
Oracle8i Time Series

User’s Guide

Release 8.1.5

February 1999

A67294-01

Oracle8i Time Series User’s Guide

A67294-01

Release 8.1.5

Copyright © 1997, 1999, Oracle Corporation. All rights reserved.

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are 'commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Loader, and SQL*Plus are registered trademarks, and Net8, Network Computing Architecture, Oracle
Forms, Oracle8, Oracle8i, and PL/SQL are trademarks, of Oracle Corporation, Redwood City, California. All other
company or product names are used for identification purposes only and may be trademarks of their respective
owners.

Contents

List of ExamplesList of FiguresList of Tables

Send Us Your Comments .. xv

Preface... xvii

Intended Audience ... xvii
Structure ... xvii
Related Documents... xviii
Conventions... xviii
Changes to This Guide.. xix

1 Introduction

1.1 Oracle8i Time Series and Object-Relational Technology... 1-1
1.2 Storing and Accessing Data ... 1-2
1.3 Time Series Usage Models ... 1-2
1.3.1 No Need for Calendars.. 1-3
1.3.2 Need for Calendars .. 1-4
1.4 Installing the Kit .. 1-7
1.4.1 Required Software for Using Oracle8i Time Series... 1-7
1.4.2 After Installing Oracle8i Time Series... 1-7
1.4.3 Creating Database Objects Without Using ODCA.. 1-8
1.5 Creating Public Synonyms for Oracle8i Time Series Packages 1-9
1.6 Oracle8i Time Series Demos (Demonstrations) .. 1-9
1.6.1 Quick-Start Demo... 1-10
1.6.2 Usage Demo .. 1-12
 iii

1.7 Java Client-Side API (Prototype)... 1-14

2 Time Series Concepts

2.1 Overview of Time Series Data ... 2-1
2.1.1 Regular and Irregular Time Series ... 2-2
2.1.2 Data Generation for a Time Series ... 2-2
2.1.3 Historical Data .. 2-4
2.2 Calendars .. 2-5
2.2.1 Frequency .. 2-6
2.2.2 Precision... 2-8
2.2.3 Pattern .. 2-9
2.2.4 Overview of Calendar Definition... 2-10
2.2.5 Deriving Calendar Exceptions from Time Series Data ... 2-12
2.3 Data Types .. 2-13
2.3.1 Calendar Data Types.. 2-14
2.3.2 Time Series Data Types ... 2-14
2.4 Conventions and Semantics ... 2-16
2.4.1 Semantics of Null Operands ... 2-16
2.4.2 Semantics of Off-Exception Operands .. 2-17
2.5 Oracle8i Time Series Architecture... 2-18
2.6 Storage of Time Series Data ... 2-19
2.6.1 Flat IOT or Flat Table Storage... 2-19
2.6.2 Nested IOT Storage (Object Model)... 2-20
2.7 Interfaces to Time Series and Time Scaling Functions ... 2-21
2.7.1 Instance-Based Interface.. 2-22
2.7.2 Reference-Based Interface ... 2-24
2.8 Consistency of Time Series Data ... 2-27
2.8.1 Rules for Time Series Consistency ... 2-27
2.8.2 Enforcing Time Series Consistency with Relational Views.................................... 2-28
2.8.3 Bulk Loading and Consistency... 2-29
2.9 Calendar Functions ... 2-30
2.9.1 End-User Functions.. 2-30
2.9.2 Product-Developer Functions... 2-31
2.10 Time Series Functions ... 2-32
2.10.1 Extraction, Retrieval, and Trim Functions.. 2-33
iv

2.10.2 Shift Functions .. 2-34
2.10.3 SQL Formatting Functions.. 2-34
2.10.4 Aggregate Functions.. 2-34
2.10.5 Arithmetic Functions ... 2-35
2.10.6 Cumulative Sequence Functions.. 2-36
2.10.7 Moving Average and Sum Functions ... 2-36
2.10.8 Conversion Functions.. 2-37
2.11 Time Scaling Functions... 2-37
2.11.1 Time Scaling on Collections.. 2-39
2.11.2 Scaleup Options: IgnoreNulls and DiscardError .. 2-41
2.12 Administrative Tools Procedures ... 2-43
2.12.1 Role Requirement for Administrative Tools Procedures 2-44
2.12.2 Other Requirements for Administrative Tools Procedures 2-45

3 Time Series Usage

3.1 Creating a Time Series Group ... 3-1
3.2 Creating a Calendar .. 3-3
3.3 Maintaining a Map Table ... 3-6
3.4 Populating the Detail Table Using SQL*Loader ... 3-7
3.4.1 Bulk Loading... 3-8
3.4.2 Incremental Loading.. 3-10
3.5 Retrofitting Existing Tables.. 3-11
3.6 Validating Time Series Consistency ... 3-13
3.7 Formulating Time Series Queries ... 3-13
3.8 Deriving Calendar Exceptions... 3-15
3.8.1 Deriving Exceptions Using a Time Series (Approach 1) .. 3-15
3.8.2 Deriving Exceptions Using a Calendar and Table of Dates (Approach 1A) 3-16
3.8.3 Deriving Exceptions Using Two Time Series Parameters (Approach 2) 3-17
3.9 Using Product-Developer Functions .. 3-19

4 Calendar Functions: Reference

CombineCals .. 4-3

Day... 4-8

DeleteExceptions ... 4-10
v

DisplayValCal Procedure ... 4-13

EqualCals .. 4-20

GenDateRangeTab... 4-23

GetIntervalEnd... 4-27

GetIntervalStart.. 4-30

GetOffset ... 4-33

Hour... 4-36

InsertExceptions... 4-38

IntersectCals ... 4-42

InvalidTimeStampsBetween .. 4-46

IsValidCal ... 4-49

IsValidDate ... 4-55

Minute ... 4-58

Month .. 4-60

NumInvalidTimeStampsBetween... 4-62

NumOffExceptions.. 4-65

NumOnExceptions .. 4-68

NumTimeStampsBetween.. 4-71

OffsetDate ... 4-74

Quarter .. 4-77

Second ... 4-79

Semi_annual ... 4-81

Semi_monthly .. 4-83

SetPrecision... 4-85

Ten_day... 4-88

TimeStampsBetween... 4-90

UnionCals ... 4-94

ValidateCal ... 4-98

Week .. 4-106

Year .. 4-108
vi

5 Time Series Functions: Reference

Cavg... 5-3

Cmax ... 5-5

Cmin .. 5-8

Cprod .. 5-11

Csum ... 5-13

DeriveExceptions... 5-15

Display .. 5-18

DisplayValTS Procedure .. 5-21

ExtractCal ... 5-29

ExtractDate ... 5-31

ExtractTable.. 5-33

ExtractValue ... 5-35

Fill .. 5-37

First .. 5-43

FirstN... 5-45

GetDatedElement .. 5-48

GetNthElement .. 5-50

GetSeries ... 5-52

IsValidTS... 5-55

Lag ... 5-63

Last .. 5-67

LastN ... 5-69

Lead ... 5-72

Mavg.. 5-76

Msum .. 5-79

TrimSeries... 5-82

TSAdd ... 5-85

TSAvg.. 5-89

TSCount .. 5-91

TSDivide ... 5-93
vii

TSMax.. 5-97

TSMaxN .. 5-99

TSMedian.. 5-101

TSMin .. 5-103

TSMinN... 5-105

TSMultiply.. 5-107

TSProd... 5-111

TSStdDev .. 5-113

TSSubtract... 5-115

TSSum ... 5-119

TSVariance.. 5-121

ValidateTS... 5-123

6 Time Scaling Functions: Reference

ScaledownInterpolate ... 6-3

ScaledownRepeat... 6-6

ScaledownSplit... 6-9

ScaleupAvg... 6-12

ScaleupAvgX .. 6-15

ScaleupCount ... 6-18

ScaleupFirst .. 6-21

ScaleupGMean ... 6-24

ScaleupLast ... 6-27

ScaleupMax .. 6-30

ScaleupMin ... 6-33

ScaleupSum .. 6-36

ScaleupSumAnnual... 6-39

7 Administrative Tools Procedures: Reference

Add_Existing_Column ... 7-3

Add_Integer_Column ... 7-6
viii

Add_Number_Column .. 7-8

Add_Varchar2_Column ... 7-10

Begin_Create_TS_Group .. 7-12

Cancel_Create_TS_Group .. 7-14

Close_Log ... 7-15

Display_Attributes .. 7-16

Drop_TS_Group .. 7-18

Drop_TS_Group_All ... 7-20

End_Create_TS_Group ... 7-22

Get_Flat_Attributes ... 7-24

Get_Object_Attributes .. 7-29

Get_Status... 7-33

Open_Log ... 7-35

Set_Flat_Attributes .. 7-37

Set_Object_Attributes ... 7-41

Trace_Off .. 7-45

Trace_On... 7-46

A Error Messages

B Oracle8i Time Series Metadata Views

B.1 View Definitions .. B-2
B.1.1 ALL_TIMESERIES_xxx View Definitions .. B-2
B.1.2 DBA_TIMESERIES_xxx View Definitions.. B-3
B.1.3 USER_TIMESERIES_xxx View Definitions .. B-4
B.2 Column Descriptions .. B-5
B.2.1 xxx_TIMESERIES_GROUPS Columns.. B-5
B.2.2 xxx_TIMESERIES_COLS Columns.. B-6
B.2.3 xxx_TIMESERIES_OBJS Columns ... B-7

C Deprecated Features

C.1 SetPrecision Function.. C-1
ix

C.2 Lookback Window (k) Parameter for Mavg and Msum.. C-1
C.3 Scaleup Function (GROUP BY Interface) ... C-1
C.4 Package for Scaleup Functions .. C-2

Glossary

Index
x

xi

List of Examples

2–1 Overview of Calendar Definition.. 2-11
3–1 Create a Calendar of Business Days ... 3-4
3–2 Formulate Time Series Queries ... 3-14

xii

List of Figures

1–1 Tables and Views in the Time Series Usage Demo... 1-14
2–1 Data Generation in Equities Markets.. 2-3
2–2 Historical Data for Stocks ... 2-4
2–3 Time Series Architecture .. 2-18
2–4 Example of ORDTNumTab Collection Type... 2-22
2–5 Relationship of Input and Output Time Series in Moving Average/Sum 2-37
2–6 Time Scaling from Daily to Monthly Frequency... 2-38

List of Tables

1–1 Oracle8i Time Series Demos .. 1-9
1–2 Quick-Start Demo Files ... 1-11
1–3 Usage Demo Files .. 1-12
2–1 Frequency Codes .. 2-6
2–2 Frequencies and Their Requirements ... 2-7
2–3 Precisions Using 01-Jan-1998 00:00:00 Anchor Date ... 2-9
2–4 End-User Calendar Functions ... 2-30
2–5 Product-Developer Calendar Functions .. 2-32
2–6 Extraction Functions ... 2-33
2–7 Retrieval and Trim Functions .. 2-33
2–8 Shift Functions ... 2-34
2–9 SQL Formatting Functions ... 2-34
2–10 Aggregate Functions ... 2-35
2–11 Arithmetic Functions .. 2-35
2–12 Cumulative Sequence Functions ... 2-36
2–13 Moving Average and Sum Functions ... 2-36
2–14 Conversion Functions .. 2-37
2–15 Scaling Compatibility Matrix... 2-39
2–16 Scaleup Functions for Collections ... 2-40
2–17 Scaledown Functions for Collections ... 2-41
2–18 IgnoreNulls and DiscardError Syntax Options .. 2-42
2–19 Administrative Tools Procedures ... 2-43
4–1 SetPrecision and Timestamp of 19-Sep-1997 09:09:09 .. 4-85
4–2 Errors Repaired by ValidateCal .. 4-99
5–1 Lagging a Time Series by Two Days .. 5-65
5–2 Leading a Time Series by Two Days .. 5-74
6–1 annualfactor Default Values for ScaleupSumAnnual .. 6-40
B–1 xxx_TIMESERIES_GROUPS Columns ... B-5
B–2 xxx_TIMESERIES_COLS Columns ... B-6
B–3 xxx_TIMESERIES_OBJS Columns .. B-7
B–4 ts_obj_type Column Values ... B-8
xiii

xiv

Send Us Your Comments

Oracle8i Time Series User’s Guide, Release 8.1.5

A67294-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this guide?

If you find any errors or have any other suggestions for improvement, please indicate the book title
and (if possible) the chapter, section, and page number. You can send comments to us in the follow-
ing ways:

■ Electronic mail: nedc_doc@us.oracle.com
■ FAX - 603-897-3316. Attn: Time Series writer
■ Postal service:

Oracle Corporation
Time Series Documentation
One Oracle Drive
Nashua, NH 03062
USA

If you would like a reply, please include your name and contact information.

If you have problems with the software, please contact your local Oracle Worldwide Support Center.
xv

xvi

Preface

This guide describes how to use Oracle8i Time Series. (In previous releases, this
product was called the Oracle8 Time Series Cartridge.)

For changes to this guide for the current release, see "Changes to This Guide" at the
end of this Preface.

Intended Audience
This guide is intended for anyone who is interested in storing, retrieving, and
manipulating time series data in an Oracle database, including developers wishing
to extend Oracle8i Time Series.

Structure
This guide contains the following chapters, appendixes, and glossary:

Chapter 1 Introduces object types and the contents of the Oracle8i Time Series product.

Chapter 2 Explains time series concepts and operations.

Chapter 3 Explains important procedures for using Oracle8i Time Series.

Chapter 4 Provides reference information on calendar functions.

Chapter 5 Provides reference information on time series functions.

Chapter 6 Provides reference information on time scaling functions.

Chapter 7 Provides reference information on administrative tools procedures for fast and
easy creation of time series schema objects.

Appendix A Lists potential errors, their causes, and user actions to correct them.
xvii

Related Documents
For information added after the production of this guide, see the README file in
the following directory:

■ $ORACLE_HOME/ord/ts/admin (Solaris systems)

■ $ORACLE_HOME\ord80\ts\admin (Windows NT systems)

The location of the README file is operating system-dependent.

For more information, see the following manuals in the Oracle8i documentation set:

■ PL/SQL User’s Guide and Reference

■ Oracle Call Interface Programmer’s Guide

■ Oracle8i Application Developer’s Guide - Fundamentals

Conventions
The following conventions are used in this guide:

Appendix B Describes the views that Oracle8i Time Series uses to store information about time
series schema objects.

Appendix C Lists deprecated features. These are features that still work for this release, but are
not documented as available for use. You are encouraged not to use these features
because they might not work in future releases.

Glossary Contains definitions of important terms related to Oracle8i Time Series.

Convention Meaning

 .
 .
 .

A vertical ellipsis in an example means that lines not directly related
to the example have been omitted.

. . . A horizontal ellipsis in an example means that part of the statement
or command not directly related to the example has been omitted

boldface text Boldface text indicates a term defined in the text.

italicized text Italicized text indicates emphasis or a user-defined variable, schema
name, or object data type.

< > Angle brackets enclose user-supplied names.
xviii

Changes to This Guide
The following substantive changes have been made to this guide since its previous
(and initial) version for release 8.0.4.

Other minor corrections and clarifications have also been included.

See also the description of deprecated features in Appendix C.

Calendar Enhancements
Calendar enhancements include:

■ New frequencies: week, 10_day, semi_monthly, quarter, and semi_annual

■ Greater flexibility in pattern definition, including pattern bit numbers other
than 0 and 1 and anchor dates other than the first interval of the period

■ New simpler method of deriving calendar exceptions

These calendar enhancements are included in Section 2.2.

New Calendar Functions
The following calendar functions have been added:

■ Day

■ GenDateRangeTab

■ GetIntervalStart

■ GetIntervalEnd

■ Hour

■ Minute

■ Month

■ Quarter

■ Second

■ Semi_annual

[] Brackets enclose optional clauses from which you can choose one or
none.

Convention Meaning
xix

■ Semi_monthly

■ Ten_day

■ Week

■ Year

These functions are documented in Chapter 4.

Irregular Time Series
Oracle8i Time Series now supports irregular time series, which are time series
without associated calendars. Using an irregular time series lets you handle
unpredictable data, and it also lets you conveniently process predictable data
(although some Oracle8i Time Series features are unavailable with this approach).
Irregular time series are explained in Section 2.1.1.

Object Storage Model
Time series can now be stored in an object table (nested index-organized table). This
storage model is described in Section 2.6.2.

Administrative Tools Procedures
Administrative tools procedures are provided to simplify the creation and
maintenance of time series schema objects. These procedures are introduced in
Section 2.12. Reference information on these procedures is in Chapter 7.

The quick-start demo (described in Section 1.6.1) uses the administrative tools
procedures.

Time Scaling Functions in Separate Package
All time scaling functions have been placed in a new TimeScale package. These
functions are now documented in a separate chapter (Chapter 6).

The use of the TimeSeries package for scaleup functions that were available in
release 8.0.4 is a deprecated feature (see Section C.4).

New Scaleup Functions
The following scaleup functions are been added:

■ ScaleupAvgX

■ ScaleupGMean

■ ScaleupSumAnnual
xx

These functions are documented in Chapter 6.

Scaledown Functions
Scaledown functions are now provided:

■ ScaledownInterpolate

■ ScaledownRepeat

■ ScaledownSplit

These functions are documented in Chapter 6.

New tsname Parameter
Functions that return a time series accept an optional tsname parameter specifying a
name for the resulting time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

Lookback Window (k) Parameter for Mavg and Msum
The lookback window (k) parameter for the Mavg and Msum functions now comes
before any optional start-end date range. (The old format is a deprecated feature.
See Appendix C for information about deprecated features.)

Tables and Views for Time Series Data
The following clarification is added to the ORDTNumSeriesIOTRef data type
description in Section 2.7.2: "table_name can be a view, but the view must be
updatable and must map to an IOT. If the view includes any functions, they must
include the PRAGMA RESTRICT_REFERENCES compiler directive with the
keywords WNPS, RNPS, and WNDS."

Glossary Added
A glossary of Oracle8i Time Series terms has been added.
xxi

xxii

Introdu
1

Introduction

Oracle8i Time Series (in previous releases called the Oracle8 Time Series Cartridge)
is an extension to Oracle8i that provides storage and retrieval of timestamped data
through object types. Oracle8i Time Series is a building block for applications rather
than being an end-user application in itself. It consists of data types along with
related functions for managing and processing time series data.

For example, applications can use this product to process historical data derived
from financial market transactions, such as trades of stocks, bonds, and mutual
fund shares. In such applications, the functions included with Oracle8i Time Series
let you conveniently perform operations ranging from the simple to the complex,
such as:

■ Finding the opening, closing, low, and high prices for a stock on a specific date

■ Calculating monthly volumes for a stock for a specific year

■ Deriving the 30-day moving average for a stock over a year

Time series applications have certain distinct requirements and some degree of
commonality. The time series data types accommodate the commonality and
support extensions that address application-specific requirements. With Oracle8i
Time Series, time series data can be managed more conveniently and efficiently than
is possible using only traditional data types and user-defined functions.

You can use or adapt existing tables for time series applications, or you can create
new tables. You can also extend the capabilities of Oracle8i Time Series to add or
modify functions and to create customized calendars.

1.1 Oracle8i Time Series and Object-Relational Technology
The Oracle8i architecture allows clients, application-specific servers, and database
servers to be extended easily and reliably. Oracle8i Time Series provides support for
ction 1-1

Storing and Accessing Data
time series domain-specific types, functions, and interfaces. The product focuses on
a set of time series data representation and access mechanisms sufficient to support
many applications and the development of more specialized time series functions.

The objects option makes Oracle8i an object-relational database management
system, which means that users can define additional kinds of data -- specifying
both the structure of the data and the ways of operating on it -- and use these types
within the relational model. This approach adds value to the data stored in a
database.

Oracle8i with the objects option stores structured business data in its natural form
and allows applications to retrieve it that way. For that reason, it works efficiently
with applications developed using object-oriented programming techniques.

1.2 Storing and Accessing Data
Oracle8i Time Series can store time series data in the database under transactional
control.

Once stored in the database, this data can be queried and retrieved by finding a row
in a table that contains the primary key (which includes the timestamp) using the
various alphanumeric columns (attributes) of the table. Typical queries might
include the following:

■ Select the closing price from a stock market data table where the ticker (stock
symbol) is XYZ and the date is 30-May-1997.

■ Select the 30-day moving average of stock XYZ for the month of May 1997.

Applications access and manipulate time series data using SQL or PL/SQLTM. See
the Oracle8i SQL Reference manual for information on SQL syntax.

1.3 Time Series Usage Models
Most Oracle8i Time Series users fit into one of a few usage models, depending on
their needs. The two basic usage models are as follows:

■ No need for calendars: You do not need to use a calendar if the timestamps
have no pattern, if the timestamps have a pattern but it does not need to be
checked, or if the pattern is important but the timestamps have extraneous
elements (for example, hourly timestamps created using SYSDATE, which
includes the minutes and seconds).

Many time series applications, including some for financial markets and other
environments with regular data, do not need to use calendars.
1-2 Oracle8i Time Series User’s Guide

Time Series Usage Models
■ Need for calendars: You may need to use calendars for any of several reasons,
such as to use the Lead and Lag functions (which require calendars) or to
ensure the validity of insert, update, and delete operations on the timestamped
data. However, depending on your needs, you may or may not need to specify
certain elements in the calendar definition, such as:

– Lower and upper date boundaries for the calendar

– Exception timestamps (for example, to identify holidays)

For example, you may be interested only in the pattern of timestamps, but not
in defining date boundaries for the calendar or specifying exceptions for
holidays. In this case, if no data exists for a valid timestamp (for example, no
price for a stock on Friday, 04-Jul-1997 because U.S. financial markets were
closed that day), you can simply insert a null (that is, treat it as a valid
timestamp but with a null associated data value) because you are confident that
your data is accurate.

This rest of this section describes these usage models. It does not explain in detail
any of the concepts mentioned; these are explained in Chapter 2. You may want to
find the model that best fits your needs, follow the instructions in that section, and
refer to the other sections in this document as necessary.

1.3.1 No Need for Calendars
Many Oracle8i Time Series users do not need to use calendars with their
timestamped data. Situations where calendars are not needed include the following:

■ The timestamps have no pattern. Examples include timestamps for the opening
or closing of a valve, fluctuations in electrical power demand, transactions at an
automatic teller machine (ATM), and trades during the day on a financial
market.

