Oracle8 i

Application Developer’'s Guide - Advanced Queuing

Release 2 (8.1.6)

December 1999
Part No. A76938-01

ORrRACLE

Application Developer’s Guide - Advanced Queuing, Release 2 (8.1.6)
Part No. A76938-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.
Primary Authors: Kevin MacDowell, Den Raphaely

Contributing Writers: Neerja Bhatt, Shelley Higgins, Krishnan Meiyyappan, Bhagat Nainani, James
Rawles

Contributors: Sashi Chandrasekaran, Dieter Gawlick, Mohan Kamath, Goran Olsson, Madhu Reddy;,
Mary Rhodes, Ashok Saxena, Ekrem Soylemez, Alvin To, Rahim Yaseen

Graphics Production Specialist: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark of Oracle Corporation. All other company or product names mentioned
are used for identification purposes only and may be trademarks of their respective owners.

Contents

Send US YOUr COMMENTS ...ttt [
PIEIACE ...t ii
INFOrmMation iN THIS GUITEooi et be st et e e teesbeeneeanas iv
Feature Coverage and AVailability ... iv
New Features Introduced With Oracle 8.1ccociiiiiiiiiiiiiie e iv

L0 1 0 1=T g U Lo =SSP %
HOW This BOOK IS OFQANIZEMcciiiiiiiiiiiieie e Vi
How to Interpret the DIAgIramS ...ttt resresresresrens viii

USE CASE DIAGIAMS. ...cueeieitiiti ettt sttt ettt b bt b e bt et e s bt ebesbeebesb e be b sb e b eneeseeneaneabesre e viii

SEALE DIAGIAMS ...ttt etttk e et e bbbt b bt s bRt s bt s bt bttt sttt et XV

Links in Online Versions of this DOCUMENT............ccccouiiiiiieie e XVi
Conventions Used iN thiS GUIE...........ccuciiiiiiiccccc ettt re e sre s XX
Your CommENTS Are WEICOME ..ottt ettt re s be s sbe e e s beeaesbeeaesbeens XXi

1 Whatis Oracle Advanced Queuing?

Queuing - an Optimal Means of Handling MEeSSAgesS.........ccovviriiriiniieneisesese e 1-2
Messages as the Crux Of BUSINESS EVENEScocviiiiiiiiesece s 1-2
Using Queues to Coordinate the Interchange of MesSages.........ccoovrererieiriicinieniencseseniens 1-2
What Queuing Systems MUSE PrOVIE ...t s 1-3

Two Contexts for Developing Queuing AppPlications..........ccocccve i 14

Two Models fOr QUEUING IMESSAGES.oiuiiiiiieieeeieeiere sttt sttt e bbb b b e e 1-5
POINt-10-POINT MOGEL........cui i esnenne e e 1-5
Publish-SubSCriDe MOEL...........ociiiiic s 1-6

Features of Advanced QUEUING (AQ)coii it et e e ste e sre e e sresae e e sae e e seesreens 1-7

GENEIAI FEALUIESecviite ettt ettt et sbe et s ae e ae s te e s besbe e beeteesbeeaeesbeensenbeenns 1-7
ENQUEUE FEALUIESvviiiieiii ittt es et s et teete e st e e steesaae e beesaaeebe e snaeenaeesteesneesnee e 1-10
DEQUEUE FRATUIESeiiiii ittt sttt sttt st et e sae et be et snb e e beesnaeentaeanbeenbee e 1-13
Propagation FEATUIESccoiiiiiiiiiiee ettt ettt 1-15
Elements of Advanced Queuing (Native AQ)ccccuciveieeieieniesie e s e e e sreses 1-17
YT - Vo [PP TOPRRURTI 1-17
QUEBUE. ...ttt bt st b e st b e b e bt e bt he e e Ae e Rt e s Ee e R b e E £ e Rt e eb £ e s b e eh e e bt eheenbeeneeneeannas 1-17
QUEUE TaDIE ..ottt st be e b e e st e et e sbeesbesbeebeearesbesaeesbeannes 1-17
0 (=] o | PRSPPSO 1-17
RECTPIENT. ...ttt b bbbttt er bbb 1-18
Recipient and SUDSCHPLION LISTScccovcieieecicesese e 1-18
RUIE 1.ttt b et bbbt b et btk R et E et b ettt nenrene 1-19
RUIE BaSEA SUDSCIIDETiciiciicicce sttt ettt e r e s be e ste s teesresraestesraens 1-19
QUEUE IMIONITON ...ttt ettt et be et e st e st e s ra e s beesaesbeesbesbeesbesbeenbesasebeensesbesnees 1-19
RETEIENCE 1O DBIMOScuiiiiitieiie ettt bttt bbb e e et et st et e b e bt ebe e 1-21

2 Basic Components

DAL STIUCTULIES ...ttt bbbt e e h e e bt et s bt e et s b e e bt s b e e nbe s b e e b e eb b e b e enrenneenes 2-2
ODJECE INGITIE ...ttt b bt b bbb bbbt b bbbt bbbt 2-2
L1574 8131 = L 0TSSR 2-2
Y0 =] o | TRV PSTR 2-3
AQ RECIPIENT LIST TYP ..tttk 2-4
F AN @ N (= g I F1 A I8/ o -SSP 2-4
AQ SUDSCIIDEE LIST TYPB .ttt bbbttt sae s 2-4

Enumerated Constants in the Administrative Interface..........ccccoovoviiiiencicicicc 2-5

Enumerated Constants in the Operational INterfaceccoccvevvie v 2-6

1SSUES aNA CONSIABTALIONS. ..ottt b ettt et bbb e 2-7
LN O R VAN e T - U =] -] PSPPSR 2-7

Java Components - OraCle.AQcccie ittt rennn 2-8
Location of Java AQ ClIaSSES........cuciiiieiieieiti ettt e et esbe et e saeente e e nreanes 2-8

AQ Programmatic Environments

Programmatic Environments for AcCesSIiNG AQcoooveiiiiieiiiieii e se e 3-2
Using PL/SQL (DBMS_AQADM and DBMS_AQ Packages) to Access AQ......ccccovvrvrereene 34

Using Visual Basic (O0O40) t0 ACCESS AQoiiiiieieeieiiesteeie e ee e ete e te e sre e sre e saesnaesreanees 3-6

FOr MOre INFOFMALIONccuiiiiiiie ettt sbe et neen 3-6
USING OCI 10 ACCESS AQ ...eiiiieiiieiestet ettt sttt e e e e se et es e e s e e e aseeteesearenteseesresrenes 3-7
EXAIMIPIES ..ot b bt bbb bbb ettt be bbbt nre e e 3-7
Using AQ Java (oracle.AQ) Classes t0 ACCESS AQcooiireireirieirieisieesieisiee e 3-8
ACCESSING JAVA AQ ClASSES.....eiveeiieieieierieese et s sttt e eese e es e e e e esee e s e aneare s e anesresrenes 3-8
Advanced QUEUING EXAMPIESccoiiiiiiiiee e 3-8
Managing Java AQ AP ..o 3-9
Using Oracle Java Messaging Service (JMS) to ACCESS AQ.....cccvvvivrerininieiereerieesesesesee s 3-10
STANAAIA JMS FRATUIES......c.ei ittt bbb ettt b bbb 3-10
Oracle JIMS EXEENSIONSccuiiiiiiiiieiie ittt sttt sttt e et e st e en e seaneenestesresnens 3-10
Accessing Standard and Oracle JIMS.........coov oo 3-11
FOr MOre INTOFMALIONcc.oiuiiiii i e 3-12
Comparing AQ Programmatic ENVIrONMENTS.........ccooiiiiiniiiiiisicsese s 3-13
AQ AAMINISLratiVe INTEIFACESc.ocviiie ettt ebe e b enne 3-13
AQ OPEratioNal INTEITACEScoi i et b e 3-16
Managing AQ
Migrating Queue Tables (IMPOIrt-EXPOIT)cccoiiiiiiiiieieiene e 4-2
Exporting QUEUE Table DALccoiiiiiiiiirieiieeie e 4-2
Importing QuUeUE Table DAtac.cooiiieieice e 4-3
1ot 1 | 1 S S U TPR 4-4
Security with 8.0 and 8.1 Compatible QUEUES.............ccoviiiiiniiiieeee e 4-4
Privileges and ACCESS CONIOLccoeviiiiieiecieie st resne e nnens 4-5
ROIES ..ottt bbb bbb bbb et h et et be bbb bt nre 4-6
AMINISTALOr ROIE.......oicii et sre e e 4-6
USEE ROIE ...ttt bbb bbb bbbttt ettt 4-7
ACCESS T0 AQ ODJECE TYPIES ..ttt sttt ettt bbb bbb ettt sbe b b 4-7
OCT APPIICATIONS ... bbbt bbbttt 4-7
g (o] 0= T - L[] o S 4-7
(O S7=To (oI Ao (PSR P P OUR RPN 4-8
Example: To Upgrade An 8.0 Queue Table To A 8.1-Compatible Queue Table................. 4-9
ENterprise Manager SUPPOIT ..ot sttt sa et e e eraeseeneerenrenes 4-10
PIPOTOCOIS ...ttt bt bbbt bbb bbb et st e bt e besbe bt e 4-10
Sample DBA Actions as Preparation for Working with AQ ..o 4-10

(O U =] g LA R TS) R o1 1 [0] 0 TR 4-12

Auto-commit features in DBMS_AQADM PaCKAGE..........cccurrireiriiieseseee e 4-12
Collection Types in Message Payloads.........ccccovveieiiicicieince s 4-12
Object Type Payload Support in AQ JaVa AP ..o 4-12
Synonyms on Queue Tables and QUEUEccceiiiiiiieiieieee e 4-12
Pluggable Tablespace does not Work For 8.0 Compatible Multiconsumer Queues......... 4-12
Tablespace POiNt-iN-TIME FECOVEIYooiiiiiiieieieeee et 4-13
Propagation from ODJECT QUEUESc..ciriiiirieirieesiee et 4-13
NON-PEISISTENT QUEUESveeviivieite ittt eee sttt te et et esbeebesbeeebesaeesbeseesbesasesbeesaesbeesbesbeenbesreenns 4-13
COMPATTDITITY .. bbb bbb ettt b e b b e 4-14

5 Advanced Topics

vi

PEITOITINIANCE ...t b ke b e bbb bt b e b b et e s b et e st eb e et e e beabeebe b e 5-2
Table anNd INAEX SLFUCLUIESccuv ittt te e b e s te b e sbe e sresteestesreens 5-2
QLI 0 18 o'] o LU | PSSP 5-2
AVAITADTITY .ottt ettt 5-2
SCAIADTIITY ... bbb etk e et e bbb 5-3
o o F Lo F- U T T £ 1= 5-3
Guidelines for Debugging AQ Propagation Problems..........cccooiiiiiies 5-5

Frequently Asked Questions

Modeling and Design

MoOdeling QUEUE ENTITIESc..oovie e sttt e st e na et e s e sreenes 7-2
BaASIC QUEUING ...ttt ettt b et h et bt bt b e bbb bt nb bt eb bbbt an e ane e 7-3
Hustrating BasiC QUEUINGccvivieiierirerieseeieeeese et s e e ste e te e ae e saessesaeseesseseesessesnessessessens 7-3
Ilustrating Client-Server Communication Using AQ.........cceciiiiiiiieie e 7-5
Multiple-Consumer Dequeuing of the Same Message..........ccooevvrernerneniennenseeeeee 7-6
Illustrating Multiple-Consumer Dequeuing of the Same MeSsage........cccovvvevveiveiveivrinniennnns 7-7
Illustrating Dequeuing of Specified Messages by Specified Recipientscccccovvnenne 7-9
IMustrating the Implementation of Workflows using AQ ..o 7-11
Illustrating the Implementation of Publish/Subscribe using AQcccoceveveievevcvcen, 7-12
MESSAJE PrOPAGALIONcc.iiuiiiiiiiitiiie ittt bbb bbb ettt sbesre s 7-15
[Hustration of Message Propagation ..o s 7-17

8 A Sample Application Using AQ

A SAMPIE APPIICALION. ...oiiiiiicii bbbttt 8-3
GENETAL FEATUIES ...ttt n e 8-4
System Level ACCESS CONIIOL..........coveiici et 8-5
SErUCTUNEd PAYIOAUocueiciiieeieies e bbbttt 8-7
QUEUE LeVel ACCESS CONIIOL......c.iiiiiiiiieiecie ettt st sbe e sreenns 8-11
NON-PEISISTENT QUEUESoveiieiieeie ettt ettt ste e ste e te e e ste e e e s teesaeste e st e steenbesseenseannenreanees 8-13
Retention and MesSSage HiSTOMY ..ot 8-24
PUblish/SUDSCIIDE SUPPOIT........oiiiiieciee e e re e 8-26
Support for Oracle Parallel SEIVEL ... 8-29
SUPPOIT FOr STALISTICS VIBWSouiiiiiiiiciiieeie et 8-34
ENQUEUE FEALUIESoi ittt ee et s ae e ste e st e s te e saa e e beesaaeebe e s naeebeesnbeesreesneeeees 8-35
Subscriptions and ReCIPIENT LISTSocuoiiiiiiiiiiieise e 8-36
Priority and Ordering 0f IMESSATEScoiiriiirieirieerieinieie et 8-38
Time SPeCITICAtioN: DEIAYcccue i sre e 8-46
Time Specification: EXPIratioNcooiiiiiiiii s 8-49
MIESSAGE GIOUPING. ...t vttt ettt sttt ettt sr et r et b et b e eb et b bbb ekt et nb bt nbebesbeseare e 8-52
(D] L@ 0 O o =Ty (] =S 8-55
DEqUEUE IMETNOMS........couiiic bbbttt b bbb e 8-56
MUILIPIE RECIPIENTS ...ttt r et b e er e 8-61
Local and RemMOte RECIPIENTScceiiiiiiiireie et re e ene e 8-63
Message Navigation iN DEQUEUE..........ccooviiiieieieieere ettt sbe b e 8-65
MOAES OF DEQUEUINGcveiitiiitiiieti ettt ettt se et nb et b et sb et sb et eb e ene e 8-69
Optimization of Waiting for Arrival 0f MESSagescccovvivvvviiiieiivineie e 8-75
ASYNChronNous NOLIFICALIONSccviiiiice e 8-77
Retry With Delay INTErVal ..o s 8-84
EXCEPLION HAaNAIING......ooiieciceie et r e neeneere e s 8-88
Rule-based SUDSCIIPTION ..ot e 8-94
LiSTEN CaPabilityc.viviiieiiiiic ettt 8-98
Propagation FEAUIES........ccuiiieeeeeeeese ettt re et st e st st b et sa et e e e e e e eneeneeneanenns 8-102
PrOPAGATION ...ttt bbbt bbb bbbttt b et r s 8-103
Propagation SChEAUIINGciiiiiiiee bbb 8-104
Propagation of Messages with LOB AttribULes.........c.ccocv v 8-108
Enhanced Propagation Scheduling Capabilities...........ccccciiiiiiiiineneceeeee, 8-110
Exception Handling DUriNg Propagation ... 8-113

Vii

9 Administrative Interface

viii

Use Case Model: Administrative Interface — Basic Operations...........cccoceoveviienniensennennns 9-2
Create @ QUEUE TABIB.......cei ettt sttt e et e et esbe et e sbeesbesaeesreanees 9-5
PUIIOSE ...ttt bt b e s e bt Rt b e R bR e e s bt e bt e bRt e n e Re e n e neenreanean 9-6
USBGE INOTES ...ttt 9-6
Y] = P 9-7
EXAIMPIES ...ttt bbb bbb bbbt h et h bbb h b e 9-8
PL/SQL (DBMS_AQADM Package): Create a Queue Table ... 9-8
VB (O040): Create @ QUEUE Tabl......ccciveieeieececesr e 9-9
Java (JDBC): Create @ QUEUE TabIeccveiiiiee e 9-10
Create a Queue Table [Set Storage ClauSE].......ccociiiirciiiei e 9-13
AIEr @ QUEUE TADIE ...ttt et b e et e s be et e s beestesbeesbesreesbesreens 9-14
PUIIOSE ...ttt b bt b e bbb e bt e b b e bt R et e bt e e Rt e e be e e b e e nrenreen 9-14
USBGE INOTES ...t e e ettt sr e ns 9-14
Y11= SR 9-15
EXAIMPIES ...t bbb bbb e bt e ettt ettt b b e 9-15
PL/SQL (DBMS_AQADM Package): Alter a Queue Table.........ccccooeiiieicnenceeee, 9-15
Java (JDBC): Alter a QUEUE TabIB......coiiiiieieieeee et 9-16
Drop @ QUEUE TABIE ... b ettt ene 9-17
PUIPDOSE: ... e et 9-18
LT Vo =30 A 0] (PR PRSP 9-18
)Y - PSPPI 9-18
EXBMPIES ... bbbttt e 9-18
PL/SQL (DBMS_AQADM Package): Drop a Queue Table........cccccocevevvicieiccceecncn, 9-18
Java (JDBC): Drop a QUEUE Table.... ..o e 9-19
CrEate @ QUEBUE. ...ttt ettt bt bt he e bt bt e ebe e he e s Ee e R e e ebeehbe s beesbenbeen b e nbeenbenbeenee 9-20
1010 L] PSSR 9-21
LU ST= T [AN Lo (L PP R R PPRRUR 9-22
SYNTAX ..ttt bRttt 9-22
DTz 10 0] o TSR 9-22
PL/SQL (DBMS_AQADM): Create @ QUEUE.ccoceiieieieieie et 9-23
Java (JDBC): Create @ QUEUEcoviuiieiiieiieeiste ettt 9-25
Create a NON-PEersiStENt QUEUEcccueiviiieiiiieie ettt ettt sttt be e s beenbeebeenbesbeenns 9-27
PUTIOSE ...ttt bt bbb e bt b e bt e b b e bt e R et e bt e e Rt e he e nnenbeenrenreen 9-27
USBGE INOTES ...t e e ettt 9-27

EXAIMPIES ...ttt 9-28
PL/SQL (DBMS_AQADM): Create a Non-Persistent QUEUE.........ccccevverereeieierinnenseseens 9-28
Java (JDBC): Create a NON-persiStent QUEUEc.cooirireiinienie e 9-29
ATEE @ QUEBUE......ecee ettt etttk be bt s bt st sb et e e se et e s e e st e st eneebeebeabeeteneeee 9-30
8T 010 L] PSSR 9-31
(O S7=To (oI Ao (L PSP PP R 9-31
SYNTAX 1.ttt 9-31
e 10 0] 0] TSRS 9-31
PL/SQL (DBMS_AQADM): AItEr @ QUEUEc.eeuieeiirieiirieiisieisieesie st ssens 9-31
Java (JDBC): AITEr @ QUEUEoveiiiciiiectieee ettt ettt ene e 9-32
(DT 0] o J= T T L= LS 9-33
PUIIOSE: .. et b bbbkt b bbbt h e bRt r e ne e n e ne e re s 9-34
USBGE INOTES ... e ettt 9-34
Y11= G 9-34
EXAIMIPIES ..ot b b bbb e bbbttt et b bbb 9-34
PL/SQL (DBMS_AQADM): Drop @ QUEUEcoviieuieierieite st see sttt sre e 9-35
Java (JDBC): DIoP @ QUEUEc.ueveierieieeeeeereeeeestestes e steste e ste et saensesaesaensesseseeseesessessessessenses 9-35
STAIT @ QUEBUE ...ttt e bbbt et e e s b b e e be e s bee et e e ahbe et e e s b beebeesnbe e beeanaeebee e 9-36
PUIMPOSE: ..o 9-36
LT Vo =30 A 0] (PSS 9-37
)Y] - PRSPPI 9-37
EXAIMPIES ...t et 9-37
PL/SQL (DBMS_AQADM Package): Start @ QUEUEcccvvererere e seeeeeeese e 9-37
Java (JDBC): Start @ QUEUEeccvieereie e ste ettt ste e ste e ste st e st e sbeensesbeensesaeesaestaeseesraeseenreens 9-38
STOP @ QUEBUE.....ceiiet ettt h bt e bR b e b ettt 9-39
81010 L] PSS 9-40
(O S7= T (oI N0 (L PSPPI 9-40
SYNITAX 1.ttt 9-40
Oz 10 0] 0] TS 9-40
PL/SQL (DBMS_AQADM): StOP @ QUEUEc.eveviieiiiiiirieiisieisieesie st ssenessens 9-40
Java (JDBC): StOP @ QUEUEcuiiiiiieiiriett ettt ettt ettt sb et b e ene e 9-41
Grant SYSIEM PriVIIEgEcv ittt e e e e e neeresnennens 9-42
PUIIOSE: ..t bbbtk e e b e bbbt e bRt b e ae e nr e e nre s 9-43
USBGE INOTES ... e ettt 9-43

EXAIMPIES ...t bbb bbb bbb e bttt bbb e 9-43

PL/SQL (DBMS_AQADM): Grant System Privilege ... 9-44
Java (JDBC): Grant SyStem PriVIlEgEcccveiieeccece s 9-44
REVOKE SYSIEM PrIVIIEJEoceiceeee et sre s 9-45
PUIPOSE: ... e e 9-45
LT Vo =30 A 0] (PSSR 9-46
)Y - TP UPRRIN 9-46
EXBMPIES ...ttt 9-46
Using PL/SQL (DBMS_AQADM): Revoke System Privilege........ccccocvvvveievciciniecnennn, 9-46
Grant QUEUE PIIVIIEOEoooiiee ettt et e e e nre e 9-47
PUIMDOSE: ... et 9-47
LT Vo =30 A 0] (PSSR 9-48
)Y - PSPPI 9-48
EXBMPIES ...ttt 9-48
PL/SQL (DBMS_AQADM): Grant QUeue Privilegeccccvovviviniene e 9-48
Java (JDBC): Grant QUEUE PriVIIEQEc.ccvviiie et 9-48
ReVOKE QUEUE PriVIIEOE ...ttt 9-50
81010 L] PSSP 9-51
LU ST= T (oI AN Lo (L PP P R PPRRURTI 9-51
SYNTAX ..ttt bRttt 9-51
e 10 0] o TSP 9-51
PL/SQL (DBMS_AQADM): Revoke QuUeUEe Privilegec.cccvevevveiiiice s 9-51
Java (JDBC): ReVoke QUEUE PriVIEgE.ccoiiiiiiite e 9-52
A @ SUDSCIIDET ...t bbbttt bbbt et e et et e 9-53
P U DIOSE: ..ttt b ettt b bbbt b e bR bRt R et bt e Rt e ehe e nenbeennenreen 9-54
USBGE INOTE. ... e ettt 9-54
Y11= ST 9-54
EXAIMPIES ...t bbb bbb e bt e ettt ettt b b e 9-54
PL/SQL (DBMS_AQADM): Add SUBSCIIBENccoceiiiiiiiitcececee e 9-55
PL/SQL (DBMS_AQADM): Add Rule-Based Subscribercccoovvvvvvvreieicceeseeeenn, 9-55
Java (JDBC): Add @ SUDSCIIDENc.vcieieec ettt 9-56
AT @ SUBDSCIIDET ...ttt ne e beene 9-58
81010 L] PSSP 9-59
LU ST= T (oI AN Lo (L PP P R PPRRURI 9-59

EXAIMIPIES ..ot b b bbb e bbbttt et b bbb 9-59

PL/SQL (DBMS_AQADM): Alter SUDSCHIDEr ..ot 9-60
Java (JDBC): Alter a SUDSCHIDENcveviicceee st 9-60
REMOVE @ SUDSCIIDETo 9-62
PUIMPOSE: ..o et 9-63
LT Vo =30 A 0] (=SSR 9-63
)Y 1] - TP TOPRRTRT 9-63
EXAIMPIES ...t b bbbttt 9-63
PL/SQL (DBMS_AQADM): Remove SUBSCIIDEN.........c.ccvcviiieiee e 9-64
Java (JDBC): REMOVE @ SUDSCIIDENcoeiiiii ettt 9-64
Schedule a QUEUE Propagation ..ot 9-65
81010 L] SO 9-66
(O S7= T (oI N0 (L T PP TPUPRTR 9-66
SYNTAX 1.ttt 9-66
ez 10 0] 0] TS 9-66
PL/SQL (DBMS_AQADM): Schedule a Queue Propagationcccceeereveicencncneniene 9-67
Java (JDBC): Schedule a QUEUE Propagation...........ccoeiiereereeneeenieeseeesee e 9-67
Unschedule a QUEUE Propagationccoceviieiiriirererieeeese e e sttt esae e sesnesressenes 9-69
PUIIOSE: .. et b bbbkt b bbbt h e bRt r e ne e n e ne e re s 9-69
USBGE INOTES ... e ettt 9-69
Y11= G 9-69
EXAIMIPIES ..ot b b bbb e bbbttt et b bbb 9-70
PL/SQL (DBMS_AQADM): Unschedule a Propagationccccoveriineineinecnennennns 9-70
Java (JDBC): Unschedule a Queue propagationccccccevererereneneneeseeseeseeneeesesesessenees 9-70
VErITY 8 QUEUE TYPE ...ttt b bbbt bbb b bttt e st et e eebe b b e 9-72
PUIMPOSE: ..o et 9-72
LT Vo =30 A 0] (2SS 9-72
)Y 1 - TP TOPRRURTI 9-72
EXAIMPIES ...ttt 9-73
PL/SQL (DBMS_AQADM): Verify a QUEUE TYPEciviviireriereresieseestesieseeeeeerase e sresse s 9-73
Java (JDBC): VErify @ QUEUE YRoeiiiieiieiieitetisie ettt st ettt 9-74
Alter a Propagation SChedule ... e 9-75
1010 L] PSSR 9-76
(O S7= T (oI Ao (L T PSP UPRR 9-76
SYNTAX 1.ttt 9-76

Xi

EXAIMPIES ...t bbb bbb bbb e bttt bbb e 9-76

PL/SQL (DBMS_AQADM): Alter a Propagation Schedule............ccocooeiiiniiincineiiee, 9-77
Java (JDBC): Alter a Propagation SCheduleccovviiiiiiiiiie e 9-77
Enable a Propagation SChEAUIE. ... 9-79
PUIPOSE: ... e e 9-79
LT Vo =30 A 0] (PSSR 9-79
)Y - TP UPRRIN 9-79
EXBMPIES ...ttt 9-80
PL/SQL (DBMS_AQADM): Enable a Propagationcccccocvveveneneienieneieeseeeeee e 9-80
Java (JDBC): Enable a Propagation SChedule ... 9-80
Disable a Propagation SCHEUIEcciiiiiiiiiec s 9-82
1010 L] PSSP 9-82
LU ST= T (oI AN Lo (L PP TP PPRRURI 9-82
SYNTAX ..ttt bRttt 9-82
s 10 0] o] TSP 9-83
PL/SQL (DBMS_AQADM): Disable a Propagation..........c.ccoccvereneneienieieieeeeeseseeee 9-83
Java (JDBC): Disable a Propagation Schedule ... 9-83

10 Administrative Interface: Views

Xii

Use Case Model: Administrative Interface — VIEWS.........ccocioiiiiiinine e 10-2
Select All Queue Tables iN Databaseccccveiviiiiiiiiccec e bbb 10-4
Select User QUEUE TaBIES ..ottt e nre e 10-7
Select All QUEUES IN DAtADASEc.oiiiiiiiiiiieie et et re e 10-10
Select All Propagation SCheAUIES ... 10-12
Select Queues for Which User Has ANy Privilege.......cccccoooiiiiei i 10-17
Select Queues for Which User Has Queue Privilege ... 10-19
Select Messages in QUEUE TADIEocv i ens 10-21
Select Queue Tables iN USEr SChEMIAocviiiiiiiiecce e e 10-25
Select QUEUES 1N USEI SCHEIMA ..ocuiiiiiiieiiee et et sne s 10-28
Select Propagation Schedules in User SChema ... 10-30
Select QUEUE SUDSCIIDEIS. ..o e 10-35
Select Queue Subscribers and Their RUIES ... 10-37
Select the Number of Messages in Different States for the Whole Database 10-39
Select the Number of Messages in Different States for Specific Instances.............cccc...... 10-41

11

Operational Interface: Basic Operations
Use Case Model: Operational Interface — Basic Operations............cccccveineiniinienniennennns 11-2
ENQUEUE @ IMESSATE ...ccvviiiieitieetie sttt sttt sttt sttt sttt b e s bbb esab e et e sst e e be e s s beenbeenebeenteennbeentes 11-5
PUIIOSE: .. ettt b bbbt b e bt et h bRt bR nr e ne e re s 11-5
USBGE INOTES ... e e 11-6
Y11= G 11-6
EXAIMIPIES ..ot b b bbb e bbbttt et b bbb 11-6
Enqueue a Message [SPecCify OPTIONS] ...t 11-7
PUIIOSE ..ottt ettt et sae s e s te e s e s te e s e nte e s e nR e e s e nR e e st e eR e e eeeneeneeeneenreaneen 11-8
(O S7= T (oI N0 (L T PP TPUPRTR 11-8
SYNTAX 1.ttt nre s 11-8
ez 10 0] 0] TS 11-9
Enqueue a Message [Specify Message Properties] ... 11-10
PUIPOSE ...t 11-11
USBGE INOLES ...ttt sttt e e sbe e s be e sbe e e st e e sbeesabeesbbeanbeentee e 11-11
)Y] - PP PSPPI 11-11
EXAIMPIES ..o bbbt b et 11-12
Enqueue a Message [Specify Message Properties [Specify Sender ID]]......cccccoevvvvvevennnnn, 11-13
PUIIOSE ...ttt bbbt s e bt e a bt eb e e e e bt et e neenne e e nrenreen 11-13
USBGE INOTES ... 11-13
Y11= G ST 11-14
EXAIMIPIES ..ottt bbb bbb bbbt n et r s 11-14
Enqueue a Message [Add Payload] ... 11-15
PUIPOSE .ottt b et b et e bt et nbe e e bt e s be e a e be et et e e ereentee e 11-15
L0 ST= T (oI AN L0 (L PP PPRURTI 11-15
SYNTAX .. 11-16
oGz 10 0] o TSRS 11-16
PL/SQL (DBMS_AQ Package): Enqueue of Object Type MesSSages.........ccoevverveieeerennne. 11-17
Java (JDBC): Enqueue a message (add payload)..........ccooeoieiiiinienienieneseeeeee 11-19
Visual Basic (OO40): ENQUEUE 8 MESSAGEveververeeeereereeresrearessessessessessessessessessessessssessassens 11-21
Listen to ONe (Many) QUEUE(S)cieeiueiieieiieie sttt et esteeeesteesaestaestestaesaestaesaesssesseassesreensesseennes 11-23
PUIPOSE ...t 11-23
LT Vo =30 A 0] (PSS 11-23
)Y 1] - PRSPPI 11-24
EXAIMPIES ..o bbbt b et 11-24

Xiii

USBGE INOTES ...ttt 11-25
Y11= PSS 11-26
EXAIMPIES ...ttt bbbt bbb bbbt b e ne e 11-26
PL/SQL (DBMS_AQ Package): Listen t0 QUEUE(S)cccoeerveirieirieinienisiesieie e 11-26
C (OCI): Listen to Single-Consumer QUEUE(S)veverveeereeeeeeresesesressesseseessessessessessesessessens 11-27
Listen to One (Many) Multi-Consumer QUEUE(S)ccvcveiieieiierieieeriesee e see e ee e sree e 11-36
USBGE INOTES ...ttt 11-37
Y11= PSS 11-37
EXAIMPIES ...ttt bbbt bbb bbbt b e ne e 11-37
PL/SQL (DBMS_AQ Package): Listen t0 QUEUE(S)cccoverveirieirieinienisiesiee e 11-38
C (OCI): Listen to Multi-Consumer QUEUE(S)eoveruereieiereeesesesiesieseeseessesieseessessesessessens 11-39
DEQUEUE 8 IMIEBSSATE ...ttt sttt b et b et b e e s bt e b e e b e s b e e bt e et e nb e b e nne e 11-45
PUIPOSE.....c.cec et 11-45
LT Vo =30 AN 0 (TS 11-46
)Y] - PR OPP PR 11-47
EXAMPIES ..o 11-48
Dequeue a Message from a Single-Consumer Queue [Specify Options]ccccceevveenene. 11-49
PUIIOSE ...ttt e et b e b e bt b e bt e st bt e s eb e e nn e neen e ene s 11-50
USBGE INOTES ...t 11-50
Y11= PSS 11-50
EXAIMPIES ...ttt bbbt bbb bbbt b e ne e 11-50
PL/SQL (DBMS_AQ Package): Dequeue of Object Type MesSSages.........cccevevreerreennen. 11-51
Java (JDBC): Dequeue a message from a single consumer queue (specify options)....... 11-51
Visual Basic (OO40): DEQUEUE @ IMESSAGEc..eurueeuerieriiaiirieriestesteseessessessesseseeseeseesessessessesns 11-52
Dequeue a Message from a Multi-Consumer Queue [Specify Options].........c.cccveereenas 11-54
U oo 1S TSP R VP UPPTPPRTPRN 11-55
LU EST-To (oI Ao (L PSR OPPPRP 11-55
SYNTAX ..ttt e et 11-55
e 10 0] 0] TSP 11-55
Java (JDBC): Dequeue a message from a multi consumer queue (specify options) 11-56
Register TOr NOTITICAtIONcooiiiiiii s 11-57
8T 01017 SR 11-58
LU ES7=To (oI N0 (L PRSPPI 11-58
SYNTAX ..ttt e et 11-58

Xiv

EXAIMIPIES ..ottt bbb bbb bbbt n et r s 11-59

Register for Notification [Specify Subscription Name — Single-Consumer Queue]....... 11-60

Register for Notification [Specify Subscription Name — Multi-Consumer Queue] 11-61
L0 ST- T (oI AN L0 (L PRSP UPPTPPRURTI 11-61
SYNTAX .. e 11-62
oG 10 0] o] TSRS 11-62
C (OCI): Register for Notifications For Single-Consumer and Multi-Consumer Queries..........
11-62

12 Creating Applications Using JMS

A SaMPIE APPHICALION ...t ettt b e b 12-4
GENEIAI FEATUIES ...ttt b ettt bt st et et st e s es e s e e neebeebesbeane s 12-5
JMS CONNECLION AN SESSION.......iiiiiieieiieie ettt ettt 12-6
JMS Destinations - QUEUE aNd TOPICccuiiriririerieieieeeee et 12-11
System LeVel ACCESS CONTIOL ..ot 12-13
Destination Level ACCeSS CONLIOI ..ot 12-15
Retention and MesSage HiStOMYc.cciiieii i 12-16
Support for Oracle Parallel SErVEr ... 12-17
SUPPOIt FOF SALISTICS VIBWSvviiieiecice ettt e ne e 12-19
Structured Payload/MESSAgE TYPES ..ottt et 12-20
Payload Used by JMS EXAMPIES........cciiiiiiiiiiieieeese e 12-31
POINt-t0-POINt MOAEI FEALUIESc.ooviieiiieieee e e e 12-38
(O 18 1= 0 1= PPV UPRTI 12-39
L@ T L TU [T T= o o (-1 OSSPSR 12-40
QUEUE RECEIVET ...ttt ettt ettt st be e st e et e b e et e s bt e b e ebeebeentesbeenresbeanees 12-40
(O 18110 [2] 0T PRSPPI 12-43
Publish-Subscribe Model FEATUIES ...t 12-45
10 o [T 12-46
DUrable SUDSCIIDEY ... e 12-48
TOPIC PUDIISNEK ... 12-51
Lot | 1 T=T] T SRS 12-53
TOPICRECEIVET ...ttt bbbt bbb b ettt ae bt 12-54
MeSSage PrOQUCET FEATUIES..........ccciiiiieiieeriesi ettt bbb 12-57
Priority and Ordering Of MESSA0ESccivieierierieieieeeeese s te st e e neerenns 12-58
Time SPecification - DEIAY ..o e 12-62

XV

13

XVi

Time Specification - EXPIFAtiON..........ccoiiiiiiinieeeee e 12-64

MESSAGE GIOUPING ...ttt sttt ettt ettt eb bbbt bbbt bbbt bt ne et b bbb enes 12-66
MeSSage CONSUMET FEATUIES........iieeierieeiesiesiesee e seeste et e steenae s e eesreenaesseestesreesaesraessesseensenneenes 12-70
RECEIVING IMESSATESc.veiveeiieiie ettt sttt e e st te e s te e s e s te e s e bees b e sbees b e sreenbesneeneesneenees 12-71
Message Navigation iN RECEIVEcciiiiiiiiice s 12-74
Modes for RECEIVING MESSATES......c..cieiueriiriiieieeeteesese e e e sre et sre et sresseseeee e eneesesneens 12-77
Retry With Delay INTEIVAL...........c.ooi it 12-80
Asynchronously Receiving Message Using Message LiStenercoccovevvvvneinennnenn 12-82
AN @I =31(ez=T o) o] o I F- 1 T I 17 o [PPSR 12-86
PrOPAGALION ...ttt h bbbt bt bt s bbbt s et et et et bt e e bt ene s 12-90
REMOLE SUDSCIIDEIS ... et 12-91
SChedUuling Propagation...........ccciviiiiiiiiiiise et s ne e eneas 12-96
Enhanced Propagation Scheduling Capabilities............cccooiiiniiiiceee 12-98
Exception Handling DUring Propagation ..o 12-100
JMS Administrative Interface: Basic Operations
Use Case Model: IMS Administrative Interface — Basic Operations..........c.c.ccoveeveieneennen 13-2
Use Case Model Diagram: JMS Administrative Interface — Basic Operations................... 13-4
Point-to-Point - Two Ways to Create a Queue Connection Factorycccccoeevveveiieniesnnnn, 13-5
Get a Queue Connection Factory with JDBC URLcccccciiiiiniienieeeeee e 13-6
101017 PSSR 13-6
LU ST= T (oI N0 (L PP TP PPRURI 13-6
SYNTAX ..ttt bR ettt 13-7
ez 10 0T o - SR 13-7
Get a Queue Connection Factory with JDBC Connection Parameterscccccoccvvveeieennene, 13-8
PUIDOSE. ... e e ettt 13-9
LT Vo =30 A 0] (PR PSSP 13-9
)Y - PRSPPI 13-9
EXBIMPIE ...ttt 13-9
Publish-Subscribe - Two Ways to Create a Topic Connection Factoryccccceeevvevvnnanne 13-10
Get a Topic Connection Factory With JDBC URL ... 13-11
PUIPOSE.....c.ccee et 13-11
LT Vo =30 AN 0] (SR 13-11
)Y] - G PP UPRPR 13-12
EXBIMPIE ... bbb 13-12

Get a Topic Connection Factory with JDBC Connection Parameterscccccoceeeevnennnn 13-13

USBGE INOTE ...t 13-14
1010 L] PSSR 13-14
)Y 1] - PPV UPRT 13-14
EXBIMPIE. .o b et b bt r e 13-14
Create @ QUEUE TABIEooi ettt e et s be e besbe e b e eaeenns 13-15
PUIIOSE ...ttt bbbt bbbt s e bt ab e eb e e e e ebe e teene e b e e nrenreen 13-15
USBGE INOTES ... 13-16
Y11= G ST 13-16
EXAIMIPIE. ..ttt bbb bbb b ettt b bbb 13-16
Create A Queue Table [Specify Queue Table Property] ..o 13-17
1010 L] PSS 13-17
L0 ST- T (oI AN L0 (L PRSP UPPTPPRURTI 13-17
SYNTAX .. 13-17
ez 10 0] o - USRS 13-18
GetaQUEUE TABIE ... e e te et re e b e ne e 13-19
PUIPOSE ...t 13-19
LT Vo =30 A 0] (PSS 13-20
)Y] - PP PSPPI 13-20
EXBIMPIE. .o b et b bt r e 13-20
Specify Destination ProPerti€S ..o iiiiiiiieiisise e e e renne s 13-21
PUIIOSE ...ttt bbbt s e bt e a bt eb e e e e bt et e neenne e e nrenreen 13-22
USBGE INOTES ... 13-22
Y11= G ST 13-22
EXAIMIPIE. ..ttt bbb bbb b ettt b bbb 13-22
POINt-t0-P0oiNt - Create @ QUEUEooi ittt bbb se ettt se e sneenas 13-23
1010 L] PSS 13-23
L0 ST= T (oI AN L0 (L PP PPRURTI 13-24
SYNTAX .. 13-24
D= 10 0] o - TSRS 13-24
Publish-Subscribe - Create @ TOPICccocvviiiiiieieee s 13-25
PUIPOSE ...t 13-25
LT Vo =30 A 0] (PSS 13-26
)Y 1] - PRSPPI 13-26
EXBIMPIE. .o b et b bt r e 13-26

XVii

Xviii

PUIPOSE.....c.cce et 13-27
LT Vo T= 3N AN 0] (SR 13-28
)Y] - SRR 13-28
EXAMPIE ... bbbt 13-28
REVOKE SYSIEM PriVIIEOESc.ocviceici ettt ne e neene s 13-29
PUIIOSE ...ttt h e bRt b e b e bt b e bt e s e bt s eb e e nr e neen e ene s 13-29
USBGE INOTES ...ttt 13-29
Y11= PSS 13-30
EXAIMIPIE ...ttt b bbb bbb et et b e 13-30
Publish-Subscribe - Grant TOPIC PrivilEgeS.........coccoviiiiiiiiiiiiee s 13-31
8T 010 L] -SSR 13-32
L ST=To (oI Ao (L PR OPPPRP 13-32
SYNTAX ..ttt e et 13-32
= 10 0] o - PP 13-32
Publish-Subscribe - Revoke TOpIC PrivIlEges ...t 13-33
PUIPOSE.....c.cec et 13-33
LT Vo =30 AN 0 (TS 13-34
)Y] - PR OPP PR 13-34
EXAIMPIE ... 13-34
Point-to-Point: Grant QUEUE PriVIIEQES.......ccccce it 13-35
PUIIOSE ...ttt e et b e b e bt b e bt e st bt e s eb e e nn e neen e ene s 13-36
USBGE INOTES ...ttt 13-36
Y11= G SS 13-36
EXAIMIPIE ...ttt b bbb bbb et et b e 13-36
Point-to-Point: Revoke QUEUE PriVIIEgES..........coi it 13-37
8T 01017 SR 13-38
LU EST-To (oI Ao (L PSR OPPPRP 13-38
SYNTAX ..ttt e et 13-38
ez 10 0] o - PSSP 13-38
STANT @ DESTINALION ...ttt bbb bbb e bbbt e e b e 13-39
PUIMPOSE.....c.cce et 13-39
LT Vo =30 AN 0] (TS 13-40
)Y - G PO PPPPR 13-40
EXAIMPIE ... bbb 13-40

STOP @ DESTINATION ...ttt bbb bbb ettt ne b e b 13-41

PUIPOSE ...t 13-42
LT Vo =30 A 0] (PSS 13-42
)Y 1] - PPV UPRT 13-42
EXBIMPIE. .o b et b bt r e 13-42
AITEr @ DESTINALION ...t 13-43
PUIIOSE ...ttt bbbt bbbt s e bt ab e eb e e e e ebe e teene e b e e nrenreen 13-43
USBGE INOTES ... 13-43
Y11= G ST 13-44
EXAIMIPIE. ..ttt bbb bbb b ettt b bbb 13-44
Drop @ DESTINATIONc.cveiiiiiitiie bbb bbbttt 13-45
1010 L] PSS 13-45
L0 ST- T (oI AN L0 (L PRSP UPPTPPRURTI 13-45
SYNTAX .. 13-45
ez 10 0] o - USRS 13-46
Schedule @ Propagation ... e ettt 13-47
PUIPOSE ...t 13-48
LT Vo =30 A 0] (PSS 13-48
)Y] - PP PSPPI 13-48
EXBIMPIE. .o b et b bt r e 13-48
Enable a Propagation SChEAUIE...........ccooviiiiie e 13-49
PUIIOSE ...ttt bbbt s e bt e a bt eb e e e e bt et e neenne e e nrenreen 13-49
USBGE INOTES ... 13-49
Y11= G ST 13-50
EXAIMIPIE. ..ttt bbb bbb b ettt b bbb 13-50
Alter a Propagation SChedule...........ooii e 13-51
1010 L] PSS 13-52
L0 ST= T (oI AN L0 (L PP PPRURTI 13-52
SYNTAX .. 13-52
D= 10 0] o - TSRS 13-52
Disable a Propagation SChedUIE ... s 13-53
PUIPOSE ...t 13-53
LT Vo =30 A 0] (PSS 13-53
)Y 1] - PRSPPI 13-54
EXBIMPIE. .o b et b bt r e 13-54

Xix

14

XX

UNSschedule 8 Propagation............couiiiiee ettt ene s 13-55

PUIPOSE.....c.cce et 13-55
LT Vo T= 3N AN 0] (SR 13-55
)Y] - SRR 13-56
EXAMPIE ... bbbt 13-56
JMS Operational Interface: Basic Operations (Point-to-Point)
Use Case Model: Operational Interface — Basic Operations............c.ccooevrennensieneieseennene 14-2
Use Case Model Diagram: Operational Interface (Point-to-Point) ..o, 14-3
Three Ways to Create a Queue CONNECLIONccooviieiiiicsice s 14-4
Create a Queue Connection with Username/PasswWordcccoeveieneneneneneiseneseeeneene 14-5
PUIDOSE ..ttt b e bbb bR e Rt b e e bbb e b e nbe e neenree e 14-5
LU ST= T (oI AN Lo (L PR PPRUR 14-5
SYNTAX ..ttt bRttt 14-6
ez 10 0T o SR 14-6
Create a Queue Connection with Open JDBC CONNECLIONccccooeiiiiiriinieicieeeeeeeceeee e 14-7
PUIPDOSE. ... e e et 14-7
USBGE INOLES ...ttt b et e st bt e bt e sbe e e st esbeeenbe e sbbesnbeenbeeanneennee e 14-7
)Y] - PSPPI 14-7
EXBIMPIE ...ttt e 14-8
Create a Queue Connection with Default Connection Factory Parameterscccccoee.e. 14-9
PUIIOSE ...ttt bbbt e bbb e bt b b e bt R e e e Rt e e ehe e e b e nne b e e nnenreen 14-9
USBGE INOTES ...t ettt 14-9
31 = ST TT 14-9
EXAIMIPIE ...ttt b bbb bbb et et b e 14-10
Create @ QUEUE SESSIONooiiiiiieiiitisie ettt ettt e sttt st e s besbesbesbesee st ebesee e eneeseeneenearennes 14-11
U] oo 1S OO T T TP PRSP P PPPTPPRPN 14-11
LU EST-To (oI Ao (L PSR OPPPRP 14-11
SYNTAX ..ttt e et 14-12
ez 10 0] o - PSSP 14-12
Create @ QUEUE SENUETocceiiiieeie ettt st e s e e te e e beetaesbeasbesteenseaaeeneesreenees 14-13
PUIMPOSE.....c.cce et 14-13
LT Vo =30 AN 0] (TS 14-13
)Y - G PO PPPPR 14-13
EXAIMPIE ... bbb 14-14

Two Ways to Send Messages Using a QUEUE SENAENcccovveieivecieiieese e 14-15

Send a Message Using a Queue Sender with Default Send Optionscccccceveveieennene 14-16
1010 L] PSSR 14-16
L0 ST- T (oI AN L0 (L PRSP UPPTPPRURTI 14-17
SYNTAX .. e 14-17
ez 10 0] o L USRS 14-17
Send Messages Using a Queue Sender by Specifying Send Options ..o 14-18
PUIPOSE ...t 14-19
LT Vo =30 A 0] (PSS 14-19
)Y] - PP PSPPI 14-19
EXBIMPIE. .o b et b bt r e 14-20
Two Ways to Create a Queue Browser for IMS Message QUEUESccevverververeeveieieninanens 14-21
Create a Queue Browser for Queues with Text, Stream, Objects, Bytes or Map Messages
14-22
PUIPOSE ...t 14-22
LT Vo =30 A 0] (PSS 14-23
)Y] - PP PSPPI 14-23
EXBIMPIE. .o b et b bt r e 14-23
Create a Queue Browser for Queues with Text, Stream, Objects, Bytes or Map Messages,
Locking Messages While BrOWSINGcccoeiiiiiiiiiiiiseseesee et 14-24
PUIIOSE ...ttt bbbt s e bt e a bt eb e e e e bt et e neenne e e nrenreen 14-24
USBGE INNOTES. ...ttt ettt bbb e bbb e bt e st e sbe et e ebe e besbeesbesneenbesteen 14-25
SYNITAX ...ttt bR R R R R R et h e R b 14-25
EXAIMIPIE. ..ttt bbb bbb b ettt b bbb 14-25
Two Ways to Create a Queue Browser for Oracle Object Type (ADT) Messages Queues 14-26
Create a Queue Browser for Queues of Oracle Object Type (ADT) MeSSagescoe.... 14-27
PUIIOSE ...t ettt b e bbbt s e bt e bt e bt e e e ebe e neeheenbesneenrenreen 14-28
USBGE INNOTES. ...ttt ettt bbb e bbb e s bt e it e sbe et e ebe e besbeesbesseenbenreen 14-28
SYNITAX ...ttt bR R R R R R et h e R b 14-28
EXAIMIPIE. ..ttt bbb bbb b ettt b bbb 14-28
Create a Queue Browser for Queues of Oracle Object Type (ADT) Messages, Locking
Messages While BrOWSINGccciiiiiiiiieiiiee e 14-29
1010 L] PSS 14-30
L0 ST= T (oI A L0 (L PP PPRSTI 14-30
SYNTAX .. 14-30
D= 10 0] o - TSRS 14-30

XXi

15

XXii

PUIPOSE.....c.cce et 14-31
LT Vo T= 3N AN 0] (SR 14-31
)Y] - SRR 14-31
EXAMPIE ... bbbt 14-32
Two Ways to Create @ QUEUE RECEIVETccvviiiiiiie et eneenenns 14-33
Create a Queue Receiver for Queues of Standard JMS Type Messagesccoccoeveeevennne. 14-34
PUIPOSE.....c.cce et 14-34
LT Vo =30 AN 0 (TS 14-35
)Y] - PR OPP PR 14-35
EXAMPIE ... bbbt 14-35
Create a Queue Receiver for Queues of Oracle Object Type (ADT) Messages 14-36
PUIIOSE ...ttt h e bRt b e b e bt b e bt e s e bt s eb e e nr e neen e ene s 14-37
USBGE INOTES ...ttt 14-37
Y11= PSS 14-37
EXAIMIPIE ...ttt b bbb bbb et et b e 14-37

JMS Operational Interface: Basic Operations (Publish-Subscribe)
Use Case Model: JMS Operational Interface — Basic Operations (Publish-Subscribe) 15-2

Use Case Model Diagram: Operational Interface — Basic Operations (Publish-Subscribe)

15-4

Three Ways to Create @ TOPIC CONNECLION.........ccoiiiieriiieierece s 15-5

Create a Topic Connection with Username/Password ... 15-6
PUIDOSE. ... e e ettt 15-6
LT Vo L= 3N A 0] (PSSR 15-6
)Y - PRSPPI 15-7
EXBIMPIE ...ttt 15-7

Create a Topic Connection with Open JDBC CONNECLIONccccevvrvriivieneceeeees e 15-8
PUIIOSE ...ttt e e bbbt e bt b e bt b e e bt e R e e e bt n e ehe e eheenne b e nnenreen 15-8
USBGE INOTES ...t ettt 15-8
31 = ST 15-8
EXAIMIPIE ...t b bbb e b b e ettt ettt be b e 15-9

Create a Topic Connection with Default Connection Factory Parametersccccoceene. 15-10
81010 L] SR 15-10
7= 1o (oI Ao (L PSPPI 15-10

EXAIMPIE. .ot b b 15-10
Create @ TOPIC SESSION....c..ciiicieeie sttt st et eareste s e restesbeseestetesee e enseseeneeneerenreans 15-11
PUIIOSE ...t ettt b e bbbt s e bt e bt e bt e n e ebe e e e ae e b e e nrenreen 15-11
USBGE INOTES ..o 15-11
Y11= G ST 15-12
EXAIMIPIE. ..ttt bbb bbb b ettt b bbb 15-12
Create a TOPIC PUBIISNET ..o 15-13
1010 L] PSS 15-13
L0 ST- T (oI AN L0 (L PRSP UPPTPPRURTI 15-13
SYNTAX .. e 15-13
ez 10 0] o - USRS 15-14
Four Ways to Publish Messages Using a Topic PUBIIShEr ..., 15-15
Publish a Message with Minimal Specificationc.ccccooiiiiinnii e 15-16
1010 L] PSS 15-16
L0 ST= T (oI AN L0 (L PP PPRURTI 15-16
SYNTAX .. 15-17
ez 10 0] o - USRS 15-17
Publish a Message Specifying Correlation and Delay ..o, 15-19
PUIPOSE ...t 15-20
LT Vo =30 A 0] (PSS 15-20
)Y 1] 2= PPV UPRTR 15-20
EXBIMPIE. .o b et b bt r e 15-20
Publish a Message Specifying Priority and Time-TO-LIiVeccccocvivvivieneievciceecn e, 15-22
PUIIOSE ...ttt bbbt s e bt e a bt eb e e e e bt et e neenne e e nrenreen 15-23
USBGE INOTES ...t 15-23
Y11= G ST 15-23
EXAIMIPIE. ..ttt bbb bbb b ettt b bbb 15-23
Publish Messages Specifying a Recipient List Overriding Topic Subscribers 15-25
1010 L] PSS 15-26
L0 ST= T (oI AN L0 (L PP PPRURTI 15-26
SYNTAX .. 15-26
D= 10 0] o - TSRS 15-26
Two Ways to Create a Durable Subscriber for a Topic of Standard JMS Type Messages 15-28
Create a Durable Subscriber for a JMS Topic Without Selectorc.ccccooevvericiiicicenns 15-29

XXili

XXV

USBGE INOTES ...ttt 15-29
Y11= PSS 15-30
EXAIMIPIE ...ttt b bbb bbb et et b e 15-30
Create a Durable Subscriber for a IMS Topic With Selector ..o 15-31
8T 010 L] -SSR 15-32
USAOE INOTES ..ottt et e b et e e s be e e st e s b bt et e e bb e e beesbe e e beesbeeenbeenees 15-32
SYNTAX ..ttt et 15-33
D= 10 0] o - PP 15-33

Two Ways to Create a Durable Subscriber for a Topic of Oracle Object Type (ADT) Messages.
15-34

Create a Durable Subscriber for an ADT Topic Without Selectorccoceovviiiiincninne. 15-35
8T 010 L] -SSR 15-35
L ST=To (oI Ao (L PR OPPPRP 15-36
SYNTAX ..ttt e et 15-36
= 10 0] o - PP 15-36
Create a Durable Subscriber for an ADT Topic With Selector ..o, 15-37
PUIPOSE.....c.cec et 15-38
LT Vo =30 AN 0 (TS 15-38
)Y] - PR OPP PR 15-39
EXAIMPIE ... 15-39
Two Ways to Create a Remote SUDSCIIDEr ... 15-40
Create a Remote Subscriber for Topics of IMS MESSAQES........cocerirerereneneieeeeeeeeeeieees 15-41
PUIMPOSE.....c.cce et 15-41
LT To =30 AN 0] (SR 15-42
)Y] - PR OPP PR 15-42
EXAIMPIE ... bbb 15-42
Create a Remote Subscriber for Topics of Oracle Object Type (ADT) Messages 15-44
PUIIOSE ...ttt h e et h e bt b e bt b e bt st b e s b en e e nn e ne e ene s 15-45
USBGE INOTES ..ottt 15-45
Y11= G SS 15-46
EXAIMIPIE ...ttt b bbb bbb et et b e 15-46
Two Ways to Unsubscribe a Durable SUDSCHPTION..........ccocooiiiiiniinseee e 15-47
Unsubscribe a Durable Subscription for a Local Subscriber ... 15-48
PUIIOSE ...ttt h e et h e bt b e bt b e bt st b e s b en e e nn e ne e ene s 15-48
USBGE INOTES ...t 15-49

16

EXAIMPIE. .ot b b 15-49
Unsubscribe a Durable Subscription for a Remote Subscriberccccocvvvvvviicicicncnn, 15-50
PUIIOSE ...t ettt b e bbbt s e bt e bt e bt e n e ebe e e e ae e b e e nrenreen 15-50
USBGE INOTES ..o 15-50
Y11= G ST 15-51
EXAIMIPIE. ..ttt bbb bbb b ettt b bbb 15-51
Two Ways to Create a TOPIC RECEIVELcoiiiiiiiiciice et 15-52
Create a Topic Receiver for a Topic of Standard JIMS Type MeSSagescccceververvevevnnnnns 15-53
PUIIOSE ...ttt bbbt bbbt s e bt ab e eb e e e e ebe e teene e b e e nrenreen 15-54
USBGE INOTES ... 15-54
Y11= G ST 15-54
EXAIMIPIE. ..ttt bbb bbb b ettt b bbb 15-54
Create a Topic Receiver for a Topic of Oracle Object Type (ADT) MesSsagesccoceenee 15-54
1010 L] PSS 15-56
L0 ST= T (oI AN L0 (L PP PPRURTI 15-56
SYNTAX .. 15-56
ez 10 0] o - USRS 15-56
JMS Operational Interface: Basic Operations (Shared Interfaces)
Use Case Model: JIMS Operational Interface — Basic Operations (Shared Interfaces)...... 16-2
STArt @ JIMS CONNECTION. ...ttt bbb bbb sttt e et ebe bbb 16-6
PUIPDOSE ...ttt 16-6
LT Vo =30 A0 (=SOSR 16-6
RV] - TP TOPRRTRTR 16-7
EXAIMPIES ...ttt 16-7
Get the IMS ConnNection from & SESSION ..ot 16-8
PUIIOSE ..t b et h ekt b ek e e n bt et bt bt eh e e r e R n e e nre s 16-8
USBGE INOTES ... e et er e s 16-8
Y11= GO 16-8
EXAIMIPIES ...ttt b bbb e bbbt ettt bbb e 16-9
Commit All Operations in a Transacted SESSIONcccoeereireiircieneenees e 16-10
1010 L] PSS 16-10
L0 S7= T (oI A L0 (L PP OUR PP PPRURTI 16-10
SYNTAX .. 16-10

XXV

XXVi

EXAIMPIES ...ttt bbbt bbb bbbt b e ne e 16-11

Rollback All Operations in a Transacted SESSIONcccviviiriiirieineieee s 16-12
8T 010 L] -SSR 16-12
LU EST=To (oI A Lo (R OPPRPRP 16-12
SYNTAX ..ttt et 16-12
= 10 0] 0] TSP 16-13
Get the Underlying JDBC Connection from a JMS SeSSIiONccccevvvveviveieiieie e 16-14
PUIPOSE.....c.cce et 16-14
LT Vo =30 AN 0 (TS 16-14
)Y] - PR OPP PR 16-14
EXAMPIES ..o 16-15
Create @ BYTES IMIESSAQEoiivieiieeeriee it sttt e te et ste e te e ste e te s e e seesreestesseesbeeseentaeneesneeneesneenees 16-16
PUIIOSE ...ttt h e bRt b e b e bt b e bt e s e bt s eb e e nr e neen e ene s 16-16
USBGE INOTES ...ttt 16-16
Y11= PSS 16-16
EXAIMPIES ...ttt bbbt bbb bbbt b e ne e 16-17
Create @ MaP IMIESSAQE.ccviiiriiiiiir ettt 16-18
8T 01017 SR 16-18
L EST=To (oI Ao (L PRSPPI 16-18
SYNTAX ..ttt e et 16-18
e 10 0] 0] TSP 16-19
Create @ STrEaM IMBSSAGE .. .iuvi ittt sttt e b e e et e sab e et e e snaeebeearaeebeenres 16-20
PUIMPOSE.....c.cce et 16-20
LT To =30 AN 0] (SR 16-20
)Y] - PR OPP PR 16-20
EXAMPIES ..o bbb 16-21
Create an ODJECT IMESSAQEvcvviiiieriiiie ettt st tesae e e e s e eneeneerenns 16-22
PUIIOSE ...ttt h e et h e bt b e bt b e bt st b e s b en e e nn e ne e ene s 16-22
USBGE INOTES ..ottt 16-22
Y11= G SS 16-23
EXAIMPIES ...ttt bbb bbb e bttt b e 16-23
Create @ TEXE IMIESSAQEcoviiiiiiririeite ettt er s 16-24
8T 01017 SR 16-24
LU ES7=To (oI N0 (L PRSPPI 16-24
SYNTAX ..ttt e et 16-25

EXAIMIPIES ..ottt bbb bbb bbbt n et r s 16-25

Create an ADT MESSAJEccociiiiiiiiir e 16-26
1010 L] PSSR 16-26
L0 ST- T (oI AN L0 (L PRSP UPPTPPRURTI 16-26
SYNTAX .. e 16-27
oG 10 0] o] TSRS 16-27
Specify Message Correlation ID ... e 16-28
PUIPOSE ...t 16-28
LT Vo =30 A 0] (PSS 16-28
)Y] - PP PSPPI 16-29
EXAIMPIES ..o bbbt b et 16-29
SPECITY JIMS MESSAGE PrOPEITY ...ovcvicieiieciese ettt e e renne e 16-30
L0 ST- T (oI AN L0 (L PRSP UPPTPPRURTI 16-31
Specify Message Property as BOOIEANccoeiiiiiiiiiiie e 16-32
1010 L] PSS 16-32
L0 ST= T (oI AN L0 (L PP PPRURTI 16-32
SYNTAX .. 16-33
oG 10 0] o TSRS 16-33
Specify Message Property @S STFINGooooiiiiiiieiiceeees e e 16-34
PUIPOSE ...t 16-34
LT Vo =30 A 0] (PSS 16-34
)Y 1] 2= PPV UPRTR 16-35
EXAIMPIES ..o bbbt b et 16-35
Specify Message Property @S INt ... 16-36
PUIIOSE ...ttt bbbt s e bt e a bt eb e e e e bt et e neenne e e nrenreen 16-36
USBGE INOTES ...t 16-36
Y11= G ST 16-37
EXAIMIPIES ..ottt bbb bbb bbbt et b bbbt 16-37
Specify Message Property as DOUDIE ...t 16-38
1010 L] PSS 16-38
L0 ST= T (oI AN L0 (L PP PPRURTI 16-38
SYNTAX .. 16-39
TG 10 0] o TSRS 16-39
Specify Message Property as FIOAL ..o 16-40
PUIPOSE ...t 16-40

XXVil

SYNTAX ..ttt e et 16-41
= 10 0] 0] TSP 16-41
Specify Message Property @S BYLE ..o e 16-42
USBGE INOTES ...ttt 16-42
Y11= PSS 16-43
EXAIMPIES ...ttt bbbt bbb bbbt b e ne e 16-43
Specify Message Property @S LONGcocoiiiiiiiiiiseeesee st 16-44
8T 010 L] -SSR 16-44
L EST=To (oI Ao (L PRSPPI 16-44
SYNTAX ..ttt et 16-45
e 10 0] 0] TSP 16-45
Specify Message Property @S SNOIT ..o 16-46
PUIPOSE.....c.cec et 16-46
LT Vo =30 AN 0 (TS 16-46
)Y] - PR OPP PR 16-47
EXAMPIES ..o 16-47
Specify Message Property as ODJECTccocviviiicicce e 16-48
PUIIOSE ...ttt e et b e b e bt b e bt e st bt e s eb e e nn e neen e ene s 16-48
USBGE INOTES ...t 16-48
Y11= PSS 16-49
EXAIMPIES ...ttt bbbt bbb bbbt b e ne e 16-49
Set Default TimeToLive for All Messages Sent by a Message Producercc.cccveene. 16-50
8T 01017 SR 16-50
LU EST-To (oI Ao (L PSR OPPPRP 16-50
SYNTAX ..ttt e et 16-50
e 10 0] 0 TSP 16-51
Set Default Priority for All Messages Sent by a Message Producercccocceeevveeeienen. 16-52
PUIMPOSE.....c.cce et 16-52
LT Vo =30 AN 0] (TS 16-52
)Y] - PR OPP PR 16-52
EXAMPIES ..o bbb 16-53
Create an AQJMS AQENToci it et e e e erenren 16-54
PUIIOSE ...ttt h e et h e bt b e bt b e bt st b e s b en e e nn e ne e ene s 16-54
USBGE INOTES ...t 16-55

