.put_line(?)}");
 cstmt.setString(1, s);
 cstmt.executeUpdate();

 //***
 //* Generate the SQL statement to be executed *
 //***
 if ((op.getObjectname()).equals("EQ")){
 if (strt.intValue() == 1)
relop = new String("=");
A-24 Oracle8i Data Cartridge Developer’s Guide

extdemo3.java Demonstration Script
 else
relop = new String("!=");
 }else if ((op.getObjectname()).equals("LT")){
 if (strt.intValue() == 1)
relop = new String("<");
 else
relop = new String(">=");
 }else{
 if (strt.intValue() == 1)
relop = new String(">");
 else
relop = new String("<=");
 }

 selstmt = new String("select ROWIDTOCHAR(f2) from "
 + ia.getIndexschema()
 + "."
 + ia.getIndexname()
 + "_sbtree where f1 "
 + relop + " '" + cmpval + "'");
 cstmt = conn.prepareCall
 ("{CALL dbms_output.put_line(?)}");
 cstmt.setString(1, selstmt);
 cstmt.executeUpdate();

 ps = conn.prepareStatement(selstmt);
 rset = (OracleResultSet) ps.executeQuery();

 // set result set in ContextManager. This stores away the
 // ResultSet and the Statement handle so that they can
 // be used to fetch the rowids and cleanup at a later time.
 sbtctx = new extdemo3a(rset, ps);
 sctx[0] = new extdemo3();

 try{
key = ContextManager.setContext((Object)sbtctx);
 }catch (CountException ce) {
System.out.println("ContextManager CountException error");
return ERROR;
 }

 System.out.println("ContextManager key=" + key);

 // set the key into the self argument so that we can retrieve the
Java Demo Script A-25

extdemo3.java Demonstration Script
 // context with this key later.
 sctx[0].setScanctx(new Integer(key));

 return SUCCESS;
 }

Implementation of the ODCIIndexFetch Routine

The scan context set up by the start routine is passed in as a parameter to the
fetch routine. This function first retrieves the 4-byte key from the scan
context. The key is stored in the scanctx variable of this classes corresponding
sql type
Next, the Java context is looked up based on the key. This gives the
Object that the context was stored in, extdemo3a.

This function returns the next batch of rowids that satisfy the operator
predicate. It uses the value of the nrows parameter as the size of the batch. It
repeatedly fetches rowids from the open cursor and populates the rowid list with
them. When the batch is full or when there are no more rowids left, the
function returns them back to the Oracle server.

 // ODCIIndexFetch
 public java.math.BigDecimal ODCIFetch(
java.math.BigDecimal nrows,
ODCIRidList rids[])
 throws java.sql.SQLException
 {
 extdemo3a sbtctx; // cntxt obj that holds the ResultSet and Statement
 OracleResultSet rset;
 String rid;
 int idx = 1;
 int done = FALSE;
 String[] rlist = new String[nrows.intValue()];
 int key = getScanctx().intValue();

 Connection conn =
 sqlj.runtime.RuntimeContext.getRuntime().getDefaultConnection();
 CallableStatement cstmt = conn.prepareCall
 ("{CALL dbms_output.put_line(\'Fetch \')}");
 cstmt.executeUpdate();

 String s = new String("nrows : " + nrows);
 cstmt = conn.prepareCall
A-26 Oracle8i Data Cartridge Developer’s Guide

extdemo3.java Demonstration Script
 ("{CALL dbms_output.put_line(?)}");
 cstmt.setString(1, s);
 cstmt.executeUpdate();

 System.out.println("ContextManager key=" + key);

 // Get the resultSet back from the ContextManager using the key
 try{

sbtctx= (extdemo3a)ContextManager.getContext(key);
 }catch(InvalidKeyException ike){
System.out.println("ContextManager InvalidKeyException");

return ERROR;
 }
 rset = (OracleResultSet)(sbtctx.getRs());

 //***************
 // Fetch rowids *
 //***************
 for(int i=0; done != TRUE; i++)
 {
if (idx > nrows.intValue()){
 done = TRUE;
}else {
 if (rset.next()){
 // append rowid to collection
 rid = rset.getString(1);
 rlist[i] = new String(rid);
 idx++;
 }else{
 // append null rowid to collection
 rlist[i] = null;
 done = TRUE;
 }
}
 }

 // Since rids is an out parameter we need to set the ODCIRidList
 // object into the first position to be passed out.
 rids[0] = new ODCIRidList(rlist);

 return SUCCESS;
 }
Java Demo Script A-27

extdemo3.java Demonstration Script
Implementation of the ODCIIndexClose Routine

The scan context set up by the start routine is passed in as a parameter to the
close routine. This function first retrieves the 4-byte key from the scan
context.The key is stored in the scanctx variable of this classes corresponding
sql type
Next, the Java context is looked up based on the key. This gives the
Object that the context was stored in, extdemo3a.