■ The timestamps have a pattern, but you do not need to use it. (You must also
assume that all timestamps for the data are correct.) For example, you can
derive a 30-day moving average for stock XYZ for 1998 without using a
calendar, as long as you know that the closing price data is valid (that is, there
are closing prices for all trading days and no closing prices for nontrading
days).

One variation of having a pattern but no need to use it occurs when the
timestamps contain extraneous elements. For example, an electric utility may
want to collect hourly data on power demand use for different regions, but it is
unimportant whether the timestamp is exactly on the hour or contains minutes
and seconds. For example, using SYSDATE to create timestamps might result in
Introduction 1-3

Time Series Usage Models
data for 4 p.m. (16:00) being stored with a timestamp of 16:00:03, 15:59:37, or
16:01:30.

You can use all time series and time scaling functions except Lead and Lag without
a calendar. You can use all time scaling functions except ScaledownRepeat and
ScaledownSplit without a calendar for the input data (for example, daily trading
volume for stock XYZ); however, you must have a calendar to which to scale the
data (for example, a monthly calendar for deriving monthly trading volume for
stock XYZ).

If you do not need to use a calendar with input timestamped data, you can follow
these steps to use Oracle8i Time Series:

1. Use the administrative tools procedures to create the time series schema objects.
See the description of the quick-start demo in Section 1.6.1, and use that demo
file as a model for creating your own definitions. Note that this demo also
includes a calendar definition to be used for daily to monthly scaling.

2. Load the data. The quick-start demo provides an example using the
SQL*Loader utility.

3. Use standard time series and time scaling functions for queries. See the quick-
start demo for some examples.

1.3.2 Need for Calendars
Many Oracle8i Time Series users need to use calendars to take advantage of the full
range of functions, including Lead and Lag. They also want to identify a pattern for
the timestamps and to perform at least some validation of those timestamps. The
extent of calendar maintenance required depends on whether they specify any of
the following for each calendar:

■ Lower and upper date boundaries for the calendar (to let you use time series
functions to ensure that all timestamps are within a defined date range)

■ Exception timestamps (for example, to identify holidays)

Note: A time series used without an associated calendar is called
an irregular time series, regardless of whether or not the
timestamps are predictable. For more information about irregular
time series, see Section 2.1.1.
1-4 Oracle8i Time Series User’s Guide

Time Series Usage Models
These users can also use shared calendars (described in Section 2.2) to associate
multiple time series with a single calendar.

The rest of this section describes some calendar usage models involving different
levels of specification and maintenance.

1.3.2.1 Minimal Calendar Maintenance
Many Oracle8i Time Series users need to use calendars with their timestamped
data, but do not want or need to do substantial maintenance of calendars. They
need to use calendars to use the full range of functions, including Lead and Lag, but
they do not need to define beginning and ending boundary dates for calendars or to
specify every holiday within the date range (including adding or changing holidays
as needed). They are confident that the timestamps are correct and valid.

In this usage model, each time series has a calendar with a pattern. For example, for
daily stock market data, a calendar is defined with a frequency of day and a pattern
of ’0,1,1,1,1,1,0’ to reflect a Monday-to-Friday normal business week. However, no
beginning or ending date for the calendar is specified, and no exceptions are
defined for any Monday-to-Friday dates on which the markets are closed. If the
data does not include a timestamp for a particular Monday-to-Friday date (for
example, Friday, 04-Jul-1997), you must insert a null value for the data associated
with that timestamp.

This approach allows for some validation of input data. For example, trading data
with a timestamp of Saturday, 08-Aug-1998 would be invalid. However, this
approach does not catch many possible kinds of input timestamp errors. For
example, the following errors would not be detected:

■ A timestamp of 19-Aug-1997 (a Tuesday) when 19-Aug-1998 (a Wednesday)
was intended, if the year was incorrectly typed and the time series is supposed
to contain only 1998 data, but the calendar does not specify a starting date

■ Price data entered for 25-Dec-1998 (a Friday), a holiday for U.S. financial
markets

If you need to use a calendar but do not need to maintain calendars to enforce input
timestamp validation, you can follow these steps to use Oracle8i Time Series:

1. Use the administrative tools procedures to create the time series schema objects.
See the description of the quick-start demo in Section 1.6.1, and use that demo
file as a model for creating your own definitions. Note that this demo creates a
table to hold calendars and a calendar definition for use with daily to monthly
scaling.
Introduction 1-5

Time Series Usage Models
2. Create one or more calendar definitions in which only the essential elements are
defined (frequency and pattern). The following example creates a Monday-to-
Friday calendar with no date boundaries and no exceptions (see Section 3.2 for
more detailed information about calendar definition):

INSERT INTO tsquick_cal VALUES(
 ORDSYS.ORDTCalendar(
 0, -- Calendar type (0 = standard)
 ’BUSINESSDAYS’, -- Name of this calendar
 4, -- 4 = frequency code for day
 ORDSYS.ORDTPattern(-- Pattern definition (required)
 ORDSYS.ORDTPatternBits(0.1,1,1,1,1,0),
 TO_DATE(’05-JAN-1998’,’DD-MON-YYYY’)),
 NULL, -- No lower date boundary (minDate)
 NULL, -- No upper date boundary (maxDate)
 NULL, NULL) -- No off- or on-exceptions
);

3. Load the data. The quick-start demo provides an example using the
SQL*Loader utility.

4. Use standard time series and time scaling functions for queries. See the quick-
start demo and the usage demo (see Section 1.6.2) for some examples.

1.3.2.2 Complete Calendar Definition and Maintenance
Some Oracle8i Time Series users need to create and maintain calendars, specifying
the beginning and ending boundary dates for calendars and exceptions to the
normal pattern, such as all holidays and any normally "off" days that become work
days. These users may need to check the data to ensure that all timestamps are
valid.

In this usage model, each time series has a calendar with a pattern, starting and
ending date boundaries, and full specification of all exceptions (such as holidays).
Users adopting this usage model will be able to use Oracle8i Time Series functions
to determine if any timestamps in the input data are invalid. For example, the
following errors would be detected:

■ A timestamp of 19-Aug-1997 (a Tuesday) when 19-Aug-1998 (a Wednesday)
was intended, if the year was incorrectly typed and the time series is restricted
to 1998 data

■ Price data entered for 25-Dec-1998 (a Friday), a holiday for U.S. financial
markets
1-6 Oracle8i Time Series User’s Guide

Installing the Kit
If you need to perform complete calendar definition and maintenance, read the
information about calendars in Section 2.2 and follow the guidelines in Chapter 3.

1.4 Installing the Kit
Oracle8i Time Series installation consists of the following basic steps:

1. Installing the software on your computer

Use the Oracle Universal Installer to install the software.

2. Loading the necessary objects into the database

You can use the Oracle Database Configuration Assistant (ODCA) to automate
the creation of the necessary objects. If you are not familiar with Oracle8i
database creation, you are especially encouraged to use the ODCA. If you plan
to create the database without using the ODCA, instructions are provided in
Section 1.4.3.

Oracle8i Time Series is installed under the ORDSYS schema.

1.4.1 Required Software for Using Oracle8i Time Series
To use Oracle8i Time Series, at least the following software components must be
installed: Oracle8i (RDBMS), PL/SQL (on systems on which it is a separate
installation option), and Oracle8i Time Series. These components can be installed all
at once, or Oracle8i Time Series can be added to an existing Oracle8i installation that
includes PL/SQL.

1.4.2 After Installing Oracle8i Time Series
After installing Oracle8i Time Series, read the README.txt file for your platform,
which can be found either in $ORACLE_HOME/ord/ts/admin (UNIX systems) or
$ORACLE_HOME\ord80\ts\admin (Windows NT systems). Follow any
instructions appropriate for your environment (for example, adjusting certain quota
values, if necessary).

You may also want to do either or both of the following:

■ Create public synonyms for the Oracle8i Time Series packages (see Section 1.5),
to eliminate the need to type the schema name with the package name when
calling functions or procedures.

■ Run the quick-start demo or the usage demo, or both (see Section 1.6), to
familiarize yourself with the Oracle8i Time Series product.
Introduction 1-7

Installing the Kit
1.4.3 Creating Database Objects Without Using ODCA
The following instructions are for database administrators planning to create the
database without using the Oracle Database Configuration Assistant (ODCA).

1. Create and start the database.

The ORDSYS schema shares the SYSTEM tablespace. You should allow
approximately 25 megabytes for the SYSTEM tablespace, so that the Oracle8i
Time Series components and metadata can be accommodated.

For detailed information about database creation and startup, see the Oracle8i
Installation and Configuration Guide for your operating system, the Oracle8i
Administrator’s Guide, and the Oracle8i Concepts manual.

2. Install shared components.

Connect as user SYS, and run the following SQL procedure to install ORDSYS
and certain shared components.

On Solaris systems (example showing the default SYS password):

SVRMGR> connect sys/change_on_install as sysdba
SVRMGR> @<ORACLE_HOME>/ord/admin/ordinst.sql

Replace <ORACLE_HOME> with your $ORACLE_HOME directory.

On NT systems (example showing the default SYS password):

SVRMGR> connect sys/change_on_install as sysdba
SVRMGR> @c:\orant\ord\admin\ordinst.sql

c:\orant is the usual $ORACLE_HOME directory.

3. Install the Oracle8i Time Series components (data types, packages, and
metadata tables).

On Solaris systems:

SVRMGR> @<ORACLE_HOME>/ord/ts/admin/tsinst.sql

Replace <ORACLE_HOME> with your $ORACLE_HOME directory.

On NT systems:

SVRMGR> @c:\orant\ord\ts\admin\tsinst.sql

c:\orant is the usual $ORACLE_HOME directory.
1-8 Oracle8i Time Series User’s Guide

Oracle8i Time Series Demos (Demonstrations)
The user group PUBLIC is granted execute privilege on all Oracle8i Time Series
data types and packages.

1.5 Creating Public Synonyms for Oracle8i Time Series Packages
All Oracle8i Time Series packages and data types are installed under the ORDSYS
schema, and all users must include the ORDSYS schema name when referring to
these packages and data types. However, to simplify references to packages, you
can define public synonyms for packages that contain the functions and procedures
documented in this guide.

To create public synonyms, run the ordtsyn.sql file supplied with Oracle8i Time
Series in the admin directory. The ordtsyn.sql file creates the following public
synonyms:

CREATE PUBLIC SYNONYM TimeSeries FOR ORDSYS.TimeSeries;
CREATE PUBLIC SYNONYM Calendar FOR ORDSYS.Calendar;
CREATE PUBLIC SYNONYM TSTools FOR ORDSYS.TSTools;
CREATE PUBLIC SYNONYM TimeScale FOR ORDSYS.TimeScale;

1.6 Oracle8i Time Series Demos (Demonstrations)
Table 1–1 shows the demos (files that demonstrate capabilities) included with
Oracle8i Time Series. This table includes a description of each demo and the default
directory in which its files are installed. (The exact location and directory syntax are
system-dependent.)

Table 1–1 Oracle8i Time Series Demos

Description Directory

Quick-start demo: quick and easy start using Oracle8i Time Series
(See Section 1.6.1.)

demo/tsquick

Usage demo for end users and product developers who want to
use existing Oracle8i Time Series features (See Section 1.6.2.)

demo/usage

Electric utility application demonstrating how to compute peak
and off-peak summaries of 15-minute data

demo/usageutl

Java-based retrieval of time series data, using the prototype
Oracle8i Time Series Java API and designed to run in a Web
browser (See Section 1.7.)

demo/applet

Simple Java code segments that perform time series operations
and print the results (See Section 1.7.)

demo/java
Introduction 1-9

Oracle8i Time Series Demos (Demonstrations)
The README.txt file in the demo directory introduces the demos and describes
each briefly. Also, the directory for each demo contains a README.txt file with a
more detailed description of that demo.

1.6.1 Quick-Start Demo
The quick-start demo provides a quick and easy start using Oracle8i Time Series. It
uses the same stock market trading data as in the usage demo (described in
Section 1.6.2); however, it simplifies the process by:

■ Using the Oracle8i Time Series administrative tools procedures to create the
schema objects (accepting defaults for most object names)

■ Not associating a calendar with the detail data (the daily stock market trading
data)

This approach assumes that the existing stockdemo data is valid, and it is used
here solely to make the quick-start demo simpler. Note, however, that using a
calendar with detail data is required if you need to use Oracle8i Time Series
functions to validate time series data (for example, to check that trading data is
not entered for an invalid date, such as for a nontrading date or a date outside a
desired start-end date range). Using a calendar with detail data is also required
for using the Lead and Lag functions.

Demo showing the use of administrative tools procedures to
"retrofit" existing time series detail tables; also, how to support
time series queries for multiple qualifier columns in the time
series detail table

demo/retrofit

Advanced-developer demo for those who want to extend Oracle8i
Time Series features

demo/extend

OCI demo showing how to call Oracle8i Time Series functions
using the Oracle Call Interface

demo/oci

PRO*C/C++ demo showing how to call Oracle8i Time Series
functions in applications created using the Oracle Pro*C/C++
Precompiler

demo/proc

Oracle Developer demo showing how to call Oracle8i Time Series
functions in an Oracle FormsTM application

demo/dev2k

Table 1–1 Oracle8i Time Series Demos (Cont.)

Description Directory
1-10 Oracle8i Time Series User’s Guide

Oracle8i Time Series Demos (Demonstrations)
The administrative tools procedures create all the schema objects needed for this
demo, including:

■ TSQUICK: the object view. Use this when using Oracle8i Time Series functions.
For example:

SELECT ticker, ORDSYS.TimeSeries.TSAvg(close) FROM TSQUICK ts;

■ TSQUICK_RVW: the relational view. Use this for protected insert, update, and
delete operations. Uses an INSTEAD OF trigger.

■ TSQUICK_TAB: the table for detail data.

■ TSQUICK_MAP: the mapping (metadata) table. A null calendar is later
associated with each ticker.

■ TSQUICK_CAL: the table for calendar definitions. A monthly calendar is later
defined, for use with scaleup operations.

All of these schema objects, as well as concepts related to calendars, are explained in
Chapter 2. The administrative tools procedures are introduced in Section 2.12.

The quick-start demo also includes queries using several Oracle8i Time Series
functions.

1.6.1.1 Running the Quick-Start Demo
After Oracle8i Time Series has been installed, you can run the quick-start demo by
going to the appropriate directory (see Table 1–1) and invoking the tsquick.sql
procedure, as follows:

% svrmgrl
SVRMGR> @tsquick

1.6.1.2 Quick-Start Demo Files
The quick-start demo files are listed in Table 1–2.

Table 1–2 Quick-Start Demo Files

File Description

tsquick.sql Main procedure file: creates all schema objects, loads tables,
performs queries.

tsquick.ctl SQL*Loader control file

tsquick.dat SQL*Loader data file

README.txt Description and instructions for the demo
Introduction 1-11

Oracle8i Time Series Demos (Demonstrations)
1.6.2 Usage Demo
The usage demo is a working example of using Oracle8i Time Series. The example
models a historical database of stock pricing and provides sample queries using this
data.

The usage demo is designed to guide you through Oracle8i Time Series in a step-by-
step fashion. It includes example code for creating and populating tables and
calendars, constructing relational views, constructing views to synthesize the
interface to Oracle8i Time Series functions, and running some example queries.

1.6.2.1 Running the Usage Demo
After Oracle8i Time Series has been installed, you can run the usage demo by going
to the appropriate directory (see Table 1–1) and invoking the demo.sql procedure, as
follows:

% svrmgrl
SVRMGR> @demo

1.6.2.2 Usage Demo Files
The usage demo files include examples of bulk and incremental loading; defining
tables, calendars, and views; and running example queries. These files are listed in
Table 1–3.

Table 1–3 Usage Demo Files

File Description

demo.sql Main procedure file

stockdat.ctl SQL*Loader control file

stockdat.dat SQL*Loader data file for time series data

tables.sql DDL for tables

popcal.sql Defines calendars and populates calendar table

queries.sql Example time series queries (SQL)

queplsql.sql Example time series queries (PL/SQL)

calqueries.sql Example calendar queries (PL/SQL)

incload.sql Incremental load script

stockinc.ctl SQL*Loader control file for incremental load

stockinc.dat SQL*Loader data file for incremental time series data
1-12 Oracle8i Time Series User’s Guide

Oracle8i Time Series Demos (Demonstrations)
1.6.2.3 Tables and Views in the Usage Demo
The stock database consists of three tables:

■ stockdemo stores historical time series pricing data.

■ stockdemo_calendars stores instances of calendars.

■ stockdemo_metadata maintains mapping between time series (here, for tickers)
and calendars.

To maintain time series consistency and provide a collection-based interface for
time series functions, two views are constructed using these tables.

■ stockdemo_sv is a relational view. A relational view should be used for any
insert, update, and delete operations to time series data.

■ stockdemo_ts is an object (reference-based) view. A reference-based view
provides an object model of a time series, and it can be used for efficient read-
only access using Oracle8i Time Series functions.

The relational view ensures that insert, update, and delete operations maintain a
time series that is consistent with the associated calendar. (Time series consistency is
explained in Section 2.8.) The relational view and the object view access the three
underlying tables. The object view synthesizes references to collections.

Figure 1–1 shows the relationships between the object and relational views and the
underlying tables.

verical.sql Verifies the correctness of calendars associated with the demo

verits.sql Verifies the correctness of a time series (ACME) associated with
the demo

cleanup.sql Deletes database objects created by the demo

README.txt Description and instructions for the demo

Table 1–3 Usage Demo Files (Cont.)

File Description
Introduction 1-13

Java Client-Side API (Prototype)
Figure 1–1 Tables and Views in the Time Series Usage Demo

1.7 Java Client-Side API (Prototype)
A prototype Java client-side application programming interface (API) is provided in
the following file:

<ORACLE_HOME>/ord/ts/jlib/thindriver.zip

Documentation (generated by javadoc) for this API is in the following directory:

<ORACLE_HOME>/ord/ts/doc

The README.txt file in this directory discusses Java support.

The following directories contain demos (introduced in Table 1–1 in Section 1.6) that
can help you to learn and use the API:

■ The demo/java directory contains sample code segments that demonstrate the
basic use of the API. Although your applications will probably be more
complex, you can use the techniques in these code segments to retrieve time
series data.

■ The demo/applet directory contains a demonstration applet (built using
JDeveloper) that runs in a Web browser or using appletviewer. This applet can
connect to the database, perform queries on the sample time series data, and
display the results.

Detail Table

Calendar
 Table

Mapping
 Table

Object View
 stockdemo_ts

Relational View
 stockdemo_sv UpdatesSQL Queries

Loading

stockdemo_
calendars stockdemo

stockdemo_
metadata

NU-3745A-AI
1-14 Oracle8i Time Series User’s Guide

Time Series Con
2

Time Series Concepts

This chapter explains concepts related to Oracle8i Time Series, and it provides
information on using the product. It contains the following major sections:

■ Section 2.1, "Overview of Time Series Data"

■ Section 2.2, "Calendars"

■ Section 2.3, "Data Types"

■ Section 2.4, "Conventions and Semantics" (including null values and off-
exceptions)

■ Section 2.5, "Oracle8i Time Series Architecture"

■ Section 2.6, "Storage of Time Series Data"

■ Section 2.7, "Interfaces to Time Series and Time Scaling Functions"

■ Section 2.8, "Consistency of Time Series Data"

■ Section 2.9, "Calendar Functions"

■ Section 2.10, "Time Series Functions"

■ Section 2.11, "Time Scaling Functions"

■ Section 2.12, "Administrative Tools Procedures"

2.1 Overview of Time Series Data
A time series is a set of timestamped data entries. A time series allows a natural
association of data collected over intervals of time. For example, summaries of stock
market trading or banking transactions are typically collected daily, and are
naturally modeled with time series.
cepts 2-1

Overview of Time Series Data
2.1.1 Regular and Irregular Time Series
A time series can be regular or irregular, depending on whether or not the time
series has an associated calendar.

■ A regular time series has an associated calendar. In a regular time series, data
arrives predictably at predefined intervals. For example, daily summaries of
stock market data form regular time series, and such time series might include
the set of trade volumes and opening, high, low, and closing prices for stock
XYZ for the year 1997.

■ An irregular time series does not have an associated calendar. Often, irregular
time series are data-driven, where unpredictable bursts of data arrive at
unspecified points in time or most timestamps cannot be characterized by a
repeating pattern. For example, account deposits and withdrawals from a bank
automated teller machine (ATM) form an irregular time series. An irregular
time series may have long periods with no data or short periods with bursts of
data.

However, an irregular time series does not have to be used only for high-
volume collection of unpredictable data. An irregular time series can be used
with predictable data where it is simply not necessary to deal with a calendar.
This approach is used in the quick-start demo described in Section 1.6.1.

2.1.2 Data Generation for a Time Series
Data generation for a time series begins with individual transactions, such as trades
on a stock exchange or purchases of products. Each transaction has a timestamp and
sufficient information to identify that transaction uniquely (such as a stock ticker or
a product ID), as well as other pertinent information (such as the price and
information to identify the party initiating the purchase or sale).

Individual transaction data is typically rolled up to produce summary data for a
meaningful time period, such as a daily summary indicating the trade volume and
the opening, high, low, and closing prices for each stock traded that day. This
summary data is collected to produce historical data, such as a table of all daily
volumes and opening, high, low, and closing prices for all stocks traded for the year
1997. For example, Figure 2–1 shows how data related to securities on a stock
exchange is generated.
2-2 Oracle8i Time Series User’s Guide

Overview of Time Series Data
Figure 2–1 Data Generation in Equities Markets

In Figure 2–1, each trade on the stock exchange includes several items of
information, including a ticker and a price (for example, stock XYZ at 37.50). The
daily summary data includes the opening, high, low, and closing prices for each
ticker (for example, for XYZ: 37.75, 38.25, 37.00, 37.625). The daily data for each
ticker is appended to the historical data for the ticker. The daily data is used for
such purposes as quote server applications and listing in the next day’s
newspapers; the historical data is used by such applications as price and volume
charting and technical analysis.

The data-collection model for historical data has the following characteristics:

■ At daily intervals, historical data is updated with daily summary data (main
update cycle).

■ At some period after the main update cycle, corrections of the daily summary
data may need to be applied.

■ Queries may be executed at any time, even during the update cycle.

■ Queries do not observe the current day's summary information until after the
main update cycle has completed.

Tick Data

Applications that use the data:

. . .