XXViii

EXAMPIES ... bbb bbbt b et bt b r e 16-55
Two Ways to Receive a Message Synchronously Using a Message Consumer 16-56
PUIIOSE ...t ettt b e bbbt s e bt e bt e bt e n e ebe e e e ae e b e e nrenreen 16-56
USBGE INOTES ..o 16-56
Y11= G ST 16-57
EXAIMIPIES ..ottt bbb bbb bbbt n et r s 16-57
Receive a Message Using a Message Consumer by Specifying Timeoutc.ccccoeennee. 16-58
1010 L] PSS 16-58
L0 ST- T (oI AN L0 (L PRSP UPPTPPRURTI 16-58
SYNTAX .. e 16-59
oG 10 0] o TSRS 16-59
Receive a Message Using a Message Consumer Without Waitingccccccovevviiecieenn, 16-60
PUIPOSE ...t 16-60
LT Vo =30 A 0] (PSS 16-60
)Y] - PP PSPPI 16-60
EXAIMPIES ..o bbbt b et 16-61
Specify the Navigation Mode for Receiving MESSAgEScceovrvrvriererenieseseiereeneeeeeneens 16-62
PUIIOSE ...ttt bbbt s e bt e a bt eb e e e e bt et e neenne e e nrenreen 16-62
USBGE INOTES ... 16-63
Y11= G ST 16-63
EXAIMIPIES ..ottt bbb bbb bbbt n et r s 16-63
Two Ways to Specify a Message Listener to Receive a Message Asynchronously 16-65
Specify a Message Listener at the Message CONSUMETcccovvvrieriereneneseseesiereeneeeseneenns 16-66
PUIIOSE ...ttt bbbt s e bt e a bt eb e e e e bt et e neenne e e nrenreen 16-66
USBGE INOTES ...t 16-66
Y11= G ST 16-66
EXAIMIPIES ..ottt bbb bbb bbbt et b bbbt 16-67
Specify a Message Listener at the SESSION ... 16-69
1010 L] PSS 16-69
L0 ST= T (oI AN L0 (L PP PPRURTI 16-69
SYNTAX .. 16-70
TG 10 0] o TSRS 16-70
Get the Correlation 1D 0f @ MESSAQEccccveiiiiiiiiiere et 16-71
PUIPOSE ...t 16-71

XXiX

XXX

SYNTAX ..ttt e et 16-71
= 10 0] 0] TSP 16-72
Two Ways to Get the Message ID 0f @ MESSAQE........cccvvveiiiiciiiicce e 16-73
Get the Message ID 0f a MeSSage @S BYLES ..o 16-74
8T 010 L] -SSR 16-74
USAOE INOTES ..ottt et e b et e e s be e e st e s b bt et e e bb e e beesbe e e beesbeeenbeenees 16-74
SYNTAX ..ttt et 16-74
e 10 0] 0] TSP 16-75
Get the Message ID of a MesSage as @ SHNQGc.ocveveii e s 16-76
PUIPOSE.....c.cce et 16-76
LT Vo =30 AN 0 (TS 16-76
)Y] - PR OPP PR 16-76
EXAMPIES ..o 16-77
Get the IMS MESSAJE PrOPEITYcciiiieieriiesie et sttt e e neeneerennes 16-78
Get the Message Property as a BOOIEANccooiiiiiiiiiii s 16-80
PUIPOSE.....c.cec et 16-80
LT Vo =30 AN 0 (TS 16-80
)Y] - PR OPP PR 16-80
EXBMPIES ...t 16-81
Get the Message Property @s @ StrHNG ...ccccceieveieieieeiecese e e e erenns 16-82
PUIIOSE ...ttt e et b e b e bt b e bt e st bt e s eb e e nn e neen e ene s 16-82
USBGE INOTES ...ttt 16-82
Y11= G SS 16-83
EXAIMPIES ...ttt bbb bbb e bttt b e 16-83
Get the Message Property as INT ..o 16-84
8T 01017 SR 16-84
LU EST-To (oI Ao (L PSR OPPPRP 16-84
SYNTAX ..ttt e et 16-84
e 10 0] 0] TSP 16-85
Get the Message Property as Double ... 16-86
PUIMPOSE.....c.cce et 16-86
LT Vo =30 AN 0] (TS 16-86
)Y - G PO PPPPR 16-86
EXAMPIES ..o bbb 16-87

Get the Message Property as FIOAL ... 16-88

PUIPOSE ...t 16-88
LT Vo =30 A 0] (PSS 16-88
)Y 1] - PPV UPRT 16-88
EXAIMPIES ..o bbbt b et 16-89
Get the Message Property as BYLE ..o 16-90
PUIIOSE ...ttt bbbt bbbt s e bt ab e eb e e e e ebe e teene e b e e nrenreen 16-90
USBGE INOTES ... 16-90
Y11= G ST 16-90
EXAIMIPIES ..ottt bbb bbb bbbt n et r s 16-91
Get the Message Property @S LONG ..ot 16-92
1010 L] PSS 16-92
L0 ST- T (oI AN L0 (L PRSP UPPTPPRURTI 16-92
SYNTAX .. 16-92
oG 10 0] o TSRS 16-93
Get the Message Property @S SNOKT ..ot e 16-94
PUIPOSE ...t 16-94
LT Vo =30 A 0] (PSS 16-94
)Y] - PP PSPPI 16-94
EXAIMPIES ..o bbbt b et 16-95
Get the Message Property as ODJECT ... 16-96
PUIIOSE ...ttt bbbt s e bt e a bt eb e e e e bt et e neenne e e nrenreen 16-96
USBGE INOTES ... 16-96
Y11= G ST 16-96
EXAIMIPIES ..ottt bbb bbb bbbt et b bbbt 16-97
CloSe 8 MESSAJE PrOTUCETc.oviiiiiiiiieiisietit ettt n e b e ene e 16-98
1010 L] PSS 16-98
L0 ST= T (oI AN L0 (L PP PPRURTI 16-98
SYNTAX .. 16-98
TG 10 0] o TSRS 16-99
(0 (o1 = WAV [T: Vo T O o T U] =T OSSPSR 16-100
PUIPOSE ...ttt 16-100
LT Vo T= 30 AN 0] (=SSP 16-100
R3]V L=V GO SO UOUR PRSP 16-100
EXAMPIES ...t bbbt 16-101

XXXI

XXX

STOP @ JMS CONNECLION ..ottt bbb bbb ettt ettt sbe e 16-102

PUIPOSE. ... ettt 16-102
LT To =30 A 0] (SR 16-102
SYINEAX 1.ttt bbb bbb R bbbt b bbb 16-102
EXAMPIES ...ttt 16-103
ClOSE @ JMS SESSION ..ot r ettt 16-104
PUIIOSE ...t b e bbbt b e bt bt e bRt er e ne b nre s 16-104
USBGE INOTES ...ttt 16-104
R3] €= G 16-104
EXAIMPIES ...t bbb bbbt e ettt b e nae 16-105
C10SE @ JMS CONNECLION ..ottt ettt s et et e st esre e neas 16-106
1010 L] ST 16-106
L S7=To (oI AN To] (L TR PUPPRIN 16-106
SYNTAX ..ttt ettt 16-106
s 10 0] o] TSP 16-107
Get the Error Code for the JMS EXCEPLIONccociiiiiiiiircie s 16-108
PUIPOSE. ...ttt 16-108
LT To =N A 0] (=SSP 16-108
SYINEAX 1.ttt bbb bR bR bbb bbb 16-108
EXAMPIES ...ttt 16-109
Get the Error Number for the JIMS EXCEPLIONccccvvviiiviiie e 16-110
PUIIOSE ...t b e bbbt b et b e bRt e r et nn e nre s 16-110
USBGE INOTES ...t ettt 16-110
R3] €= G 16-110
EXAIMPIES ...ttt bbb bbbt ettt b e ae 16-111
Get the Error Message for the JMS EXCEPLION ..ot 16-112
101017 ST 16-112
L ES7=To (oI AN Lo (L PSP OPPUPPRIN 16-112
SYNTAX ..ttt ettt 16-112
e 10 0] o] T USSP 16-113
Get the Exception Linked to the JIMS EXCEPLION ..o 16-114
PUIMPOSE. ...ttt 16-114
LT To L= A 0] (ST 16-114
SYINEAX 1.ttt bbb b R bR bbbt bbb 16-114
EXAMPIES ...ttt 16-115

Print the Stack Trace for the JIMS EXCEPLIONcccooiiiiiiiiiiisee e 16-116

PUIPOSE ...ttt 16-116
LT 1o =30 A 0 (OSSR 16-116
SYNEAX ..ttt r e r Rt R et r et R r e re e 16-116
EXAMPIES ...t bbbt 16-117

A Oracle Advanced Queuing by Example

Create Queue Tables and QUEUES.........coiiii ettt sbe st sae e e A-4
Create a Queue Table and Queue Of ObJECt TYPE.....ccvivriievirere e A-4
Create a Queue Table and Queue Of RAW TYPE ...ttt A-5
Create a Prioritized Message Queue Table and QUEUEcccoceverieieiienieieinenc e A-5
Create a Multiple-Consumer Queue Table and QUEUEccceevveerierieriereeecisese e A-5
Create a Queue to Demonstrate Propagation...........cccocuiiereneneienienieieeeeeesese e A-6
Setup for Java AQ EXAMPIES.......c.coiiiiieie e A-6
Create an Java AQ SESSIONcc.iiiiiieiieieite ettt ettt et s et sre e sb e s taesbe e bt e sbesabesbe et e sbeeresbeeareares A-7
Create a Queue Table and Queue USING JAVAcccccvieiiiiieeie e A-8
Create a Queue and Start Enqueue/Dequeue USING JAVA.........ccoocorerinerinennennense e A-9
Create a Multi-Consumer Queue and Add Subscribers Using Java..........cccccoovevvivvivninnnnnnn, A-9

Enqueue and Dequeue Of IMIESSAJESccoiiiirieriiieierieie ettt A-11
Enqueue and Dequeue of Object Type Messages Using PL/ZSQL.........ccccoceovrviineininnnnnn A-11
Enqueue and Dequeue of Object Type Messages Using Pro*C/C++.......cccccoevvvvvcncnnnnnn, A-12
Enqueue and Dequeue of Object Type Messages Using OClccocooeieiiiciciniiiienen A-14
Enqueue and Dequeue of Object Type Messages (CustomDatum interface) Using Java A-16
Enqueue and Dequeue of Object Type Messages (using SQLData interface) Using Java..........
A-18
Enqueue and Dequeue of RAW Type Messages Using PL/SQL ..o A-21
Enqueue and Dequeue of RAW Type Messages Using Pro*C/C++ccccvvvvneinecnnennn, A-22
Enqueue and Dequeue of RAW Type Messages Using OCl........cccccocevvveievcicivniecnensns A-25
Enqueue of RAW MEeSSAQES USING JAVA......ccuiiiiiriiieiieiire ittt A-26
Dequeue 0f MeSSagES USING JAVA.........ciuiiiiiiiieiieieee ettt sre e A-27
Dequeue of Messages in Browse Mode USING JaVa..........ccccvcvvvvieninieneneniereseeeesese s A-28
Enqueue and Dequeue of Messages by Priority Using PL/SQL ..o A-30
Enqueue of Messages with Priority USINg JAVA ..o A-32
Dequeue of Messages after Preview by Criterion Using PL/SQLcccccevevvvvcicivcnennnn, A-33

Enqueue and Dequeue of Messages with Time Delay and Expiration Using PL/SQL... A-36

XXXiii

XXXIV

Enqueue and Dequeue of Messages by Correlation and Message ID Using Pro*C/C++..........
A-37

Enqueue and Dequeue of Messages by Correlation and Message ID Using OCl............ A-42
Enqueue and Dequeue of Messages to/from a Multiconsumer Queue Using PL/SQL A-44
Enqueue and Dequeue of Messages to/from a Multiconsumer Queue using OCl......... A-47
Enqueue and Dequeue of Messages Using Message Grouping Using PL/SQL.............. A-51

Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes Using
PL/SQL A-53

Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes Using Java..
A-56

PrOPAGALION ...ttt ettt r bbb h bbbt bbbt A-63
Enqueue of Messages for remote subscribers/recipients to a Multiconsumer Queue and
Propagation Scheduling Using PL/SQL A-63
Manage Propagation From One Queue To Other Queues In The Same Database Using
PL/SQL A-65
Manage Propagation From One Queue To Other Queues In Another Database Using
PL/SQL A-65

Unscheduling Propagation Using PLZSQLcocoeviieiereeeceeee e A-66
DIrOP AQ OB JECES. . .ctiiiiiieeeee ettt ettt b bt b e bbbt bbbt b A-67
Revoke ROIES aNd PrIVIIEGES ..o A-68
(D TCT o] [0}V A AN @ Y V7 4 1 A A-69
YO - TaTo [\V/ =T o To] o VAU L7 T SR A-74

Create_types.sgl : Create Payload Types and Queues in Scott's Schema.............ccccceeeene A-74

Enqueue Messages (Free Memory After Every Call) Using OCl........c.cccoovvevvvvcvvencnenne, A-74

Enqueue Messages (Reuse Memory) USiNg OCH ... A-78

Dequeue Messages (Free Memory After Every Call) Using OClccccoeoveincincinnenns A-82

Dequeue Messages (Reuse Memory) Using OCHccvvviiveieienicisiesie e A-85

Oracle JMS Interfaces, Classes and Exceptions

Oracle IMSCIASSES (PAT 1) ...eiveieeiierierierierierieeseet e e s e e te s e sre e te e sr e e eeseesesaeseeneeseeressessesrensesnens B-5
Oracle JMS ClaSSES (PAIT 2) .c..eiuirieriirieie ettt bbb se et et be st e bt ebesbesbe b B-6
Oracle JIMS ClasSeS (PAIT 3) ..ueiieiiieiieieiiete ittt bbbt r bbb bbb e ene e B-7
Oracle IMS ClasSeSs (PAIT 4) .oovivieieiere e et e e e ettt se e esae e e e eneeresnearesrenrennens B-8
Oracle JIMS ClaSSES (PAIT5) .oveoiiiriieieiieiee et ettt besbe b b B-9
Oracle JMS ClaSSES (PAIT B)cviveiiriiirerieiirieterieiest ettt sb ettt sttt sr b sn e an e an e anes B-10
Oracle IMS Classes (Part 6 CONtINUEA)ccocviriiiiiieienie e B-11

Oracle JIMS ClaSSES (PAIT 7) ..ocueieieieiieie ettt ettt bbb et et be bbb B-12

Oracle JIMS ClasSeS (PANT 8) ...c.eiveuiriiirieiiieiit ettt ettt e B-13
Oracle IMS Classes (PArt 9) ...cvcviviiirieiirese ettt s ae e essensere s e esenresnenneas B-14
Oracle JIMS Classes (PArt 10)cooeiiieieiireie ettt bbb e b e e e ebesbesbesnen B-15
Oracle JMS Classes (Part 10 CONTINUEA)ooviiiiiiiiiecieceisi e B-16
Interface - Javax.JmS.BYtESIMESSAQEcccviueivirieieieiceee et sre e B-17
Interface - javax.jmS.CONNECLIONcccviiiiicc et sre s B-18
Interface - javax.jms.CoONNECIONFACIONYcocoiiiiiiiiii e B-19
Interface - javax.jms.ConNectioNMetaDataccccvvviviviniiniene e B-20
Interface - javax.jms.DeliVeryMOAE ... B-21
Interface - JavaxX.jms.DeStiNAtiON ..ot e B-22
Interface - Javax.Jms.MapIMESSATEcccecevverierieieieeeeese et e e re e e srenes B-23
INterface - JavaX. JIMS.IMIESSAQEccuviiirie ettt et et et ae e be e e sae e e sreenees B-25
Interface - javax.jms.MeSSagECONSUMIETccccoiiuiiriiinieisieeieeee ettt B-26
Interface - javax.jms.MeSSagELISIENETccccieieiiceece e sre s B-27
Interface - javax.jms.MesSagePrOTUCETcccocviiiiiiiie e B-28
Interface - javaxX.jmS.ODJECIMESSAQEccvrvruiriiirieiriere e B-29
Interface - Javax.JMS.QUEUEccocviiiiiriereiesiee ettt et e a e e e e s e e e eneeneeresnesrenns B-30
Interface - javax.jms.QUEUEBIOWSELcccvcciiiiiiieieeie st eie e e ste st e st te e sae e e sre e B-31
Interface - javax.jms.QUEUECONNECTIONccoiiiiiiriiiie e B-32
Interface - javax.jms.QueueConNeCtiONFACIONYccccccvvivieiininse e B-33
Interface - javax.jmS.QUEUERECEIVENc.cccvciiieiie ittt e e e sre s B-34
Interface - javaxX.jmS.QUEUESENUELcccciriiiiiiieiriee e B-35
Interface - javax.jms.QUEUESESSIONcccciviiieieieieeeese ettt e e enesre e srenns B-36
INterface - JaVaX. JIMS.SESSIONccvcciiiice ettt ettt et e e be e e sae e e sreenees B-37
Interface - JavaxX.jms.StreamMMESSAQEccvrvririiirieiriere e B-38
Interface - Javax. JMS. TEXIIMESSAQEcccivieivirieieieieeee ettt e e e e enesresnesrenns B-39
INterface - JAVAX.JIMS. TOPIC .ooiiiiiiiiiierie bbb e e ettt ettt sbe e B-40
Interface - javax.jms. TOPICCONNECTIONcc.oiriiiiiiiriiiriese e B-41
Interface - javax.jms. TopicCONNECLIONFACIONYccovvviviire e B-42
Interface - javax.jms. TOPICPUBIISNEr ..o B-43
Interface - JavaxX.jmS. TOPICSESSIONc.ceiiiiiriiirieiirieirte bbbt B-44
Interface - javax.jms. TOPICSUDSCIIDENc.covcieiiccc e B-45
Exception javax.jms.InvalidDestinatioNEXCEPLIONcccooviiiiiiiiiineieee e B-46
Exception javax.jms.INvalidSelectorEXCEPLION ...t B-47

XXXV

XXXVI

Exception javax.JMS.JMSEXCEPLIONcciiiiiiiiiiie ettt bbb e B-48

Exception javax.jms.MessageEOFEXCEPLION ..ot B-49
Exception javax.jms.MessageFormatEXCEPLiONccccoveveieieieeicise e e B-50
Exception javax.jms.MessageNotReadableEXCeption ... B-51
Exception javax.jms.MesageNotWriteableEXCEPTIONcccovvireiiieiiiiiiieneseee e, B-52
Interface - oracle. JMS. AAIIMESSAQEccvciviviicisecc e B-53
Interface - oracle.jms.AQjMSQUEUERECEIVELcccocviiiiieie e B-54
Interface - oracle. jms. AQJMSQUEUESENUENcccciriiiiiiiiiriiirieire e B-55
Interface - oracle.jms. AQJMSTOPICPUBIISNErccoov i B-56
Interface - 0racle. JmMS. TOPICRECEIVENccciiiiiiiiiiie e B-57
Interface - oracle. jms. AQJMSTOPICSUDSCIIDENcooiiiiiiiiiciee e B-58
Interface - oracle.jms.AQJMSTOPICRECEIVENcccocviviiriiieiereeeeese e B-59
Class - oracle.jms. AQJMSAULMESSAGJEccccveiieiiiieie et see st a e reesae e e sresaesre s B-60
Class - 0racle JMS. AQJMSAGENT ..ottt sb e anes B-61
Class - oracle.jms. AQJMSBYLESMESSATEccvcvrviiiirirerisese e reeiere e eens B-62
Class - oracle.jms. AQJMSCONNECLIONcccvccviiieieiiee et sre s B-63
Interface - oracle.jms. AQjmsConnectionMetadatac.ccoevreiiriiniinins e B-64
Class - oracle.jms. AQJMSCONSIANTSc.ccveviiiiiirie e s see e B-65
Interface - oracle.jms.AQJMSCONSUMETccocciiiiiiieieiieeseee e se e e st be e re e e sre e e sreaaesreas B-66
Class - oracle. jms. AQJMSDESTINATIONccciiiiiiiiiiiee e B-67
Class - oracle.jms. AQjmsDestinatioNPrOPEITYccccvivviririeiereieeee e B-68
Class - oracle. jms. AQJMSFACLONYc.ccoviieiieieie ettt e s be et e s reentesneestesneesee s B-69
Class - oracle. jms. AQJMSMAPIMESSAGEcvrveiirieirieiiiieireere ettt B-70
Class - oracle.Jms. AQJMSIMESSAGEccerverieirierieire e se e seestes e e et erae e sresre e sre e sresaeaeseeneens B-71
Class - oracle.jms. AQJMSODJECIIMESSATEcccveviiieie ittt B-72
Class - oracle.jms. AQJmMSOracleDebUQcccccviiiiiiiiiii e B-73
Class - oracle.jms. AQJMSPIOUUCETcc.cveieiiicire et B-74
Class - oracle.jms. AQJMSQUEUEBIOWSENccccoviiiiii et B-75
Class - AQjMSsQuUeUeCONNECLIONFACTONYccoiiieiiriiiiieiieieie st B-76
Class - oracle.Jms. AQJMSSESSIONcceviieeeieieise e se e ste e e et e e te e sresaesresrenaeseeneens B-77
Class - oracle.jms. AQJMSSIreamMMESSAJEc.cceiveviiieereiie e se et sre s B-78
Class - oracle jms. AQJMSTEXLIMESSATEcvrverirreiirieiinieinieiesie ettt sr e anes B-79
Class - oracle.jms. AQjmsTopicCoNNECtIONFACIONYccccvvveierieieieee e B-80
Exception oracle.jms.AQJMSEXCEPLIONoiiiiriiiiiiiie e e e B-81
Exception oracle.jms. AQjmsinvalidDestinationEXCEPLIONcccoceovreriieninennenseneeseen, B-82

Exception oracle.jms.AQjmsinvalidSelectorEXCeption ..o B-83

Exception oracle.jms.AQjmsMessageEOFEXCEPTIONccccoeerieireirieinicenee e B-84
Exception oracle.jms.AQjmsMessageFormatEXCEPLIONc..ccocvvivvvrierinene e B-85
Exception oracle.jms.AQjmsMessageNotReadableEXception ..o B-86
Exception oracle.jms.AQjmsMesssageNotWriteableEXCeptioncccocevevenecincicicinenn B-87
Interface - oracle. AQ. AQQUEUETADIEoovv ittt B-88
Class - oracle. AQ.AQQUEUETADIEPTIOPEITYocviiiiiiciieeee et B-89

C Scripts for Implementing 'BooksOnLine’
tkagdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers.......... C-2
tkagdocd.sql: Examples of Administrative and Operational Interfaces..........c.ccocooceiennnee. C-16
tkagdoce.sql: Operational EXaAmMPIES........ccccvviiiiiiincieieecees s C-21
tkagdocp.sql: Examples of Operational INterfaces ... C-22
tkaqdoce.sgl: Clean-UP SCEIPL.......cviiiieiieee ettt C-37

D JMS Error Messages

Index

XXXVii

XXXViii

Send Us Your Comments

Oracle8i Application D eveloper 's Guide - A dvanced Queuing, Release 2 (8.1.6)
Part No. A76938-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

« electronic mail - infodev@us.oracle.com

« FAX-(650) 506-7228

« postal service:
Oracle Corporation
Oracle Server Documentation Manager
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.

Preface

This Guide describes features of application development on the Oracle Server
having to do with Oracle Advanced Queuing, Release 8.1.5. Information in this Guide
applies to versions of the Oracle Server that run on all platforms, and does not
include system-specific information.

The Preface includes the following sections:

Information in This Guide

Feature Coverage and Availability

New Features Introduced with Oracle 8.1
Other Guides

How This Book Is Organized

Your Comments Are Welcome

Information in This Guide

Oracle Advanced Queueing (Oracle AQ) provides message queuing as an
integrated part of the Oracle server. Oracle AQ provides this functionality by
integrating the queuing system with the database, thereby creating a message-enabled
database. By providing an integrated solution Oracle AQ frees application
developers to devote their efforts to their specific business logic rather than having
to construct a messaging infrastructure.

The Oracle8i Application Developer’s Guide - Advanced Queuing is intended for
programmers developing new applications that use Oracle Advanced Queuing, as
well as those who have already implemented this technology and now wish to take
advantage of new features.

The increasing importance of Oracle AQ has led to its being presented as an
independent volume within the Oracle Application Developers documentation set.

Feature Coverage and Availability

For information about the differences between Oracle8 and the Oracle8 Enterprise
Edition and the features and options that are available to you, see Getting to Know
Oracle8i.

New Features Introduced with Oracle 8.1

« Queue Level Access Control

« Non-Persistent Queues

« Support for OPS Environments

« Rule-based Subscribers for Publish/Subscribe
« Asynchronous Notification

= Sender Identification

« Listen Capability (Wait on Multiple Queues)

« Propagation of Messages with LOBs

« Enhanced Propagation Scheduling Capabilities

« Dequeue Message Header Only With No Payload
« Support for Statistics Views

« Java API

« Separate storage of history management information

For more information about Oracle AQ features, see:

« Chapter 8, "A Sample Application Using AQ"

Other Guides

Use the PL/SQL User’s Guide and Reference to learn PL/SQL and to get a complete
description of this high-level programming language, which is Oracle Corporation’s
procedural extension to SQL.

The Oracle Call Interface (OCI) is described in:
« Oracle Call Interface Programmer’s Guide

You can use the OCI to build third-generation language (3GL) applications that
access the Oracle Server.

Oracle Corporation also provides the Pro* series of precompilers, which allow you
to embed SQL and PL/SQL in your application programs. If you write 3GL
application programs in Ada, C, C++, COBOL, or FORTRAN that incorporate
embedded SQL, refer to the corresponding precompiler manual. For example, if
you program in C or C++, refer to the Pro*C/C++ Precompiler Programmer’s Guide.

For SQL information, see the Oracle8i SQL Reference and Oracle8i Administrator’s
Guide. For basic Oracle concepts, see Oracle8i Concepts.

How This Book Is Organized

Vi

The Application Developer’s Guide - Advanced Queuing contains the following chapters
and appendices:

Chapter 1, "What is Oracle Advanced Queuing?"

This chapter describes the requirements for optimal messaging systems. Although
Oracle AQ is a relatively new technology, and not all these goals have been realized,
you can get an overview of the design and a clear idea of the intended direction.

Chapter 2, "Basic Components"

This chapter describes features already present in Oracle AQ under three headings:
General Features, Enqueue Features, and Dequeue Features.

Chapter 3, "AQ Programmatic Environments"

This chapter describes the elements you need to work with and issues you will
want to take into consideration in preparing your AQ application environment.

Chapter 4, "Managing AQ"

This chapter discusses issues related to managing Advanced Queuing such as
migrating queue tables (import-export), security, enterprise manager support,
protocols, sample dba actions as preparation for working with AQ, and current
restrictions.

Chapter 5, "Advanced Topics"

This chapter discusses advanced topics.

Chapter 6, "Frequently Asked Questions”

Frequently asked questions are answered here.

Chapter 7, "Modeling and Design"

This chapter covers the fundamentals of Advanced Queueing modeling and design
Chapter 8, "A Sample Application Using AQ"

This chapter considers the features of Oracle Advanced Queuing in the context of a
sample application.

Chapter 9, "Administrative Interface"

This chapter describes the administrative interface to Oracle Advanced Queuing.

Chapter 10, "Administrative Interface: Views"

In this chapter we describe the administrative interface with respect to views in
terms of a hybrid of use cases and state diagrams.

Chapter 11, "Operational Interface: Basic Operations"

In this chapter we describe the operational interface to Oracle Advanced Queuing
in terms of use cases.

Chapter 12, "Creating Applications Using JMS"

In this chapter we consider the features of the Oracle JMS interface to AQ in the
context of a sample application based on that scenario.

Chapter 13, "JIMS Administrative Interface: Basic Operations"

In this chapter we describe the administrative interface to Oracle Advanced
Queuing in terms of use cases.

Chapter 14, "JIMS Operational Interface: Basic Operations
(Point-to-Point)"

In this chapter we describe point to point operations.

Chapter 15, "JMS Operational Interface: Basic Operations
(Publish-Subscribe)"

In this chapter we describe publish-subscribe operations.

Chapter 16, "JMS Operational Interface: Basic Operations (Shared
Interfaces)"”

In this chapter we describe shared interface operations.
Appendix A, "Oracle Advanced Queuing by Example"

This appendix provides examples of operations using different programatic
environments

Appendix B, "Oracle JMS Interfaces, Classes and Exceptions"

This appendix provideds a list of Oracle JMS interfaces, classes & exceptions.
Appendix C, "Scripts for Implementing ‘BooksOnLine™

This appendix contains scripts used in the "BooksOnLine" example.
Appendix D, "JIMS Error Messages"

A list of error messages is provided here to aid you in troubleshooting problems.

Vii

How to Interpret the Diagrams

This manual makes use of the Universal Modeling Language (UML) as a way of
explaining technology. A full presentation of the UML is beyond the scope of this
documentation set, however we do provide a brief description of the subset of UML
notation that we use in a chapter devoted to visual modelling inOracle8i Application
Developer’s Guide - Fundamentals. What follows here is a selection from that chapter
of those elements that are used in this book.

Use Case Diagrams

Graphic Element Description

This release of the documentation
introduces and makes heavy use of the
Use Case Diagram. Each primary use
case is instigated by an actor
(’stickman’) that could be a human
user, an application, or a sub-program.
The actor is connected to the primary
use case which is depicted as an oval
(bubble) enclosing the use case action.

User/
Program

The totality of primary use cases is
described by means of a Use Case
DELETE Model Diagram.
the row

Primary use cases may require other
operations to complete them. In this
Operational Interface diagram fragment

« specify queue name

is one of the sub-operations, or
secondary use cases, needed to
complete

e « ENQUEUR message

The downward lines from the primary
use case lead to the other required
operations (not shown).

specify
gueue name

ENQUEUE
a message

viii

Graphic Element

Description

User/
Program

ENQUEUE
a message

Operational Interface

specify

ENQUEUE
queue name

a message

e

specify

properties

.
H
.
H
: message
.
H
.
.

specify
options

add
payload

Operational Interface

add
payload

Secondary use cases that have drop
shadows expand’ in that they are
described by means of their own use
case diagrams. There are two reasons
for doing this:

(a) it makes it easier to understand the
logic of the operation;

(b) it would not have been possible to
place all the operations and
sub-operations on the same page.

In this example

« specify message
properties,

« specify options
« add payload

are all expanded in separate use case
diagrams.

In the online versions of these
diagrams, these are clickable areas that
link to the related operation.

This diagram fragment shows the use
case diagram expanded. While the
standard diagram has the actor as the
initiator), here the use case itself is the
point of departure for the
sub-operation. In this example, the
expanded view of

« add payload
represents a constituent operation of
« ENQUEUR message

Graphic Element

Description

Internal persistent LOBs

CREATE
a table
(LOB)

User/
Program

CREATE
a table (LOB

- _|é| e CREATE table with one or more LOBs
columns)

This convention (a, b, ¢) shows that
there are three different ways of
creating a table that contains LOBs.

This fragment shows one of the uses of
a NOTE box, here distinguishing
which of the three ways of creating a
table containing LOBs is being
presented.

Graphic Element

list i List at
SELECT - . list
. propag schedules)- - BgeEer I%\%EUE all Df%pcég?tlon attribute _ Ieas,tt) one
User/ in user schema SCHEDULES — schedule names attribute
Program attributes
: A A
:OR
Description

This drawing shows two other common use of NOTE boxes:

(a) as a way of presenting an alternative name, as in this case the action SELECTpropagation schedules
the user schema is represented by the view USER_QUEUE_SCHEDULES

(b) the action list attribute names is qualified by the note to the user that you must list at least one
attribute if you elect not to list all the propagation schedule attributes.

Xi

Graphic Element

User/
Program

v

REGISTER

for
notification

create

a temporary
LOB

free
a temporary
LOB

receive

notification

Description

The dotted arrow in the use case
diagram indicates dependency. In
this example

« free atemporary LOB
requires that you first
« Ccreate atemporary LOB

Put another way: you should not
execute the free operation on a
LOB that is not temporary.

What you need to remember is
that the target of the arrow shows
the operation that must be
performed first.

Use cases and their sub-operations
can be linked in complex
relationships. In this example of a
callback, you must earlier

. REGISTERfor
notification

in order to later
. receive a notification

Xii

Graphic Element

User/
Program

Description

In this case the branching paths of an OR condition are shown. In invoking the view, you may choose either to

. list ; List at
proSaEglgg&LIes - - Userview: all propogation att'r'if)hte _ | leastone
in user schema USER_QUEUE_ schedule names attribute
SCHEDULES attributes
: 7y A
1OR H

list all the attributes or you may view one or more attributes. The fact that you may stipulate which of the
attributes you wish made visible is indicated by the grayed arrow.

Xiii

Graphic Element

OPEN
alLOB

CLOSE
alLOB

append
SELECT < :

alLOB %

User/
Program

get
chunk size

Description

Not all linked operations are mandatory. While the black dashed-line and arrow indicate that you must
perform the targeted operation to complete the use case, actions that are optional are shown by the grey
dashed-line and arrow. In this example, executing

« write append

on a LOBrequires that you first

« SELECTalLOB

As a facilitating operations, you may choose to

« OPENaLOB and/or get chunk size

However, note that if you do OPENa LOB, you will later have to CLOSHt.

Xiv

State Diagrams

Graphic Element

Administrative Interface
| SELECT ™\ |4|u view
User/ subscribers AQ$<queue_table_name>_S
Program .
{0R :
v v
list li :I .
all queue attrlif)hte _f—Listat
subscriber names least one
attributes attribute
QUEUE NAME ADDRESS PROTOCOL
Description

All the previous notes have dealt with use case diagrams. Here we introduce the very basic application of a state
diagram that we utilize in this book to present the attributes of view. In fact, attributes of a view have only two
states — visible or invisible. We are not interested in showing the permutations of state but in showing what
you might make visible in invoking a view. Accordingly, we have extended the UML to join a partial state
diagram onto a use case diagram to show the totality of attributes, and thereby all the view sub-states of the
view that you can see. We have demarcated the use case from the view state by coloring the background of the
state diagram grey.

In this example, the view allows you to query queue subscribers. You can stipulate one attribute, or some
combination of the four attributes, or all of the four attributes.

XV

Graphic Element

Description

Use Case Model Diagrams summarize all

the use cases in a particular domain,

Internal temporary LOBs (part 1 of 2) such as Internal temporary LOBs

Often these diagrams are too complex
to contain within a single page. When
that happens we have resorted to
dividing the diagram into two parts.
Please note that there is no sequence
implied in this division.

In some cases we have had to split a

. diagram simply because it is too long
continued on next page
for the page. In such cases, we have

included this marker.

Links in Online Versions of this Document

The online (HTML and PDF) versions of these diagrams include active areas that
either have blue perimeters or look like buttons. You can use these links to traverse
the following relationships:

XVi

To move between Use Case Model Diagrams which encompass all the possible
use cases for a given interface, and the Use Case Diagrams which detail the
individual cases.

To traverse different branches of a Use Case which can be implemented in more
that one way. The branching Use Case Diagrams have titles such as "Three

Ways to..." and buttons marked by "a", "b", "c"...

To access the Sub-Usecases that are entailed as part of a more primary Use Case
while retaining context.

To view details of the classes that underlie Use Cases accessible in Java.

To view the class structure in which specific Java classes are located (see
Appendix B, "Oracle JMS Interfaces, Classes and Exceptions”).

The following examples illustrate these relationships.

Graphic Element

ALTER a
queue table

CREATE a
queue table

AQ Administrative
Interface

I . CREATE Queue Table

Description

Use Case Model Diagrams, which
summarize all the use cases in a
particular domain, have active areas
which link to the individual Use Cases.

Buttons in the individual Use Case
Diagrams lead back to the Use Case
Model Diagram

Xvii

Graphic Element

.

JMS
Administrative | - | AQjmsFactory § . CREATE a Topic Connection Factory
Interface

CREATE

A e Create a Topic Connection Factory

a Topic
Connegtion - with a JDBC URL
User/ Factory
Program
! A @ Create a Topic Connection Factory
""" with JDBC Connection Parameters
Description

This Use Case Diagram combines a number of the elements:

O
O

xViii

JMS Administrative Interface - this button leads back to the Use Case Model Diagram

AQjmsFactory - this button leads to the Class Diagram in which contains the method by which the this use
case is implemented

a. Create a Topic Connection Factory with JDBC URL is the "a" branch of the use case
b. Create a Topic Connection Factory with JDBC Connection Parameters is the "b" branch of the use case

Graphic Element

<< interface >>

javax.jms
Connection
<< interface >> << interface >>
javax.jms javax.jms
QueueConnection TopicConnection
<< class >>
oracle.jms _
AQjmsConnection

Description

This Class Diagram has links to the individual class diagrams which form its components. This reduced view
of the classes shows

. whether classes, interfaces, and exceptions are entailed in the interrelationship by means of the <<>>,
stereotype, such as <<interface>>

« the name of the package in which the class is found, such as oracle.jms

« the name of the class, such as AQjmsConnection

Xix

Graphic Element

Oracle JMS Classes . javax.jms.Connection

<< interface >>

javax.jms
Connection

<< methods >>

close()
getClientID()
getMetaData()
start()

stop()

Description
The expanded view of the Class Diagram

. links to the Class Structure diagram via the button Oracle JMS Classes which describes its
interrelationships. Although many classes share this button, each class is linked to the part of the structure
specific to it.

= contains the names of the attributes (fields) if these exist and are exposed (there are none in this case)
« the name of the methods that comprise the public interface to the class

Conventions Used in this Guide

The following notational and text formatting conventions are used in this guide:

[]

Square brackets indicate that the enclosed item is optional. Do not type the brackets.

{}

Braces enclose items of which only one is required.

XX

A vertical bar separates items within braces, and may also be used to indicate that
multiple values are passed to a function parameter.

In code fragments, an ellipsis means that code not relevant to the discussion has
been omitted.

font change
SQL or C code examples are shown in monospaced font.

italics
Italics are used for OCI parameters, OCI routines names, file names, and data fields.

UPPERCASE
Uppercase is used for SQL keywords, like SELECTor UPDATE

This guide uses special text formatting to draw the reader’s attention to some
information. A paragraph that is indented and begins with a bold text label may
have special meaning. The following paragraphs describe the different types of
information that are flagged this way.

Note: The "Note" flag indicates that the reader should pay particular attention
to the information to avoid a common problem or increase understanding of a
concept.

Warning: An item marked as "Warning" indicates something that an OCI
programmer must be careful to do or not do in order for an application to work
correctly.

See Also: Text marked "See Also" points you to another section of this guide, or
to other documentation, for additional information about the topic being
discussed.

Your Comments Are Welcome

We value and appreciate your comment as an Oracle user and reader of our
manuals. As we write, revise, and evaluate our documentation, your opinions are
the most important feedback we receive.

You can send comments and suggestions about this manual to the following e-mail
address:

infodev@us.oracle.com

XXi

If you prefer, you can send letters or faxes containing your comments to the
following address:

Server Technologies Documentation Manager
Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7228

XXii

1

What is Oracle Advanced Queuing?

In this chapter we introduce Oracle Advanced Queuing (AQ) by considering the
requirements for complex information handling in a distributed environment under
the following headings:

« Queuing - an Optimal Means of Handling Messages
« Two Contexts for Developing Queuing Applications
« Two Models for Queuing Messages

« Features of Advanced Queuing (AQ)

« Elements of Advanced Queuing (Native AQ)

« Reference to Demos

What is Oracle Advanced Queuing? 1-1

Queuing - an Optimal Means of Handling Messages

Queuing - an Optimal Means of Handling Messages

Messages as the Crux of Business Events
Consider the following application scenario.

The operations of a large bookseller, BooksOnLine , are based on an online book ordering system
which automates activities across the various departments involved in the entire sale process.The
front end of the system is an order entry application which is used to enter new orders.These incoming
orders are processed by an order processing application which validates and records the order.
Shipping departments located at regional warehouses are then responsible for ensuring that these
orders are shipped in a timely fashion. There are three regional warehouses: one serving the East
Region, one serving the West Region, and a third warehouse for shipping International orders. Once
an order has been shipped, the order information is routed to a central billing department which
handles payment processing.The customer service department, located at its own site, is responsible
for maintaining order status and handling inquiries about orders.

This scenario describes an application in which messages come from and are
disbursed to multiple clients (nodes) in a distributed computing environment.
Messages are not only passed back and forth between clients and servers but are
also intricately interleaved between processes on different servers. The integration
of the various component applications consist of multi-step processes in which each
step is triggered by one or more messages, and which may then give rises to one or
more messages.

Using Queues to Coordinate the Interchange of Messages

Business applications communicate with each other by means of such messages.
The question is: How is this to be coordinated? BooksOnLine is a single enterprise
but, as commerce spreads across the internet, there is an increasing need for
applications belonging to different enterprises to communicate. Typically their
interchange consists of a message containing data, and a request for action which
may be embedded in the data. The problem in a nutshell is that applications within
and between enterprises need to function autonomously, but also to process
information interdependently.

In queuing systems, producer applications put messages into a queue (enqueue). In
the simple case, messages are then retrieved from the same queue by Consumer
applications (dequeue). This lets applications can continue with their work after
placing a request in the queue because they are not blocked waiting for a reply. It is
also allows applications to continue with their work until there is a message to
retrieve.

1-2 Application Developer’s Guide - Advanced Queuing

Queuing - an Optimal Means of Handling Messages

What Queuing Systems Must Provide

Performance

The decoupling of "requests for service" from "supply of services" increases
efficiency, and provides the infrastructure for complex scheduling. Further,
gueueing systems need to exhibit high performance characteristics as might be
measured by the following metrics:

« Number of messages enqueued/dequeued per second
« Time to evaluate a complex query on a message warehouse

« Time to recover/restart the messaging process after a failure

Scalability

Queuing systems have to exhibit high scalability. A system should continue to
exhibit high performance as the number of programs using the application increase,
as the number of messages increase, and as the size of the message warehouse
increases.

Persistence for Security

Handling an intricate scheduling of message-passing is not the only challenge.
Unfortunately, networks, computing hardware, and software applications will all
fail from time to time. For deferred execution to work correctly in the presence of
network, machine and application failures, messages that constitute requests for
service must be stored persistently, and processed exactly once. In other words,
messaging must be persistent.

Being able to preserve messages is fundamental. Applications may have to deal
with multiple unprocessed messages arriving simultaneously from external clients
or from programs internal to the application, and in such situations they may not
have the necessary resources. Similarly, the communication links between databases
may not be available all the time or may be reserved for some other purpose. If the
system falls short in its capacity to deal with these messages immediately, the
application must be able to store the messages until they can be processed. By the
same token, external clients or internal programs may not be ready to receive
messages that have been processed.

Persistence for Scheduling

Queuing systems need message persistence so they can deal with priorities:
messages arriving later may be of higher priority than messages arriving earlier;

What is Oracle Advanced Queuing? 1-3

Two Contexts for Developing Queuing Applications

messages arriving earlier may have to wait for messages arriving later before
actions are executed; the same message may have to be accessed by different
processes; and so on. Such priorities may not be fixed. One crucial dimension of
handling the dynamic aspect of message persistence has to do with windows of
opportunity that grow and shrink.lt may be that messages in a specific queue
become more important than messages in other queues, and so need to be
processed with less delay or interference from messages in other queues. Similarly,
it may be more pressing to send messages to some destinations than to others.

Persistence for Accessing and Analyzing Metadata

Finally, message persistence is crucial because the control component of the
message can be as important as the payload data. For instance, the time that
messages are received or dispatched can be a crucial part of the message. Often it
will constitute the legal interface for a transaction. Legal issues aside, the message
will often retain importance as a business asset after it has been executed.For
instance, it may be central to analyzing periods of greatest demand, or for
evaluating the lag between receiving and completing an order. Given these
requirements, tracking and documentation should be the responsibility of the
messaging system, not the developer.

Two Contexts for Developing Queuing Applications
Oracle AQ offers two development contexts:

« Native AQ which can be accessed by means of three different programmatic
environments

— from PL/SQL using the DBMS_AQ/AQADRL/SQL Packages (see also
Oracle8i Supplied PL/SQL Packages Reference)

— Visual Basic using Oracle Objects for OLE (O040) (see also Online Help for
Oracle Objects for OLE)

— Javausing the oracle.AQ Java Package (see also Oracle8i Supplied Java
Packages Reference).

We discuss working in this context in Chapters 1-11.
« Java Messenging Service (JMS)

— Java using the oracle.jms Java Package. This implementation of a public
standard extends the defined W3C interfaces so that developers operating
in the JMS context have the same means as those working within Native

AQ.

1-4 Application Developer’s Guide - Advanced Queuing

Two Models for Queuing Messages

We discuss working in this context in Chapters 12-16. For more information on the
oracle.jms Package, see the Oracle8i Supplied Java Packages Reference .

As discussed in the following section, each of these contexts has different terms for
the same functionality.

Two Models for Queuing Messages

Oracle AQ has two primary models for the sending and receiving of messages:
« Point-to-Point
« Publish-Subscribe

Point-to-Point Model

As the name suggests, messages in this model are aimed at a specific target. That is,
senders and receivers decide upon a common queue in which to exchange
messages. Each message is consumed by only one recipient. Figure 1-1,
"Point-to-Point Model", shows that each application has its own message queue:

Figure 1-1 Point-to-Point Model

o Enqueue Enqueue o
Application | ——————— S; S; g g 4y | Application
PP Dequeue Dequeue PP
Advanced

queues

Native AQ Terminology The figure above uses the Native AQ terms Enqueue and
Dequeue for the processes of putting a message into a queue and taking a message
from a queue. More precisely, Native AQ refers to these queues as Single
Consumer Queues because each message is consumed only once. Note that this
does not mean that such queues have only one consumer associated with them, but
that each messages can be consumed only once.

JMS Terminology The JMS equivalent of "enqueue” is Send. The destination of
messages for messages is a Queue, without any qualification.

What is Oracle Advanced Queuing? 1-5

Two Models for Queuing Messages

Publish-Subscribe Model

In this model, each message may be consumed by multiple recipients. In contrast to
the single-target model of point-to-point messaging, the publish-subscribe model is
aimed at a broader dissemination. Even so, the publish-subscribe model has a
less-targeted mode (broadcast) as well as one that is more narrowly aimed
(multicast).

Conceptually, broadcasting is the equivalent of a radio station not knowing who
exactly the audience is for a given program. By contrast, multicast is the same as
magazine publisher who knows precisely who the subscribers are. Multicast is also
referred to as 'point-to-mulitpoint’ because a single publisher sends messages to
multiple receivers.

Native AQ Terminology In this context, the notion of broadcasting messages is
described in terms of Subscribers to Multi-Consumer Queues. Producers of
messages still enqueue messages, but the more targeted mode of publish-subscribe
is framed in terms of a targeted list of Recipients who may or may not be
subscribers to the queues which serve as exchange mechanisms.

JMS Terminology The container of messages for JMS is a Topic, with the idea being
that each application can Publish 'on’ or Subscribe ’to’ a given topic. Put another
way: a Topic in JMS maps to a Multi-Consumer Queue in Native AQ. Note that

oracle.jms extends the public JMS standard to allows for defined recipient lists.

Figure 1-2 Publish-Subscribe Model

Publish Subscribe

Publish @@@@ Publish

Application | «(r————— Advanced el | Application
queues Subscribe

Application Application

1-6 Application Developer’s Guide - Advanced Queuing

Features of Advanced Queuing (AQ)

Features of Advanced Queuing (AQ)

By integrating transaction processing with queuing technology, persistent
messaging in the form of Advanced Queuing is made possible. The following
overview considers the features of Oracle AQ under four headings:

« "General Features" on page 1-7
« "ENQUEUE Features" on page 1-10
« "DEQUEUE Features" on page 1-13

« "Propagation Features" on page 1-15

General Features
The following features apply to all aspects of Oracle AQ.

SQL Access

Messages are placed in normal rows in a database table, and so can be queried
using standard SQL. This means that you can use SQL to access the message
properties, the message history and the payload. All available SQL technology, such
as indexes, can be used to optimize the access to messages.

Integrated Database Level Operational Support

Standard database features such as recovery, restart and enterprise manager are
supported. Oracle AQ queues are implemented in database tables, hence all the
operational benefits of high availability, scalability and reliability are applicable to
gueue data. In addition, database development and management tools can be used
with queues. For instance, queue tables can be imported and exported.

Structured Payload

Users can use object types to structure and manage message payloads. RDBMSs in
general have had a far richer typing system than messaging systems. Since Oracle8i
is an object-relational DBMS, it supports both traditional relational types as well as
user-defined types. Many powerful features are enabled as a result of having
strongly typed content such as content whose format is defined by an external type
system. These include:

« Content-based routing: an external agent can examine the content and route the
message to another queue based on the content.

What is Oracle Advanced Queuing? 1-7

Features of Advanced Queuing (AQ)

« Content-based subscription: a publish and subscribe system built on top of a
messaging system which can offer content based on subscription.

« Querying: the ability to execute queries on the content of the message enables
message warehousing.

To see this feature applied in the context of the BooksOnLine scenario, refer to
Structured Payload on page 8-5 in Chapter 8, "A Sample Application Using AQ")

Retention and Message History

Users of AQ can specify that messages be retained after consumption. The systems
administrator can specify the duration for which messages will be retained. Oracle
AQ stores information about the history of each message, preserving the queue and
message properties of delay, expiration, and retention for messages destined for
local or remote recipients. The information contains the ENQUEUEDEQUEUEmMe
and the identification of the transaction that executed each request. This allows
users to keep a history of relevant messages. The history can be used for tracking,
data warehouse and data mining operations.

To see this feature applied in the context of the BooksOnLine scenario, refer to
Retention and Message History on page 8-24)

Tracking and Event Journals

If messages are retained they can be related to each other. For example: if a message
m2is produced as a result of the consumption of message m1 m1lis related to m2
This allows users to track sequences of related messages. These sequences represent
"event journals" which are often constructed by applications. Oracle AQ is designed
to let applications create event journals automatically.

Integrated Transactions

The integration of control information with content (data payload) simplifies
application development and management.

Queue Level Access Control

With Oracle8i, an owner of an 8.1 style queue can grant or revoke queue level
privileges on the queue. DBAS can grant or revoke new AQ system level privileges
to any database user. DBAs can also make any database user an AQ administrator.

To see this feature applied in the context of the BooksOnLine scenario, refer to
Queue Level Access Control on page 8-11).

1-8 Application Developer’s Guide - Advanced Queuing

Features of Advanced Queuing (AQ)

Non-Persistent Queues

AQ can deliver non-persistent messages asynchronously to subscribers. These
messages can be event-driven and do not persist beyond the failure of the system
(or instance). AQ supports persistent and non-persistent messages with a common
APL.

To see this feature applied in the context of the BooksOnLine scenario, refer to
Support for Oracle Parallel Server on page 8-29).

Publish/ Subscribe Support

A combination of features are introduced to allow a publish/subscribe style of
messaging between applications. These features include rule-based subscribers,
message propagation, the listen feature and notification capabilities.

Support for OPS Environments

With Oracle8i release 8.1.5, an application can specify the instance affinity for a
gueue-table. When AQ is used with parallel server and multiple instances, this
information is used to partition the queue-tables between instances for
gueue-monitor scheduling. The queue-table is monitored by the queue-monitors of
the instance specified by the user. If an instance affinity is not specified, the
gueue-tables will be arbitrarily partitioned among the available instances. There can
be "pinging" between the application accessing the queue-table and the
gueue-monitor monitoring it. Specifying the instance-affinity does not prevent the
application from accessing the queue-table and its queues from other instances.

This feature prevents "pinging" between queue monitors and AQ propagation jobs
running in different instances. In Oracle8i release 8.1.5 an instance affinity (primary
and secondary) can be specified for a queue table. When AQ is used with parallel
server and multiple instances, this information is used to partition the queue-tables
between instances for queue-monitor scheduling as well as for propagation. At any
time, the queue table is affiliated to one instance. In the absence of an explicitly
specified affinity, any available instance is made the owner of the queue table. If the
owner of the queue table dies, the secondary instance or some available instance
takes over the ownership for the queue table.

To see this feature applied in the context of the BooksOnLine scenario, refer to
Support for Oracle Parallel Server on page 8-29).

Support for Statistics Views
Basic statistics about queues in the database are available via the GV$AQ view.

What is Oracle Advanced Queuing? 1-9

Features of Advanced Queuing (AQ)

Reliability and Recoverability

The standard database reliability and recoverability characteristics apply to queue
data.

ENQUEUE Features

The following features apply to the process of producing messages by enqueuing
them into a queue.

Correlation Identifier

Users can assign an identifier to each message, thus providing a means to retrieve
specific messages at a later time.

Subscription & Recipient Lists

A single message can be designed to be consumed by multiple consumers. A queue
administrator can specify the list of subscribers who can retrieve messages from a
gueue. Different queues can have different subscribers, and a consumer program
can be a subscriber to more than one queue. Further, specific messages in a queue
can be directed toward specific recipients who may or may not be subscribers to the
gueue, thereby overriding the subscriber list.

You can design a single message for consumption by multiple consumers in a
number of different ways. The consumers who are allowed to retrieve the message
are specified as explicit recipients of the message by the user or application that
enqueues the message. Every explicit recipient is an agent identified by name,
address and protocol.

A queue administrator may also specify a default list of recipients who can retrieve
all the messages from a specific queue. These implicit recipients become subscribers
to the queue by being specified in s default list. If a message is enqueued without
specifying any explicit recipients, the message is delivered to all the designated
subscribers.

A rule-based subscriber is one that has a rule associated with it in the default
recipient list. A rule based subscriber will be sent a message with no explicit
recipients specified only if the associated rule evaluated to TRUE for the message.
Different queues can have different subscribers, and the same recipient can be a
subscriber to more than one queue. Further, specific messages in a queue can be
directed toward specific recipients who may or may not be subscribers to the queue,
thereby over-riding the subscriber list.

1-10 Application Developer’s Guide - Advanced Queuing

Features of Advanced Queuing (AQ)

A recipient may be specified only by its name, in which case the recipient must
dequeue the message from the queue in which message was enqueued. It may be
specified by its name and an address with a protocol value of 0. The address should
be the name of another queue in the same database or another Oracle8i database
(identified by the database link) in which case the message is propagated to the
specified queue and can be dequeued by a consumer with the specified name. If the
recipient’s name is NULL, the message is propagated to the specified queue in the
address and can be dequeued by the subscribers of the queue specified in the
address. If the protocol field is nonzero, the name and address field is not
interpreted by the system and the message can be dequeued by special consumer
(see third party support in the propagation section).

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Elements of Advanced Queuing (Native AQ) on page 1-17).

Priority and Ordering of Messages in Enqueuing

It is possible to specify the priority of the enqueued message. An enqueued message
can also have its exact position in the queue specified. This means that users have
three options to specify the order in which messages are consumed: (a) a sort order
specifies which properties are used to order all message in a queue; (b) a priority
can be assigned to each message; (c) a sequence deviation allows you to position a
message in relation to other messages. Further, if several consumers act on the same
gueue, a consumer will get the first message that is available for immediate
consumption. A message that is in the process of being consumed by another
consumer will be skipped.

To see this feature applied in the context of the BooksOnLine scenario, refer to 3 on
page 8-38).

Message Grouping

Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires the queue be created in a queue table
that is enabled for message grouping. All messages belonging to a group have to be
created in the same transaction and all messages created in one transaction belong
to the same group. This feature allows users to segment complex messages into
simple messages, for example, messages directed to a queue containing invoices
could be constructed as a group of messages starting with the header message,
followed by messages representing details, followed by the trailer message.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Message Grouping on page 8-52).

What is Oracle Advanced Queuing? 1-11

Features of Advanced Queuing (AQ)

Propagation

This feature enables applications to communicate with each other without having to
be connected to the same database or to the same Queue. Messages can be
propagated from one Oracle AQ to another, irrespective of whether these are local
or remote. The propagation is done using database links, and Net8.

To see this feature applied in the context of the BooksOnLine scenario, refer to
Asynchronous Notifications on page 8-77).

Sender Identification

Applications can mark the messages they send with a custom identification. Oracle
also automatically identifies the queue from which a message was dequeued. This
allows applications to track the pathway of a propagated message, or of a string
messages within the same database.

Time Specification and Scheduling

Delay interval and/or expiration intervals can be specified for an enqueued
message, thereby providing windows of execution. A message can be marked as
available for processing only after a specified time elapses (a delay time) and has to
be consumed before a specified time limit expires.

Rule-based Subscribers

A message can be delivered to multiple recipients based on message properties or
message content. Users define a rule based subscription for a given queue as the
mechanism to specify interest in receiving messages of interest. Rules can be
specified based on message properties and message data (for object and raw
payloads). Subscriber rules are then used to evaluate recipients for message
delivery.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Rule-based Subscription on page 8-56).

Asynchronous Notification

OCI clients can use the new call OCISubscriptionRegister to register a
callback for message notification. The client issues a registration call which specifies
a subscription name and a callback. When messages for the subscription are
received, the callback is invoked. The callback may then issue an explicit dequeue to
retrieve the message.

1-12 Application Developer’s Guide - Advanced Queuing

Features of Advanced Queuing (AQ)

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Asynchronous Notifications on page 8-77).

DEQUEUE Features

Multiple Recipients
A message in queue can be retrieved by multiple recipients without there being
multiple copies of the same message.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Multiple Recipients on page 8-61).

Local and Remote Recipients
Designated recipients can be located locally and/or at remote sites.

To see this feature applied in the context of the BooksOnLine scenario, refer to Local
and Remote Recipients on page 8-63).

Navigation of Messages in Dequeuing

Users have several options to select a message from a queue. They can select the
first message or once they have selected a message and established a position, they
can retrieve the next. The selection is influenced by the ordering or can be limited
by specifying a correlation identifier. Users can also retrieve a specific message
using the message identifier.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Message Navigation in Dequeue on page 8-65).

Modes of Dequeuing

A DEQUEUEequest can either browse or remove a message. If a message is
browsed it remains available for further processing, if a message is removed, it is
not available any more for DEQUEUEequests. Depending on the queue properties a
removed message may be retained in the queue table.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Modes of Dequeuing on page 8-69).

What is Oracle Advanced Queuing? 1-13

Features of Advanced Queuing (AQ)

Optimization of Waiting for the Arrival of Messages

A DEQUEUEould be issued against an empty queue. To avoid polling for the
arrival of a new message a user can specify if and for how long the request is
allowed to wait for the arrival of a message.

To see this feature applied in the context of the BooksOnLine scenario, refer to
Optimization of Waiting for Arrival of Messages on page 8-75).

Retries with Delays

A message has to be consumed exactly once. If an attempt to dequeue a message
fails and the transaction is rolled back, the message will be made available for
reprocessing after some user specified delay elapses. Reprocessing will be
attempted up to the user-specified limit.

To see this feature applied in the context of the BooksOnLine scenario, refer to Retry
with Delay Interval on page 8-84).

Optional Transaction Protection

ENQUEUEDEQUEUEequests are normally part of a transaction that contains the
requests, thereby providing the desired transactional behavior. Users can, however,
specify that a specific request is a transaction by itself making the result of that
request immediately visible to other transactions. This means that messages can be
made visible to the external world either as soon as the ENQUEUBr DEQUEUE
statement is issued, or only after the transaction is committed.

Exception Handling
A message may not be consumed within given constraints, such as within the

window of execution or within the limits of the retries. If such a condition arises, the
message will be moved to a user-specified exception queue.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Exception Handling on page 8-88).

Listen Capability (Wait on Multiple Queues)

The listen call is a blocking call that can be used to wait for messages on multiple
gueues. It can be used by a gateway application to monitor a set of queues. An
application can also use it to wait for messages on a list of subscriptions. If the listen
returns successfully, a dequeue must be used to retrieve the message.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Listen Capability on page 8-98).

1-14 Application Developer’s Guide - Advanced Queuing

Features of Advanced Queuing (AQ)

Dequeue Message Header with No Payload

The new dequeue mode REMOVE_NODATA can be used to remove a message
from a queue without retrieving the payload. This mode will be useful for
applications that want to delete messages with huge payloads and aren’t interested
in the payload contents.

Propagation Features

Automated Coordination of Enqueuing and Dequeuing

As already noted, recipients can be local or remote. Oracle8i does not support
distributed object types, hence remote enqueuing or dequeuing using a standard
database link does not work. However, you can use AQ’s message propagation to
enqueue to a remote queue.

For example, you can connect to database X and enqueue the message in a queue,
say "DROPBOXocated in database X. You can configure AQ so that all messages
enqueued in queue "DROPBOXwill be automatically propagated to another queue
in a database Y, regardless whether database Y is local or remote. AQ will
automatically check if the type of the remote queue in database Y is structurally
equivalent to the type of the local queue in database X, and propagate the message.

Recipients of propagated messages can be either applications or queues. If the
recipient is a queue, the actual recipients will be determined by the subscription list
associated with the recipient queue.If the queues are remote, messages will be
propagated using the specified database link. Only AQ to AQ message propagation
is supported.

Propagation of Messages with LOBs
Propagation handles payloads with LOBattributes.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
Example Scenario on page 8-108).

Propagation Scheduling

Messages can be scheduled to propagate from a queue to local or remote
destinations. Administrators can specify the start time, the propagation window
and a function to determine the next propagation window (for periodic schedules).

What is Oracle Advanced Queuing? 1-15

Features of Advanced Queuing (AQ)

Enhanced Propagation Scheduling Capabilities

Detailed run-time information about propagation is gathered and stored in the
DBA_QUEUE_SCHEDULK®&w for each propagation schedule. This information can
be used by queue designers and administrators to fix problems or tune
performance. For example, available statistics about the total and average number
of message/bytes propagated can be used to tune schedules. Similarly, errors
reported by the view can be used to diagnose and fix problems. The view also
describes additional information such as the session ID of the session handling the
propagation, and the process name of the job queue process handling the
propagation. To see this feature applied in the context of the BooksOnL.ine scenario,
refer to Enhanced Propagation Scheduling Capabilities on page 8-110).

Third Party Support

Advanced Queueing allows messages to be enqueued in queues that can then be
propagated to different messaging systems by third party propagators. If the
protocol number for a recipient is in the range 128 - 255, the address of the recipient
is not interpreted by AQ and so the message is not propagated by the Advanced
Queuing system. Instead a third party propagator can then dequeue the message by
specifying a reserved consumer name in the dequeue operation. The reserved
consumer names are of the form AQ$_P#where # is the protocol number in the
range 128 - 255. For example, the consumer name AQ$_P128can be used to
dequeue messages for recipients with protocol number 128. The list of recipients for
a message with the specific protocol number is returned in the recipient_list
message property on dequeue.

1-16 Application Developer’s Guide - Advanced Queuing

Elements of Advanced Queuing (Native AQ)

Elements of Advanced Queuing (Native AQ)

Message

Queue

Queue Table

Agent

By integrating transaction processing with queuing technology, persistent
messaging in the form of Advanced Queuing is made possible.

A message is the smallest unit of information inserted into and retrieved from a
gueue. A message consists of the following:

« Control information (metadata)
« Payload (data)

The control information represents message properties used by AQ to manage
messages. The payload data is the information stored in the queue and is
transparent to Oracle AQ. A message can reside in only one queue. A message is
created by the enqueue call and consumed by the dequeue call.