The method closes the ResultSet and PreparedStatement objects.

 public java.math.BigDecimal ODCIClose()
throws java.sql.SQLException
 {
 extdemo3a sbtctx; // contxt obj that holds the ResultSet and Statement
 OracleResultSet rset;
 PreparedStatement ps;
 System.out.println("in odciclose");

 int key = getScanctx().intValue();
 System.out.println("in odciclose2");

 Connection conn =
 sqlj.runtime.RuntimeContext.getRuntime().getDefaultConnection();
 CallableStatement cstmt = conn.prepareCall
 ("{CALL dbms_output.put_line(\'Close\')}");
 cstmt.executeUpdate();

 System.out.println("key=" + key);

 // Get the resultSet and statement back from the ContextManager
 // so that we can close them.
 try{
 sbtctx = (extdemo3a)ContextManager.clearContext(key);
 }catch(InvalidKeyException ike){
System.out.println("ContextManager InvalidKeyException");

return ERROR;
 }

 rset = (OracleResultSet)sbtctx.getRs();
 ps = (PreparedStatement)sbtctx.getStmt();
 rset.close();
 ps.close();
A-28 Oracle8i Data Cartridge Developer’s Guide

extdemo3.java Demonstration Script
 return SUCCESS;
 }

Implementation Of The ODCIIndexInsert Routine

The insert routine parses and executes a statement that inserts a new row into
the index table. The new row consists of the new value of the indexed column
and the rowid that have been passed in as parameters.

 public static java.math.BigDecimal ODCIInsert(
ODCIIndexInfo ia, String rid, String newval)
 throws java.sql.SQLException
 {
 String insstmt;

 Connection conn =
 sqlj.runtime.RuntimeContext.getRuntime().getDefaultConnection();
 CallableStatement cstmt = conn.prepareCall
 ("{CALL dbms_output.put_line(\'Insert\')}");
 cstmt.executeUpdate();

 /******************************
 * Construct insert Statement *
 ******************************/
 insstmt = new String("INSERT into "
 + ia.getIndexschema() + "." + ia.getIndexname()
+"_sbtree values ('" + newval + "','" + rid + "')");

 Statement stmt = conn.createStatement();
 stmt.executeUpdate(insstmt);
 stmt.close();

 return SUCCESS;
 }

Implementation of the ODCIIndexDelete Routine

The delete routine constructs a SQL statement to delete a row from the index
table corresponding to the row being deleted from the base table. The row in the
index table is identified by the value of rowid that is passed in as a parameter
to this routine.
Java Demo Script A-29

extdemo3.java Demonstration Script
 // ODCIIndexDelete
 public static java.math.BigDecimal ODCIDelete(
ODCIIndexInfo ia, String rid, String oldval)
 throws java.sql.SQLException
 {

 String delstmt;

 Connection conn =
 sqlj.runtime.RuntimeContext.getRuntime().getDefaultConnection();
 CallableStatement cstmt = conn.prepareCall
 ("{CALL dbms_output.put_line(\'Delete\')}");
 cstmt.executeUpdate();

 /******************************
 * Construct delete Statement *
 ******************************/
 delstmt = new String("DELETE from "
 + ia.getIndexschema() + "." + ia.getIndexname()
 +"_sbtree where f1= '" + oldval +"'");

 Statement stmt = conn.createStatement();
 stmt.executeUpdate(delstmt);
 stmt.close();

 return SUCCESS;
 }

Implementation of the ODCIIndexUpdate Routine

The update routine constructs a SQL statement to update a row in the index table
corresponding to the row being updated in the base table. The row in the
index table is identified by the value of rowid that is passed in as a parameter
to this routine. The old column value (oldval) is replaced by the new value
(newval).

 public static java.math.BigDecimal ODCIUpdate(
ODCIIndexInfo ia, String rid, String oldval,
String newval)
 throws java.sql.SQLException
 {
A-30 Oracle8i Data Cartridge Developer’s Guide

extdemo3a.java Demonstration Script
 String updstmt;

 Connection conn =
 sqlj.runtime.RuntimeContext.getRuntime().getDefaultConnection();
 CallableStatement cstmt = conn.prepareCall
 ("{CALL dbms_output.put_line(\'Update\')}");
 cstmt.executeUpdate();

 /******************************
 * Construct update Statement *
 ******************************/
 updstmt = new String("UPDATE "
 + ia.getIndexschema() + "." + ia.getIndexname()
 +"_sbtree SET f1= '" + newval + "' WHERE f1 = '"
 + oldval +"'");

 Statement stmt = conn.createStatement();
 stmt.executeUpdate(updstmt);
 stmt.close();

 return SUCCESS;
 }

}

extdemo3a.java Demonstration Script
The extdemo3a.java script demonstrates the class that holds the ResultSet and
PreparedStatement to be stored in CartridgeServices context.