Historical Data

Stock Exchange

Daily Newspapers
Quote Servers

Charting Tools
Technical Analysis Tools

Daily Snapshot
or

Summary Data

NU−3691A−RA
Time Series Concepts 2-3

Overview of Time Series Data
This historical data is modeled using multiple regular time series.

Oracle8i Time Series and the Oracle8i utilities, with their bulk-loading capabilities
and transactional semantics, are well suited for the requirements of time series data
generation.

2.1.3 Historical Data
Oracle8i Time Series is especially useful in dealing with historical data. This type of
data typically has relatively simple metadata but massive data storage
requirements. That is, the data attributes (columns) are relatively few and easy to
understand (such as ticker, volume, and opening, high, low, and closing prices);
however, the number of rows is enormous (for example, data for all listed stocks for
all trading days for several years). Moreover, the number of functions that users
might want to perform on the data is large: for example, finding various sums,
counts, maximum and minimum values, averages, number of trading days between
two dates, moving average, and so on.

Figure 2–2 shows an example of historical data stored in a database.

Stock market historical databases have the following general characteristics:

■ Multiple stocks, each identified by the ticker symbol, can be stored in the
database.

■ Each stock can have multiple attributes (ticker, tstamp, open, high, low, close,
volume).

■ Each stock has one or more associated time series.

Figure 2–2 Historical Data for Stocks

Ticker Tstamp Open High Low Close Volume

XYZ 01-02-1997 21.75 22.75 21.50 22.00 352,000

XYZ 01-03-1997 22.125 22.50 21.00 21.75 530,000

XYZ 01-06-1997 21.625 22.00 21.625 21.875 490,000

...

YZA 01-02-1997 44.25 44.25 43.50 43.875 125,000

YZA 01-03-1997 43.75 44.25 43.75 44.125 97,000

YZA 01-06-1997 44.25 44.50 44.125 44.125 107,000

...
2-4 Oracle8i Time Series User’s Guide

Calendars
■ Each time series has an associated calendar (see Section 2.2).

This kind of financial historical data is used in examples in this guide and in the
usage demo (see Section 1.6) provided with Oracle8i Time Series.

2.2 Calendars
An Oracle8i Time Series calendar maps human-meaningful time values to
underlying machine representations of time.

A calendar can be associated with a time series. However, a calendar does not need to
be associated with a time series unless you need to do any of the following:

■ Use Oracle8i Time Series functions to validate time series data (for example, to
check that trading data is not entered for an invalid date, such as for a
nontrading date or a date outside a desired start-end date range)

■ Use the Lead, Lag, or Fill functions

■ Use the time scaling functions (where the created time series must have an
associated calendar, for example, to provide a monthly roll-up of data)

A time series with an associated calendar is called a regular time series, as described
in Section 2.1.1.

A calendar is, of course, necessary for using any of the calendar functions
(described in Section 2.9).

A business day calendar, for example, can define the days of the week on which
stocks are traded. The holidays, when trading does not occur, are also included in
the calendar as exceptions.

If you have more than one time series with the same timestamps, you can associate
these time series with the same calendar (that is, use a shared calendar). For
example, a calendar of U.S. stock market trading days could be used for all stocks
that trade every day. For any stocks that do not fit this pattern, you could create
private calendars (for example, an ACME_cal calendar for stock ACME).

The following are key components of a calendar:

■ Frequency

A frequency specifies the granularity of the calendar representation. The
supported frequencies are second, minute, hour, day, week, 10-day, semi-monthly,
month, quarter, semi-annual, and year.

■ Pattern
Time Series Concepts 2-5

Calendars
The pattern specifies the repeating pattern of frequencies and an anchor date
that identifies a valid timestamp for the first element in the pattern. For
example, if the frequency is set to day, the pattern can define which days of the
week are included in the calendar. For example, a pattern of ‘0,1,1,1,1,1,0’ over a
day frequency defines a calendar over all weekdays. If an anchor date of 01-Jun-
1997 (or any Sunday) is specified, then the 7-day pattern begins each Sunday;
and Sunday and Saturday (0) are excluded from the calendar, while Monday
through Friday (1) are included in the calendar.

■ Exceptions

Exceptions are timestamps that do not conform to the calendar pattern but that
are significant for the calendar definition. There are two kinds of exceptions:
off-exceptions and on-exceptions:

– An off-exception is an exception to the nonzero bits in the pattern, and thus
is a timestamp to be excluded from the calendar. For example, to ensure
that Wednesday, 25-Dec-1996, is excluded from the calendar when
Wednesdays normally are included, define that date as an off-exception.

– An on-exception is an exception to the zero (0) bits in the pattern, and thus
is a timestamp to be included in the calendar. For example, to ensure that
Saturday, 28-Jun-1997, is included in the calendar when Saturdays are
excluded, define that date as an on-exception.

On-exceptions can also be used with a zero pattern. Section 2.11 includes a
description of using such a calendar for scaling, with quarterly dividend
payment dates as on-exceptions.

2.2.1 Frequency
Each frequency has an associated integer code that is used in function calls.
Table 2–1 lists the supported frequencies and their integer codes. The frequencies
are explained in Table 2–2.

Table 2–1 Frequency Codes

Frequency Integer Code

second 1

minute 2

hour 3

day 4

week 5
2-6 Oracle8i Time Series User’s Guide

Calendars
Some frequencies allow flexibility in defining pattern anchor dates, whereas other
frequencies are more restrictive. Table 2–2 explains the frequencies and any
requirements and options relating to the pattern anchor date.

month 6

quarter 7

year 8

10-day 10

semi-monthly 16

semi-annual 18

Table 2–2 Frequencies and Their Requirements

Frequency Explanation and Requirements

second Every second. The anchor date can be any timestamp with a
valid value for seconds.

minute Every minute. The anchor date can be any timestamp with a
valid value for minutes. The value for seconds should be zero.

hour Every hour. The anchor date can be any timestamp with a valid
value for hours. The values for minutes and seconds should be
zero.

day Every day. The anchor date can be any timestamp with a valid
value for the day. The values for hours, minutes, and seconds
should be zero

week Once every 7 days. Can start on any day of the week. For
example, defining a weekly calendar with an anchor date of 23-
Jun-1998 means that each timestamp must be for a Tuesday.

month Once every month. Can start on days 1-28 or 31. (Defining an
anchor date of the 31st of a month means the last day of each
month.) For example, defining a monthly calendar with an
anchor date of 01-Jul-1998 means that each timestamp must be
for the 1st of a month.

Table 2–1 Frequency Codes(Cont.)

Frequency Integer Code
Time Series Concepts 2-7

Calendars
2.2.2 Precision
Each frequency has an associated precision. Oracle8i Time Series functions require
that input timestamps be of the precision of the frequency associated with the
calendar. (The SetPrecision function is the exception: this function takes a calendar
and a timestamp and returns a timestamp that conforms to the frequency of the
associated calendar.)

A timestamp that is not consistent with the frequency is said to be imprecise. For
example, a timestamp of 09-Sep-1997 is imprecise if it is input to a function that is

quarter Four times per year. Can start on days 1-28 or 31 of any month.
(Defining an anchor date of the 31st of a month means the last
day of each month.) For example, defining a quarterly calendar
with an anchor date of 01-Jan-1998 means that each timestamp
must be for the 1st of January, April, July, or October. Defining a
quarterly calendar with an anchor date of 15-Feb-1998 means
that each timestamp must be for the 15th of February, May,
August, or November.

year Once per year. Can start on days 1-28 or 31 of any month.
(Defining an anchor date of the 31st of a month means the last
day of that month.) For example, defining an annual calendar
with an anchor date of 01-Jan-1998 means that each timestamp
must be for the 1st of January. Defining an annual calendar with
an anchor date of 15-Feb-1998 means that each timestamp must
be for the 15th of February.

10-day The 1st, 11th, and 21st days of each month. (Used for automobile
sales data.) No other dates are permitted for a 10-day calendar,
and any anchor date is ignored.

semi-monthly The 1st and 16th days of each month. No other dates are
permitted for a semi-monthly calendar, and any anchor date is
ignored.

semi-annual Twice per year. Can start on days 1-28 or 31 of any month.
(Defining an anchor date of the 31st of a month means the last
day of each month.) For example, defining a semi-annual
calendar with an anchor date of 01-Jan-1998 means that each
timestamp must be for the 1st of January or July. Defining a semi-
annual calendar with an anchor date of 15-Feb-1998 means that
each timestamp must be for the 15th of February or August.

Table 2–2 Frequencies and Their Requirements (Cont.)

Frequency Explanation and Requirements
2-8 Oracle8i Time Series User’s Guide

Calendars
dealing with a calendar whose frequency is 6 (month) or 8 (year) and whose pattern
anchor date is not the 9th of a month. When you create a calendar, all timestamps
used in the calendar definition (the anchor date for the pattern, and all off- and on-
exceptions) must be precise with respect to the frequency. For example, the calendar
will not be valid if you specify a frequency of day, an anchor date of 01-Jun-1998
13:00:00. An anchor date of just 01-Jun-1999, however, would valid in this case. (The
calendar data types and their attributes are presented in Section 2.3.1.)

Table 2–3 shows the frequencies, their precision conventions, and an example
timestamp of each precision using a pattern anchor date of 01-Jan-1998 00:00:00
(midnight), which was a Thursday.

2.2.3 Pattern
A calendar pattern is specified as one or more zeroes (0) and/or positive integers.

Table 2–3 Precisions Using 01-Jan-1998 00:00:00 Anchor Date

Frequency Precision Convention Example Result

second MM-DD-YYYY HH24:MI:SS 09-09-1997 09:09:09

minute MM-DD-YYYY HH24:MI:00 09-09-1997 09:09:00

hour MM-DD-YYYY HH24:00:00 09-09-1997 09:00:00

day MM-DD-YYYY 00:00:00 (midnight) 09-09-1997 00:00:00

week MM-DD-YYYY 00:00:00 (midnight
of the preceding Thursday)

09-04-1997 00:00:00

month MM-01-YYYY 00:00:00 (midnight of
first day of month)

09-01-1997 00:00:00

quarter MM-01-YYYY 00:00:00 (midnight of
first day of quarter)

07-01-1997 00:00:00

year 01-01-YYYY 00:00:00 (midnight of
first day of year)

01-01-1997 00:00:00

10-day MM-DD-YYYY 00:00:00 (midnight
of 1st, 11th, or 21st of month)

09-01-1997 00:00:00

semi-monthly MM-DD-YYYY 00:00:00 (midnight
of 1st or 15th of month

09-01-1997 00:00:00

semi-annual MM-01-YYYY 00:00:00 (midnight of
first day of half year)

07-01-1997 00:00:00
Time Series Concepts 2-9

Calendars
For patterns represented by zeroes and/or ones, each ’1’ represents a valid
timestamp of the frequency and each ’0’ represents an invalid timestamp. For
example:

■ A calendar with a day frequency and a single ’1’ pattern
(ORDSYS.ORDTPatternBits(1)) has timestamps defined for each day. (The
ORDTPatternBits data type is defined in Section 2.3.1.)

■ A calendar with a day frequency, a Sunday anchor date, and a pattern of a ’1’
and six ’0’s (ORDSYS.ORDTPatternBits(1,0,0,0,0,0,0)) is in effect a weekly
calendar where all Sunday timestamps are included and all other days of the
week are excluded.

For patterns containing one or more integers greater than 1, each such integer
represents an interval that is a multiple of the frequency. For example, a calendar
with a day frequency, a Sunday anchor date, and a pattern of ’7’
(ORDSYS.ORDTPatternBits(7)) is in effect a weekly calendar where all Sunday
timestamps are included and all other days of the week are excluded.

Note that while the actual timestamps that are valid for the calendar will be
identical for each of the preceding weekly calendar examples
(ORDSYS.ORDTPatternBits(1,0,0,0,0,0,0) and ORDSYS.ORDTPatternBits(7) with day
frequency and Sunday anchor dates), these calendars have two different
interpretations for use in the context of time scaling. For example, if the ScaleupSum
function is invoked on a time series containing data defined for every day for
scaling to these two calendars, the following differences in behavior occur:

■ With the first target calendar (ORDSYS.ORDTPatternBits(1,0,0,0,0,0,0)), each
timestamp in the resulting time series contains a sum of 1 day (Sunday) of data.

■ With the second target calendar (ORDSYS.ORDTPatternBits(7)), each
timestamp in the resulting time series contains a sum of 7 days of data.

2.2.4 Overview of Calendar Definition
To define a calendar, you create a table in which to store calendar definitions and
then store a row for each calendar to be defined.

Example 2–1 creates a table named stockdemo_calendars and defines a calendar
named BusinessDays. The BusinessDays calendar includes Mondays through Fridays,
but excludes 28-Nov-1996 and 25-Dec-1996. Explanatory notes follow the example.
(For more information and examples of calendar creation, see Section 3.2.)
2-10 Oracle8i Time Series User’s Guide

Calendars
Example 2–1 Overview of Calendar Definition

CREATE TABLE stockdemo_calendars of ORDSYS.ORDTCalendar (
 name CONSTRAINT calkey PRIMARY KEY);

INSERT INTO stockdemo_calendars VALUES(
 ORDSYS.ORDTCalendar(
 0
 ’BusinessDays’,
 4,
 ORDSYS.ORDTPattern(
 ORDSYS.ORDTPatternBits(0,1,1,1,1,1,0),
 TO_DATE(’01-JAN-1995’,’DD-MON-YYYY’)),
 TO_DATE(’01-JAN-1990’,’DD-MON-YYYY’),
 TO_DATE(’01-JAN-2001’,’DD-MON-YYYY’),

 ORDSYS.ORDTExceptions(TO_DATE(’28-NOV-1996’,’DD-MON-YYYY’),
 TO_DATE(’25-DEC-1996’,’DD-MON-YYYY’)),
 ORDSYS.ORDTExceptions()
));

Notes on Example 2–1:

The stockdemo_calendars table has rows of data type ORDTCalendar, which is
described in Section 2.3.1.

0 indicates that this is a standard calendar (the only type of calendar currently
supported).

BusinessDays is the name of this calendar.

4 is the frequency code for day.

The calendar’s pattern consists of an excluded occurrence followed by five
included occurrences followed by an excluded occurrence (0,1,1,1,1,1,0).
Because the frequency is day and because the anchor date (01-Jan-1995) is a
Sunday, Sundays are excluded, Mondays through Fridays are included, and
Saturdays are excluded.

1
2

3
4

5

6

7
8

1

2

3

4

5

Time Series Concepts 2-11

Calendars
The calendar begins at the start of 01-Jan-1990 and ends at the start of 01-Jan-
2001.

28-Nov-1996 and 25-Dec-1996 are off-exceptions (that is, excluded from the
calendar).

ORDSYS.ORDTExceptions() indicates that there are no on-exceptions (that is, no
Saturday or Sunday dates to be included in the calendar).

2.2.5 Deriving Calendar Exceptions from Time Series Data
When you want to create calendars that conform to time series data, you can use the
DeriveExceptions function to simplify the process. You can use one of several
approaches with DeriveExceptions, depending on your needs and the requirements
for each approach:

■ The first approach (Approach 1) uses a DeriveExceptions call with input
parameters of a time series and optionally a starting and ending date. A
calendar is returned with the appropriate exception lists populated. This
returned calendar is defined on the pattern and frequency of the calendar
associated with the time series, and it is consistent with the timestamps of the
time series.

Approach 1 is the most convenient, and is recommended for most customers.

■ A variation of the first approach (Approach 1A) uses a DeriveExceptions call
with input parameters of a calendar and an ORDTDateTab instance and
optionally a starting and ending date. (An ORDTDateTab instance is a collection
of dates; these dates can be compared with the set of valid timestamps implied
by the calendar.) A calendar is returned with the appropriate exception lists
populated. This returned calendar is defined on the pattern and frequency of

Note: minDate and maxDate can each be null. If minDate is null, the
calendar has no lower boundary date; if maxDate is null, the
calendar has no upper boundary date. Specifying a null minDate
and maxDate simplifies calendar maintenance, but means you
cannot have timestamps validated against the calendar’s desired
date range.

Note: All exceptions (off- and on-) must be specified in ascending
sorted order.

6

7

8

2-12 Oracle8i Time Series User’s Guide

Data Types
the input calendar, and it is consistent with the timestamps of the
ORDTDateTab instance.

■ The final approach (Approach 2) uses a DeriveExceptions call with two time
series as input parameters and optionally a starting and ending date. The first
time series is essentially an expansion of a pattern-only calendar. As in the first
two approaches, a calendar is returned with the appropriate exception lists
populated. The returned calendar is defined on the pattern and frequency of the
calendar of the first input time series, and it is consistent with the timestamps of
the second input time series.

While Approaches 1 and 1A can be performed in a single step, Approach 2 requires
an additional step (before DeriveExceptions is called) in order to construct the first
time series.

Although Approaches 1 and 1A are simpler in practice, Approach 2 has significant
performance advantages when you need to define multiple calendars that have the
same frequency and pattern but different exception lists. The first two approaches
are less efficient than Approach 2 in this case, because the internal implementation
of the first two approaches generates a collection of dates based on the input
calendar. If you need to derive exceptions for multiple calendars defined on the
same frequency and pattern, this date-generation operation is performed multiple
times. You can avoid these multiple date-generation operations by using
Approach 2.

Section 3.8 contains more detailed information about using each approach to
deriving calendar exceptions.

2.3 Data Types
Oracle8i Time Series provides data types for working with calendars and time
series.

All Oracle8i Time Series data types are installed under the ORDSYS schema, and all
users must include the ORDSYS schema name when referring to these data types.

Note: The CREATE TYPE statements in this section do not include
the TIMESTAMP and OID keywords that are part of the object type
definitions when the product is installed. These keywords are used
internally by products for version control.
Time Series Concepts 2-13

Data Types
2.3.1 Calendar Data Types
Oracle8i Time Series provides the following calendar data types. (Time series data
types are described in Section 2.3.2.)

■ Calendar (ORDTCalendar) (Sections 2.2.4 and 3.2 contain calendar definitions
with explanatory notes.)

CREATE TYPE ORDSYS.ORDTCalendar AS OBJECT (
 caltype INTEGER,
 name VARCHAR2(256),
 frequency INTEGER,
 pattern ORDSYS.ORDTPattern,
 minDate DATE,
 maxDate DATE,
 offExceptions ORDSYS.ORDTExceptions,
 onExceptions ORDSYS.ORDTExceptions);

■ Pattern (ORDTPatternBits and ORDTPattern)

CREATE TYPE ORDSYS.ORDTPatternBits AS VARRAY(32500) OF INTEGER;

CREATE TYPE ORDSYS.ORDTPattern AS OBJECT (
 patBits ORDSYS.ORDTPatternBits,
 patAnchor DATE);

■ Exception (ORDTExceptions)

CREATE TYPE ORDSYS.ORDTExceptions AS VARRAY(32500) OF DATE;

2.3.2 Time Series Data Types
Oracle8i Time Series provides the following time series data types. (Calendar data
types are described in Section 2.3.1.)

CREATE TYPE ORDSYS.ORDTNumCell AS OBJECT
 (tstamp DATE, value NUMBER);

CREATE TYPE ORDSYS.ORDTNumTab AS TABLE OF
 ORDSYS.ORDTNumCell;

CREATE TYPE ORDSYS.ORDTNumSeries AS OBJECT
 (
 name VARCHAR2(256),
 cal ORDSYS.ORDTCalendar,
 series ORDSYS.ORDTNumTab
);
2-14 Oracle8i Time Series User’s Guide

Data Types
CREATE TYPE ORDSYS.ORDTNumSeriesIOTRef AS OBJECT
 (
 name VARCHAR2(256),
 cal REF ORDSYS.ORDTCalendar,
 table_name VARCHAR2(256),
 tstamp_colname VARCHAR2(30),
 value_colname VARCHAR2(30),
 qualifier_colname VARCHAR2(30),
 qualifier_value VARCHAR2(4000)
);

CREATE TYPE ORDSYS.ORDTVarchar2Cell AS OBJECT
 (tstamp DATE, value VARCHAR2(4000));

CREATE TYPE ORDSYS.ORDTVarchar2Tab AS TABLE OF
 ORDSYS.ORDTVarchar2Cell;

CREATE TYPE ORDSYS.ORDTVarchar2Series AS OBJECT
 (
 name VARCHAR2(256),
 cal ORDSYS.ORDTCalendar,
 series ORDSYS.ORDTVarchar2Tab
);

CREATE TYPE ORDSYS.ORDTVarchar2SeriesIOTRef AS OBJECT
 (
 name VARCHAR2(256),
 cal REF ORDSYS.ORDTCalendar,
 table_name VARCHAR2(256),
 tstamp_colname VARCHAR2(30),
 value_colname VARCHAR2(30),
 qualifier_colname VARCHAR2(30),
 qualifier_value VARCHAR2(4000)
);

CREATE TYPE ORDSYS.ORDTDateTab AS TABLE OF DATE;

The preceding statements show the definition of a numeric time series and a
character time series (instance-based and reference-based interfaces), each
composed of a calendar instance and a collection. The collection (ORDTxxxTab) is
defined as a table of ORDTxxxCell (except for ORDTDateTab, which is a table of
DATE). Oracle8i Time Series data types, such as ORDTNumSeries and
ORDTVarchar2Series, are input and output parameters of time series functions.
Time Series Concepts 2-15

Conventions and Semantics
The following statements show the definitions for the ORDTDateRange and
ORDTDateRangeTab types. The latter is returned by the GenDateRangeTab
function, which is described in Chapter 4.

CREATE TYPE ORDSYS.ORDTDateRange AS OBJECT
 (start_date DATE, end_date DATE);

CREATE TYPE ORDSYS.ORDTDateRangeTabTab AS TABLE OF
 ORDSYS.ORDTDateRange;

2.4 Conventions and Semantics
For time series functions that accept two time series, both time series must be
defined on calendars that have the same frequency and the same pattern. The
calendars may have different exceptions lists and different starting and ending
dates.

2.4.1 Semantics of Null Operands
A number of time series functions perform arithmetic, comparison, and grouping
operations. When nulls are encountered in this context, the default behavior is to
mirror SQL:

■ Group functions ignore nulls. When all values encountered are null, a null is
returned.

For example, the sum of (1, NULL, NULL, 3) returns 4. The sum of (NULL,
NULL, NULL, NULL) returns null.