A queue is a repository for messages. There are two types of queues: user queues,
also known as normal queues, and exception queues. The user queue is for normal
message processing. Messages are transferred to an exception queue if they can not
be retrieved and processed for some reason. Queues can be created, altered, started,
stopped, and dropped by using the Oracle AQ administrative interfaces (see
Chapter 9, "Administrative Interface").

Queues are stored in queue tables. Each queue table is a database table and contains
one or more queues. Each queue table contains a default exception queue.

Figure 7-1, "Basic Queues" on page 7-2 shows the relationship between messages,
gueues, and queue tables.

An agent is a queue user. This could be an end user or an application.There are two
types of agents:

« Producers who place messages in a queue (enqueuing)

« Consumers who retrieve messages (dequeuing)

What is Oracle Advanced Queuing? 1-17

Elements of Advanced Queuing (Native AQ)

Any number of producers and consumers may be accessing the queue at a given
time. Agents insert messages into a queue and retrieve messages from the queue by
using the Oracle AQ operational interfaces (see Chapter 11, "Operational Interface:
Basic Operations™)

An agent is identified by its name, address and protocol (see "Agent" on
page 2-3 in Chapter 2, "Basic Components" for formal description of this data
structure).

« The name of the agent may be the name of the application or a name assigned
by the application. As will be described below, a queue may itself be an agent
— enqueuing or dequeuing from another queue.

« The address field is a character field of up to 1024 bytes that is interpreted in the
context of the protocol. For instance, the default value for the protocol is 0,
signifying a database link addressing. In this case, the address for this protocol
is of the form

queue_name@dblink

where queue_name is of the form [schema.]queue and dblink may either
be a fully qualified database link name or the database link name without the
domain name.

Recipient

The recipient of a message may be specified by its name only, in which case the
recipient must dequeue the message from the queue in which the message was
enqueued. The recipient may be specified by hame and an address with a protocol
value of 0. The address should be the name of another queue in the same database
or another Oracle8 database (identified by the database link) in which case the
message is propagated to the specified queue and can be dequeued by a consumer
with the specified name. If the recipient's name is NULL, the message is propagated
to the specified queue in the address and can be dequeued by the subscribers of the
gueue specified in the address. If the protocol field is nonzero, the name and
address field is not interpreted by the system and the message can be dequeued by
special consumer (see third party support in the propagation section).

Recipient and Subscription Lists

A single message can be designed for consumption by multiple consumers. There
are two ways to do this.

1-18 Application Developer’s Guide - Advanced Queuing

Elements of Advanced Queuing (Native AQ)

« The enqueuer can explicitly specify the consumers who may retrieve the
message as recipients of the message. A recipient is an agent identified by a
name, address and protocol.

« A queue administrator can specify a default list of recipients who can
retrieve messages from a queue. The recipients specified in the default list
are known as subscribers. If a message is enqueued without specifying the
recipients the message is implicitly sent to all the subscribers.

Different queues can have different subscribers, and the same recipient can be a
subscriber to more than one queue. Further, specific messages in a queue can be
directed toward specific recipients who may or may not be subscribers to the queue,
thereby over-riding the subscriber list.

Rule

A rule is used to define one or more subscribers’ interest in subscribing to messages
that conform to that rule. The messages that meet this criterion are then delivered to
the interested subscribers. Put another way: a rule filters for messages in a queue on
a topic in which a subscriber is interested.

A rule is specified as a boolean expression (one that evaluates to true or false) using
syntax similar to the WHERElause of a SQL query. This boolean expression can
include conditions on the following:

= message properties (currently priority and correlation identifier)
« user data properties (object payloads only)

« functions (as specified in the where clause of a SQL query)

Rule Based Subscriber

A rule-based subscriber is a subscriber that has rule associated with it in the default
recipient list. A rule-based subscriber is sent a message that has no explicit
recipients specified if the associated rule evaluates to TRUEfor the message.

Queue Monitor

The queue monitor (QMNN) is a background process that monitors the messages in
the queues. It provides the mechanism for message delay, expiration and retry
delay. The QMNn also also performs garbage collection for the queue table and its
indexes and index-organized tables. It is possible to start a maximum of 10 multiple
gueue monitors at the same time. You start the desired number of queue monitors

What is Oracle Advanced Queuing? 1-19

Elements of Advanced Queuing (Native AQ)

by setting the dynamic init.ora parameter aq_tm_processes . The queue monitor
wakes up every minute, or whenever there is work to be done, for instance, if a
message is to be marked as expired or as ready to be processed.

1-20 Application Developer’s Guide - Advanced Queuing

Reference to Demos

Reference to Demos

The following demos can be found in the $ORACLE_HOME/demo directory.:

Table 1-1

Demo & Locations

Topic

newagdemo00.sqgl

newagdemo01.sql

newagdemo02.sq|
newaqgdemo03.sq|
newagdemo04.sqgl
newagdemo05.sq|l

newaqdemo06.sql

ociagdemo00.c
ociagdemo01.c

ociagdemo02.c

Create users, message types, tables etc.

Set up queue_tables, queues, subscribers and
set up

Enqueue messages

Installs dequeue procedures
Performs "blocking dequeue”
Performs "listen" for multiple agents

Cleans up users, queue_tables, queues,
subscribers etc. (cleanup script)

Enqueue messages
Performs blocking dequeue

Performs "listen" for multiple agents

What is Oracle Advanced Queuing? 1-21

Reference to Demos

1-22 Application Developer’s Guide - Advanced Queuing

2

Basic Components

The following basic components are covered in this chapter:
« Data Structures

« Enumerated Constants in the Administrative Interface
« Enumerated Constants in the Operational Interface

« Java Components - oracle.AQ

Basic Components 2-1

Data Structures

Data Structures

Object Name

Type name

The following chapters data structures are used in both the operational and
administrative interfaces:

« Chapter 9, "Administrative Interface"

« Chapter 11, "Operational Interface: Basic Operations"

Purpose:

The naming of database objects. This naming convention applies to queues, queue
tables and object types.

Syntax:

object_name :=VARCHAR2
object_name = [<schema_name>J<name>

Usage:

Names for objects are specified by an optional schema name and a name. If the
schema name is not specified then the current schema is assumed. The name must
follow object name guidelines in the Oracle8i SQL Reference with regard to reserved
characters.The schema name, agent name and the object type name can each be up
to 30 bytes long. However, queue names and queue table names can be a maximum
of 24 bytes.

Purpose:
Defining queue types.

Syntax:

type_name :=VARCHAR2
type_name :=<object_type> | "RAW"

2-2 Application Developer's Guide - Advanced Queuing

Data Structures

Usage:

Table 2-1 Type Name

Parameter Description

<object_types> For details on creating object types please refer to Server concepts manual. The
maximum number of attributes in the object type is limited to 900.

"RAW To store payload of type RAWAQ will create a queue table with a LOBcolumn as the
payload repository. The size of the payload is limited to 32K bytes of data. Because
LOBcolumns are used for storing RAWpayload, the AQ administrator can choose the
LOBtablespace and configure the LOBstorage by constructing a LOBstorage string
in the storage_clause parameter during queue table creation time.

Agent

Purpose:
To identify a producer or a consumer of a message.

Syntax:

TYPE ag$_agent IS OBJECT (
name VARCHAR2(30),
address VARCHAR2(1024),
protocol NUMBER)

Usage:

Table 2-2 Agent

Parameter Description

name Name of a producer or consumer of a message.The name must follow object name
(VARCHAR2(30)) guidelines in the Oracle8i SQL Reference with regard to reserved characters.
address Protocol specific address of the recipient. If the protocol is 0 (default) the address is
(VARCHAR2(1024)) of the form [schema.]queue[@dblink]

protocol Protocol to interpret the address and propagate the message. The default value is 0.
(NUMBER)

Basic Components 2-3

Data Structures

Usage Notes

All consumers that are added as subscribers to a multi-consumer queue must have
unique values for the AQ$_AGENTarameter. This means that two subscribers
cannot have the same values for the NAMEADDRES@nd PROTOCOAttributes for
the AQ$_AGENType. At least one of the three attributes must be different for two
subscribers.

AQ Recipient List Type

Purpose:
To identify the list of agents that will receive the message.

Syntax:

TYPE ag$ _recipient list tIS TABLE OF ag$_agent
INDEX BY BINARY_INTEGER;

AQ Agent List Type

Purpose:
To identify the list of agents for DBMS_AQ.LISTEN to listen for.

Syntax:

TYPE ag$_agent list t1S TABLE OF ag$_agent
INDEX BY BINARY INTEGER,;

AQ Subscriber List Type

Purpose:
To identify the list of subscribers that subscribe to this queue.

Syntax:

TYPE ag$_subscriber_list t1S TABLE OF ag$_agent
INDEX BY BINARY INTEGER;

2-4 Application Developer's Guide - Advanced Queuing

Enumerated Constants in the Administrative Interface

Enumerated Constants in the Administrative Interface

When using enumerated constants such as INFINITE , TRANSACTIONALNORMAL _
QUEURre selected as values, the symbol needs to be specified with the scope of the

packages defining it. All types associated with the administrative interfaces have to
be prepended with dbms_agadm . For example:

DBMS_AQADM.NORMAL QUEUE

Table 2-3 Enumerated types in the administrative interface

Parameter Options

retention 0,1,2...INFINITE

message_grouping TRANSACTIONAL , NONE

queue_type NORMAL_QUEUEEXCEPTION_QUEUE,NON_PERSISTENT QUEUE

Basic Components 2-5

Enumerated Constants in the Operational Interface

Enumerated Constants in the Operational Interface

When using enumerated constants such as BROWSHEOCKEDREMOVREhe PL/SQL
constants need to be specified with the scope of the packages defining it. All types
associated with the operational interfaces have to be prepended with dbms_aq. For
example:

DBMS_AQ.BROWSE

Table 2-4 Enumerated types in the operational interface

Parameter Options

visibility IMMEDIATE , ON_COMMIT

dequeue mode BROWSE LOCKEDREMOVE, REMOVE_NODATA
navigation FIRST_MESSAGE , NEXT_MESSAGHEEXT_TRANSACTION
state WAITING , READYPROCESSEEXPIRED
sequence_deviation BEFORE , TOP

wait FOREVER, NO_WAIT

delay NO_DELAY

expiration NEVER

2-6 Application Developer's Guide - Advanced Queuing

Issues and Considerations

Issues and Considerations

INIT.ORA Parameter

AQ_TM_PROCESSES

A parameter called AQ_TM_PROCESSESBould be specified in the init .ora
PARAMETERIe if you want to perform time monitoring on queue messages. This
will be used for messages which have delay and expiration properties specified.
This parameter can be set in a range from 0 to 10. Setting it to any other number will
result in an error. If this parameter is set to 1, one queue monitor process (QMn)
will be created as a background process to monitor the messages. If the parameter is
not specified, or is set to 0, the queue monitor process is not created.

Parameter Name: aq_tm_processes

Parameter Type: integer

Parameter Class: Dynamic

Allowable Values: Oto 10

Syntax: ag_tm_processes = <0 to 10>
Name of process: ora_gmn<n>_<oracle sid>
Example: aq_tm_processes = 1

JOB_QUEUE_PROCESSES

Propagation is handled by job queue (SNP) processes. The number of job queue
processes started in an instance is controlled by the init.ora parameter JOB_
QUEUE_PROCESSERe default value of this parameter is 0. In order for message
propagation to take place, this parameter must be set to at least 1. The DBA can set
it to higher values if there are many queues from which the messages have to be
propagated, or if there are many destinations to which the messages have to be
propagated, or if there are other jobs in the job queue.

See Also: Oracle8 Reference for complete details about JOB_
QUEUE_PROCESSES.

Java AQ API supports both the administrative and operational features of Oracle
AQ (Advanced Queueing). In developing Java programs for messaging
applications, you will use JDBC to open a connection to the database and then the
oracle.AQ, the Java AQ API for message queuing. This means that you will no
longer need to use PL/SQL interfaces.

Basic Components 2-7

Java Components - oracle.AQ

Java Components - oracle.AQ

The following sections describe the common Java interfaces and classes that are
based on current PL/SQL interfaces.

« The common interfaces are prefixed with "AQ". These interfaces will have
different implementations in Oracle8i and Oracle Lite.

« Inthis document we describe the common interfaces and their corresponding
Oracle8i implementations, which are in turn prefixed with "AQOracle".

Location of Java AQ Classes

The Java AQ classes are located in SORACLE_HOMfEdbms /jlib /agapi .jar .
These classes can be used with any Oracle8i JDBC driver.

If your application uses the OCI8 or thin JDBC driver, for JDK 1.2 you must include
$ORACLE_HOMEdbms /jlib /agapi .jar inthe CLASSPATHfor JDK 1.1 you
must include $SORACLE_HOM#Edbms /jlib /agapi 11.jar inthe CLASSPATH.

If the application is using the Oracle Server driver and accessing the java AQ API
from java stored procedures, the Java files are generally automatically pre-loaded in
a Java-enabled database. If they are not loaded, you must first load the aqapi .jar
and jmscommon.jar files into the database using the "loadjava" utility.

Appendix A, "Oracle Advanced Queuing by Example" contains the following
examples:

« Enqueue and Dequeue of Object Type Messages (CustomDatum interface)
Using Java

« Enqgueue and Dequeue of Object Type Messages (using SQLData interface)
Using Java

« Create a Queue Table and Queue Using Java

« Create a Queue and Start Enqueue/Dequeue Using Java

« Create a Multi-Consumer Queue and Add Subscribers Using Java
« Enqueue of RAW Messages using Java

« Dequeue of Messages Using Java

« Dequeue of Messages in Browse Mode Using Java

« Enqueue of Messages with Priority Using Java

2-8 Application Developer's Guide - Advanced Queuing

Java Components - oracle.AQ

« Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes
Using Java

Set up for the test_agjava class is described in Oracle8i Supplied Java Packages
Reference "Setup for oracle. AQ Examples" section.

Basic Components 2-9

Java Components - oracle.AQ

2-10 Application Developer's Guide - Advanced Queuing

3

AQ Programmatic Environments

This chapter describes the elements you need to work with and issues you will
want to take into consideration in preparing your AQ application environment. The
following topics are discussed:

Programmatic Environments for Accessing AQ

Using PL/SQL (DBMS_AQADM and DBMS_AQ Packages) to Access AQ

Using Visual Basic (O040) to Access AQ
Using OCI to Access AQ

Using AQ Java (oracle.AQ) Classes to Access AQ

Using Oracle Java Messaging Service (JMS) to Access AQ

Comparing AQ Programmatic Environments

AQ Programmatic Environments 3-1

Programmatic Environments for Accessing AQ

Programmatic Environments for Accessing AQ

The following programmatic environments are used to access the Advanced
Queuing functions of Oracle8i:

« Native AQ Interface

« PL/SQL (DBMS_AQADM and DBMS_AQ packages): supports administrative
and operational functions

« C (OCI): supports operational functions
« Visual Basic (O040): supports operational functions

« Java (oracle.AQ package using JDBC): supports administrative and
operational functions

« JMS Interface to AQ

« Java (javax.jms and oracle.jms packages using JDBC): supports the standard
JMS administrative and operational functions and Oracle JMS Extensions

For a comparison of the available functions for these programmatic environments,
see the following tables:

« "Comparing AQ Programmatic Environments: Administrative interfaces"
« "Comparing AQ Programmatic Environments: Operational Interfaces"

The AQ programmatic environments and their syntax references are listed in
Table 3-1, "AQ Programmatic Environments".

Table 3-1 AQ Programmatic Environments

Language Syntax Reference In This Chapter See...

Precompiler or
Interface Program

PL/SQL DBMS_AQADM and Oracle8i Supplied PL/SQL Packages "Using PL/SQL (DBMS_AQADM
DBMS_AQ Package Reference and DBMS_AQ Packages) to Access
AQ" on page 3-4"Using PL/SQL
(DBMS_AQADM and DBMS_AQ
Packages) to Access AQ" on page 3-4

C Oracle Call Interface Oracle Call Interface Programmer’s ~ "Using OCI to Access AQ" on
(OCI) Guide page 3-7)"Using OCI to Access AQ"
on page 3-7

3-2 Application Developer's Guide - Advanced Queuing

Programmatic Environments for Accessing AQ

Table 3-1 AQ Programmatic Environments

Language Syntax Reference In This Chapter See...

Precompiler or
Interface Program

Visual Basic Oracle Objects For Oracle Objects for OLE (O040) is "Using AQ Java (oracle.AQ) Classes

OLE (O040) a Windows-based product to Access AQ" on page 3-8"Using
included with Oracle8i Client for Visual Basic (O040) to Access AQ"
Windows NT. on page 3-6

There are no manuals for this
product, only online help. Online
help is available through the
Application Development
submenu of the Oracle8i
installation.

Java (AQ) oracle.AQ packagevia Oracle8i Supplied Java Packages "Using AQ Java (oracle.AQ) Classes
JDBC Application Reference to Access AQ" on page 3-8
Programmatic
Interface (API)

Java (JMS) oracle.JMS package Oracle8i Supplied Java Packages "Using AQ Java (oracle.AQ) Classes

via JDBC Application Reference to Access AQ" on page 3-8"Using
Programmatic Oracle Java Messaging Service (JMS)
Interface (API) to Access AQ" on page 3-10

AQ Programmatic Environments 3-3

Using PL/SQL (DBMS_AQADM and DBMS_AQ Packages) to Access AQ

Using PL/SQL (DBMS_AQADM and DBMS_AQ Packages) to Access AQ

PL/SQL packages, DBMS_AQADM and DBMS_AQ support access to Oracle8i
Advanced Queuing administrative and operational functions via the “native” AQ
interface.

These functions include the following:

Create: queue, queue table, non-persistent queue, multi-consumer queue/topic,
RAW message, message with structured data

Get: queue table, queue, multi-consumer queue/topic

Alter: queue table, queue/topic

Drop: queue/topic

Start or stop: queue/topic

Grant and revoke privileges

Add, remove, alter subscriber

Enable, disable, and alter propagation schedule

Enqueue messages to single consumer queue (point-to-point model)
Publish messages to multi-consumer queue/topic (publish-schedule model)
Subscribing for messages in multi-consumer queue

Browse messages in a queue

Receive messages from queue/topic

Register to received messages asynchronously

Listen for messages on multiple queues/topics

See Also

Oracle8i Supplied PL/SQL Packages Reference for detailed
documentation, including parameters, parameter types, return
values, examples, DBMS_AQADM and DBMS_AQ syntax.

Available PL/SQL DBMS_AQADM and DBMS_AQ functions are listed in detail in
the following tables:

3-4 Application Developer's Guide - Advanced Queuing

Using PL/SQL (DBMS_AQADM and DBMS_AQ Packages) to Access AQ

Table 3-2, "Comparing AQ Programmatic Environments: Administrative
interfaces"

Table 3-3, "Comparing AQ Programmatic Environments: Operational
Interfaces”

AQ Programmatic Environments 3-5

Using Visual Basic (0040) to Access AQ

Using Visual Basic (O040) to Access AQ

Visual Basic (O040) supports access to Oracle8i Advanced Queuing operational
functions via the “native” AQ interface.

These functions include the following:

Create: connection, RAW message, message with structured data

Enqueue messages to single consumer queue (point-to-point model)
Publish messages to multi-consumer queue/topic (publish-schedule model)
Browse messages in a queue

Receive messages from queue/topic

Register to received messages asynchronously

Available Visual Basic (O040) functions are listed in detail in the following tables:

Table 3-2, "Comparing AQ Programmatic Environments: Administrative
interfaces"

Table 3-3, "Comparing AQ Programmatic Environments: Operational
Interfaces"

For More Information
For more information about OO40, refer to the following web site:

http://technet.oracle.com

Select Products > Internet Tools > Programmer. Scroll down to: Oracle Objects
for OLE”. At the bottom of the page is a list of useful articles for using the
interfaces.

http://www.oracle.com/products
Search for articles on OO40 or Oracle Objects for OLE

3-6 Application Developer's Guide - Advanced Queuing

Using OCI to Access AQ

Using OCI to Access AQ

Examples

Oracle Call Interface (OCI) provides an interface to Oracle8i Advanced Queuing
functions via the “native” AQ interface.

An OCI client can perform the following actions:
« Enqueue messages

» Dequeue messages

« Listen for messages on sets of queues.

In addition, OCI clients can receive asynchronous notifications for new messages in
a queue using OClSubscriptionRegister.

See: Oracle Call Interface Programmer’s Guide: “OCI and Advanced
Queuing” and “Publish-Subscribe Notification” sections, for syntax
details.

For queues with user-defined payload type, OTT must be used to generate the OCI
mapping for the Oracle type. The OCI client is responsible for freeing the memory
of the AQ descriptors and the message payload.

OCl Interface

See Appendix A, "Oracle Advanced Queuing by Example", under "Enqueue and
Dequeue Of Messages" on page A-11, for OCI Advanced Queuing interface
examples.

Managing OCI Descriptor Memory

See Appendix A, "Oracle Advanced Queuing by Example”, "AQ and Memory
Usage" on page A-74, for examples illustrating memory management of OCI
descriptors.

AQ Programmatic Environments 3-7

Using AQ Java (oracle.AQ) Classes to Access AQ

Using AQ Java (oracle.AQ) Classes to Access AQ

Java AQ API supports both the administrative and operational features of Oracle AQ
(Advanced Queueing). In developing Java programs for messaging applications,
you will use JDBC to open a connection to the database and then the oracle. AQ, the
Java AQ API for message queuing. This means that you will no longer need to use
PL/SQL interfaces.

Oracle8i Supplied Java Packages Reference describes the common interfaces and classes
based on current PL/SQL interfaces.

« Common interfaces are prefixed with “AQ”. These interfaces will have different
implementations in Oracle8i and Oracle Lite.

« Inthis document we describe the common interfaces and their corresponding
Oracle8i implementations, which are in turn prefixed with “Accurately”.

Accessing Java AQ Classes

The Java AQ classes are located in SORACLE_HOMfEdbms /jlib /agapi .jar .
These classes can be used with any Oracle8i JDBC driver.

« Using OCI8 or Thin JDBC Driver: If your application uses the OCI8 or thin

JDBC driver:
« ForJDK 1.2 you must include $ORACLE_HOMEdbms /jlib /agapi .jar
in the CLASSPATH

« ForJDK 1.1 you must include $ORACLE_
HOMErdbms /jlib /agapi 1l.jar inthe CLASSPATH.

» Using Oracle Server Driver in JServer: If the application is using the Oracle
Server driver and accessing the java AQ API from java stored procedures, the
Java files are generally automatically pre-loaded in a Java-enabled database. If
the Java files are not loaded, you must first load the jmscommon.jar and
agapi .jar filesinto the database using the “loadjava” utility.

Advanced Queuing Examples

Appendix A, “Oracle Advanced Queuing by Example” contains the following
examples:

« Enqueue and Dequeue of Object Type Messages (CustomDatum interface)
Using Java

3-8 Application Developer's Guide - Advanced Queuing

Using AQ Java (oracle.AQ) Classes to Access AQ

« Enqueue and Dequeue of Object Type Messages (using SQLData interface)
Using Java

« Create a Queue Table and Queue Using Java

« Create a Queue and Start Enqueue/Dequeue Using Java

« Create a Multi-Consumer Queue and Add Subscribers Using Java
« Enqueue of RAW Messages using Java

« Dequeue of Messages Using Java

« Dequeue of Messages in Browse Mode Using Java

« Enqueue of Messages with Priority Using Java

« Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes
Using Java

Managing Java AQ API

The various implementations of the Java AQ API are managed via an
AQDriverManager . Both OLite and Oracle8i will have an AQDriver which is
registered with the AQDriverManager . The driver manager is used to create an
AQSession which can be used to perform messaging tasks.

The Oracle8i AQ driver is registered using the Class.forName
(“oracle.AQ.AQOracleDriver”) command.

When the AQDriverManager .createAQSession () method is invoked, it calls the
appropriate AQDriver (amongst the registered drivers) depending on the
parameter passed to the createAQSession () call.

The Oracle8i AQDriver expects a valid JDBC connection to be passed in as a
parameter to create an AQSession. Users must have the execute privilege on the
DBMS_AQINpackage in order to use the AQ Java interfaces. Users can also acquire
these rights through the AQ_USER_ROLEr the AQ_ ADMINSTRATOR_ROlBsers
will also need the appropriate system and queue privileges for 8.1 style queue
tables.

AQ Programmatic Environments 3-9

Using Oracle Java Messaging Service (JMS) to Access AQ

Using Oracle Java Messaging Service (JMS) to Access AQ

Java Messaging Service (JMS): Java Messaging Service (JMS) is a messaging
standard defined by Sun Microsystems along with Oracle, IBM and other vendors.
JMS is a set of interfaces and associated semantics that define how a JMS client
accesses the facilities of an enterprise messaging product.

Oracle Java Messaging Service (JMS): Oracle Java Messaging Service provides a
Java API for Oracle8i Advanced Queuing based on the JMS standard. Oracle JMS
supports the standard JMS interfaces and has extensions to support the AQ
administrative operations and other AQ features that are not a part of the standard.

Standard JMS Features

Standard JMS features include
« Point-to-point model of communication - using Queues
« Publish-subscribe model of communication - using Topics

« Five types of messages - ObjectMessage, StreamMessage, TextMessage,
BytesMessage, MapMessage

« Synchronous and Asynchronous delivery of messages.

« Message selection based on message header fields/properties

Oracle JMS Extensions
Oracle JMS extensions include the following:
« Administrative API - to create Queue Tables, Queues and Topics
« Point-to-multipoint communication - using recipient lists for Topics

« Message propagation between Destinations. Allows the application to define
remote subscribers.

« Supports transacted sessions that enable you to perform JMS as well as SQL
operations in one atomic transaction.

« Message retention after messages have been dequeued
« Message delay - messages can be made visible after a certain delay

« Exception handling - messages are moved to exception queues if they cannot
be processed successfully

3-10 Application Developer's Guide - Advanced Queuing

Using Oracle Java Messaging Service (JMS) to Access AQ

« Inaddition to the standard JMS message types, Oracle8i supports
AdtMessages . These are stored in the database as Oracle Objects and hence the
payload of the message can be queried after it is enqueued. Subscriptions can be
defined on the contents of these messages as opposed to just the message
properties.

Accessing Standard and Oracle JMS

Oracle JMS uses JDBC to connect to the database, hence it applications can run as
follows:

« Outside the database using the “OCI8” or “thin” JDBC driver
« Inside Oracle8i JServer using the Oracle Server driver

The standard JMS interfaces are in the javax.jms package.

The Oracle JMS interfaces are in the oracle.jms package.

« Using OCI8 or Thin JDBC Driver: To use JMS with clients running outside the
database, you must include the appropriate JDBC driver and the following jar
files in your CLASSPATH:

« For JDK 1.1 include the following:
$ORACLE_HOME/rdbms/jlib/jmscommon.jar
$ORACLE_HOME/rdbms/jlib/agapill.jar

« For JDK 1.2 include the following:
$ORACLE_HOME/rdbms/jlib/jmscommon.jar
$ORACLE_HOME/rdbmsl/jlib/agapi.jar

« Using Oracle Server Driver in JServer: If your application is running inside the
JServer, you should be able to access the Oracle JMS classes that have been
automatically loaded when the JServer was installed. If these classes are not
available, you may have to load jmscommon.jar followed by aqgapi.jar
using the loadjava utility.

Privileges

Users must have EXECUTE privilege on DBMS_AQINand DBMS_AQIJMS packages
in order to use the Oracle JMS interfaces. Users can also acquire these rights
through the AQ_USER_ROLEr the AQ_ADMINSTRATOR_ROLE

AQ Programmatic Environments 3-11

Using Oracle Java Messaging Service (JMS) to Access AQ

Users will also need the appropriate system and Queue or Topic privileges to send
or receive messages.

For More Information

Oracle JMS interfaces are described in detail irCtheele8i Supplied Java Packages
Reference,.

3-12 Application Developer's Guide - Advanced Queuing

AQ Administrative Interfaces

Comparing AQ Programmatic Environments

Awvailable functions for the AQ programmatic environments are listed by use case,
in the following tables:

= "Comparing AQ Programmatic Environments: Administrative interfaces"
« "Comparing AQ Programmatic Environments: Operational Interfaces"”

Each use case is described in detail, including examples, in Chapters 9 through 16.

AQ Administrative Interfaces

Table 3-2 lists the equivalent AQ administrative functions for the three
programmatic environments, PL/SQL, Java (native AQ), and Java (JMS):

Table 3-2 Comparing AQ Programmatic Environments: Administrative interfaces

Use Case PL/SQL Java (native AQ) Java (JMS)
Create a Connection N/A N/7A AQjmsFactory.getQueueCo
Factory nnectionFactory

AQjmsFactory.getTopicCo
nnectionFactory

Create a Queue Table DBMS_AQADM.create_ Create AQjmsSession.createQueu

gueue_table AQQueueTableProperty, then eTable
AQSession.createQueueTable

Get a Queue Table Use <schema>.<queue_ AQSession.getQueueTable AQjmsSession.getQueueTa
table_name> ble

Alter a Queue Table DBMS_AQADM.alter_ AQQueueTable.alter AQQueueTable.alter
gueue_table

Drop a Queue Table DBMS_AQADM.drop_ AQQueueTable.drop AQQueueTable.drop
gueue_table

Create a Queue DBMS_AQADM.create AQSession.createQueue AQjmsSession.createQueu
queue e

Get a Queue Use <schema>.<queue_ AQSession.getQueue AQjmsSession.getQueue
name>

Create a DBMS_AQADM.create_ Not supported Not supported

Non-persistent Queue np_gqueue

AQ Programmatic Environments 3-13

AQ Administrative Interfaces

Table 3-2 Comparing AQ Programmatic Environments: Administrative interfaces (Cont.)

Create a
Multi-consumer
Queue/Topic

DBMS_AQADM.create
queue

in a queue table with
multiple consumers
enabled

AQSession.createQueue

in a queue table with
multiple consumers enabled

AQjmsSession.createTopic

in a queue table with
multiple consumers
enabled

Get a Multi-consumer
Queue/Topic

Use <schema>.<queue_
name>

AQSession.getQueue

AQjmsSession.getTopic

Alter a Queue/Topic DBMS_AQADM.alter_ AQQueue.alterQueue AQjmsDestination.alter
queue
Start a Queue/Topic DBMS_AQADM.start_ AQQueue.start AQjmsDestination.start
queue AQQueue.startEnqueue
AQQueue.startDequeue
Stop a Queue/Topic DBMS_AQADM.stop_ AQQueue.stop AQjmsDestination.stop
queue AQQueue.stopEnqueue
AQQueue.stopDequeue
Drop a Queue/Topic DBMS_AQADM.drop_ AQQueue.drop AQjmsDestination.drop

queue

AQQueueTable.dropQueue

Grant System DBMS_AQADM.grant_ Not supported AQjmsSession.grantSyste
Privileges system_privilege mPrivilege
Revoke System DBMS_AQADM.revoke_ Not supported AQjmsSession.revokeSyste

Privileges

system_privilege

mPrivilege

Grant a Queue/Topic
Privilege

DBMS_AQADM.grant_
queue_privilege

AQQueue.grantQueuePrivile

ge

AQjmsDestination.grantQ
ueuePrivilege

AQjmsDestination.grantTo
picPrivilege

Revoke a DBMS_AQADM.revoke_ AQQueue.revokeQueuePrivil AQjmsDestination.revoke

Queue/Topic queue_privilege ege QueuePrivilege

Privilege . L
AQjmsDestination.revokeT
opicPrivilege

Verify a Queue Type DBMS_AQADM.verify_ Not supported Not supported

queue_types
Add a Subscriber! DBMS_AQADM.add_ AQQueue.addSubscriber See Table 3-3, "Comparing

subscriber

AQ Programmatic
Environments: Operational
Interfaces”

3-14 Application Developer's Guide - Advanced Queuing

AQ Administrative Interfaces

Table 3-2 Comparing AQ Programmatic Environments: Administrative interfaces (Cont.)

Alter a Subscriber

DBMS_AQADM.alter
subscriber

AQQueue.alterSubscriber

See Table 3-3, "Comparing
AQ Programmatic
Environments: Operational
Interfaces”

Remove a Subscriber

DBMS_AQADM.remove_
subscriber

AQQueue.removeSubscriber

See Table 3-3, "Comparing
AQ Programmatic
Environments: Operational
Interfaces”

Schedule Propagation

DBMS_AQADM.schedule_
propagation

AQQueue.schedulePropagati
on

AQjmsDestination.schedul
ePropagation

Enable a Propagation
Schedule

DBMS_AQADM.enable_
propagation_schedule

AQQueue.enablePropagation
Schedule

AQjmsDestination.enableP
ropagationSchedule

Alter a Propagation
Schedule

DBMS_AQADM.alter_
propagation_schedule

AQQueue.alterPropagationSc
hedule

AQjmsDestination.alterPro
pagationSchedule

Disable a Propagation
Schedule

DBMS_AQADM.disable
propagation_schedule

AQQueue.disablePropagatio
nSchedule

AQjmsDestination.disable
PropagationSchedule

Unschedule a
Propagation

DBMS_
AQADM.unschedule_
propagation

AQQueue.unschedulePropag
ation

AQjmsDestination.unsche
dulePropagation

1 Refer to Chapter 1, "What is Oracle Advanced Queuing?" for the differences between subscriber and recipient.

AQ Programmatic Environments 3-15

AQ Operational Interfaces

AQ Operational Interfaces

Table 3-3 lists equivalent AQ operational functions for the programmatic
environments, PL/SQL, Java (native AQ), OCI, Visual Basic (O040), and Java

(IMS):

Table 3-3 Comparing AQ Programmatic Environments: Operational Interfaces

Java (native

Use Cases PL/SQL AQ) OClI Visual Basic JMS
Create Connection, Session, Message
Create a Connec- N/A Create JDBC OClIServerAt- OpenData- AQjmsQueueConnec-
tion connection tach base tionFactory.createQueue-
Connection
AQjmsTopicConnectionF
actory.createTopicConnec
ion
Create a Session N/A AQDriver- OClSessionBe- QueueConnection.create-
Manager.cre- gin QueueSession

ateAQSession

TopicConnecion.createTo
picSession

Create a RAW Mes- Use SQL RAW AQQueue.cre- Use OCIRaw Create-
sage type for mes- ateMessage for Message OraAQMsg ot supported
sage Set with
AQRawPayloa msgtype
d in message ORATYPE_
RAW
Create a Message Use SQL ADT AQQueue.cre- Use SQL ADT Create- Session.createTextMes-
with Structured type for mes- ateMessage type for mes- OraAQMsg sage
Data sage Set sage with Session.createObjectMes-
ﬁ\a((gj(i)rt])jectpayl ORATYPE sage
messa OBJECT and Session.createMapMessa
ge
typename as ge
ts)%t ﬁth;e Session.createBytesMessa
payload ge

Session.createStreamMes
sage

AQjmsSession.create Adt
Message

3-16 Application Developer's Guide - Advanced Queuing

AQ Operational Interfaces

Table 3-3 Comparing AQ Programmatic Environments: Operational Interfaces (Cont.)

Create a Message
Producer

N/A

N/A

N/A

N/A

QueueSession.create-
Sender

TopicSession.createPublis
her

Enqueue Messages to a Single Consumer Queue: Point-to-Point Model

Enqueue a Mes- DBMS _ AQQueue.eng OCIAQENq OraAP.Enqu QueueSender.send
sage to a sin- AQ.enqueue ueue eue
gle-consumer
queue
Enqueue a Mes- DBMS_ AQQueue.enqg OCIAQENq OraAQ.Enqu Not supported
sage to a queue - AQ.enqueue ueue Specify OCI eue
specify visibility — gpqify Specify ATTR_ Specify
options visibility in visibility in VISIBILITY in visibility
ENQUEUE_ AQEnqueueO OCIAQENQOp property in
OPTIONS ption tions OraAQ
Enqueue a Mes- DBMS_ AQQueue.enqg OCIAQENq OraAQ.Enqu Specify priority and
sage to a sin- AQ.enqueue ueue Specify eue TimeToLive during
gle-consume_r Specify Specify oCl ATTR Specify QueueSender.send OR
gueue - specify priority, priority, PRIGRITY ~ Priority and MessageProducer.set-
message proper- — expirationin expirationin 5~ ATTR Expiration ~ TimeToLive & Mes-
ties - priority, expi- MESSAGE_ AQMessagePr £ypIRATION Propertiesin sageProducer.setPriority
ration PROPERTIES operty in OraAQMsg fol1owed by
OCIAQMsgPr QueueSender.send
operties
Enqueue a Mes- DBMS_ AQQueue.enqg OCIAQENq OraAQ.Enqu Message.setiMSCorrela-
sage to a sin- AQ.enqueue ueue Specify OCI eue tionID
gle-consumer Specify Specify ATTR_ Specify Delay and exception
Queue - specify correlation, correlation, CORRELATIO Correlation, queue specified as
message proper- delay, delay, N, OCI_ Delay, provider specific
ties - correla- exception_ exception ATTR_DELAY, ExceptionQu message properties
tionID, delay, gueue in gueue in OCI_ATTR_ eue IMS OracleDela
exception queue MESSAGE_ AQMessagePr EXCEPTION_ properties in - y
PROPERTIES operty QUEUE in OraAQMsg JMS_OracleExcpQ
OCIAQMsgPr
operties followed by
QueueSender.send

AQ Programmatic Environments 3-17

AQ Operational Interfaces

Table 3-3 Comparing AQ Programmatic Environments: Operational Interfaces (Cont.)

Enqueue a Mes-
sage to a sin-
gle-consumer
Queue - specify
Message Proper-
ties (user-defined)

Not supported

Properties
should be part
of payload

Not supported

Properties
should be part
of payload

Not supported Not

Properties

should be part

of payload

supported

Properties
should be
part of
payload

Message.setIntProperty

Message.setStringPropert
Yy

Message.setBooleanProp
erty etc. followed by

QueueSender.send

Publish Messages to a Multi-Consumer Queue/Topic - Publish-Subscriber Model

Publish a Message DBMS_ AQQueue.enq OCIAQENq OraAQ.Enqu TopicPublisher.publish
to a Multi-con- AQ.enqueue ueue Set OCI_ eue
sumer Set recipient_ Set recipient_ ATTR_
queue/Topic listto NULL in listto NULLin RECIPIENT_
(using default sub- MESSAGE_ ~ AQMessagePr LIST to NULL
scription list) PROPERTIES operty in
OCIAQMsgPr
operties
Publish a Message DBMS _ AQQueue.enqg OCIAQENq OraAQ.Enqu AQjmsTopicPub-
to a Multi-con- AQ.enqueue ueue Specify OCI_ eue lisher.pubish
sumer . Specify Specify ATTR_ Specify recipients as an
queue/Topic recipient listin recipient_list ~RECIPIENT_ array of AQjmsAgent
(using specific MESSAGE_ in LIST in
recipient list) PROPERTIES AQMessagePr OCIAQMsgPr
See footnote-1 operty operties
Publish a Message DBMS_ AQQueue.enqg OCIAQENQ OraAQ.Enqu Specify priority and
to a multi-con- AQ.enqueue ueue Specify OCI_ eue TimeTgLive duri_ng Top-
sumer Specify Specify ATTR Specify icPublisher.publish OR
Queue/Topic - priority, priority, PRIORITY, Priority and ~ MessageProducer.set-
specify message expirationin expirationin ~ OCI_ATTR_ Expiration TimeToLive & Mes-
properties - prior- MESSAGE_ AQMessagePr EXPIRATION properties in sageProducer.setPriority
ity, expiration PROPERTIES operty in OraAQMsg followed by
c?pce'rﬁgs'v'sgpr TopicPublisher.publish

3-18 Application Developer's Guide - Advanced Queuing

AQ Operational Interfaces

Table 3-3 Comparing AQ Programmatic Environments: Operational Interfaces (Cont.)

Publish a Message DBMS_ AQQueue.enq OCIAQENq OraAQ.Enqu Message.setiMSCorrela-
to a multi-con- _ AQ.enqueue ueue Specify OCI_ eue tionlD
sumer queue/topic g cify, Specify ATTR_ Specify Delay and exception
- sp_e0|fy send correlation, correlation, CORRELATIO Correlation, queue specified as
options - correla- delay, delay, N, OCI_ Delay, provider specific
tionID, delay, exception_ exception ATTR_DELAY, ExceptionQu message properties
exception queue queue in queue in OCI_ATTR_ eue
MESSAGE_ AQMessagePr EXCEPTION_ properties in IMS_OracleDelay
PROPERTIES operty QUEUE in OraAQMsg JMS_OracleExcpQ
OCIAQMsgPr
operties followed by .
TopicPublisher.publish
Publish a Message Not supported Not supported Not supported Not Message.setIintProperty
to atopic- specify prynerties Properties Properties supported \1osage setStringPropert
Message Proper- — should be part should be part should be part Properties y
ties (user-defined) of payload of payload of payload should be M BooleanP
part of essage].cs?lt 00 dea;)n rop
payload erty etc. followed by

TopicPublisher.publish

Subscribing for Messages in a Multi Consumer Queue/Topic - Publish Subscribe Model

Add a Subscriber See adminis- See adminis- Not supported Not sup- TopicSession.create-
trative inter- trative inter- ported DurableSubscriber
faces faces AQjmsSession.createDur
ableSubscriber
Alter a Subscriber See adminis- See adminis- Not supported Not sup- TopicSession.create-
trative inter- trative inter- ported DurableSubscriber
faces faces AQjmsSession.createDur
ableSubscriber
using the new selector
Remove a Sub- See adminis- See adminis- Not supported Not sup- AQjmsSession.unsub-
scriber trative inter- trative inter- ported scriber

faces

faces

AQ Programmatic Environments 3-19

AQ Operational Interfaces

Table 3-3 Comparing AQ Programmatic Environments: Operational Interfaces (Cont.)

Browse Messages In a Queue

Browse messages DBMS_ AQQueue.deq OCIAQDeq OraAQ.Dequ QueueSession.create-
in a Queue/Topic AQ.dequeue ueue Set OCI eue Browser
Set dequeue_ Setdequeue_ ATTR_DEQ_ Set Dequeue QueueBrowser.getEnume
mode to mode to MODE to Mode to ration
BROWSE in BROWSE in BROWSE in ORAAQ_ .
DEQUEUE_ AQDequeueO OCIAQDeqOp DQ_ Not supported on Topics
OPTIONS ption tions BROWSE in
OraAQ
Browse messages DBMS_ AQQueue.deq OCIAQDeq OraAQ.Dequ AQjmsSession.create-
in a Queue/Topic - AQ.dequeue ueue Set OCI eue Browser - set locked to
locking messages get gequeue Set dequeue_ ATTR_DEQ_ Specify TRUE.
while browsing mode to mode to MODE to DequeueMo QueueBrowser.getEnume
LOCKED in LOCKED in LOCKED in de as ration
DEQUEUE_ AQDequeueO OCIAQDeqOp ORAAQ_ .
OPTIONS ption q tions DQ_ Not supported on Topics
LOCKED in
OraAQ
Receive Messages From a Queue/Topic
Start a connection N/A N/A N/A N/A Connection.start
for receiving mes-
sages
Create a Message N/A N/A N/A N/A QueueSession.create-
Consumer QueueReceiver
TopicSession.createDura
bleSubscriber
AQjmsSession.createTopi
cReceiver
Dequeue a mes- DBMS_ AQQueue.deq OCIAQDeq OraAQ.Dequ Not supported
sage from a AQ.dequeue ueue Specify OCI eue
gueqe_/tppm " SPEC- gpecify Specify ATTR_ - Specify
ify visibility visibilityin ~ visibilityin VISIBILITY in Visible
DEQUEUE_ AQDequeueO OCIAQDeqOp property in
OPTIONS ption tions OraAQ

3-20 Application Developer's Guide - Advanced Queuing

AQ Operational Interfaces

Table 3-3 Comparing AQ Programmatic Environments: Operational Interfaces (Cont.)

Dequeue a mes- DBMS _ DBMS _ OCIAQDeq OraAQ.Dequ AQjmsQueueRe-
sage from a AQ.dequeue AQ.dequeue Specify OCI eue ceiver.setNavigation-
queue/topic - spec- Specify Specify ATTR_ " Specify Mode
ify navigation navigation in navigationin NAVIGATION Navigation AQjmsTopicSubscriber.se
mode DEQUEUE_ AQDequeueO in in OraAQ tNavigationMode
OPTIONS ption OCIAQDeqOp _) i
tions AQjmsTopicReceiver.set
NavigationMode
Dequeue a mes- DBMS _ AQQueue.deq OCIAQDeq OraAQ.Dequ QueueReceiver.receive or
sage fromasingle AQ.dequeue ueue Set OCI eue QueueReceiver.receiveN
CONSUMET QUEUE get dequeue_ Set dequeue_ ATTR_DEQ_ Specify oWait or
mode to mode to MODE to DequeueMo : :
REMOVEin REMOVEin REMOVEin deas AajmsQueueRecelver.rec
DEQUEUE_ AQDequeueO OCIAQDeqOp ORAAQ_
OPTIONS ption tions DQ_
REMOVE in
OraAQ
Dequeue a mes- DBMS_ AQQueue.deq OCIAQDeq OraAQ.Dequ Create a durable Topic-
sage from a AQ.dequeue ueue Set OCI eue Subscriber on the Topic
multi-consumer Setdequeue_ Setdequeue. ATTR_DEQ_ Specify using the subscription
Queue/Topic modeto ~ modeto ~ MODEto DequeueMo ~Name, then
(!’ISIng SUbslcnp_ REMOVE and REMOVE and REMOVE and de as Topicsubscriber.receive
tion name) Set consumer_ Set consumer_ Set OCI_ ORAAQ_ or
name to name to ATTR_ DQ_ . . .
subscription subscription ~ CONSUMER_ REMOVE in TopicSubscriber.receiveN
name in name in NAME to OraAQ oWait or
DEQUEUE_ AQDequeueO subscription Set AQjmsTopicSubscriber.re
OPTIONS ption name in Consumer as ceiveNoData
OCIAQDeqOp bscrioti
tions subscription
name in
OraAQ

AQ Programmatic Environments 3-21

AQ Operational Interfaces

Table 3-3 Comparing AQ Programmatic Environments: Operational Interfaces (Cont.)

Dequeue a mes- DBMS_ AQQueue.deq OCIAQDeq OraAQ.Dequ Create a TopicReceiver

sage from a AQ.dequeue ueue Set OCI eue on _th_e Topic using the
multl-consu_mer Setdequeue_ Set dequeue ATTR_5EQ_ Specify recipient name, then
Queue/Topic mode to mode to MODE to DequeueMo AQjmsSession.createTopi
(usmgzreuplent REMOVE and REMOVE and REMOVEand deas cReceiver
name) ﬁztn(]::?gumer_ ﬁztrg:?gumer_ ,SO\G'IE'I%CI_ ggAAQ— AQjmsTopicReceiver.rece
. . = — . eor

recipientname recipientname CONSUMER_ REMOVE in v _))

in DEQUEUE_ inAQDequeue NAME to OraAQ AQjmsTopicReceiver.rece

OPTIONS Option recipient name Set iveNoWait or

in

Consumer as AQjmsTopicReceiver.rece
OCIAQDeqO L .
tions QDeqOp subscription iveNoData

name in

OraAQ

Register to Receive Messages Asynchronously From a Queue/Topic

Receive messages Not supported Not supported OCISubscripti OraAQ.Moni Create a QueueReceiver

Asynchronously onRegister torStart on the queue, then
froma . .
- i Specify QueueReceiver.setMessa

SILTSLI; consumer queue_name geListener
q assubscription

name

OCISubscripti

onEnable
Receive messages Not supported Not supported OCISubscripti OraAQ.Moni Create a TopicSubscriber
Asynchronously onRegister torStart or TopicReceiver on the
];L?Jﬂi?consumer Specify Specify topl-c, then .
queue/Topic queue:OCI_ Consumer as Top_lcSubscrlber.setMessa

ATTR_ bscrioti gelListener

CONSUMER Y scription _ _

NAMEas _ hamein TopicReceiver.setMessag

OraAQ eListener

subscription
name

OCISubscripti
onEnable

3-22 Application Developer's Guide - Advanced Queuing

AQ Operational Interfaces

Table 3-3 Comparing AQ Programmatic Environments: Operational Interfaces (Cont.)

Listen for messages
on multiple
Queues/Topics

Listen for messages DBMS_ Not supported OCIAQListen Not Create multiple
on one (many) AQ.listen Use agent supported QueueReceivers on a
&SSJZ-Sconsumer Use agent_ name as QueueSession, then
q name as NULL for all QueueSession.setMessag
NULL for all agents in eListener
agents in agent_list
agent_list
Listen for messages DBMS _ Not supported OCIAQListen Not Create multiple
on one(many) AQ.listen Specify agent supported TopicSubscribers or

multi-consumer

- Specify agent_ name for all
queues/Topics name for all agents in
agents in agent_list
agent_list

TopicReceivers on a
TopicSession, then

TopicSession.setMessage
Listener

1 Refer to Chapter 1, "What is Oracle Advanced Queuing?" for differences between subscriber and recipient.
2 Refer to Chapter 1, "What is Oracle Advanced Queuing?" for differences between subscriber and recipient.

AQ Programmatic Environments 3-23

AQ Operational Interfaces

3-24 Application Developer's Guide - Advanced Queuing

A

Managing AQ

This chapter discusses the following issues related to managing Advanced
Queuing:

« Migrating Queue Tables (Import-Export)

« Security

« Enterprise Manager Support

« Protocols

« Sample DBA Actions as Preparation for Working with AQ

« Current Restrictions

Managing AQ 4-1

Migrating Queue Tables (Import-Export)

Migrating Queue Tables (Import-Export)

When a queue table is exported, the queue table data and anonymous blocks of
PL/SQL code are written to the export dump file. When a queue table is imported,
the import utility executes these PL/SQL anonymous blocks to write the metadata
to the data dictionary.

Exporting Queue Table Data

Queues are implemented on tables. The export of queues entails the export of the
underlying queue tables and related dictionary tables. Export of queues can only be
done at queue table granularity.

Exporting queue tables with multiple recipients

For every queue table that supports multiple recipients, there is an index-organized
table (I0T) and a time-management table that contain important queue metadata.
For 8.1 compatible queue tables there is also a subscriber table, a history table and a
rules table. This metadata is essential to the operation of the queue, so the user must
export these tables as well as the queue table itself for the queues in this queue table
to work after import. During full database mode and user mode export, all these
tables are exported automatically.

Because these metadata tables contain rowids of some rows in the queue table, the
import process will generate a note about the rowids being obsoleted when
importing the metadata tables. This message can be ignored as the queuing system
will automatically correct the obsolete rowids as a part of the import operation.
However, if another problem is encountered while doing the import (such as
running out of rollback segment space), the problem should be corrected and the
import should be repeated.

Exporting Rules

Rules are associated with a queue table. When a queue table is exported, all
associated rules, if any, will be exported automatically.

Supported Export Modes

Export currently operates in three modes: full database mode, user mode, and table
mode. The operation of the three export modes is described as follows.

4-2 Application Developer’'s Guide - Advanced Queuing

Migrating Queue Tables (Import-Export)

Full database mode

This mode is supported. Queue tables, all related tables, system level grants, and
primary and secondary object grants are exported automatically.

User mode

This mode is supported. Queue tables, all related tables and primary object grants
are exported automatically.

Table mode

This is not recommended. If there is a need to export a queue table in table mode,
the user is responsible for exporting all related objects which belong to that queue
table. For example, when exporting an 8.1 compatible multi-consumer queue table
MCQ, you will also need to export the following tables:

AQ$ MCQ |

AQ$ MCQ_H
AQ$_MCQ_S
AQ$ MCQ_T

Incremental export
Incremental export on queue tables is not supported.

Importing Queue Table Data

Similar to exporting queues, the import of queues entails the import of the
underlying queue tables and related dictionary data. After the queue table data is
imported, the import utility executes the PL/SQL anonymous blocks in the dump
file to write the metadata to the data dictionary.

Importing queue tables with multiple recipients

As explained earlier, for every queue table that supports multiple recipients, there is
a index-organized table (10T), a subscriber table, a history table, and a
time-management table that contain important queue metadata. All these tables as
well as the queue table itself, have to be imported for the queues in this queue table
to work after the import.

Because these metadata tables contain rowids of some rows in the queue table, the
import process will issue a note about the rowids being obsoleted when importing
the metadata table. This message can be ignored, as the queuing system will
automatically correct the obsolete rowids as a part of the import operation.

Managing AQ 4-3

Security

Security

However, if another problem is encountered while doing the import (such as
running out of rollback segment space), the problem should be corrected and the
import should be rerun.

Import IGNORE parameter

We suggest that you do not import queue data into a queue table that already
contains data. We recommend that the DBA should always set the IGNORE
parameter of the import utility to NOwhen importing queue tables. If the IGNORE
parameter is set to YES and the queue table that already exists is compatible with
the table definition in the dump file, then the rows will be loaded from the dump
file into the existing table. At the same time, the old queue table definition and the
old queue definition will be dropped and recreated. Hence, queue table and queue
definitions prior to the import will be lost, and duplicate rows will appear in the
gueue table.

Configuration information can be managed through procedures in the DBMS _
AQADMbackage. Initially, only SYSand SYSTEMave the execution privilege for the
procedures in DBMS_AQADAMd DBMS_AQANy users who have been granted the
EXECUTHRights to these two packages will be able to create, manage, and use
gueues in their own schema. The user would also need the MANAGE ANY QUEUE
privilege in order to create and manage queues in other schemas.

Security with 8.0 and 8.1 Compatible Queues

AQ administrators of an 8.1 database are allowed to create queues with 8.0 or 8.1
compatibility. All 8.1 security features are enabled for 8.1 compatible queues.
However, please note that AQ 8.1 security features work only with 8.1 compatible
gueues; 8.0 compatible queues are protected by the 8.0 compatible security features.

To create queues in 8.1 that can make use of the new security features, the
compatible parameter in DBMS_AQADNREATE_QUEUE_TABLfRust be set to ’8.1’
or above. If you want to use the new security features on a queue originally created
in an 8.0 database, the queue table must be converted to 8.1 compatibility by
running DBMS_AQADMIGRATE_QUEUE_TABL®&N the queue table.

If a database downgrade is necessary, all 8.1 compatible queue tables have to be
either converted back to 8.0 compatibility or dropped before the database
downgrade can be carried out. During the conversion, all 8.1 security features on
the queues, like the object privileges, will be dropped. When a queue is converted to

4-4 Application Developer’'s Guide - Advanced Queuing

Security

8.0 compatibility, the 8.0 security model apply to the queue, and only 8.0 security
features are supported.

The following table lists the AQ security features supported in each version of
Oracle8 database and their equivalence privileges across different database version.

Table 4-1 Security with 8.0- and 8.1-Compatible Queues

8.0.x Compatible 8.1.x Compatible

Queues in a 8.1.x Queuesina8.1.x
Privilege 8.0.x Database Database Database
AQ_USER_ROLE Supported. The grantee is Supported. The grantee is Not supported.

given the execute right of given the execute right of Equivalent privileges:

DBMS_AQhrough the dbms_aq through the role. 1. execute right on

role. dbms_aq
2. enqueue any queue
system privilege
3. dequeue any queue
system privilege
AQ_ADMINISTRATOR_ Supported. Supported. Supported.
ROLE
Execute right on Execute right on DBMS_AQ Execute right on DBMS_AQ Execute right on DBMS_AQ
DBMS_AQ should be granted to should be granted to should be granted to all

developers who write AQ developers who write AQ AQ users. To

applications in PL/SQL. applications in PL/SQL. enqueue/dequeue on 8.1
compatible queues, the
user needs the following

privileges:

1. execute right on
DBMS_AQ

2. either
enqueue/dequeue

privileges on target
queues, or ENQUEUE
ANY
QUEUE/DEQUEUE
ANY QUEUEystem
privileges

Privileges and Access Control

With Oracle 8.1, you can grant or revoke privileges at the object level on 8.1
compatible queues. You can also grant or revoke various system level privileges.

Managing AQ 4-5

Security

Roles

The following table lists all common AQ operations, and the privileges need to
perform these operations for an 8.1-compatible queue:

Table 4-2 Operations and Required Privileges in the 8.1 Security Model

Operation(s)

Privileges Required

CREATZDROFMONITOR
own queues

CREATZDROFMONITOR
any queues

ENQUEUEDEQUEUE to
own queues

ENQUEUE DEQUEUE to
another’s queues

ENQUEUE DEQUEUE to
any queues

Must be granted execute rights on DBMS_AQADMIo other
privileges needed.

Must be granted execute rights on DBMS_AQADAMd be
granted AQ_ADMINISTRATOR_ROLEy another user who
has been granted this role (SYSand SYSTEMare the first
granters of AQ_ADMINISTRATOR_ROLE)

Must be granted execute rights on DBMS_AQ. No other
privileges needed.

Must be granted execute rights on DBMS_AQ@nd be granted
privileges by the owner using DBMS_AQADMRANT_QUEUE_
PRIVILEGE.

Must be granted execute rights on DBMS_AQ@nd be granted
ENQUEUE ANY QUEDEDEQUEUE ANY QUEB)Stem
privileges by an AQ administrator using DBMS_
AQADMSRANT_SYSTEM_PRIVILEGE

Access to AQ operations in Oracle 8.0 is granted to users through roles which
provide execution privileges on the AQ procedures. The fact that there is no control
at the database object level when using Oracle 8.0 means that in Oracle 8.0 a user
with the AQ_USER_ROLEan enqueue and dequeue to any queue in the system.
Since Oracle 8.1 offers a finer-grained access control, the function of roles changes
when you develop applications in the 8.1 context.

Administrator Role

Oracle 8.1 continues to support the AQ_ AQMISTRATOR_ROLAs in 8.0, the AQ _
ADMINISTRATOR_ROLIas been granted all the required privileges to administer
gueues. The privileges granted to the role let the grantee:

« perform any queue administrative operation, including create queues and
gueue tables on any schema in the database

« perform enqueue and dequeue operations on any queues in the database

= access statistics views used for monitoring the queues’ workload

4-6 Application Developer’'s Guide - Advanced Queuing

Security

User Role

AQ_USER_ROLEontinues to work for queues that are created with 8.0
compatibility. However, you should avoid granting AQ_USER_ROL# Oracle 8.1
since this role will not provide sufficient privileges for enqueuing or dequeuing on
8.1 compatible queues.

Your database administrator has the option of granting the system privileges
ENQUEUE ANY QUEHId DEQUEUE ANY QUE\gkercising DBMS_AQADMRANT _
SYSTEM_PRIVILEGEand DBMS_AQADREVOKE_SYSTEM_PRIVILEGHirectly to
a database user, provided that you wish the user to have this level of control. You as
the application developer give rights to a queue by granting and revoking
privileges at the object level by exercising DBMS_AQADMRANT_QUEUE_
PRIVILEGE and DBMS_AQADREVOKE_QUEUE_PRIVILEGE

As a database user you do not need any explicit object level or system level
privileges to enqueue or dequeue to queues in your own schema other than the
execute right on DBMS_AQ

Access to AQ Object Types

The procedure grant_type_access is made obsolete in release 8.1.5 for both
8.0-compatible and 8.1 compatible queues. All internal AQ objects are now
accessible to PUBLIC.

OCI Applications

Propagation

For an OCI application to access an 8.0-compatible queue, the session user has to be
granted the EXECUTHRights of DBMS_AQor an OCI application to access an
8.1-compatible queue, the session user has to be granted either the object privilege
of the queue he intends to access or the ENQUEUE ANY QUEU&Nd/or DEQUEUE
ANY QUEUEBsystem privileges. The EXECUTHRight of DBMS_AQuill not be checked
against the session user’s rights, if the queue he intends to access is an
8.1-compatible queue.

AQ propagates messages through database links. The propagation driver dequeues
from the source queue as owner of the source queue; hence, no explicit access rights
have to be granted on the source queue. At the destination, the login user in the
database link should either be granted ENQUEUE ANY QUEURrivilege or be
granted the rights to enqueue to the destination queue. However, if the login user in

Managing AQ 4-7

Security

the database link also owns the queue tables at the destination, no explicit AQ
privileges need to be granted either.

Purpose:

To upgrade a 8.0-compatible queue table to an 8.1-compatible queue table or to
downgrade a 8.1-compatible queue table to an 8.0-compatible queue table.

Syntax:

DBMS_AQADMMIGRATE_QUEUE TABLE(
queue table IN VARCHARZ,
compatible IN VARCHAR2)

Usage:

Table -3 DBMS_AQADM_MIGRATE_QUEUE_TABLE

Parameter Description

queue_table Specifies name of the queue table that is to be migrated.
(IN VARCHAR?2)

compatible Set to 8.1’ to upgrade an 8.0 queue table to 8.1 compatible. Set to '8.0’ to downgrade
an 8.1 queue table to 8.0 compatible.

Usage Notes

For the most current information regarding the interrelationship of different
releases, please refer to "Compatibility" on page 4-14 in Chapter 4, "Managing AQ".

4-8 Application Developer’'s Guide - Advanced Queuing

Security

Example: To Upgrade An 8.0 Queue Table To A 8.1-Compatible Queue Table

Note: You may need to set up the following data structures for
certain examples to work:

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table =>'gtablel’,

multiple_consumers => TRUE,
queue_payload_type =>'ag.message_typ’,
compatible =>'8.0");

EXECUTE DBMS_AQADMMIGRATE_QUEUE_TABLE(
queue_table => 'gtablel’,
compatible =>'8.1);

Managing AQ 4-9

Enterprise Manager Support

Enterprise Manager Support

Protocols

Enterprise manager supports GUIs for most of the administrative functions listed in
the administrative interfaces section.

These include:

Queues as part of schema manager to view properties.
Create, start, stop and drop queue.

Schedule and unschedule propagation.

Add and remove subscriber.

a & w0 d P

View the current propagation schedule.

Grant & revoke privileges.

You must specify "Objects=T" in the xa_open string if you want to use the AQ OCI
interface. This forces XA to initialize the client side cache in Objects mode. You do
not need to do this if you plan to use AQ through PL/SQL wrappers from OCI or
Pro*C. The LOB memory management concepts you picked up from the Pro*
documentation is not relevant for AQ raw messages because AQ provides a simple
RAW buffer abstraction (although they are stored as LOBSs).

You must use AQ navigation option carefully when you are using AQ from XA. XA
cancels cursor fetch state after an xa_end. Hence, if you want to continue dequeuing
between services (such as xa_start/xa_end boundaries) you must reset the dequeue
position by using the FIRST_MESSAGHavigation option. Otherwise, you will get
an ORA-25237 (navigation used out of sequence).

Sample DBA Actions as Preparation for Working with AQ

Creating a User as an AQ Administrator

To set a user up as an AQ administrator, you must the following steps
CONNECT system/manager

CREATE USER agadm IDENTIFIED BY agadm;

GRANT AQ ADMINISTRATOR_ROLE TO agadm;
GRANT CONNECT, RESOURCE TO agadm;

Additionally, you might grant execute on the AQ packages as follows:

4-10 Application Developer’'s Guide - Advanced Queuing

Sample DBA Actions as Preparation for Working with AQ

GRANT EXECUTE ON DBMS_AQADM TO agadm;
GRANT EXECUTE ON DBMS_AQ TO agadm;

This allows the user to execute the procedures in the AQ packages from within a
user procedure.

Creating User AQUSER1 and AQUSER?2 as Two AQ Users

If you want to create an AQ user who creates and accesses queues within his/her
own schema, follow the steps outlined in the previous section except do not grant
the AQ_ADMINISTRATOR_ROLE

CONNECT system/manager
CREATE USER aquserl IDENTIFIED BY aquserl;
GRANT CONNECT, RESOURCE TO aquserl;

Additionally, you might grant execute on the AQ packages as follows:

GRANT EXECUTE ON DBMS_AQADM to agquserl;
GRANT EXECUTE ON DBMS_AQ TO aquserl;

If you wish to create an AQ user who does not create queues but uses a queue in
another schema, first follow the steps outlined in the previous section. In addition,
you must grant object level privileges. However, note that this applies only to
gueues defined using 8.1 compatible queue tables.