The Java code

Class extdemo3a

This class is needed because the ResultSet and the PreparedStatement
must both have their context saved during calls between the Cartridge
execution and the server. The extdemo3a class can then be cast as an
Object and passed into the oracle.CartridgeServices.ContextManager
class to be stored away for the duration of the session.

import java.sql.SQLException;
import oracle.jdbc.driver.OracleConnection;
Java Demo Script A-31

extdemo3a.java Demonstration Script
import oracle.jdbc.driver.OracleTypes;
import oracle.sql.CustomDatum;
import oracle.sql.CustomDatumFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

import java.lang.*;
import java.sql.*;
import oracle.*;
import oracle.sql.*;
import oracle.jdbc.driver.*;
import sqlj.runtime.ref.DefaultContext;

public class extdemo3a
{

Variables to hold the ResultSet and the PreparedStatement

 OracleResultSet rs;
 PreparedStatement stmt;

Constructor

 public extdemo3a(OracleResultSet r, PreparedStatement s)
 {
rs=r;
stmt=s;
 }

Accessor Methods

 public OracleResultSet getRs(){ return rs;}
 public PreparedStatement getStmt() {return stmt;}
 public void setRs(OracleResultSet r) {rs=r;}
 public void setStmt(PreparedStatement s) {stmt=s;}

}

A-32 Oracle8i Data Cartridge Developer’s Guide

Index

A
Alias library, 4-2

Associating the Extensible Optimizer Methods with

Database Objects, 11-62

attributes of object type, 1-15, 11-2

referencing in method, 5-5

B
binary large object, see BLOB

BLOB, 6-2

EMPTY_BLOB function, 6-4

braces, xxi

C
C and C++

debugging DLLs, 4-15

differences from PL/SQL, 5-9

callback

restrictions, 4-11

Cartridge Services — File I/O Interface, 13-72

character large object, see CLOB

character sets

support for, 2-12

CLOB, 6-2

EMPTY_CLOB function, 6-4

collection types, 1-8

configuration files

naming conventions, 2-7

configuration files for external procedures, 4-5

constructor method, 3-4

context

WITH CONTEXT clause, 4-9

conventions

naming, 2-8

corruption of package, 5-10

CREATE TYPE BODY statement, 5-2

CREATE TYPE with OID statement, 3-3

Creating Statistics Table

(PowerCartUserStats), 11-39

curly brackets, xxi

D
data cartridge

definition, 1-2

development process, 2-2

domains, 1-4

external procedures (guidelines), 4-15

installation, 2-4

interfaces, 1-14

method, 1-8

naming conventions, 2-8

suggested development approach, 2-14

datatypes

collection, 1-8

extensibility, 1-7

object type, 1-8

REF (relationship), 1-8

DBMS interfaces, 1-14

DBMS_LOB package, 6-10

compared with OCI, 6-7

DDL

for LOBs, 6-2

debugging

C code in DLLs, 4-15
Index-33

common errors, 5-9

PL/SQL, 5-8

demo directory (PL/SQL), 4-10

demo file (extdemo1.sql)