■ Functions that operate on time series ignore nulls, but return a null if all values
encountered are null. Such functions include Mavg (Moving Average) and
Msum (Moving Sum)

For example, if there are 5 nulls in the last 30 timestamps for (and including) a
specific date, the 30-day moving average on that date is computed using only
25 values (that is, adding only the values that are not null and dividing by 25).
However, if all 30 dates (the date and the 29 previous dates) have nulls, the
moving average for that date is null.

■ Any arithmetic expression containing a null returns a null.

For example, 10 + NULL returns null.

■ A comparison operator that encounters a null returns a null.

For example, a GT comparison of 30-Jun-1997 and null returns null.
2-16 Oracle8i Time Series User’s Guide

Conventions and Semantics
Note that because PL/SQL does not implement UNKNOWN, these semantics
are slightly different than the SQL treatment of comparisons with nulls. In SQL,
a comparison operator that encounters a null returns UNKNOWN, which is like
a null, except that operations on UNKNOWN return UNKNOWN.

■ Scaleup functions return a null if all timestamps for a scaling interval contain
nulls.

For example, if you are scaling up daily data from 01-Jan-1997 through 30-Jun-
1997 to monthly data, and if there are no values for the month of February, a
null is returned for February and scaled data is returned for the other months.
(Note that this behavior differs from the standard GROUP BY scaling in SQL, in
which February would be missing in the scaled results.)

Some functions allow alternate semantics in the form of an option. For example, the
scaleup functions allow you to specify IgnoreNulls or IgnoreNullsOFF, as explained
in Section 2.11.2. The reference information for each function describes any alternate
semantics options.

2.4.2 Semantics of Off-Exception Operands
In comparisons of two time series, it is possible that a timestamp valid for one time
series is not valid for the other time series. Operations on two time series having
similar calendars return a time series that is defined over a new calendar. This new
calendar is derived from the two input calendars, using all of the following:

■ The union of the off-exceptions

■ The intersection of the on-exceptions

■ Bounded by [max(minDate1, minDate2), min(maxDate1, maxDate2)]

For example, assume the following two calendars:

■ Calendar 1: 01-Jan-1997 through 01-Dec-1997, daily pattern ’0,1,1,1,1,1,0’
(Monday through Friday), off-exception 01-May, on-exceptions 29-Mar and
29-Jun.

■ Calendar 2: 01-Feb-1997 through 01-Jan-1998; daily pattern ’0,1,1,1,1,1,0’
(Monday through Friday), off-exceptions 01-May and 14-Jul, on-exceptions
29-Jun and 28-Sep.

The new (derived) calendar is: 01-Feb-1997 through 01-Dec-1997, daily pattern
’0,1,1,1,1,1,0’ (Monday through Friday), off-exceptions 01-May-1997 and 14-Jul-1997,
on-exception 29-Jun-1997.
Time Series Concepts 2-17

Oracle8i Time Series Architecture
2.5 Oracle8i Time Series Architecture
Figure 2–3 shows the Oracle8i Time Series architecture. At the lowest level, a
storage option is required, and this must be a flat index-organized table (IOT), a flat
table, or a nested IOT. The actual product consists of PL/SQL packages for calendar,
time series, and time scaling functions and for administrative tools procedures. In
addition, a collection-based interface between time series storage and the packaged
functions is provided.

Figure 2–3 Time Series Architecture

The rest of this chapter describes this architecture, working from bottom to top in
Figure 2–3:

■ Storage of time series detail data

■ Interfaces (instance-based and reference-based) to time series and time scaling
functions

■ Calendar functions

■ Time series functions

■ Time scaling functions

■ Administrative tools procedures

Storage
Time Series

Collection-Based Interface

PL/SQL Packages

Time ScalingTime SeriesCalendar

Storage is flat IOT
or nested IOT

NU-3690A-RA

Tools
2-18 Oracle8i Time Series User’s Guide

Storage of Time Series Data
2.6 Storage of Time Series Data
Using Oracle8i Time Series involves storing three different kinds of information:

■ Time series detail data (for example, prices and volume for each stock for each
trading day)

■ Calendars

■ Time series metadata

In the flat table or IOT storage model, these requirements are implemented using
three separate tables, and time series detail data is stored as multiple rows in the
table or IOT. (Figure 1–1 in Section 1.6.2 shows the tables created by the usage
demo.)

In the nested table storage model, the time series detail data is stored as an object in
a nested table, that is, as rows at the second level of a nested IOT.

In the time series detail table, the data should be stored in timestamp order, because
many of the analytical functions require access to the data in this order. (If
timestamps are not in order, the functions perform an internal sort before
processing the timestamps.)

2.6.1 Flat IOT or Flat Table Storage
A time series is stored as multiple rows in a flat index-organized table (IOT) or a flat
table.1 Each row stores a ticker, a timestamp, and composite data. This storage
option is shown in Figure 2–2.

The flat IOT or table model has some benefits compared to nested IOTs:

■ Only one timestamp column need be stored for multiple attributes.

For time series data such as stock market data, where multiple attributes (such
as open, high, low, volume and close) share a single timestamp, only a single
timestamp column needs to be stored, thus providing efficient utilization of
disk storage.

■ Migration from legacy systems is easier.

Migrating legacy data is simplest if the target schema is a flat table or flat IOT.

1 A time series can be stored in a standard table; however, for performance reasons it is
recommended that you use an IOT rather than a standard table.
Time Series Concepts 2-19

Storage of Time Series Data
However, using this model means that ensuring time series and calendar integrity
cannot be encapsulated. The highest-integrity solution to time series and calendar
integrity would disable insert, update, and delete operations using SQL and would
implement these operations using member methods of time series and time scaling
functions. This approach is not possible with a flat IOT storage model. Instead, a
relational view must be defined to ensure integrity (see Section 2.8.2).

To minimize the burden of creating the relational view and other required schema
objects, you can use the administrative tools procedures described in Section 2.12.

2.6.2 Nested IOT Storage (Object Model)
A time series is stored as rows in a nested IOT. At the first nesting level, the ticker
symbol and any metadata associated with the time series are stored. At the second
level and associated with each ticker symbol, timestamp and composite data is
stored.

The nested IOT storage model has the following advantages compared to the flat
IOT or table model:

■ Locator-based access to nested IOTs provides optimized retrieval of time series
data with standard mechanisms.

Time series analysis functions, such as Moving Average, operate on time series
data represented by collections that are passed as parameters to PL/SQL
functions. This strategy is inefficient when only a portion of the time series is
accessed because the server materializes the entire collection into the object
cache.

Locator-based access to nested IOTs provides a solution to this problem, by
providing PL/SQL functions a handle to the nested table.

■ Nested tables allow time series metadata to be stored with time series data in a
single structure.

The two levels of a nested table allow you to store metadata associated with
each time series (such as textual descriptions of the instrument, or information
related to stock splits). This simplifies schema management.

■ A nested storage model cleanly supports the storage of derived time series.

Derived time series are those that are computed by applying functions to
existing time series. In a composite (multiple-attribute) model, the storage of
derived time series is complicated by the fact that derived time series data is
available for only one of many columns (at least initially).
2-20 Oracle8i Time Series User’s Guide

Interfaces to Time Series and Time Scaling Functions
With a nested table storage model, a single value column is stored. This cleanly
enables the storage of derived time series.

■ When encapsulated types are available, it will be possible to support calendar
and time series integrity by requiring insert, update, delete, and append
operations to be executed using methods.

However, the nested IOT storage model has the following disadvantage compared
to the flat IOT model: each attribute column requires a separate timestamp column.
This increases the storage overhead for multiple-attribute time series data (such as
daily stock market data that includes open, high, low, close, and volume attributes).
However, many forms of time series data are single-attribute (such as the monthly
unemployment rate), and for these formats the nested IOT storage model is ideal.

2.7 Interfaces to Time Series and Time Scaling Functions
The interfaces to the time series and time scaling functions rely on the following
aspects of the Oracle8i Time Series architecture:

■ Time series detail data is stored as relational data (in a flat IOT or flat table), one
timestamp per row.

■ Calendars are stored in object tables.

■ Time series and time scaling functions expect time series data and calendars to
be formatted as objects. A time series object is typically the first parameter to a
function.

Two basic interfaces to time series and time scaling functions are defined:

■ An instance-based object interface

In the instance-based interface, the first input parameter to a time series
function is an instance of a time series (for example, ORDTNumSeries).

■ A reference-based object interface

In the reference-based interface, the first input parameter to a time series
function is a reference to a time series (for example, ORDTNumSeriesIOTRef).
The reference-based interface requires that you provide enough descriptive
information to enable the functions to execute dynamic SQL to obtain an
instance of a time series.

The data types related to the instance-based and reference-based interfaces (for
example, ORDTNumSeries and ORDTNumSeriesIOTRef) are discussed in Sections
2.7.1 and 2.7.2.
Time Series Concepts 2-21

Interfaces to Time Series and Time Scaling Functions
Note that both types of interfaces return only instances of time series (for example,
ORDTNumSeries). Also, because nesting of time series and time scaling functions is
allowed (for example, SELECT (Lead(Mavg, ...) ...)), the instance-based interface is
used internally for the second and subsequent levels of nesting.

When possible, you should use the reference-based interface. Although this
interface may be difficult to understand initially, it offers significant performance
advantages over the instance-based interface. The examples in this guide emphasize
the reference-based interface.

2.7.1 Instance-Based Interface
Time series and time scaling functions operate on instances of time series objects
(for example, an ORDTNumSeries). An instance of a time series object includes a
name field, an instance of a calendar, and an instance of a time series. For example,
as the following data type definitions for a numeric time series show,
ORDTNumTab defines a collection and ORDTNumSeries combines a calendar
instance with a collection:

CREATE TYPE ORDSYS.ORDTNumCell AS OBJECT (tstamp DATE, value NUMBER);
CREATE TYPE ORDSYS.ORDTNumTab AS TABLE OF ORDTNumCell;
CREATE TYPE ORDSYS.ORDTNumSeries AS OBJECT (
 name VARCHAR2(256),
 cal ORDTCalendar,
 series ORDTNumTab
);

For a numeric time series, the time series data is contained in the ORDTNumTab
structure. This structure is a table (collection) of a DATE column and a NUMBER
column.

Figure 2–4 shows an example of an ORDTNumTab collection type.

Figure 2–4 Example of ORDTNumTab Collection Type

Tstamp Value

01-01-1996 22.00

01-02-1996 23.00

... ...

12-31-1996 ...
2-22 Oracle8i Time Series User’s Guide

Interfaces to Time Series and Time Scaling Functions
Functions such as Mavg (Moving Average, described in Section 2.10.7) use the
ORDTNumTab structure as the source data for performing computations, and they
use the ORDTCalendar data type to enable navigation through the time series data.
The calendar-based navigation is especially useful for functions such as Mavg,
which has as input parameters the starting date (startDate) and ending date
(endDate) for which to return moving averages and an integer (k) indicating the
lookback window (k denoting the number of timestamps, including the current one,
over which to compute the moving average). Calendar-based navigation is used to
determine the date that is k-1 timestamps previous to startDate.

Although time series and time scaling functions operate on time series instances,
they are invoked from SQL using a REF to a time series. For a numeric time series,
this type is an ORDTNumSeriesIOTRef. (Section 2.7.2 explains the use of REFs in
the reference-based interface.) The REF contains enough information so that time
series and time scaling functions can derive the instance (ORDTNumSeries) at
runtime (using dynamic SQL).

The convention of defining an interface on a DATE column and a single NUMBER
column provides a uniform interface for time series and time scaling functions.
Because the underlying IOT that stores time series detail data may have multiple
NUMBER columns, the view defining the REF also maps the underlying storage to
conform to the two-column interface defined by the ORDTNumSeries data type.

The following are the key aspects of the instance-based interface to time series and
time scaling functions:

■ The input parameter of a time series function is a REF to a time series object (for
example, ORDTNumSeriesIOTRef).

■ Time series and time scaling functions operate on time series instances (for
example, ORDTNumSeries).

■ You should use a view to construct the reference descriptor.

■ The REF associates the calendar with the time series.

■ Instances of calendars are typically stored in a table separate from time series
detail data.

Note: In addition to numeric series, a character time series is also
provided, with the data types ORDTVarchar2Series and
ORDTVarchar2SeriesIOTRef.
Time Series Concepts 2-23

Interfaces to Time Series and Time Scaling Functions
■ It is important to ensure and maintain consistency between time series data and
the corresponding calendar. Section 2.8 discusses consistency of time series
data, including ways of ensuring consistency.

2.7.2 Reference-Based Interface
Oracle8i Time Series provides a reference-based interface for time series and time
scaling functions.

This interface provides efficient performance, especially when only a portion of the
time series is accessed. The performance benefit of this interface results from the
fact that at runtime, the reference-based interface materializes only those rows
within the specified date range, as opposed to materializing the entire collection of
rows from the time series.

The reference-based interface uses the ORDTNumSeriesIOTRef and
ORDTVarchar2SeriesIOTRef data types, which include a REF to a calendar, plus
several literal values. At runtime, reference-based time series and time scaling
functions use these literal values to form and execute a SQL statement (using
dynamic SQL) that derives an instance of a time series that contains only the
timestamps needed for this instance. The function determines which timestamps are
needed based on the startDate and endDate parameters.

The ORDTNumSeriesIOTRef data type is defined as follows:

CREATE TYPE ORDSYS.ORDTNumSeriesIOTRef AS OBJECT
 (
 name VARCHAR2(256),
 cal REF ORDSYS.ORDTCalendar,
 table_name VARCHAR2(256),
 tstamp_colname VARCHAR2(30),
 value_colname VARCHAR2(30),
 qualifier_colname VARCHAR2(30),
 qualifier_value VARCHAR2(4000)

Note: You should use administrative tools procedures
(documented in Chapter 7) to create and maintain objects for use
with the reference-based interface. Normally, you should not
manually create any views used by the reference-based interface,
because the specific view definitions may change in future releases
and because the administrative tools procedures provide a simple
interface.
2-24 Oracle8i Time Series User’s Guide

Interfaces to Time Series and Time Scaling Functions
);

The attributes of the ORDTNumSeriesIOTRef data type are as follows:

■ name is the name of the time series.

■ cal is a REF to the calendar.

■ table_name is the fully qualified name of the flat IOT.

table_name can be a view, but the view must be updatable and must map to an
IOT. If the view includes any functions, they must include the PRAGMA
RESTRICT_REFERENCES compiler directive with the keywords WNPS, RNPS,
and WNDS.

■ tstamp_colname is the name of tstamp column in the flat IOT.

■ value_colname is the name of the value column in the flat IOT (for example, close
for the closing price).

■ qualifier_colname is the name of the column that identifies a time series instance
(for example, ticker).

■ qualifier_value is the value of the column that identifies a time series instance
(for example, ACME, which is the ticker for Acme Corporation).

In the Oracle8i Time Series usage demo, the view stockdemo_ts uses the reference-
based interface to time series and time scaling functions. The stockdemo_ts view
determines which calendar should be associated with the time series by accessing
the calendar (stockdemo_calendars) and metadata (stockdemo_metadata) tables. The
pricing data is accessed through the underlying table containing historical time
series pricing data (stockdemo). For an explanation of the relationship between the
reference-based view and the underlying tables in the usage demo, see
Section 1.6.2.3.

The stockdemo_ts view is generated by the administrative tools procedures
(documented in Chapter 7) with the following definition for the current release of
Oracle8i Time Series. (This definition may change in future releases, and therefore
you are encouraged to use the administrative tools procedures rather than manually
creating such a view.)

CREATE OR REPLACE VIEW stockdemo_ts(ticker,open,high,low,close,volume) AS
 SELECT meta.tickername,
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ open NumSeries’,
 Ref(cal), ’tsdev.stockdemo’,
 ’tstamp’, ’open’, ’ticker’, meta.tickername),
Time Series Concepts 2-25

Interfaces to Time Series and Time Scaling Functions
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ high NumSeries’,
 Ref(cal), ’tsdev.stockdemo’,
 ’tstamp’, ’high’, ’ticker’, meta.tickername),
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ low NumSeries’,
 Ref(cal), ’tsdev.stockdemo’,
 ’tstamp’, ’low’, ’ticker’, meta.tickername),
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ close NumSeries’,
 Ref(cal), ’tsdev.stockdemo’,
 ’tstamp’, ’close’, ’ticker’, meta.tickername),
 ORDSYS.ORDTNumSeriesIOTRef(
 substr(meta.tickername, 1, 230) || ’ volume NumSeries’,
 Ref(cal), ’tsdev.stockdemo’,
 ’tstamp’, ’volume’, ’ticker’, meta.tickername)
 FROM stockdemo_metadata meta, stockdemo_calendars cal
 WHERE meta.calendarname = cal.name;

Depending on which column is selected, a different literal value is applied as an
attribute of the ORDTNumSeriesIOTRef data type. For example, for the following
query:

SELECT ORDSYS.TimeSeries.Mavg(close,
 to_date(’02-DEC-96’,’DD-MON-YY’),
 to_date(’31-DEC-96’,’DD-MON-YY’),
 10)
FROM TSDEV.stockdemo_ts
WHERE ticker=’ACME’;

The literal value close is used as the value_colname column name. The other attributes
of the ORDTNumSeriesIOTRef data type include the timestamp column name
(tstamp), a qualifying column name (ticker), and the actual value of the qualifying
column (meta.tickername).

The implementation of time series and time scaling functions uses the information
stored in the ORDTNumSeriesIOTRef data type to generate the appropriate
dynamic SQL statement at runtime. Using the preceding example, to instantiate a
time series object (that is, to convert an ORDTNumSeriesIOTRef to an
ORDTNumSeries), the Mavg function generates a query that performs the
following action (with the logic shown, not the exact syntax):

SELECT tstamp, close
FROM tsdev.stockdemo_ts
WHERE ticker=’ACME’ and tstamp BETWEEN <a date range adjusted
2-26 Oracle8i Time Series User’s Guide

Consistency of Time Series Data
 to reflect the 10-day window and the
 calendar, including any holidays>;

The Mavg function computes the moving average and returns the result as a time
series instance (ORDTNumSeries). For more information about the Mavg function,
see Section 2.10.7.

2.8 Consistency of Time Series Data
Most time series and time scaling functions rely on calendars that are consistent
with time series data.1 By assuming a time series is consistent with its calendar, time
series and time scaling functions can use the calendar as a basis for navigation of
time series data.

Time series consistency must be maintained; otherwise, functions might raise
exceptions or return incorrect results.

2.8.1 Rules for Time Series Consistency
For a time series to be consistent, the following must be true:

■ All timestamps are sorted in ascending sequence.

■ There are no duplicate timestamps.

■ All timestamps match the precision of the calendar.

■ No timestamps are beyond the bounds of the calendar (minDate and maxDate).

■ All timestamps conform to the pattern specification, except those listed in the
off-exceptions list or the on-exceptions list.

■ The time series data is contiguous. That is, between the smallest (earliest) and
largest (latest) timestamps in the time series, the time series data contains
timestamps for all valid calendar timestamps.

If some mechanism is not used to enforce these consistency rules, accidental or
malicious actions could destroy the integrity of the time series data. For example, a
user might delete rows from the middle of the time series, rather than being
restricted to deleting rows at the beginning and the end of the date range for the
time series.

1 An exception is the Fill function, which can be used to add pairs of timestamps and values
to make a time series consistent with the calendar.
Time Series Concepts 2-27

Consistency of Time Series Data
2.8.2 Enforcing Time Series Consistency with Relational Views
Enforcing time series consistency can be accomplished with a relational view of
time series data that uses an INSTEAD OF trigger to maintain time series
consistency. (For an explanation of INSTEAD OF triggers, see the Oracle8i Concepts
manual.) This relational view is intended to be used for limited or moderate insert,
update, and delete operations; it is not intended for bulk changes to time series
data.

The usage demo (see Section 1.6) includes a relational view named stockdemo_sv.
This view:

■ Enables view updates to be propagated to the underlying table

■ Ensures that the underlying table can be updated only by using a view
mechanism, provided that users are granted update access to the relational
view and not granted update access to the underlying table

■ Ensures that update, delete, and insert operations affecting time series data are
constrained to conform to the calendar associated with the time series

2.8.2.1 Precision
With the relational view, if a timestamp to be inserted is imprecise, an exception is
raised. If a timestamp to be deleted is imprecise and if a matching timestamp exists
in the time series, the deletion is permitted.

2.8.2.2 INSTEAD OF Trigger
An INSTEAD OF trigger in a relational view enforces rules on insert, delete, and
update operations. These rules maintain time series data that conforms to the
associated calendar.

For insert operations, the following rules apply:

■ For an empty time series, the new timestamp must be a valid date in the
calendar.

■ For a time series that is not empty, an insertion is allowed immediately after the
last timestamp or immediately before the first timestamp, but nowhere else.

For delete operations, the following rules apply:

■ For an empty time series, an exception is raised.

■ For a time series that is not empty, only the following can be deleted: the first or
last timestamp, or an imprecise timestamp where a matching timestamp exists
in the time series.
2-28 Oracle8i Time Series User’s Guide

Consistency of Time Series Data
For update operations, the following rules apply:

■ The timestamp must exist in the time series.

■ Updates are not allowed to the timestamp and qualifier columns (for example,
tstamp and ticker in the usage demo relational view).

The INSTEAD OF trigger in a relational view enables you to ensure that a time
series meets the consistency requirements described in Section 2.8.1.

The INSTEAD OF trigger allows for multiple timestamps to be inserted or deleted
in a single query, given that the group of timestamps inserted or deleted are in the
proper order. For example, a specified number of timestamps can be deleted from
the beginning of a time series by using a simple range restriction on the timestamp.
A specified number of timestamps can be inserted at the end of a time series by
using a subquery that references another table containing time series data.

2.8.3 Bulk Loading and Consistency
The SQL*Loader utility is useful for loading large amounts of data into a table. For
better performance, you should perform bulk loads on underlying tables instead of
on relational views. However, after you load data into the tables, you must ensure
time series consistency by using one of the following approaches:

■ Adjust calendars to be consistent with the time series.

If you are sure that all timestamps are correct, it is safe to adjust the calendar to
be consistent with the time series. This strategy is normally appropriate when
there is a unique calendar per time series.

The DeriveExceptions function is useful for adjusting a calendar to be consistent
with the time series.

■ Validate that each time series is consistent with the calendar.