CONNECT system/manager
CREATE USER aquser2 IDENTIFIED BY aquser2;
GRANT CONNECT, RESOURCE TO aguser2;

Additionally, you might grant execute on the AQ packages as follows:

GRANT EXECUTE ON DBMS_AQADM to aquser2;
GRANT EXECUTE ON DBMS_AQ TO aquser2;

For aquser2 to access the queue, aquserl_gl1 in aquserl schema, aquserl
must execute the following statements:

CONNECT aquserl/aquserl
EXECUTE DBMS_AQADM.GRANT_QUEUE_PRIVILEGE(
'ENQUEUE/aquserl_ql'/aquser2,FALSE);

Managing AQ 4-11

Current Restrictions

Current Restrictions

The following restrictions currently apply.

Auto-commit features in DBMS_AQADM package

The auto_commit parameters in CREATE_QUEUE_TABIL.BROP_QUEUE_TABLE
CREATE_QUEUBROP_QUEU&hd ALTER_QUEUEalls in DBMS_AQADNackage
are deprecated for 8.1.5 and subsequent releases. Oracle continues to support this
parameter in the interface for backward compatibility purpose.

Collection Types in Message Payloads

You cannot construct a message payload using a VARRAY that is not itself
contained within an object. You also cannot currently use a nested table even as an
embedded object within a message payload. However, you can create an object type
that contains one or more VARRAYS, and create a queue table that is founded on
this object type.

For example, the following operations are allowed:

CREATE TYPE number_varray AS VARRAY(32) OF NUMBER;
CREATE TYPE embedded_varray AS OBJECT (coll number_varray);
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(
queue_table = QT,
queue_payload type => 'embedded varay);

Object Type Payload Support in AQ Java API

The AQ Java classes in release 8.1.5 does not allow enqueuing and dequeuing object
type payloads, only raw type payloads are supported.

Synonyms on Queue Tables and Queue

All AQ PL/SQL calls do not resolve synonyms on queues and queue tables. Even
though you can create a synonyms, you should not apply the synonym to the AQ
interface.

Pluggable Tablespace does not Work For 8.0 Compatible Multiconsumer Queues

Any tablespace which contains 8.0 compatible multiconsumer queue tables should
not be transported using the pluggable tablespace mechanism. The mechanism will

4-12 Application Developer’'s Guide - Advanced Queuing

Current Restrictions

work, however, with tablespaces that contain only single consumer queues as well
as 8.1 compatible multiconsumer queues. Before you can export a tablespace in
pluggable mode, you have to alter the tablespace to read-only mode. If you try to
import a read-only tablespace which contain 8.0 compatible multiconsumer queues,
you will get an Oracle error indicating that you cannot update the queue table index
at import time.

Tablespace point-in-time recovery

AQ currently does not support tablespace point in time recovery. Creating a queue
table in a tablespace will disable that particular tablespace for point-in-time
recovery.

Propagation from Object Queues

Note that AQ does not support propagation from Object queues that have BFILE or
REF attributes in the payload.

Non-Persistent Queues

Currently you can create only non-persistent queues of RAWype.You are limited in
that you can send messages only to subscribers and explicitly specified recipients
who are local. Propagation is not supported from non-persistent queues. And in
retrieving messages, you cannot use the dequeue call but must instead employ the
asynchronous notification mechanism, registering for the notification by mean of
OCISubcriptionRegister

Managing AQ 4-13

Compatibility

Compatibility

Certain features only will function if compatibility is set to "8.1". As shown in
Table 4-4, you may have to set the compatible parameter of the init .ora and/or

the compatible parameter of the queue table.

Table 4-4 Compatibility Settings Required to Make Use of New Features

Init.ora queue table
Feature compatible =’ 8.1.x’ compatible =’ 8.1’
Queue Level Access Control X X
Non-Persistent Queues X automatically created
Support for OPS Environments X
Rule-based Subscribers for X X
Publish/Subscribe
Asynchronous Notification X
Sender Identification X

Separate storage of history
management information

For more information, see:

« Migrating Queue Tables (Import-Export) on page 4-2

« Oracle8i Migration

4-14 Application Developer’'s Guide - Advanced Queuing

D

Advanced Topics

This chapter discusses the following advanced topics:
« Performance
« Table and index structures
« Throughput
« Availability
« Scalability
« Propagation Issues

« Guidelines for Debugging AQ Propagation Problems

Advanced Topics 5-1

Performance

Performance

Queues are stored in database tables. The performance characteristics of queue
operations are very similar to the underlying database operations.

Table and index structures

Throughput

Availability

To understand the performance characteristics of queues it is important to under-
stand the tables and index layout for AQ objects.

Creating a queue table creates a database table with approximately 25 columns.
These columns store the AQ meta data and the user defined payload. The payload
can be of an object type or RAWThe AQ meta data contains object types and scaler
types. A view and two indexes are created on the queue table. The view allows
users to query the message data. The indexes are used to accelerate access to mes-
sage data. Please refer to the create queue table command for a detailed description
of the objects created.

The code path of an enqueue operation is comparable to an insert into a multi-col-
umn table with two indexes. The code path of a dequeue operation is comparable to
a select and delete operation on a similar table. These operations are performed
using PL/SQL functions.

Oracle Parallel Server can be used to ensure highly available access to queue data.
Queues are implemented using database tables. The tail and the head of a queue can
be extreme hot spots. Since OPS does not scale well in the presence of hot spots it is
recommended to limit normal access to a queue from one instance only. In case of
an instance failure messages managed by the failed instance can be processed
immediately by one of the surviving instances.

5-2 Application Developer's Guide - Advanced Queuing

Propagation Issues

Scalability

Queue operation scalability is similar to the underlying database operation
scalability. If a dequeue operation with wait option is issued in a Multi-Threaded
Server (MTS) environment the shared server process will be dedicated to the
dequeue operation for the duration of the call including the wait time. The presence
of many such processes could cause severe performance and availability problems
and could result in deadlocking the shared server processes. For this reason it is
recommended that dequeue requests with wait option be only issued via dedicated
server processes. This restriction is not enforced.

Propagation Issues

Caution: Propagation makes use of the system queue aq$_prop_
notify X (where X is the instance number of the instance where
the source queue of a schedule resides) for handling propagation
run-time events. These messages in this queue are stored in the
system table ag$_prop_table_X (where X is the instance
number of the instance where the source queue of a schedule
resides). The queue aq$_prop_notify_X should never be
stopped or dropped and the table ag$_prop_notify X should
never be dropped for propagation to work correctly.

Optimizing Propagation

In setting the number of JOB_QUEUE_PROCESSE#)e DBA should aware that this
need is determined by the number of queues from which the messages have to be
propagated and the number of destinations (rather than queues) to which messages
have to be propagated.

In this release, a new scalable scheduling algorithm has been incorporated for
handling propagation. It has been designed to make optimal use of the available job
gueue processes and also minimize the time it takes for a message to show up at a
destination once it has been enqueued into the source queue, thereby providing
near OLTP behavior. This algorithm is capable of simultaneously handling an
unlimited number of schedules. The algorithm also has robust support for handling
various types of failures. While propagation tries to make the optimal use of the
available job queue processes, the number of job queue processes to be started also
depends on the existence of non-propagation related jobs such as replication jobs.

Advanced Topics 5-3

Propagation Issues

Hence, it is very important to use the following guidelines to get the best results
from this new algorithm.

The new algorithm uses the job queue processes as follow: (for this discussion an
active schedule is one which has a valid current window):

« If the number of active schedules is less than half the number of job queue
processes, the number of job queue processes acquired corresponds to the
number of active schedules

« If the number of active schedules is more than half the number of job queue
processes, after acquiring half the number of job queue processes multiple
active schedules are assigned to an acquired job queue process

. If system is overloaded (all schedules are busy propagating), depending on the
availability additional job queue processes will be acquired up to one less than
the total number of job queue processes

« If none of the active schedules handled by a process have messages to be
propagate then that job queue process will be released

« The algorithm performs automatic load balancing by transferring schedules
from a heavily loaded process to a lightly load process such that no process is
excessively loaded

The scheduling algorithm places the restriction that at least 2 job queue processes be
available for propagation. If there are non-propagation related jobs then more
number of job queue processes is needed. If heavily loaded conditions (when there
are a large number of active schedules all of which have messages to be propagated)
are expected then it is recommended to start a larger number of job queue processes
keeping in mind that the job queue processes will be used for non-propagation
related jobs as well. In a system which only has propagation jobs, then 2 job queue
processes can handle all schedules but higher the number the faster the messages
get propagated. Note that, since one job queue process can propagate messages
from multiple schedules, it is not necessary to have the same number of job queue
processes as the number of schedules.

Handling Failures in Propagation

The new algorithm also has robust support for handling failures. It may not be able
to propagate messages from a queue due to various types of failures. Some of the
common reasons include failure of the database link, non-availability of the remote
database, non-existence of the remote queue, remote queue not started and security
violation while trying to enqueue messages into the remote queue. Under all these
circumstances the appropriate error messages will be reported in the dba_queue_

5-4 Application Developer's Guide - Advanced Queuing

Guidelines for Debugging AQ Propagation Problems

schedules view. When an error occurs in a schedule, propagation of messages in
that schedule is attempted periodically using an exponential backoff algorithm for a
maximum of 16 times after which the schedule is disabled. If the problem causing
the error is fixed and the schedule is enabled, the error fields that indicate the last
error date, time and message will still continue to show the error information. These
fields are reset only when messages are successfully propagated in that schedule.
During the later stages of the exponential backoff, the time span between
propagation attempts can be large in the tune of hours or even days. This happens
only when an error has been neglected for a long time. Under such circumstances it
may be better to unschedule the propagation and schedule it again.

Guidelines for Debugging AQ Propagation Problems

This discussion assumes that you have created queue tables and queues in source
and target databases and defined a database link for the destination database.
Notation assumes that you will supply the actual name of the entity (without the
brackets).

There is additional information in the Application Developer's Guide for Advanced
Queuing. In particular, see sections on propagation in Chapters 2 and 3. There is
also troubleshooting information in 8.0 Application Developer's Guide, Ch 11.

1. Turn on propagation tracing at the highest level using event 24040, level 10.
Debugging information will be logged to job queue trace file(s) as propagation takes
place. You can check the trace file for errors, and for statements indicating that
messages have been sent.

2. Check the database link to database 2. You can do this by doing select count(*)
from @.

3. Check that the propagation schedule has been created and that a job queue
process has been assigned. Look for the entry in dba_queue_schedlues and ag$_
schedules for your schedule. Check that it has a 'jobno' in ag$_schedules, and that
there is an entry in job$ or doms_jobs with that jobno.

4. Make sure that there are at least 1 job queue processes running. There should be
at least 2 job queue processes for Oracle8i.

5. Check for messages in the source queue with select count(*) from where g_name

6. Check for messages in the destination queue with the same kind of select.

7. Check to see if there are others using job queue processes. Is it possible that the
propagation job is being starved of processing time by other jobs?

Advanced Topics 5-5

Guidelines for Debugging AQ Propagation Problems

8. Check to see that sys.aq$_prop_table_ exists in dba_queue_tables and that queue
ag$_prop_notify_ exists in dba_queues. (is the OPS instance number). These are
used for communication between job queue processes.

9. Check that the consumer attempting to dequeue a message at from the
destination queue, is a recipient of the propagated messages. For 8.1 style queues,
you can do

select consumer_name, deq_txn_id, deq_time, deq_user_id,
propagated_msgid from aq$
where queue =;
For 8.0 style queues, you can obtain the same information from the history
column of the queue table:
select h.consumer, h.transaction_id, h.deq_time, h.deq_user,
h.propagated_msgid from t, table(t.history) h
where t.q_name =",
or
select consumer, transaction_id, deq_time, deq_user,
propagated_msgid from
the(select cast(history as sys.ag$_dequeue_history_t)

from where q_name =");

5-6 Application Developer's Guide - Advanced Queuing

6

Frequently Asked Questions

This chapter answers some of the most commonly asked questions about advanced
gueueing.

How are messages that have been dequeued but are still retained in the queue
table accessed?

Access them using SQL. Messages in the queue table (either because they are being
retained or because they have not yet been processed). Each queue has a view that
you can use (see "Select the Number of Messages in Different States for the Whole
Database" on page 10-39).

Message retention means the messages are there, but how does the subscriber
access these messages?

Typically we expect the subscriber to access the messages using the dequeue
interface. If, however, you would like to see processed or waiting messages you can
either dequeue by message id or use SQL.

Can the sort order be changed after the Queue table is created?

You cannot change the sort order for messages after you have created the queue
table.

How do | dequeue from an exception queue?

The Exception queue for a multiconsumer queue must also be a multiconsumer
queue.

Expired messages in multi-consumer queues cannot be dequeued by the intended
recipients of the message. However, they can be dequeued in the REMOVE mode

Frequently Asked Questions 6-1

once (only once) using a NULL consumer name in dequeue options. Messages can
also be dequeued from exception queue by specifying the message ID.

Expired messages can be dequeued only by specifying message ID if the
multiconsumer exception queue was created in a queue table without the
compatible parameter or with the compatible parameter set to '8.0'

What does the latency parameter mean in scheduling propagation?

If latency < 0 was specified in the propagation schedule, then the job is rescheduled
to run after the specified latency. The time at which the job actually runs depends
on other factors such as the number of ready jobs and the number of job_queue_
processes. It may also be affected by the value for job_queue_interval. Please refer
to the MANAGING JOB QUEUES chapter of the Oracle8i Administrator’s Guide
for more information on job queues and SNP background processes.

How can | control the tablespaces in which the Queue tables are created?

You can pick a tablespace for storing the queue table and all its ancillary objects via
the storage_clause parameter in DBMS_AQADM.CREATE_QUEUE_TABLE.
However, once you pick the tablespace, all IOTs and indexes created for that queue
table will go to the specified tablespace. Currently, you don't have a choice to split
them between different tablespaces.

How do you associate OPS instance affinities with Queue tables?

In 8.1 you can associate OPS instance affinities with queue tables. If you are using
gl and g2 in different instances, you can use alter_queue_table (or even create
gueue table) on the queue table and set the 'primary_instance' to the appropriate
instance_id.

Can you give me some examples of a subscriber rule containing - message
properties - message data properties.

Yes, here is a simple rule that specifies message properties - rule ='priority 1"

here are example rules that specify a combination of message properties and data
attributes: rule = "priority 1 AND tab.userdata.sal 1000’ rule = '((priority between 0
AND 3) OR correlation = "BACK_ORDERS") AND tab.userdata.customer_name
like "JOHN DOE")'

Note that user data properties or attributes apply only to object payloads and must
be prefixed with tab.userdata in all cases. Check documentation for more examples.

6-2 Application Developer's Guide - Advanced Queuing

Is registration for notification (OCI) the same as starting a listener?

No. Registration is an OCI client call to be used for asynchronous notifications (that
is, push). It basically provides a notification from the server to the client when a
message is available for dequeue. A client side function (callback) is invoked by the
server when the message is available. Registration for notification is both
non-blocking and non-polling.

What is the use of non-persistent queues?

To provide a mechanism for notification to all users that are currently connected.
The non-persistent queue mechanism supports the enqueue of a message to a
non-persistent queue and OCI notifications are used to deliver such messages to
users that are currently registered for notification.

Is there a limit on the length of a recipient list? Or on the number of subscribers
for a particular queue?
Yes, 1024 subscribers or recipients for any queue.

How can | clean out a queue with UNDELIVERABLE messages?

You can dequeue these messages by msgid. You can find the msgid by querying the
gueue table view. Eventually the messages are moved to the exception queue (you
must have the AQ background process running for this to happen). You can
dequeue these messages from the exception queue with a normal dequeue.

Is it possible to update the message payload after it has been enqueued?

Only by dequeuing and enqueuing the message again. If you are changing the
message payload then really it is a different message.

Can Asynchronous Notification can be used to invoke an executable every time

there is a new message.

Notification is possible only to OCI clients. The client does not have to be connected
to the database to receive notifications. The client specifies a callback function
which will be executed for each message. Asynchronous Notification cannot be
used to invoke an executable but its possible for the callback function to invoke a
stored procedure.

Frequently Asked Questions 6-3

Does propagation work from Multiconsumer queues to Single consumer queues
and vice versa?

Propagation from a multiconsumer queue to a single consumer queue is possible.
The reverse is not possible (propagation is not possible from a single consumer
gueue).

Why do | sometimes get ORA-1555 error on dequeue?

You are probably using the NEXT_MESSAGE navigation option for dequeue. This
uses the snapshot created during the first dequeue call. After that the other dequeue
calls generate more undo which fills up the rollback segment and hence generates
1555.

The workaround is to use the FIRST_MESSAGE option to dequeue the message.
This will re-execute the cursor and get a new snapshot. This might not perform as
well so we would suggest you dequeue them in batches - FIRST_MESSAGE for one
and then NEXT_MESSAGE for the next say 1000 messages and then FIRST _
MESSAGE again and so on.

What is the max number of queues that a table can have without affecting
performance?
Performance is not affected by the number of queues in a table.

When messages are moved from one queue to another using propagation, is
there any optimization to move the messages in batches, rather than one at a
time?

Yes, it is optimized, propagation happens in batches.

Also if the remote queue is in a different database, we use a sequencing algorithm to
avoid the need for a two-phase commit.

When a message needs to be sent to multiple queues in the same destination it is
sent multiple times. If the message needs to be sent to multiple consumers in the
same queue at the destination, it is sent only once.

What are the different subscriber types recorded on the subscriber table?
The subscriber_types and their values are:

1 - Current Subscriber. The subscribers name, address & protocol are in the same
row.

6-4 Application Developer's Guide - Advanced Queuing

2 - Ex subscriber - A subscriber that unsubscribed but had agent entries in the
history ag$_queuetable_h 10T

4 - Address - Used to store addresses of recipients. The name is always NULL.
address is always non-NULL.

8 - Proxy for Propagation - The name is always NULL.
database proxy to local queues, address=NULL, protocol=0
database proxy to remote queues, address=dblink address, protocol=0

3rd party proxies, address = NULL, protocol = 3rd party protocol.

After a message has been moved to an exception queue, is there any way, using
SQL or otherwise, of identifying which queue the message resided in before
moving to the exception queue?

No, AQ does not provide this information. To get around this, the application could
save this information in the message.

What is the order in which messages are dequeued if many messages are
enqueued in the same second?

When the eng_time is the same for messages, there is another field called step_no
that will be monotonically increasing (for each message that has the same enq_
time). Hence this helps in maintaining the order of the messages. There will be no
situation when both eng_time and step_no are the same for more than one message
enqueued from the same session.

Why do the JMS dbms_agadm.add_subscriber and doms_agadm.remove_
subscriber calls sometimes hang when there are concurrent enqueues or
dequeues happening on the same queue to which these calls are issued?

Add_subscriber and remove_subscriber are administrative operations on a queue.
Though AQ does not prevent applications from issuing administrative and
operational calls concurrently, they are executed serially. Both add_subscriber and
remove_subscriber will block until pending transactions that have enqueued or
dequeued messages commit and release the resources they hold. It is expected that
adding and removing subscribers will not be a frequent event. It will mostly be part
of the setup for the application. Hence the behavior you observe will be acceptable
in most cases. The solution is to try to isolate the calls to add_subscriber and
remove_subscriber at the setup or cleanup phase when there are no other

Frequently Asked Questions 6-5

operations happening on the queue. That will make sure that they will not stay
blocked waiting for operational calls to release resources.

Why do the TopicSession.createDurableSubscriber and
TopicSession.unubscribe calls raise JMSException with the message "ORA -
4020 - deadlock detected while trying to lock object"?

CreateDurableSubscriber and unsubscribe calls require exclusive access to the
Topics. Hence if there are pending JMS operations (send/publish/receive) on the
same Topic before these calls are issued, the ORA - 4020 exception is raised.

There are two solutions to the problem:

1. Try to isolate the calls to createDurableSubscriber and unsubscribe at the setup or
cleanup phase when there are no other JMS operations happening on the Topic.
That will make sure that the required resources are not held by other IMS0
operational calls. Hence the error ORA - 4020 will not be raised.

2. Issue a TopicSession.commit call before calling createDurableSubscriber and
unsubscribe call.

Why doesn't AQ_ADMINISTRATOR_ROLE or AQ_USER_ROLE always work for
AQ applications using Java/JMS api?

In addition to granting the roles, you would also need to grant execute to the user
on the following packages:

« grant execute on sys.dbms_aqin to <userid>

« grant execute on sys.dbms_agjms to <userid>

Why do | get java.security.AccessControlException when using JMS
MessageListeners from java stored procedures inside Oracle8 i JServer
To use MessageL.isteners inside Oracle8i JServer, you can do one for the following

1. GRANT JAVASYSPRIV to <userid>

2. call dbms_java.grant_permission (‘(JAVASYSPRIV',
'SYS:java.net.SocketPermission’,

' 'accept,connect,listen,resolve’);

6-6 Application Developer's Guide - Advanced Queuing

v

Modeling and Design

This chapter covers the fundamentals of Advanced Queueing Modeling and Design
in the following sections:

Basic Queuing

Illustrating Basic Queuing

Illustrating Client-Server Communication Using AQ
Multiple-Consumer Dequeuing of the Same Message

Illustrating Multiple-Consumer Dequeuing of the Same

Message

Illustrating Dequeuing of Specified Messages by Specified Recipients

Illustrating the Implementation of Workflows using AQ

INustrating the Implementation of Publish/Subscribe using AQ

Message Propagation
Illustration of Message Propagation

Illustration of Message Propagation

Modeling and Design 7-1

Modeling Queue Entities

Modeling Queue Entities

Figure 7-1 Basic Queues

Queue Table

Queue 1 Queue 2 Exception Queue 1
Quel Msgl Que2 Msgl ExQue 1l Msg 1
Quel Msg2 Que 2 Msg 2 ExQue 1 Msg 2
Quel Msg3 Que 2 Msg 3 ExQue 1l Msg 3
Quel Msg4 Que 2 Msg 4
Quel Msg5 Que2 Msg5
Quel Msg 6 Que 2 Msg 6
Quel Msg7 Que 2 Msg7
Quel Msg 8
Quel Msg9
Que 1l Msg 10

The preceding figure portrays a queue table that contains two queues, and one
exception queue:

» Queuel — contains 10 messages.
« Queue2 — contains 7 messages.

« ExceptionQueuel — contains 3 messages.

7-2 Application Developer's Guide - Advanced Queuing

Modeling Queue Entities

Basic Queuing

Basic Queuing — One Producer, One Consumer

At its most basic, one producer may enqueue different messages into one queue.
Each message will be dequeued and processed once by one of the consumers. A
message will stay in the queue until a consumer dequeues it or the message expires.
A producer may stipulate a delay before the message is available to be consumed,
and a time after which the message expires. Likewise, a consumer may wait when
trying to dequeue a message if no message is available. Note that an agent program,
or application, can act as both a producer and a consumer.

Basic Queuing — Many Producers, One Consumer

At a slightly higher level of complexity, many producers may enqueue messages
into a queue, all of which are processed by one consumer.

Basic Queuing — Many Producers, Many Consumers of Discrete Messages

In this next stage, many producers may enqueue messages, each message being
processed by a different consumer depending on type and correlation identifier. The
figure below shows this scenario.

lllustrating Basic Queuing

Figure 7-2, "Modeling Basic Queuing" (below) portrays a queue table that contains
one queue into which messages are being enqueued and from which messages are
being dequeued.

Producers

The figure indicates that there are 6 producers of messages, although only four are
shown. This assumes that two other producers (P4 and P5) have the right to
enqueue messages even though there are no messages enqueued by them at the
moment portrayed by the figure. The figure shows:

« thatasingle producer may enqueue one or more messages.

. that producers may enqueue messages in any sequence.

Consumers

According to the figure, there are 3 consumers of messages, representing the total
population of consumers. The figure shows:

Modeling and Design 7-3

Modeling Queue Entities

« messages are not necessarily dequeued in the order in which they are
enqueued.

« messages may be enqueued without being dequeued.

Figure 7-2 Modeling Basic Queuing

Queue Table

Enqueue Queue Dequeue
application as application as
producers consumers

P Msg 1

P2 Msg 2

P3 Msg 4 H
P2 Msg 5 # cs |

Msg 6

EIIIIH

7-4 Application Developer's Guide - Advanced Queuing

Modeling Queue Entities

lllustrating Client-Server Communication Using AQ

Figure portrayed the enqueuing of multiple messages by a set of producers, and the
dequeuing of messages by a set of consumers. What may not be readily evident in
that sketch is the notion of time, and the advantages offered by Oracle AQ.

Client-Server applications normally execute in a synchronous manner, with all the
disadvantages of that tight coupling described above. Figure 7-3, "Client-Server
Communication Using AQ" demonstrates the asynchronous alternative using AQ.
In this example Application B (a server) provides service to Application A (a client)
using a request/response queue.

Figure 7-3 Client-Server Communication Using AQ

Application A Client
producer & consumer

Dequeue
Enqueue
Request Response
Queue Queue
Enqueue
Dequeue

Application B Server

consumer & producer

Application A enqueues a request into the request queue.
Application B dequeues the request.

Application B processes the request.

Eal A o

Application B enqueues the result in the response queue.

Modeling and Design 7-5

Modeling Queue Entities

5. Application A dequeues the result from the response queue.

In this way the client does not have to wait to establish a connection with the server,
and the server dequeues the message at its own pace. When the server is finished
processing the message, there is no need for the client to be waiting to receive the
result. In this way a process of double-deferral frees both client and server.

Note: The various enqueue and dequeue operations are part of
different transactions.

Multiple-Consumer Dequeuing of the Same Message

A message can only be enqueued into one queue at a time. If a producer had to
insert the same message into several queues in order to reach different consumers,
this would require management of a very large number of queues. Oracle AQ
provides two mechanisms to allow for multiple consumers to dequeue the same
message: queue subscribers and message recipients. The queue must reside in a queue
table that is created with multiple consumer option to allow for subscriber and
recipient lists. Each message remains in the queue until it is consumed by all its
intended consumers.

Queue Subscribers Using this approach, multiple consumer-subscribers are
associated with a queue. This will cause all messages enqueued in the queue to be
made available to be consumed by each of the queue subscribers. The subscribers to
the queue can be changed dynamically without any change to the messages or
message producers. Subscribers to the queue are added and removed by using the
Oracle AQ administrative package. The diagram below shows multiple producers
enqueuing messages into queue, each of which is consumed by multiple
consumer-subscribers.

Message Recipients A message producer can submit a list of recipients at the time a
message is enqueued. This allows for a unique set of recipients for each message in
the queue. The recipient list associated with the message overrides the subscriber
list associated with the queue, if there is one. The recipients need not be in the
subscriber list. However, recipients may be selected from among the subscribers.

7-6 Application Developer's Guide - Advanced Queuing

Modeling Queue Entities

Figure 7-4 Multiple-Consumer Dequeuing of the Same Message

Queue Table
Subscriber list: s1, s2, s3

Queue Subscribers
Msg 1 o]

Msg 2 #

Msg 3

Msg 4 #

Msg 5

Msg 6 #
Msg 7

lllustrating Multiple-Consumer Dequeuing of the Same Message

Figure 7-4 describes the case in which three consumers are all listed as subscribers
of a queue. This is the same as saying that they all subscribe to all the messages that
might ever be enqueued into that queue. The drawing illustrates a number of
important points:

« The figure portrays the situation in which the 3 consumers are subscribers to 7
messages that have already been enqueued, and that they might become
subscribers to messages that have not yet been enqueued.

« Every message will eventually be dequeued by every subscriber.

Modeling and Design 7-7

Modeling Queue Entities

« There is no priority among subscribers. This means that there is no way of
saying which subscriber will dequeue which message first, second, and so on.
Or, put more formally: the order of dequeuing by subscribers is undetermined.

« We have no way of knowing from the figure about messages they might already
have been dequeued, and which were then removed from the queue.

Figure 7-5 Communication Using a Multi-Consumer Queue

Application A J

Enqueue

Multiple
Consumer
Queue

Dequeue Dequeue

Application B J ‘ Application C J

Figure 7-5 illustrates the same technology from a dynamic perspective. This
examples concerns a scenario in which more than one application needs the result
produced by an application. Every message enqueued by Application A is dequeued
by Application B and Application C. To make this possible, the multiple consumer
gueue is specially configured with Application B and Application C as queue
subscribers. Consequently, they are implicit recipients of every message placed in
the queue.

7-8 Application Developer's Guide - Advanced Queuing

Modeling Queue Entities

Note: Queue subscribers can be applications or other queues.

Figure 7-6 Dequeuing of Specified Messages by Specified Recipients

Queue Table
Subscriber list: s1, s2, s3
Recipient list: r1, r2

Queue Subscribers
Msg 1
Msg 2 #
Msg 3
Msg 4 1 8 =3
Msg 5
Msg 6 1pR |
Msg 7

lllustrating Dequeuing of Specified Messages by Specified Recipients

Figure 7-6 shows how a message can be specified for one or more recipients. In this
case, Message 5 is specified to be dequeued by Recipient-1 and Recipient-2. As
described by the drawing, neither of the recipients is one of the 3 subscribers to the
queue.

Modeling and Design 7-9

Modeling Queue Entities

Figure 7—-7 Explicit and Implicit Recipients of Messages

Application A
producer

Enqueue

Dequeue

Application B
consumer (subscriber)

Implicit Recipient

Application D
consumer (recipient)

Explicit Recipient

Dequeue

Application C
consumer (subscriber)

Implicit Recipient

We earlier referred to subscribers as "implicit recipients" in that they are able to
dequeue all the messages placed into a specific queue. This is like subscribing to a
magazine and thereby implicitly gaining access to all its articles. The category of
consumers that we have referred to as recipients may also be viewed as "explicit
recipients" in that they are designated targets of particular messages.

Figure 7-7 shows how Oracle AQ can adjust dynamically to accommodate both
kinds of consumers. In this scenario Application B and Application C are implicit
recipients (subscribers). But messages can also be explicitly directed toward specific
consumers (recipients) who may or may not be subscribers to the queue. The list of
such recipients is specified in the enqueue call for that message and overrides the

7-10 Application Developer's Guide - Advanced Queuing

Modeling Queue Entities

list of subscribers for that queue. In the figure, Application D is specified as the sole
recipient of a message enqueued by Application A.

Note: Multiple producers may simultaneously enqueue messages
aimed at different targeted recipients.

Illustrating the Implementation of Workflows using AQ

Figure 7-8 illustrates the use of AQ for implementing workflows, also knows as
chained application transactions. It shows a workflow consisting of 4 steps
performed by Applications A, B, C and D. The queues are used to buffer the flow of
information between different processing stages of the business process. By
specifying delay interval and expiration time for a message, a window of execution
can be provided for each of the applications.

Modeling and Design 7-11

Modeling Queue Entities

Figure 7-8 Implementing Workflows using AQ

Application A
producer

Application C
consumer & producer

Enqueue Dequeue Enqueue
(Message 1) (Message 2) (Message 3)

Dequeue Enqueue Dequeue
(Message 1) (Message 2) (Message 3)

Application B Application D
consumer & producer consumer

From a workflow perspective, the passing of messages is a business asset above and
beyond the value of the payload data. Hence, AQ supports the optional retention of
messages for analysis of historical patterns and prediction of future trends. For
instance, two of the three application scenarios at the head of the chapter are
founded in an implementation of workflow analysis.

Note: The contents of the messages 1, 2 and 3 can be the same or
different. Even when they are different, messages may contain parts
of the of the contents of previous messages.

lllustrating the Implementation of Publish/Subscribe using AQ

Figure 7-9 illustrates the use of AQ for implementing a publish/subscribe
messaging scheme between applications. Application A is a publisher application
which is publishing messages to a queue. Applications B, C, D are subscriber
applications. Application A publishes messages anonymously to a queue. These

7-12 Application Developer's Guide - Advanced Queuing

Modeling Queue Entities

messages are then delivered to subscriber applications based on the rules specified
by each application. Subscriber applications can specify interest in messages by
defining a rule on message properties and message data content.

In the example shown, applications B has subscribed with rule "priority=1",
application C has subscribed with rule "priority > 1" and application D has
subscribed with rule "priority = 3". Application A enqueues 3 messages (priority 3,
1, 2). Application B receives a single message (priority 1), application C receives two
messages (priority 2, 3) and application D receives a single message (priority 3).
Thus, message recipients are computed dynamically based on message properties
and content. Additionally, the figure also illustrates how application C uses
asynchronous notification for message delivery. Application C registers for
messages on the queue. When messages arrive, application C is notified and can
then dequeue the messages.

Modeling and Design 7-13

Modeling Queue Entities

Figure 7-9 Implementing Publish/Subscribe using AQ

Application A
producer

Enqueue
1— priority 3
+— priority 1
1— priority 2
Register
Dequeue Dequeue
Application B Application C
consumer consumer
(rule-based subscriber) (rule-based subscriber)
"priority = 1" "priority > 1"
Application D
consumer
(rule-based subscriber)
"priority = 3"

From a workflow perspective, the passing of messages is a business asset above and
beyond the value of the payload data. Hence, AQ supports the optional retention of
messages for analysis of historical patterns and prediction of future trends. For
instance, two of the three application scenarios at the head of the chapter are
founded in an implementation of workflow analysis.

7-14 Application Developer's Guide - Advanced Queuing

Modeling Queue Entities

Message Propagation

Fanning-Out of Messages

In AQ, message recipients can be either consumers or other queues. If the message
recipient is a queue, the actual recipients are determined by the subscribers to the
gueue (which may in turn be other queues). Thus it is possible to fan-out messages
to a large number of recipients without requiring them all to dequeue messages
from a single queue.

For example: A queue, Source, may have as its subscribers queues dispatch1@dest1
and dispatch2@dest2. Queue dispatchl@destl may in turn have as its subscribers the
gueues outerreachl@dest3 and outerreach2@dest4, while queue dispatch2@dest2 has as
subscribers the queue outerreach3@dest21 and outerreach4@dest4. In this way,
messages enqueued in Source will be propagated to all the subscribers of four
different queues.

Funneling-in of Messages

Another use of queues as a message recipient is the ability to combine messages
from different queues into a single queue. This process is sometimes described as
"compositing"

For example, if queue composite@endpoint is a subscriber to both queues
funnell@sourcel and funnel2@source?2 then the subscribers to queue
composite@endpoint can get all messages enqueued in those queues as well as
messages enqueued directly into itself.

Modeling and Design 7-15

Modeling Queue Entities

Figure 7-10 Message Propagation

Database 1

Application A
producer & consumer

Dequeue
Enqueue

Outbox Inbox

f AQ's
J/ Message
Propagation
Infrastructure

o=
Piadnd

Database 2

Inbox Outbox Inbox Outbox

Enqueue Enqueue

Dequeue Dequeue

Application B
consumer & producer

Application C
consumer & producer

7-16 Application Developer's Guide - Advanced Queuing

Modeling Queue Entities

Illustration of Message Propagation

Figure 7-10 illustrates applications on different databases communicating via AQ.
Each application has an inbox and an outbox for handling incoming and outgoing
messages. An application enqueues a message into its outbox irrespective of
whether the message has to be sent to an application that is local (on the same node)
or remote (on a different node).

Likewise, an application is not concerned as to whether a message originates locally
or remotely. In all cases, an application dequeues messages from its inbox.

Oracle AQ facilitates all this interchange, treating messages on the same basis.

Modeling and Design 7-17

Modeling Queue Entities

7-18 Application Developer's Guide - Advanced Queuing

8

A Sample Application Using AQ

In Chapter 1 we described a messaging system for an imaginary company,

BooksOnLine . In this chapter we consider the features of AQ in the context of a

sample application based on that scenario.

A Sample Application

General Features

System Level Access Control
Structured Payload

Queue Level Access Control
Non-Persistent Queues

Retention and Message History
Publish/Subscribe Support
Support for Oracle Parallel Server

Support for Statistics Views

ENQUEUE Features

Subscriptions and Recipient Lists
Priority and Ordering of Messages
Time Specification: Delay

Time Specification: Expiration
Message Grouping

Asynchronous Notifications

A Sample Application Using AQ

8-1

« DEQUEUE Features

Dequeue Methods

Multiple Recipients

Local and Remote Recipients

Message Navigation in Dequeue

Modes of Dequeuing

Optimization of Waiting for Arrival of Messages
Retry with Delay Interval

Exception Handling

Rule-based Subscription

Listen Capability

« Propagation Features

Propagation

Propagation Scheduling

Propagation of Messages with LOB Attributes
Enhanced Propagation Scheduling Capabilities

Exception Handling During Propagation

8-2 Application Developer's Guide - Advanced Queuing

A Sample Application

A Sample Application

The operations of a large bookseller, BooksOnLine , are based on an online book
ordering system which automates activities across the various departments
involved in the entire sale process.The front end of the system is an order entry
application which is used to enter new orders.These incoming orders are processed
by an order processing application which validates and records the order. Shipping
departments located at regional warehouses are then responsible for ensuring that
these orders are shipped in a timely fashion. There are three regional warehouses:
one serving the East Region, one serving the West Region, and a third warehouse
for shipping International orders. Once an order has been shipped, the order
information is routed to a central billing department which handles payment
processing.The customer service department, located at its own site, is responsible
for maintaining order status and handling inquiries about orders.

In Chapter 1 we outlined a messaging system for an imaginary company,
BooksOnLine . In this chapter we consider the features of AQ in the context of a
sample application based on that scenario. This sample application has been
devised for the sole purpose of demonstrating the features of Oracle AQ. Our aim
in creating this integrated scenario is to make it easier to grasp the possibilities of
this technology by locating our explanations within a single context. We have also
provided the complete script for the code as an appendix (see Appendix C, "Scripts
for Implementing '‘BooksOnLine’™). However, please keep in mind that is not
possible within the scope of a single relatively small code sample to demonstrate
every possible application of AQ.

A Sample Application Using AQ 8-3

General Features

General Features

System Level Access Control
Structured Payload

Queue Level Access Control
Non-Persistent Queues

Retention and Message History
Publish/Subscribe Support
Support for Oracle Parallel Server

Support for Statistics Views

8-4 Application Developer's Guide - Advanced Queuing

General Features

System Level Access Control

Oracle8i supports system level access control for all queueing operations. This
feature allows application designer or DBA to create users as queue administrators.
A queue administrator can invoke all AQ interfaces (both administration and
operation) on any queue in the database. This simplifies the administrative work as
all administrative scripts for the queues in a database can be managed under one
schema for more information, see "Security” on page 4-4.

PL/SQL (DBMS_AQ/ADM Package): Example Scenario and Code

In the BooksOnLine application, the DBA creates BOLADMthe BooksOnLine
Administrator account, as the queue administrator of the database. This allows
BOLADMo create, drop, manage, and monitor any queues in the database. If you
decide to create PL/SQL packages in the BOLADMchema that can be used by any
applications to enqueue or dequeue, then you should also grant BOLADMhe
ENQUEUE_ANxhd DEQUEUE_ANYystem privilege.

CREATE USER BOLADM IDENTIFIED BY BOLADMV,;

GRANT CONNECT, RESOURCE, aq_administrator_role TO BOLADM;

GRANT EXECUTE ON dbms_ag TO BOLADM,;

GRANT EXECUTE ON dbms_agadm TO BOLADM,;

EXECUTE dbms_agadm.grant_system_privilege(ENQUEUE_ANY',BOLADM,FALSE);
EXECUTE dbms_agadm.grant_system_privilege(DEQUEUE_ANY',BOLADMFALSE);

If using the Java AQ API, users must also be granted execute privileges on DBMS _
AQIN package

GRANT EXECUTE ON DBMS_AQIN to BOLADM,;

In the application, AQ propagators populate messages from the OE(Order Entry)
schema to WS(Western Sales), ES (Eastern Sales) and OS(Worldwide Sales)
schemas. WSESand OSschemas in turn populates messages to CB(Customer
Billing) and CS(Customer Service) schemas. Hence the OE WSESand OSschemas
all host queues that serve as the source queues for the propagators.

When messages arrive at the destination queues, sessions based on the source
gueue schema name are used for enqueuing the newly arrived messages into the
destination queues. This means that you need to grant schemas of the source
gueues enqueue privileges to the destination queues.

To simplify administration, all schemas that host a source queue in the
BooksOnLine application are granted the ENQUEUE_ANYystem privilege.

EXECUTE dbms_agadm.grant_system_priviiege(ENQUEUE_ANY'OE' FALSE);

A Sample Application Using AQ 8-5

General Features

EXECUTE dbms_agadm.grant_system_priviege(ENQUEUE_ANY',WS'FALSE);
EXECUTE dbms_agadm.grant_system_priviege(ENQUEUE_ANY',ES'FALSE);
EXECUTE dbms_agadm.grant_system_privilege(ENQUEUE_ANY',OSFALSE);

To propagate to a remote destination queue, the login user specified in the database
link in the address field of the agent structure should either be granted the
'ENQUEUE ANY QUEURrivilege, or be granted the rights to enqueue to the
destination queue. However, you do not need to grant any explicit privileges if the
login user in the database link also owns the queue tables at the destination.

Visual Basic (O040): Example Code
Use the dbexecutesgl interface from the database for this functionality.

Java (JDBC): Example Code
No example is provided with this release.

8-6 Application Developer's Guide - Advanced Queuing

General Features

Structured Payload

Oracle AQ lets you use object types to structure and manage the payload of
messages. Object Relational Database Systems (ORDBMSs) generally have a richer
type system than messaging systems. The object-relational capabilities of Oracle8i
provide a rich set of data types that range from traditional relational data types to
user-defined types (see "Enqueuing and Dequeuing Object Type Messages That
Contain LOB Attributes Using PL/SQL" on page A-53 in Appendix A, "Oracle
Advanced Queuing by Example").

Many powerful features are enabled as a result of having strongly typed content
i.e., content whose format is defined by an external type system. These features
include;

« Content-based routing: an external agent can examine the content and route
messages to another queue based on content.

« Content-based subscription: a publish and subscribe system can be built on top
of a messaging system offers content-based subscription

« Querying: the ability to execute queries on the content of messages allows users
to examine current and processed messages for various applications including
message warehousing.

PL/SQL (DBMS_AQ/ADM Package): Example Scenario and Code

The BooksOnLine application uses a rich set of data types to model book orders as
message content.

« Customers are modeled as a object type called customer_typ

CREATE OR REPLACE TYPE customer_typ AS OBJECT (
custno NUMBER,
name VARCHAR2(100),
street VARCHAR2(100),
cdty VARCHAR2(30),
state VARCHAR2(2),
Zip NUMBER,
county VARCHAR2(100));

« Books are modeled as an object type called book_typ .

CREATE OR REPLACE TYPE book_typ AS OBJECT (
fie VARCHAR2(100),
authors VARCHAR2(100),
ISBN. NUMBER,
pice NUMBERY);

A Sample Application Using AQ 8-7

General Features

« An order item which represents an order line item is modeled as an object type

called orderitem_typ . An order item is a nested type which includes the
book type.

CREATE OR REPLACE TYPE orderitem_typ AS OBJECT (
quanity NUMBER,
tem BOOK_TYP,
subtotal NUMBER),

« Anorder item list is used to represent a list of order line items and is modeled
as a varray of order items;

create or replace type orderitemiist_vartyp AS VARRAY (20) OF orderitemn_
yp;

« Anorder is modeled as a object type called order_typ. The order type is a
composite type which includes nested object types defined above. The order
type captures details of the order, the customer information, and the item list.

create or replace type order_typ as object (
ordemo NUMBER,
status VARCHAR2(30),
orderype VARCHAR2(30),
orderregion VARCHAR2(30),
customer CUSTOMER_TYP,
paymentmethod VARCHAR2(30),
items ORDERITEMLIST_VARTYP,
total NUMBERY);

Visual Basic (O040): Example Code
Use the dbexecutesgl interface from the database for this functionality.

Java (JDBC): Example Code

1. After creating the types, JPublisher must be used to generate java classes that
map to the sql types.

a. Create an input file "jagbol.typ" for JPublisher with the following lines:

TYPE boladm.customer_typ as Customer

TYPE boladm.book_typ as Book

TYPE boladm.orderitem_typ AS Orderitem

TYPE boladm.orderitemlist_vartyp AS OrderftemList

8-8 Application Developer's Guide - Advanced Queuing

General Features

TYPE boladm.order_typ AS Order

b.

Run JPublisher with the following arguments:

jpub -input=jagbol.typ -user=boladm/boladm -case=mixed -methods=false

This will create java classes Customer, Book, Orderltem and OrderltemList that
map to the SQL object types created above

C.

Load the java AQ driver and create a JDBC connection

public static Connection loadDriver(String user, String passwd)

{

}

Connectiondb_conn =null;

try
{

Class forName('oracle.jdbc.driver.OracleDriver”);

Fyour actual hostname, port number, and SID will
vary from what follows. Here we use 'disun736,' '5521,'

and 'test,' respectively: */

db_conn=
DriverManager.getConnection(
"idbc.oraclerthin:@disun736:5521 test",
user, passwd);

System.out.printin("JDBC Connection opened *);
db_conn.setAutoCommit(false);

F Load the Oracle8i AQ driver: */
Class forName('oracle. AQ.AQOracleDriver”);

System.out.printin(*Successfully loaded AQ driver "),

}
catch (Exception ex)

System.out.prinin('Exception: " + ex);
ex.printStackTrace();
}

reumdb_conn;

A Sample Application Using AQ

8-9

General Features

8-10 Application Developer's Guide - Advanced Queuing

General Features

Queue Level Access Control

Oracle8i supports queue level access control for enqueue and dequeue operations.
This feature allows the application designer to protect queues created in one schema
from applications running in other schemas. You need to grant only minimal access
privileges to the applications that run outside the queue's schema. The supported
access privileges on a queue are ENQUEUEDEQUEURENd ALL for more information,
see "Security" on page 4-4.

Example Scenario

The BooksOnLine application processes customer billings in its CBand CBADM
schemas. CB(Customer Billing) schema hosts the customer billing application, and
the CBADMchema hosts all related billing data stored as queue tables.

To protect the billing data, the billing application and the billing data reside in
different schemas. The billing application is allowed only to dequeue messages
from CBADM _shippedorders_que , the shipped order queue. It processes the
messages, and them enqueues new messages into CBADM _billedorders_que
the billed order queue.

To protect the queues from other illegal operations from the application, the
following two grant calls are made;

PL/SQL (DBMS_AQ/ADM Package): Example Code

/*Grant dequeuie privilege on the shopped orders queue to the Customer
Biling application. The CB application retrieves orders that are shipped but
not billed from the shipped orders queue. ¥/
EXECUTE dbms_agadm.grant_queue_privilege(
'DEQUEUE'/CBADM _shippedorders_que', 'CB', FALSE);

/*Grant enqueue privilege on the billed orders quevie to Customer Biling
application. The CB application is allowed to puit billed orders into this
queue after processing the orders. %

EXECUTE dbms_agadm.grant_queue_privilege(
'ENQUEUE,, 'CBADM _billedorders_que', 'CB, FALSE);

Visual Basic (0040): Example Code
Use the dbexecutesql interface from the database for this functionality.

A Sample Application Using AQ 8-11

General Features

Java (JDBC): Example Code

public static void grantQueuePrivileges(Connection db_conn)
{

AQSession ag_sess,

AQQueue sh_queue;

AQQueue bi_queue;

try
{

* Create an AQ Session: */
ag_sess = AQDriverManager.createAQSession(db_conn);

* Grant dequeue privilege on the shipped orders queue to the Customer
Biling application. The CB application retrieves orders that are
shipped but not billed from the shipped orders queue. */

sh_queue =aq_sess.getQueue('CBADM", "CBADM _shippedorders_que");
sh_queue.grantQueuePrivilege('DEQUEUE", "CB", false);

* Grant enqueue privilege on the billed orders queue to Customer
Biling application. The CB application is allowed to put billed
orders into this queue after processing the orders. */

bi_queue =aq_sess.getQueue('CBADM", "CBADM _hilledorders_que';

bi_queue.grantQueuePrivilege('ENQUEUE", "CB", false);
E:atch (AQEXception ex)
{ System.out.printin("AQ Exception: " + ex);
} }

8-12 Application Developer's Guide - Advanced Queuing

General Features

Non-Persistent Queues

Messages in a non-persistent queues are not persistent in that they are not stored in
database tables.

You create a non-persistent RAW queue which can be of either single-consumer or
multi-consumer type. These queues are created in a system created queue-table
(AQ$_MEM_S@r single-consumer queues and AQ$_MEM_Mfor multi-consumer
gueues) in the schema specified by the create_np_queue command. Subscribers
can be added to the multi-consumer queues (see "Create a Non-Persistent Queue”
on page 9-27 in Chapter 8, "A Sample Application Using AQ"). Non-persistent
gueues can be destinations for propagation.

You use the enqueue interface to enqueue messages into a non-persistent queue in
the normal way. You retrieve messages from a non-persistent queue through the
asynchronous notification mechanism, registering for the notification (using
OCISubcriptionRegister) for those queues in which you are interested (see
"Register for Notification" on page 11-57 in Chapter 11, "Operational Interface: Basic
Operations™).

When a message is enqueued into a queue, it is delivered to the clients that have
active registrations for the queue. The messages are then published to the interested
clients without incurring the overhead of storing them in the database.

For more information see:

« OCI documentation on OCISubscriptionRegister in Oracle Call
Interface Programmer’s Guide.

Example Scenario

Assume that there are three application processes servicing user requests at the
ORDER ENTR&ystem. The connection dispatcher process, which shares out the
connection requests among the application processes, would like to maintain a
count of the number of users logged on to the Order Entry system as well as the
number of users per application process. The application process are named APP_1,
APP_2 APP_3. To simplify things we shall not worry about application process
failures.

One way to solve this requirement is to use non-persistent queues. When a user
logs-on to the database, the application process enqueues to the multi-consumer
non-persistent queue, LOGIN_LOGOU;Twith the application name as the consumer
name. The same process occurs when a user logs out. To distinguish between the

A Sample Application Using AQ 8-13

General Features

two events, the correlation of the message is '‘LOGIN for logins and 'LOGOUTfor
logouts.

The callback function counts the login/logout events per application process. Note
that the dispatcher process only needs to connect to the database for registering the
subscriptions. The notifications themselves can be received while the process is
disconnected from the database.

PL/SQL (DBMS_AQ/ADM Package): Non-Persistent Queues
CONNECT oeloe;

/* Create the multiconsumer nonpersistent queue in OE schema: ¥/
EXECUTE dbms_agadm.create_np_queue(queue_name =>'LOGON_LOGOFF,
multiple_consumers => TRUE);

/* Enable the queue for enqueue and dequeue: ¥/
EXECUTE dbms_agadm.start queue(queue_name =>'LOGON_LOGOFF);

/*Non Persistent Queue Scenario - proceaure to be executed upon logon: %/
CREATE OR REPLACE PROCEDURE User_Logon(app_process IN VARCHAR?2)
AS
msgprop dbms_ag.message_properties _t;
enqopt doms_ag.enqueue_options t;
eng_msgid RAW(16);
payload ~ RAW(1);
BEGIN
F visibility must always be immediate for NonPersistent queues */
engoptvisibility:=dbms_aq.IMMEDIATE;
msgprop.correlation:= LOGON;
msgprop.recipient_list(0) :=ag$_agent(@app_process, NULL, NULL);
P payload is NULL */
dbms_ag.enqueue(
gueue_ name =>LOGON_LOGOFF,
enqueue_options =>enqopt,
message_properties =>msgprop,
payload =>payload,
msgid =>eng_msgid);

END;
/

/* Non Persistent queue scenario - procedure to be executed upon logoff %

CREATE OR REPLACE PROCEDURE User._Logoff(app_process IN VARCHAR?)
AS

8-14 Application Developer's Guide - Advanced Queuing

General Features

msgprop dbms_ag.message_properties _t;
engopt dbms_ag.enqueue_options t;
eng_msgid RAW(16);
payload RAW(D);
BEGIN
/* Visibility must always be immediate for NonPersistent queues: ¥/
engoptvisibility:=dbms_aq.IMMEDIATE;
msgprop.correlation:= LOGOFF;
msgprop.recipient_list(0) :=ag$_agent(@app_process, NULL, NULL);
/*Payload is NULL: %
dbms_ag.enqueue(
queue_name =>'LOGON_LOGOFF,
enqueue_options =>enqopt,
message_properties =>msgprop,
payload ~ =>payload,
msgid =>enq_msgid),
END;
/

FIfthere is a login at APP1, enqueue a message into login_logoff with
correlation LOGIN': %/
EXECUTE User_logon(APP1Y);

F If there is a logout at APP13 enqueue a message into 'login_logoff with
correlation LOGOFF: ¥/
EXECUTE User_logoff(App3);

/* The OCI program which waits for notifications: %/
#include <stdio.h>

#include <stdlib.n>

#include <string.h>

#include <oci.h>

#ifdef WINS2COMMON

#define sleep(x) Sleep(1000%(X))

#endif

/*LOGON/ password: %
static text *usemame = (text *) "OE",
static text *password = (text *) "OE";

/* The correlation strings of messages: ¥/
static char *logon ="LOGON";
static char *logoff ="LOGOFF",

A Sample Application Using AQ 8-15

General Features

/* The possible consumer names of queues:
static char *applist] ={"APP1", "APP2""APP3'%};

static OCIEnv *envhp;
static OClServer *svhp;
static OCIError *errhp;
static OCISveCix *svehp;

static void checken(*_ OCIEmor *erhp, sword status _*/);
struct process_statistics

{

ub4 logon;

ub4 logoff;

%
typedef struct process_statistics process_statistics;

intmain(*_intargc, char *argvi]_*);

/*Notify Callback: %

ub4 notifyCB(ctx, subscrhp, pay, payl, desc, mode)

dvoid *ctx;

OCISubscription *subscrhp;

dvoid *pay;

ub4 payt

dvoid *desc;

ub4 mode;

{

text *subname; /*subscription name %
ub4 Isub; /*length of subscription name %
text *queue; /*queue name ¥/

ub4 *gueue; *queue name ¥/
text *consumer; /*consumer name %/
ub4 lconsumer;

text *correlation;

ub4 [correlation;

ub4 size;

ub4 appno;

OCIRaw *msgid;

OCIAQMsgProperties *msgprop; /*message properties descriptor ¥/

process_statistics *user_count = (process_stafistics *)ctx;

8-16 Application Developer's Guide - Advanced Queuing

General Features

OCIAtrGet((dvoid *)subscrhp, OCl_HTYPE_SUBSCRIPTION,
(dvoid *)&subname, &lsub,
OCl_ATTR_SUBSCR_NAME, erthp);

/* Extract the attributes from the AQ descriptor: %/

/*Queue name: ¥/

OClAttrGet(desc, OCl_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&queue, &size,
OCI_ATTR_QUEUE_NAME, erthp);

#*Consumer name: ¥/
OClAttrGet(desc, OCl_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&consumer, &consumer,
OCI_ATTR_CONSUMER_NAME, enthpy;

/*Message properties: ¥/
OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&msgprop, &size,
OCI_ATTR_MSG_PROP, erthp);

/* Get correlation from message properties: ¥/

checkem(errhp, OCIAtrGet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES,
(dvoid *)&correlation, &lcorrelation,
OCl_ATTR_CORRELATION, erthp));

if (lconsumer == strlen(applist0]))

if (Imemcmp((dvoid *)consumer, (dvoid *)applisti0], strien(applistO])))

appno=0;

else if (Imemcmp((dvoid *)consumer, (dvoid *)applistf1],
strien(applist{1])))

appno=1,

else if (Imemcmpy((dvoid *)consumer, (dvoid *)applist]2],
strien(applistf2])))

appno=2;

else

{

printf(Wrong consumer in notification”);

retum;

}

else

{ /*consumer name must be "APP1", "APP2" or "APP3" %
printf(\Wrong consumer in notification”);
retum;

}

if (lcomelation = strlen(logon) && Flogonevent

A Sample Application Using AQ 8-17

General Features

Imemcmp((dvoid *)correlation, (dvoid *)logon, strien(logon)))
{
user_countappno]logon++;
/increment logon count for the app process %
printf("Logon by APP%d \n", (appno+1));
}
elseif (lcorrelation == strien(logoff) && logoff event*/
Imemcmp((dvoid *)correlation,(dvoid *)logoff, stlen(logoff)))
{
user_countfappnol.logoff++;
/*increment logoff count for the app process %
printf("Logoff by APP%d \n'", (appno+1));
}
else /*correlation is "LOGON" or "LOGOFF"%
printf(Wrong correlation in notification”);

printf(Total : \n");

printf(’Appl : %d \n", user_count0].logon-user_countO].logoff);
printf(’App2 : %d \n", user_count1].logon-user_count1].logoff);
printf(’App3 : %d \n", user_count2].logon-user_count2].logoff);

}

intmain(argc, argv)

intargc;

char *argv];

{
OCISession *authp = (OCISession *) 0;
OCISubscription *subscrhp[3];
ub4 namespace = OCl_SUBSCR_NAMESPACE_AQ;
process_statistics ctq3]={{0,0},{0.0}, {0.0}};
ub4 sleep time =0;

printf{"Initializing OCI Process\n®);

/Initialize OCl environment with OCI_EVENTS flag set: %/

(void) OClinitialize((ub4) OCI_EVENTS|OCI_OBJECT, (dvoid *)0,
(dvoid * (*)(dvoid *, size_t)) O,
(dvoid * (*)(dvoid *, dvoid *, size_1))0,
(void (*)(dvoid *, dvoid ¥) 0);

printf("Initialization successfuln’);

printf('Initializing OCl Envin®);

8-18 Application Developer's Guide - Advanced Queuing

General Features

(void) OCIEnvinit((OCIEnv *) &envhp, OCl_ DEFAULT, (size 1) 0, (dvoid *) 0

)
printf{’Initialization successfuln’);

checkenr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid *¥) &errhp,
OCI_HTYPE_ERROR,
(size_1) O, (dvoid **) O));

checkenr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid *) &srvhp,
OC|_HTYPE_SERVER,
(size_1) O, (dvoid **) O));

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid *¥) &svchp,
OCI_HTYPE_SVCCTX,
(size_1) 0, (dvoid **) 0));

printf{‘connecting to server\n’);

checkenr(errhp, OClServerAttach(srvhp, errhp, (text *)instl_alias”,
stien('instL_alias"), (ub4) OCI_DEFAULT));

printf(’connect successfuln’);

/* Set attribute server context in the service context: ¥/
checkerr(erhp, OCIAttrSet((dvoid *) svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp,
(ub4) 0, OCI_ATTR_SERVER, (OCIEror *) enhp));

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
(ub4) OCI_HTYPE_SESSION, (size_t) O, (dvoid **) Q));

/* Set usemame and password in the session handle: %/

checkenr(errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI_ HTYPE_SESSION,
(dvoid *) usemame, (ub4) strlen((char *usemame),
(ub4) OCI_ATTR_USERNAME, erthp));

checkenr(errhp, OCIAtrSet((dvoid *) authp, (ub4) OCI_ HTYPE_SESSION,

(dvoid *) password, (ub4) strlen((char *)password),
(Ub4) OCI_ATTR_PASSWORD, errhp));

/*Begin session: %/
checkenr(errhp, OClSessionBegin (svchp, erhp, authp, OCI CRED RDBMS,
(ub4) OCI_DEFAULT));

(void) OCIAtrSet((dvoid *) svehp, (Ub4) OCl HTYPE_SVCCTX,

(dvoid *) authp, (ub4) 0,
(ub4) OCI_ATTR SESSION, erhp);

A Sample Application Using AQ 8-19

General Features

/* Register for notification:

printf("allocating subscription handle\n’);

subscrhp[0] = (OCISubscription *)0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[0],
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_1) O, (dvoid **) 0);

/* For application process APP1: %/

printf(*'setting subscription name\n’);

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) "OE.LOGON_LOGOFFAPP1",
(ub4) strlen("OE.LOGON_LOGOFFAPPL"),
(ub4) OCI_ATTR_SUBSCR_NAME, erthp);

printf(*'setting subscription callbackin');

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(Ub4) OCI_ATTR_SUBSCR_CALLBACK, erthp);

(void) OCIAtrSet((dvoid *) subscrhp(0], (ub4) OCl HTYPE_SUBSCRIPTION,
(dvoid &ctx, (Ubd)sizeof(ctx),
(Ub4) OCI_ATTR_SUBSCR_CTX, enthp);

printf{"'setting subscription namespace\n”);

(void) OCIAtirSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, enthp);

printf(allocating subscription handle\n®);

subscrhp[1] = (OCISubscription *)0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[1],
(ub4) OCl_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) O);

/* For application process APP2: %/

printf{"'setting subscription name\n');

(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE,_SUBSCRIPTION,
(dvoid *) "OE.LOGON_LOGOFFAPP2",
(Ub4) strlen("OE.LOGON_LOGOFF:APP2"),
(Ub4) OCI_ATTR_SUBSCR_NAME, erthp);

printf{"'setting subscription callbackin';

(void) OCIAttrSet((cvoid *) subscrhp[1], (ub4) OCI_HTYPE,_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, erthpy;

8-20 Application Developer's Guide - Advanced Queuing

General Features

(void) OCIAtrSet((dvoid) subscrhp[1], (ub4) OCl HTYPE_SUBSCRIPTION,
(dvoid &ctx, (Ub4)sizeof(ctx),
(Ub4) OCI_ATTR_SUBSCR_CTX, ethp);

printf{"'setting subscription namespace\n”);

(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, enhp);

printf{allocating subscription handle\n');

subscrhp[2] = (OCISubscription *)0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[2],
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

/* For application process APP3: %/

printf{"'setting subscription name\n');

(void) OCIAttrSet((dvoid *) subscrhp(2], (ub4) OCI_HTYPE._SUBSCRIPTION,
(dvoid *) "OE.LOGON_LOGOFFAPP3",
(Ub4) strlen("OE.LOGON_LOGOFF:APP3'),
(Ub4) OCI_ATTR_SUBSCR_NAME, erthp);

printf("'setting subscription callbackin';

(void) OCIAttrSet((dvoid *) subscrhp(2], (ub4) OCI_HTYPE,_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(Ub4) OCI_ATTR _SUBSCR_CALLBACK, erthp);

(void) OCIAttrSet((dvoid *) subscrhpi2], (ub4) OCI HTYPE_SUBSCRIPTION,
(dvoid %)&ctx, (ubA)sizeof(ctx),
(Ub4) OCI_ ATTR_SUBSCR_CTX, erthp);

printf{"'setting subscription namespace\n”);

(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,
(Ub4) OCI_ATTR_SUBSCR_NAMESPACE, erthp);

printf(’Registering fomotifications \n'Y);
checkenr(errhp, OCISubscriptionRegister(svchp, subscrhp, 3, errhp,
OCI_DEFAULT));

sleep_time = (ub4)atoi(argv{1]);

printf (‘waiting for %d s \n", sleep_time);
Sleep(sleep_time);

A Sample Application Using AQ 8-21

General Features

printf(Exiting");
exit(0);
}

void checkenr(errhp, status)
OCIEnor *errhp;
sword status;
{
textenbuf[512];
sb4 errcode =0;

switch (status)

{

case OC|_SUCCESS:
break;

case OC|_SUCCESS_WITH_INFO:
(void) printf("Emor - OCl_SUCCESS_WITH_INFO\n");
break;

case OC|_NEED_DATA:
(void) printf("Error - OCI_NEED_DATAWN");
break;

case OC|_NO_DATA:
(void) printf("Emor - OCI_NODATAWN");
break;

case OC|_ERROR:
(void) OCIErrorGet((dvoid *)erhp, (ub4) 1, (text *) NULL, &errcode,

erbuf, (ub4) sizeofienbuf), OCI_HTYPE_ERROR);

(void) printf("Error - %.*s\n", 512, enouf);
break;

case OCl_INVALID_HANDLE:
(void) printf("Error - OCIl_INVALID_HANDLE\n");
break;

case OC|_STILL_EXECUTING:
(void) printf("Error - OCI_STILL_EXECUTEWN");
break;

case OCI_CONTINUE:
(void) printf("Error - OCl_ CONTINUE\n");
break;

default
break;

}

}

/*End of file tkaqdocn.c %/

8-22 Application Developer's Guide - Advanced Queuing

General Features

Visual Basic (O040): Example Code
This feature currently not supported.