extensible indexing in power demand

example, 11-15

directories

installation, 2-6

DLL

debugging, 4-15

naming conventions, 2-7

domain index

creating, 11-15

domain of data cartridge, 1-4

E
electric utility example, 11-1

EMPTY_BLOB function, 6-4

EMPTY_CLOB function, 6-4

error messages

naming conventions, 2-6

exception

raising (OCIExtProcRaiseExcp), 4-13

raising (OCIExtProcRaiseExcpWithMsg), 4-13

extdemo1.sql demo file (extensible indexing in

power demand example), 11-15

extdemo3a.java Demonstration Script, A-31

extdemo3.java Demonstration Script, A-21

extdemo3.sql Demonstration Script, A-13

extensibility

datatypes, 1-7

interfaces, 1-13

server execution environment, 1-10, 2-5

services, 1-6

extensible indexing

queries benefitting, 11-14

external library, 1-17

linkage, 1-16

external LOB, 6-2

external procedure

configuration files for, 4-5

guidelines, 4-15

guidelines for using with data cartridge, 4-15

how PL/SQL calls, 4-4

LOBs in, 6-11

OCI access functions, 4-12

overview, 4-2

PARAMETERS clause, 4-9

passing parameters to, 4-6

registering, 4-3

specifying datatypes, 4-7

WITH CONTEXT clause, 4-9

external procedure functions

return codes, 13-2

with_context type, 13-3

extproc process, 4-4

G
globals

naming conventions, 2-5

I
index

domain

creating, 11-15

metadata for, 11-37

indexing

extensible

queries benefitting, 11-14

queries not benefitting, 11-14

index-organized table

not used in power demand example, 11-75

indextype implememntation methods, 11-22

installation directory

naming conventions, 2-6

installation of data cartridge, 2-4

interfaces

data cartridge, 1-14

DBMS, 1-14

extensibility, 1-13

service, 1-14

internal LOB, 6-2

J
Java Demo, A-13

Java Demo Script, A-13
Index-34

L
large object, see LOB

library

alias, 4-2

shared, 2-7, 4-2

LOB

DDL for, 6-2

external, 6-2

external procedure use, 6-11

internal, 6-2

locator, 6-3

OCI use with, 6-6

overview, 1-9

triggers and, 6-12

value, 6-2

locator

LOB, 6-3

M
Maintaining Context - Java, 14-3

map methods, 3-5

member method, 3-2, 5-2

message files

naming conventions, 2-6

metadata

index, 11-37

method, 1-8, 1-15, 11-2

constructor, 3-4

implementing, 5-2

invoking, 5-4

map, 3-5

member, 3-2, 5-2

order, 3-5

referencing attributes, 5-5

N
name registration, 2-10

naming conventions, 2-8

configuration files, 2-7

error messages, 2-6

globals, 2-5

installation directory, 2-6

message files, 2-6

name format, 2-9

need for, 2-8

registering a name with Oracle, 2-10

schema, 2-5

shared libraries, 2-7

national language support (NLS), 2-12

NCLOB, 6-2

NLS (national language support), 2-12

notation

conventions, xxi

rules for, xxi

O
object identifier (OID)