If you expect time series data to adhere to a predefined calendar, validating
each time series is the better approach. This approach is particularly useful if
the same calendar is used for all time series data being loaded.

The IsValidTimeSeries function can be used to check if the time series is
consistent with the calendar.

For better performance in the case of a shared calendar for all time series, you
may want to customize time series validation using PL/SQL. This involves
writing custom utility functions that call Oracle8i Time Series product-
developer calendar functions (see Section 2.9.2) to test and maintain time series
consistency.
Time Series Concepts 2-29

Calendar Functions
Section 3.4 contains additional information and examples of bulk and incremental
loading of time series data.

2.9 Calendar Functions
Oracle8i Time Series provides calendar functions for querying and modifying
calendars. The calendar functions can be divided into the following categories:

■ End-user functions allow application developers to use the main calendar-
related features.

■ Product-developer functions allow developers to modify or supplement Oracle8i
Time Series capabilities by creating value-added enhancements.

Reference information for all calendar functions is in Chapter 4.

2.9.1 End-User Functions
End-user functions let you use the main calendar-related features of Oracle8i Time
Series. If you do not need to modify or expand the product’s capabilities, you
probably can limit your use of calendar functions to those listed in Table 2–4.

Table 2–4 End-User Calendar Functions

Function Description

 Calendar-Creation Functions1

Second Creates a calendar with a frequency of second.

Minute Creates a calendar with a frequency of minute.

Hour Creates a calendar with a frequency of hour.

Day Creates a calendar with a frequency of day.

Week Creates a calendar with a frequency of week.

Ten_day Creates a calendar with a frequency of 10-day.

Semi_monthly Creates a calendar with a frequency of semi-monthly.

Month Creates a calendar with a frequency of month.

Quarter Creates a calendar with a frequency of quarter.

Semi_annual Creates a calendar with a frequency of semi-annual.

Year Creates a calendar with a frequency of year.

 Calendar-Related Functions
2-30 Oracle8i Time Series User’s Guide

Calendar Functions
2.9.2 Product-Developer Functions
Product-developer functions let you modify and expand the Oracle8i Time Series
capabilities. For example, you could use product-developer calendar functions in
creating a new function that modified the information returned for the moving
average or that returned a net present value for a portfolio of stocks at a specified
date.

EqualCals Returns 1 if the two calendars are equivalent. If a date range is
provided, tests only equivalence between the supplied dates.

GenDateRangeTab Returns a table of date ranges that represent all of the valid
intervals in the input calendar (or from startDate through
endDate).

IntersectCals Intersects two calendars.

UnionCals Returns the union of two calendars.

IsValidCal Returns 1 if a calendar is valid and 0 if a calendar is not valid.

ValidateCal Validates a calendar; repairs errors where possible.

 Exception-Related Functions

InsertExceptions Inserts a list of timestamps into the appropriate exceptions list
or lists.

DeleteExceptions Deletes a list of timestamps from the appropriate exceptions list
or lists.

1 The calendar-creation functions create a calendar of with a frequency corresponding to the function
name, a pattern of ’1’ (all timestamps included), no lower or upper boundary dates (minDate or
maxDate), no off-exceptions or on-exceptions, and a specified or default name and anchor date.

Note: It is recommended that you not modify the functions
provided with Oracle8i Time Series. If you want a function with a
behavior different from an existing function, create a new function
with a different name or put the function in a different package, or
do both. For example, if you work for XYZ Corporation and create
a modified moving average function, you could name the function
MavgXYZ and put it in a package named XYZPackage.

Table 2–4 End-User Calendar Functions (Cont.)

Function Description
Time Series Concepts 2-31

Time Series Functions
Table 2–5 lists the product-developer calendar functions.

For an example of using product-developer functions, see Section 3.9.

2.10 Time Series Functions
Time series functions operate on a time series. A time series data type is always
used as the input parameter to a time series function.

Reference information for all time series functions is in Chapter 5.

Table 2–5 Product-Developer Calendar Functions

Function Description

 Calendar-Related Functions

CombineCals Combines two calendars. Similar to IntersectCals, except
the patterns must be identical.

 Exception-Related Functions

NumOffExceptions Returns the number of off-exceptions between two dates.

NumOnExceptions Returns the number of on-exceptions between two dates.

 Date and Index-Related Functions

IsValidDate Determines if a supplied date is valid.

OffsetDate Returns a date that is k dates in the future (or k in the past
if k is negative) of the supplied date.

GetIntervalStart Returns the start of the interval that includes the input
timestamp.

GetIntervalEnd Returns the end of the interval that includes the input
timestamp.

NumInvalidTstampsBetween Returns the number of invalid timestamps between two
dates.

NumTstampsBetween Returns the number of valid timestamps between two
dates.

TstampsBetween Returns the valid timestamps between two dates.

InvalidTstampsBetween Returns the invalid timestamps between two dates.

SetPrecision Sets the precision of the input timestamp to correspond to
the frequency of the input calendar.
2-32 Oracle8i Time Series User’s Guide

Time Series Functions
2.10.1 Extraction, Retrieval, and Trim Functions
Time series extraction, retrieval, and trim functions operate on any time series type.
Extraction functions return one or more time series rows, while retrieval and trim
functions return a time series.

Table 2–6 lists the extraction functions.

Table 2–7 lists the retrieval and trim functions.

Table 2–6 Extraction Functions

Function Description

DeriveExceptions Returns a calendar populated with exceptions derived from
either a calendar and a table of dates or two time series.

ExtractCal Returns a calendar that is the same as the calendar on which the
time series is based.

ExtractDate Gets the date from an element in a time series.

ExtractTable Returns the time series table (ORDTNumTab or
ORDTVarchar2Tab) associated with a time series.

ExtractValue Gets the value stored in an element in a time series.

First Gets the first element in a time series.

GetDatedElement Gets the element of a time series at a supplied date.

GetNthElement Gets the Nth element of a time series.

Last Gets the last element in a time series.

Table 2–7 Retrieval and Trim Functions

Function Description

FirstN Gets the first n elements in a time series.

GetSeries Returns the entire time series.

LastN Gets the last n elements in a time series.

TrimSeries Returns the time series data between the supplied dates.
Time Series Concepts 2-33

Time Series Functions
2.10.2 Shift Functions
Shift functions (listed in Table 2–8) lead or lag a time series by a specified number of
units, where units reflects the frequency of the calendar for the time series.

2.10.3 SQL Formatting Functions
When called from a SQL SELECT expression, a time series function returns an
instance of a time series data type, which cannot be displayed. The SQL formatting
functions (listed in Table 2–9) facilitate format conversions that allow time series to
be displayed.

2.10.4 Aggregate Functions
Aggregate functions (listed in Table 2–10) return scalar or ORDTNumTab values.
Each aggregate function can be used in either of the following ways:

■ The function accepts a numeric time series, ORDTNumSeries, and operates on
all elements of the collection.

■ The function accepts a numeric time series, ORDTNumSeries, and a date range,
bounded by date1 and date2. The function is computed on the time series
defined by the date range.

Thus, each aggregate function is of the form:

f(ts ORTDNumSeries, [date1 DATE, date2 DATE])

Table 2–8 Shift Functions

Function Description

Lead Leads a time series by the specified number of units.

Lag Lags a time series by the specified number of units.

Table 2–9 SQL Formatting Functions

Function Description

ExtractCal Given a time series, returns a calendar that is the same as the
calendar on which the time series is based.

ExtractDate Given an element in a time series, returns the date.

ExtractTable Given a time series, returns the time series table
(ORDTNumTab or ORDTVarchar2Tab) associated with the time
series.

ExtractValue Given an element in a time series, returns the value stored in it.
2-34 Oracle8i Time Series User’s Guide

Time Series Functions
2.10.5 Arithmetic Functions
Arithmetic functions (listed in Table 2–11) accept two time series
(ORDTNumSeries1,ORDTNumSeries2) or a time series and a constant
(ORDTNumSeries1, Const), and perform a pairwise arithmetic operation on each
element of the time series. This operation determines the value of each element of
the returned time series:

Algorithm for f(ts1, ts2)
ForAll i, tsRet(i) = ts1(i) op ts2(i);

Table 2–10 Aggregate Functions

Function Returns

TSAvg Average (mean) of a time series

TSCount Number of elements in a time series

TSMax Maximum value of a time series

TSMaxN Specified number of top (highest) values in a time series

TSMedian Middle element of a time series

TSMin Minimum value of a times series

TSMinN Specified number of bottom (lowest) values in a time series

TSProd Product of the elements of a time series

TSStddev Standard deviation (square root of VAR)

TSSum Sum of the elements of a time series

TSVariance Variance (analogous to the SQL group function VAR)

Table 2–11 Arithmetic Functions

Function Description

TSAdd Time series addition

TSDivide Time series division

TSMultiply Time series multiplication

TSSubtract Time series subtraction
Time Series Concepts 2-35

Time Series Functions
2.10.6 Cumulative Sequence Functions
Cumulative sequence functions (listed in Table 2–12) operate on successive elements
of a time series, accumulating the result into the current element of the output time
series. For example, CSUM((1,2,3,4,5)) => (1,3,6,10,15). In this example, the result
time series (f(i)), is computed from the input time series (I(i)) as follows:

f(1) = I(1)
ForAll i > 1, f(i) = f(i - 1) + I(i)

2.10.7 Moving Average and Sum Functions
The Moving Average (Mavg) function returns a time series that contains the
averages of values from each successive timestamp for a specified interval over a
range of dates. For example, the 30-day moving average for a stock is the average of
the closing price for the specified date and the 29 trading days preceding it.

The Moving Sum (Msum) function returns a sum of values from each successive
timestamp for a specified interval over a range of dates. For example, the 30-day
moving sum of trading volumes for a stock is the sum of the volume for the
specified date and for 29 trading days preceding it.

Table 2–13 lists the moving average and sum functions.

The relationship between the input and output time series in the computation of a
moving average or sum is illustrated in Figure 2–5. The figure focuses on the

Table 2–12 Cumulative Sequence Functions

Function Returns

Cavg Cumulative average

Cmax Cumulative maximum

Cmin Cumulative minimum

Cprod Cumulative product

Csum Cumulative sum

Table 2–13 Moving Average and Sum Functions

Function Returns

Mavg Moving average

Msum Moving sum
2-36 Oracle8i Time Series User’s Guide

Time Scaling Functions
common invocation of moving average or sum, where k is the number of
timestamps in the lookback window (for example, 30) and a date range (startDate
and endDate) is supplied. (For more information about the parameters, see the Mavg
function description in Chapter 5.)

Figure 2–5 Relationship of Input and Output Time Series in Moving Average/Sum

2.10.8 Conversion Functions
Conversion functions (see Table 2–14) convert a time series by filling in missing
timestamp-value pairs. With the Fill function, any timestamps that are valid
calendar timestamps but missing from the time series are inserted into the time
series. This function is especially useful for converting a time series from one
calendar to another.

2.11 Time Scaling Functions
Oracle8i Time Series provides functions to scale time series data:

■ Scaleup functions produce summary information from finer granularity
information. For example, monthly data can be derived based on daily data.
Scaleup is also known as rollup.

Table 2–14 Conversion Functions

Function Description

Fill Fills a time series based on the calendar and fill type.

. . .

endDatestartDate

f(x)1
NU−3692A−RA

Input Time Series

Output Time Series

 k
Time Series Concepts 2-37

Time Scaling Functions
■ Scaledown functions generate finer-granularity information from coarser-
granularity information. For example, quarterly data can be converted to a daily
time series. Scaledown is also known as distribution.

The relationship between the input and output time series in a scaleup operation is
illustrated in Figure 2–6, which shows a mapping when scaling from a daily
frequency to a monthly frequency.

Figure 2–6 Time Scaling from Daily to Monthly Frequency

Figure 2–6 shows all days in February being mapped to the month of February. This
mapping also suggests the importance of the precision of timestamps of different
frequencies. In the example shown in this figure:

■ The month timestamp for February 1997 is represented as 1-FEB-97 00:00:00.

■ The day timestamps for February 1997 are represented as 1-FEB-97 00:00:00, 2-
FEB-97 00:00:00,... 28-FEB-97 00:00:00.

Time scaling is permitted only when the calendar for the target time series is an
integral multiple of the calendar for the data to be scaled. For example, weekly data
(data associated with a calendar with a week frequency) cannot be scaled up to a
calendar with a frequency of month, quarter, half year, or year because a week does
not divide evenly into any of these time periods. However, monthly data can be
scaled up to a calendar with a frequency of quarter, half year, or year.

Table 2–15 provides a scaling compatibility matrix that shows for each frequency
the frequencies to which you can scale up and scale down data. For each cell in the
matrix, a Y means that scaling is permitted and a blank means that scaling is not
permitted. For scaleup operations, go down the left column to find the desired
scale-from frequency, then go across that row to see if scaling is permitted for the

NU−3693A−RA

1−FEB−97 1−MAR−97

1 2 3 28
2-38 Oracle8i Time Series User’s Guide

Time Scaling Functions
desired scale-to frequency. For scaledown operations, go across the top row to find
the desired scale-from frequency, then go down that column to see if scaling is
permitted for the desired scale-to frequency.

If the calendar for the target time series has a zero (’0’) pattern and one or more on-
exceptions that are precise with respect to the calendar frequency, the time scaling
functions use the on-exceptions to perform scaling. For example, if quarterly
dividend payment dates are defined as on-exceptions with a day frequency calendar
that has a zero pattern (ORDSYS.ORDTPatternBits(0)), the ScaledownRepeat
function could be used to insert the current quarterly dividend rate in each daily
timestamp.

The collection-based interface (operations on collections) for time scaling is
discussed in Section 2.11.1.

Reference information for all time scaling functions is in Chapter 6.

2.11.1 Time Scaling on Collections
The scaleup and scaledown functions accept as input a numeric time series and a
destination calendar. A numeric time series is returned, which is scaled based on the
destination calendar.

Table 2–15 Scaling Compatibility Matrix

D
ay

W
ee

k

10
-d

ay

Se
m

i-
m

on
th

M
on

th

Q
u

ar
te

r

Se
m

i-
an

nu
al

A
nn

ua
l

Day Y Y Y Y Y Y Y Y

Week Y

10-day Y Y Y Y Y

Semi-month Y Y Y Y Y

Month Y Y Y Y

Quarter Y Y Y

Semi-annual Y Y

Annual Y
Time Series Concepts 2-39

Time Scaling Functions
For example, the following statement returns the last closing prices for stock
SAMCO for the months of October, November, and December of 1996:

select * from the
 (select cast(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.ScaleupLast(
 ts.close,
 sc.calendar,
 to_date(’01-OCT-1996’,’DD-MON-YYYY’),
 to_date(’01-JAN-1997’,’DD-MON-YYYY’)
)
) as ORDSYS.ORDTNumTab)
 from tsdev.stockdemo_ts ts, tsdev.scale sc
 where ts.ticker=’SAMCO’ and
 sc.name =’MONTHLY’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-OCT-96 42.375
01-NOV-96 38.25
01-DEC-96 39.75
3 rows selected.

Note that each timestamp reflects the first date of the month in the calendar
(following the convention illustrated in Table 2–3), and each value in this case
reflects the closing price on the last date for that month in the calendar.

Scaleup functions ignore nulls. For example, ScaleupAvg returns a time series
reflecting the average value of each scaled group of non-null values.

Table 2–16 lists the scaleup functions, and Table 2–17 lists the scaledown functions.

Table 2–16 Scaleup Functions for Collections

Function Description

ScaleupAvg Returns the average value of each group.

ScaleupAvgX Returns the average value of the sum of each group and the
immediately preceding source period (for example, a first-
quarter average computed as the average for the months of
December, January, February, and March).

ScaleupCount Returns the count of timestamps in each group.

ScaleupGMean Returns the geometric mean of each group.
2-40 Oracle8i Time Series User’s Guide

Time Scaling Functions
2.11.2 Scaleup Options: IgnoreNulls and DiscardError
All scaleup functions allow you to specify either or both of the following options:

■ IgnoreNulls (default) or IgnoreNullsOFF

■ DiscardError (default) or DiscardErrorOFF

These options do not apply to scaledown functions.

IgnoreNulls controls the behavior with respect to null values. If IgnoreNulls is in
effect, nulls in the input time series are not be included in the aggregation being
performed. For example, if ScaleupAvg is operating on a group with 12 values, 3 of
which are null, only the 9 non-null values are averaged. If IgnoreNullsOFF is
specified, then any calculation involving one or more nulls results in a null. For
example, if IgnoreNullsOFF is specified and ScaleupAvg is operating on a group
with 12 values, 3 of which are null, a null is returned.

ScaleupSum Returns the sum of each group.

ScaleupSumAnnual Returns the sum of each group multiplied by a factor to state
the resulting time series at annual rates.

ScaleupMin Returns the minimum of each group.

ScaleupMax Returns the maximum of each group.

ScaleupFirst Returns the first value of each group.

ScaleupLast Returns the last value of each group.

Table 2–17 Scaledown Functions for Collections

Function Description

ScaledownInterpolate Returns missing values by interpolating between the values of
the input time series.

ScaledownRepeat Returns missing values by repeating the value of the input time
series.

ScaledownSplit Returns missing values by splitting (dividing) the value in the
input time series evenly.

Table 2–16 Scaleup Functions for Collections (Cont.)

Function Description
Time Series Concepts 2-41

Time Scaling Functions
DiscardError controls the behavior with respect to gaps in the target calendar. If
DiscardError (the default setting) is in effect, then whenever data from the source
time series has no corresponding interval in the target time series (which can result
from zeros in the pattern bits of the target calendar), an exception is raised. An
example of this condition is scaling up daily data to a monthly calendar for the
months January through March (anchor date of 01-Jan and pattern of
’1,1,1,0,0,0,0,0,0,0,0,0’). Using this example, the default behavior (DiscardError)
raises an exception if any input timestamps are from April through December;
however, DiscardErrorOFF performs the scaling for January through March and
ignores any input timestamps from April through December. The default behavior
ensures that certain types of incompatible calendars are not inadvertently used in
scaling.

2.11.2.1 Syntax Options: Names and Numbers
You can express the IgnoreNulls and DiscardError options syntactically using either
names or a number. Using names, you can specify one or both of the following as
the final parameter or parameters of a scaleup function call:

■ ORDSYS.TimeScale.IgnoreNulls or ORDSYS.TimeScale.IgnoreNullsOFF

■ ORDSYS.TimeScale.DiscardError or ORDSYS.TimeScale.DiscardErrorOFF

Instead of using names, you can use a one-digit or two-digit number from
Table 2–18:

The following examples show the use of names and a number to specify the same
options (IgnoreNullsOFF and DiscardErrorOFF):

ORDSYS.TimeScale.ScaleUpAvg(’My Timeseries’, myTS, targetCal,
 ORDSYS.TimeScale.IgnoreNullsOFF,
 ORDSYS.TimeScale.DiscardErrorOFF);
ORDSYS.TimeScale.ScaleUpAvg(’My Timeseries’, myTS, targetCal,
 11);

Table 2–18 IgnoreNulls and DiscardError Syntax Options

IgnoreNulls

ON OFF

DiscardError ON 0 1

OFF 10 11
2-42 Oracle8i Time Series User’s Guide

Administrative Tools Procedures
Names and numbers for the options cannot be used in the same function call. For
example, the following is not valid:

ORDSYS.TimeScale.ScaleUpAvg(’My Timeseries’, myTS, targetCal,
 1, ORDSYS.TimeScale.DiscardErrorOFF);

An exception is raised if an option is specified twice or if conflicting options are
specified (for example, specifying IgnoreNulls and IgnoreNullsOff in the same call).
These options can be specified in any order, but they must appear after any other
parameters to the function.

2.12 Administrative Tools Procedures
Oracle8i Time Series provides procedures that simplify the creation of time series
schema objects. The quick-start demo (described in Section 1.6.1) illustrates the use
of several of these administrative tools procedures.

Table 2–19 lists the administrative tools procedures. Reference information for these
procedures is in Chapter 7.

Table 2–19 Administrative Tools Procedures

Procedure Description

Add_Existing_Column Adds a column attribute from an existing flat table to a time
series.

Add_Integer_Column Adds an integer column attribute to an ongoing flat time series
creation specification.

Add_Number_Column Adds a number column attribute to an ongoing flat time series
creation specification.

Add_Varchar2_Column Adds a VARCHAR2 column attribute to an ongoing flat time
series creation specification.

Begin_Create_TS_Group Initiates the context for creating a time series group (the
schema objects for a time series).

Cancel_Create_TS_Group Cancels the creation of a time series group, that is, cancels the
context initiated by the Begin_Create_TS_Group procedure.

Close_Log Closes the log file that had been opened by the Open_Log
procedure.

Display_Attributes Displays information about the time series schema being
created.
Time Series Concepts 2-43

Administrative Tools Procedures
2.12.1 Role Requirement for Administrative Tools Procedures
To create, delete, and modify schema objects using the Oracle8i Time Series
administrative tools procedures, you must have been granted one or more of the
following roles:

■ DBA

■ TIMESERIES_DBA

■ TIMESERIES_DEVELOPER (deletion restricted to current user)

For deletion of time series schema objects, the DBA and TIMESERIES_DBA roles let
you delete objects that belong to any user (schema), but the

Drop_TS_Group Deletes the time series definition and views associated with it.
However, the underlying tables (calendar tables, detail data
tables, and so on) are not deleted.

Drop_TS_Group_All Deletes the time series definition and all tables, views, indexes,
constraints, and triggers associated with it.

End_Create_TS_Group Closes the context established by the Begin_Create_TS_Group
procedure and creates all appropriate schema objects.

Get_Flat_Attributes Retrieves the attributes of a flat time series.

Get_Object_Attributes Retrieves the attributes of an object-model time series.

Get_Status Checks to see if a time series creation sequence is in progress.

Open_Log Opens a log file that will contain the data definition language
(DDL) statements generated by the Time Series administrative
tools procedures.

Set_Flat_Attributes Sets the attributes of a flat time series.

Set_Object_Attributes Sets the attributes of an object-model time series.

Trace_Off Disables debugging for Oracle8i Time Series administrative
tools procedures. Any data definition language (DDL)
statements and errors encountered when generating DDL
statements will not be logged to SERVEROUTPUT.

Trace_On Enables debugging for Oracle8i Time Series administrative
tools procedures. Any data definition language (DDL)
statements and errors encountered when generating DDL
statements will be logged to SERVEROUTPUT.