Java (JDBC): Example Code
Not supported through Java API.

A Sample Application Using AQ 8-23

General Features

Retention and Message History

AQ allows users retain messages in the queue-table which means that SQL can then
be used to query these message for analysis. Messages often are related to each
other. For example, if a message is produced as a result of the consumption of
another message, the two are related. As the application designer, you may want to
keep track of such relationships. Along with retention and message identifiers, AQ
lets you automatically create message journals, also referred to as tracking journals
or event journals. Taken together — retention, message identifiers and SQL queries
— make it possible to build powerful message warehouses.

Example Scenario

Let us suppose that the shipping application needs to determine the average
processing times of orders. This includes the time the order has to wait in the
backed_order queue. It would also like to find out the average wait time in the
backed_order queue. Specifying the retention as TRUEfor the shipping queues
and specifying the order number in the correlation field of the message, SQL
gueries can be written to determine the wait time for orders in the shipping
application.

For simplicity, we will only analyze orders that have already been processed The
processing time for an order in the shipping application is the difference between
the enqueue time in the WS_bookedorders_que and the enqueue time in the WS _
shipped_orders_que (see "tkaqdoca.sql: Script to Create Users, Objects, Queue
Tables, Queues & Subscribers" on page C-2 in Appendix C, "Scripts for

Implementing 'BooksOnLine™.

8-24 Application Developer's Guide - Advanced Queuing

General Features

PL/SQL (DBMS_AQ/ADM Package): Example Code

SELECT SUM(SO.eng_time - BO.eng_time)/ count (*) AVG_PRCS_TIME
FROMWS.AQ$WS_orders pr_mgtab BO , WS AQ$WS_orders_mgqtab SO
WHERE SO.msg_state ='PROCESSED' and BO.msg_state ='PROCESSED'
AND SO.corr_id =BO.com_id and SO.queue ='WS_shippedorders_gue’,

/*Average waiting time in the backed order queue: ¥/

SELECT SUM(BACK.deq_time - BACK.eng_time)/count (*) AVG_BACK_TIME
FROMWS.AQ$WS_orders_ mqtab BACK
WHERE BACK.msg_state ='PROCESSED' AND BACK.queue ="WS_backorders_que;

Visual Basic (O040): Example Code
Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code
No example is provided with this release.

A Sample Application Using AQ 8-25

General Features

Publish/Subscribe Support

Oracle AQ adds various features that allow you to develop an application based on
a publish/subscribe model. The aim of this application model is to enable flexible
and dynamic communication between applications functioning as publishers and
applications playing the role of subscribers. The specific design point is that the
applications playing these different roles should be decoupled in their
communication, that they should interact based on messages and message content.

In distributing messages publisher applications do not have to explicitly handle or
manage message recipients. This allows the dynamic addition of new subscriber
applications to receive messages without changing any publisher application logic.
Subscriber applications receive messages based on message content without
regarding to which publisher applications are sending messages. This allows the
dynamic addition of subscriber applications without changing any subscriber
application logic. Subscriber applications specify interest by defining a rule-based
subscription on message content (payload) and message header properties of a
gueue. The system automatically routes messages by computing recipients for
published messages using the rule-based subscriptions.

You can implement a publish/subscribe model of communication using AQ by
taking the following steps:

« Set up one or more queues to hold messages. These queues should represent an
area or subject of interest. For example, a queue can be used to represent billed
orders.

« Setup aset of rule based subscribers. Each subscriber may specify a rule which
represents a specification for the messages that the subscriber wishes to receive.
A null rule indicates that the subscriber wishes to receive all messages.

« Publisher applications publish messages to the queue by invoking an enqueue
call.

8-26 Application Developer's Guide - Advanced Queuing

General Features

« Subscriber applications may receive messages in the following manner.
« A dequeue call retrieves messages that match the subscription criteria.

« Alisten call may be used to monitor multiple queues for subscriptions on
different queues. This is a more scalable solution in cases in which a
subscriber application has subscribed to many queues and wishes to receive
messages that arrive in any of the queues.

« Use the OCI notification mechanism. This allows a "push" mode of message
delivery in which the subscriber application registers the queues (and
subscriptions specified as subscribing agent) from which to receive
messages from and registers a callback to be invoked when messages
matching the subscriptions arrive.

Example Scenario

The BooksOnLine application illustrates the use of a publish/subscribe model for
communicating between applications. The following subsections give some
examples.

Define queues The Order Entry application defines a queue (OE_booked_orders_
gue) to communicate orders that are booked to various applications. The Order
Entry application is not aware of the various subscriber applications and thus, a
new subscriber application may be added without disrupting any setup or logic in
the Order Entry (publisher) application.

Set up Subscriptions The various shipping applications and the customer service
application (i.e., Eastern region shipping, Western region shipping, Overseas
shipping and Customer Service) are defined as subscribers to the booked_orders
gueue of the Order Entry application. Rules are used to route messages of interest to
the various subscribers. Thus, Eastern Region shipping, which handles shipment of
all orders for the East coast and all rush US orders, would express its subscription
rule as follows;

rule =>tab.user_data.orderregion ="EASTERN' OR
(tab.user_data.ordertype ="RUSH" AND
tab.user_data.customer.country ="USA")'

Each subscriber can specify a local queue to which messages are to be delivered.
The Eastern region shipping application specifies a local queue (ES_booked_
orders_que) for message delivery by specifying the subscriber address as follows:

subscriber = ag$_agent(East_Shipping','ES.ES_bookedorders_que', null;

A Sample Application Using AQ 8-27

General Features

Set up propagation Enable propagation from each publisher application queue. To
allow subscribed messages to be delivered to remote queues, the Order Entry
application enables propagation by means of the following statement:

execute doms_agadm.schedule_propagation(queue_name => 'OE.OE_bookedorders_que);

Publish Messages Booked orders are published by the Order Entry application when
it enqueues orders (into the OE_booked_order_que) that have been validated and
are ready for shipping. These messages are then routed to each of the subscribing
applications. Messages are delivered to local queues (if specified) at each of the
subscriber applications.

Receive Messages Each of the shipping applications and the Customer Service
application will then receive these messages in their local queues. For example,
Eastern Region Shipping only receives booked orders that are for East Coast
addresses or any US order that is marked RUSHThis application then dequeues
messages and processes its orders for shipping.

8-28 Application Developer's Guide - Advanced Queuing

General Features

Support for Oracle Parallel Server

The Oracle Parallel Server facility can be used to improve AQ performance by
allowing different queues to be managed by different instances. You do this by
specifying different instance affinities (preferences) for the queue tables that store
the queues. This allows queue operations (enqueue/dequeue) on different queues
to occur in parallel.

The AQ gueue monitor process continuously monitors the instance affinities of the
gueue tables. The queue monitor assigns ownership of a queue table to the specified
primary instance if it is available, failing which it assigns it to the specified
secondary instance. If the owner instance of a queue table ceases to exist at any
time, the queue monitor changes the ownership of the queue table to a suitable
instance — the secondary instance or some other available instance if the secondary
instance is also unavailable.

AQ propagation is able to make use of OPS although it is completely transparent to
the user. The affinities for jobs submitted on behalf of the propagation schedules are
set to the same values as that of the affinities of the respective queue tables. Thus a
job_queue_process associated with the owner instance of a queue table will be
handling the propagation from queues stored in that queue table thereby
minimizing "pinging". Additional discussion on this topic can be found under AQ
propagation scheduling (see "Schedule a Queue Propagation™ on page 9-65 in
Chapter 9, "Administrative Interface").

For information about Oracle Parallel Server see:

« Oracle8i Parallel Server Setup and Configuration Guide

Example Scenario

In the BooksOnLine example, operations on the new_orders_queue and
booked_order_queue at the order entry (OE) site can be made faster if the two
gueues are associated with different instances. This is done by creating the queues
in different queue tables and specifying different affinities for the queue tables in
the create_queue_table() command.

In the example, the queue table OE_orders_sqtab stores queue new_orders_
gueue and the primary and secondary are instances 1 and 2 respectively. For queue
table OE_orders_mqtab stores queue booked_order_queue and the primary
and secondary are instances 2 and 1 respectively. The objective is to let instances 1 &
2 manage the two queues in parallel. By default, only one instance is available in
which case the owner instances of both queue tables will be set to instance 1.

A Sample Application Using AQ 8-29

General Features

However, if OPS is setup correctly and both instances 1 and 2 are available, then
gueue table OE_orders_sqtab will be owned by instance 1 and the other queue
table will be owned by instance 2. The primary and secondary instance specification
of a queue table can be changed dynamically using the alter_queue_table 0
command as shown in the example below. Information about the primary,
secondary and owner instance of a queue table can be obtained by querying the
view USER_QUEUE_TABLHESee "Select Queue Tables in User Schema" on

page 10-25 in "Administrative Interface: Views").

PL/SQL (DBMS_AQ/ADM Package): Example Code

/*Create queue tables, quevies for OE %/
CONNECT OE/OE;
EXECUTE dbms_agadm.create_queue_table(\
queue_table =>'OE_orders_sqfab’\
comment =>'Order Entry Single-Consumer Orders queue table’\
queue_payload_type =>"BOLADM.order_typ'\
compatible =>'8.1'\
primary_instance =>1\
secondary_instance => 2);

EXECUTE dbms_agadm.create_queue_table(\
queue_table =>'OE_orders_mqtab’\
comment =>'Order Entry Multi Consumer Orders queue table’\
multiple_consumers =>TRUE,\
queue_payload type =>"BOLADM.order_typ’\
compatble =>'8.1'\
primary_instance =>2\
secondary_instance => 1),

EXECUTE dbms_agadm.create_queue (\
queue_name =>'OE_neworders_que’\
queue_table =>'OE_orders_sqtab);

EXECUTE dbms_agadm.create_queue (\
queue_name =>'OE_bookedorders_que’\
queue_table =>'OE_orders_ mqtab);

/* Check instance affinity of OE queue tables from AQ administrative view: ¥
SELECT queue_table, pimary_instance, secondary_instance, owner_instance
FROM user_gueue_tables;

F Alter instance affinity of OE queue tables: */
EXECUTE dbms_agadm.alter_queue_table(\
queue_table =>'OE.OE_orders_sqtab’\

8-30 Application Developer's Guide - Advanced Queuing

General Features

primary_instance =>2\
secondary_instance => 1),

EXECUTE dbms_agadm.alter_queue_table(\
queue_table =>'OE.OE_orders_matab,\
primary_instance =>1\
secondary_instance => 2);

/* Check instance affinity of OE queue tables from AQ administrative view: ¥
SELECT queue_table, pimary_instance, secondary_instance, owner_instance
FROM user_queue_tables;

Visual Basic (O040): Example Code
This feature currently not supported.

Java (JDBC): Example Code

public static void createQueueTablesAndQueues(Connection db_conn)
{

AQSession ag_sess,

AQQueueTableProperty sqt_prop;

AQQueueTableProperty mat_prop;

AQQueueTable sq_table;

AQQueueTable mq_table;

AQQueueProperty g_prop;

AQQueue neworders_g;

AQQueue bookedorders_g;

try
{

* Create an AQ Session: */
ag_sess = AQDriverManager.createAQSession(db_conn);

* Create a single-consumer orders queue table */

sqt_prop = new AQQueueTableProperty('BOLADM.order_typ";
sqt_prop.setComment("Order Entry Single-Consumer Orders queue table”);
sat_prop.setCompatible('8.1");

sat_prop.setPrimarylnstance(1);

sqt_prop.setSecondaryinstance(2);

sq_table = aq_sess.createQueueTable('OE", "OE_orders_sqtab", sat_prop);

A Sample Application Using AQ 8-31

General Features

* Create a multi-consumer orders queue table */

mat_prop = new AQQueueTableProperty(' BOLADM.order_typ');
mat_prop.setComment("‘Order Entry Multi Consumer Orders queue table™);
mat_prop.setCompatible('8.1");

mat_prop.setMuliConsumer(true);

mat_prop.setPrimarylnstance(2);

maqt_prop.setSecondarylnstance(1);

mq_table =aq_sess.createQueueTable("OE", "OE_orders_mgqtab", mqt_prop);

* Create Queues in these queue tables */
g_prop = new AQQueueProperty();

neworders_q=aq_sess.createQueue(sq_table, "OE_neworders_que”,
q_prop);

bookedorders_g=aq_sess.createQueue(mq_table, "OE_bookedorders_que",
¢_prop);

}
catch (AQException ex)

System.out printin(‘AQ Exception: " + ex);
}
}

public static void alterinstanceAffinity(Connection db_conn)
{

AQSession ag_sess;

AQQueueTableProperty sqt_prop;

AQQueueTableProperty mat_prop;

AQQueueTable sq_table;

AQQueueTable mq_table;

AQQueueProperty q_prop;

fry
{

* Create an AQ Session: */
ag_sess = AQDriverManager.createAQSession(db_conn);

* Check instance affinities */
sq_table =aq_sess.getQueueTable("OE", "OE_orders_sqtab'");

8-32 Application Developer's Guide - Advanced Queuing

General Features

}

}

sqt_prop =sq_table.getProperty();
System.out printin(‘Current primary instance for OE_orders_sqtab: " +
sqt_prop.getPrimaryinstance();

mq_table =aq_sess.getQueueTable('OE", "OE_orders_mqtab");

maqt_prop =mgq_table.getProperty();

System.out. printin(*Current primary instance for OE_orders_mgtab: " +
mat_prop.getPrimaryinstance());

 Alter queue table affinities */
sq_table.alter(null, 2, 1);

mq_table.alter(nul, 1, 2);

sqt_prop =sq_table.getProperty();
System.out printin(*Current primary instance for OE_orders_sqtab: "' +

sat_prop.getPrimaryinstance());

mq_table =aq_sess.getQueueTable("OE", "OE_orders_mqtab”);

mat_prop =mq_table.getProperty();

System.out. printin(*Current primary instance for OE_orders_matab: " +
mat_prop.getPrimaryinstance());

catch (AQException ex)

{
}

System.out printn("AQ Exception: " + ex);

A Sample Application Using AQ 8-33

General Features

Support for Statistics Views

Each instance keeps its own AQ statistics information in its own SGA, and does not
have knowledge of the statistics gathered by other instances. Then, when a GV$AQ
view is queried by an instance, all other instances funnel their AQ statistics
information to the instance issuing the query.

Example Scenario

The gv$ view can be queried at any time to see the number of messages in waiting,
ready or expired state. The view also displays the average number of seconds for
which messages have been waiting to be processed. The order processing
application can use this to dynamically tune the number of order processing
processes (see "Select the Number of Messages in Different States for the Whole
Database" on page 10-39 in Chapter 10, "Administrative Interface: Views").

PL/SQL (DBMS_AQ/ADM Package): Example Code
CONNECT oeloe

/* Count the number as messages and the average time for which the messages have
been waiting: ¥

SELECT READY, AVERAGE_WAIT FROM gv$ag Stats, user_queues Qs
WHERE Stats.qid = Qs.gid and Qs.Name ='OE_neworders_que’;

Visual Basic (0040): Example Code
Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code
No example is provided with this release.

8-34 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

ENQUEUE Features

Subscriptions and Recipient Lists
Priority and Ordering of Messages
Time Specification: Delay

Time Specification: Expiration
Message Grouping

Asynchronous Notifications

A Sample Application Using AQ 8-35

ENQUEUE Features

Subscriptions and Recipient Lists

In a single-consumer queue a message can be processed once by only one consumer.
What happens when there are multiple processes or operating system threads
concurrently dequeuing from the same queue? Given that a locked message cannot
be dequeued by a process other than the one which has created the lock, each
process will dequeue the first unlocked message that is at the head of the queue.
After processing, the message is removed if the retention_time of the queue is 0,
or retained for the specified retention time. While the message is retained the
message can be either queried using SQL on the queue table view or by dequeuing
using the BROWSHEode and specifying the message ID of the processed message.

AQ allows a single message to be processed/consumed by more than one
consumer. To use this feature, you must create multi-consumer queues and enqueue
the messages into these multi-consumer queues. AQ allows two methods of
identifying the list of consumers for a message: subscriptions and recipient lists.

Subscriptions

You can add a subscription to a queue by using the DBMS_AQADM.ADD _
SUBSCRIBERPL/SQL procedure (see "Add a Subscriber" on page 9-53 in Chapter 9,
"Administrative Interface"). This lets you specify a consumer by means of the AQ$ _
AGENTparameter for enqueued messages. You can add more subscribers by
repeatedly using the DBMS_AQADM.ADD_SUBSCRIBRPcedure up to a maximum
of 1024 subscribers for a multi-consumer queue. (Note that you are limited to 32
subscriber for multi-consumer queue created using Oracle 8.0.3.)

All consumers that are added as subscribers to a multi-consumer queue must have
unique values for the AQ$_AGENTparameter. This means that two subscribers
cannot have the same values for the NAMEADDRES@nd PROTOCOAttributes for
the AQ$_AGENType. At least one of the three attributes must be different for two
subscribers (see "Agent" on page 2-3 for formal description of this data structure).

You cannot add subscriptions to single-consumer queues or exception queues. A
consumer that is added as a subscriber to a queue will only be able to dequeue
messages that are enqueued after the DBMS_AQADM.ADD_SUBSCRIBRRcedure
is completed. In other words, messages that had been enqueued before this
procedure is executed will not be available for dequeue by this consumer.

You can remove a subscription by using the DBMS_AQADM.REMOVE_SUBSCRIBER
procedure (see "Remove a Subscriber" in Chapter 9, "Administrative Interface"). AQ
will automatically remove from the queue all metadata corresponding to the
consumer identified by the AQ$_AGENTarameter. In other words, it is not an error

to execute the REMOVE_SUBSCRIBH#Btocedure even when there are pending

8-36 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

messages that are available for dequeue by the consumer. These messages will be
automatically made unavailable for dequeue after the REMOVE_SUBSCRIBER
procedure is executed. In a queue table that is created with the compatible
parameter set to '8.1' or higher, such messages that were not dequeued by the
consumer will be shown as "UNDELIVERABLE in the AQ$<queue_table> view.
Note that a multi-consumer queue table created without the compatible parameter,
or with the compatible parameter set to '8.0", does not display the state of a message
on a consumer basis, but only displays the global state of the message.

Recipient Lists

You do not need to specify subscriptions for a multi-consumer queue provided that
producers of messages for enqueue supply a recipient list of consumers. In some
situations it may be desirable to enqueue a message that is targeted to a specific set
of consumers rather than the default list of subscribers. You accomplish this by
specifying a recipient list at the time of enqueuing the message.

« InPL/SQL you specify the recipient list by adding elements to the
recipient_list field of the message_properties record.

« In OCI the recipient list is specified by using the OCISetAttr procedure to
specify an array of OCI_DTYPE_AQAGENdescriptors as the recipient list (OCI_
ATTR_RECIPIENT_LIST attribute) of an OCI_DTYPE_AQMSG_PROPERTIES
message properties descriptor.

If a recipient list is specified during enqueue, it overrides the subscription list. In
other words, messages that have a specified recipient list will not be available for
dequeue by the subscribers of the queue. The consumers specified in the recipient
list may or may not be subscribers for the queue. It is an error if the queue does not
have any subscribers and the enqueue does not specify a recipient list (see
"Enqueue a Message" on page 11-5 in Chapter 11, "Operational Interface: Basic
Operations").

A Sample Application Using AQ 8-37

ENQUEUE Features

Priority and Ordering of Messages

The message ordering dictates the order in which messages will be dequeued from
a queue. The ordering method for a queue is specified when a queue table is created
(see "Create a Queue Table" on page 9-5 in Chapter 9, "Administrative Interface”).
Currently, AQ supports two types of message ordering:

« Priority ordering of messages. If priority ordering is chosen, each message will
be assigned a priority at enqueue time by the enqueuer. At dequeue time, the
messages will be dequeued in the order of the priorities assigned. If two
messages have the same priority, the order at which they are dequeued is
undetermined.

« First-In, First-Out (FIFO) ordering. A FIFO-priority queue can also be created by
specifying both the priority and the enqueue time as the sort order of the
messages. A FIFO-priority queue behaves like a priority queue, except if two
messages are assigned the same priority, they will be dequeued according to the
order of their enqueue time.

Example Scenario
In the BooksOnLine application, a customer can request

« FedEx shipping (priority 1),
« Priority air shipping (priority 2). or
« Regular ground shipping (priority 3).

The Order Entry application uses a FIFO-priority queue to store booked orders.
Booked orders are propagated to the regional booked orders queues. At each
region, orders in these regional booked orders queues are processed in the order of
the shipping priorities.

The following calls create the FIFO-priority queues for the Order Entry application.

PL/SQL (DBMS_AQ/ADM Package): Example Code

* Create a priority queue table for OE: */

EXECUTE dbms_agadm.create_queue_table(\
queue_table =>'OE_orders_pr matab',\
sort_list =>priority,enq_time',\
comment =>'Order Entry Priority \

MuttiConsumer Orders queue table’\

multiple_consumers =>TRUE,\
queue_payload_type =>"'BOLADM.order_typ',\
compatible =81\

8-38 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

primary_instance =>2,\
secondary_instance =>1);

EXECUTE dbms_agadm.create_queue (\
queue_name =>'OE_bookedorders_que',\
queue_table =>'OE_orders_pr_mqtab);

/*When an order amves, the order entry application can use the following
Jprocedure to enquevie the order into its booked orders queue. A shipping
priority Is specified for each order: %/

CREATE OR REPLACE procedure order_eng(book_tile IN VARCHAR2,

book_qty IN NUMBER,
order_num IN NUMBER,
shipping_priority IN NUMBER,

cust state INVARCHAR2,
cust_country INVARCHAR?2,
cust regon INVARCHAR2,
cust od_typ INVARCHAR2) AS

OE _enq order data BOLADM.order_typ;

OE enq _cust data BOLADM.customer_typ;
OE_enq book data ~ BOLADM.book_typ;

OE enq item data BOLADM.orderitem_typ;
OE_enq item list ~ BOLADM.orderitemiist_vartyp;

engopt dbms_ag.enqueue_options t;
msgprop dbms_ag.message_properties t;
eng_msgid RAW(16);

BEGIN

msgprop.correlation := cust_ord_typ;

OE_enq_cust data :=BOLADM.customer_typ(NULL, NULL, NULL, NULL,
cust state, NULL, cust_country);

OE_enq book data :=BOLADM.book_typ(book_title, NULL, NULL, NULL);

OE_enq_item data :=BOLADM.orderitem_typ(book_qty,
OE_enq_book_data, NULL);

OE_enq_item list := BOLADM.orderitemiist_vartyp(
BOLADM.orderitem_typ(book_qty,
OE_enq_book_data, NULL));

OE _enq_order_data :=BOLADM.order_typ(order_num, NULL,
cust_ord_typ, cust_region,
OE_enq_cust_data, NULL,
OE_enq_item list, NULL);

FPut the shipping priority into message property before enqueueing
the message: */

A Sample Application Using AQ 8-39

ENQUEUE Features

msgprop.priority := shipping_priority;
dbms_ag.enqueue(OE.OE_bookedorders_que', enqopt, msgprop,
OE _enq_order_data, enq_msgid);
COMMIT;
END;
/

/* At each region, similar booked order queues are created. The orders are
propagated from the central Order Entry’s booked order queues to the regional
booked order queues.For example, at the westem region, the booked orders
queueis created.
Create a priority queuie table for WS shipping: %
EXECUTE dbms_agadm.create_queue_table(\
queue_table =>'WS_ orders_pr mqtab),
sort_list =>' priority,eng_time', \
comment => West Shipping Priority \
MutiConsumer Orders queue table'\
multiple_consumers => TRUE, \
queue_payload_type =>'BOLADM.order_typ',\
compatble =>'8.1);

/*Booked orders are stored in the prionity queue table:

EXECUTE dbms_agadm.create_queue (\
queue_name =>WS_bookedorders_gue',\
queue_table =>'WS orders_pr_mqtab);

/* At each region, the shipping application dequeues orders from the regional
booked order queue according to the orders' shipping priortes, processes
the orders, and enqueues the processed orders into the shipped orders queues
or the back orders queues. ¥/

Visual Basic (O040): Example Code

Dim OraSession as object

Dim OraDatabase as object

Dim OraAq as object

Dim OraMsg as Object

Dim OraOrder,OraCust,OraBook,Oraltem,OraltemList as Object
Dim Msgid as String

Set OraSession = CreateObject('OraclelnProcServer.XOraSession')

Set OraDatabase = OraSession.DbOpenDatabase('dbname”, "user/pwd”, 0&)
set oraaq = OraDatabase.CreateAQ('OE.OE_bookedorders_que”)

8-40 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

Set OraMsg = OraAq.AQMsg(ORATYPE_OBJECT, "BOLADM.order_typ")

Set OraOrder = OraDatabase.CreateOraObject('BOLADM.order_typ")

Set OraCust = OraDatabase.CreateOraObject(' BOLADM.Customer_typ")

Set OraBook = OraDatabase.CreateOraObject('BOLADM.book_typ")

Set Oraltem = OraDatabase.CreateOraObject('BOLADM.orderitem_typ')

Set OraltemList = OraDatabase.CreateOraObject('BOLADM.orderitemlist_vartyp")

'Getthe values of cust_state,cust_country etc from user(form_based
'input) and then acmd_click event for Enqueue

"will execute the subroutine order_eng.

Private Sub Order_enq()

OraMsg.correlation =txt_correlation
'Iniialize the customer details
OraCust('state”) =txt_cust_state
OraCust('country”) =txt_cust_country
OraBook('title") =txt_book_title
Oraltem(‘quantity’’) =txt_book gty
Oraltem('item’) = OraBook
OraltemList(1) = Oraltem
OraOrder("ordemo”) = txt_order_num
OraOrder("ordertype") =txt_cust_order_typ
OraOrder("orderregion”) = cust_region
OraOrder("customer”) = OraCust
OraOrder('items') = OraltemList

'Put the shipping priority into message property before enqueueing
' the message:

OraMsg.priority = priority

OraMsg = OraOrder

Msgid = OraAg.enqueue

'Release all allocations
End Sub

Java (JDBC): Example Code

public static void createPriorityQueueTable(Connection db_conn)
{

AQSession ag_sess,

AQQueueTableProperty mat_prop;

AQQueueTable pr_mq_table;

AQQueueProperty q_prop;

AQQueue bookedorders_g;

A Sample Application Using AQ 8-41

ENQUEUE Features

fry
{

* Create an AQ Session: */
ag_sess = AQDriverManager.createAQSession(db_conn);

* Create a priority queue table for OE */
mat_prop = new AQQueueTableProperty('BOLADM.order_typ");
mat_prop.setComment(‘Order Entry Priority " +

"MuliConsumer Orders queue table");
mat_prop.setCompatible("8.1');
maqt_prop.setMuliConsumer(true);

mat_prop.setSortOrder("priority,eng_time");

pr_mq_table =aq_sess.createQueueTable("OE", "OE_orders_pr_matab”,
mat_prop);

* Create a Queue in this queue table */
q_prop = new AQQueueProperty();

bookedorders_g=aq_sess.createQueue(pr_mg_table,
"OE_bookedorders_que", q_prop);

¥ Enable enqueue and dequeue on the queue */
bookedorders_g.start(true, true);

}
catch (AQException ex)
{
System.out.printin(*AQ Exception: " + ex);
}
}

FWhen an order amives, the order entry application can use the following
procedure to enqueue the order into its booked orders queue. A shipping
priority is specified for each order

¥

public static void order_enqueue(Connection db_conn, String book _title,

double book_qty, double order_num,
int ship_priority, String cust_state,
String cust_country, String cust_region,
String cust_order_type)

8-42 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

AQSession ag_sess,
AQQueue bookedorders _g;
Order enq_order;
Customer cust data;

Book book_data;
Orderitem item_data;
Orderitem]] items;
OrderitemList item _list;
AQENqueueOption eng_option;
AQMessageProperty m_property;
AQMessage message;
AQObjectPayload obj payload;
byte]] enq_msg_id;

try

{

* Create an AQ Session: */
ag_sess = AQDriverManager.createAQSession(db_conn);

cust_data=new Customer();
cust_data.setCountry(cust_country);
cust_data.setState(cust_state);

book_data = new Book();
book _data.setTitle(book title);

item_data = new Orderitem();
item_data.setQuantity(new BigDecimal(book_aty));
item_data.setitemn(book_data);

items = new Orderltem([1];
items[0] = item_data;

item_list = new OrderltemList(itemns);

enq_order = new Order();
eng_order.setCustomer(cust_data);
eng_order.setitems(item _list);
enq_order.setOrdemo(new BigDecimal(order_num));
enq_order.setOrdertype(cust_order_type);

bookedorders_g=aq_sess.getQueue("OE", "OE_bookedorders_que');

A Sample Application Using AQ 8-43

ENQUEUE Features

message = bookedorders_g.createMessage();

F Put the shipping priority into message property before enqueuing */
m_property = message.getMessageProperty();

m_property.setPriority(ship_priority);

ohj payload = message.getObjectPayload();
obj_payload.setPayloadData(enq_order);
eng_option = new AQEnqueueOption();

¥ Enqueue the message */
eng_msg_id =bookedorders_g.enqueue(enq_option, message);

db_conn.commit();

}
catch (AQException aq_ex)
{
System.out.printin("AQ Exception: " +aq_ex);

catch (SQLException sgl_ex)
{

System.out printin(*SQL Exception: * + sgl_ex);
}

* At each region, similar booked order queues are created. The orders are
propagated from the central Order Entry’'s booked order queues to the
regional booked order queues.

For example, at the westem region, the booked orders queue is created.
Create a priority queue table for WS shipping

¥

public static void create\WWestemShippingQueueTable(Connection db_conn)

{

AQSession ag_sess;
AQQueueTableProperty mat_prop;
AQQueueTable mq_table;

AQQueueProperty q_prop;
AQQueue bookedorders_g;

8-44 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

try
{

* Create an AQ Session: */
ag_sess = AQDriverManager.createAQSession(db_conn);

[* Create a priority queue table for WS */

mat_prop = new AQQueueTableProperty(' BOLADM.order_typ');

mat_prop.setComment("Westem Shipping Priority "' +
"MuliConsumer Orders queue table”);

maqt_prop.setCompatible('8.1");

mat_prop.setMuliConsumer(true);

mat_prop.setSortOrder('‘priority,eng_time");

mq_table =aq_sess.createQueueTable('WS","WS_orders_pr_ matab",
mat_prop);

* Booked orders are stored in the priority queue table: */
q_prop = new AQQueueProperty();

bookedorders_g=aq_sess.createQueue(mq_table, "WS_bookedorders_que”,
¢_prop);

[Startthe queue */
bookedorders_q.start(true, true);

}
catch (AQException ex)
{
System.out.printin(*AQ Exception: " + ex);
}

F At each region, the shipping application dequeues orders from the
regional booked order queue according to the orders' shipping priorities,
processes the orders, and enqueues the processed orders into the shipped
orders queues or the back orders queues.
*
}

A Sample Application Using AQ 8-45

ENQUEUE Features

Time Specification: Delay

AQ supports delay delivery of messages by letting the enqueuer specify a delay
interval on a message when enqueueing the message, that is, the time before which
a message cannot be retrieved by a dequeue call. (see "Enqueue a Message [Specify
Message Properties]" on page 11-10 in Chapter 11, "Operational Interface: Basic
Operations™). The delay interval determines when an enqueued message is marked
as available to the dequeuers after message is enqueued. The producer can also
specify the time when a message expires, at which time the message is moved to an
exception queue.

When a message is enqueued with a delay time set, the message is marked as in
WAIT state. Messages in WAIT state are masked from the default dequeue calls.

A background time-manager daemon wakes up periodically, scans an internal
index for all WAIT state messages, and marks messages as READYIf their delay time
has passed. The time-manager will then post to all foreground processes that are
waiting on queues in which messages have just been made available.

Example Scenario

In the BooksOnLine application, delay can be used to implement deferred billing.
A billing application can define a queue in which shipped orders that are not billed
immediately can be placed in a deferred billing queue with a delay. For example, a
certain class of customer accounts, such as those of corporate customers, may not be
billed for 15 days. The billing application dequeues incoming shipped order
messages (from the shippedorders queue) and if the order is for a corporate
customer, this order is enqueued into a deferred billing queue with a delay.

8-46 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

PL/SQL (DBMS_AQ/ADM Package): Example Code

/* Enqueue an order to implement deferred billing so that the order is not made

visible again unti delay has expired:
CREATE OR REPLACE PROCEDURE defer_hiling(deferred_hiling_order order_typ)
AS

defer_bill queue_name VARCHAR2(62);

enqgopt dbms_ag.enqueue_options t;
msgprop dbms_ag.message_properties t;
eng_msgid RAW(16);

BEGIN

/* Enqueue the order into the deferred billing queue with a delay of 15 days: ¥
defer_bill queue_name :='CBADM.deferbiling_que’;
msgprop.delay := 15*60*60*24;
dbms_ag.enqueue(defer_bil_queue_name, engopt, msgprop,
deferred_biling_order, enq_msgid);
END;
/

Visual Basic (0040): Example Code
set oraaq = OraDatabase.CreateAQ('CBADM.deferbiling_que')
Set OraMsg = OraAq.AQMsg(ORATYPE_OBJECT, "BOLADM.order typ')
Set OraOrder = OraDatabase.CreateOraObject('BOLADM.order_typ")

Private Sub defer_biling

OraMsg = OraOrder

OraMsg.delay = 15*60*60*24

OraMsg = OraOrder '‘OraOrder contains the order details
Msgid = OraAg.enqueue

End Sub

Java (JDBC): Example Code

public static void defer_hilling(Connection db_conn, Order deferred_order)
{

AQSession aq_sess;

AQQueue def hill_g;

AQENqueueOption eng_option;

AQMessageProperty m_property,

AQMessage message;

A Sample Application Using AQ 8-47

ENQUEUE Features

AQObjectPayload obj payload;
byte] eng_msg_id;

try

{
* Create an AQ Session: */

ag_sess = AQDriverManager.createAQSession(db_conn);
def_bill_q=aq_sess.getQueue('CBADM", "deferbiling_que");
message =def_bill_g.createMessage();

F* Enqueue the order into the deferred biling queue with a delay
of 15 days*/

m_property = message.getMessageProperty();
m_property.setDelay(15*60*60*24);

obj_payload = message.getObjectPayload();
obj_payload.setPayloadData(deferred_order);

enq_option = new AQEnqueueOption();

¥ Enqueue the message */
eng_msg_id =def_hill_g.enqueue(enq_option, message);

db_conn.commit();

}
catch (Exception ex)

{
System.out printin('Exception " + ex);
}

8-48 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

Time Specification: Expiration
Messages can be enqueued with an expiration which specifies the interval of time
the message is available for dequeuing. Note that expiration processing requires
that the queue monitor be running.

Example Scenario

In the BooksOnLine application, expiration can be used to control the amount of
time that is allowed to process a back order. The shipping application places orders
for books that are not available on a back order queue. If the shipping policy is that
all back orders must be shipped within a week, then messages can be enqueued into
the back order queue with an expiration of 1 week. In this case, any back orders that
are not processed within one week are moved to the exception queue with the
message state set to EXPIRED This can be used to flag any orders that have not
been shipped according to the back order shipping policy.

PL/SQL (DBMS_AQ/ADM Package): Example Code

CONNECT BOLADM/BOLADM
/*Reg-enqueue a back arder into a back order queue and set a delay of 7 days;
all back orders must be processed in 7 days or they are moved to the
exception queue: %/
CREATE OR REPLACE PROCEDURE requeue_back order(sale_region varchar2,
backorder order_typ)

AS

back_order_queue_name VARCHAR2(62);

enqgopt dbms_ag.enqueue_options t;

msgprop dbms_ag.message_properties t;

eng_msgid RAW(16);

BEGIN

/*Look up a back order queue based the the region by means of a directory
senvice: %/

IF sale_region="WEST THEN
back_order_queue_name :=WS.WS_backorders_que;
ELSIF sale_region="EAST THEN
back_order_queue_name :='ES.ES backorders_que’,
ELSE
back order_queue_name :='0S.0S_backorders_que;
END IF,

A Sample Application Using AQ 8-49

ENQUEUE Features

F Enqueue the order with expiration setto 7 days: */
msgprop.expiration := 7*60*60*24;
dbms_ag.enqueue(back_order_queue_name, enqopt, msgprop,
backorder, enq_msgid);
END;
/

Visual Basic (O040): Example Code

set oraaql = OraDatabase.CreateAQ("WS.WS_backorders_que')

set oraag2 = OraDatabase.CreateAQ('ES.ES _backorders_que”)

set oraaq3 = OraDatabase.CreateAQ('CBADM.deferbiling_que')

Set OraMsg = OraAq.AQMsg(ORATYPE_OBJECT, "BOLADM.order_typ")
Set OraBackOrder = OraDatabase.CreateOraObject('BOLADM.order_typ")

Private Sub Requeue_backorder

Dim g as oraohject

If sale_region=WEST then
g=oraaql

elseifsale_region=EAST then
q=oraag2

else
gq=oraag3

endif

OraMsg.delay = 7*60*60*24
OraMsg = OraBackOrder ‘OraOrder contains the order details
Msgid = g.enqueue

End Sub

Java (JDBC). Example Code

F* Re-enqueue a back order into a back order queue and set a delay of 7 days;
all back orders must be processed in 7 days or they are moved to the
exception queue */

public static void requeue_back_order(Connection db_conn,

String sale_region, Order back_order)

{

AQSession ag_sess,
AQQueue back_order_g;
AQEnqueueOption enq_option;
AQMessageProperty m_property;
AQMessage message;

8-50 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

AQObjectPayload obj payload;
byte] eng_msg_id;

try

{
* Create an AQ Session: */

ag_sess = AQDriverManager.createAQSession(db_conn);

¥ Look up a back order queue based on the region */
ifisale_region.equals("WEST"))

{
back_order_q=aq_sess.getQueue("WS","WS_backorders_que");

}
else if(sale_region.equals('EAST"))
{
back_order_q=aq_sess.getQueue('ES","ES_backorders_que");

}
else

{
back_order_q=aq_sess.getQueue("OS","OS_backorders_que");
}
message =back_order_g.createMessage();
m_property = message.getMessageProperty();

¥ Enqueue the order with expiration setto 7 days: */
m_property.setExpiration(7*60*60*24);

obj_payload = message.getObjectPayload();
obj_payload.setPayloadData(back_order);

enq_option = new AQEnqueueOption();

¥ Enqueue the message */
eng_msg_id =back_order_g.enqueue(eng_option, message);

db_conn.commit();

catch (Exception ex)
{
System.out printin("'Exception " + ex);
}
}

A Sample Application Using AQ 8-51

ENQUEUE Features

Message Grouping

Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires the queue be created in a queue table
that is enabled for transactional message grouping (see "Create a Queue Table" on
page 9-5 in Chapter 9, "Administrative Interface"). All messages belonging to a
group have to be created in the same transaction and all messages created in one
transaction belong to the same group. This feature allows you to segment complex
messages into simple messages.

For example, messages directed to a queue containing invoices could be constructed
as a group of messages starting with the header message, followed by messages
representing details, followed by the trailer message. Message grouping is also very
useful if the message payload contains complex large objects such as images and
video that can be segmented into smaller objects.

The general message properties (priority, delay, expiration) for the messages in a
group are determined solely by the message properties specified for the first
message (head) of the group irrespective of which properties are specified for
subsequent messages in the group.

The message grouping property is preserved across propagation. However, it is
important to note that the destination queue to which messages have to be
propagated must also be enabled for transactional grouping. There are also some
restrictions you need to keep in mind if the message grouping property is to be
preserved while dequeuing messages from a queue enabled for transactional
grouping (see "Dequeue Methods" on page 8-56 and "Modes of Dequeuing” on
page 8-69 for additional information).

Example Scenario

In the BooksOnLine application, message grouping can be used to handle new
orders. Each order contains a number of books ordered one by one in succession.
Items ordered over the Web exhibit similar behavior.

In the example given below, each enqueue corresponds to an individual book that is
part of an order and the group/transaction represents a complete order. Only the
first enqueue contains customer information. Note that the OE_neworders_que is
stored in the table OE_orders_sqtab which has been enabled for transactional
grouping. Refer to the example code for descriptions of procedures new_order_
eng () and same_order_eng ().

8-52 Application Developer's Guide - Advanced Queuing

ENQUEUE Features

PL/SQL (DBMS_AQ/ADM Package): Example Code
connect OE/OE;

* Create queue table for OE: */
EXECUTE dbms_agadm.create_queue_table(\
queue_table =>'OE_orders_sqtalb’\
comment =>'Order Entry Single-Consumer Orders queue table’\
queue_payload type =>"BOLADM.order_typ’\
message_grouping =>DBMS_AQADM.TRANSACTIONAL, \
compatble =>'8.1,\
primary_instance =>1\
secondary_instance => 2);

* Create neworders queue for OE: */

EXECUTE dbms_agadm.create_queue (\
queue_name =>'OE_neworders_gque’,
queue_table =>'OE_orders_sqtab);

F*Login into OE account :*/

CONNECT OE/OE;

SET serveroutput on;

F* Enqueue some orders using message grouping into OE_neworders_que,
First Order Group: */

EXECUTE BOLADM.new_order_enq(My First Book, 1, 1001, 'CA);

EXECUTE BOLADM.same_order_enqg(My Second Book;, 2);

COMMIT;

/

* Second Order Group: */

EXECUTE BOLADM.new_order_enq(My Third Book;, 1, 1002, WA,

COMMIT;

/

FThird Order Group: */

EXECUTE BOLADM.new_order_enqg(My Fourth Book, 1, 1003, 'NV);

EXECUTE BOLADM.same_order_enq(My Fifth Book’, 3);

EXECUTE BOLADM.same_order_enq(My Sixth Book’, 2);

COMMIT;

/

F Fourth Order Group: */

EXECUTE BOLADM.new_order_eng(My Seventh Book', 1, 1004, MA);

EXECUTE BOLADM.same_order_enq(My Eighth Book, 3);

EXECUTE BOLADM.same_order_eng(My Ninth Book’, 2);

COMMIT;

/

A Sample Application Using AQ 8-53

ENQUEUE Features

Visual Basic (O040): Example Code
This functionality is currently not available.

Java (JDBC): Example Code

public static void createMsgGroupQueueTable(Connection db_conn)
{

AQSession ag_sess;

AQQueueTableProperty sqt_prop;

AQQueueTable sq_table;

AQQueueProperty q_prop;
AQQueue neworders_g;

fry
{

* Create an AQ Session: */
ag_sess = AQDriverManager.createAQSession(db_conn);

* Create a single-consumer orders queue table */

sqt_prop = new AQQueueTableProperty('BOLADM.order_typ');
sqt_prop.setComment('Order Entry Single-Consumer Orders queue table");
sqt_prop.setCompatible('8.1");
sqt_prop.setMessageGrouping(AQQueueTableProperty. TRANSACTIONAL);

sq_table =aq_sess.createQueueTable('OE", "OE_orders_sqtab', sqt_prop);

[* Create new orders queue for OE */
g_prop = new AQQueueProperty();

neworders_q=aq_sess.createQueue(sq_table, "OE_neworders_gue",
0_prop);

}
catch (AQException ex)
{
System.out.printin(*AQ Exception: " + ex);
}
}

8-54 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

DEQUEUE Features

« Dequeue Methods

« Multiple Recipients

« Local and Remote Recipients

« Message Navigation in Dequeue

« Modes of Dequeuing

= Optimization of Waiting for Arrival of Messages
» Retry with Delay Interval

« Exception Handling

« Rule-based Subscription

« Listen Capability

A Sample Application Using AQ 8-55

DEQUEUE Features

Dequeue Methods

A message can be dequeued from a queue using one of two dequeue methods: a
correlation identifier or a message identifier.

A correlation identifier is a user defined message property (of VARCHAR2latatype)
while a message identifier is a system-assigned value (of RAWdatatype). Multiple
messages with the same correlation identifier can be present in a queue while only
one message with a given message identifier can be present. A dequeue call with a
correlation identifier will directly remove a message of specific interest rather than
using a combination of locked and remove mode to first examine the content and
then remove the message. Hence, the correlation identifier usually contains the
most useful attribute of a payload. If there are multiple messages with the same
correlation identifier, the ordering (enqueue order) between messages may not be
preserved on dequeue calls. The correlation identifier cannot be changed between
successive dequeue calls without specifying the first message navigation option.

Note that dequeueing a message with either of the two dequeue methods will not
preserve the message grouping property (see "Message Grouping” on page 8-52 and
"Message Navigation in Dequeue” on page 8-65 for further information).

Example Scenario

In the following scenario of the BooksOnLine example, rush orders received by the
East shipping site are processed first. This is achieved by dequeueing the message
using the correlation identifier which has been defined to contain the order type
(rush/normal). For an illustration of dequeueing using a message identifier please
refer to the get_northamerican_orders procedure discussed in the example
under "Modes of Dequeuing" on page 8-69.

PL/SQL (DBMS_AQ/ADM Package): Example Code
CONNECT boladmvboladm;

[+ Create procedures to enqueue into single-consumer queues: */
create or replace procedure get_rushtiles(consumer in varchar2) as

deq_cust data BOLADM .customer_typ;
deq_book_data BOLADM.book_typ;
deq_item data BOLADM.orderitem _typ;

deq_msgid RAW(16);

dopt dbms_ag.dequeue_options t;
mprop dbms_ag.message_properties t;
deq_order_data BOLADM.order_typ;
gname varchar2(30);

8-56 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

no_messages exception;

pragma exception_init (no_messages, -25228);
new_orders BOOLEAN :=TRUE;

begin

dopt.consumer_name := consumer;
doptwait:=1;
dopt.comelation :='RUSH;;

IF (consumer ="West_Shipping’) THEN
gname :="WS.WS_bookedorders_que’;
ELSIF (consumer ="East_Shipping) THEN
gname :="ES.ES_bookedorders_gque’;
ELSE
gname :='0S.0S_bookedorders_que’;
ENDIF;

WHILE (new_orders) LOOP
BEGIN

dbms_ag.dequeue(
queue_name =>gname,
dequeue_options =>dopt,
message_properties =>mprop,
payload =>deq_order_data,
msgid =>deq_msgid);

commit;

deq_item_data :=deq_order_data.items(1);
deq_book data:=deq_item_data.itern;

dbms_outputput_line(rushorder book_titie: " ||
deq_book_datatitie ||
'quantity:’|| deq_item_data.quantty);
EXCEPTION
WHEN no_messages THEN
doms_outputput_line (— NO MORE RUSH TITLES —);
new_orders := FALSE;
END;
END LOOP;

end;
/

CONNECT EXECUTE on get_rushtiles to ES;

A Sample Application Using AQ 8-57

DEQUEUE Features

F* Dequeue the orders: */
CONNECT ESIES;

F Dequeue all rush order titles for East_Shipping: */
EXECUTE BOLADM.get rushtiies(East_Shipping’);

Visual Basic (O040): Example Code

set oraaql = OraDatabase.CreateAQ("WS.WS_backorders_que')

set oraag2 = OraDatabase.CreateAQ('ES.ES _backorders_que”)

set oraaq3 = OraDatabase.CreateAQ('CBADM.deferbiling_que')

Set OraMsg = OraAq.AQMsg(ORATYPE_OBJECT, "BOLADM.order_typ")
Set OraBackOrder = OraDatabase.CreateOraObject('BOLADM.order_typ")

Private Sub Requeue_backorder

Dim g as oraohject

If sale_region=WEST then
g=oraaql

elseifsale_region=EAST then
q=oraag2

else
gq=oraag3

endif

OraMsg.delay = 7*60*60*24
OraMsg = OraBackOrder ‘OraOrder contains the order details
Msgid = g.enqueue

End Sub

Java (JDBC). Example Code

public static void getRushTitles(Connection db_conn, String consumer)

{
AQSession ag_sess,
Order deq_order;
bytef] deq|_msgid;
AQDequeueOption deq_option;
AQMessageProperty msg_prop;
AQQueue bookedorders_g;
AQMessage message;
AQObjectPayload obj payload;
boolean new_orders =true;

8-58 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

try
{
* Create an AQ Session: */
ag_sess = AQDriverManager.createAQSession(db_conn);

deq_option = new AQDequeueOption();

deq_option.setConsumerName(consumer);
deq_option.setWaitTime(1);
deq_option.setCorrelation('RUSH");

ificonsumer.equals("West_Shipping"))

bookedorders_g=aq_sess.getQueue("WS","WS_bookedorders_que");
}
else if{consumer.equals('East_Shipping"))
{

bookedorders_g=aq_sess.getQueue("ES","ES_bookedorders_que');

}
else

{
bookedorders_g=aq_sess.getQueue("OS", "OS_bookedorders_que');

}

while(new_orders)
{

try

{

F Dequeue the message */

message = bookedorders_g.dequeue(deq_option, Order.getFactory());
obj payload = message.getObjectPayload();

deq_order = (Order)(obj_payload.getPayloadData());

System.outprintin(*Order number "' + deq_order.getOrdemo() +

"isarushorder”),
}
catch (AQException agex)
{

new_orders =false;
System.out.printin('No more rush titles');
System.out.printin("Exception-1: " + agex);

A Sample Application Using AQ 8-59

DEQUEUE Features

}
}

catch (Exception ex)

System.out printin("'Exception-2: " + ex);
}

8-60 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

Multiple Recipients

A consumer can dequeue a message from a multi-consumer normal queue by
supplying the name that was used in the AQ$_AGENType of the DBMS_
AQADMDD_SUBSCRIBERrocedure or the recipient list of the message properties
(see "Add a Subscriber" on page 9-53 or Enqueue a Message [Specify Message
Properties] on page 11-10).

« InPL/SQL the consumer name is supplied using the consumer_name field of
the dequeue_options_t record.

« In OCI the consumer name is supplied using the OCISetAttr procedure to
specify a text string as the OCI_ATTR_CONSUMER_NAIMEan OCI_DTYPE_
AQDEQ_OPTIONSescriptor.

« In 0040, the consumer name is supplied by setting the consumer property of
the OraAQ object.

There can be multiple processes or operating system threads that use the same
consumer_name to dequeue concurrently from a queue. In that case AQ will
provide the first unlocked message that is at the head of the queue and is intended
for the consumer. Unless the message ID of a specific message is specified during
dequeue, the consumers can dequeue messages that are in the READ Ystate.

A message is considered PROCESSEDNIly when all intended consumers have
successfully dequeued the message. A message is considered EXPIREDIf one or
more consumers did not dequeue the message before the EXPIRATION time. When
a message has expired, it is moved to an exception queue.

The exception queue must also be a multi-consumer queue. Expired messages from
multi-consumer queues cannot be dequeued the intended recipients of the message.
However, they can be dequeued in the REMOVEnode exactly once by specifying a
NULL consumer name in the dequeue options. Hence, from a dequeue perspective,
multi-consumer exception queues behave like single-consumer queues because
each expired message can be dequeued only once using a NULLconsumer name.
Note that expired messages can be dequeued only by specifying a message ID if the
multi-consumer exception queue was created in a queue table without the
compatible parameter or with the compatible parameter set to '8.0".

In release 8.0.x when two or more processes/threads that are using different
consumer_names are dequeuing from a queue, only one process/thread can
dequeue a given message in the LOCKEDbr REMOVEnode at any time. What this
means is that other consumers that need to the dequeue the same message will have
to wait until the consumer that has locked the message commits or aborts the
transaction and releases the lock on the message. However, while release 8.0.x did

A Sample Application Using AQ 8-61

DEQUEUE Features

not support concurrency among different consumers for the same message., with
release 8.1.6 all consumers can access the same message concurrently. The result is
that two processes/threads that are using different consumer_name to dequeue the
same message do not block each other. AQ achieves this improvement by
decoupling the task of dequeuing a message and the process of removing the
message from the queue. In release 8.1.6 only the queue monitor removes messages
from multi-consumer queues. This allows dequeuers to complete the dequeue
operation by not locking the message in the queue table. Since the queue monitor
performs the task of removing messages that have been processed by all consumers
from multi-consumer queues approximately once every minute, users may see a
delay when the messages have been completely processed and when they are
physically removed from the queue.

8-62 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

Local and Remote Recipients

Consumers of a message in multi-consumer queues (either by virtue of being a
subscriber to the queue or because the consumer was a recipient in the enqueuer’s
recipient list) can be local or remote.

A local consumer dequeues the message from the same queue into which the
producer enqueued the message. Local consumers have a non-NULL NAMEnd
a NULL ADDRESSNnd PROTOCO(field in the AQ$_AGENType (see "Agent" on
page 2-3 in Chapter 2, "Basic Components").

A Remote consumer dequeues from a queue that is different (but has the same
payload type as the source queue) from the queue in which the message was
enqueued. As such, users need to be familiar with and use the AQ Propagation
feature to use remote consumers. Remote consumers can fall into one of three
categories:

a.

The ADDRESSield refers to a queue in the same database. In this case the
consumer will dequeue the message from a different queue in the same
database. These addresses will be of the form [schema] .queue_name
where queue_name (optionally qualified by the schema name) is the target
gueue. If the schema is not specified, the schema of the current user
executing the ADD_SUBSCRIBERrocedure or the enqueue is used (see
"Add a Subscriber" on page 9-53, or "Enqueue a Message” on page 11-5in
Chapter 11, "Operational Interface: Basic Operations™). Use the DBMS _
AQADNMSCHEDULE_PROPAGATI@NmMmand with a NULL destination
(which is the default) to schedule propagation to such remote consumers
(see "Schedule a Queue Propagation™” on page 9-65 in Chapter 9,
"Administrative Interface™).

The ADDRESSield refers to a queue in a different database. In this case the
database must be reachable using database links and the PROTOCOmust
be either NULL or 0. These addresses will be of the form [schema] .queue_
name@dblink . If the schema is not specified, the schema of the current
user executing the ADD_SUBSCRIBERrocedure or the enqueue is used. If
the database link is not a fully qualified name (does not have a domain
name specified) the default domain as specified by the db_domain

init .ora parameter will be used. Use the DBMS_AQADSICHEDULE_
PROPAGATIOIprocedure with the database link as the destination to
schedule the propagation. AQ does not support the use of synonyms to
refer to queues or database links.

The ADDRESSield refers to a destination that can be reached by a third
party protocol. You will need to refer to the documentation of the third

A Sample Application Using AQ 8-63

DEQUEUE Features

party software to determine how to specify the ADDRESS3nd the
PROTOCOUHatabase link, and on how to schedule propagation.

When a consumer is remote, a message will be marked as PROCESSEIN the source
gueue immediately after the message has been propagated even though the
consumer may not have dequeued the message at the remote queue. Similarly,
when a propagated message expires at the remote queue, the message is moved to
the DEFAULTexception queue of the remote queue's queue table, and not to the
exception queue of the local queue. As can be seen in both cases, AQ does not
currently propagate the exceptions to the source queue. You can use the MSGIDand
the ORIGINAL_MSGIDcolumns in the queue table view (AQ$<queue_table>)to
chain the propagated messages. When a message with message ID m1 is
propagated to a remote queue, ml is stored in the ORIGINAL_MSGIDcolumn of the
remote queue.

The DELAY EXPIRATION and PRIORITY parameters apply identically to both local
and remote consumers. AQ accounts for any delay in propagation by adjusting the

DELAYand EXPIRATION parameters accordingly. For example, if the EXPIRATION
is set to one hour, and the message is propagated after 15 minutes, the expiration at
the remote queue will be set to 45 minutes.

Since the database handles message propagation, OO40 does not differentiate
between remote and local recipients. The same sequence of calls/steps are required
to dequeue a message, for local and remote recipients.

8-64 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

Message Navigation in Dequeue

You have several options for selecting a message from a queue. You can select the
"first message”. Alternatively, once you have selected a message and established its
position in the queue (for example, as the fourth message), you can then retrieve the
"next message".

These selections work in a slightly different way if the queue is enabled for
transactional grouping.

« If the "first message" is requested then the dequeue position is reset to the
beginning of the queue.

« If the "next message” is requested then the position is set to the next message of
the same transaction

« If the "next transaction" is requested then the position is set to the first message
of the next transaction.

Note that the transaction grouping property is negated if a dequeue is performed in
one of the following ways: dequeue by specifying a correlation identifier, dequeue
by specifying a message identifier, or dequeueing some of the messages of a
transaction and committing (see "Dequeue Methods" on page 8-56).

If in navigating through the queue, the program reaches the end of the queue while
using the "next message" or "next transaction"” option, and you have specified a
non-zero wait time, then the navigating position is automatically changed to the
beginning of the queue.

Example Scenario

The following scenario in the BooksOnLine example continues the message
grouping example already discussed with regard to enqueuing (see "Dequeue
Methods" on page 8-56).

The get_orders () procedure dequeues orders from the OE_neworders_que
Recall that each transaction refers to an order and each message corresponds to an
individual book in the order. The get_orders () procedure loops through the
messages to dequeue the book orders. It resets the position to the beginning of the
gueue using the first message option before the first dequeues. It then uses the next
message navigation option to retrieve the next book (message) of an order
(transaction). If it gets an error message indicating all message in the current
group/transaction have been fetched, it changes the navigation option to next
transaction and get the first book of the next order. It then changes the navigation
option back to next message for fetching subsequent messages in the same
transaction. This is repeated until all orders (transactions) have been fetched.

A Sample Application Using AQ 8-65

DEQUEUE Features

PL/SQL (DBMS_AQ/ADM Package): Example Code
CONNECT boladmvbolad;

create or replace procedure get_new_orders as
deq_cust data BOLADM .customer_typ;

deq book _data BOLADM.book_typ;
deq_item data BOLADM.orderitem_typ;

deq_msgid RAW(16);

dopt dbms_ag.dequeue_options t;
mprop dbms_ag.message_properties t;
deq_order_data BOLADM.order_typ;
gname VARCHAR2(30);
Nno_messages exception;

end_of_group exception;

pragma exception_init (ho_messages, -25228);
pragma exception_init (end_of group, -25235);
new_orders BOOLEAN =TRUE;

BEGIN

doptwait:=1;
dopt.navigation := DBMS_AQ.FIRST_MESSAGE;
gname :='OE.OE_neworders_que’;
WHILE (new_orders) LOOP
BEGIN
LOOP
BEGIN
dbms_ag.dequeue(
queue_name =>gname,
dequeue_options =>dopt,
message_properties =>mprop,
payload =>deq_order_data,
msgid =>deq_msgid);

deq_item_data :=deq_order_dataitemns(l);
deq_book data:=deq item data.itern;
deq_cust data:=deq_order_data.customer;

IF (deq_cust_data IS NOT NULL) THEN
dbms_outputput_line(**** NEXT ORDER ***);
dbms_output.put_lineCorder_num:’||

deq_order_data.ordemo);
dbms_output.put_line(ship_state: ||
deq_cust data.state);

8-66 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

END IF;
dbms_outputput_line(— nextbook —);
dbms_outputput_line(book_title:’||
deq_book_datatite ||
" quantity:’ || deg_item_data.quantity);
EXCEPTION
WHEN end_of_group THEN
dbms_output.put_line (** END OF ORDER ***);
commit;
dopt.navigation .= DBMS_AQ.NEXT_TRANSACTION;
END;
END LOOP;
EXCEPTION
WHEN no_messages THEN
dbms_outputput_line (— NO MORE NEW ORDERS —);
new_orders :=FALSE;
END;
END LOOP;

END;
/

CONNECT EXECUTE ON get_new_orders to OF;

F* Dequeue the orders: */
CONNECT OE/OE;
EXECUTE BOLADM.get_new_orders;

Visual Basic (O040): Example Code

Dim OraSession as object

Dim OraDatabase as object

Dim OraAq as object

Dim OraMsg as Object

Dim OraOrder,OraltemList,Oraltem,OraBook,OraCustomer as Object
Dim Msgid as String

Set OraSession = CreateObject(‘OraclelnProcServer.XOraSession')

Set OraDatabase = OraSession.DbOpenDatabase(", "boladm/boladm”, 0&)

set oraaq = OraDatabase.CreateAQ('OE.OE_neworders_que')

Set OraMsg = OraAq.AQMsg(ORATYPE_OBJECT, "BOLADM.order_typ")
OraAgwait=1

OraAg.Navigation = ORAAQ_DQ_FIRST_MESSAGE

A Sample Application Using AQ 8-67

DEQUEUE Features

private sub get_ new_orders
Dim MsglsDequeued as Boolean
On Emor goto EmHandler
MsglsDequeued = TRUE
msgid = g.Dequeue
if MsglsDequeued then
set OraOrder = OraMsg
OraltemList = OraOrder(items")
Oraltem = OraltemList(1)
OraBook = Oraltem(‘item)
OraCustomer = OraOrder('customer")

' Populate the textboxes with the values
ifl OraCustomer) then
if OraAg.Navigation <> ORAAQ_DQ_NEXT_MESSAGE then
MsgBox " *exekieek NEXT ORDER e
endif
txt_book_ordemo = OraOrder('ordemo")
txt_book_shipstate = OraCustomer('state")
Endif
OraAq.Navigation = ORAAQ _DQ_NEXT_MESSAGE
txt_book_title = OraBook(itie")
txt_book gty = Oraltem("quantity”)
Else
MsgBox " #**xeses END OF ORDER !
Endif

EnHandler :
‘Handle error case, like no message etc
If OraDatabase.LastServerErr = 25228 then
OraAq.Navigation = ORAAQ DQ NEXT_TRANSACTION
MsglsDequeued = FALSE
Resume Next
End if
'Process other errors
end sub

Java (JDBC). Example Code
No example is provided with this release.

8-68 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

Modes of Dequeuing

A dequeue request can either view a message or delete a message (see "Dequeue a
Message" on page 11-45 in Chapter 11, "Operational Interface: Basic Operations").

« Toview a message you can use either the "browse" mode or "locked" mode.

« To delete a message you can use either the "remove" mode or "remove with no
data" mode.

If a message is browsed it remains available for further processing. Similarly if a
message is locked it remains available for further processing once the lock on it is
released by performing a transaction commit or rollback. Once a message is deleted
using either of the remove modes, it is no longer available for dequeue requests.

When a message is dequeued using REMOVE_NODATAode, the payload of the
message is not retrieved. This mode can be useful when the user has already
examined the message payload, possibly by means of a previous BROWSHequeue.
In this way, you can avoid the overhead of payload retrieval which can be
substantial for large payloads

A message is retained in the queue table after it has been removed only if a
retention time is specified for a queue. Messages cannot be retained in exception
gueues (refer to the section on exceptions for further information). Removing a
message with no data is generally used if the payload is known (from a previous
browse/locked mode dequeue call), or the message will not be used.

Note that after a message has been browsed there is no guarantee that the message
can be dequeued again since a dequeue call from a concurrent user might have
removed the message. To prevent a viewed message from being dequeued by a
concurrent user, you should view the message in the locked mode.

You need to take special care while using the browse mode for other reasons as
well. The dequeue position is automatically changed to the beginning of the queue
if a non-zero wait time is specified and the navigating position reaches the end of
the queue. Hence repeating a dequeue call in the browse mode with the "next
message" navigation option and a non-zero wait time can dequeue the same
message over and over again. We recommend that you use a non-zero wait time for
the first dequeue call on a queue in a session, and then use a zero wait time with the
next message navigation option for subsequent dequeue calls. If a dequeue call gets
an "end of queue" error message, the dequeue position can be explicitly set by the
dequeue call to the beginning of the queue using the "first message" navigation
option, following which the messages in the queue can be browsed again.