with CREATE TYPE, 3-3

object type, 1-8

attributes, 1-15, 11-2

body code, 1-16

comparisons, 3-5

methods, 11-2

specification, 1-15

OCI

LOB manipulation functions, 6-6

OCI relational functions

guide to reference entries, 13-2

OCI_DURATION_SESSION, 13-13

OCI_DURATION_STATEMENT, 13-13

OCIContextClearValue(), 13-27

OCIContextGenerateKey(), 13-29

OCIContextGetValue(), 13-25

OCIContextSetValue(), 13-23

OCIDurationBegin(), 13-13

OCIDurationEnd(), 13-15

OCIExtProcAllocCallmemory(), 13-5, 13-6, 13-7,

13-9

OCIExtProcAllocMemory routine, 4-12

OCIExtProcGetEnv(), 13-11

OCIExtProcRaiseExcp routine, 4-13

OCIExtProcRaiseExcpWithMsg routine, 4-13

OCIExtProcRaiseExcpWithMsg(), 13-9

OCIExtractFromFile(), 13-38

OCIExtractFromList(), 13-51

OCIExtractFromStr(), 13-40

OCIExtractInit(), 13-31
Index-35

OCIExtractReset(), 13-33

OCIExtractSetKey(), 13-35

OCIExtractSetNumKeys(), 13-34

OCIExtractTerm(), 13-32

OCIExtractToBool(), 13-44

OCIExtractToInt(), 13-42

OCIExtractToList(), 13-50

OCIExtractToOCINum(), 13-48

OCIFileClose(), 13-59

OCIFileExists(), 13-67

OCIFileInit(), 13-54

OCIFileObject, 13-53

OCIFileRead(), 13-61

OCIFileSeek(), 13-65

OCIFileTerm(), 13-55

OCIFileWrite(), 13-63

OCILob...() functions, 6-6

OCIMemoryAlloc(, 13-17

OCIMemoryFree(), 13-21

OCIMemoryResize(), 13-19

ODCIArgDesc, 15-33

ODCIArgDescList, 15-33

ODCIArgDescRef, 15-33

ODCIColInfo, 15-33

ODCIColInfoList, 15-33

ODCIColInfoRef, 15-33

ODCICost, 15-33

ODCICostRef, 15-33

ODCIFuncInfo, 15-33

ODCIFuncInfoRef, 15-33

ODCIGetInterfaces method, 11-25

ODCIIndexClose method, 11-33

ODCIIndexCreate method, 11-25

ODCIIndexCtx, 15-33

ODCIIndexCtxRef, 15-33

ODCIIndexDelete method, 11-34

ODCIIndexDrop method, 11-27

ODCIIndexFetch method, 11-32

ODCIIndexGetMetadata method, 11-37

ODCIIndexInfo, 15-33

ODCIIndexInfoRef, 15-33

ODCIIndexInsert method, 11-33

ODCIIndexStart method, 11-28, 11-30

ODCIIndexUpdate method, 11-35

ODCIObject, 15-33

ODCIObjectList, 15-33

ODCIObjectRef, 15-33

ODCIPredInfo, 15-33

ODCIPredInfoRef, 15-33

ODCIQueryInfo, 15-33

ODCIQueryInfoRef, 15-33

ODCIRidList, 15-33

ODCIStatsOptions, 15-33

ODCIStatsOptionsRef, 15-33

OID

with CREATE TYPE, 3-3

order methods, 3-5

P
package body, 5-5

package specification, 5-5

packages

corruption, 5-10

in PL/SQL, 5-5

privileges required to create procedures in, 5-7

parameters

modes, 13-2

PARAMETERS clause with external procedure, 4-9

PL/SQL

DBMS_LOB package compared with OCI, 6-7

debugging, 5-8

demo directory, 4-10

differences from C and C++, 5-9

packages, 5-5

power demand cartridge example, 11-1

demo file (extdemo1.sql), 11-15

pragma RESTRICT_REFERENCES, 5-6

privileges

required to create procedures, 5-7

purity level, 5-6

R
REF operator, 1-8

registering a data cartridge name, 2-10

registering an external procedure, 4-3

RESTRICT_REFERENCES pragma, 5-6

routine

service, 4-12
Index-36

RPC time out, 4-14, 5-10

S
schema

naming conventions, 2-5

SELF parameter, 5-4, 5-5

service interfaces, 1-14

service routine, 4-12

examples, 4-12

services

extensibility, 1-6

shared library, 4-2

naming conventions, 2-7

side effect, 5-6

signature mismatch, 5-9

.so files

naming conventions, 2-7

Spatial

use in power demand example, 11-81

suggested development approach for data

cartridge, 2-14

T
Time Series cartridge

use in power demand example, 11-74

triggers

with LOBs, 6-12

W
WITH CONTEXT clause and external

procedure, 4-9

with_context

argument to external procedure functions, 13-3
Index-37

Index-38

	PDF Directory
	Send Us Your Comments
	Preface
	Part I� Introduction
	1 What Is a Data Cartridge?
	What Are Data Cartridges?
	Why Build Data Cartridges?
	Data Cartridge Domains

	Extending the Server — Services and Interfaces
	Extensibility Services
	Extensible Type System
	Object Types
	Collection Types
	Relationship Types (REF)
	Large Objects

	Extensible Server Execution Environment
	Extensible Indexing
	Extensible Optimizer

	Extensibility Interfaces
	DBMS Interfaces
	Cartridge Basic Service Interfaces
	Data Cartridge Interfaces

	Cartridges as Software Components
	The Structure of a Data Cartridge
	Object Type Specification
	Object Type Body Code
	External Library Linkage Specification
	External Library Code
	Installing a Data Cartridge

	2 Roadmap to Building a Data Cartridge
	Development Process
	Installation and Use
	Requirements and Guidelines for Data Cartridge Constituents.
	Schema
	Globals
	Error Message Names or Error Codes
	Cartridge Installation Directory
	Files
	Shared Library Names for External Procedures

	Deployment Checklist
	Naming Conventions
	Need for Naming Conventions
	Unique Name Format

	Name Registration
	Directory Structure and Standards
	Cartridge Upgrades
	Import and Export
	Cartridge Versioning
	Internal Versioning
	External Versioning

	Internationalization
	External Access
	Internal Access
	Invoker’s Rights
	Test and Debug Services

	Administration
	Configuration

	Suggested Development Approach

	3 Defining Object Types
	Objects and Object Types
	Assigning an OID to an Object Type
	Constructor Methods
	Object Comparison