Table 2–19 Administrative Tools Procedures (Cont.)

Procedure Description
2-44 Oracle8i Time Series User’s Guide

Administrative Tools Procedures
TIMESERIES_DEVELOPER role lets you delete only objects that belong to the
current user.

2.12.2 Other Requirements for Administrative Tools Procedures
Logging, which is controlled by the Open_Log and Close_Log procedures, relies on
the PL/SQL file I/O procedure UTL_FILE, which is documented in the Oracle8i
Application Developer’s Reference - Packages manual.

To use logging, one or more directories for UTL_FILE output must be defined using
the UTL_FILE_DIR parameter in the Oracle initialization file. For information about
the UTL_FILE_DIR parameter, see the Oracle8i Reference manual.
Time Series Concepts 2-45

Administrative Tools Procedures
2-46 Oracle8i Time Series User’s Guide

Time Series U
3

Time Series Usage

This chapter explains important procedures related to using Oracle8i Time Series. It
contains the following major sections:

■ Section 3.1, "Creating a Time Series Group"

■ Section 3.2, "Creating a Calendar" (also validating the calendar)

■ Section 3.3, "Maintaining a Map Table"

■ Section 3.4, "Populating the Detail Table Using SQL*Loader" (loading time
series data)

■ Section 3.5, "Retrofitting Existing Tables" ("retrofitting" existing detail, calendar,
and map tables by using administrative tools procedures to generate schema
objects)

■ Section 3.6, "Validating Time Series Consistency"

■ Section 3.7, "Formulating Time Series Queries"

■ Section 3.8, "Deriving Calendar Exceptions" (deriving exceptions from time
series data)

■ Section 3.9, "Using Product-Developer Functions"

For detailed explanations of Oracle8i Time Series concepts and terminology, see
Chapter 2.

3.1 Creating a Time Series Group
You can use the administrative tools procedures to create a time series group (all the
necessary time series schema objects), accepting default values for most object
names. These procedures provide a convenient, simple way to create time series
schema objects, and they are recommended for most users. These procedures are
sage 3-1

Creating a Time Series Group
used in the quick-start demo (see Section 1.6.1) and the usage demo (see
Section 1.6.2).

The following example shows the use of administrative tools procedures to create
all the necessary schema objects:

DECLARE

BEGIN

--
-- Establish ’tsquick’ as the time series group name for purposes of the
-- administrative tools procedures. Columns will automatically be created
-- for the time series name (which will be set to ’ticker’) and a
-- timestamp. The columns for the opening, high, low, and closing prices
-- and the trading volume will be explicitly defined.
--

 ORDSYS.TSTools.Begin_Create_TS_Group(’tsquick’,’flat’);

-- Set ’ticker’ as the name of the time series for functions.
-- Sample values for specific tickers include ’ACME’, ’AONE’, and ’XCORP’.

 ORDSYS.TSTools.Set_Flat_Attributes(tsname_colname => ’ticker’);
 ORDSYS.TSTools.Set_Flat_Attributes(tsname_length => 10);

-- Define numeric columns for prices.

 ORDSYS.TSTools.Add_Number_Column(’open’);
 ORDSYS.TSTools.Add_Number_Column(’high’);
 ORDSYS.TSTools.Add_Number_Column(’low’);
 ORDSYS.TSTools.Add_Number_Column(’close’);

-- Define an integer column for trading volume (number of shares
-- traded on a given day).

 ORDSYS.TSTools.Add_Integer_Column(’volume’);

-- End the specification of schema objects and create the objects.
--

 ORDSYS.TSTools.End_Create_TS_Group;

 exception
 when others then
 begin
3-2 Oracle8i Time Series User’s Guide

Creating a Calendar
 ORDSYS.TSTools.Cancel_Create_TS_Group;
 raise;
 end;

END;
/

The preceding call to End_Create_TS_Group causes many schema objects to be
created. Among them are:

■ TSQUICK - object view. Use this when using Time Series functions.

Example: SELECT TimeSeries.<function>(ts.OPEN) FROM TSQUICK ts;

■ TSQUICK_RVW - relational view. Use this for protected insert, update, and
delete operations. Uses an INSTEAD OF trigger.

■ TSQUICK_TAB - flat table for detail data.

■ TSQUICK_MAP - mapping (metadata) table. The quick-start demo
associates a null calendar with each ticker.

■ TSQUICK_CAL - table for calendar definitions. The quick-start demo
defines a monthly calendar for use with scaleup operations.

3.2 Creating a Calendar
Calendars are needed if one or more of the following conditions apply:

■ You are using any regular time series.

■ You need to perform time scaling.

You have several options for creating a calendar, including:

■ Create the calendar dynamically in the context of a query, using one of the
calendar-creation functions. See the information on the Month function in
Chapter 4 for an example.

■ Create the calendar by inserting its definition in a table of calendars. If the table
of calendars does not already exist, create it first.

Calendars for a regular time series are stored in the calendar table associated with
that time series group. The calendar table typically has a name in the format
groupname_CAL (for example, tsquick_cal for the quick-start demo). Calendars to be
used for scaling can be stored in the group calendar table or in a calendar table that
is separately created and managed.
Time Series Usage 3-3

Creating a Calendar
Calendars are based on the system-defined data type ORDTCalendar, which is
supplied with Oracle8i Time Series. ORDTCalendar has the following definition:

/* System-Defined Calendar Data Type */

CREATE TYPE ORDSYS.ORDTCalendar AS OBJECT (
 caltype INTEGER,
 name VARCHAR2(256),
 frequency INTEGER,
 pattern ORDSYS.ORDTPattern,
 minDate DATE,
 maxDate DATE,
 offExceptions ORDSYS.ORDTExceptions,
 onExceptions ORDSYS.ORDTExceptions);

Example 3–1 creates a table named my_calendars and defines a calendar named
BusinessDays-97. The BusinessDays-97 calendar includes Mondays through Fridays
in 1997, but excludes 04-Jul-1997 and 25-Dec-1997. Explanatory notes follow the
example.

Example 3–1 Create a Calendar of Business Days

CREATE TABLE my_calendars of ORDSYS.ORDTCalendar;

INSERT INTO my_calendars
VALUES(
 ORDSYS.ORDTCalendar(
 0,
 ‘BusinessDays-97’,
 4,
 ORDSYS.ORDTPattern(ORDSYS.ORDTPatternBits(0,1,1,1,1,1,0),
 (to_date(‘01-05-97’,’MM-DD-YY’))),
 to_date(‘01-01-97’,’MM-DD-YY’),
 to_date(‘01-01-98’,’MM-DD-YY’),
 ORDSYS. ORDTExceptions(to_date(‘07-04-97’,’MM-DD-YY’),
 to_date(‘12-25-97’,’MM-DD-YY’)),
 NULL));

Notes on Example 3–1:

my_calendars is a table of ORDSYS.ORDTCalendar objects. The ORDTCalendar
data type is described in Section 2.3.1.

0 (zero) for calendar type (caltype) indicates that this is an exception-based
calendar. (This is the only calendar type currently supported.)

1

2
3

4
5

6

7

8

1

2

3-4 Oracle8i Time Series User’s Guide

Creating a Calendar
BusinessDays-97 is the name of this calendar.

4 is the frequency code for day.

The pattern is defined as an excluded occurrence followed by five included
occurrences followed by an excluded occurrence (0,1,1,1,1,1,0). Because the
frequency is daily and because the anchor date (05-Jan-1997) is a Sunday,
Sundays are excluded, Mondays through Fridays are included, and Saturdays
are excluded.

The calendar begins at the start of 01-Jan-1997 and ends at the start of 01-Jan-
1998.

04-Jul-1997 and 25-Dec-1997 are off-exceptions (that is, excluded from the
calendar).

NULL indicates that there are no on-exceptions (that is, no Saturday or Sunday
dates to be included in the calendar).

After you create the calendar, you should validate it to ensure that you have not
made any mistakes in the calendar definition. The following example validates the
BusinessDays-97 calendar created by Example 3–1.

DECLARE
 tstCal ordsys.ordtcalendar;
 dummyVal integer;
 validFlag integer;
BEGIN

 -- Select a calendar into tstCal from my_calendars.
 select value(cal) into tstCal
 from my_calendars cal
 where cal.name = ’BusinessDays-97’;

 -- Display the calendar
 select ordsys.timeseries.display(tstCal) into dummyVal from dual;
 dbms_output.new_line;

 validFlag := ORDSYS.CALENDAR.IsValidCal(tstCal);

 if (validFlag = 1) then
 dbms_output.put_line(’BusinessDays-97 calendar is valid.’);
 else
 dbms_output.put_line(’BusinessDays-97 calendar is NOT valid.’);
 dbms_output.put_line(’Use ValidateCal to determine inconsistency.’);
 end if;

3

4

5

6

7

8

Time Series Usage 3-5

Maintaining a Map Table
END;
/
Statement processed.

Calendar Name = BusinessDays-97
 Frequency = 4 (day)
 MinDate = 01-JAN-97
 MaxDate = 01-JAN-98
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 05-JAN-97
 onExceptions : Atomic NULL

 offExceptions :
 04-JUL-97 25-DEC-97

BusinessDays-97 calendar is valid.

3.3 Maintaining a Map Table
A map table maintains the mapping, or coupling, between a time series (such as a
specific stock ticker) and a calendar. When you create a time series group, the map
table by default has a name in the form groupname_MAP. (In the quick-start demo,
the map table is named tsquick_map; in the usage demo, the map table is named
stockdemo_metadata.) The map table has two VARCHAR2 columns:

■ Time series name that by default matches the tsname_colname value when the
time series group was created (for example, ticker)

■ Calendar name

The following example creates a map table named my_calendars_map:

CREATE TABLE my_calendars_map (
 ticker VARCHAR2(5),
 calname VARCHAR2(256),
 CONSTRAINT pk_my_calendars_map PRIMARY KEY (ticker));

For each row in the map table, the calendar name can be null or can contain the
name of a calendar:

■ If the calendar name column is null, no calendar will be used for Time Series
functions (that is, the input time series will be treated as an irregular time
series). The following example creates a row in the my_calendars_map table for
each ticker in the tsquick_tab table and leaves the calname column null:
3-6 Oracle8i Time Series User’s Guide

Populating the Detail Table Using SQL*Loader
INSERT INTO my_calendars_map (ticker)
 SELECT DISTINCT ticker FROM tsdev.tsquick_tab;

■ If the calendar name column contains the name of a calendar, that calendar is
used for Time Series functions specifying that time series. The following
example creates two rows in the my_calendars_map table, associating two tickers
with the BusinessDays-97 calendar:

INSERT INTO my_calendars_map VALUES(’ACME’, ’BusinessDays-97’);
INSERT INTO my_calendars_map VALUES(’SAMCO’, ’BusinessDays-97’);

For rows where a calendar name is specified, you can adopt one of the following
strategies, depending on which calendars apply to which time series:

■ Use the same calendar for all time series (the "shared calendar" approach). For
example, map all tickers to a single calendar of stock trading days.

■ Use a separate calendar for each time series. For example, create an acme
calendar for the ACME ticker, a samco calendar for the SAMCO ticker, and so
on.

■ Use a combination of approaches: use some calendars for multiple time series,
and perhaps some calendars for only one time series each. For example, some
stocks might trade on exchanges with different holidays, or some stocks might
have had trading suspended on certain days.

3.4 Populating the Detail Table Using SQL*Loader
To populate the underlying data storage table or tables, perform a bulk load of the
time series data, preferably using the SQL*Loader utility if you have a large amount
of data. For example, the tsquick.sql procedure uses SQL*Loader with hypothetical
stock market data, as follows:

sqlldr userid=tsdev/tsdev control=tsquick.ctl log=tsquick.log bad=tsquick.bad
skip=15 errors=1000

To update the time series data, perform incremental loads as needed.

To ensure the consistency of time series data during loading, you must choose one
of the approaches described in Section 2.8.3:

■ Adjust calendars to be consistent with the time series, if you are sure that all
timestamps are correct.
Time Series Usage 3-7

Populating the Detail Table Using SQL*Loader
This strategy is normally appropriate when there is a unique calendar per time
series.

■ Validate that each time series is consistent with the calendar, if you expect time
series data to adhere to a predefined calendar.

This approach is particularly useful if the same calendar is used for all time
series data being loaded.

This section describes how to perform bulk loading using these two approaches,
and it also describes how to perform incremental loading.

The loading of time series data is usually performed under controlled
circumstances, so it is safe to perform these loads directly to an underlying table
instead of to a relational view.

3.4.1 Bulk Loading
After you create an index-organized table (IOT) to hold time series data (such as for
the stockdemo demo database), you must populate the table with data. For a
database of stock information, you may need to load millions of rows of daily
summary information into the IOT.

SQL*Loader is recommended for loading large amounts of time series data. The
following example shows a SQL*Loader script, with an excerpt from the sample
data (stockdat.dat) and the SQL*Loader control file (stockdat.ctl). For complete
information about SQL*Loader, see the Oracle8i Utilities manual.

The SQL*Loader script contains the following:

% sqlldr userid=tsdev/tsdev control=stockdat.ctl
 log=stockdat.log bad=stockdat.bad errors=1000

The stockdat.dat sample data file includes the following:

ACME 01-NOV-96 59.00 60.00 58.00 59.00 1000
ACME 04-NOV-96 60.00 61.00 59.00 60.00 1000
ACME 05-NOV-96 61.00 62.00 60.00 61.00 1000
 ...

The stockdat.ctl file contains the following

options (direct=true)
unrecoverable
load data
infile ’stockdat.dat’
replace
into table stockdemo
3-8 Oracle8i Time Series User’s Guide

Populating the Detail Table Using SQL*Loader
sorted indexes (StockTabx)
fields terminated by whitespace
(ticker, tstamp DATE(13) "DD-MON-YY", open, high, low, close, volume)

SQL*Loader can handle many file formats and delimiters, as documented in the
Oracle8i Utilities manual.

After the load has completed, you may want to choose one of the following
approaches for ensuring calendar consistency:

■ Adjust calendars to conform to time series data (see Section 3.4.1.1).

■ Validate that the time series conforms to the calendar (see Section 3.4.1.2).

In either case, you may need to update the exception lists of your calendars.

3.4.1.1 Adjusting Calendars to Conform to Time Series Data
Often you will want to create calendars that conform to the time series data that you
are receiving. In this case, you usually know the frequency and the pattern of a
calendar, but not the specific on- or off-exceptions. You can extract these exceptions
from the data by using the DeriveExceptions function.

3.4.1.2 Validating That the Time Series Conforms to the Calendar
Often you will want to ensure that the time series data extracted from the incoming
data conforms to a predefined calendar. To do this, insert the exceptions either
when you create the calendar or afterward with the InsertExceptions functions (or
do both, creating the calendar with some exceptions and then adding others); then
use the IsValidTimeSeries function to check that the time series is consistent with
the calendar.

You can insert exceptions when you define the calendar. For example, the following
statement specifies 28-Nov-1996 and 25-Dec-1996 as off-exceptions in the calendar
named BUSINESS-96:

INSERT INTO stockdemo_calendars VALUES(
 ORDSYS.ORDTCalendar(
 0,
 ’BUSINESS-96’,
 4,
 ORDSYS.ORDTPattern(
 ORDSYS.ORDTPatternBits(0,1,1,1,1,1,0),
 TO_DATE(’01-JAN-1995’,’DD-MON-YYYY’)),
 TO_DATE(’01-JAN-1990’,’DD-MON-YYYY’),
 TO_DATE(’01-JAN-2001’,’DD-MON-YYYY’),
Time Series Usage 3-9

Populating the Detail Table Using SQL*Loader
 ORDSYS.ORDTExceptions(
 TO_DATE(’28-NOV-1996’,’DD-MON-YYYY’),
 TO_DATE(’25-DEC-1996’,’DD-MON-YYYY’)),
 ORDSYS.ORDTExceptions()
));

You can also add exceptions after the calendar is defined by using the
InsertExceptions function. For example, the following statement adds 01-Jan-1997,
17-Feb-1997, and 26-May-1997 as off-exceptions:

UPDATE stockdemo_calendars cal
 SET cal = (SELECT ORDSYS.Calendar.InsertExceptions(
 VALUE(cal),
 ORDSYS.ORDTDateTab(
 to_date(’01-JAN-97’,’DD-MON-YY’),
 to_date(’17-FEB-97’,’DD-MON-YY’),
 to_date(’26-MAY-97’,’DD-MON-YY’)))
 FROM dual)
WHERE cal.name = ’BUSINESS-96’;

After you have defined the calendar and populated the exception lists, you can use
the IsValidTimeSeries function to check that the time series is consistent with the
calendar.

3.4.2 Incremental Loading
After you have performed the bulk load of time series data and have started using
Oracle8i Time Series, you will probably want to add data periodically. For example,
every trading day after the stock exchange closes, that day’s data for each ticker
becomes available.

As with bulk loading, incremental loading is typically done in a controlled
environment. You know which timestamps will become off-exceptions, and you can
explicitly update the exception lists of the appropriate calendars. The following
example demonstrates such an update:

UPDATE stockdemo_calendars cal
 SET cal = (SELECT ORDSYS.Calendar.InsertExceptions(
 VALUE(cal),
 to_date(’01-JAN-97’,’DD-MON-YY’))
 FROM dual)
 WHERE cal.name = ’XCORP’;

The SQL*Loader utility is recommended for performing an incremental load of such
additional data. The following example shows a SQL*Loader script, with an excerpt
3-10 Oracle8i Time Series User’s Guide

Retrofitting Existing Tables
from the sample daily data (stockinc.dat) and the SQL*Loader control file
(stockinc.ctl).

The SQL*Loader script contains the following:

sqlldr userid=tsdev/tsdev control=stockinc.ctl
 log=stockinc.log bad=stockinc.bad errors=1000

The stockinc.dat sample data file includes the following:

ACME 02-JAN-97 100.00 101.00 99.00 100.00 1000
FUNCO 02-JAN-97 25.00 25.00 25.00 25.00 2000
SAMCO 02-JAN-97 39.00 40.00 38.00 39.50 30000
 ...

The stockinc.ctl file contains the following:

load data
infile ’stockinc.dat’
append
into table stockdemo
fields terminated by whitespace
(ticker, tstamp DATE(13) "DD-MON-YY", open, high, low, close, volume)

Note the following differences in the control file for incremental loading as opposed
to bulk loading:

■ The conventional path is used instead of the direct path. That is, the control file
for incremental loading does not contain the line options (direct=true).

The conventional path is better for incremental loading because the amount of
new data (daily stock information) is small relative to the total amount of data.
For an explanation of conventional and direct paths, including situations in
which the conventional path is necessary or preferable, see the SQL*Loader
documentation in the Oracle8i Utilities manual.

■ The APPEND keyword is specified, so that the new data is appended to the
existing tabular data.

3.5 Retrofitting Existing Tables
You can use the administrative tools procedures to "retrofit" existing tables (that is,
generate schema objects using existing detail, calendar, and map tables). The retrofit
demo uses this approach, and the statements and comments in the retrofit.sql file
reflect the approach described in this section. (The existing tables that are retrofitted
Time Series Usage 3-11

Retrofitting Existing Tables
are created in the tables.sql procedure, which the usage demo invokes before the
retrofit.sql procedure.)

To use the administrative tools procedures to retrofit existing tables:

1. Create the time series schema, specifying that the tables already exist and using
the Add_Existing_Column procedure to identify each existing column to be
included in the time series schema objects. For example:

DECLARE

BEGIN

-- Establish ’stockdemo_ts’ as the time series group name for purposes
-- of the administrative tools procedures.

 ORDSYS.TSTools.Begin_Create_TS_Group(’stockdemo_ts’,’flat’);

 -- Assert that the detail, map, and calendar tables exist,
 -- and define the names for these tables.
 -- Explicitly set the name of the relational view.
 -- Explicitly set the names of the timestamp and time series name
 -- columns.

 ordsys.tstools.set_flat_attributes(
 detail_table_name => ’stockdemo’,
 detail_table_exists => 1,
 map_table_name => ’stockdemo_metadata’,
 map_table_exists => 1,
 cal_table_name => ’stockdemo_calendars’,
 cal_table_exists => 1,
 tstamp_colname => ’tstamp’,
 tsname_colname => ’ticker’,
 rel_view_name => ’stockdemo_sv’);

 -- Tell TSTools the names of existing time series columns
 -- (as defined for the table stockdemo)

 ORDSYS.TSTools.Add_Existing_Column(’open’);
 ORDSYS.TSTools.Add_Existing_Column(’high’);
 ORDSYS.TSTools.Add_Existing_Column(’low’);
 ORDSYS.TSTools.Add_Existing_Column(’close’);
 ORDSYS.TSTools.Add_Existing_Column(’volume’);

-- End the specification of schema objects and create the objects.
3-12 Oracle8i Time Series User’s Guide

Formulating Time Series Queries
 ORDSYS.TSTools.End_Create_TS_Group;

 exception
 when others then
 begin
 ORDSYS.TSTools.Cancel_Create_TS_Group;
 raise;
 end;

END;
/

2. Grant specific privileges on the views to intended users. For example:

-- Grant SELECT privileges on the object view.

GRANT SELECT ON stockdemo_ts TO tsuser;

-- Grant SELECT, UPDATE, DELETE privileges on the relational view.

GRANT SELECT,INSERT,UPDATE,DELETE on stockdemo_sv TO tsuser;

GRANT RESOURCE TO tsuser;

3.6 Validating Time Series Consistency
Choose one of the following approaches to ensuring the consistency of time series
data, using the guidelines in Section 2.8.3:

■ Adjust calendars to be consistent with the time series.

Use the DeriveExceptions function in adjusting a calendar to be consistent with
the time series. See Section 2.2.5 for more information about this approach.

■ Validate that each time series is consistent with the calendar.

Use the IsValidTS function to check that the time series is consistent with the
calendar. See the IsValidTS function reference information in Chapter 5.