A Sample Application Using AQ 8-69

DEQUEUE Features

Example Scenario

In the following scenario from the BooksOnLine example, international orders
destined to Mexico and Canada are to be processed separately due to trade policies
and carrier discounts. Hence, a message is viewed in the locked mode (so no other
concurrent user removes the message) and the customer country (message payload)
is checked. If the customer country is Mexico or Canada the message be deleted
from the queue using the remove with no data (since the payload is already known)
mode. Otherwise, the lock on the message is released by the commit call. Note that
the remove dequeue call uses the message identifier obtained from the locked mode
dequeue call. The shipping_bookedorder_deq (refer to the example code for
the description of this procedure) call illustrates the use of the browse mode.

PL/SQL (DBMS_AQ/ADM Package): Example Code
CONNECT boladmvbolad;

create or replace procedure get_northamerican_orders as
deq_cust data BOLADM.customer_typ;

deqg_book_data BOLADM.book_typ;
deq_item_data BOLADM .orderitem_typ;

deq_msgid RAW(16);
dopt doms_ag.dequeue_options t;
mprop dbms_ag.message_properties t;

deq_order_data BOLADM.order_typ;
deq_order_nodata ~ BOLADM.order_typ;
gname VARCHAR2(30);
Nno_messages exception;

pragma exception_init (ho_messages, -25228);
new_orders BOOLEAN =TRUE;

begin

dopt.consumer_name = consumer;

doptwait := DBMS_AQ.NO_WAIT;
doptnavigation :=dbms_aq.FIRST_MESSAGE;
doptdequeue_mode :=DBMS_AQ.LOCKED;

gname :='0S.0S_hookedorders_que’;

WHILE (new_orders) LOOP
BEGIN
dbms_ag.dequeue(
gueue_name =>qgname,

8-70 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

dequeue_options => dopt,
message_properties => mprop,
payload =>deq_order_data,
msgid =>deq_msgid);

deq_item_data :=deq_order_data.items(1);
deq_book data :=deq_item_data.itern;
deq_cust data :=deq_order_data.customer;

IF (deq_cust_data.country ='Canada’ OR
deq_cust_data.country ="Mexico') THEN

doptdequeue_mode :=dbms_aq.REMOVE_NODATA,
doptmsgid := deq_msgid;
dbms_ag.dequeue(
gueue_name =>gname,
dequeue_options =>dopt,
message_properties =>mprop,
payload =>deq_order_nodata,
msgid =>deq_msgid);
commit;

dbms_outputput_line(**** next booked order =+,
dbms_outputput_line(order_no:’|| deq_order_data.ordemo ||
"book _title:* || deq_book_datadtite ||
"quantity:” || deq_item_data.quantity);
dbms_outputput_line('ship_state: ' || deg_cust data.state ||
"ship_country:’ || deq_cust_data.country ||
"ship_order_type:’ || deq_order_data.ordertype);

ENDIF;

commit;

doptdequeue_mode :=DBMS_AQ.LOCKED;

doptmsgid := NULL;

dopt.navigation := dbms_ag.NEXT_MESSAGE;
EXCEPTION

WHEN no_messages THEN
dbms_outputput_line (— NO MORE BOOKED ORDERS —);
new_orders :=FALSE;
END;
END LOOP;

end;
/

A Sample Application Using AQ 8-71

DEQUEUE Features

CONNECT EXECUTE on get_northamerican_ordersto OS;
CONNECT ESEES;

* Browse all booked orders for East_Shipping: */
EXECUTE BOLADM .shipping_bookedorder_deq(East_Shipping, DBMS_AQ.BROWSE);

CONNECT OS/OS;

F* Dequeue all intemational North American orders for Overseas_Shipping: */
EXECUTE BOLADM.get_northamerican_orders;

Visual Basic (O040): Example Code

0040 supports all the mdoes of dequeuing described above. Possible values
include:

« ORAAQ _DQ BROWSE (1) - Do not lock when dequeuing
« ORAAQ DQ_LOCKED (2)- Read and obtain a write lock on the message
« ORAAQ DQ _REMOVE (3)(Default) -Read the message and update or delete it.

Dim OraSession as object

Dim OraDatabase as object

Dim OraAq as object

Dim OraMsg as Object

Dim OraOrder,OraltemList,Oraltemn,OraBook,OraCustomer as Object
Dim Msgid as String

Set OraSession = CreateObject('OraclelnProcServer.XOraSession')

Set OraDatabase = OraSession.DbOpenDatabase(", "boladm/boladm”, 0&)

set oraaq = OraDatabase.CreateAQ('OE.OE_neworders_que')
OraAq.DequeueMode = ORAAQ_DQ_BROWSE

Java (JDBC): Example Code
public static void get_northamerican_orders(Connection db_conn)
{

AQSession ag_sess,
Order deq_order;
Customer deq_cust;

8-72 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

String cust_country,

byte[] deq_msgid;
AQDequeueOption deq_option;
AQMessageProperty msg_prop;
AQQueue bookedorders_;
AQMessage message;
AQObjectPayload obj payload;
boolean new_orders =true;

try

{
* Create an AQ Session: */
ag_sess = AQDriverManager.createAQSession(db_conn);

deq_option = new AQDequeueOption();

deq_option.setConsumerName('Overseas_Shipping');
deq_option.setWaitTime(AQDequeueOption.WAIT_NONE);
deq_option.setNavigationMode(AQDequeueOption.NAVIGATION_FIRST_MESSAGE);
deq_option.setDequeueMode(AQDequeueOption. DEQUEUE_LOCKED),

bookedorders_g=aq_sess.getQueue("OS", "OS_bookedorders_que');

while(new_orders)
{
try
{
F Dequeue the message - browse with lock */
message = bookedorders_g.dequeue(deq_option, Order.getFactory());

obj_payload = message.getObjectPayload();

deq_msgid = message.getMessageld();
deq_order = (Order)(obj_payload.getPayloadData());

deq_cust=deq_order.getCustomer();
cust_country =deq_custgetCountry();

iflcust_country.equals('Canada’) ||
cust_country.equals('Mexico"))
{
deq_option.setDequeueMode(
AQDequeueOption. DEQUEUE_REMOVE_NODATA);
deq_option.setMessageld(deq_msgid);

A Sample Application Using AQ 8-73

DEQUEUE Features

* Delete the message ¥/
bookedorders_g.dequeue(deq_option, Order.getFactory());

System.out.prinin(*— next booked order —;

System.out printin(‘Order no: " + deq_order.getOrdema());
System.out printin("Ship state: " + deq_cust.getState());
System.out printin("Ship country: " + deq_cust.getCountry());
System.out.printin(*Order type: " + deq_order.getOrdertype();

}

db_conn.commit();

deq_option.setDequeueMode(AQDequeueOption.DEQUEUE_LOCKED);
deq_option.setMessageld(null);
deq_option.setNavigationMode(
AQDequeueOption.NAVIGATION_NEXT _MESSAGE);
}

catch (AQException agex)
{
new_orders =false;
System.out.printin(*— No more booked orders —);
System.out.printin("Exception-1: " + agex);
}
}

catch (Exception ex)
{

System.out printin("Exception-2: " + ex);
}

8-74 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

Optimization of Waiting for Arrival of Messages

One of the most important features of AQ is that it allows applications to block on
one or more queues waiting for the arrival of either a newly enqueued message or
for a message that becomes ready. You can use the DEQUEUBperation to wait for
arrival of a message in a queue (see "Dequeue a Message" on page 11-45) or the
LISTEN operation to wait for the arrival of a message in more than one queue (see
"Listen to One (Many) Queue(s)" on page 11-23 in Chapter 11, "Operational
Interface: Basic Operations").

When the blocking DEQUEUEalI returns, it returns the message properties and the
message payload. By contrast, when the blocking LISTEN call returns, it discloses
only the name of the queue in which a message has arrived. A subsequent DEQUEUE
operation is needed to dequeue the message.

Applications can optionally specify a timeout of zero or more seconds to indicate
the time that AQ must wait for the arrival of a message. The default is to wait
forever until a message arrives in the queue. This optimization is important in two
ways. It removes the burden of continually polling for messages from the
application. And it saves CPU and network resource because the application
remains blocked until a new message is enqueued or becomes READ Yafter its
DELAYtime. In release 8.1.5 applications can also perform a blocking dequeue on
exception queues to wait for arrival of EXPIRED messages.

A process or thread that is blocked on a dequeue is either woken up directly by the
enqueuer if the new message has no DELAYor is woken up by the queue monitor
process when the DELAYor EXPIRATION time has passed. Applications can not
only wait for the arrival of a message in the queue that an enqueuer enqueues a
message, but also on a remote queue, provided that propagation has been schedule
to the remote queue using DBMS_AQADSICHEDULE_PROPAGATIOM this case the
AQ propagator will wake-up the blocked dequeuer after a message has been
propagated.

Example Scenario

In the BooksOnLine example, the get_rushtitles procedure discussed under
dequeue methods specifies a wait time of 1 second in the dequeue_options
argument for the dequeue call. Wait time can be specified in different ways as
illustrated in the code below.

« If the wait time is specified as 10 seconds, the dequeue call is blocked with a
timeout of 10 seconds until a message is available in the queue. This means that
if there are no messages in the queue after 10 seconds, the dequeue call returns
without a message. Predefined constants can also be assigned for the wait time.

A Sample Application Using AQ 8-75

DEQUEUE Features

« If the wait time is specified as DBMS_AMO_WAITa wait time of 0 seconds is
implemented. The dequeue call in this case will return immediately even if
there are no messages in the queue.

« If the wait time is specified as DBMS_A@OREVERthe dequeue call is blocked
without a timeout until a message is available in the queue.

PL/SQL (DBMS_AQ/ADM Package): Example Code

Fdopt Isavarable of type dbms_ag.dequeue_options t.
Set the dequevie wait ime to 10 seconds: ¥
doptwait:=10;

/* Set the dequeue wait time to 0 seconds:
doptwait = DBMS_AQNO_WAIT:

F Setthe dequeue wait ime to infinite (forever): */
doptwait = DBMS_AQ.FOREVER;

Visual Basic (O040): Example Code

0040 supports asynchronous dequeuing of messages. First, the monitor is started
for a particular queue. When messages that fulfil the user criteria are dequeued, the
user's callback object is notified. For more details, refer to the MonitorStart method
of the OraAQ Object.

Java (JDBC). Example Code
AQDequeueOption deg-opt;

deg-opt = new AQDequeueOption ();

8-76 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

Asynchronous Notifications

This feature allows OCI clients to receive notifications when there is a message in a
gueue of interest. The client can use it to monitor multiple subscriptions. The client
does not have to be connected to the database to receive notifications regarding its
subscriptions.

You use the OCI function, OCISubcriptionRegister , to register interest in
messages in a queue (see "Register for Notification” in Chapter 11, "Operational
Interface: Basic Operations").

For more information about the OCI operation Register for
Notification see:

« Oracle Call Interface Programmer’s Guide

The client can specify a callback function which is invoked for every new message
that is enqueued. For non-persistent queues, the message is delivered to the client
as part of the notification. For persistent queues, only the message properties are
delivered as part of the notification. Consequently, in the case of persistent queues,
the client has to make an explicit dequeue to access the contents of the message.

Example Scenario
In the BooksOnLine application, a customer can request Fed-ex shipping (priority
1), Priority air shipping (priority 2). or Regular ground shipping (priority 3).

The shipping application then ships the orders according to the user's request. It is
of interest to BooksOnLine to find out how many requests of each shipping type
come in each day. The application uses asynchronous notification facility for this
purpose. It registers for notification on the WSWS_bookedorders_que .When it
is notified of new message in the queue, it updates the count for the appropriate
shipping type depending on the priority of the message.

Visual Basic (O040): Example Code
Refer to the Visual Basic online help, "Monitoring Messages".

Java (JDBC): Example Code
This feature is not supported by the Java API.

A Sample Application Using AQ 8-77

DEQUEUE Features

C (OCI): Example Code

This example illustrates the use of OCIRegister. At the shipping site, an OCI client
program keeps track of how many orders were made for each of the shipping types,
FEDEX, AIR and GROUND. The priority field of the message enables us to
determine the type of shipping desired.

#include <stdio.h>

#include <stdiib.h>

#include <string.h>

#include <oci.h>

#ifdef WINS2COMMON

#define sleep(x) Sleep(1000%(X))
#endif

static text *usemame = (text *) "WS";
static text *password = (text *) "WS";

static OCIEnv *envhp;
static OClServer *sivhp;
static OCIEror *errhp;
static OCISvcCix *svehp;

static void checken(*_ OCIEmor *errhp, sword status _*/);

struct ship_data
{

ub4 fedex;
ub4 arr;

ub4 ground,

)

typedef struct ship_data ship_data;

int main(*_int argc, char *argv{] _*);

F Notify callback: */

ub4 notifyCB(ctx, subscrhp, pay, payl, desc, mode)
dvoid *ctx;

OCISubscription *subscrhp;

dvoid *pay;

ub4 payl

dvoid *desc;

ub4 mode;

{

8-78 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

text *subname;

ub4 Size;

ship_data *ship_stats = (ship_data *)ctx;
text *queue;

text *consumer,

OCIRaw *msgid;

ub4 priority;

OCIAQMsgProperties *msgprop;

OCIAtrGet((dvoid *)subscthp, OCI_HTYPE_SUBSCRIPTION,
(dvoid *)&subname, &size,
OCI_ATTR_SUBSCR_NAME, erthp);

[+ Extract the attributes from the AQ descriptor.
Queue name: ¥/
OClAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&queue, &size,
OCI_ATTR_QUEUE_NAME, erthp);

f*Consumer name: */
OClAitrGet(desc, OCl_ DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&consumer, &size,
OC|_ATTR_CONSUMER_NAME, erhp);

P Misgid: %
OCIAtrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&msgid, &size,
OCI_ATTR_NFY_MSGID, errhp);

I+ Message properties: */
OClAtrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&msgprop, &size,
OCI_ATTR_MSG_PROP, erthpy;

* Get priority from message properties: */

checkerr(errhp, OCIAtrGet(msgprop, OCl_ DTYPE_AQMSG_PROPERTIES,
(dvoid *)&priority, O,
OCI_ATTR_PRIORITY, enhp));

switch (priority)
{
case 1: ship_stats->fedex++;
break;
case 2 : ship_stats->air++;
break;
case 3: ship_stats->ground++;
break;
default
printf(" Error priority %od", priority);

A Sample Application Using AQ 8-79

DEQUEUE Features

int main(argc, argv)

intargc;

char“argv;

{
OCISession *authp = (OCISession *) 0;
OCISubscription *subscrhp[8];
ub4 namespace =OCl_SUBSCR_NAMESPACE_AQ;
ship_data ctx={0,0,0};
ub4 sleep_time =0;

printf('Initializing OCI Process\n”);

F Initialize OCI environment with OCl_EVENTS flag set: */

(void) OClinitialize((ub4) OCI_EVENTS|OCI_OBJECT, (dvoid *)0,
(dvoid * (*)(dvoid *, size 1)) O,
(dvoid * (*)(dvoid *, dvoid *, size_1))0,
(void (*)(dvoid *, dvoid *) 0);

printf{’Initialization successfuln’);

printf("Initializing OCl EmAn’");

(void) OCIEnvinit((OCIEnv **) &envhp, OCI_DEFAULT, (size_t) 0, (dvoid**) 0
)
printf{’Initialization successfuln’);

checkenr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid *) &ehp, OCI_HTYPE_
ERROR,
(size_1) O, (dvoid *¥) O));

checkenr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid *¥) &srvhp, OCI HTYPE.
SERVER,
(size_1) 0, (dvoid **) 0));

checken(enhp, OCIHandleAlloc((dvoid *) envhp, (dvoid *+) &svehp, OCIHTYPE.
SVCCTX,
(size_t) O, (dvoid *) Q));

printf{‘connecting to serverin’);
checkerr(errhp, OClServerAttach(srvhp, errhp, (text *)instL_alias”,
strien(instL_alias"), (ub4) OCl_DEFAULT));

8-80 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

printf(’connect successfuln');

[Set attribute server context in the service context: */
checkerr(errhp, OCIAtrSet((dvoid *) svchp, OCI_ HTYPE_SVCCTX, (dvoid *)svhp,
(ub4) 0, OCI_ATTR_SERVER, (OCIEror *) enthp));

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
(ub4) OCI_HTYPE_SESSION, (size_t) O, (dvoid **) Q));

F Set usemame and password in the session handle: */

checkenr(errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI_ HTYPE_SESSION,
(dvoid *) usemame, (ub4) strlen((char *usemame),
(ub4) OCI_ATTR_USERNAME, enhp));

checkenr(errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI HTYPE_SESSION,

(cvoid *) password, (ub4) strlen((char *)password),
(ub4) OCI_ATTR_PASSWORD, erthp));

*Begin session: */
checkerr(errhp, OCISessionBegin (svchp, errhp, authp, OCI CRED_RDBMS,
(ub4) OCI_DEFAULT));

(void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
(dvoid *) authp, (ub4) O,
(ub4) OCI_ATTR_SESSION, errhp);

F Register for notification: */

printf{‘allocating subscription handle\n';

subscrhp[0] = (OCISubscription *)0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[0],
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) O);

printf{"'setting subscription name\n');

(void) OCIAtirSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) "WSWS_BOOKEDORDERS QUE:BOOKED_ORDERS",
(ub4) strlen("WS.WS_BOOKEDORDERS QUE:BOOKED ORDERS"),
(Ub4) OCI_ATTR_SUBSCR_NAME, erthp);

printf{"'setting subscription callbackin';
(void) OCIAtirSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) notifyCB, (ub4) 0,
(Ub4) OCI_ATTR SUBSCR_CALLBACK, erthp);

A Sample Application Using AQ 8-81

DEQUEUE Features

(void) OCIAtrSet((dvoid *) subscrhp(0], (ub4) OCI_ HTYPE_SUBSCRIPTION,
(dvoid &ctx, (Ubd)sizeof(ctx),
(Ub4) OCI_ATTR_SUBSCR_CTX, ethp);

printf{"'setting subscription namespace\n”);

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, enthp);

printf('Registering \n");
checkenr(errhp, OCISubscriptionRegister(svchp, subscrhp, 1, errhp,
OCI_DEFAULT));

Sleep_time = (ub4)atoi(argv1]);
printf (‘waiting for %6d s", sleep_time);
sleep(sleep_time);

printf(Exiting");
exit(0);
}

void checkenr(errhp, status)
OCIEnor *erthp;
sword status;
{
text emrbufi512];
sb4 errcode =0;

switch (status)
{
case OCl_SUCCESS:
break;
case OCl_SUCCESS WITH_INFO:
(void) printf("Error - OCl_SUCCESS_WITH_INFO\n'Y);
break;
case OCl_NEED_DATA:
(void) printf("Error - OCI_NEED_DATAWN");
break;
case OCI_NO_DATA:
(void) printf("Error - OCI_NODATAWn');
break;
case OC|_ERROR:
(void) OCIEmorGet((dvoid *)erhp, (ub4) 1, (text *) NULL, &errcode,
enbuf, (ubd) sizeof(erbuf), OCI HTYPE_ERROR);
(void) printf("Error - %.*s\n", 512, enbuf);

8-82 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

break;
case OCl_INVALID HANDLE:

(void) printf("Error - OCI_INVALID_HANDLE\N");

break;

case OC|_STILL_EXECUTING:
(void) printf("Eror - OCI_STILL_EXECUTE\N");
break;

case OCl_CONTINUE:
(void) printf("Error - OCl_CONTINUE\N");
break;

default
break;

}

A Sample Application Using AQ 8-83

DEQUEUE Features

Retry with Delay Interval

If the transaction dequeuing the message from a queue fails, it is regarded as an
unsuccessful attempt to remove the message. AQ records the number of failed
attempts to remove the message in the message history. Applications can query the
retry_count column of the queue table view to find out the number of unsuccessful
attempts on a message. In addition, AQ also allows the application to specify, at the
gueue level, the maximum number of retries for messages in the queue. If the
number of failed attempts to remove a message exceed this number, the message is
moved to the exception queue and is no longer available to applications.

Retry Delay

If the transaction receiving a message aborted, this could be because of a 'bad’
condition. AQ allows users to 'hide' the bad message for a pre-specified interval. A
retry_delay can be specified along with maximum retries. This means that a
message which has had a failed attempt will be visible in the queue for dequeue
after 'retry_delay' interval. Until then it will be in the "WAITING' state. The AQ
background process, the time manager enforces the retry delay property. The
default value for maximum retries is 5 and that for retry delay is 0. Note that
maximum retries and retry delay are not available with 8.0 compatible
multi-consumer queues.

PL/SQL (DBMS_AQ/ADM Package): Example Code

* Create a package that enqueue with delay set to one day: #
CONNECT BOLADM/BOLADM
>
F queue has max retries = 4 and retry delay = 12 hours */
execute doms_agadm.alter_queue(queue_name =WS.WS_BOOKED ORDERS QUE,
max_refr
ies=4,
retry_delay =3600*12);
>
 processes the next order available in the booked_order_queue
CREATE OR REPLACE PROCEDURE process_next_order()

AS
dggopt dbms_ag.dequeue_options t;
msgprop dbms_ag.message_properties t;
deq_msgid RAW(16);
book BOLADM.book_typ;
item BOLADM .orderitem _typ;
BOLADM.order typ order;

BEGIN

>

8-84 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

dggoptdequeue_option := DBMS_AQ.FIRST_MESSAGE;
dbms_ag.dequeue(WS.WS_BOOKED ORDERS_QUEUE, dggopt, msgprop, order,
deq_msgid
)
>
*for simpilicity, assume order has a single item */
item = order.items(1);
book =the_orders.item;
>
[+ assume search_inventory searches inventory for the book */
Fifwe dontfind the book in the warehouse, abort transaction */
IF (search_inventory(book) '= TRUE)
rollback;
ELSE
process_order(order);
END IF;
>
END;
/

Visual Basic (0040): Example Code
Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code

public static void setup_queue(Connection db_conn)

{
AQSession ag_sess,
AQQueue bookedorders_g;
AQQueueProperty q_prop;

try

{
* Create an AQ Session: */
ag_sess = AQDriverManager.createAQSession(db_conn);
bookedorders_g=aq_sess.getQueue("WS", "WS_bookedorders_que");
* Alter queue - set max retries = 4 and retry delay = 12 hours */
g_prop = new AQQueueProperty();
g_prop.setMaxRetries(4);

g_prop.setRetrylnterval(3600*12); // specified in seconds

A Sample Application Using AQ 8-85

DEQUEUE Features

bookedorders_g.alterQueue(q_prop);

}
catch (Exception ex)

{
System.out printin("Exception: " + ex);

}

public static void process_next_order(Connection db_conn)

{
AQSession ag_sess,
Order deq_order;
Orderttem order_item;
Book book;
AQDequeueOption deq_option;
AQMessageProperty msg_prop;
AQQueue bookedorders_g;

AQMessage message;

AQObjectPayload obj payload;

try

{
* Create an AQ Session: */
ag_sess = AQDriverManager.createAQSession(db_conn);
deq_option = new AQDequeueOption();
deq_option.setNavigationMode(AQDequeueOption.NAVIGATION_FIRST_MESSAGE);
bookedorders_g=aq_sess.getQueue("WS","WS_bookedorders_que");
* Dequeue the message */
message = bookedorders_g.dequeue(deq_option, Order.getFactory());
obj_payload = message.getObjectPayload();
deq_order = (Order)(obj_payload.getPayloadData());

[for simplicity, assume order has a single item */
order_item = deq_order.getitems().getElement(0);

8-86 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

book = order_item.getitemn();

[*assume search_inventory searches inventory for the book
*ifwe dontt find the book in the warehouse, abort transaction
il
ifisearch_inventory(book) = true)

db_conn.rollback();

else

process_order(deq_order);

}
catch (AQException agex)

{
System.out printin(*Exception-1: " + agex);

catch (Exception ex)

{
System.out printin(‘Exception-2: " + ex);

}

A Sample Application Using AQ 8-87

DEQUEUE Features

Exception Handling

AQ provides four integrated mechanisms to support exception handling in
applications: EXCEPTION_QUEUE&XPIRATION, MAX_RETRIESand RETRY_
DELAY

An exception_queue is a repository for all expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. Also, a
multi-consumer exception queue cannot have subscribers associated with it.
However, an application that intends to handle these expired or unserviceable
messages can dequeue from the exception queue. The exception queue created for
messages intended for a multi-consumer queue must itself be a multi-consumer
gueue. Like any other queue, the exception queue must be enabled for dequeue
using the DBMS_AQADSITART_QUEUIBrocedure. You will get an Oracle error if
you try to enable an exception queue for enqueue.

When a message has expired, it is moved to an exception queue. The exception
gueue for a message in multi-consumer queue must also be a multi-consumer
gueue. Expired messages from multi-consumer queues cannot be dequeued by the
intended recipients of the message. However, they can be dequeued in the REMOVE
mode exactly once by specifying a NULL consumer name in the dequeue options.
Hence, from a dequeue perspective multi-consumer exception queues behave like
single-consumer queues because each expired message can be dequeued only once
using a NULLconsumer name. Messages can also be dequeued from the exception
gueue by specifying the message ID. Note that expired messages can be dequeued
only by specifying a message ID if the multi-consumer exception queue was created
in a queue table without the compatible parameter or with the compatible
parameter set to '8.0'".

The exception queue is a message property that can be specified during enqueue
time (see "Enqueue a Message [Specify Message Properties]” on page 11-10 in
Chapter 11, "Operational Interface: Basic Operations"). In PL/SQL users can use the
exception_queue attribute of the DBMS_AMESSAGE_PROPERTIES récord to
specify the exception queue. In OCI users can use the OCISetAttr procedure to set
the OCI_ATTR_EXCEPTION_QUEUg&itribute of the OCIAQMsgProperties
descriptor.

If an exception queue is not specified, the default exception queue is used. If the
gueue is created in a queue table, say QTAB the default exception queue will be
called AQ$_QTAB_E. The default exception queue is automatically created when
the queue table is created. Messages are moved to the exception queues by AQ
under the following conditions.

8-88 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

The message is not being dequeued within the specified expiration interval. For
messages intended for more than one recipient, the message will be moved to
the exception queue if one or more of the intended recipients was not able to
dequeue the message within the specified expiration interval. The default
expiration interval is DBMS_AQIEVERwhich means the messages will not
expire.

The message is being dequeued successfully. However, because of an error that
arises while processing the message, the application which dequeues the
message chooses to roll back the transaction. In this case, the message is
returned to the queue and will be available for any applications that are waiting
to dequeue from the same queue. A dequeue is considered rolled back or
undone if the application rolls back the entire transaction, or if it rolls back to a
savepoint that was taken before the dequeue. If the message has been dequeued
but rolled back more than the number of time specified by the retry limit, the
message will be moved to the exception queue.

For messages intended for multiple recipients, each message keeps a separate
retry count for each recipient. The message is moved to the exception queue
only when retry counts for all recipients of the message have exceeded the
specified retry limit. The default retry limit is 5 for single consumer queues and
8.1-compatible multi-consumer queues. No retry limit is not supported for 8.0-
compatible multi-consumer queues.

The statement executed by the client contains a dequeue that succeeded but the
statement itself was undone later due to an exception. To understand this case,
consider a PL/SQL procedure that contains a call to DBMS_A@EQUEUHT the
dequeue procedure succeeds but the PL/SQL procedure raises an exception,
AQ will attempt to increment the RETRY_COUNGAT the message returned by the
dequeue procedure.

The client program successfully dequeued a message but terminated before
committing the transaction.

Messages intended for 8.1-compatible multi-consumer queues cannot be dequeued
by the intended recipients once the messages have been moved to an exception
gueue. These messages should instead be dequeued in the REMOVEBr BROWSE
mode exactly once by specifying a NULL consumer name in the dequeue options.
The messages can also be dequeued by their message IDs.

Messages intended for single consumer queues, or for 8.0-compatible
multi-consumer queues, can only be dequeued by their message IDs once the
messages have been moved to an exception queue.

A Sample Application Using AQ 8-89

DEQUEUE Features

Users can associate a RETRY_DELAYvith a queue. The default value for this
parameter is 0 which means that the message will be available for dequeue
immediately after the RETRY_COUNIE incremented. Otherwise the message will be
unavailable for RETRY_DELAYeconds. After RETRY_DELA¥econds the queue
monitor will mark the message as READY

Example Scenario

In the BooksOnLine application, the business rule for each shipping region is that
an order will be placed in a back order queue if the order cannot be filled
immediately. The back order application will try to fill the order once a day. If the
order cannot be filled within 5 days, it is placed in an exception queue for special
processing. You can implement this process by making use of the retry and
exception handling features in AQ.

The example below shows how you can create a queue with specific maximum
retry and retry delay interval.

PL/SQL (DBMS_AQ/ADM Package): Example Code

/*Example for creating a back order quevie in Western Region which allows a
maximum of 5 retries and 1 day delay between each retry. %

CONNECT BOLADM/BOLADM
BEGIN
dbms_agadm.create_queue (

gueue_name =>"WSWS_backorders_que',
queue_table =>WSWS_orders_mqtab),
max_retries =5,
retry_delay =>60%60%24);

END;

/

/* Create an exception queue for the back order queue for Western Region. %/

CONNECT BOLADM/BOLADM
BEGIN
dbms_agadm.create_queue (
queue_name =>"WSWS_backorders_excpt_que,
queue_table =>"WSWS_orders_mgtab),
queue_type =>DBMS_AQADM.EXCEPTION_QUEUE);
end;

/

/* Enqueue a message to WS _backorders que and specify WS _backorders_excpt_que as
the exception quevie for the message: ¥/
CONNECT BOLADM/BOLADM

8-90 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

CREATE OR REPLACE PROCEDURE enqueue_WS_unfiled_order(backorder order_typ)
AS
back order_queue name varchar2(62);

engopt dbms_ag.enqueue_options t;
msgprop dbms_ag.message_properties t;
eng_msgid raw(16);

BEGIN

/*Set back order queue name for this message:
back_order_queue_name :='WS.WS_backorders_que’;

F* Set exception queue name for this message: */
msgprop.exception_queue :="WSWS_backorders_excpt_que’;

dbms_ag.enqueue(back order_queue_name, engopt, msgprop,
backorder, enq_msgid);
END;
/

Visual Basic (O040): Example Code

The exception queue is a message property that can be provided at the time of
enqueuing a message. If this property is not set, the default exception queue of the
gueue will be used for any error conditions.

set oraaq = OraDatabase.CreateAQ('CBADM.deferbiling_que")
Set OraMsg = OraAq.AQMsg(ORATYPE_OBJECT, "'BOLADM.order_typ")
Set OraOrder = OraDatabase.CreateOraObject('BOLADM.order_typ")
OraMsg = OraOrder

OraMsg.delay = 15*60*60*24

OraMsg.ExceptionQueue ="WSWS_backorders_que"

'Fill up the order values

OraMsg = OraOrder '‘OraOrder contains the order details

Msgid = OraAg.enqueue

Java (JDBC). Example Code

public static void createBackOrderQueues(Connection db_conn)
{

AQSession aq_sess;

AQQueue backorders_g;

AQQueue backorders_excp_q;

AQQueueProperty q_prop;

AQQueueProperty q_prop2;

A Sample Application Using AQ 8-91

DEQUEUE Features

AQQueueTable mq_table;

try

{
* Create an AQ Session: */

ag_sess = AQDriverManager.createAQSession(db_conn);

mq_table =aq_sess.getQueueTable('WS","WS_orders_mgtab’);

F Create a back order queue in Westem Region which allows a
maximum of 5 retries and 1 day delay between each retry. */

q_prop = new AQQueueProperty();
q_prop.setMaxRetries(5);
g_prop.setRetryinterval(60*24*24);

backorders_q=aq_sess.createQueue(mg_table, "WS_backorders_que",
q_prop);

backorders_g.start(true, true);

* Create an exception queue for the back order queue for

Westemn Region. */
g_prop2 = new AQQueueProperty();
g_prop2.setQueueType(AQQueueProperty EXCEPTION_QUEUE);

backorders_excp_g=aq_sess.createQueue(ma_table,
"WS_backorders_excpt_que", q_prop2);

}
catch (Exception ex)

System.out prinin("Exception " + ex);
}

}

FEnqueue amessage to WS_backorders_que and specify WS_backorders_excpt_que
as the exception queue for the message: */
public static void enqueue_WS_unfiled_order(Connection db_conn,
Order back_order)
{
AQSession aq sess;
AQQueue back_order_g;

8-92 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

AQENqueueOption eng_option;
AQMessageProperty m_property,
AQMessage message;
AQObjectPayload obj payload;
byte]] enq_msg_id;

try

{
* Create an AQ Session: */
ag_sess = AQDriverManager.createAQSession(db_conn);
back_order_q=aq_sess.getQueue("WS","WS_backorders_que";
message =back_order_g.createMessage();

* Set exception queue name for this message: */
m_property = message.getMessageProperty();

m_property.setExceptionQueue("WS.WS_backorders_excpt_que');

obj payload = message.getObjectPayload();
obj_payload.setPayloadData(back_order);

enq_option = new AQEnqueueOption();

FEnqueue the message */
eng_msg_id =back order_g.enqueue(enqg_option, message);

db_conn.commit();
}
catch (Exception ex)

System.out printn("Exception: " + ex);
}

A Sample Application Using AQ 8-93

DEQUEUE Features

Rule-based Subscription

Messages may be routed to various recipients based on message properties or
message content. Users define a rule-based subscription for a given queue to specify
interest in receiving messages that meet particular conditions.

Rules are boolean expressions that evaluate to TRUEor FALSE Similar in syntax to
the WHEREIlause of a SQL query, rules are expressed in terms of the attributes that
represent message properties or message content. These subscriber rules are
evaluated against incoming messages and those rules that match are used to
determine message recipients. This feature thus supports the notions of
content-based subscriptions and content-based routing of messages.

Example Scenario and Code

For the BooksOnLine application, we illustrate how rule-based subscriptions are
used to implement a publish/subscribe paradigm utilizing content-based
subscription and content-based routing of messages. The interaction between the
Order Entry application and each of the Shipping Applications is modeled as
follows;

« Western Region Shipping handles orders for the Western region of the US.
« Eastern Region Shipping handles orders for the Eastern region of the US.
« Overseas Shipping handles all non-US orders.

« Eastern Region Shipping also handles all US rush orders.

Each shipping application subscribes to the OE booked orders queue. The following
rule-based subscriptions are defined by the Order Entry user to handle the routing
of booked orders from the Order Entry application to each of the Shipping
applications.

PL/SQL (DBMS_AQ/ADM Package): Example Code

CONNECT OE/OE;

Western Region Shipping defines an agent called 'West_Shipping ' with the WS
booked orders queue as the agent address (destination queue to which messages
must be delivered). This agent subscribes to the OE booked orders queue using a
rule specified on order region and ordertype attributes.

F Add a rule-based subscriber for West Shipping -
West Shipping handles Westem region US orders,
Rush Westem region orders are handled by East Shipping: */
DECLARE
subscriber ag$_agent;

8-94 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

BEGIN
subscriber =ag$_agent(West_Shipping’, WS.WS_bookedorders_que', null);
dbms_agadm.add_subscriber(
queue_name =>'OE.OE_bookedorders_que',
subscriber => subscriber,
rue =>'tab.user_data.orderregion =
"WESTERN" AND tab.user_data.ordertype I="RUSH"),
END;
/
Eastern Region Shipping defines an agent called East_Shipping with the ES
booked orders queue as the agent address (the destination queue to which
messages must be delivered). This agent subscribes to the OEbooked orders queue
using a rule specified on orderregion , ordertype and customer attributes.

F Add a rule-based subscriber for East Shipping -
East shipping handles all Eastem region orders,
East shipping also handles all US rush orders: */
DECLARE
subscriber ag$_agent;
BEGIN
subscriber :=ag$_agent(East_Shipping, ES.ES_bookedorders_que', null;
dbms_agadm.add_subscriber(
queue_name =>'OE.OE_bookedorders_gque',
subscriber => subscriber,
rue =>tab.user_data.orderregion ="EASTERN' OR
(tab.user_data.ordertype = "RUSH" AND
tab.user_data.customer.country ="USA"));
END;
/
Overseas Shipping defines an agent called Overseas_Shipping with the OS
booked orders queue as the agent address (destination queue to which messages
must be delivered). This agent subscribes to the OEbooked orders queue using a
rule specified on orderregion attribute.

F* Add a rule-based subscriber for Overseas Shipping
Intl Shipping handles all non-US orders: */
DECLARE
subscriber ag$_agent;
BEGIN
subscriber :=ag$_agent(Overseas_Shipping','OS.0S_bookedorders_que,
null);
dbms_agadm.add_subscriber(
queue_name =>'OE.OE_bookedorders_que',
subscriber => subscriber,
rue =>'tab.user_data.orderregion = "INTERNATIONAL");

A Sample Application Using AQ 8-95

DEQUEUE Features

END;

Visual Basic (0040): Example Code
This functionality is currently not available.

Java (JDBC): Example Code

public static void addRuleBasedSubscribers(Connection db_conn)
{

AQSession aq sess;
AQQueue bookedorders_g;
String rule;

AQAgent agtl, agt2, agt3;

fry

{
* Create an AQ Session: */

ag_sess = AQDriverManager.createAQSession(db_conn);

bookedorders_g=aq_sess.getQueue("OE", "OE_booked _orders_que");

¥ Add a rule-based subscriber for West Shipping -
West Shipping handles Westem region US orders,
Rush Westem region orders are handled by East Shipping: */

agtl = new AQAgent("West_Shipping”, "WS.WS_bookedorders_que”);

rule ="tab.user_data.orderregion =" WESTERN' AND " +
"tab.user_data.ordertype '="RUSH",

bookedorders_g.addSubscriber(agtl, rule);

F* Add a rule-based subscriber for East Shipping -
East shipping handles all Eastern region orders,
East shipping also handles all US rush orders: */

agt2 = new AQAgent("East_Shipping", "ES.ES_bookedorders_que’);

rule ="tab.user_data.orderregion ='EASTERN OR " +
"(tab.user_data.ordertype ='RUSH AND " +
"tab.user_data.customer.country ="USA)";

8-96 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

bookedorders_g.addSubscriber(agt2, rule);

F* Add a rule-based subscriber for Overseas Shipping
Intl Shipping handles all non-US orders: */

agt3 = new AQAgent("Overseas_Shipping", "OS.OS_bookedorders_que”);
rule ="tab.user_data.orderregion = 'INTERNATIONAL";

bookedorders_g.addSubscriber(agt3, rule);
}
catch (Exception ex)
{
System.out printin("Exception: " + ex);
}

A Sample Application Using AQ 8-97

DEQUEUE Features

Listen Capability

In Oracle8i release 8.1.6, AQ has the capability to monitor multiple queues for
messages with a single call, listen . An application can use listen to wait for
messages for multiple subscriptions. It can also be used by gateway applications to
monitor multiple queues. If the listen call returns successfully, a dequeue must be
used to retrieve the message (see Listen to One (Many) Queue(s) on page 11-23 in
Chapter 11, "Operational Interface: Basic Operations").

Without the listen call, an application which sought to dequeue from a set of
gueues would have to continuously poll the queues to determine if there were a
message. Alternatively, you could design your application to have a separate
dequeue process for each queue. However, if there are long periods with no traffic
in any of the queues, these approaches will create an unacceptable overhead. The
listen call is well suited for such applications.

Note that when there are messages for multiple agents in the agent list, listen
returns with the first agent for whom there is a message. In that sense listen is not
‘fair' in monitoring the queues. The application designer must keep this in mind
when using the call. To prevent one agent from 'starving' other agents for messages,
the application could change the order of the agents in the agent list.

Example Scenario

In the customer service component of the BooksOnLine example, messages from
different databases arrive in the customer service queues, indicating the state of the
message. The customer service application monitors the queues and whenever there
is a message about a customer order, it updates the order status in the order_
status_table . The application uses the listen call to monitor the different
gueues. Whenever there is a message in any of the queues, it dequeues the message
and updates the order status accordingly.

PL/SQL (DBMS_AQ/ADM Package): Example Code
CODE (in tkagdocd.sql)

F Update the status of the order in the order status table: */
CREATE OR REPLACE PROCEDURE update_status(
new_status INVARCHARZ,
order msg INBOLADM.ORDER_TYP)
IS
old_status VARCHAR2(30);
dummy NUMBER,
BEGIN

8-98 Application Developer's Guide - Advanced Queuing

DEQUEUE Features

BEGIN
F Query old status from the table: */
SELECT ststatus INTO old_status FROM order_status _table st
WHERE st.customer_order.ordemo = order_msg.ordemo;

F* Status can be BOOKED_ORDER, 'SHIPPED_ORDER', BACK_ORDER'
and BILLED_ORDER:*

IF new_status ='SHIPPED_ORDER THEN
IFold_status="BILLED ORDER' THEN
retum; Fmessage about a previous state */
ENDIF;
ELSIF new_status ='BACK_ORDER THEN
IFold_status ="SHIPPED_ORDER' OR old_status ='BILLED ORDER' THEN
retum; ¥ message about a previous state */
ENDIF;
ENDIF;

F Update the order status: */
UPDATE order_status_table st
SET st.customer_order =order_msg, ststatus = new_status;

COMMIT;

EXCEPTION
WHEN OTHERS THEN /*change to no data found */
* First update for the order: */
INSERT INTO order_status_table(customer_order, status)
VALUES (order_msg, new_status);
COMMIT;

END;
END;
/

F* Dequeues message from 'QUEUE for' CONSUMER?: */
CREATE OR REPLACE PROCEDURE DEQUEUE_MESSAGE(
queue IN VARCHAR2,
consumer IN VARCHAR?Z,
message OUT BOLADM.order_typ)

IS
dopt doms_ag.dequeue_options t;
mprop dbms_ag.message_properties t;

A Sample Application Using AQ

8-99

DEQUEUE Features

deq_msgid RAW(16);

BEGIN

doptdequeue_mode :=dbms_aq.REMOVE;
doptnavigation :=dbms_aq.FIRST_MESSAGE;
dopt.consumer_name := consumer;

dbms_ag.dequeue(
gueue_name =>queue,
dequeue_options =>dopt,
message_properties =>mprop,
payload => message,
msgid =>deq_msgid);
COMMIt;
END;
/

F Monitor the queues in the customer service databse for time' seconds: */
CREATE OR REPLACE PROCEDURE MONITOR_STATUS_QUEUE(time IN NUMBER)
IS
agent w_message ag$_agent;
agent list dbms_ag.agent list t;
wait ime INTEGER :=120;
no_message EXCEPTION;
pragma EXCEPTION_INIT(no_message, -25254);
order_ msg boladm.order_typ;
new_stalus VARCHAR2(30);
monitor BOOLEAN :=TRUE;
begin tme NUMBER;
end tme NUMBER,;
BEGIN

begin_time := dbms_utility.get_time;
WHILE (monitor)

LOOP

BEGIN

P Construct the waiters list */
agent list(1) :=ag$_agent(BILLED_ORDER!,'CS_hilledorders_que', NULL);

agent _list(1) .=ag$_agent(SHIPPED_ORDER!,'CS _shippedorders_que',
NULL);

agent list(2) =ag$_agent(BACK_ORDER;,'CS_backorders_que', NULL);
agent list(3) :=ag$_agent(Booked ORDER,'CS_bookedorders_que', NULL);

FWait for order status messages: */
dbms_aglisten(agent list, wait_time, agent w_message);

8-100 Application Developer’s Guide - Advanced Queuing

DEQUEUE Features

dbms_output.put_line(Agent || agent w_message.name || ' Address ||
agent w_message.address);
F Dequeue the message from the queue: */
dequeue_message(agent w_message.address, agent w_message.name, order_msg);

P Update the status of the order depending on the type of the message,
*the name of the agent contains the new state: */
update_status(agent w_message.name, order_msg);

F Exit if we have been working long enough: */
end_time :=dbms_utility.get_time;
IF (end_time - begin_time >time) THEN
EXIT;
ENDIF;

EXCEPTION
WHEN no_message THEN
doms_outputput_line(No messages in the past 2 minutes);
end_time :=dbms_utility.get_time;
[Exit if we have done enough work: */
IF (end_time - begin_time >time) THEN
EXIT,
ENDIF;
END;

END LOOP;
END;
/

Visual Basic (O040): Example Code
Feature not currently available.

Java (JDBC): Example Code
Feature not supported in Java.

A Sample Application Using AQ 8-101

Propagation Features

Propagation Features

Propagation

Propagation Scheduling

Example Scenario

Enhanced Propagation Scheduling Capabilities

Exception Handling During Propagation

8-102 Application Developer’s Guide - Advanced Queuing

Propagation Features

Propagation

This feature enables applications to communicate with each other without having to
be connected to the same database, or to the same queue. Messages can be
propagated from one Oracle AQ to another, irrespective of whether these are local
or remote. Propagation is performed by snapshot (job_queue_processes)
background processes. Propagation to remote queues is done using database links,
and Net 8.

The propagation feature is used as follows. First one or more subscribers are
defined for the queue from which messages are to be propagated (see
"Subscriptions and Recipient Lists" on page 8-36). Second, a schedule is defined for
each destination to which messages are to be propagated from the queue. Enqueued
messages will now be propagated and automatically be available for dequeuing at
the destination queues.

Note that two or more number of job_queue background processes must be
running to use propagation. This is in addition to the number of job_queue
background processes needed for handling non-propagation related jobs. Also, if
you wish to deploy remote propagation, you must ensure that the database link
specified for the schedule is valid and have proper privileges for enqueuing into the
destination queue. For more information about the administrative commands for
managing propagation schedules, see "Asynchronous Notifications" below.

Propagation also has mechanisms for handling failure. For example, if the database
link specified is invalid, or if the remote database is unavailable, or if the remote
gueue is not enabled for enqueuing, then the appropriate error message is reported.

Finally, propagation provides detailed statistics about the messages propagated and
the schedule itself. This information can be used to properly tune the schedules for
best performance. Failure handling/Zerror reporting facilities of propagation and
propagation statistics are discussed under "Enhanced Propagation Scheduling
Capabilities".

A Sample Application Using AQ 8-103

Propagation Features

Propagation Scheduling

8-104 Application

A propagation schedule is defined for a pair of source and destination queues. If a
gueue has messages to be propagated to several queues then a schedule has to be
defined for each of the destination queues. A schedule indicates the time frame
during which messages can be propagated from the source queue. This time frame
may depend on a number of factors such as network traffic, load at source database,
load at destination database, and so on. The schedule therefore has to be tailored for
the specific source and destination. When a schedule is created, a job is
automatically submitted to the job_queue facility to handle propagation.

The administrative calls for propagation scheduling provide great flexibility for
managing the schedules (see "Schedule a Queue Propagation” in Chapter 9,
"Administrative Interface"). The duration or propagation window parameter of a
schedule specifies the time frame during which propagation has to take place. If the
duration is unspecified then the time frame is an infinite single window. If a
window has to be repeated periodically then a finite duration is specified along
with a next_time function that defines the periodic interval between successive
windows.

The latency parameter for a schedule is relevant only when a queue does not have
any messages to be propagated. This parameter specifies the time interval within
which a queue has to be rechecked for messages. Note that if the latency parameter
is to be enforced, then the job_queue_interval parameter for the job_queue
processes should be less than or equal to the latency parameter.

The propagation schedules defined for a queue can be changed or dropped at
anytime during the life of the queue. In addition there are calls for temporarily
disabling a schedule (instead of dropping the schedule) and enabling a disabled
schedule. A schedule is active when messages are being propagated in that
schedule. All the administrative calls can be made irrespective of whether the
schedule is active or not. If a schedule is active then it will take a few seconds for
the calls to be executed.

Example Scenario

In the BooksOnLine example, messages in the OE_bookedorders_que are
propagated to different shipping sites. The following example code illustrates the
various administrative calls available for specifying and managing schedules. It also
shows the calls for enqueuing messages into the source queue and for dequeuing

the messages at the destination site). The catalog view USER_QUEUE_SCHEDULES
provides all information relevant to a schedule (see "Select Propagation Schedules

in User Schema" in Chapter 10, "Administrative Interface: Views").

Developer’s Guide - Advanced Queuing

Propagation Features

PL/SQL (DBMS_AQ/ADM Package): Example Code
CONNECT OE/OE;

* Schedule Propagation from bookedorders_que to shipping: */
EXECUTE dbms_agadm.schedule_propagation(\
queue_name =>'OE.OE_bookedorders_que’);

F Check if a schedule has been created: */
SELECT * FROM user_queue_schedules;

F* Enqueue some orders into OE_bookedorders_que: */

EXECUTE BOLADM.order_enqg(My First Book', 1, 1001, 'CA,'USA',\
'WESTERN','NORMAL);

EXECUTE BOLADM.order_enqg(My Second Book;, 2, 1002, 'NY’, 'USA',\
'EASTERN', NORMAL);

EXECUTE BOLADM.order_eng(My Third Book, 3,1003,”, 'Canada,\
INTERNATIONAL’,'NORMALY);

EXECUTE BOLADM.order_enq(My Fourth Book, 4, 1004, NV, 'USA,\
'WESTERN','RUSH);

EXECUTE BOLADM.order_enqg(My Fifth Book’, 5, 1005, MA', 'USA',\
'EASTERN, RUSH));

EXECUTE BOLADM.order_enq(My Sixth Book, 6, 1006, , UK’,\
INTERNATIONAL’,'NORMALY);

EXECUTE BOLADM.order_eng(My Seventh Book’, 7, 1007,”, 'Canada’,\
INTERNATIONAL', RUSH);

EXECUTE BOLADM.order_enq(My Eighth Book, 8,1008,”, 'Mexico',\
INTERNATIONAL’,'NORMAL);

EXECUTE BOLADM.order_enq(My Ninth Book, 9, 1009, ‘CA', 'USA',\
'WESTERN','RUSHY);

EXECUTE BOLADM.order_eng(My Tenth Book’, 8,1010,” , 'UK’,\
INTERNATIONAL','NORMALY);

EXECUTE BOLADM.order_eng(My Last Book, 7,1011," , ' Mexica',\
INTERNATIONAL’,'NORMALY);

FWait for propagation to happen: */
EXECUTE dbms_lock sleep(100);

F Connect to shipping sites and check propagated messages: */
CONNECT WSMWS;
set serveroutput on;

F* Dequeue all booked orders for West_Shipping: */
EXECUTE BOLADM.shipping_bookedorder_deq(West_Shipping’, DBMS_AQ.REMOVE);

A Sample Application Using AQ 8-105

Propagation Features

CONNECT ESEES;
SET SERVEROUTPUT ON;

¥ Dequeue all remaining booked orders (normal order) for East_Shipping: */
EXECUTE BOLADM .shipping_bookedorder_deq(East_Shipping, DBMS_AQ.REMOVE);

CONNECT OS/OS;
SET SERVEROUTPUT ON;

F* Dequeue all intemational North American orders for Overseas_Shipping: */
EXECUTE BOLADM.get_northamerican_orders(Overseas_Shipping);

F* Dequeue rest of the booked orders for Overseas_Shipping: */
EXECUTE BOLADM shipping_bookedorder_deq(Overseas_Shipping, DBMS_AQ.REMOVE);

* Disable propagation schedule for booked orders
EXECUTE dbms_agadm.disable_propagation_schedule(\
queue_name =>'OE_bookedorders_que));

*Wait for some time for call to be effected: */
EXECUTE dbms_lock sleep(30);

P Checkif the schedule has been disabled: */
SELECT schedule_disabled FROM user_queue_schedules;

* Alter propagation schedule for booked orders to execute every
15 mins (900 seconds) for a window duration of 300 seconds: */
EXECUTE dbms_agadm.alter_propagation_schedule(\
queue_name =>'OE_hookedorders_que’,\
duration =>300,\
next tme =>'SYSDATE +900/86400’\
latency =>25);

f*Wait for some time for call to be effected: */
EXECUTE dbms_lock sleep(30);

¥ Check if the schedule parameters have changed: */
SELECT next_time, latency, propagation_window FROM user_queue_schedules;

¥ Enable propagation schedule for booked orders:
EXECUTE dbms_agadm.enable_propagation_schedule(\
queue_name =>'OE_bookedorders_que));

*Wait for some time for call to be effected: */
EXECUTE dbms_lock sleep(30);

8-106 Application Developer’s Guide - Advanced Queuing

Propagation Features

f* Check if the schedule has been enabled: */
SELECT schedule_disabled FROM user_queue_schedules;

F Unschedule propagation for booked orders: */
EXECUTE dbms_agadm.unschedule_propagation(\
queue_name =>'OE.OE_bookedorders_que’);

f*Wait for some time for call to be effected: */
EXECUTE dbms_lock sleep(30);

¥ Check if the schedule has been dropped
SELECT * FROM user_queue_schedules;

Visual Basic (0040): Example Code
This functionality is currently not available.

Java (JDBC): Example Code
No example is provided with this release.

A Sample Application Using AQ 8-107

Propagation Features

Propagation of Messages with LOB Attributes
Large Objects can be propagated using AQ using two methods:

« Propagation from RAWjueues. In RAWjueues the message payload is stored
as a Binary Large Object (BLOB. This allows users to store up to 32KB of data
when using the PL/SQL interface and as much data as can be contiguously
allocated by the client when using OCI. This method is supported by all
releases from 8.0.4 inclusive.

« Propagation from Object queues with LOBattributes. The user can populate the
LOBand read from the LOBusing Oracle's LOBhandling routines. The LOB
attributes can be BLOB or CLOB (not NCLOBS). If the attribute is a CLOBAQ
will automatically perform any necessary characterset conversion between the
source queue and the destination queue. This method is supported by all
releases from 8.1.3 inclusive.

For more information about working with LOBs, see:

« Oracle8i Application Developer’s Guide - Large Objects (LOBS)

Note that AQ does not support propagation from Object queues that have BFILE or
REF attributes in the payload.

Example Scenario

In the BooksOnL.ine application, the company may wish to send promotional
coupons along with the book orders. These coupons are generated depending on
the content of the order, and other customer preferences. The coupons are images
generated from some multimedia database, and are stored as LOBs.

When the order information is sent to the shipping warehouses, the coupon
contents are also sent to the warehouses. In the code shown below the order_typ

is enhanced to contain a coupon attribute of LOB type. The code demonstrates how
the LOBcontents are inserted into the message that is enqueued into OE_
bookedorders_que when an order is placed. The message payload is first
constructed with an empty LOB The place holder (LOBlocator) information is
obtained from the queue table and is then used in conjunction with the LOB
manipulation routines, such as DBMS_LOB.WRITE(), to fill the LOB contents. The
example has additional examples regarding for enqueue and dequeue of messages
with LOBs as part the payload.

A COMMITis issued only after the LOB contents are filled in with the appropriate
image data. Propagation automatically takes care of moving the LOB contents along

8-108 Application Developer’s Guide - Advanced Queuing

Propagation Features

with the rest of the message contents. The code below also shows a dequeue at the
destination queue for reading the LOB contents from the propagated message. The
LOB contents are read into a buffer that can be sent to a printer for printing the
coupon.

PL/SQL (DBMS_AQ/ADM Package): Example Code

/*Enhance the type order typ o contain coupon field (lob field):
CREATE OR REPLACE TYPE order_typ AS OBJECT (
odemo NUMBER,
status VARCHAR2(30),
ordertype VARCHAR2(30),
orderregion VARCHAR2(30),
customer customer_typ,
paymentmethod VARCHAR2(30),
items orderitemlist_vartyp,
total NUMBER,
coupon BLOB),
/

£ lob loc isavarnable of type BLOB,
buffer is a variable of type RAW,
length is a variable of type NUMBER. ¥
/* Complete the order data and perform the enqueuie using the order_enq()
procedure: %/

dbms_ag.enqueue(OE.OE_hookedorders_que', endopt, msgprop,
OE_enq_order_data, enq_msgid);

/*Getthe lob locator in the queue table after enqueue: %

SELECT tuser_data.coupon INTO lob_loc

FROM OE.OE_orders_pr_mqtabt

WHERE tmsgid =enq_msgid;

/*Generate a sample LOB of 100 bytes:
buffer := hextoraw(rpad(FF,100,FF));

/*Fillin the lob using LOB routtines in the dbms lob package: ¥/
dbms_lobwrite(lob_loc, 90, 1, buffer);

/*Issue a commit only after filling in lob contents: %/
COMMIT;

/* Sleep until propagation is complete: %/

A Sample Application Using AQ 8-109

Propagation Features

/* Perform dequeue at the Westemn Shipping warehouse: %
dbms_ag.dequeue(

gueue_name =>qname,

dequeue_options =>dopt,

message_properties =>mprop,

payload =>deq_order_data,

msgid =>deq_msgid);

/*Get the LOB locator after dequeue; %/
lob_loc :=deq_order_data.coupon;

/*Getthe length of the LOB: %/
length :=dbms_lob.getlength(lob_loc);

/*Read the LOB contents into the buffer: ¥/
dbms_lob.read(lob_loc, length, 1, buffer);

Visual Basic (O040): Example Code
This functionality is currently not avis currently not available.

Java (JDBC). Example Code
No example is provided with this release.

Enhanced Propagation Scheduling Capabilities

Detailed information about the schedules can be obtained from the catalog views
defined for propagation. Information about active schedules —such as the name of
the background process handling that schedule, the SID (session, serial number) for
the session handling the propagation and the Oracle instance handling a schedule
(relevant if OPS is being used) — can be obtained from the catalog views. The same
catalog views also provide information about the previous successful execution of a
schedule (last successful propagation of message) and the next execution of the
schedule.

For each schedule detailed propagation statistics are maintained. This includes the
total number of messages propagated in a schedule, total number of bytes
propagated in a schedule, maximum number of messages propagated in a window,
maximum number of bytes propagated in a window, average number of messages
propagated in a window, average size of propagated messages and the average time
to propagated a message. These statistics have been designed to provide useful

8-110 Application Developer’s Guide - Advanced Queuing

Propagation Features

information to the queue administrators for tuning the schedules such that
maximum efficiency can be achieved.

Propagation has built in support for handling failures and reporting errors. For
example, if the database link specified is invalid, the remote database is unavailable
or if the remote queue is not enabled for enqueuing then the appropriate error
message is reported. Propagation uses an exponential backoff scheme for retrying
propagation from a schedule that encountered a failure. If a schedule continuously
encounters failures, the first retry happens after 30 seconds, the second after 60
seconds, the third after 120 seconds and so forth. If the retry time is beyond the
expiration time of the current window then the next retry is attempted at the start
time of the next window. A maximum of 16 retry attempts are made after which the
schedule is automatically disabled. When a schedule is disabled automatically due
to failures, the relevant information is written into the alert log. At anytime it is
possible to check if there were failures encountered by a schedule and if so how
many successive failure were encountered, the error message indicating the cause
for the failure and the time at which the last failure was encountered. By examining
this information, a queue administrator can fix the failure and enable the schedule.
During a retry if propagation is successful then the number of failures is reset to 0.

Propagation has support built in for OPS and is completely transparent to the user
and the queue administrator. The job that handles propagation is submitted to the
same instance as the owner of the queue table in which the queue resides. If at
anytime there is a failure at an instance and the queue table that stores the queue is
migrated to a different instance, the propagation job is also automatically migrated
to the new instance. This will minimize the "pinging" between instances and thus
offer better performance. Propagation has been designed to handle any number of
concurrent schedules. Note that the number of job_queue_processes is limited to a
maximum of 36 and some of these may be used to handle non-propagation related
jobs. Hence, propagation has built is support for multi-tasking and load balancing.
The propagation algorithms are designed such that multiple schedules can be
handled by a single snapshot (job_queue) process. The propagation load on a job_
gueue processes can be skewed based on the arrival rate of messages in the different
source queues. If one process is overburdened with several active schedules while
another is less loaded with many passive schedules, propagation automatically
re-distributes the schedules among the processes such that they are loaded
uniformly.

Example Scenario

In the BooksOnLine example, the OE_bookedorders_que is a busy queue since
messages in it are propagated to different shipping sites. The following example

A Sample Application Using AQ 8-111

Propagation Features

code illustrates the calls supported by enhanced propagation scheduling for error
checking and schedule monitoring.

PL/SQL (DBMS_AQ/ADM Package): Example Code
CONNECT OF/OE;

¥ getaverages
selectavg_time, avg_number, avg_size from user_queue_schedules;

F* gettotals
selecttotal_time, total_number, total_bytes from user_queue_schedules;

F* get maximums for awindow
select max_number, max_bytes from user_queue_schedules;

F* get current status information of schedule
select process_name, session id, instance, schedule_disabled
fromuser_queue_schedules;

F* getinformation about last and next execution
selectlast_run_date, last_run_time, next_run_date, next_run_time
fromuser_queue_schedules;

* get last error information if any

select failures, last_error_msg, last_emor_date, last_error_time
fromuser_queue_schedules;

Visual Basic (O040): Example Code
This functionality is currently not available.

Java (JDBC): Example Code
No example is provided with this release.

8-112 Application Developer’s Guide - Advanced Queuing

Propagation Features

Exception Handling During Propagation

When a system errors such as a network failure occurs, AQ will continue to attempt
to propagate messages using an exponential backoff algorithm. In some situations
that indicate application errors AQ will mark messages as UNDELIVERABLET there
is an error in propagating the message.

Examples of such errors are when the remote queue does not exist or when there is
a type mismatch between the source queue and the remote queue. In such situations
users must query the DBA_SCHEDULES®iew to determine the last error that
occurred during propagation to a particular destination.The trace files in the
$ORACLE_HOME/logdirectory can provide additional information about the error.

Example Scenario

In the BooksOnLine example, the ES_bookedorders_que in the Eastern Shipping
region is stopped intentionally using the stop_queue() call. After a short while the
propagation schedule for OE_bookedorders_que will display an error indicating
that the remote queue ES_bookedorders_que is disabled for enqueuing. When the
ES bookedorders_que s started using the start_queue () call, propagation to
that queue resumes and there is no error message associated with schedule for OE_
bookedorders_que

PL/SQL (DBMS_AQ/ADM Package): Example Scenario

/* Intentionally stop the eastem shipping queue : %
connect BOLADM/BOLADM
EXECUTE dbms_agadm.stop_queue(queue_name =>'ES.ES_bookedorders_que’);

/*Wait for some time before error shows up indba_queue_scheaules:
EXECUTE dbms_lock.sleep(100);

/* This query will retum an ORA-25207 enqueue failed error: %/
SELECT gname, last_error_msg from dba_queue_schedules;

* Start the eastem shipping queue: */
EXECUTE doms_agadm.start_queue(queue_name =>'ES.ES_bookedorders_que);

/*Wait for Propagation to resume for eastem shipping queue: %/
EXECUTE dbms_lock sleep(100);

F*This query will indicate that there are no errors with propagation:
SELECT gname, last_error_msg from dba_queue_schedules;

A Sample Application Using AQ 8-113

Propagation Features

Visual Basic (O040): Example Code
This functionality is handled by the database.

Java (JDBC): Example Code
No example is provided with this release.

8-114 Application Developer’s Guide - Advanced Queuing

9

Administrative Interface

Use Case Model

This chapter describes the administrative interface to Oracle Advanced Queuing.
We discuss each operation (such as "Create a Queue Table") in terms of a use case by
that name. Table 9-1, "Use Case Model: Administrative Interface — Basic
Operations", lists all use cases.

Graphic Summary of Use Case Model

Figure 9-1 has all the use cases in a single drawing. In the HTML version of this
document, use this figure to navigate to the use case by clicking on the use case title.

Individual Use Cases
Each use case is laid out as follows:

Use case figure. A figure that depicts the use case.
Purpose. The purpose of this use case.

Usage Notes. Guidelines to assist implementation.
Syntax. The main syntax used to perform this activity.

Examples. Examples in each programmatic environment which illustrate the
use case.

Administrative Interface 9-1

Use Case Model; Administrative Interface — Basic Operations

Use Case Model: Administrative Interface — Basic Operations

Table 9-1, "Use Case Model: Administrative Interface — Basic Operations" indicates
with a + where examples are provided for specific use cases and in which
programmatic environment.