	Part II� Building Data Cartridges
	4 Methods: Using C/C++ and Java
	External Procedures
	Using Shared Libraries
	Registering an External Procedure
	How PL/SQL Calls an External Procedure
	Configuration Files for External Procedures
	Passing Parameters to an External Procedure
	Specifying Datatypes
	Using the Parameters Clause
	Using the WITH CONTEXT Clause

	OCIExtProcGetEnv
	Doing Callbacks
	Restrictions on Callbacks

	OCI Access Functions for External Procedures
	OCIExtProcAllocCallMemory
	OCIExtProcRaiseExcp
	OCIExtProcRaiseExcpWithMsg

	Common Potential Errors
	Calls to External Functions
	RPC Time Out

	Debugging External Procedures
	Using Package DEBUG_EXTPROC
	Debugging C Code in DLLs on Windows NT Systems

	Guidelines for Using External Procedures with Data Cartridges
	Java Methods

	5 Methods: Using PL/SQL
	Methods
	Implementing Methods
	Invoking Methods
	Referencing Attributes in a Method

	PL/SQL Packages
	Pragma RESTRICT_REFERENCES
	Privileges Required to Create Procedures and Functions
	Debugging PL/SQL Code
	Notes for C and C++ Programmers
	Common Potential Errors
	Signature Mismatches
	RPC Time Out
	Package Corruption

	6 Working with Multimedia Datatypes
	Overview
	DDL for LOBs
	LOB Locators
	EMPTY_BLOB and EMPTY_CLOB Functions
	Using the OCI to Manipulate LOBs
	Using DBMS_LOB to Manipulate LOBs
	LOBs in External Procedures
	LOBs and Triggers
	Using Open/Close as Bracketing Operations for Efficient Performance
	Errors and Restrictions Regarding Open/Close Operations

	7 Building Domain Indexes
	Introduction to Extensible Indexing
	What is Indexing?
	Index Structures
	The Relationship between Logical and Physical Structures
	The Need for Index Structures that Encompass Unstructured Data

	Examples of Indextypes
	B-tree
	Hash
	k-d tree
	Point Quadtree

	Why is Extensible Indexing Necessary?

	The Extensible Indexing API
	Concepts: Extensible Indexing
	Overview
	Example: A Text Indextype

	Indextypes
	Interface
	ODCIIndex Interface
	Creating Indextypes
	Dropping Indextypes

	ODCI Index Interface
	Index Definition Methods
	Index Maintenance Methods
	Index Scan Methods
	Index Metadata Method
	Transaction Semantics during Index Method Execution
	Transaction Semantics for Index Definition Routines
	Consistency Semantics during Index Method Execution
	Privileges During Index Method Execution

	Domain Index
	Domain Index Operations
	Domain Index Meta Data
	Export/Import of Domain Indexes

	Operators
	Operator Bindings
	Creating operators
	Operator Invocation
	Operator Privileges

	Operators and Indextypes
	Operators in WHERE clause
	Operators elseWHERE
	Ancillary Data

	Object Dependencies, Drop Semantics, and Validation
	Dependencies
	Drop Semantics
	Object Validation

	Privileges

	8 Query Optimization
	Overview
	Statistics
	User-Defined Statistics
	User-Defined Statistics for Partitioned Objects

	Selectivity
	User-defined Selectivity

	Cost
	User-Defined Cost

	Defining Statistics, Selectivity, and Cost Functions
	User-Defined Statistics Functions
	User-defined Selectivity Functions
	User-defined Cost Functions for Functions
	User-defined Cost Functions for Domain Indexes

	Using User-defined Statistics, Selectivity, and Cost
	User-defined Statistics
	Column Statistics
	Domain Index Statistics

	User-defined Selectivity
	User-defined Operators
	Stand-Alone Functions
	Package Functions
	Type Methods
	Default Selectivity

	User-defined Cost
	User-defined Operators
	Stand-Alone Functions
	Package Functions
	Type Methods
	Default Cost

	Predicate Ordering
	Dependency Model
	Restrictions and Suggestions
	Parallel Query
	Distributed Execution
	Performance

	9 Using Cartridge Services
	Cartridge Services — Introduction
	Cartridge Handle
	Client Side Usage
	Cartridge Side Usage
	Service Calls
	Error Handling

	Memory Services
	Maintaining Context
	Durations

	National Language Service (NLS)
	NLS language information retrieval
	String manipulation

	Parameter Manager Interface
	Input Processing
	Parameter Manager Behavior Flag
	Key Registration
	Parameter Storage and Retrieval
	Parameter Manager Context

	File I/O
	String Formatting

	Part III� Advanced Topics
	10 Design Considerations
	Designing the types
	Structured and Unstructured Data
	Using Nested Tables or VARRAYs
	Nested Tables
	VARRAYs