3.7 Formulating Time Series Queries
Formulating time series queries involves invoking time series or time scaling
functions, or both. Example 3–2 uses the Mavg time series function to obtain 10-day
moving average of the closing price for stock ACME for December 1996, and it uses
the ScaleupSum time scaling function to obtain monthly trading volumes for stock
ACME. (The results shown in the example reflect sample data for the Oracle8i Time
Series usage demo.)
Time Series Usage 3-13

Formulating Time Series Queries
Example 3–2 Formulate Time Series Queries

SELECT to_char(tstamp) tstamp, value
FROM stockdemo_ts ts,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Mavg(ts.close,to_date(’01-DEC-96’,’DD-MON-YY’),
 to_date(’31-DEC-96’,’DD-MON-YY’),10)
) AS ORDSYS.ORDTNumTab)) t
WHERE ts.ticker=’ACME’;

TSTAMP VALUE
--------- ----------
02-DEC-96 74.5
03-DEC-96 75.5
04-DEC-96 76.5
05-DEC-96 77.5
06-DEC-96 78.5
09-DEC-96 79.5
10-DEC-96 80.5
11-DEC-96 81.5
12-DEC-96 82.5
13-DEC-96 83.5
16-DEC-96 84.5
17-DEC-96 85.5
18-DEC-96 86.5
19-DEC-96 87.5
20-DEC-96 88.5
23-DEC-96 89.5
24-DEC-96 90.5
26-DEC-96 91.5
27-DEC-96 92.5
30-DEC-96 93.5
31-DEC-96 94.5
21 rows selected.

SELECT to_char(tstamp) tstamp, value
 FROM tsdev.stockdemo_ts ts, tsdev.stockdemo_calendars cal,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupSum(ts.volume,
 VALUE(cal))
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.ticker=’ACME’ and cal.name=’Monthly’;

TSTAMP VALUE
--------- ----------
01-NOV-96 20000
3-14 Oracle8i Time Series User’s Guide

Deriving Calendar Exceptions
01-DEC-96 21000
2 rows selected.

3.8 Deriving Calendar Exceptions
This section explains in greater detail the approaches to deriving calendar
exceptions from time series data. These approaches were introduced in
Section 2.2.5; see that section for information on concepts related to exceptions and
the reasons for choosing a particular approach.

3.8.1 Deriving Exceptions Using a Time Series (Approach 1)
This approach to deriving exceptions takes a time series and optionally a date range
as input parameters, using the following form of the function:

DeriveExceptions(inputTS ORDTNumSeriesIOTRef

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;

or

DeriveExceptions(inputTS ORDTVarchar2SeriesIOTRef

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;

The input time series (inputTS) has an associated calendar and data for all the
desired timestamps (for example, daily closing prices for stock XYZ for all trading
days during the period for the time series or the date range bounded by startDate
and endDate). A calendar is returned that is defined on the same pattern and
frequency as the input calendar, and the exception lists of the returned calendar are
populated to be consistent with the time series data. The exception lists are updated
based on finding timestamps that are in the calendar pattern or in the time series,
but not in both. (A timestamp is in the calendar pattern if it is within the date range
of the calendar and maps to an on (1) bit in the pattern.)

The returned calendar’s on- and off- exceptions are populated based on the calendar
pattern and the time series, as follows:

■ All timestamps that are in the calendar pattern but not in the time series become
off-exceptions.
Time Series Usage 3-15

Deriving Calendar Exceptions
For example, 04-Jul-1997 (Friday) is in the pattern of a stock trading calendar,
but it is not a date on which U.S. stocks were traded.

■ All timestamps that are in the time series but are not in the calendar pattern
become on-exceptions.

The following example populates a calendar named Quarterly with exceptions
based on the actual data in the unemployment_rate time series (in which data for
some quarters is missing):

UPDATE myts_cal cal
 SET cal =
 (SELECT ORDSYS.TimeSeries.DeriveExceptions(ts.unemployment_rate)
 FROM myts ts
 WHERE ts.region = ’1’)
 WHERE cal.name = ’Quarterly’;

3.8.2 Deriving Exceptions Using a Calendar and Table of Dates (Approach 1A)
This approach to deriving exceptions takes a calendar and an ORDTDateTab (that
is, a table of dates) as input parameters, using the following form of the function:

DeriveExceptions(cal ORDTCalendar, DateTab ORDTDateTab

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;

The table of dates (DateTab parameter) includes all dates in the time series, for
example, all dates on which stock XYZ traded. A calendar is returned that is
defined on the same pattern and frequency as the input calendar, and the exception
lists of the returned calendar are populated to be consistent with the time series
data in DateTab. The exception lists are updated based on finding timestamps that
are in the calendar pattern or in the table of dates, but not in both. (A timestamp is
in the calendar pattern if it is within the date range of the calendar and maps to an
on (1) bit in the pattern.)

The returned calendar’s on- and off- exceptions are populated based on the calendar
pattern and the table of dates, as follows:

■ All timestamps that are in the calendar pattern but not in the table of dates
become off-exceptions.

For example, 04-Jul-1997 (Friday) is in the pattern of a stock trading calendar,
but it is not a date on which U.S. stocks were traded.
3-16 Oracle8i Time Series User’s Guide

Deriving Calendar Exceptions
■ All timestamps that are in the table of dates but are not in the calendar pattern
become on-exceptions.

The following example derives the exceptions for all time series in the stockdemo
table and updates the corresponding calendars in the stockdemo_calendars table:

UPDATE stockdemo_calendars cal
 SET cal = (SELECT ORDSYS.Calendar.DeriveExceptions(
 VALUE(cal),
 CAST(multiset(
 SELECT s.tstamp
 FROM stockdemo s
 WHERE cal.name = s.ticker) AS ORDSYS.ORDTDateTab))
 FROM dual);

This approach (Approach 1A) to deriving calendar exceptions has the following
requirements:

■ The input table of dates must be sorted in ascending timestamp order before the
call to the DeriveExceptions function.

■ The precision of the timestamps of the dates in the table must conform to the
frequency of the input calendar.

3.8.3 Deriving Exceptions Using Two Time Series Parameters (Approach 2)
This approach to deriving exceptions takes two time series references as input
parameters, using the following form of the function:

DeriveExceptions(series1 ORDTNumSeriesIOTRef,

series2 ORDTNumSeriesIOTRef)

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;

or

DeriveExceptions(series1 ORDTVarchar2SeriesIOTRef,

series2 ORDTVarchar2SeriesIOTRef)

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;
Time Series Usage 3-17

Deriving Calendar Exceptions
This overloading of the DeriveExceptions function allows the input parameters to
be time series REFs (either two ORDTNumSeriesIOTRef parameters or two
ORDTVarchar2SeriesIOTRef parameters).

Before calling DeriveExceptions, you must construct a time series based on a
reference calendar. This time series will contain all the timestamps within the date
range (minDate through maxDate) of the calendar.

The following example builds a reference time series based on a calendar named
PATTERN-ONLY. An INSERT statement populates the time series named PATTERN-
ONLY with the valid timestamps between the starting and ending dates of the
calendar.

INSERT INTO stocks(ticker,tstamp)
SELECT ’PATTERN-ONLY’,
 t1.c1
 FROM
 (SELECT column_value c1 FROM the
 (SELECT CAST(ORDSYS.Calendar.TimeStampsBetween(VALUE(cal),
 cal.mindate,
 cal.maxdate)
 AS ORDSYS.ORDTDateTab)
 FROM stock_calendars cal
 WHERE cal.name = ’PATTERN-ONLY’)) t1;

The insertion is made directly into the underlying table, not into the relational view.
Using the underlying table is safe here because the time series is presumed to be
correct, so the mechanisms for ensuring consistency between the time series and the
calendar provided by the relational view are not needed in this case.

The PATTERN-ONLY calendar should have no exceptions. If this calendar has any
exceptions, the resulting time series will have exception lists that are not null, which
will cause the DeriveExceptions function to report an error.

After you create the reference time series, call the DeriveExceptions function with
the reference time series as the first parameter (series1). DeriveExceptions compares
the dates in series1 with the dates in series2, and it returns the calendar of series2
with the exceptions created as follows:

■ All timestamps that are in series1 but not in series2 become off-exceptions.

For example, if series2 contains dates on which stock XYZ traded and 04-Jul-
1997 (Friday) is not in that time series, then 04-Jul-1997 is added to the calendar
as an off-exception.

■ All timestamps that are in series2 but not in series1 become on-exceptions.
3-18 Oracle8i Time Series User’s Guide

Using Product-Developer Functions
The following example uses the reference time series created in the preceding
statement to update the exception lists of every other calendar in the
stockdemo_calendars table, with the exceptions for each calendar derived from the
timestamps in the associated time series. (This example assumes that each calendar
maps to a time series with the same name.)

UPDATE stockdemo_calendars cal
 SET cal = (SELECT ORDSYS.TimeSeries.DeriveExceptions(ts1.open,ts2.open)
 FROM stockdemo_ts ts1, stockdemo_ts ts2
 WHERE ts1.ticker = ’PATTERN-ONLY’ and ts2.ticker = cal.name)
WHERE cal.name <> ’PATTERN-ONLY’;

This approach (Approach 2) to deriving calendar exceptions has the following
requirements:

■ The input parameters to the DeriveExceptions function must be either two
ORDTNumSeriesIOTRef parameters or two ORDTVarchar2SeriesIOTRef
parameters. ORDTNumSeries and ORDTVarchar2Series variants are not
supported for this function.

■ Calendars of the time series input parameters must have the same frequency
and pattern.

■ The first time series parameter (PATTERN-ONLY time series) must have no
exceptions.

■ The starting date (minDate) of the calendar of the second time series must be
greater (later) than or equal to the starting date of the calendar of the first time
series.

■ The ending date (maxDate) of the calendar of the second time series must be less
(earlier) than or equal to the ending date of the calendar of the first time series.

3.9 Using Product-Developer Functions
Product-developer functions, described in Section 2.9.2, let you modify and expand
the Oracle8i Time Series capabilities. For example, an ISV could develop additional
time series analysis functions by calling product-developer functions.

The following example shows the use of the IsValidDate, NumTstampsBetween,
and OffsetDate product-developer functions in a PL/SQL implementation of the
Lead function. The Lead function accepts an input time series and a lead_date, and
returns a time series where the starting timestamp is the lead_date. (Note that to
simplify the presentation, some error checking has been omitted.)
Time Series Usage 3-19

Using Product-Developer Functions
create function Lead (ts ORDSYS.ORDTNumSeries, lead_date date)
 return ORDSYS.ORDTNumSeries is
i integer;
outts ORDSYS.ORDTNumSeries; /* Temporary Storage for Result */
new_tstamp date; /* Changeable version of lead_date */
last_lead_date date; /* Last timestamp of the output time series*/
first_tstamp date; /* First timestamp of
 the input time series */
last_index integer; /* Last index of the input time series */
last_tstamp date; /* Last timestamp of the input time series */
units integer; /* Number of timestamps between input and
 output time series */

ERR_LEAD_TSTAMP_BOUNDS constant integer := 20540;
ERR_LEAD_TSTAMP_BOUNDS_MSG constant varchar2(100) :=
 ’Projected lead timestamp beyond calendar bounds’;

begin
 first_tstamp :=ts.series(1).tstamp;
 last_index :=ts.series.last;
 last_tstamp :=ts.series(last_index).tstamp;

 if ORDSYS.Calendar.IsValidDate(ts.cal, lead_date) = 0 then
 Raise_Application_Error(ERR_LEAD_TSTAMP_BOUNDS,
 ERR_LEAD_TSTAMP_BOUNDS_MSG);
 end if;

 /* units is the number of timestamps between the first timestamp of
 the input time series and lead_date. */
 units := ORDSYS.Calendar.NumTimeStampsBetween(ts.cal, first_tstamp,
 lead_date);

 last_lead_date := ORDSYS.Calendar.OffsetDate(ts.cal, last_tstamp,
 units);
 if last_lead_date is null then
 Raise_Application_Error(ERR_LEAD_TSTAMP_BOUNDS,
 ERR_LEAD_TSTAMP_BOUNDS_MSG);
 end if;

 /* Instantiate output time series. */
 outts := ORDSYS.ORDTNumSeries(’Lead Result’, ts.cal, ORDSYS.ORDTNumTab());
 outts.series.extend(last_index);

 /* Assign the first timestamp of the output time series to
 first_lead_date. Copy value from input time series to output
3-20 Oracle8i Time Series User’s Guide

Using Product-Developer Functions
 time series. */
 new_tstamp := lead_date;
 outts.series(1) := ORDSYS.ORDTNumCell(new_tstamp, ts.series(1).value);

 /* Assign subsequent timestamps by calling OffsetDate with the
 previous date and an offset of 1. */
 for i in 2..outts.series.last loop
 new_tstamp := ORDSYS.Calendar.OffsetDate(ts.cal,
 outts.series(i-1).tstamp, 1);
 outts.series(i) := ORDSYS.ORDTNumCell(new_tstamp,
 ts.series(i).value);
 end loop;

 return(outts);
end;

For other examples of using product-developer functions, see the files for the
advanced-developer demo (described briefly in Table 1–1 in Section 1.6).
Time Series Usage 3-21

Using Product-Developer Functions
3-22 Oracle8i Time Series User’s Guide

Calendar Functions: Refe
4

Calendar Functions: Reference

The Oracle8i Time Series library consists of:

■ Data types (described in Section 2.3)

■ Calendar functions (described in this chapter)

■ Time series functions (described in Chapter 5)

■ Time scaling functions (described in Chapter 6)

■ Administrative tools procedures for creating time series schema objects
(described in Chapter 7)

Calendar functions are mainly used by product developers, such as ISVs, to develop
new time series functions and to administer and modify calendars.

Time series and time scaling functions and the administrative tools procedures are
used mainly by application developers.

Syntax notes:

■ The ORDSYS schema name and the package name must be used with the
function name, although public synonyms can be created to eliminate the need
for specifying the schema name (see Section 1.5). Each function is included in a
PL/SQL package, such as Calendar, TimeSeries, or TimeScale. The ORDSYS
schema name and the package name are included in the Format and in any
examples.

■ Function calls are not case sensitive, except for any quoted literal values. For
example, the following code line excerpts are valid and semantically identical:

select CAST(TimeSeries.ExtractTable(close) AS ORDTNumTab)
select cast(TIMESERIES.extracttable(close) as ordtnumtab)
select cast(TiMeSeRiEs.eXtRaCtTaBlE(ClosE) As ordtNUMtab)
rence 4-1

■ The syntax and examples show the reference-based interface (types
ORDTNumSeriesIOTRef and ORDTVarchar2SeriesIOTRef).
4-2 Oracle8i Time Series User’s Guide

CombineCals
CombineCals

Format
ORDSYS.Calendar.CombineCals(

cal1 ORDSYS.ORDTCalendar,

cal2 ORDSYS.ORDTCalendar,

[startDate DATE,

endDate DATE,]

equalFlag OUT INTEGER

) RETURN ORDSYS.ORDTCalendar;

Description
Combines two calendars. The CombineCals function is provided primarily for use
in developing functions that operate on two time series (such as the TSAdd
function).

Parameters

cal1
The first calendar to be combined.

cal2
The second calendar to be combined.

startDate
Starting date for the resulting calendar. If startDate is not specified, the starting date
is the starting date for the calendars, or the higher (later) of the starting dates if they
are different.

endDate
Ending date for the resulting calendar. If endDate is not specified, the ending date is
the ending date for the calendars, or the lower (earlier) of the ending dates if they
are different.
Calendar Functions: Reference 4-3

CombineCals
equalFlag
Contains 1 if the input calendars are equal, and 0 if the input calendars are not
equal.

Usage
If the frequencies of the two calendars are not equal, the function returns NULL.

If the aligned patterns of the two calendars are not equal, the function returns
NULL.

If startDate is not specified, the starting date of the resulting calendar is the later of
the starting dates of the two calendars, that is, resulting minDate = max(minDate1,
minDate2).

If endDate is not specified, the ending date of the resulting calendar is the earlier of
the ending dates of the two calendars, that is, resulting maxDate = min(maxDate1,
maxDate2).

The function intersects the on-exception lists of the two calendars. For example, if
cal1 has 30-Mar and 29-Jun as on-exceptions and cal2 has 29-Jun and 28-Sep as on-
exceptions, the resulting calendar has only 29-Jun as an on-exception.

The function performs a union of the off-exceptions of the two calendars. For
example, if cal1 has 01-Jan and 04-Jul as off-exceptions and cal2 has 01-Jan and 14-
Jul as off-exceptions, the resulting calendar has 01-Jan, 04-Jul, and 14-Jul as off-
exceptions.

CombineCals and IntersectCals differ as follows:

■ CombineCals requires the frequencies and the aligned patterns of the two
calendars to be equal, whereas IntersectCals requires only that the frequencies
be equal. However, IntersectCals does require that the patterns be of the same
length.

■ CombineCals lets you specify starting and ending dates for the resulting
calendar, whereas IntersectCals does not let you specify starting and ending
dates.

Example
Combine two calendars (GENERIC-CAL1 and GENERIC-CAL2), then intersect the
two calendars:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;
4-4 Oracle8i Time Series User’s Guide

CombineCals
DECLARE
tstCal1 ORDSYS.ORDTCalendar;
tstCal2 ORDSYS.ORDTCalendar;
resultCal ORDSYS.ORDTCalendar;
equalFlag INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select the calendars GENERIC-CAL1 into tstCal1
 -- and GENERIC-CAL2 into tstCal2
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal1
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;
 SELECT value(cal) INTO tstCal2
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL2’;

 -- Display the calendars tstCal1 and tstCal2.
 SELECT ORDSYS.TimeSeries.Display(tstCal1) INTO dummyVal FROM dual;
 SELECT ORDSYS.TimeSeries.Display(tstCal2) INTO dummyVal FROM dual;

 -- Combine tstCal1 and tstCal2
 resultCal := ORDSYS.Calendar.CombineCals(tstCal1, tstCal2, equalFlag);
 SELECT ORDSYS.TimeSeries.Display(resultCal, ’result of CombineCals’)
 INTO dummyVal
 FROM dual;
 DBMS_OUTPUT.PUT_LINE(’equalFlag = ’ || equalFlag);

 -- Intersect tstCal1 and tstCal2
 resultCal := ORDSYS.Calendar.IntersectCals(tstCal1, tstCal2);
 SELECT ORDSYS.TimeSeries.Display(resultCal, ’result of IntersectCals’)
 INTO dummyVal
 FROM dual;

END;
/

This example might produce the following output:

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01-JAN-96
Calendar Functions: Reference 4-5

CombineCals
 MaxDate = 31-DEC-96
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 07-JAN-96
 onExceptions :
 21-JAN-96 03-FEB-96 24-MAR-96
 27-APR-96 19-MAY-96 23-JUN-96
 07-JUL-96 04-AUG-96 15-SEP-96
 offExceptions :
 08-JAN-96 02-FEB-96 05-MAR-96
 04-APR-96 08-MAY-96 25-JUN-96
 09-JUL-96

Calendar Name = GENERIC-CAL2
 Frequency = 4 (day)
 MinDate = 01-JAN-96
 MaxDate = 31-DEC-97
 patBits:
 1,1,1,1,1,0,0
 patAnchor = 08-JAN-96
 onExceptions :
 07-JUL-96 04-AUG-96 15-SEP-96
 13-OCT-96 10-NOV-96 14-DEC-96
 04-JAN-97 09-FEB-97 08-MAR-97
 05-APR-97 11-MAY-97 08-JUN-97
 offExceptions :
 09-JUL-96 05-AUG-96 10-SEP-96
 23-OCT-96 19-NOV-96 12-DEC-96
 01-JAN-97 12-FEB-97 04-MAR-97
 07-APR-97 05-MAY-97 09-JUN-97

result of CombineCals :

 Frequency = 4 (day)
 MinDate = 01-JAN-96
 MaxDate = 31-DEC-96
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 07-JAN-96
 onExceptions :
 07-JUL-96 04-AUG-96 15-SEP-96
 offExceptions :
 08-JAN-96 02-FEB-96 05-MAR-96
 04-APR-96 08-MAY-96 25-JUN-96
 09-JUL-96 05-AUG-96 10-SEP-96
4-6 Oracle8i Time Series User’s Guide

CombineCals
 23-OCT-96 19-NOV-96 12-DEC-96
equalFlag = 0

result of IntersectCals :

 Frequency = 4 (day)
 MinDate = 01-JAN-96
 MaxDate = 31-DEC-96
 patBits:
 1,1,1,1,1,0,0
 patAnchor = 08-JAN-96
 onExceptions :
 07-JUL-96 04-AUG-96 15-SEP-96
 offExceptions :
 08-JAN-96 02-FEB-96 05-MAR-96
 04-APR-96 08-MAY-96 25-JUN-96
 09-JUL-96 05-AUG-96 10-SEP-96
 23-OCT-96 19-NOV-96 12-DEC-96
Calendar Functions: Reference 4-7

Day
Day

Format
ORDSYS.Calendar.Day(

[calname VARCHAR2]

[, anchorDate DATE]

) RETURN ORDSYS.ORDTCalendar;

Description
Creates a calendar with a frequency of day, a pattern of ’1’ (all timestamps included),
no lower or upper boundary dates (minDate or maxDate), no off-exceptions or on-
exceptions, a specified or default (null) name, and a specified or default anchor
date.

Parameters

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

Usage
This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.
4-8 Oracle8i Time Series User’s Guide

Day
Example
Insert into the stockdemo_calendars table a calendar of day frequency with a calendar
name of Daily and an anchor date of 01-Jan-1997. The calendar has no date
boundaries (minDate or maxDate) or exceptions.

INSERT INTO stockdemo_calendars
VALUES(
 ORDSYS.Calendar.Day(
 ’Daily’,
 (to_date(’01-01-97’,’MM-DD-YY’))));
Calendar Functions: Reference 4-9

DeleteExceptions
DeleteExceptions

Format
ORDSYS.Calendar.DeleteExceptions(

inputCal IN ORDSYS.ORDTCalendar,

delExcDate IN DATE

) RETURN ORDSYS.ORDTCalendar;

or

ORDSYS.Calendar.DeleteExceptions(

inputCal IN ORDSYS.ORDTCalendar,

delExcTab IN ORDSYS.ORDTDateTab

) RETURN ORDSYS.ORDTCalendar;

Description
Deletes from the specified calendar all exceptions that either match a specified date
(delExcDate) or are included in a table of dates (delExcTab), and returns the resulting
calendar.

Parameters

inputCal
The calendar from which one or more exceptions are to be deleted.

delExcDate
The date to be deleted from the exceptions of the calendar.

delExcTab
A table of dates to be deleted from the exceptions of the calendar.

Usage
If a date to be deleted is in either the on-exception list or off-exception list of the
calendar, the function deletes the date from the appropriate list.
4-10 Oracle8i Time Series User’s Guide

DeleteExceptions
If delExcDate is not in either the on-exception list or off-exception list of the calendar,
the function returns the input calendar with no changes.