The table refers to programmatic environments with the following abbreviations:
« P —PL/SQL using the DBMS_AQADM and DBMS_AQ packages

« O — Cusing OCI (Oracle Call Interface)

« V — Visual Basic using O040 (Oracle Objects for OLE)

« J—Java (native AQ) using JDBC (Java Database Connectivity)

« JM —Java (JMS standard) using JDBC (Java Database Connectivity)

Table 9-1 Use Case Model: Administrative Interface — Basic Operations

Programmatic
Use Case Environment Examples

P O \% J M

Create a Queue Table on page 9-5 + + +
Create a Queue Table [Set Storage Clause] on page 9-13 + +
Alter a Queue Table on page 9-14 + +
Drop a Queue Table on page 9-17 + +
Create a Queue on page 9-20 + +
Create a Non-Persistent Queue on page 9-27 +

Alter a Queue on page 9-30 + +
Drop a Queue on page 9-33 + +
Start a Queue on page 9-36 + +
Stop a Queue on page 9-39 + +
Grant System Privilege on page 9-42 + +
Revoke System Privilege on page 9-45 +

Grant Queue Privilege on page 9-47 + +
Revoke Queue Privilege on page 9-50 + +
Add a Subscriber on page 9-53 + +

9-2 Application Developer's Guide - Advanced Queuing

Use Case Model: Administrative Interface — Basic Operations

Table 9-1 Use Case Model: Administrative Interface — Basic Operations

Programmatic
Use Case Environment Examples

P o Vv J M

Alter a Subscriber on page 9-58 + +
Remove a Subscriber on page 9-62 + +
Schedule a Queue Propagation on page 9-65 + +
Unschedule a Queue Propagation on page 9-69 + +
Verify a Queue Type on page 9-72 +

Alter a Propagation Schedule on page 9-75 + +
Enable a Propagation Schedule on page 9-79 + +
Disable a Propagation Schedule on page 9-82 + +

Administrative Interface 9-3

Use Case Model; Administrative Interface — Basic Operations

Figure 9—1 Use Case Diagram: Administratrative Interface — Basic Operations

Administrative Interface — Basic Operations

CREATE a

ALTER a

queue table queue table

DROP a

queue table

A ngn%'ggs'fam CREATE ALTER DROPa \<
queue a queue a queue queue ---:
START STOP :
a queue a queue < *

GRANT
system
privilege

REVOKE

system
privilege

GRANT
queue
privilege

REVOKE

queue
privilege

ADD a ALTER a

subscriber

subscriber

REMOVE

a subscriber

SCHEDULE
aqueue
propagation

ALTER
propagation
schedule

Administrato |

DISABLE
propagation
schedule

ENABLE
propagation
schedule

VERIFY

a queue type

9-4 Application Developer's Guide - Advanced Queuing

Create a Queue Table

Create a Queue Table

Figure 9-2 Use Case Diagram: Create a Queue Table

AQ Administrative
Interface

I . CREATE Queue Table

CREATE name specify ayload type
- payload type payloac typ
User/ queue table gueue table 2s RAW astobjeect
Program f yp .
: /.\ /-\ "o
 OR s

specify

specify
storage

specify only if you do not
wish to use the default
clause

tablespace

define
object type

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
L]
.
.

OR :
B eemssssasssas . .
1 OR :
Feeemssssssssssssssssssssssssssssssssas . :
1 OR H H
v \4
default ort
for sort S?{érti’y enqueue time priority by
list priority by priority enqueue time
. .O.R. default
; Y% .
i /] default Ssﬁﬁclig_ specify msggggy e ,ﬁ‘égg%e
' for multi- cons%mer multi-consumer groupingas grouping as
H consumers queue queue none tfransactional
; A A
{ OR :

continued on next page

Administrative Interface 9-5

Create a Queue Table

optional
information [

OR

add
table

description

specify
primary
instance

specify
compatible
as 8.0

default

specify
secondary
instance

specify
compatible
as 8.1

set set
auto-commit auto-commit
= true = false
WARNING:
deprecated

Purpose

To refer to the table of all basic operations having to do with the
Administrative Interface see:

"Use Case Model: Administrative Interface — Basic
Operations” on page 9-2

Create a queue table for messages of a pre-defined type.

Usage Notes

9-6 Application Developer's Guide - Advanced Queuing

The sort keys for dequeue ordering, if any, need to be defined at table creation
time. The following objects are created at this time:

The default exception queue associated with the queue table called ag$_
<queue_table_name>_e.

Create a Queue Table

Syntax

« Avread-only view which is used by AQ applications for querying queue
data called ag$<queue_table_name>.

« An index for the queue monitor operations called ag$_<queue_table_
name>_t.

« Anindex or an index organized table (I0T) in the case of multiple
consumer queues for dequeue operations called aq$_<queue_table
name>_i.

For 8.1 compatible multiconsumer queue tables the following additional objects
are created:

« Atable called ag$_<queue_table_name>_s. This table stores
information about the subscribers.

= Atable called ag$_<queue_table_name>_r. This table stores
information about rules on subscriptions.

« Anindex organized table (I0T) called aqg$_<queue_table_name>_
h. This table stores the dequeue history data.

CLOB BLOBor BFILE obijects are valid in an AQ message. You cant propagate
these object types using AQ propagation with the Oracle8i release 8.1.x. In
order to enqueue an object type that has a LOB you must first set the LOB_
attribute to EMPTY_BLOB and perform the enqueue. You can then select
the LOBIlocator that was generated from the queue table’s view and use the
standard LOBoperations. Please see the Oracle8i Application Developer’s Guide -
Large Objects (LOBs) for more information.

You can specify and modify the primary_instance and secondary_instance only
in 8.1 compatible mode.

You cannot specify a secondary instance unless there is a primary instance.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, CREATE_QUEUE_TABLE

Visual Basic (O040): There is no applicable syntax reference for this use case

Java (JDBC): Oracle8i Supplied Java Packages Reference oracle. AQ createQueueTable

Administrative Interface 9-7

Create a Queue Table

Examples

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. :

« PL/SQL (DBMS_AQADM Package): Create a Queue Table on page 9-8
« VB (OO040): Create a Queue Table on page 9-9
« Java (JDBC): Create a Queue Table on page 9-10

PL/SQL (DBMS_AQADM Package): Create a Queue Table

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager,

DROP USER agadm CASCADE;

GRANT CONNECT, RESOURCE TO agadm;
CREATE USER agadm IDENTIFIED BY agadm;
GRANT EXECUTE ON DBMS_AQADM TO agadm;
GRANT Aq_administrator_role TO agadm;

DROP USER aq CASCADE;

CREATE USER aq IDENTIFIED BY ag;

GRANT CONNECT, RESOURCE TO ag;

GRANT EXECUTE ON dbms_aq TO ag;

Create queue table for queues containing messages of object type
CREATE type ag.Message_typ as object (

Subject VARCHAR2(30),

Text VARCHAR2(80));

| *Note: if you do not stipulate a schema, you defaullt to the user’s schema. %
EXECUTE dbms_agadm.create_queue_table (

Queue_table =>"aq.ObjMsgs_qtaby,

Queue_payload type =>'ag.Message typ);

Create queue table for queues containing messages of RAW type

EXECUTE dbms_agadm.create_queue_table (
Queue_table =>'ag.RawMsgs_qtab,
Queue_payload type =>'RAW);

9-8 Application Developer's Guide - Advanced Queuing

Create a Queue Table

Create a queue table for prioritized messages
EXECUTE dbms_agadm.create_queue_table (

Queue_table =>"aq.PriorityMsgs_qtab,
Sort_list =>'PRIORITY,ENQ_TIME,

Queue_payload type =>'ag.Message_typ);

Create a queue table for multiple consumers
EXECUTE dbms_agadm.create_queue_table (
Queue_table =>"ag.MuliConsumerMsgs_gtaby’,
Multiple_consumers =>TRUE,
Queue_payload type =>'ag.Message typ);

Create a queue table for multiple consumers compatible with 8.1

EXECUTE dbms_agadm.create_queue_table (
Queue_table =>ag.Multiconsumermsgs8_1qtab’,
Multtiple_consumers => TRUE,

Compatible =81,
Queue_payload type =>'agMessage_typ);

Create a queue table in a specified tablespace

EXECUTE dbms_agadm.create_queue_table(
queue table =>'agaq thsMsg_gtab,
queue_payload_type =>'aq.Message_typ,
storage_clause =>‘tablespace aq_tbs);

VB (0O040): Create a Queue Table
00040 uses database functionality for this operation.

Administrative Interface 9-9

Create a Queue Table

Java (JDBC): Create a Queue Table

Three examples follow of how to create a queue table using Java.

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager,

DROP USER agadm CASCADE;

CREATE USER agadm IDENTIFIED BY agadm;
GRANT CONNECT, RESOURCE TO agadm;
GRANT EXECUTE ON DBMS_AQADM TO agadm;
GRANT Aq_administrator_role TO agadm;

DROP USER ag CASCADE;

CREATE USER aq IDENTIFIED BY ag;

GRANT CONNECT, RESOURCE TO aq;

GRANT EXECUTE ON dbms_aq TO ag;

CREATE type ag.Message_typ as object (
Subject VARCHAR2(30),
Text VARCHAR2(80));

Create queue table for queues containing messages of object type
public static void example(AQSession aq_sess) throws AQEXxception
{

AQQueueTableProperty gtable_prop;

AQQueueProperty gueue_prop;
AQQueueTable q_table;

AQQueue queue;

F Create a AQQueueTableProperty object (payload type Message._typ): */
gtable_prop = new AQQueueTableProperty("AQMESSAGE_TYP");

* Create a queue table in aq schema */
q_table =aq_sess.createQueueTable ('ad", "ObjMsgs_gtab", gtable_prop);

System.out printin("Successfully created ObjMsgs_gtab in ag schema’);

Create queue table for queues containing messages of RAW type

public static void example(AQSession aq_sess) throws AQEXxception
{

9-10 Application Developer's Guide - Advanced Queuing

Create a Queue Table

AQQueueTableProperty gtable_prop;

AQQueueProperty queue_prop;
AQQueueTable g_table;

AQQueue queue;

* Create a AQQueueTableProperty object (payload type RAW): */
gtable_prop = new AQQueueTableProperty('RAW);

[* Create a queue table in aq schema */
q_table =aq_sess.createQueueTable (‘aq", "RawMsgs_gtab", gtable_prop);

System.out printin(*Successfully created RawMsgs_gtab in ag schema'’);

3. Create a queue table for muttiple consumers and prioritized messages

public static void example(AQSession aq_sess) throws AQEXxception
{
AQQueueTableProperty gtable_prop;

AQQueueProperty queue_prop;
AQQueueTable q_table;

AQQueue queue;
gtable_prop = new AQQueueTableProperty('RAW);

¥ Enable multiple consumers */
gtable_prop.setMultiConsumer(true);
gtable_prop.setCompatible('8.1");

* Specify sort order as priority,enqueue_time */
gtable_prop.setSortOrder('PRIORITY,ENQ_TIME");

* Create a queue table in aq schema */
g_table =aq_sess.createQueueTable (“aq", "PriorityMsgs_gtab",
qtable_prop);

System.out printin(“Successfully created PriorityMsgs_gtab in ag schema’);
}

Create queue table in specified tablespace

public static void example(AQSession aq_sess) throws AQEXxception
{

Administrative Interface 9-11

Create a Queue Table

AQQueueTableProperty gtable_prop;

AQQueueProperty queue_prop;
AQQueueTable q_table;

AQQueue queue;

F Create a AQQueueTableProperty object (payload type Message:_typ): */
gtable_prop = new AQQueueTableProperty('AQMESSAGE_TYP");

F Specify tablespace for queue table */
gtable_prop.setStorageClause(tablespace aq_ths");

* Create a queue table in aq schema */
g_table =aq_sess.createQueueTable ('aq’, "aq_thsMsg_gtab", gtable_prop);

9-12 Application Developer's Guide - Advanced Queuing

Create a Queue Table [Set Storage Clause]

Create a Queue Table [Set Storage Clause]

Figure 9-3 Use Case Diagram: Create a Queue Table [Set Storage Clause]

AQ Administrative
Interface

I . CREATE Queue Table

specify
storage
clause

CREATE
Queue Table

<ue-

specify
PCTFREE

specify
MAXTRANS

specify
INITIAL

specify

MAXEXTENTS

specify
PCTUSED

specify
TABLESPACE

specify
INITRANS

See SQL Reference

specify
LOB storage

Administrative Interface 9-13

Alter a Queue Table

Alter a Queue Table

Purpose

z

User/
Program

Figure 9—4 Use Case Diagram: Alter a Queue Table

AQ Administrative
Interface

I . ALTER Queue Table

ALTER

name
Queue Table

queue table

add
comment

optional
information [

optional
information [

specify
primary
instance

specify
secondary
instance

optional
information

To refer to the table of all basic operations having to do with the

Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic

Operations" on page 9-2

Alter the existing properties of a queue table.

Usage Notes

Not applicable.

9-14 Application Developer's Guide - Advanced Queuing

Alter a Queue Table

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, ALTER_QUEUE_TABLE procedure
« Visual Basic (OO40): There is no applicable syntax reference for this use case
« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ,alterQueue
Examples

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments.

« PL/SQL (DBMS_AQADM Package): Alter a Queue Table on page 9-15
« VB (0O040): Example not provided.
« Java (JDBC): Alter a Queue Table on page 9-16

PL/SQL (DBMS_AQADM Package): Alter a Queue Table

/* Altering the table to change the primary, secondary instances for queue owner
(only applicable for OPS environments). The primary instance is the instance
number of the primary owner of the queue table. The secondary instance is the
instance number of the secondary owner of the queue table. %
EXECUTE dbms_agadm.alter_queue_table
Queue_table =>'aq. ObjMsgs_qtab’,
Primary_instance =>3,
Secondary_instance =>2);

/*Altering the table to change the comment for a queue table: %/
EXECUTE dbms_agadm.alter_queue_table
Queue_table =>'aq. ObjMsgs_qtab’,
Comment =>"revised usage for queue table’);

Administrative Interface 9-15

Alter a Queue Table

Java (JDBC): Alter a Queue Table

F Alter a queue table */
public static void example(AQSession aq_sess) throws AQEXxception
{

AQQueueTableProperty qtable_prop;
AQQueueTable q_table;

q_table = ag_sess.getQueueTable (‘ag’, "ObjMsgs_qtab');

I Get queue table properties: */
gtable_prop=q_table.getProperty();

 Alter the queue table comment and instance affinity */
g_table alter(“altered queue table”, 3, 2);

9-16 Application Developer's Guide - Advanced Queuing

Drop a Queue Table

Drop a Queue Table

Figure 9-5 Use Case Diagram: Drop a Queue Table

Interface . DROP Queue Table

AQ Administrative I .

- WARNING: Dropping a queue table
requires a decision regarding stopping

User/ and dropping the queues it contains
Program
\4
default | set set
force = false force = true
OR
default set set
elau auto-commit auto-commit
=true = false

WARNING:
deprecated

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations” on page 9-2

Administrative Interface 9-17

Drop a Queue Table

Purpose:

Drop an existing queue table. Note that you must stop and drop all the queues in a
gueue tables before the queue table can be dropped. You must do this explicitly
unless the force option is used in which case this done automatically.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, DROP_QUEUE_TABLE procedure.
« Visual Basic (O0O40): There is no applicable syntax reference for this use case
« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle. AQ
AQQueueTable.drop
Examples

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments.

« PL/SQL (DBMS_AQADM Package): Drop a Queue Table on page 9-18
« VB (0O040): Example not provided.
« Java (JDBC): Drop a Queue Table on page 9-19

PL/SQL (DBMS_AQADM Package): Drop a Queue Table
/*Drop the queue table (for which all queues have been previously dropped by
the user) ¥/
EXECUTE dbms_agadm.drop_queue_table (
queue_table =>'aq.Objmsgs_qtab);

9-18 Application Developer's Guide - Advanced Queuing

Drop a Queue Table

Caution: You may heed to set up or drop data structures for
certain examples to work:

/*Drop the queue table and force all queues to be stopped and dropped by the
system®

EXECUTE dbms_agadm.drop_queue_table (
gueue table =>’aq.Objmsgs_qtab,
force =>TRUE);

Java (JDBC): Drop a Queue Table

* Drop a queue table - for which all queues have already been dropped by
the user*/
public static void example(AQSession aq_sess) throws AQEXxception
{
AQQueueTable q_table;

q_table =aq_sess.getQueueTable (‘aq’, "ObjMsgs_qtab');

* Drop the queue table*/
q_table.drop(false);
System.out.printin(‘Successful drop”);

* Drop the queue table (and force all queues to be stopped and dropped by
the user*/
public static void example(AQSession aq_sess) throws AQEXxception
{
AQQueueTable q_table;

q_table =aq_sess.getQueueTable ('aq", "ObjMsgs_qtab');
* Drop the queue table (and automatically drop all queues inside it */

g_table.drop(true);
System.out.printin(*Successful drop”);

Administrative Interface 9-19

Create a Queue

Create a Queue

Figure 9—6 Use Case Diagram: Create a Queue

Administrative

Interface I . CREATE a Queue

CREATE
a Queue

name name

queue table queue
User/

Program

specify
queue type

specify
queue type
as normal

as exception

ﬁ default

specify
maximum
retrys

specify
retry delay
(seconds)

ﬁ specify
default | no retry
delay

continued on next page

9-20 Application Developer's Guide - Advanced Queuing

Create a Queue

i1 OR

i1 OR

E specify specify
: | default | no retention retention
. (seconds)
! OR :
Lusssssssssssssssnannnnnnnns . .

set
dependency
tracking

set
dependency
tracking

default

E = false = true
default
i set
optional add)
| information [~ comment autgi?un;mlt

OR

WARNING:
deprecated

retain
indefinitely

set
autocommit
= false

To refer to the table of all basic operations having to do with the

Administrative Interface see:

= "Use Case Model: Administrative Interface — Basic

Operations" on page 9-2

Create a queue in the specified queue table.

Administrative Interface 9-21

Create a Queue

Usage Notes

Syntax

Examples

« All queue names must be unique within a schema. Once a queue is created with
CREATE_QUEUH can be enabled by calling START_QUEUBY default, the
gueue is created with both enqueue and dequeue disabled.

« To view retained messages, you can either dequeue by message ID or use SQL.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, CREATE_QUEUE procedure

« Visual Basic (OO40): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ, CreateQueue

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments.

« PL/SQL (DBMS_AQADM Package): Drop a Queue Table on page 9-18
« VB (0O040): Example not provided.
« Java (JDBC): Drop a Queue Table on page 9-19

9-22 Application Developer's Guide - Advanced Queuing

Create a Queue

PL/SQL (DBMS_AQADM): Create a Queue

Create a queue within a queue table for messages of object type

/*Create a message type: ¥/

CREATE type ag.Message_typ as object (
Subject VARCHAR2(30),
Text VARCHAR2(80));

| *Create a object type queuie table and queue: ¥

EXECUTE dbms_agadm.create_queue_table (
Queue table =>"aq.ObjMsgs_qtal’,
Queue_payload_type =>'ag.Message_typ);

EXECUTE doms_agadm.create_queue (
Queue name =>’msg_gueue),
Queue table =>"aq.ObjMsgs_qtab’);

Create a queue within a queue table for messages of RAW type
F Create a RAW type queue table and queue: ¥
EXECUTE dbms_agadm.create_queue_table (

Queue_table =>'ag.RawMsgs_gtab,

Queue _payload type =>'RAW);

F Create queue: ¥

EXECUTE dbms_agadm.create_queue (
Queue_name =>’raw_msg_queue’,
Queue_table =>'ag.RawMsgs_gtab);

Create a prioritized message queue table and queue

Caution: You may need to set up or drop data structures for
certain examples to work:

P Create a queue table for priortized messages: ¥
EXECUTE dbms_agadm.create_queue_table (

Queue table =>’aqg.PriorityMsgs_qftab’,

Sort list ~ =>'PRIORITY,ENQ_TIME,

Queue_payload_type =>'ag.Message_typ);
F Create queue: ¥

Administrative Interface 9-23

Create a Queue

EXECUTE doms_agadm.create_queue (
Queue name =>'priority_msg_queue’,
Queue table =>'aqg.PriorityMsgs_qtab);

Create a queue table and queue meant for multiple consumers

Caution: You may need to set up or drop data structures for
certain examples to work:

F* Create a queue table for muft-consumers: #
EXECUTE dbms_agadm.create_queue_table (
queue_table =>'agMuliConsumerMsgs_qtab,
Multtiple_consumers =>TRUE,
Queue_payload_type =>'ag.Message_typ);

F Create queue: *

EXECUTE dbms_agadm.create_queue (
Queue_name =>'MuliConsumerMsg_gueue’,
Queue table =>"ag.MuliConsumerMsgs_qtab’);

Create a queue table and queue to demonstrate propagation
P Create queue: *
EXECUTE dbms_agadm.create_queue (

Queue name =>'AnotherMsg_queue),

queue_table =>'"ag.MuliConsumerMsgs_qtab’);

Create a queue table and queue for multiple consumers compatible with 8.1

P Create a queue table for mult-consumers compatible with Release 8.1: ¥
EXECUTE dbms_agadm.create_queue_table (

Queue table =>"ag.MuliConsumerMsgs81l_gtab,

Multiple_consumers =>TRUE,

Compatible =>'8.1,

Queue_payload_type =>'ag.Message_typ);

EXECUTE doms_agadm.create_queue (
Queue name =>'MultiConsumerMsg8l_queue’,
Queue table =>"ag.MuliConsumerMsgs81l qtab’);

9-24 Application Developer's Guide - Advanced Queuing

Create a Queue

Java (JDBC): Create a Queue

Create a queue within a queue table for messages of object type

public static void example(AQSession aq_sess) throws AQEXception
{

AQQueueProperty queue_prop;

AQQueueTable q_table;

AQQueue queus;

q table =aq_sess.getQueueTable (‘aq’, "ObjMsgs_qtab’);

F Create a new AQQueueProperty object: */
queue_prop = new AQQueueProperty();

queue = ag_sess.createQueue (q_table, "msg_queue”, queue_prop);
System.out.printin("Successful createQueue’);

Create a queue within a queue table for messages of raw type

public static void example(AQSession aq_sess) throws AQEXxception
{

AQQueueProperty queue_prop;
AQQueueTable q_table;
AQQueue queue;

q_table =aq_sess.getQueueTable (‘aq’, "RawMsgs_qtab’);

[* Create a new AQQueueProperty object: */
queue_prop = new AQQueueProperty();

gueue = ag_sess.createQueue (q_table, "msg_queue”, queue_prop);
System.out.printin(“*Successful createQueue’);

Create a Multi-Consumer queue with prioritized messages

public static void example(AQSession aq_sess) throws AQEXxception

Administrative Interface 9-25

Create a Queue

AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
AQQueueTable g_table;
AQQueue queue;

AQAgent agent,

gtable_prop = new AQQueueTableProperty(' RAW");
gtable_prop.setMuliConsumer(true);

gtable_prop.setSortOrder("priority,enq_time");
g_table =aq_sess.createQueueTable (‘aq", "PriorityMsgs_gtab",
qteble_prop);

queue_prop = new AQQueueProperty();
queue =ag_sess.createQueue (q_table, "priority_msg_queue”, queue_prop);

9-26 Application Developer's Guide - Advanced Queuing

Create a Non-Persistent Queue

Create a Non-Persistent Queue

Figure 9—7 Use Case Diagram: Create a Non-Persistent Queue

£

AQ Administrative
Interface

I . CREATE a Non-Persistent Queue

CREATE
a Non-Persistent f ====> nla}gl]Jee
User/ Queue d
Program "
5. .. .
:OR
\4
specify ;

](ciefaultl N single- specify
or multi multi-consumer
consumers consumer queue

optional
information

queue

add
comment

i

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations” on page 9-2

Purpose
Create a non-persistent RAWqueue.

Usage Notes

The queue may be either single-consumer or multiconsumer queue. All queue
names must be unique within a schema. The queues are created in a 8.1 compatible
system-created queue table (AQ$_MEM_SOr AQ$_MEM_MGn the same schema as

Administrative Interface 9-27

Create a Non-Persistent Queue

Syntax

Examples

that specified by the queue name. If the queue name does not specify a schema
name, the queue is created in the login user’s schema. Once a queue is created with
CREATE_NP_QUEUHE can be enabled by calling START_QUEUBY default, the
gueue is created with both enqueue and dequeue disabled.

You cannot dequeue from a non-persistent queue. The only way to retrieve a
message from a non-persistent queue is by using the OCI notification mechanism
(see Register for Notification on page 11-57).

You cannot invoke the listen call on a non-persistent queue (see Listen to One
(Many) Queue(s) on page 11-23).

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, CREATE_NP_QUEUE procedure

« Visual Basic (O0O40): There is no applicable syntax reference for this use case

« Java (JDBC): There is no applicable syntax reference for this use case

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments.

« PL/SQL (DBMS_AQADM Package): Drop a Queue Table on page 9-18
« VB (0O040): Example not provided.
« Java (JDBC): Drop a Queue Table on page 9-19

PL/SQL (DBMS_AQADM): Create a Non-Persistent Queue

/*Create a non-persistent single-consurmer queue (Note: this is not preceded by

creation of a queue table) ¥
EXECUTE dbms_agadm.create_np_queue(
Queue_name =’ Singleconsumersmsg_npque’,

Multtiple_consumers =>FALSE);

/* Create a non-persistent muli-consumer queuie (Note: this is not preceded by

9-28 Application Developer's Guide - Advanced Queuing

Create a Non-Persistent Queue

creation of a queue table) ¥/
EXECUTE dbms_agadm.create_np_queue(
Queue_name =’ Multiconsumersmsg_npque’,

Multiple_consumers =>TRUE);

Java (JDBC): Create a Non-persistent Queue
Feature not available through Java API.

Administrative Interface 9-29

Alter a Queue

Alter a Queue

Figure 9-8 Use Case Diagram: Alter a Queue

User/
Program

AQ Administrative
Interface

ALTER
a Queue >

default

default

1

f default |

OR

default

specify
maximum
retrys =5

specify
no retry
delay

specify
no retention

. ALTER a Queue

specify
maximum
retrys

specify
retry delay
(seconds)

specify
retention
(seconds)

WARNING:

set
autocommit
= true

deprecated

set
autocommit
= false

retain
indefinitely

optional
information

add

queue
description

9-30 Application Developer's Guide - Advanced Queuing

Alter a Queue

Purpose:

Usage Notes

Syntax

Examples

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 9-2

Alter existing properties of a queue. Only max_retries, comment, retry_delay, and
retention_time can be altered.

To view retained messages, you can either dequeue by message 1D or use SQL.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, ALTER_QUEUE_TABLE procedure

« Visual Basic (O040): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ, alter

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

« PL/SQL (DBMS_AQADM): Alter a Queue on page 9-31
« VB (0O040): Example not provided.
« Java (JDBC): Alter a Queue on page 9-32

PL/SQL (DBMS_AQADM): Alter a Queue

/*Alter queuie to change retention time, saving messages for 1 day after
dequeueing: ¥

Administrative Interface 9-31

Alter a Queue

EXECUTE dbms_agadm.alter_queue (
gueue name =>'ag.Ancthermsg_queue’,
retention_time =>86400);

Java (JDBC): Alter a Queue

* Alter a queue to change retention time, saving messages for 1 day
after dequeuing */

public static void example(AQSession aq_sess) throws AQEXxception

{

AQQueueProperty queue_prop;
AQQueue queue;

P Getthe queue object */
queue = ag_sess.getQueue("AQ", "Anothermsg_queue”);

[* Create a new AQQueueProperty object: */
queue_prop = new AQQueueProperty();

P Change retention time to 1 day */
queue_prop.setRetentionTime(new Double(86400));

* Alter the queue */
queue.alterQueue(queue_prop);

9-32 Application Developer's Guide - Advanced Queuing

Drop a Queue

Drop a Queue

Figure 9-9 Use Case Diagram: Drop a Queue

Interface

AQ Administrative I * DROP a Queue

%] DROP 1\ _ f— WARNING: You must stop
a Queue

a queue before you drop it

User/
Program

OR

set set
default auto-commit auto-commit
=true = false

WARNING:
deprecated

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 9-2

Administrative Interface 9-33

Drop a Queue

Purpose:

Usage Notes

Syntax

Examples

Drops an existing queue. DROP_QUEUE not allowed unless STOP_QUEURas been
called to disable the queue for both enqueuing and dequeuing. All the queue data is
deleted as part of the drop operation.

Not applicable.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, DROP_QUEUE_TABLE procedure

« Visual Basic (O0O40): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ, dropQueue

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments;

« PL/SQL (DBMS_AQADM): Drop a Queue on page 9-35
« VB (0O040): Example not provided.
« Java (JDBC): Drop a Queue on page 9-35

9-34 Application Developer's Guide - Advanced Queuing

Drop a Queue

PL/SQL (DBMS_AQADM): Drop a Queue

Drop a Standard Queue

/* Stop the queue preparatory to dropping it (@ queue may be dropped only after
it has been succestully stopped for enqueing and dequeing): %

EXECUTE dbms_agadm.stop_queue (
Queue name =>'agMsg_queue’);

/*Drop queue: ¥
EXECUTE dbms_agadm.drop_queue (
Queue name =>'agMsg_queue);

Drop a Non-Persistent Queue

EXECUTE DBMS_AQADM.DROP_QUEUE(queue_name =>'Nonpersistent_singleconsumerql);
EXECUTE DBMS_AQADM.DROP_QUEUE(queue_name =>'Nonpersistent_multiconsumerqgl);

Java (JDBC): Drop a Queue

* Drop aqueue */
public static void example(AQSession aq_sess) throws AQEXception
{

AQQueue queue;

I Getthe queue object */
queue =ag_sess.getQueue("AQ", "Msg_queue');

F Stop the queue first*/
queue.stop(true);

* Drop the queue */
queue.drop();

Administrative Interface 9-35

Start a Queue

Start a Queue

Figure 9-10 Use Case Diagram: Start a Queue

AQ Administrative .
Interface I . START a Queue

% START > name
] a Queue queue

User/

Program S
i I OR :
: \4 \4
H set
H keeps
s (— default | _ start start - - [current
: for enqueue for enqueue settin
H = true = false 9

: OR H
.IIIIIIIIIIIIIIIIIIIIIII. :
\v4 \v4
/ | tart keeps
default | _ star start - current
for dequeue for dequeue setting
= true = false

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 9-2

Purpose:
Enables the specified queue for enqueuing and/or dequeueing.

9-36 Application Developer's Guide - Advanced Queuing

Start a Queue

Usage Notes

Syntax

Examples

After creating a queue the administrator must use START_QUEUED enable the
gueue. The default is to enable it for both ENQUEUBNnd DEQUEUEDnNly dequeue
operations are allowed on an exception queue. This operation takes effect when the
call completes and does not have any transactional characteristics.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, START_QUEUE procedure

« Visual Basic (O0O40): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ,
AQQueueAdmin.start

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments;

« PL/SQL (DBMS_AQADM Package): Start a Queue on page 9-37
« VB (0O040): Example not provided.
« Java (JDBC): Start a Queue on page 9-38

PL/SQL (DBMS_AQADM Package): Start a Queue

/* Start a queue and enable both enqueue and dequeue: %/
EXECUTE dbms_agadm.start_queue (
queue_name =>'Msg_queue);

* Start a previously stopped queue for dequeue only */
EXECUTE dbms_agadm.start_queue (

gueue name =>'agmsg queue,

dequeue =>TRUE,

enqueue =>FALSE),

Administrative Interface 9-37

Start a Queue

Java (JDBC): Start a Queue

F Start a queue - enable both enqueue and dequeue */
public static void example(AQSession aq_sess) throws AQEXxception

{
AQQueue queue;

P Get the queue object*/
gueue = ag_sess.getQueue("AQ", "Msg_queue');

¥ Enable enqueue and dequeue */
queue.start();

* Start a previously stopped queue for dequeue only */
public static void example(AQSession aq_sess) throws AQEXxception
{

AQQueue queue;

P Getthe queue object */
queue = ag_sess.getQueue("AQ", "Msg_queue');

¥ Enable enqueue and dequeue */
queue start(false, true);

9-38 Application Developer's Guide - Advanced Queuing

Stop a Queue

Stop a Queue

Figure 9-11 Use Case Diagram: Stop a Queue

AQ Administrative

I . STOP a Queue

Interface
STOP name
] a Queue D> queue
User/
Program T
: OR

ﬁ default |

keeps
- current
setting

E OR
keeps
default | - current
setting
OR :
v 4
wait for ongoing stop if there is
transactions to - .tsftt waits—etfalse - - [~ noongoing
complete and do wait =true = transaction
not allow new
transactions

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations” on page 9-2

Administrative Interface 9-39

Stop a Queue

Purpose:

Usage Notes

Syntax

Examples

Disables enqueuing and/or dequeuing on the specified queue.

By default, this call disables both ENQUEU&or DEQUEU& A queue cannot be
stopped if there are outstanding transactions against the queue. This operation
takes effect when the call completes and does not have any transactional
characteristics.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, STOP_QUEUE procedure

« Visual Basic (O0O40): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ)
AQQueueAdmin.stop

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments;

« PL/SQL (DBMS_AQADM): Stop a Queue on page 9-40
« VB (0O040): Example not provided.
« Java (JDBC): Stop a Queue on page 9-41

PL/SQL (DBMS_AQADM): Stop a Queue

/*Stop the queue: %/
EXECUTE dbms_agadm.stop_queue (
queue_name =>'aq.Msg_queue);

9-40 Application Developer's Guide - Advanced Queuing

Stop a Queue

Java (JDBC): Stop a Queue

* Stop a queue - wait for oustanding transactions */
public static void example(AQSession aq_sess) throws AQEXxception
{

AQQueue queue;

P Get the queue object*/
queue =ag_sess.getQueue("AQ", "Msg_queue');

F Enable enqueue and dequeue ¥/
queue.stop(true);

Administrative Interface 9-41

Grant System Privilege

Grant System Privilege

Figure 9-12 Use Case Diagram: Grant System Privilege

AQ Administrative
Interface

I . GRANT System Privilege

GRANT
System
Privilege

grant
engueue any dequeue any manage any

May perform any
administrative
operation
name
grantee

default | _(administrative
=false option

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 9-2

9-42 Application Developer's Guide - Advanced Queuing

Grant System Privilege

Purpose:

To grant AQ system privileges to users and roles. The privileges are ENQUEUE_ANY
DEQUEUE_ANWIANAGE_ANMYhitially, only SYSand SYSTEMan use this
procedure successfully.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, GRANT_SYSTEM_PRIVILEGE procedure

« Visual Basic (OO40): There is no applicable syntax reference for this use case

« Java (JDBC): There is no applicable syntax reference for this use case

Usage Notes
Not applicable.

Examples

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments;

« PL/SQL (DBMS_AQADM): Grant System Privilege on page 9-44
« VB (0O040): Example not provided.
« Java (JDBC): Grant System Privilege on page 9-44

Administrative Interface 9-43

Grant System Privilege

PL/SQL (DBMS_AQADM): Grant System Privilege
*User AQADM granits the rights to enqueue and dequeue to ANY queues: %/

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager,

CREATE USER agadm IDENTIFIED BY agadm;
GRANT CONNECT, RESOURCE TO agadm;
GRANT EXECUTE ON DBMS_AQADM TO agadm;
GRANT Aq_administrator_role TO agadm;

CONNECT agadm/agadm;

EXECUTE DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
privilege => 'ENQUEUE_ANY’,

grantee => 'Jones,

admin_option => FALSE),

EXECUTE DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
privilege => 'DEQUEUE_ANY’,

grantee => 'Jones,

admin_option => FALSE);

Java (JDBC): Grant System Privilege

Feature not available through Java API

9-44 Application Developer's Guide - Advanced Queuing

Revoke System Privilege

Revoke System Privilege

Figure 9-13 Use Case Diagram: Revoke System Privelege

%

User/
Program

AQ Administrative
Interface

I . REVOKE System Privilege

REVOKE
System
Privilege

revoke
right to
enqueue to any
queue

revoke
right to

manage any
queue

<e=-

name
grantee

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations” on page 9-2

Purpose:

To revoke AQ system privileges from users and roles. The privileges are ENQUEUE _
ANY DEQUEUE_ANahd MANAGE_ANYhe ADMINoption for a system privilege
cannot be selectively revoked.

Administrative Interface 9-45

Revoke System Privilege

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, REVOKE_SYSTEM_PRIVILEGE procedure
« Visual Basic (OO40): There is no applicable syntax reference for this use case
« Java (JDBC): There is no applicable syntax reference for this use case
Examples

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments;

« Using PL/SQL (DBMS_AQADM): Revoke System Privilege on page 9-46
« VB (0O040): Example not provided.
« Java (JDBC): Example not provided.

Using PL/SQL (DBMS_AQADM): Revoke System Privilege

F*Torevoke the DEQUEUE_ANY system privilege from Jones. */
CONNECT system/manager,
execute DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE (privilege=>DEQUEUE_ANY’,
grantee=>Jones));

9-46 Application Developer's Guide - Advanced Queuing

Grant Queue Privilege

Grant Queue Privilege

Figure 9-14 Use Case Diagram: Grant Queue Privelege

%

[Er— . GRANT Queue Privilege

AQ Administrative I

GRANT
Queue
Privilege

User/
Program T i esusmsssssssssssssssmssssssssssmsssssssssssssssssssssss
PLLOR s : :
: v v v
. grant grant
H enqueue dequeue

\E/ May enqueue
and dequeue

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 9-2

Purpose:

To grant privileges on a queue to users and roles. The privileges are ENQUEUBr
DEQUEUHNitially, only the queue table owner can use this procedure to grant
privileges on the queues.

Administrative Interface 9-47

Grant Queue Privilege

Usage Notes

Syntax

Examples

Not applicable.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, GRANT_QUEUE_PRIVILEGE procedure

« Visual Basic (OO40): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ,
grantQueuePrivilege

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments;

« PL/SQL (DBMS_AQADM): Grant Queue Privilege on page 9-48
« VB (0O040): Example not provided.
« Java (JDBC): Grant Queue Privilege on page 9-48

PL/SQL (DBMS_AQADM): Grant Queue Privilege

/*User granits the access right for both enqueue and dequeuie rights using
DBMS_AQADM.GRANT. %
EXECUTE DBMS_AQADM.GRANT_QUEUE_PRIVILEGE (
priviege => 'ALL,
queue_name => ‘agmulticonsumermsg8l queue
grantee => ‘Jones,
grant_option => TRUE);

Java (JDBC): Grant Queue Privilege

F* Grant enqueue and dequeue privileges on queue to user ‘Jones’*/
public static void example(AQSession aq_sess) throws AQEXxception
{

9-48 Application Developer's Guide - Advanced Queuing

Grant Queue Privilege

AQQueue queus;

* Get the queue object*/
queue =ag_sess.getQueue("AQ", "multiconsumermsg81_queue”);

F Enable enqueue and dequeue */
queue.grantQueuePriviege(‘ALL", "Jones", true);

Administrative Interface 9-49

Revoke Queue Privilege

Revoke Queue Privilege

Figure 9-15 Use Case Diagram: Revoke Queue Privilege

AQ Administrative
Interface

I . REVOKE Queue Privilege

REVOKE

X

Queue
User/ Privilege
Program e e saesamsameamssssssssEsssssssssssssssesssssssmssmsssass .
: \4
: revoke revoke
: enqueue dequeue all

May not enqueue
and dequeue

name
grantee

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 9-2

9-50 Application Developer's Guide - Advanced Queuing

Revoke Queue Privilege

Purpose:

Usage Notes

Syntax

Examples

To revoke privileges on a queue from users and roles. The privileges are ENQUEUE
or DEQUEUE

To revoke a privilege, the revoker must be the original grantor of the privilege. The
privileges propagated through the GRANToption are revoked if the grantor’s
privileges are revoked.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, REVOKE_QUEUE_PRIVILEGE procedure

« Visual Basic (O040): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ,
revokeQueuePrivledge

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

« PL/SQL (DBMS_AQADM): Revoke Queue Privilege on page 9-51
« VB (0O040): Example not provided.
« Java (JDBC): Revoke Queue Privilege on page 9-52

PL/SQL (DBMS_AQADM): Revoke Queue Privilege

/*User can revoke the dequeuie night of a grantee on a specific queue
leaving the grantee with only the enqueue nght: %/

CONNECT scottftiger;

EXECUTE DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE(
priviege => 'DEQUEUE,
queue_name => ’scott.ScottMsgs gqueue’,

Administrative Interface 9-51

Revoke Queue Privilege

grantee => ‘Jones);

Java (JDBC): Revoke Queue Privilege

P User can revoke the dequeue right of a grantee on a specific
queue, leaving only the enqueue right*/
public static void example(AQSession aq_sess) throws AQEXxception
{
AQQueue queus;

I Get the queue object */
queue =ag_sess.getQueue("SCOTT", "ScottMsgs _queue”);

F Enable enqueue and dequeue */
queue.revokeQueuePrivilege("'DEQUEUE", "Jones”);

9-52 Application Developer's Guide - Advanced Queuing

Add a Subscriber

Add a Subscriber

User/
'rogram

Figure 9-16 Use Case Diagram: Add a Subscriber

AQ Administrative
Interface

I . ADD a Subscriber

ADD
a Subscriber

name
....>

queue

specify
agent
(subscriber)

OR

OR

OR

If you do
not name a
subscriber
you must
specify an
address

specify
name

specify

address

specify
protocol
(number)

do not specify

; name as

specify name NULL

do not sggcify
Specify aadaress
address as NULL
do not spetcifyl
specify protocol
protocol as NULL/O

default to
- NULL

Administrative Interface 9-53

Add a Subscriber

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 9-2

Purpose:
Adds a default subscriber to a queue.
Usage Note:

« A program can enqueue messages to a specific list of recipients or to the default
list of subscribers. This operation will only succeed on queues that allow
multiple consumers. This operation takes effect immediately and the containing
transaction is committed. Enqueue requests that are executed after the
completion of this call will reflect the new behavior.

« Note that any string within the rule has to be quoted as shown below;
rule =>'PRIORITY <=3 AND CORRID = "FROM JAPAN"

Note that these are all single quotation marks.
Syntax

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, ADD_SUBSCRIBER procedure

« Visual Basic (O040): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ, addSubscriber

Examples

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

« PL/SQL (DBMS_AQADM): Add Subscriber on page 9-55

9-54 Application Developer's Guide - Advanced Queuing

Add a Subscriber

« VB (0O040): Example not provided.
« Java (JDBC): Add a Subscriber on page 9-55

PL/SQL (DBMS_AQADM): Add Subscriber
/*Anonymous PL/SQL block for adding a subscriber at a designated queue in a

designated schema at a database link: %
DECLARE

subscriber sys.ag$s_agent;
BEGIN

subscriber = sys.ag$_agent ('subscriberl’, 'ag2.msg_queue2@Iondon’, null);
DBMS_AQADM.ADD_SUBSCRIBER(

gueue_name =>'aq.multi_queue’,
subscriber => subscriber);
END;

/*Add a subscriber with a rule: %/

DECLARE
subscriber sys.ag$_agent;

BEGIN
subscriber = sys.ag$_agent('subscriber?’, 'ag2.msg_queue2@Ilondon’, null);
DBMS_AQADM.ADD_SUBSCRIBER(

gueue_name => 'ag.multi_queue’,
subscriber => subscriber,
rule => ’priority <2);

END;

PL/SQL (DBMS_AQADM): Add Rule-Based Subscriber

DECLARE
subscriber sys.ag$_agent;
BEGIN
subscriber = sys.ag$_agent(East_Shipping,ES.ES bookedorders_que',null);
DBMS_AQADM.ADD_SUBSCRIBER(
queue_name =>'OE.OE_bookedorders_que',
subscriber =>subscriber,
rule =>'tab.user_data.orderregion = "EASTERN" OR
(tab.user_data.ordertype = "RUSH" AND
tab.user_data.customer.country ="USA"));
END;

Administrative Interface 9-55

Add a Subscriber

Java (JDBC): Add a Subscriber
F Setup*/
public static void setup(AQSession aq_sess) throws AQException
{
AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
AQQueueTable g_table;
AQQueue queus;

[Create a AQQueueTable property object */
qgtable_prop = new AQQueueTableProperty('AQ.MESSAGE_TYP")
gtable_prop.setMuliConsumer(true);

g_table =aq_sess.createQueueTable (‘aq", "multi_gtab", gtable_prop);

* Create a new AQQueueProperty object: */

queue_prop = new AQQueueProperty();
queue =ag_sess.createQueue (q_table, "multi_queue”, queue_prop);

}

F Add subscribers to a queue ¥/
public static void example(AQSession aq_sess) throws AQEXxception
{

AQQueue queus;
AQAgent agentl;
AQAgent agent?;

* Get the queue object*/
queue =ag_sess.getQueue("AQ", "multi_queue");

Fadd a subscriber */
agentl = new AQAgent('subscriberl”, "ag2.msg_queue2@Ilondon’);
queue.addSubscriber(agentl, null);

P add a subscriber with a rule */
agent2 = new AQAgent('subscriber2", "ag2.msg_queue2@Ilondon’;

queue.addSubscriber(agent2, "priority < 2);
}

F Add a subscriber with a rule */
public static void example(AQSession aq_sess) throws AQEXxception
{

9-56 Application Developer's Guide - Advanced Queuing

Add a Subscriber

AQQueue queus;
AQAgent agentl;

* Get the queue object*/
queue =ag_sess.getQueue("OE", "OE_bookedorders_que');

add a subscriber */
agentl = new AQAgent('East_Shipping", "ES.ES_bookedorders_que");

queue.addSubscriber(agent,
"tab.user_data.orderregion="EASTERN OR "+
"(tab.user_data.ordertype=RUSH AND " +
“tab.user_data.customer.country=USA)");
}

Administrative Interface 9-57

Alter a Subscriber

Alter a Subscriber

Figure 9-17 Use Case Diagram: Alter a Subscriber

Interface

ALTER
a Subscriber

>

User/
'rogram

AQ Administrative I .

. ALTER a Subscriber

name
queue

) If you do
sggglrf% not name a
L subscriber
(subscriber) you must
specify an
address
OR
specify
name
OR
specify
address
OR

specify
protocol
(number)

do not
specify name

do not
specify
address

do not
specify

protocol

specify
-| nameas
NULL

specify
address
as NULL

specify
protocol
as NULL/O

LHERE

9-58 Application Developer's Guide - Advanced Queuing

Alter a Subscriber

Purpose:

Usage Notes

Syntax

Examples

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 9-2

Alter existing properties of a subscriber to a specified queue. Only the rule can be
altered.

Not applicable.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, ALTER_SUBSCRIBER procedure

« Visual Basic (O040): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ, alterSubscriber

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

« PL/SQL (DBMS_AQADM): Alter Subscriber on page 9-60
« VB (0O040): Example not provided.
« Java (JDBC): Alter a Subscriber on page 9-60

Administrative Interface 9-59

Alter a Subscriber

PL/SQL (DBMS_AQADM): Alter Subscriber

Note: You may need to set up the following data structures for
certain examples to work:

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table =>"agmulti_qtal’,
multiple_consumers =>TRUE,
queue_payload type =>'agmessage_typ',

compatible =>'8.15);
EXECUTE DBMS_AQADM.CREATE_QUEUE (
queue_name => 'multi_queue’,

queue_table =>"agmulti_qtab’);

/*Add a subscriber with a rule: %/
DECLARE
subscriber sys.ag$ _agent;
BEGIN
subscriber = sys.ag$_agent(SUBSCRIBER1, 'ag2.msg_queue2@london’, null);
DBMS_AQADM.ADD_SUBSCRIBER(
queue name => ‘agMmsg_queue,
subscriber => subscriber,
rule => ’priority < 2);

END;
/*Change rule for subscriber: %
DECLARE

subscriber sys.ag$_agent;
BEGIN

subscriber = sys.ag$_agent(SUBSCRIBERL, 'ag2.msg_queue2@london’, null);
DBMS_AQADMALTER_SUBSCRIBER(

queue_name => ‘ag.msg_gueue,

subscriber => subscriber,

rule => ’priority = 1))
END;

Java (JDBC): Alter a Subscriber

F* Alter the rule for a subscriber */
public static void example(AQSession aq_sess) throws AQEXxception
{

AQQueue queue;

AQAgent agentl;

9-60 Application Developer's Guide - Advanced Queuing

Alter a Subscriber

AQAgent agentz;

* Get the queue object*/
queue =ag_sess.getQueue("AQ", "multi_queue");

F+add a subscriber */
agentl = new AQAgent('subscriberl", "ag2.msg_queue2@Ilondon’);

queue.alterSubscriber(agentl, "priority=1");

Administrative Interface 9-61

Remove a Subscriber

Remove a Subscriber

Figure 9-18 Use Case Diagram: Remove a Subscriber

AQ Administrative
Interface

I . REMOVE a Subscriber

REMOVE
a Subscriber

>

User/
Program

name
queue

If you do
name not name a
agent subscriber
(subscriber) you must
specify an
address
OR
specify
name
OR
specify
address
OR

specify
protocol
(number)

do not

do not
specify
address

do not
specify

protocol

specify name) | Rameas

specify
NULL

specify
address
as NULL

specify
_ protocol
as NULL/O

9-62 Application Developer's Guide - Advanced Queuing

Remove a Subscriber

Purpose:

Usage Notes

Syntax

Examples

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 9-2

Remove a default subscriber from a queue.

This operation takes effect immediately and the containing transaction is
committed. All references to the subscriber in existing messages are removed as
part of the operation.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, REMOVE_SUBSCRIBER procedure

« Visual Basic (O040): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ)
removeSubscriber

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments.

Examples in the following programmatic environments are provided:
« PL/SQL (DBMS_AQADM): Remove Subscriber on page 9-64

« VB (0O040): Example not provided.

« Java (JDBC): Remove a Subscriber on page 9-64

Administrative Interface 9-63

Remove a Subscriber

PL/SQL (DBMS_AQADM): Remove Subscriber

DECLARE
subscriber sys.ag$_agent;
BEGIN
subscriber = sys.ag$_agent('subscriberl’’ag2.msg_queue2’, NULL);
DBMS_AQADM.REMOVE_SUBSCRIBER(
queue_name =>"ag.multi_queue’,
subscriber => subscriber);
END;

Java (JDBC): Remove a Subscriber

FRemove a subscriber */
public static void example(AQSession aq_sess) throws AQEXception
{

AQQueue queus;

AQAgent agentl;

AQAgent agent?;

* Get the queue object*/
queue =ag_sess.getQueue("AQ", "multi_queue");

add a subscriber */
agentl = new AQAgent('subscriberl”, "ag2.msg_queue2@Ilondon’);

queue.removeSubscriber(agentl);

9-64 Application Developer's Guide - Advanced Queuing

Schedule a Queue Propagation

Schedule a Queue Propagation

Figure 9-19 Use Case Diagram: Schedule a Queue Propagation

User/
Program

AQ Administrative « SCHEDULE a Queue default
Interface = Propagation . (null)
, e
’ name
SCHEDULE destination as
a Queue remote
Propagation database
R A
P1iIOR :
il OR
: : » ‘IIIIIIIIIIIIIIIIIIIIIII.
P v
HHE default specify
P for start start time now start time later
: : ' time (sysdate)
tiiOR
e v
H- default continue
i for until
H duration unschedule
: OR ..
: Lo :
: v
E default for don't
: Eext time repeat
H =null
: OR
lusssssssssssssssssssnnnnnnsn .
\4
default recheck
for every 60
latenc seconds

Administrative Interface 9-65

Schedule a Queue Propagation

Purpose:

Usage Notes

Syntax

Examples

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 9-2

Schedule propagation of messages from a queue to a destination identified by a
specific dblink.

Messages may also be propagated to other queues in the same database by
specifying a NULL destination. If a message has multiple recipients at the same
destination in either the same or different queues the message will be propagated to
all of them at the same time.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, "SCHEDULE_PROPAGATION procedure"

« Visual Basic (OO40): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ,
schedulePropagation

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments;

« PL/SQL (DBMS_AQADM): Schedule a Queue Propagation on page 9-67
« VB (0O040): Example not provided.
« Java (JDBC): Schedule a Queue propagation on page 9-67

9-66 Application Developer's Guide - Advanced Queuing

Schedule a Queue Propagation

PL/SQL (DBMS_AQADM): Schedule a Queue Propagation

Note: You may need to set up the following data structures for
certain examples to work:

EXECUTEDBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table =>ag.objmsgs_qtab’,
gueue_payload_type =>aq.message_typ’,
multiple_consumers => TRUE);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
gueue_name =>"aq.qldef’,
gqueue_table =>"aq.objmsgs_qtab’);

Schedule a Propagation from a Queue to other Queues in the Same Database
/* Schedule propagation from queue aq.qldef tootherqueues inthe same

database ¥
EXECUTE DBMS_AQADM.SCHEDULE_PROPAGATION(

Queue name => ‘aq.qldef);

Schedule a Propagation from a Queue to other Queues in Another Database
P Schedule a propagation from queue aq.qldef toother queues in another
database ¥/
EXECUTE DBMS_AQADM.SCHEDULE_PROPAGATION(
Queue_name => ‘aqg.qldef,
Destination => ‘another_db.world);

Java (JDBC): Schedule a Queue propagation
P Setup ¥
public static void setup(AQSession aq_sess) throws AQEXxception
{
AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
AQQueueTable g_table;
AQQueue queus;

qgtable_prop = new AQQueueTableProperty('AQ.MESSAGE_TYP"),
gtable_prop.setMuliConsumer(true);

g _table =aq_sess.createQueueTable ("aq", "objmsgs_gtab", gtable_prop);

Administrative Interface 9-67

Schedule a Queue Propagation

* Create a new AQQueueProperty object: */

queue_prop = new AQQueueProperty();
queue =ag_sess.createQueue (q_table, "gqldef’, queue_prop);

}

* Schedule propagation from a queue to other queues in the same database */
public static void example(AQSession aq_sess) throws AQEXxception
{

AQQueue queus;

AQAgent agentl;

AQAgent agent?;

I Getthe queue object */
queue =ag_sess.getQueue(’AQ", "qldef”);

queue.schedulePropagation(null, null, null, null, null);
}

F* Schedule propagation from a queue to other queues in another database */
public static void example(AQSession aq_sess) throws AQEXception
{

AQQueue queus;
AQAgent agentl;
AQAgent agent?;

* Get the queue object*/
queue =ag_sess.getQueue('AQ", "qldef’;

queue.schedulePropagation(‘another_db.word", null, null, null, null);

9-68 Application Developer's Guide - Advanced Queuing

Unschedule a Queue Propagation

Unschedule a Queue Propagation

Figure 9-20 Use Case Diagram: Unschedule a Queue Propagation

%

AQ Administrative
Interface

UNSCHEDULE a
Queue Propagation

destination

name

as local

name
destination as
remote

database database

User/
Program

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations” on page 9-2

Purpose:

Unscheduled previously scheduled propagation of messages from a queue to a
destination identified by a specific dblink

Usage Notes
Not applicable.

Syntax

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, UNSCHEDULE_PROPAGATION procedure

Administrative Interface 9-69

Unschedule a Queue Propagation

« Visual Basic (OO40): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ)
schedulePropagation

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in

each programmatic environment. Examples are provided in the following
programmatic environments;

« PL/SQL (DBMS_AQADM): Unschedule a Propagation on page 9-70
« VB (0O040): Example not provided.
« Java (JDBC): Unschedule a Queue propagation on page 9-70

PL/SQL (DBMS_AQADM): Unschedule a Propagation

Unschedule Propagation from Queue To Other Queues in the Same Database
/*Unschedule propagation from queue aqg.q1defto other queues in the same

database ¥/
EXECUTE DBMS_AQADM.UNSCHEDULE PROPAGATION(queue_name =>'ag.qldef);

Unschedule Propagation from a Queue to other Queues in Another Database
/*Unschedule propagation from queue ag.qldef toother queues in another

database reached by the database link another_db.world Y
EXECUTE DBMS_AQADM.UNSCHEDULE._PROPAGATION(

Queue_name => 'aqg.qldef,

Destination => 'another_db.world’);

Java (JDBC): Unschedule a Queue propagation

/*Unschedule propagation from a queue to other queues in the same database %
public static void example(AQSession aq_sess) throws AQEXxception
{

AQQueue queue;

AQAgent agentl;

AQAgent agentz;

F Get the queue object */
queue =ag_sess.getQueue('AQ", "qldef’);

9-70 Application Developer's Guide - Advanced Queuing

Unschedule a Queue Propagation

queue.unschedulePropagation(null);
}

/*Unschedule propagation from a queue to other queues in another database *
public static void example(AQSession aq_sess) throws AQEXxception
{

AQQueue queus;

AQAgent agentl;
AQAgent agentz;

/*Getthe queue object ¥/
queue =ag_sess.getQueue('AQ", "qldef);

queue.unschedulePropagation(‘another_db.world");

Administrative Interface 9-71

Verify a Queue Type

Verify a Queue Type

Figure 9-21 Use Case Diagram: Verify a Queue Type

AQ Administrative
Interface

VERIFY

specify
source queue
name

specify
destination
queue

name

specify
destination

(dblink)

Purpose:

Verify that the source and destination queues have identical types. The result of the
verification is stored in sys.aq$_Message_types tables

previous output of this command.

Usage Notes

Not applicable.

Syntax

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each

programmatic environment:

9-72 Application Developer's Guide - Advanced Queuing

I . VERIFY a Queue Type

, overwriting all

Verify a Queue Type

Examples

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, VERIFY_QUEUE_TYPES procedure

« Visual Basic (O040): There is no applicable syntax reference for this use case

« Java (JDBC): There is no applicable syntax reference for this use case

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments;

« PL/SQL (DBMS_AQADM): Verify a Queue Type on page 9-73
« VB (0O040): Example not provided.
« Java (JDBC): Verify a Queue type on page 9-74

PL/SQL (DBMS_AQADM): Verify a Queue Type

Note: You may need to set up the following data structures for
certain examples to work:

EXECUTE DBMS_AQADM.CREATE_QUEUE (
gqueue name =>'aq.q2def,
gueue table =>’ag.objmsgs_qtab’);

/* Veertfy if the source and destination queues have the same type. The
function has the side effect of inserting/updating the entry for the source
and destination queues in the dictionary table AQ$ MESSAGE _TYPES %/

DECLARE

rc BINARY_INTEGER,;

BEGIN

/* Verify ifthe queues aquser.qldef and aquser.q2defin the local database
have the same payload type */
DBMS_AQADM.VERIFY_QUEUE_TYPES(

SfC_queue_name =>'ag.qldef,
dest_queue_name =>'aq.q2def

rc =>rc);
DBMS_OUTPUT.PUT_LINE(rc);
END;

Administrative Interface 9-73

Verify a Queue Type

Java (JDBC): Verify a Queue type

Feature not available through Java API

9-74 Application Developer's Guide - Advanced Queuing

Alter a Propagation Schedule

Alter a Propagation Schedule

Figure 9-22 Use Case Diagram: Alter a Propagation Schedule

AQ Administrative
Interface

- ALTER a Propogation

I * Schedule

ALTER
a Propagation

User/ Schedule

Program

default
for
duration

default for
next time
=null

default
for
latenc)

continue
until

unschedule

recheck
every 60
seconds

name
destination
as local
database

name

destination as
remote

database

duration
(seconds)

repeat
as
specified

specify
recheck
interval

Administrative Interface 9-75

Alter a Propagation Schedule

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 9-2

Purpose:
To alter parameters for a propagation schedule.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments"” for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, ALTER_QUEUE_TABLE procedure
« Visual Basic (OO40): There is no applicable syntax reference for this use case
« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ)
alterPropagationSchedule
Examples

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments;

« PL/SQL (DBMS_AQADM): Alter a Propagation Schedule on page 9-77
« VB (0O040): Example not provided.
« PL/SQL (DBMS_AQADM): Alter a Propagation Schedule on page 9-77

9-76 Application Developer's Guide - Advanced Queuing

Alter a Propagation Schedule

PL/SQL (DBMS_AQADM): Alter a Propagation Schedule

Alter a Schedule from a Queue to Other Queues in the Same Database

/*Alter schedule from queue aq.qldef to other queues in the same database ¥
EXECUTE DBMS_AQADMALTER_PROPAGATION_SCHEDULE(
Queue_name => ‘aq.qldef,
Duration => 2000,
Next ime => 'SYSDATE +3600/86400,
Latency => '32);

Alter a Schedule from a Queue to Other Queues in Another Database

/*Alter schedule from queue aq.qldef toother queues in ancther database
reached by the database link another_db.world */
EXECUTE DBMS_AQADMALTER_PROPAGATION_SCHEDULE(

Queue name => ‘aq.qldef,

Destination => ‘another_db.world’,

Duration => 2000,

Next tme => 'SYSDATE +3600/86400,

Latency = '32);

Java (JDBC): Alter a Propagation Schedule

* Alter propagation schedule from a queue to other queues
inthe same database */
public static void example(AQSession aq_sess) throws AQEXxception
{
AQQueue queus;
AQAgent agentl;
AQAgent agent?;

I Get the queue object */
queue =ag_sess.getQueue('AQ", "qldef);

queue.alterPropagationSchedule(null, new Double(2000),
"SYSDATE + 3600/86400", new Double(32));
}

F Unschedule propagation from a queue to other queues in another database */
public static void example(AQSession aq_sess) throws AQEXxception
{

AQQueue queues;

AQAgent agentl;

Administrative Interface 9-77

Alter a Propagation Schedule

AQAgent agent?;

F Get the queue object */
queue =ag_sess.getQueue('AQ", "qldef;

queue.alterPropagationSchedule(“another_db.world", new Double(2000),
"SYSDATE +3600/86400", new Double(32));

9-78 Application Developer's Guide - Advanced Queuing

Enable a Propagation Schedule

Enable a Propagation Schedule

Figure 9-23 Use Case Diagram: Enable a Propagation Schedule

ENABLE a Propagation
Interface

* Schedule

AQ Administrative I .

name

ENABLE
a Propogation
Schedule

X

User/
Program

as local
database

destination

name

destination as
remote

database

To refer to the table of all basic operations having to do with the

Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic

Operations" on page 9-2

Purpose:
To enable a previously disabled propagation schedule.

Usage Notes
Not applicable.

Syntax

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each

programmatic environment:

Administrative Interface 9-79

Enable a Propagation Schedule

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, ENABLE_PROPAGATION_SCHEDULE procedure

« Visual Basic (OO40): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ,
enablePropagationSchedule

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in

each programmatic environment. Examples are provided in the following
programmatic environments;

« PL/SQL (DBMS_AQADM): Enable a Propagation on page 9-80
« VB (0O040): Example not provided.
« Java (JDBC): Enable a Propagation Schedule on page 9-80

PL/SQL (DBMS_AQADM): Enable a Propagation

Enable Propagation from a Queue to Other Queues in the Same Database
/* Enable propagation from queuie aq.qldefto other queues in the same

database */
EXECUTE DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(

Queue_name => ‘ag.qldef);

Enable Propagation from a Queue to Queues in Another Database
/* Enable propagation from queue aqg.q1defto other queues in another
database reached by the database link another_db.world %/
EXECUTE DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
Queue_name => ‘aqg.qldef,
Destination => ‘another_db.world);

Java (JDBC): Enable a Propagation Schedule
F* Enable propagation from a queue to other queues in the same database */
public static void example(AQSession aq_sess) throws AQEXxception
{

AQQueue queus;
AQAgent agentl;

9-80 Application Developer's Guide - Advanced Queuing

Enable a Propagation Schedule

AQAgent agentz;

* Get the queue object*/
queue =ag_sess.getQueue('AQ", "qldef);

queue.enablePropagationSchedule(null);
}

¥ Enable propagation from a queue to cther queues in ancther database */
public static void example(AQSession aq_sess) throws AQEXception
{

AQQueue queus;

AQAgent agentl;

AQAgent agent?;

* Get the queue object*/
queue =ag_sess.getQueue('AQ", "qldef);

queue.enablePropagationSchedule("another_db.word");

Administrative Interface 9-81

Disable a Propagation Schedule

Disable a Propagation Schedule

Figure 9-24 Use Case Diagram: Disable a PropagationSchedule

Interface

* Schedule

AQ Administrative I - DISABLE a Propagation

name name

a DrIOS AaBléltEion destination destination as
pscr?e(?ule as local remote
User/ database database
Program T
: A A
E OR :

To refer to the table of all basic operations having to do with the
Administrative Interface see:

« "Use Case Model: Administrative Interface — Basic
Operations" on page 9-2

Purpose:
To disable a previously disabled propagation schedule.