	Working Around Inheritance
	Inheritance Implementation Consequences
	Simulating Inheritance
	Subtype Contains Super-type

	Dual Subtype / Super-type Reference

	Writing Methods: PL/SQL, C or Java?
	Invokers Rights — Why, When, How

	Callouts
	When to Callout
	When to Callback
	Callouts and LOB
	Saving and Passing State

	Designing Indexes
	Influencing Index Performance
	Influencing Index Performance
	When to Use IOTs
	Can Index Structures Be Stored in LOBs
	External Index Structures
	Multi-Row Fetch

	Designing Operators
	Functional and Index Implementations

	Talking to the Optimizer
	Weighing Cost and Selectivity
	Cost for functions
	Cost for Indexes
	Selectivity for Functions
	Statistics for Tables
	Statistics for Indexes

	Design for maintenance
	How to Make Your Cartridge Extensible
	How to Make Your Cartridge Installable

	Miscellaneous
	How to Write Portable Cartridge Code

	Part IV� Scenarios and Examples
	11 Power Demand Cartridge Example
	Feature Requirements
	Modeling the Application
	Sample Queries

	Queries and Extensible Indexing
	Queries Not Benefiting from Extensible Indexing
	Queries Benefiting from Extensible Indexing

	Creating the Domain Index
	Creating the Schema to Own the Index
	Creating the Object Type (PowerDemand_Typ)
	Defining the Object Type Methods
	Creating the Functions and Operators
	Creating the Indextype Implementation Methods
	Type Definition
	ODCIGetInterfaces Method
	ODCIIndexCreate Method
	ODCIIndexDrop Method
	ODCIIndexStart Method (for Specific Queries)
	ODCIIndexStart Method (for Any Queries)
	ODCIIndexFetch Method
	ODCIIndexClose Method
	ODCIIndexInsert Method
	ODCIIndexDelete Method
	ODCIIndexUpdate Method
	ODCIIndexGetMetadata Method

	Creating the Indextype

	Testing the Domain Index
	Creating the Statistics Table (PowerCartUserStats)
	Creating the Extensible Optimizer Methods
	Type Definition
	ODCIGetInterfaces Method
	ODCIStatsCollect Method (for PowerDemand_Typ columns)
	ODCIStatsDelete Method (for PowerDemand_Typ columns)
	ODCIStatsCollect Method (for power_idxtype Domain Indexes)
	ODCIStatsDelete Method (for power_idxtype domain indexes)
	ODCIStatsSelectivity Method (for Specific Queries)
	ODCIStatsSelectivity Method (for Any Queries)
	ODCIStatsIndexCost Method (for Specific Queries)
	ODCIStatsIndexCost Method (for Any Queries)
	ODCIStatsFunctionCost Method

	Associating the Extensible Optimizer Methods with Database Objects
	Analyzing the Database Objects

	Testing the Domain Index
	Creating and Populating the Power Demand Table
	Querying without the Index
	Creating the Index
	Querying with the Index

	Using Time Series with the Power Demand Cartridge
	Identifying Columns to be Used
	Defining the Calendars
	Creating the Mapping Table
	Creating the Reference-Based View
	Formulating Time Series Queries

	Using Spatial with the Power Demand Cartridge
	Creating the Spatial Layer (PowerDemandRegions)
	Creating Coordinates for the Power Demand Regions
	Populating the Power Demand Regions Index
	Creating Coordinates for the Area of Interest
	Populating the Windows Index
	Performing Spatial Queries

	12 SBTREE: An Example of Extensible Indexing
	Introduction
	Design of the indextype
	Implementing Operators
	Create Functional Implementations
	Functional Implementation of EQ (EQUALS)
	Functional Implementation of LT (LESS THAN)
	Functional Implementation of GT (GREATER THAN)

	Create Operators
	Operator EQ
	Operator LT
	Operator GT

	Implementing the Index routines
	The C Code
	General Notes
	Common Error Processing Routine
	Implementation Of The ODCIIndexInsert Routine
	Implementation of the ODCIIndexDelete Routine
	Implementation of the ODCIIndexUpdate Routine
	Implementation of the ODCIIndexStart Routine
	Implementation of the ODCIIndexFetch Routine
	Implementation of the ODCIIndexClose Routine

	Implementing the Indextype
	Usage examples
	Explain Plan Output

	Part V� Reference
	13 Reference: Cartridge Services Using C
	The Function Syntax
	Return Codes
	With_Context Type
	Cartridge Services — OCI External Procedures
	OCIExtProcAllocCallMemory()
	OCIExtProcRaiseExcp()
	OCIExtProcRaiseExcpWithMsg()
	OCIExtProcGetEnv()

	Cartridge Services — Memory Services
	OCIDurationBegin()
	OCIDurationEnd()
	OCIMemoryAlloc()
	OCIMemoryResize()
	OCIMemoryFree()

	Cartridge Services — Maintaining Context
	OCIContextSetValue()
	OCIContextGetValue()
	OCIContextClearValue()
	OCIContextGenerateKey()

	Cartridge Services — Parameter Manager Interface
	OCIExtractInit()
	OCIExtractTerm()
	OCIExtractReset()
	OCIExtractSetNumKeys()
	OCIExtractSetKey()
	OCIExtractFromFile()
	OCIExtractFromStr()
	OCIExtractToInt()
	OCIExtractToBool()
	OCIExtractToStr()
	OCIExtractToOCINum()
	OCIExtractToList()
	OCIExtractFromList()

	Cartridge Services — File I/O Interface
	OCIFileObject
	OCIFileInit()
	OCIFileTerm()
	OCIFileOpen()
	OCIFileClose()
	OCIFileRead()
	OCIFileWrite()
	OCIFileSeek()
	OCIFileExists()
	OCIFileGetLength()
	OCIFileFlush()

	Cartridge Services — File I/O Interface
	OCIFileObject

	Cartridge Services — String Formatting Interface
	OCIFormatInit
	Syntax
	Remarks
	Returns

	OCIFormatTerm
	Syntax
	Remarks
	Returns

	OCIFormatString
	Syntax
	Remarks
	Returns

	Format Modifiers
	Format Codes
	Example

	14 Reference: Cartridge Service Using Java
	File Installation
	Cartridge Service — Maintaining Context
	ContextManager
	Class Interface
	Variable
	Constructors
	Methods

	CountException()
	CountException(String)
	InvalidKeyException()
	InvalidKeyException(String)

	15 Reference: Extensibility Constants, Types, & Mappings
	Extensibility Constants, Types, & Mappings
	System Defined Constants
	Alter Options Values
	ODCIArgDesc.ArgType Bits
	ODCIPredInfo.Flag Bits
	ODCIFuncInfo.Flags Bits
	ODCIQueryInfo.Flags Bits
	ODCIStatsOptions.Flags Bits
	ODCIStatsOptions.Options Bits
	ScnFlg (Function with Index Context) Values
	Status Values

	System Defined Types
	ODCIArgDesc
	ODCIArgDescList
	ODCIRidList
	ODCIColInfo
	ODCIColInfoList
	ODCICost
	ODCIFuncInfo
	ODCIIndexInfo
	ODCIPredInfo
	ODCIIndexCtx
	ODCIObject
	ODCIObjectList
	ODCIQueryInfo
	ODCIStatsOptions
	Mappings in PL/SQL
	Mappings in C
	C Constants
	C Types

	Constants Definitions
	Constants for Return Status
	Constants for ODCIPredInfo.Flags
	Constants for ODCIQueryInfo.Flags
	Constants for ScnFlg (Func with Index Context)
	Constants for ODCIFuncInfo.Flags
	Constants for ODCIArgDesc.ArgType
	Constants for ODCIStatsOptions.Options
	Constants for ODCIStatsOptions.Flags
	Constants for ODCIIndexAlter parameter alter_option

	Mappings in Java

	16 Reference: Extensible Indexing Interface
	Extensible Indexing — System Defined Interface Routines
	ODCIGetInterfaces
	ODCIIndexAlter
	OCDIIndexCreate
	ODCIIndexClose
	ODCIIndexDelete
	ODCIIndexDrop
	ODCIIndexFetch
	ODCIIndexGetMetadata
	ODCIIndexInsert
	ODCIIndexStart
	ODCIIndexTruncate
	OCIIndexUpdate

	17 Reference: Extensible Optimizer Interface
	Extensible Optimizer — Interface
	EXPLAIN PLAN
	INDEX Hint
	ORDERED_PREDICATES Hint
	Example
	User-Defined ODCIStats Functions
	ODCIStatsCollect
	ODCIStatsDelete
	ODCIStatsSelectivity
	ODCIStatsFunctionCost
	ODCIStatsIndexCost

	A A Java Demo Script
	extdemo3.sql Demonstration Script
	extdemo3.java Demonstration Script
	extdemo3a.java Demonstration Script

	Index