Usage Notes
Not applicable.

Syntax

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« PL/SQL (DBMS_AQADM Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQADM, DISABLE_PROPAGATION_SCHEDULE Procedure

9-82 Application Developer's Guide - Advanced Queuing

Disable a Propagation Schedule

Examples

« Visual Basic (O040): There is no applicable syntax reference for this use case

« Java (JDBC): Oracle8i Supplied Java Packages Reference oracle.AQ)
disablePropagationSchedule

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments;

« PL/SQL (DBMS_AQADM): Enable a Propagation on page 9-80
« VB (0O040): Example not provided.
« Java (JDBC): Enable a Propagation Schedule on page 9-80

PL/SQL (DBMS_AQADM): Disable a Propagation

Enable Propagation from a Queue to Other Queues in the Same Database
/* Disable a propagation from queue aq.qldefto other queues in the sarme

database */
EXECUTE DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(

Queue_name => ‘ag.qldef);

Enable Propagation from a Queue to Queues in Another Database
/* Disable a propagation from queue aq.qldef to other queues in another
database reached by the database link another_db.world %/
EXECUTE DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
Queue_name => ‘aq.qldef,
Destination => ’another_db.world);

Java (JDBC): Disable a Propagation Schedule

* Disable propagation from a queue to other queues in the same database */
public static void example(AQSession aq_sess) throws AQEXxception
{

AQQueue queus;

AQAgent agentl;

AQAgent agentz;

Administrative Interface 9-83

Disable a Propagation Schedule

F Get the queue object */
queue =ag_sess.getQueue('AQ", "qldef’);

queue.disablePropagationSchedule(null);
}

* Disable propagation from a queue to other queues in another database */
public static void example(AQSession aq_sess) throws AQEXxception

{
AQQueue queus;

AQAgent agentl;
AQAgent agent?;

I Getthe queue object */
queue =ag_sess.getQueue(’AQ", "qldef”);

queue.disablePropagationSchedule("another_db.word");

9-84 Application Developer's Guide - Advanced Queuing

10

Administrative Interface: Views

Use Case Model

In this chapter we discuss each operation (such as "Select All Queue Tables in
Database") in terms of a use case by that name. The table listing all the use cases is
provided at the head of the chapter (see "Use Case Model: Administrative Interface
— Views" on page 10-2).

Graphic Summary of Use Case Model

A summary figure, "Use Case Diagram: Administrator’s Interface — Views", locates
all the use cases in a single drawing. If you are using the HTML version of this
document, you can use this figure to navigate to the use case in which you are
interested by clicking on the relevant use case title.

Individual Use Cases
Each use case is laid out as follows:

« Use case figure. A figure that depicts the use case (see "Preface" for a description
of how to interpret these diagrams). We describe the administrative interface
with respect to views in terms of a hybrid of use cases and state diagrams. That
is, we describe each view as a use case in terms of the operations that represents
it (such as "Select All Queue Tables in Database™). We describe each view as a
state diagram in that each attribute of the view is represented as a possible state
of the view, the implication being that any attribute (column) can be visible or
invisible.

« Syntax. The syntax used to perform this activity.

Administrative Interface: Views 10-1

Use Case Model: Administrative Interface — Views

Use Case Model: Administrative Interface — Views

Table 10-1 Use Case Model: Administrative Interface — Views

Use Case

Name of View

Select All Queue Tables in Database on page 10-4

Select User Queue Tables on page 10-7

Select All Queues in Database on page 10-10

Select All Propagation Schedules on page 10-12

Select Queues for Which User Has Any Privilege on page 10-17
Select Queues for Which User Has Queue Privilege on page 10-19
Select Messages in Queue Table on page 10-21

Select Queue Tables in User Schema on page 10-25

Select Queues In User Schema on page 10-28

Select Propagation Schedules in User Schema on page 10-30
Select Queue Subscribers on page 10-35

Select Queue Subscribers and Their Rules on page 10-37

Select the Number of Messages in Different States for the Whole
Database on page 10-39

Select the Number of Messages in Different States for Specific
Instances on page 10-41

DBA_QUEUE_TABLES
ALL_QUEUE_TABLES
DBA_QUEUES
DBA_QUEUE_SCHEDULES
ALL_QUEUES
QUEUE_PRIVILEGES
AQS$<name of queue table>
USER_QUEUE_TABLES
USER_QUEUES
USER_QUEUE_SCHEDULES
AQ$<name of queue table>_S
AQ$<name of queue table>_R

GV$AQ

VSAQ

10-2 Application Developer’s Guide - Advanced Queuing

Use Case Model: Administrative Interface — Views

Figure 10-1 Use Case Model: Administrative Interface — Views

Administrative Interface — Views

DBA_
QUEUE_
TABLES

DBA
DBA -

3 QUEUE_
QUEVES SCHEDULES

SELECT
all queue tables
in database

SELECT
all queues in
database

SELECT
all propagation
schedules

DBA
Views

ALL QUEUE_
QUEUES PRIVILEGES User
Views

SELECT
queues for which
user has queue
privilige

SELECT
queues for which
user has any
privilege

AQ$ <name USER_
of queue QUEUE_
table> TABLES

USER_ BB'EUE
QUEUES SCHEDULES

SELECT
messages in
gueue table

SELECT

user schema

gueue tables in

SELECT
queues in
user schema

SELECT
prop schedules in
user schema

AQ$<name AQ$<name
of queue of queue
table>_S table> R

SELEC

SELECT

queue
queue -
- subscribers and
subscribers their rules

Administrative Interface: Views 10-3

Select All Queue Tables in Database

Select All Queue Tables in Database

Figure 10-2 Use Case Diagram: Select All Queue Tables in Database

AQ Administrative
Interface

I . SELECT Queue Tables Accessible by User

SELECT
Queue Tables
Accessible

A USER view
- ALL_QUEUE_TABLES

User/
Program

list list

all queue attribute :—'St at
table attributes names east one
attribute

OWNER

O
N

QUEUE_ queue table
TABLE TYPE
name
message
payload RECIPIENTS
OBJECT TYPE| |SORT_ORDER as single or
multiconsumer
MESSAGE_ PRIMARY_
GROUPING COMPATIBLE INSTANCE
SECONDARY_ OWNER_ USER_
INSTANCE INSTANCE COMMENT

3)
\m_/

(o=
___/

o
_—/

10-4 Application Developer’s Guide - Advanced Queuing

Select All Queue Tables in Database

To refer to the table of all basic operations having to do with the

Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on

page 10-2

Name of View:
DBA_QUEUE_TABLES

Purpose:

This view describes the names and types of all queue tables created in the database.

Table 10-2 DBA_QUEUE_TABLES

Column Name & Description Null? Type

OWNER — queue table schema VARCHAR2(30)
QUEUE_TABLE - queue table name VARCHAR2(30)
TYPE — payload type VARCHAR2(7)
OBJECT_TYPE — name of object VARCHAR2(61)
type, if any

SORT_ORDER — user specified sort VARCHAR(22)
order

RECIPIENTS — SINGLE or MULTIPLE VARCHAR2(8)
MESSAGE_GROUPING — NONE or VARCHAR(13)
TRANSACTIONAL

COMPATIBLE — indicates the lowest VARCHAR2(5)
version with which the queue

table is compatible

PRIMARY_INSTANCE — indicates NUMBER

which instance is the primary

owner of the queue table; a value
of 0 indicates that there is no
primary owner

Administrative Interface: Views 10-5

Select All Queue Tables in Database

Table 10-2 DBA_QUEUE_TABLES

Column Name & Description Null? Type

SECONDARY_INSTANCE — indicates NUMBER
which owner is the secondary

owner of the queue table; this

instance becomes the owner of the

queue table if the primary owner

is not up; a value of O indicates

that there is no secondary owner

OWNER_INSTANCE — indicates which NUMBER
instance currently owns the queue

table

USER_COMMENT — user comment for VARCHAR2(50)

the queue table

10-6 Application Developer’s Guide - Advanced Queuing

Select User Queue Tables

Select User Queue Tables

Figure 10-3 Use Case Diagram: Select User Queue Tables

AQ Administrative
Interface

SELECT
all Queue
Tables in

User/
Program

DBA view
DBA_QUEUE_TABLES

list
all queue
table attributes

list
attribute
names

I . SELECT all Queue Tables in Database

4) QUEUE
OWNER TABLE
\ / \ name /

N N
payload
OBJECT_TYPE| |SORT_ORDER
_ /L J
N [N
MESSAGE_
GROUPING COMPATIBLE
NG J
SECONDARY_
INSTANCE

OWNER_ USER_
INSTANCE COMMENT

List at
least one
attribute

queue table
TYPE

____/

message
RECIPIENTS
as single or

\ mulitconsumer /

PRIMARY _
INSTANCE

Administrative Interface: Views 10-7

Select User Queue Tables

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 10-2

Name of View:
ALL_QUEUE_TABLES

Purpose:
This view describes queue tables accessible to a user.

Table 10-3 DBA_QUEUE_TABLES

Column Name & Description Null? Type

OWNER — owner of the queue table VARCHAR2(30)
QUEUE_TABLE - queue table name VARCHAR2(30)
TYPE — payload type VARCHAR2(7)
OBJECT_TYPE — object type, if any VARCHAR2(61)
SORT_ORDER — user-specified sort VARCHAR(22)
order

RECIPIENTS — SINGLE or MULTIPLE VARCHAR2(8)
recipient queue

MESSAGE_GROUPING — NONE or VARCHAR(13)
TRANSACTIONAL

COMPATIBLE — indicates the lowest VARCHAR2(5)

version with which the queue
table is compatible

PRIMARY_INSTANCE — indicates NUMBER
which instance is the primary

owner of the queue table; a value

of 0 indicates that there is no

primary owner

10-8 Application Developer’s Guide - Advanced Queuing

Select User Queue Tables

Table 10-3 (Cont) DBA QUEUE_TABLES

Column Name & Description

Null?

Type

SECONDARY_INSTANCE — indicates
which owner is the secondary

owner of the queue table; this

instance becomes the owner of the
queue table if the primary owner

is not up; a value of O indicates
that there is no secondary owner

OWNER_INSTANCE — indicates which
instance currently owns the queue
table

USER_COMMENT — user comment for
the queue table

NUMBER

NUMBER

VARCHAR2(50)

Administrative Interface: Views 10-9

Select All Queues in Database

Select All Queues in Database

Figure 10-4 Use Case Diagram: Select All Queues in Database

£

User/
Program

AQ Administrative
Interface

SELECT
all Queue
Tables in

DBA view:
DBA_QUEUES

I . SELECT all Queue Tables in Database

iOR :
\ v
list list List at
all queue attribute | IS ta
attributes names aet?risb l?tge
é N [N N [
OWNER Quewe QUEUE_TABLE QID
name
_ O\ /NG NG
/ \ MAX_RETRYS / \ /ENQUEUE_
QUEUE_TYPE of dequeue RETRY_DELAY ENABLED
\ / \ attempts / \ / \(true/false)
/DEQUEUE_\ 4 N ([)
ENABLED RETENTION USER_
\(true/false)) time (seconds) \COMMENT/

10-10 Application Developer’'s Guide - Advanced Queuing

Select All Queues in Database

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 10-2

Name of View:
DBA_QUEUES

Purpose:

Users can specify operational characteristics for individual queues. DBA_QUEUES
contains the view which contains relevant information for every queue in a
database.

Table 10-4 DBA QUEUES

Column Name & Description Null? Type

OWNER — queue schema name NOT NULL VARCHAR2(30)
NAME — queue name NOT NULL VARCHAR2(30)
QUEUE_TABLE — queue table where NOT NULL VARCHAR2(30)
this queue resides

QID — unique queue identifier NOT NULL NUMBER

QUEUE_TYPE — queue type VARCHAR2(15)
MAX_RETRIES — number of dequeue NUMBER
attempts allowed

RETRY_DELAY — number of seconds NUMBER

before retry can be attempted

ENQUEUE_ENABLED — YES/NO VARCHAR2(7)
DEQUEUE_ENABLED — YES/NO VARCHAR2(7)
RETENTION — number of seconds VARCHAR2(40)
message is retained after dequeue

USER_COMMENT — user comment for the VARCHAR2(50)
queue

Administrative Interface: Views 10-11

Select All Propagation Schedules

Select All Propagation Schedules

Figure 10-5 Use Case Diagram: Select All Propagation Schedules

AQ Administrative
Interface

I . SELECT all Propagation Schedules

list ; List at
% | all glilﬁgg;tion _ _f— DBAview: all propagation attlrlisbtute least one
Schedul DBA_QUEUE_ schedule hames attribute
User/ cheduies SCHEDULES attributes
2rogram N
NS ssssssssEEsEsssEsssssssssssssssssssas 4\ .
:OR :

continued on next page

10-12 Application Developer’'s Guide - Advanced Queuing

Select All Propagation Schedules

/SCHEMA \ DESTINATION i iai
name of owner Qé\#ﬁl:gE db link for original original
f SR START_DATE START_TIME
of source source queue destination -
queue gueues \ / \ /
function /SCHEDULE_ [PrROCESS_ \
PROPAGATION_ to compute LATENCY wait DISABLED NAME —
WINDOW NEXT_TIME (seconds) (N = enabled, executing
_ (seconds) . \Y = disabled) / sched.
/SESSION_ID) [INSTANCE only applicable /LAST_RUN_Y (LAST_RUN_\
of the job number h DATE of TIME of
executing executing in OPS N successful sched. | |successful sched.
__ sched.” A_ sched. environmen _ execution / \ execution /
T T
N Sooooooo
RRENT CURRENT) ('NEXT RUN_\ [\
(SURRENT.) (rems vut | siarmie | [Bireamen | [Mdronte
of current sched. gxnec():tu(t:il#]rrently of current sched. sched. sched.
\ execution / 9 execution _ exeution / \ execution /
T

AX_NUMBERY) ('TOTAL TIME'\ (fOTAL NUMBER) (7oTAL BYTES) ¢ Returns NULL
of messages executing of messages propagated in if currently
propagated sched. propagated in executing sched. executing
in window \ (seconds) / Q(ecuung schecy \ /
AVG_NUMBER) (MAX _BYTES\ (AVG SIZEof \ (AVG_TIMEto\ [FAILURES
of messages of bytetS J a propagated propagate a number of times
propagated propagate message message execution failed
in window _in window A\ (bytes) / _ (seconds) /
T
LAST_ERROR /LAST_ERRO% (AST_ERRO% A Schedule is
DATE of _TIME of last _MSG (error disabled on
unsucessful unsuccessful number and error 16th failure
execution execution \message text) /

To refer to the table of all basic operations having to do with the
Operational Interface see:

page 10-2

"Use Case Model: Administrative Interface — Views" on

Administrative Interface: Views 10-13

Select All Propagation Schedules

Name of View:
DBA_QUEUE_SCHEDULES

Purpose:
This view describes the current schedules for propagating messages.

Table 10-5 DBA_QUEUE_SCHEDULES

Column Name & Description Null? Type

SCHEMA — schema name for the source NOT NULL VARCHAR2(30)
queue

QNAME — source queue name NOT NULL VARCHAR2(30)
DESTINATION — destination name, NOT NULL VARCHAR2(128)
currently limited to be a DBLINK

name

START_DATE — date to start DATE
propagation in the default date

format

START_TIME — time of day at which VARCHAR2(8)
to start propagation in HH:MI:SS

format

PROPAGATION_WINDOW — duration in NUMBER
seconds for the propagation window

NEXT_TIME — function to compute the VARCHAR2(200)
start of the next propagation

window

LATENCY — maximum wait time to NUMBER

propagate a message during the
propagation window.

SCHEDULE_DISABLED — N if enabled Y VARCHAR(1)
if disabled and schedule will not
be executed

PROCESS_NAME — The name of the SNP VARCHAR2(8)
background process executing this

schedule. NULL if not currently

executing

SESSION_ID — The session ID (SID , NUMBER
SERIAL#) of the job executing this

schedule. NULL if not currently

executing

10-14 Application Developer’s Guide - Advanced Queuing

Select All Propagation Schedules

Table 10-5 (Cont) DBA QUEUE_SCHEDULES

Column Name & Description Null? Type
INSTANCE — The OPS instance number NUMBER
executing this schedule

LAST_RUN_DATE — The date on the DATE

last successful execution

LAST_RUN_TIME — The time of the VARCHAR2(8)
last successful execution in
HH:MI:SS format

CURRENT_START_DATE — Date at which DATE
the current window of this schedule
was started

CURRENT_START_TIME — Time of day VARCHAR2(8)
at which the current window of this
schedule was started in HH:MI:SS

format

NEXT_RUN_DATE — Date at which the DATE

next window of this schedule will

be started

NEXT_RUN_TIME — Time of day at VARCHAR2(8)

which the next window of this
schedule will be started in
HH:MI:SS format

TOTAL_TIME — Total time in seconds NUMBER
spent in propagating messages from
the schedule

TOTAL_NUMBER — Total number of NUMBER
messages propagated in this

schedule

TOTAL_BYTES — Total number of bytes NUMBER
propagated in this schedule

MAX_NUMBER — The maximum number of NUMBER

messages propagated in a
propagation window

MAX_BYTES — The maximum number of NUMBER
bytes propagated in a propagation

window

AVG_NUMBER —Fhe average number of NUMBER

messages propagated in a propagation window

Administrative Interface: Views 10-15

Select All Propagation Schedules

Table 10-5 (Cont) DBA QUEUE_SCHEDULES

Column Name & Description Null? Type
AVG_SIZE — The average size of a NUMBER
propagated message in bytes

AVG_TIME — The average time, in NUMBER
seconds, to propagate a message

FAILURES — The number of times the NUMBER

execution failed. If 16, the
schedule will be disabled

LAST _ERROR_DATE — The date of the DATE

last unsuccessful execution

LAST_ERROR_TIME — The time of the VARCHAR2(8)
last unsuccessful execution

LAST_ERROR_MSG — The error number VARCHAR2(4000)

and error message text of the last
unsuccessful execution

10-16 Application Developer’'s Guide - Advanced Queuing

Select Queues for Which User Has Any Privilege

Select Queues for Which User Has Any Privilege

Figure 10-6 Use Case Diagram: Select Queues for which User has Any Privilege

£

User/
Program

AQ Administrative « SELECT the
Interface * User has any

User view:
- ALL_QUEUES

ueues for which the

rivilege

list
all queue
attributes

list

; List at
attribute
names least one
attribute

OWNER
of queue

NAME
of queue

O

name of .
QUEUE_TABLE QID n?é’é?“
queue data ofu e

resides in a

QUELE_TYPE MAX_RETRIES
R AV?//Ob' ect allowed when
I dequeuing

Type)

RETRY_DELAY

between retries

interval

ENQUEUE_
ENABLED

\G& =/

(seconds)

ENABLED messages

RETENTION
DEQUEUE_ interval
kept in queue

o)
___/

USER_
COMMENT
optional
information

N

To refer to the table of all basic operations having to do with the

Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on

page 10-2

Administrative Interface: Views 10-17

Select Queues for Which User Has Any Privilege

Name of View:
ALL_QUEUES

Purpose:
This view describes all queues accessible to the user.

Table 10-6 ALL_QUEUES

Column Name & Description Null? Type

OWNER — Owner of the queue NOT NULL VARCHAR2(30)
NAME — Name of the queue NOT NULL VARCHARZ2(30)
QUEUE_TABLE — Name of the table the NOT NULL VARCHAR2(30)
gueue data resides in

QID — Object number of the queue NOT NULL NUMBER
QUEUE_TYPE — Type of the queue VARCHAR2(15)
MAX_RETRIES — Maximum number of NUMBER
retries allowed when dequeuing from

the queue

RETRY_DELAY — Time interval between NUMBER
retries

ENQUEUE_ENABLED — Queue is enabled VARCHAR2(7)
for enqueue

DEQUEUE_ENABLED — Queue is enabled VARCHAR2(7)
for dequeue

RETENTION — Time interval processed VARCHAR2(40)
messages retained in the queue

USER_COMMENT — User specified VARCHAR2(50)
comment

10-18 Application Developer’s Guide - Advanced Queuing

Select Queues for Which User Has Queue Privilege

Select Queues for Which User Has Queue Privilege

Figure 10-7 Use Case Diagram: Select Queues for which User has Queue Privilege

£

User/
Program

AQ Administrative § - SELECT the Queues for which
Interface * the User has any Privilege

SELECT
queues for which
user has queue

User view:
- - QUEUE_PRIVILEGES

list list .
all queue attribute List at
attributes names least one
attribute
GRANTEE
to whom OWNER NAME GRANTOR
access was of the queue of the queue who performed
grant the grant
ENQUEUE_ DEQUEUE_
PRIVILEGE to PRIVILEGE
ENQUEUE to the to DEQUEUE
queue from the queue

To refer to the table of all basic operations having to do with the
Operational Interface see:

=« "Use Case Model: Administrative Interface — Views" on
page 10-2

Name of View:
QUEUE_PRIVILEGES

Administrative Interface: Views 10-19

Select Queues for Which User Has Queue Privilege

Purpose:

This view describes queues for which the user is the grantor, or grantee, or owner,
or an enabled role or the queue is granted to PUBLIC.

Table 10-7 QUEUE_PRIVILEGES

Column Name & Description Null? Type
GRANTEE — Name of the user to whom NOT NULL VARCHAR2(30)
access was granted
OWNER — Owner of the queue NOT NULL VARCHAR2(30)
NAME — Name of the queue NOT NULL VARCHAR2(30)
GRANTOR — Name of the user who NOT NULL VARCHAR2(30)
performed the grant
ENQUEUE_PRIVILEGE — Permission to NUMBER(1 if
ENQUEUE to the queue granted, O if

not)
DEQUEUE_PRIVILEGE — Permission to NUMBER(1 if
DEQUEUE to the queue granted, O if

not)

10-20 Application Developer’'s Guide - Advanced Queuing

Select Messages in Queue Table

Select Messages in Queue Table

Figure 10-8 Use Case Diagram: Select Messages in Queue Table

AQ Administrative . .
Inferface I . SELECT Messages in Queue Table
SELECT -
. User view:
E?_\ - Messages in -- ~|éI
User) Queue Table AQ$<name of queue table>
Program
Tsssssssssssssssssssssssssssssssa .
'OR H
\4 v
list list .
all queue attribute IL'St at
table attributes names :t?rislglj’tge
QUEUE MSG_ID CORR_ID MSG MSG_STATE
hame of the user-provided PRIORITY of this message
\) message __ identifier)\ Y. J
(" message) (EXPIRATION 4 N [N N
interval
(sl?elélc;ﬁc](s) message expires ENQ_TIME ENQ_USER_ID ENQ_TXN_ID
_ . (seconds) _ O\ /L /
/ \ / \ / \ / \ @XCEPTION_\
DEQ_TIME DEQ_USER_ID DEQ_TXN_ID NS SX%Eegﬁar?‘éVuNeiFé
_ /NG /NG / _/ __schema /
e e N N\ [/ SENDER_ \ [SENDER_ \
EXCEPTION_ USER DATA SENDER_NAME ADDRESS of PROTOCOL
QUEUE — enqueing the last propagation for sender
_ name _ . _ message J _ queue /J \ address /
ORIGINAL_ (coNsUMER_\ (” aopress) [proTocoL) (PROPAGATED.)
of message in a’g\leArl'\tAFegffeit\t}ﬁg of agent for recelvind fecg/il\%f%l gglgnt's
source queue \ message / \ recewing / Qgentsaddrei \ queue

Administrative Interface: Views 10-21

Select Messages in Queue Table

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 10-2

Name of View:
Select messages in Queue Table

Purpose:

This view describes the queue table in which message data is stored. This view is
automatically created with each queue table and should be used for querying the
gueue data. The dequeue history data (time, user identification and transaction
identification) is only valid for single consumer queues.

Table 10-8 Select Messages in Queue Table

Column Name & Description Null? Type

QUEUE — queue name VARCHAR2(30)
MSG_ID — unique identifier of the RAW(16)
message

CORR_ID — user-provided correlation VARCHAR2(128)
identifier

MSG_PRIORITY — message priority NUMBER
MSG_STATE — state of this message VARCHAR2(9)
DELAY — number of seconds the DATE

message is delayed

EXPIRATION — number of seconds in NUMBER
which the message will expire after

being READY

ENQ_TIME — enqueue time DATE
ENQ_USER_ID — enqueue user id NUMBER
ENQ_TXN_ID — enqueue transaction id NOT NULL VARCHAR2(30)
DEQ_TIME — dequeue time DATE
DEQ_USER_ID — dequeue user id NUMBER

10-22 Application Developer’'s Guide - Advanced Queuing

Select Messages in Queue Table

Table 10-8 (Cont.) Select Messages in Queue Table

Column Name & Description

Type

DEQ_TXN_ID — dequeue transaction id
RETRY_COUNT — number of retries

EXCEPTION_QUEUE_OWNER — exception

gueue schema

EXCEPTION_QUEUE — exception queue
name

USER_DATA — user data

SENDER_NAME — name of the Agent
enqueuing the message (valid only
for 8.1-compatible queue tables)

SENDER_ADDRESS — queue name and
database name of the source (last
propagating) queue; the database

name is not specified if the source
gueue is in the local database

(valid only for 8.1-compatible

queue tables)

SENDER_PROTOCOL — protocol for
sender address, reserved for future
use (valid only for 8.1-compatible
queue tables)

ORIGINAL_MSGID — message id of the
message in the source queue (valid

only for 8.1-compatible queue

tables)

CONSUMER_NAME — name of the Agent
receiving the message (valid ONLY

for 8.1-compatible MULTICONSUMER
gueue tables)

ADDRESS — address (queue name and
database link name) of the agent
receiving the message.The database

link name is not specified if the

address is in the local database.

The address is NULL if the

receiving agent is local to the

queue (valid ONLY for

8.1-compatible MULTICONSUMER queue
tables)

VARCHAR2(30)
NUMBER
VARCHAR2(30)

VARCHAR2(30)

BLOB
VARCHAR2(30)

VARCHAR2(1024)

NUMBER

RAW(16)

VARCHAR2(30)

VARCHAR2(1024)

Administrative Interface: Views 10-23

Select Messages in Queue Table

Table 10-8 (Cont.) Select Messages in Queue Table

Column Name & Description Null? Type

PROTOCOL — protocol for receiving NUMBER
agent’s address (valid only for
8.1-compatible queue tables)

PROPAGATED_MSGID — message id of NULL RAW(16)
the message in the receiving
agent's queue (valid only for
8.1-compatible queue tables)

10-24 Application Developer’'s Guide - Advanced Queuing

Select Queue Tables in User Schema

Select Queue Tables in User Schema

Figure 10-9 Use Case Diagram: Select Queue Tables in User Schema

AQ Administrative
Interface

SELECT
Queue
Tables in User

User/

User view:
- USER_QUEUE_TABLES

Program

list
attribute
names

I . SELECT Queue Tables in User Schema

List at
least one
attribute

QUEUE_TABLE
name

queue table payload
TYPE OBJECT_TYPE

_ 3/ _m/

o

RECIPIENTS
SORT_ORDER (single or ggg‘fﬁ:ﬁf@
multiconsumer)
COMPATIBLE PRIMARY_ SECONDARY_
(8.0 0r 8.1) INSTANCE INSTANCE

OWNER_
INSTANCE

-
N

USER_
COMMENT

Administrative Interface: Views

10-25

Select Queue Tables in User Schema

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 10-2

Name of View:
USER_QUEUE_TABLES

Syntax:

This view is the same as DBA_QUEUE_TABLE®ith the exception that it only shows
gueue tables in the user’s schema. It does not contain a column for OWNER

Table 10-9 USER_QUEUE_TABLES

Column Name & Description Null? Type
QUEUE_TABLE - queue table name VARCHAR2(30)
TYPE — payload type VARCHAR2(7)
OBJECT_TYPE — name of object type, VARCHAR2(61)
if any

SORT_ORDER — user specified sort VARCHAR2(22)
order

RECIPIENTS — SINGLE or MULTIPLE VARCHAR2(8)
MESSAGE_GROUPING — NONE or VARCHAR2(13)
TRANSACTIONAL

COMPATIBLE — indicates the lowest VARCHAR2(5)
version with which the queue table

is compatible

PRIMARY_INSTANCE — indicates which NUMBER

instance is the primary owner of
the queue table; a value of 0
indicates that there is no primary
owner

10-26 Application Developer’'s Guide - Advanced Queuing

Select Queue Tables in User Schema

Table 10-9 USER_QUEUE_TABLES

Column Name & Description

Type

SECONDARY_INSTANCE — indicates
which owner is the secondary owner

of the queue table; this instance
becomes the owner of the queue

table if the primary owner is not

up; a value of 0 indicates that

there is no secondary owner

OWNER_INSTANCE — indicates which
instance currently owns the queue
table

USER_COMMENT — user comment for the
queue table

NUMBER

NUMBER

VARCHAR2(50)

Administrative Interface: Views 10-27

Select Queues In User Schema

Select Queues In User Schema

Figure 10-10 Use Case Diagram: Select Queues in User Schema

AQ Administrativ . .
m?e,fgce strative I . SELECT Queue Tables in User Schema
f i_\ . que%ELtaElg:lgs in)- -| User view:
User/ user schema USER_QUEUES
Program .
iOR :
\ \
list list .
all queue attribute - List at
attributes names least one
attribute
Quewe] QUE%EELAB'a [QID QUEUE_TYPE
/MAX RETRQ) ENQUEUE_ DEQUEUE_
for aequeue RETRY_DELAY ENABLED ENABLED
\ attempts / / (true/false) (true/false)
RETENTION USER_
time (seconds) COMMENT/

10-28 Application Developer’s Guide - Advanced Queuing

Select Queues In User Schema

To refer to the table of all basic operations having to do with the

Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on

page 10-2

Name of View:
USER_QUEUES

Purpose:

This view is the same as DBA_QUEUE®ith the exception that it only shows queues

in the user’s schema.

Table 10-10 USER_QUEUES

Column Name & Description Type

NAME — queue name NOT NULL VARCHAR2(30)
QUEUE_TABLE — queue table where NOT NULL VARCHAR2(30)
this queue resides

QID — unique queue identifier NOT NULL NUMBER

QUEUE_TYPE — queue type VARCHAR2(15)
MAX_RETRIES — number of dequeue NUMBER
attempts allowed

RETRY_DELAY — number of seconds NUMBER

before retry can be attempted

ENQUEUE_ENABLED — YES/NO VARCHAR2(7)
DEQUEUE_ENABLED — YES/NO VARCHAR2(7)
RETENTION — number of seconds VARCHAR2(40)
message is retained after dequeue

USER_COMMENT — user comment for the VARCHAR2(50)

queue

Administrative Interface: Views 10-29

Select Propagation Schedules in User Schema

Select Propagation Schedules in User Schema

Figure 10-11 Use Case Diagram: Select Propagation Schedules in User Schema

AQ Administrative

I . SELECT Propagation Schedules in User Schema

Interface
. list ; A List at
E é . ProSaELSEr%gules - o User view: all propagation attlrlisbtute least one
inUser Schema USER QUELE_ schedule names 7| atibute
User/ SCHEDULES attributes
Program N
e eemeaeeeesesssseesesssssessesssessans A
:OR :

continued on next page

10-30 Application Developer’s Guide - Advanced Queuing

Select Propagation Schedules in User Schema

73

QNAME DEdSbT I'i’r\]‘@g?'\‘ original original PROPAGATION_
of the destination START_DATE START_TIME WINDOW
\source queue/ queues (seconds)

(" function) \ /SCHEDULE_\ [PROCESS_
10 compute LATENCY wait DISABLED NAME

SESSION_ID
of the job
executing

NEXT_TIME (seconds) (N = enabled, executing
sched.

\ Y = disabled) / ;

IR :
e | onpeae (VTG) (A V(AR
: .

1

N

schedule

current sched
execution

executing in OPS successful sched. successful sched.

\ sched. / environment \execution/

execution

CURRENT_ /NEXT RUN \ NEXT_RUN A
!?eturns NUL|L START_T|ME DATE Bf nexT T|ME_Of nexT :?([a:turrrr;tll\lULL
if not (;_urrent y of current sched. sched. sched. exeucu in y
executing execution _ execution _/ execution 9
1

MAX_NUMBER
of messages
propagated

in window

sched. propagated in executing propagated
(seconds) executing sched sched. in window

TOTAL_TIME OTAL_NUMBER TOTAL_BYTES @/G_NUMBE&
executing of messages propagated in of messages

O)

of bytes a propagated propagate a number of times |- o disabled on
propagated message message execution failed 16th failure
_in window /) (bytes) (seconds)

LAST_ERROR LAST_ERROR AST_ERROR
_DATE of _TIME of last _MSG (error

unsucessful unsuccessful number and error
execution execution message text)

A/IAX_BYTES\ AVG_SIZE o} CVG_TIME t(ﬁ FAILURES ﬁ Schedule is

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 10-2

Administrative Interface: Views 10-31

Select Propagation Schedules in User Schema

Name:
USER_QUEUE_SCHEDULES

Purpose

Table 10-11 USER_QUEUE_SCHEDULES

Column Name & Description Null? Type

QNAME — source queue name NOT NULL VARCHAR2(30)
DESTINATION — destination name, NOT NULL VARCHAR2(128)
currently limited to be a DBLINK

name

START_DATE — date to start DATE
propagation in the default date

format

START_TIME — time of day at which VARCHAR2(8)
to start propagation in HH:MI:SS

format

PROPAGATION_WINDOW — duration in NUMBER
seconds for the propagation window

NEXT_TIME — function to compute the VARCHAR2(200)
start of the next propagation

window

LATENCY — maximum wait time to NUMBER

propagate a message during the
propagation window.

SCHEDULE_DISABLED —N if enabled Y if VARCHAR(2)
disabled and schedule will not be executed
PROCESS_NAME — The name of the SNP VARCHAR2(8)

background process executing this
schedule. NULL if not currently
executing

SESSION_ID — The session ID (SID, VARCHAR2(82)
SERIAL#) of the job executing this

schedule. NULL if not currently

executing

INSTANCE — The OPS instance number NUMBER
executing this schedule

10-32 Application Developer’'s Guide - Advanced Queuing

Select Propagation Schedules in User Schema

Table 10-11 (Cont.) USER_QUEUE_SCHEDULES

Column Name & Description Null? Type
LAST_RUN_DATE — The date on the DATE

last successful execution

LAST_RUN_TIME — The time of the VARCHAR2(8)

last successful execution in
HH:MI:SS format

CURRENT_START_DATE — Date at which DATE
the current window of this schedule
was started

CURRENT_START_TIME — Time of day at VARCHAR2(8)
which the current window of this
schedule was started in HH:MI:SS

format

NEXT_RUN_DATE — Date at which the DATE

next window of this schedule will

be started

NEXT_RUN_TIME — Time of day at VARCHAR2(8)

which the next window of this
schedule will be started in
HH:MI:SS format

TOTAL_TIME — Total time in seconds NUMBER
spent in propagating messages from
the schedule

TOTAL_NUMBER — Total number of NUMBER
messages propagated in this

schedule

TOTAL_BYTES — Total number of bytes NUMBER
propagated in this schedule

MAX_NUMBER — The maximum number of NUMBER

messages propagated in a
propagation window

MAX_BYTES — The maximum number of NUMBER
bytes propagated in a propagation

window

AVG_NUMBER —Fhe average number of NUMBER
messages propagated in a propagation window

AVG_SIZE — The average size of a NUMBER

propagated message in bytes

Administrative Interface: Views 10-33

Select Propagation Schedules in User Schema

Table 10-11 (Cont) USER_QUEUE_SCHEDULES

Column Name & Description Null? Type
AVG_TIME — The average time, in NUMBER
seconds, to propagate a message

FAILURES — The number of times the NUMBER

execution failed. If 16, the
schedule will be disabled

LAST_ERROR_DATE — The date of the DATE

last unsuccessful execution

LAST _ERROR_TIME — The time of the VARCHAR2(8)
last unsuccessful execution

LAST_ERROR_MSG — The error number VARCHAR2(4000)

and error message text of the last
unsuccessful execution

10-34 Application Developer’'s Guide - Advanced Queuing

Select Queue Subscribers

Select Queue Subscribers

Figure 10-12 Use Case Diagram: Select Queue Subscribers

AQ Administrative
Interface

I . SELECT Queue Subscribers

SELECT
Queue
Subscribers

£

User/
Program

User view
7| AQ$<queue_table_name>_S

list

all queue attribute IL'St tat
subscriber names east one
attributes attribute

QUEUE NAME ADDRESS PROTOCOL

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 10-2

Name of View:
AQ$<queue_table_name>_ S

Administrative Interface: Views 10-35

Select Queue Subscribers

Purpose:

This is a view of all the subscribers for all the queues in any given queue table. This
view is generated when the queue table is created and is called ag$<queue__
table_name>_s .This view is used to query subscribers for any or all the queues in
this queue table. Note that this view is only created for 8.1-compatible queue tables.

Table 10-12 AQ$<queue_table_name>_S

Column Name & Description Null? Type

QUEUE - name of Queue for which NOT NULL VARCHAR2(30)
subscriber is defined

NAME - name of Agent VARCHAR2(30)
ADDRESS - address of Agent VARCHAR2(1024)
PROTOCOL - protocol of Agent NUMBER

Usage Notes

For queues created in 8.1-compatible queue tables, this view provides functionality
that is equivalent to the dbms_agadm.queue_subscribers() procedure. For these
gueues, it is recommended that the view be used instead of this procedure to view
gueue subscribers.

10-36 Application Developer’s Guide - Advanced Queuing

Select Queue Subscribers and Their Rules

Select Queue Subscribers and Their Rules

Figure 10-13 Use Case Diagram: Select Queue Subscribers and their Rules

£

User/
Program

AQ Administrative
Interface

I . SELECT Queue Subscriber and Rules

SELECT
Queue Sub-
scriber and

User view
=~ AQ$<queue_table_name>_R

'OR

\4

list]
all queue attribute lL'St ?t
subscriber names east one
attributes attribute

QUEUE NAME ADDRESS PROTOCOL
RULE

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 10-2

Name of View:

Administrative Interface: Views

10-37

Select Queue Subscribers and Their Rules

AQ%$<queue_table_name> R

Purpose:

This view displays only the rule based subscribers for all queues in a given queue
table including the text of the rule defined by each subscriber. This is a view of
subscribers with rules defined on any queues of a given queue table. This view is
generated when the queue table is created and is called ag$<queue_table_name> r.
It is used to query subscribers for any or all the queues in this queue table. Note that
this view is only created for 8.1-compatible queue tables.

Table 10-13 AQ$<queue_table_name> R

Column Name & Description Null? Type

QUEUE - name of Queue for which NOT NULL VARCHAR2(30)
subscriber is defined

NAME - name of Agent VARCHAR2(30)
ADDRESS - address of Agent VARCHAR2(1024)
PROTOCOL - protocol of Agent NUMBER

RULE - text of defined rule VARCHAR2(30)

10-38 Application Developer’s Guide - Advanced Queuing

Select the Number of Messages in Different States for the Whole Database

Select the Number of Messages in Different States for the Whole

Database

Figure 10-14 Select the Number of Messages in Different States for the Whole
Database

£

User/
Program

Interface * for Whole Database

USER view
- GV$AQ

AQ Administrative I » SELECT Number of Messages in States

SELECT
Number of Msgs
in States for

Whole Db
10R :
v v
list list H
all queue attribute gg;?gne
statistics names attribute

number msgs

QID number msgs
READY

of queue WAITING

TOTAL_WAIT
seconds
‘ready’

number msgs

AVERAGE_WAIT

EXPIRED seconds

‘ready’

Administrative Interface: Views 10-39

Select the Number of Messages in Different States for the Whole Database

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 10-2

Name of View:
GV$AQ

Purpose:
Provides information about the number of messages in different states for the whole
database.

Table 10-14 AQ$<queue_table_name>_R

Column Name & Description Null? Type

QID — the identity of the queue. This is the NUMBER
same as the gid inuser_queues and dba_

queues.

WAITING — the number of messages in the NUMBER
state 'WAITING'.

READY— the number of messages in state NUMBER
'READY.

EXPIRED— the number of messages in state NUMBER
'EXPIRED.

TOTAL_WAIT— the number of seconds for NUMBER

which messages in the queue have been wait-
ing in state 'READY

AVERAGE_WAIF the average number of sec- NUMBER
onds a message in state 'READY has been wait-
ing to be dequeued.

10-40 Application Developer’s Guide - Advanced Queuing

Select the Number of Messages in Different States for Specific Instances

Select the Number of Messages in Different States for Specific

Instances

Figure 10-15 Select the Number of Messages in Different States for Specific

AQ Administrative

I . SELECT Number of Messages in States for Instances

USER view
- - V$AQ

list list

i List at
thla?ig?igg aﬁg}?gf least one
attribute

number msgs

QID number msgs
READY

of queue WAITING

TOTAL_WAIT
seconds
'ready’

AVERAGE_WAIT

number msgs
seconds
'ready’

EXPIRED

Administrative Interface: Views 10-41

Select the Number of Messages in Different States for Specific Instances

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Administrative Interface — Views" on
page 10-2

Name of View:
V$AQ

Purpose:

Provides information about the number of messages in different states for specific
instances.

Table 10-15 AQ$<queue_table_name>_R

Column Name & Description Null? Type

QID — the identity of the queue. This is the NUMBER
same as the gid inuser_queues and dba_

queues.

WAITING — the number of messages in the NUMBER
state 'WAITING'.

READY— the number of messages in state NUMBER
'READY.

EXPIRED— the number of messages in state NUMBER
'EXPIRED.

TOTAL_WAIT— the number of seconds for NUMBER

which messages in the queue have been wait-
ing in state 'READY

AVERAGE_WAIF the average number of sec- NUMBER
onds a message in state 'READY has been wait-
ing to be dequeued.

10-42 Application Developer’'s Guide - Advanced Queuing

11

Operational Interface: Basic Operations

Use Case Model

In this chapter we describe the operational interface to Oracle Advanced Queuing
in terms of use cases. That is, we discuss each operation (such as "Enqueue a
Message") as a use case by that name. The table listing all the use cases is provided
at the head of the chapter (see "Use Case Model: Operational Interface — Basic
Operations" on page 11-2).

Graphic Summary of Use Case Model

A summary figure, "Use Case Diagram: Operational Interface — Basic Operations”,
locates all the use cases in a single drawing. If you are using the HTML version of
this document, you can use this figure to navigate to the use case in which you are
interested by clicking on the relevant use case title.

Individual Use Cases
Each use case is laid out as follows:

« Use case figure. A figure that depicts the use case.

« Purpose. The purpose of this use case.

« Usage Notes. Guidelines to assist implementation.

« Syntax. The main syntax used to perform this activity.

« Examples. Examples in each programmatic environment which illustrate the
use case.

Operational Interface: Basic Operations 11-1

Use Case Model: Operational Interface — Basic Operations

Use Case Model: Operational Interface — Basic Operations

Table 11-1, "Use Case Model: Operational Interface" indicates with a + where
examples are provided for specific use cases and in which programmatic

environment.

The table refers to programmatic environments with the following abbreviations:
« P —PL/SQL using the DBMS_AQADM and DBMS_AQ packages

« O — Cusing OCI (Oracle Call Interface)

« V — Visual Basic using O040 (Oracle Objects for OLE)

« J—Java (native AQ) using JDBC (Java Database Connectivity)

« JM —Java (JMS standard) using JDBC (Java Database Connectivity)

Table 11-1 Use Case Model: Operational Interface

Use Case

Programmatic
Environment Examples

Engueue a Message on page 11-5
Enqueue a Message [Specify Options] on page 11-7
Enqueue a Message [Specify Message Properties] on page 11-10
Enqueue a Message [Add Payload] on page 11-15
Listen to One (Many) Queue(s) on page 11-23
Listen to One (Many) Single-Consumer Queue(s) on page 11-25
Listen to One (Many) Multi-Consumer Queue(s) on page 11-36
Dequeue a Message on page 11-45

Dequeue a Message from a Single-Consumer Queue [Specify Options] on
page 11-49

Dequeue a Message from a Multi-Consumer Queue [Specify Options] on
page 11-54

11-2 Application Developer’s Guide - Advanced Queuing

p O V J IM

+ + +
+ + +
+ + +
+ o+ o+

Use Case Model: Operational Interface — Basic Operations

Table 11-1 Use Case Model: Operational Interface (Cont.)

Programmatic
Use Case Environment Examples
Register for Notification on page 11-57
Register for Notification [Specify Subscription Name — Single-Consumer Queue] +
on page 11-60
Register for Notification [Specify Subscription Name — Multi-Consumer Queue] +

on page 11-61

Operational Interface: Basic Operations 11-3

Use Case Model: Operational Interface — Basic Operations

Figure 11-1 Use Case Model Diagram: Operational Interface

Advanced Queuing — Operational Interface

ENQUEUE
a message

LISTEN
to
queue(s)

-

DEQUEUE
a message

User/
Program

L

REGISTER
for
notification

receive
notification

11-4 Application Developer’s Guide - Advanced Queuing

Enqueue a Message

Enqueue a Message

Figure 11-2 Use Case Diagram: Enqueue a Message

AQ Operational
Interface

. ENQUEUE a Message

ENQUEUE
a Message

>

specify
queue name

specify
options

specify
message
properties

add
payload

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Operational Interface — Basic Operations" on

page 11-2

Purpose:

Adds a message to the specified queue.

Operational Interface: Basic Operations 11-5

Enqueue a Message

Usage Notes

Syntax

Examples

If a message is enqueued to a multi-consumer queue with no recipient and the
gueue has no subscribers (or rule-based subscribers that match this message),
then the Oracle error ORA 24033 is raised. This is a warning that the message
will be discarded since there are no recipients or subscribers to whom it can be
delivered.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

PL/SQL (DBMS_AQ Package): Oracle8i Supplied PL/SQL Packages Reference
DBMS_AQ, ENQUEUE procedure

Visual Basic (O040) (Oracle Objects for OLE (O040) Online Help): From Help
Topics, Contents tab, select OO40 Automation Server > OBJECTS > OraAQ

Java (JDBC): Oracle8i Supplied Java Packages Reference,oracle.jms,
AQOracleQueue.enque

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

PL/SQL (DBMS_AQ Package): Enqueue of Object Type Messages on page 11-17
Java (JDBC): Enqueue a message (add payload) on page 11-19
Visual Basic (O040): Enqueue a message on page 11-21

11-6 Application Developer’s Guide - Advanced Queuing

Enqueue a Message [Specify Options]

Enqueue a Message [Specify Options]

Figure 11-3 Use Case Diagram: Enqueue a Message [Specify Options]

Interface

AQ Operational

- | Enqueue a
* | Message

Enqueue
a message

SPECIFY
options

default for
sequence
deviation

show

relative msgid

put
next in
sequence

I — SPECIFY Options

Only value v

allowed for

non-persistent | ~ show show
queue immediately on commit

default
= for visibility

Specify a value only if
sequence deviation is
specified as BEFORE
a specified message

put
before specified
message

put
before all
messages

To refer to the table of all basic operations having to do with the

Oper

ational Interface see:

« "Use Case Model: Operational Interface — Basic Operations" on
page 11-2

Operational Interface: Basic Operations

11-7

Enqueue a Message [Specify Options]

Purpose

Usage Notes

Syntax

To specify the options available for the enqueue operation.

Do not use the immediate option when you want to use LOB locators since LOB
locators are valid only for the duration of the transaction. As the immediate option
automatically commits the transaction, your locator will not be valid.

The sequence deviation parameter in enqueue options can be used to
change the order of processing between two messages. The identity of the other
message, if any, is specified by the enqueue options parameter relative msgid.
The relationship is identified by the sequence deviation parameter.

Specifying sequence deviation for a message introduces some restrictions
for the delay and priority values that can be specified for this message. The
delay of this message has to be less than or equal to the delay of the message
before which this message is to be enqueued. The priority of this message has to
be greater than or equal to the priority of the message before which this
message is to be enqueued.

The visibility option must be immediate for non-persistent queues.

Only local recipients are supported are supported for non-persistent queues.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

PL/SQL (DBMS_AQ Package): Oracle8i Supplied PL/SQL Packages Reference DBMS
AQ, ENQUEUE Procedure

Visual Basic (O040) (Oracle Obijects for OLE (O040) Online Help): From Help
Topics, Contents tab, select O0O40 Automation Server > OBJECTS > OraAQ

Java (JDBC): Oracle8i Supplied Java Packages Reference,oracle.jms, AQ Enqueue
Option

11-8 Application Developer’s Guide - Advanced Queuing

Enqueue a Message [Specify Options]

Examples

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

« PL/SQL (DBMS_AQ Package): Enqueue of Object Type Messages on page 11-17
« Java (JDBC): Enqueue a message (add payload) on page 11-19
« Visual Basic (OO40): Enqueue a message on page 11-21

Operational Interface: Basic Operations 11-9

Enqueue a Message [Specify Message Properties]

Enqueue a Message [Specify Message Properties]

Enqueue
a message

Figure 11-4 Use Case Diagram: Enqueue a Message [Specify Message Properties]

message ID

specific
priority

specific

specific

expiration

specify
recipients

exception
queue

AQ Operational § - | Enqueue a
Interface = | Message
SPECIFY
MESSAYE Jamssssssssssssnnsannnnnnn > record
properties
Hiiiiiion
EERRE v
i H default set
- HEH = no priority
OR
P v
. : : ﬁ set
E E E default |- no delay delay
PiiioR
H v
i ﬁ set
H default | no expiration
i defaults specify
H to null B correlation
- id
PR
: 4
default to system specify specify
. provided queue [{ No exception
' queue

I — SPECIFY Message Properties

only with
multi-consumer
queues

|A default to NULL

specify
sender_id

11-10 Application Developer’s Guide - Advanced Queuing

Enqueue a Message [Specify Message Properties]

Purpose

Usage Notes

Syntax

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Operational Interface — Basic Operations” on
page 11-2

The Message Properties describe the information that is used by AQ to manage
individual messages. These are set at enqueue time and their values are returned at
dequeue time.

To view messages in a waiting or processed state, you can either dequeue or
browse by message ID, or use SELECT statements.

Message delay and expiration are enforced by the queue monitor (QMN)
background processes. You should remember to start the QMN processes for
the database if you intend to use the delay and expiration features of AQ.

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

PL/SQL (DBMS_AQ Package): Oracle8i Supplied PL/SQL Packages Reference DBMS
AQ, ENQUEUE procedure

Visual Basic (O040) (Oracle Obijects for OLE (O040) Online Help): From Help
Topics, Contents tab, select O0O40 Automation Server > OBJECTS > OraAQ

Java (JDBC): Oracle8i Supplied Java Packages Reference,oracle.jms,
AQMessageProperty

Operational Interface: Basic Operations 11-11

Enqueue a Message [Specify Message Properties]

Examples

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

« PL/SQL (DBMS_AQ Package): Enqueue of Object Type Messages on page 11-17
« Java (JDBC): Enqueue a message (add payload) on page 11-19
« Visual Basic (OO40): Enqueue a message on page 11-21

11-12 Application Developer’'s Guide - Advanced Queuing

Enqueue a Message [Specify Message Properties [Specify Sender ID]]

Enqueue a Message [Specify Message Properties [Specify Sender ID]]

Figure 11-5 Use Case Diagram: Enqueue a Message [Specify Message Properties
[Specify Sender ID]]

AQ Operational § . | Enqueue a Specify Message SPECIFY
Interface * | Message Properties Sender ID

Specify
message
properties

SPECIFY
Sender ID

specify
sender
name

default
=null

specify
sender
address

default
=null

specify

sender default

= null/zero

BB

protocol

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Operational Interface — Basic Operations" on
page 11-2

Purpose
To identify the sender (producer) of a message.

Usage Notes
Not applicable.

Operational Interface: Basic Operations 11-13

Enqueue a Message [Specify Message Properties [Specify Sender ID]]

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« PL/SQL (DBMS_AQ Package): Oracle8i Supplied PL/SQL Packages Reference DBMS_
AQ, ENQUEUE procedure
« Visual Basic (OO40) (Oracle Objects for OLE (O040) Online Help): From Help
Topics, Contents tab, select OO40 Automation Server > OBJECTS > OraAQ
« Java (JDBC): Oracle8i Supplied Java Packages Reference,oracle.jms,
AQMessageProperty.setsender
For more information about Agent see:
« "Agent" on page 2-3
Examples

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

« PL/SQL (DBMS_AQ Package): Enqueue of Object Type Messages on page 11-17
« Java (JDBC): Enqueue a message (add payload) on page 11-19
« Visual Basic (O040): Enqueue a message on page 11-21

11-14 Application Developer’'s Guide - Advanced Queuing

Enqueue a Message [Add Payload]

Enqueue a Message [Add Payload]

Figure 11-6 Use Case Diagram: Enqueue a Message [Add Payload]

AQ Operational . | Enqueue a
Interface - | Message

I —» ADD Payload

ADD
payload

Enqueue
a message

\ \
add add
as object as RAW

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Operational Interface — Basic Operations" on
page 11-2

Purpose

Usage Notes

To store a payload of type RAWAQ will create a queue table with LOBcolumn as the
payload repository. The maximum size of the payload is determined by which
programmatic environment you use to access AQ. For PL/SQL, Java and
precompilers the limit is 32K; for the OCI the limit is 4G.

Operational Interface: Basic Operations 11-15

Enqueue a Message [Add Payload]

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« PL/SQL (DBMS_AQ Package): Oracle8i Supplied PL/SQL Packages Reference DBMS_
AQ, ENQUEUE procedure
« Visual Basic (OO40) (Oracle Objects for OLE (O040) Online Help): From Help
Topics, Contents tab, select OO40 Automation Server > OBJECTS > OraAQ
« Java (JDBC): Oracle8i Supplied Java Packages Reference,oracle.jms,
AQOracleQueue.enque
Examples

See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

« PL/SQL (DBMS_AQ Package): Enqueue of Object Type Messages on page 11-17
« Java (JDBC): Enqueue a message (add payload) on page 11-19
« Visual Basic (OO40): Enqueue a message on page 11-21

11-16 Application Developer’'s Guide - Advanced Queuing

Enqueue a Message [Add Payload]

PL/SQL (DBMS_AQ Package): Enqueue of Object Type Messages

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager

CREATE USER aq IDENTIFIED BY ag;

GRANT Aq_administrator_role TO aq;

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
Queue_table =>"ag.objmsgs_qtab),
Queue payload type => 'agmessage typ);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
Queue_name => 'ag.msg_queue’,
Queue_table => 'ag.objmsgs_qtab’);

EXECUTE DBMS_AQADM.START_QUEUE (
Queue_name =>’ag.msg_gueue,
Enqueue =>TRUE),

EXECUTE DBMS_AQADM.CREATE_QUEUE _TABLE (
Queue_table =>"ag.prioritymsgs_gtab’,
Sort_list =>PRIORITY,ENQ_TIME,,
Queue_payload_type =>'agmessage_typ);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
Queue_name =>'aq.priority_msg_queue’,
Queue_table =>"ag.prioritymsgs_qtab);

EXECUTE DBMS_AQADM.START_QUEUE (
Queue_name =>'aq.priority_msg_queuge’,
Enqueue =>TRUE);

Enqueue a Single Message and Specify the Queue Name and Payload.
F Enqueuetomsg queue: ¥
DECLARE

Enqueue_options DBMS_AQ.enqueue_options t;

Message_properties DBMS_AQ.message_properties t;

Message handle RAW(16);

Message ag.message typ;

BEGIN

Message :=ag.message_typ(NORMAL MESSAGE,
‘enqueued to msg_queue first.);

DBMS_AQ.ENQUEUE(queue_name =>'msg_queuge’,
Enqueue_options =>enqueue_options,

Operational Interface: Basic Operations 11-17

Enqueue a Message [Add Payload]

Message properies =>message_properties,

Payload =>message,
Msgid =>message_handle);
COMMIT;

END;

Enqueue a Single Message and Specify the Priority
/* Thequeuename priority_msg_gueue is defined as an object type queuie table.
The payload object type is message . The schema of the queue is aq. ¥

¥ Enqueue a message with priority 30: */

DECLARE
Enqueue_options dbms_ag.enqueue_options t;
Message_propertes dbms_agmessage_properties_t;
Message hande RAW(16);
Message ag.Message_typ;

BEGIN
Message :=Message_typ(PRIORITY MESSAGE’, 'enqued at priority 30.";

message_properties.priority := 30;
DBMS_AQ.ENQUEUE(queue_name =>"priority_msg_queue’,

enqueue_options =>enqueue_options,
message_properies =>message_properties,

payload =>message,
msgid =>message_handle);
COMMIT;

END;

11-18 Application Developer’'s Guide - Advanced Queuing

Enqueue a Message [Add Payload]

Java (JDBC): Enqueue a message (add payload)

F Setup ¥/

connect system/manager

create user aq identified by ag;
grantaq_administrator_role to ag;

public static void setup(AQSession ag_sess) throws AQEXxception
{
AQQueueTableProperty qtable_prap;

AQQueueProperty queue_prop;
AQQueueTable g_table;

AQQueue queue;
AQAgent agent;

gtable_prop = new AQQueueTableProperty(' RAW");
q_table =aq_sess.createQueueTable (‘aq’", "rawmsgs_gtab", gtable_prop);

queue_prop = new AQQueueProperty();
gueue = ag_sess.createQueue (q_table, "msg_queue”, queue_prop);

queue.start();

gtable_prop = new AQQueueTableProperty(' RAW');
gtable_prop.setMuliConsumer(true);

gtable_prop.setSortOrder("priority,enq_time");
g table=aq_sess.createQueueTable ('aqd", "rawmsgs_gtab?2",
otable_prop);

queue_prop = new AQQueueProperty();
queue =ag_sess.createQueue (q_table, "priority_msg_queue”, queue_prop);

queue.start();
agent =new AQAgent("subscriber1", null);

queue.addSubscriber(agent, null);

F Enqueue amessage */
public static void example(AQSession aq_sess) throws AQEXxception, SQLException
{

Operational Interface: Basic Operations 11-19

Enqueue a Message [Add Payload]

AQQueue queus;
AQMessage message;
AQRawPayload raw_payload;
AQENqueueOption enq_option;

String test_data="new message";
byte[] b_aray;
Connection db_conn;

db_conn =((AQOracleSession)aq_sess).getDBConnection();

P Geta handle to the queue */
queue =ag_sess.getQueue (‘aq", "msg_queue");

[Create a message to contain raw payload: */
message = queue.createMessage();

F Get handle to the AQRawPayload object and populate it with raw data: */
b_aray =test data.getBytes();

raw_payload = message.getRawPayload();
raw_payload.setStream(b_array, b_array.length);

F Create a AQEnqueueOption object with default options: */
eng_option = new AQEnqueueOption();

¥ Enqueue the message: */
gueue.enqueue(eng_option, message);

db_conn.commit();

F Enqueue a message with priority =5*
public static void example(AQSession aq_sess) throws AQEXxception, SQLException
{

AQQueue queus;

AQMessage message;

AQMessageProperty msg_prop;

AQRawPayload raw_payload;

AQENnqueueOption eng_option;

String test_data = "priority message"”;
bytef] b_array;
Connection db_conn;

11-20 Application Developer’'s Guide - Advanced Queuing

Enqueue a Message [Add Payload]

db_conn =((AQOracleSession)ag_sess).getDBConnection();

¥ Geta handle to the queue */
queue =aq_sess.getQueue (‘ad’, "msg_queue’);

 Create a message to contain raw payload: */
message = queue.createMessage();

* Get Message property */
msg_prop = message.getMessageProperty();

 Set priority */
msg_prop.setPriority(5);

* Get handle to the AQRawPayload object and populate it with raw data: */
b_aray =test_data.getBytes();

raw_payload = message.getRawPayload();
raw_payload.setStream(b_array, b_array.length);

[* Create a AQENnqueueOption object with default options: */
eng_option =new AQEnqueueOption();

FEnqueue the message: */
gueue.enqueue(enq_option, message);

db_conn.commit();

Visual Basic (O040): Engueue a message
Enqueuing messages of type objects

‘Prepare the message. MESSAGE_TYPE is a user defined type
'inthe "AQ" schema

Set OraMsg = Q. AQMsg(1, "MESSAGE_TYPE")

Set OraObj = DB.CreateOraObject('MESSAGE_TYPE")

OraObj("subject’).Value = "Greetings from O040"
OraObj(text).Value ="Text of a message originated from OO40"

Set OraMsg.Value = OraObj
Msgid = Q.Enqueue

Operational Interface: Basic Operations 11-21

Enqueue a Message [Add Payload]

Enqueuing messages of type RAW

‘Create an OraAQ object for the queue "DBQ"
Dim Q as object

Dim Msg as object

Dim OraSession as object

Dim DB as object

Set OraSession = CreateObject(‘OraclelnProcServer.XOraSession')
Set OraDatabase = OraSession.OpenDatabase(mydb, “scottfiger” 0&)
Set Q =DB.CreateAQ('DBQ")

'Get areference to the AQMsg object
SetMsg =Q.AQMsg
Msg.Value ="Enqueue the first message to a RAW queue.”

'Enqueue the message
Q.Enqueue()

‘Enqueue another message.

Msg.Value ="Another message”
Q.Enqueue()

'Enqueue a message with non-default properties.

Msg.Priority = ORAQMSG_HIGH_PRIORITY

Msg.Delay =5

Msg.Value ="Urgent message"

Q.Enqueue()

Msg.Value ="The visibility option used in the enqueue callis
ORAAQ_ENQ_IMMEDIATE"

Q.Visble = ORAAQ ENQ IMMEDIATE

Msgid = Q.Enqueue

'Enqueue Ahead of message Msgid_1
Msg.Value ="First Message to test Relative Message id"
Msg.Correlation ="RELATIVE_MESSAGE_ID"

Msgid_1 =Q.Enqueue

Msg.Value ="Second message to test RELATIVE_ MESSAGE ID is queued
ahead of the First Message "

OraAg.relmsgid = Msgid_1

Msgid = Q.Enqueue

11-22 Application Developer’s Guide - Advanced Queuing

Listen to One (Many) Queue(s)

Listen to One (Many) Queue(s)

Purpose

Usage Notes

: A @ Listen to One (Many) Multi-Consumer
% """ Queue(s)

Figure 11-7 Use Case Diagram: Listen to One(Many) Queue(s)

AQ Operational

i G I . LISTEN to Queue(s)

LISTEN
to
Queue(s)

A e Listen to One (Many) Single-Consumer
- Queue(s)

To refer to the table of all basic operations having to do with the
Operational Interface see:

« "Use Case Model: Operational Interface — Basic Operations" on
page 11-2

To monitor one or more queues on behalf of a list of agents.

The call takes a list of agents as an argument. You specify the queue to be monitored
in the address field of each agent listed. You also must specify the name of the agent
when monitoring multiconsumer queues. For single-consumer queues, an agent
name must not be specified. Only local queues are supported as addresses. Protocol
is reserved for future use.

This is a blocking call that returns when there is a message ready for consumption

for an agent in the list. If there are messages for more than one agent, only the first
agent listed is returned. If there are no messages found when the wait time expires,
an error is raised.

Operational Interface: Basic Operations 11-23

Listen to One (M