For any date in delExcTab that is not in either the on-exception list or off-exception
list of the calendar, the function ignores the date. If no date in delExcTab is in either
the on-exception list or off-exception list of the calendar, the function returns the
input calendar with no changes.

Example
Delete some exceptions from a calendar:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDTab ORDSYS.ordtDateTab;
resultCal ORDSYS.ORDTCalendar;
dummyVal INTEGER;
relOffset INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Delete some exceptions in tstCal.
 tstDTab := ORDSYS.ORDTDateTab(
 ’01/21/1996’, -- ON Exception
 ’05/08/1996’, -- OFF Exception
 ’08/04/1996’, -- ON Exception
 ’07/09/1996’);-- OFF Exception
 SELECT ORDSYS.TimeSeries.Display(tstDTab, ’Input DateTab’)
 INTO dummyVal
 FROM dual;
 resultCal := ORDSYS.Calendar.DeleteExceptions(tstCal, tstDTab);
Calendar Functions: Reference 4-11

DeleteExceptions
 SELECT ORDSYS.TimeSeries.Display(resultCal) INTO dummyVal
 FROM dual;

END;
/

This example might produce the following output. The second display of
information about GENERIC-CAL1 does not include the deleted on-exceptions and
off-exceptions.

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

Input DateTab :

 01/21/1996 00:00:00 05/08/1996 00:00:00 08/04/1996 00:00:00
 07/09/1996 00:00:00

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 02/03/1996 00:00:00 03/24/1996 00:00:00 04/27/1996 00:00:00
 05/19/1996 00:00:00 06/23/1996 00:00:00 07/07/1996 00:00:00
 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 06/25/1996 00:00:00
4-12 Oracle8i Time Series User’s Guide

DisplayValCal Procedure
DisplayValCal Procedure

Format
ORDSYS.Calendar.DisplayValCal(

validFlag IN INTEGER,

outMessage IN VARCHAR2,

invOnExc IN ORDSYS.ORDTDateTab,

invOffExc IN ORDSYS.ORDTDateTab,

impOnExc IN ORDSYS.ORDTDateTab,

impOffExc IN ORDSYS.ORDTDateTab,

inputCal IN ORDSYS.ORDTCalendar,

mesg IN VARCHAR2

);

Description
Displays the results returned by the ValidateCal function.

Parameters

validFlag
The return value from the ValidateCal function call:

Note: DisplayValCal is a procedure, not a function. Procedures do
not return values.

Value Meaning

0 The calendar is valid. No errors were found.

1 Correctable errors were found and corrected. The resulting calendar is valid.

-1 Uncorrectable errors were found. The calendar is not valid.
Calendar Functions: Reference 4-13

DisplayValCal Procedure
outMessage
Message output by ValidateCal describing how the calendar was repaired (if the
return value = 1) or why the calendar could not be repaired (if the return
value = -1).

invOnExc
Table of the invalid on-exceptions found in the calendar.

invOffExc
Table of the invalid off-exceptions found in the calendar.

impOnExc
Table of the imprecise on-exceptions found in the calendar.

impOffExc
Table of the imprecise off-exceptions found in the calendar.

inputCal
The calendar returned by ValidateCal (repaired if necessary).

mesg
Optional message.

Usage
This procedure is intended to be used with the ValidateCal function. See the
information on ValidateCal in this chapter.

Example
Use the IsValidCal and ValidateCal functions and the DisplayValCal procedure with
an invalid calendar:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
outMessage varchar2(32750);
invOnExc ORDSYS.ORDTDateTab;
invOffExc ORDSYS.ORDTDateTab;
impOnExc ORDSYS.ORDTDateTab;
impOffExc ORDSYS.ORDTDateTab;
dummyval integer;
validFlag integer;
4-14 Oracle8i Time Series User’s Guide

DisplayValCal Procedure
tstCal1 ORDSYS.ORDTCalendar :=
 ORDSYS.ORDTCalendar(
 0,
 ’CALENDAR MYCAL’,
 4,
 ORDSYS.ORDTPattern(ORDSYS.ORDTPatternBits(1,1,1,1,1,0,0),
 TO_DATE(’01-08-1996 01:01:01’)),
 TO_DATE(’01-01-1975’),
 TO_DATE(’01-01-1999’),
 ORDSYS.ORDTExceptions(
 TO_DATE(’02-03-1969’), -- Date < minDate,
 TO_DATE(’02-14-1969’), -- Date < minDate,
 TO_DATE(’02-03-1999’), -- Date > maxDate,
 TO_DATE(’02-17-1999’), -- Date > maxDate,
 TO_DATE(’12-31-1995’), -- Maps to 0 in pattern (Sunday)
 TO_DATE(’01-13-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’02-24-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’03-30-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’02-02-1996 01:01:01’), -- Imprecise
 TO_DATE(’03-04-1996 01:01:01’), -- Imprecise
 TO_DATE(’04-05-1996 02:02:02’), -- Imprecise
 TO_DATE(’03-25-1996’), -- Valid off-exception
 TO_DATE(’01-22-1996’), -- Valid, but out of sequence
 TO_DATE(’02-12-1996’),
 TO_DATE(’04-30-1996’),
 NULL, -- Null date
 TO_DATE(’02-12-1996’), -- Duplicate date within OFFs
 NULL, -- Null date
 TO_DATE(’04-30-1996’), -- Duplicate off-exception
 NULL, -- Null date
 TO_DATE(’03-25-1996’), -- Duplicate off-exception
 TO_DATE(’01-22-1996’), -- Duplicate off-exception
 TO_DATE(’01-17-1996’), -- Added to on- and off-exceptions
 TO_DATE(’05-28-1996’), -- Added to on- and off-exceptions
 TO_DATE(’06-18-1996’), -- Added to on- and off-exceptions
 TO_DATE(’04-23-1996’), -- Added to on- and off-exceptions
 TO_DATE(’02-02-1996’),
 TO_DATE(’03-04-1996’),
 TO_DATE(’05-06-1997’)),
 ORDSYS.ORDTExceptions(
 TO_DATE(’02-08-1969’), -- Date < minDate,
 TO_DATE(’02-15-1969’), -- Date < minDate,
 TO_DATE(’02-13-1999’), -- Date > maxDate,
 TO_DATE(’02-20-1999’), -- Date > maxDate,
 TO_DATE(’01-03-1996’), -- Maps to 1 in pattern (Wednesday)
Calendar Functions: Reference 4-15

DisplayValCal Procedure
 TO_DATE(’02-19-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’03-18-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’05-27-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’03-23-1996 01:01:01’), -- Imprecise
 TO_DATE(’02-18-1996 01:01:01’), -- Imprecise
 TO_DATE(’05-26-1996 01:01:01’), -- Imprecise
 TO_DATE(’01-13-1996’), -- Valid on-exception
 TO_DATE(’01-14-1996’), -- Valid on-exception
 NULL, -- Null date
 NULL, -- Null date
 TO_DATE(’02-24-1996’), -- Valid on-exception
 TO_DATE(’03-23-1996’), -- Valid on-exception
 TO_DATE(’01-13-1996’), -- Duplicate on-exception
 TO_DATE(’01-14-1996’), -- Duplicate on-exception
 TO_DATE(’02-24-1996’), -- Duplicate on-exception
 TO_DATE(’03-23-1996’), -- Duplicate on-exception
 TO_DATE(’01-17-1996’), -- Added to on- and off-exceptions
 TO_DATE(’05-28-1996’), -- Added to on- and off-exceptions
 TO_DATE(’06-18-1996’), -- Added to on- and off-exceptions
 TO_DATE(’04-23-1996’), -- Added to on- and off-exceptions
 TO_DATE(’01-06-1996’), -- Valid, but out of sequence
 TO_DATE(’02-03-1996’),
 TO_DATE(’05-04-1997’))
);
BEGIN
 SELECT ORDSYS.TIMESERIES.Display(tstCal1, ’tstCal1’) INTO dummyval
 FROM dual;
 validFlag := ORDSYS.CALENDAR.IsValidCal(tstCal1);
 IF(validFlag = 0)
 THEN
 validFlag := ORDSYS.CALENDAR.ValidateCal(
 tstCal1, outMessage, invOnExc, invOffExc, impOnExc, impOffExc
);

 ORDSYS.TIMESERIES.DisplayValCal(
 validFlag,
 outMessage,
 invOnExc,
 invOffExc,
 impOnExc,
 impOffExc,
 tstCal1,
 ’Your Message’
);
 END IF;
4-16 Oracle8i Time Series User’s Guide

DisplayValCal Procedure
END;
/

This example might produce the following output:

tstCal1 :

Calendar Name = CALENDAR MYCAL
 Frequency = 4 (day)
 MinDate = 01/01/1975 00:00:00
 MaxDate = 01/01/1999 00:00:00
 patBits:
 1,1,1,1,1,0,0
 patAnchor = 01/08/1996 01:01:01
 onExceptions :
 02/08/1969 00:00:00 02/15/1969 00:00:00 02/13/1999 00:00:00
 02/20/1999 00:00:00 01/03/1996 00:00:00 02/19/1996 00:00:00
 03/18/1996 00:00:00 05/27/1996 00:00:00 03/23/1996 01:01:01
 02/18/1996 01:01:01 05/26/1996 01:01:01 01/13/1996 00:00:00
 01/14/1996 00:00:00
 02/24/1996 00:00:00 03/23/1996 00:00:00 01/13/1996 00:00:00
 01/14/1996 00:00:00 02/24/1996 00:00:00 03/23/1996 00:00:00
 01/17/1996 00:00:00 05/28/1996 00:00:00 06/18/1996 00:00:00
 04/23/1996 00:00:00 01/06/1996 00:00:00 02/03/1996 00:00:00
 05/04/1997 00:00:00
 offExceptions :
 02/03/1969 00:00:00 02/14/1969 00:00:00 02/03/1999 00:00:00
 02/17/1999 00:00:00 12/31/1995 00:00:00 01/13/1996 00:00:00
 02/24/1996 00:00:00 03/30/1996 00:00:00 02/02/1996 01:01:01
 03/04/1996 01:01:01 04/05/1996 02:02:02 03/25/1996 00:00:00
 01/22/1996 00:00:00 02/12/1996 00:00:00 04/30/1996 00:00:00
 02/12/1996 00:00:00
 04/30/1996 00:00:00 03/25/1996 00:00:00
 01/22/1996 00:00:00 01/17/1996 00:00:00 05/28/1996 00:00:00
 06/18/1996 00:00:00 04/23/1996 00:00:00 02/02/1996 00:00:00
 03/04/1996 00:00:00 05/06/1997 00:00:00

DisplayValCal Your Message:

TS-WRN: the input calendar has rectifiable errors. See the message for details

message output by validateCal:

TS-WRN: fixed precision of the pattern anchor date
TS-WRN: removed superfluous dates in the on exception list (refer invalidOnExc)
Calendar Functions: Reference 4-17

DisplayValCal Procedure
TS-WRN: fixed imprecise dates in the on exception list (refer impreciseOnExc)
TS-WRN: removed null dates in the on exception list
TS-WRN: sorted the on exceptions list
TS-WRN: removed duplicate dates in the on exceptions list
TS-WRN: removed superfluous dates in off exceptions list (refer invalidOffExc)
TS-WRN: fixed imprecise dates in the off exception list (refer impreciseOffExc)
TS-WRN: removed null dates in the off exception list
TS-WRN: sorted the off exceptions list
TS-WRN: removed duplicate dates in the off exceptions list
TS-WRN: the on exceptions list was trimmed between calendar minDate & maxDate
TS-WRN: the off exceptions list was trimmed between calendar minDate & maxDate

list of invalid on exceptions :

 01/03/1996 00:00:00 02/19/1996 00:00:00 03/18/1996 00:00:00
 05/27/1996 00:00:00 01/17/1996 00:00:00 05/28/1996 00:00:00
 06/18/1996 00:00:00 04/23/1996 00:00:00

list of invalid off exceptions :

 12/31/1995 00:00:00 01/13/1996 00:00:00 02/24/1996 00:00:00
 03/30/1996 00:00:00

list of imprecise on exceptions :

 03/23/1996 01:01:01 02/18/1996 01:01:01 05/26/1996 01:01:01

list of imprecise off exceptions :

 02/02/1996 01:01:01 03/04/1996 01:01:01 04/05/1996 02:02:02

the validated calendar :

Calendar Name = CALENDAR MYCAL
 Frequency = 4 (day)
 MinDate = 01/01/1975 00:00:00
 MaxDate = 01/01/1999 00:00:00
 patBits:
 1,1,1,1,1,0,0
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 01/06/1996 00:00:00 01/13/1996 00:00:00 01/14/1996 00:00:00
 02/03/1996 00:00:00 02/18/1996 00:00:00 02/24/1996 00:00:00
 03/23/1996 00:00:00 05/26/1996 00:00:00 05/04/1997 00:00:00
 offExceptions :
4-18 Oracle8i Time Series User’s Guide

DisplayValCal Procedure
 01/17/1996 00:00:00 01/22/1996 00:00:00 02/02/1996 00:00:00
 02/12/1996 00:00:00 03/04/1996 00:00:00 03/25/1996 00:00:00
 04/05/1996 00:00:00 04/23/1996 00:00:00 04/30/1996 00:00:00
 05/28/1996 00:00:00 06/18/1996 00:00:00 05/06/1997 00:00:00
Calendar Functions: Reference 4-19

EqualCals
EqualCals

Format
ORDSYS.Calendar.EqualCals(

cal1 ORDSYS.ORDTCalendar,

cal2 ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN BINARY_INTEGER;

Description
Checks if two calendars (completely or within a specified date range) are equal.

Parameters

cal1
The first calendar to be checked.

cal2
The second calendar to be checked.

startDate
Starting date for the checking. If startDate is not specified, the starting date is the
starting date for the calendars, or the higher (later) of the starting dates if they are
different.

endDate
Ending date for the checking. If endDate is not specified, the ending date is the
ending date for the calendars, or the lower (earlier) of the ending dates if they are
different.

Usage
The function checks if the frequencies, off-exceptions, on-exceptions, and aligned
patterns are the same for the two calendars. If they are all the same, the function
returns 1; if they are not all the same, the function returns 0.
4-20 Oracle8i Time Series User’s Guide

EqualCals
The function does not require the calendars to have the same starting and ending
dates.

Example
Check if two calendars (GENERIC-CAL1 and GENERIC-CAL2) are equal:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal1 ORDSYS.ORDTCalendar;
tstCal2 ORDSYS.ORDTCalendar;
resultCal ORDSYS.ORDTCalendar;
equalFlag INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select the calendars GENERIC-CAL1 into tstCal1
 -- and GENERIC-CAL2 into tstCal2
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal1
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;
 SELECT value(cal) INTO tstCal2
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL2’;

 -- Display the calendars tstCal1 and tstCal2.
 SELECT ORDSYS.TimeSeries.Display(tstCal1) INTO dummyVal FROM dual;
 SELECT ORDSYS.TimeSeries.Display(tstCal2) INTO dummyVal FROM dual;

 -- Compare tstCal1 and tstCal2 for equality.
 DBMS_OUTPUT.NEW_LINE;
 equalFlag := ORDSYS.Calendar.EqualCals(tstCal1, tstCal2);
 DBMS_OUTPUT.PUT_LINE(’EqualCals(GENERIC-CAL1, GENERIC-CAL2) = ’ || equalFlag);

END;
/

This example might display the following output. In this example, the returned
value of 0 indicates that the calendars are not equal.
Calendar Functions: Reference 4-21

EqualCals
Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

Calendar Name = GENERIC-CAL2
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1997 00:00:00
 patBits:
 1,1,1,1,1,0,0
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 10/13/1996 00:00:00 11/10/1996 00:00:00 12/14/1996 00:00:00
 01/04/1997 00:00:00 02/09/1997 00:00:00 03/08/1997 00:00:00
 04/05/1997 00:00:00 05/11/1997 00:00:00 06/08/1997 00:00:00
 offExceptions :
 07/09/1996 00:00:00 08/05/1996 00:00:00 09/10/1996 00:00:00
 10/23/1996 00:00:00 11/19/1996 00:00:00 12/12/1996 00:00:00
 01/01/1997 00:00:00 02/12/1997 00:00:00 03/04/1997 00:00:00
 04/07/1997 00:00:00 05/05/1997 00:00:00 06/09/1997 00:00:00

EqualCals(GENERIC-CAL1, GENERIC-CAL2) = 0
4-22 Oracle8i Time Series User’s Guide

GenDateRangeTab
GenDateRangeTab

Format
ORDSYS.Calendar.GenDateRangeTab(

inputCal ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTDateRangeTab;

Description
Given an input calendar, returns a table of date ranges that represent all of the valid
intervals in the calendar (or from startDate through endDate).

Parameters

inputCal
The input calendar.

startDate
Starting date for returning date ranges. If startDate is not specified, the starting date
is the starting date for the calendar (minDate).

endDate
Ending date for returning date ranges. The returned ending date is actually the first
valid timestamp after endDate. If endDate is not specified, the ending date is the
ending date for the calendar (maxDate).

Usage
The function can be used to perform time scaling against any table with a DATE
column. It is used in a TABLE construct in the FROM clause of a SQL statement,
and it generates a table of intervals based on inputCal. By joining the output of this
function with a table containing a DATE column, you can use GROUP BY semantics
to aggregate by the generated intervals.
Calendar Functions: Reference 4-23

GenDateRangeTab
For example, if you specify a monthly calendar starting on 01-Jan-1999 and ending
on 31-Mar-1999, with standard U.S. holidays (including 01-Jan), the function returns
the following timestamps:

The scope of the date ranges returned is adjusted, if necessary, as follows:

■ The first date range reflects the first whole date range interval that it can cover
after startDate.

■ The last date range reflects the full date range that includes endDate.

For example, assume a monthly calendar with a ’1’ pattern (no off days), no
exceptions, and starting on the first day of the month. If startDate is 15-Jan-1999 and
endDate is 15-Dec-1999, the returned date ranges are from February through
December of 1999.

For best performance, especially with large data sets, always follow these guidelines
when constructing a date range to be joined with time series data:

■ Perform the date generation before specifying other tables for the join
operation.

■ Use the /*+ ORDERED */ optimizer hint to ensure that the TABLE clause is the
innermost table.

■ Index the fields used in the table for the join operation.

If the calendar does not include date bounds (a minDate and maxDate), you must
specify startDate and endDate. (The date range table cannot be infinite.)

If startDate is greater (later) than endDate, an exception is raised.

Examples
Create a date range table of 10-day cycles (using the 10-day frequency, described in
Table 2–2 in Section 2.2.1) for 1990 through 1993:

SELECT to_char(t.startdate,’DAY’),
 to_char(t.startdate,’DD-MON-YYYY HH24:MI:SS’),
 to_char(t.enddate,’DAY’),
 to_char(t.enddate, ’DD-MON-YYYY HH24:MI:SS’)

02-Jan-1999 01-Feb-1999

01-Feb-1999 01-Mar-1999

01-Mar-1999 01-Apr-1999
4-24 Oracle8i Time Series User’s Guide

GenDateRangeTab
 FROM TABLE(cast (ORDSYS.Calendar.GenDateRangeTab(
 ORDSYS.ORDTCalendar(
 0,
 ’10-Day’,
 10,
 ORDSYS.ORDTPattern(
 ORDSYS.ORDTPatternBits(1),
 TO_DATE(’01-JAN-1998’,’DD-MON-YYYY’)),
 TO_DATE(’01-JAN-1990’,’DD-MON-YYYY’),
 TO_DATE(’31-DEC-1993’,’DD-MON-YYYY’),
 ORDSYS.ORDTExceptions(),
 ORDSYS.ORDTExceptions()
)) as ORDSYS.ORDTDateRangeTab)) t;

This example might display the following output:

TO_CHAR(T TO_CHAR(T.STARTDATE, TO_CHAR(T TO_CHAR(T.ENDDATE,’D
--------- -------------------- --------- --------------------
MONDAY 01-JAN-1990 00:00:00 THURSDAY 11-JAN-1990 00:00:00
THURSDAY 11-JAN-1990 00:00:00 SUNDAY 21-JAN-1990 00:00:00
SUNDAY 21-JAN-1990 00:00:00 THURSDAY 01-FEB-1990 00:00:00
THURSDAY 01-FEB-1990 00:00:00 SUNDAY 11-FEB-1990 00:00:00
SUNDAY 11-FEB-1990 00:00:00 WEDNESDAY 21-FEB-1990 00:00:00
WEDNESDAY 21-FEB-1990 00:00:00 THURSDAY 01-MAR-1990 00:00:00

WEDNESDAY 01-DEC-1993 00:00:00 SATURDAY 11-DEC-1993 00:00:00
SATURDAY 11-DEC-1993 00:00:00 TUESDAY 21-DEC-1993 00:00:00
TUESDAY 21-DEC-1993 00:00:00 SATURDAY 01-JAN-1994 00:00:00
144 rows selected.

Return the count and the minimum, maximum, and average values of closing prices
(for all stock tickers, not broken down by ticker) from the tsquick_tab table for 01-
Oct-1996 through 31-Dec-1996, using a weekly business-day calendar generated by
the GenDateRangeTab function:

select /*+ ORDERED */ to_char(t.startdate,’DAY’) "day",
 to_char(t.startdate,’DD-MON-YYYY HH24:MI:SS’) "tstamp",
 count(s.close) "count",
 min(s.close) "min",
 max(s.close) "max",
 avg(s.close) "avg"
 from TABLE(cast (ORDSYS.Calendar.GenDateRangeTab(
 ORDSYS.ORDTCalendar(
 0,
 ’BusinessWeek’,
Calendar Functions: Reference 4-25

GenDateRangeTab
 4,
 ORDSYS.ORDTPattern(
 ORDSYS.ORDTPatternBits(0,5,0),
 TO_DATE(’15-DEC-1996’,’DD-MON-YYYY’)),
 TO_DATE(’01-OCT-1996’,’DD-MON-YYYY’),
 TO_DATE(’31-DEC-1996’,’DD-MON-YYYY’),
 ORDSYS.ORDTExceptions(),
 ORDSYS.ORDTExceptions()
)) as ORDSYS.ORDTDateRangeTab)) t,
 tsquick_tab s
 where s.tstamp >= t.startdate and s.tstamp < t.enddate
 group by t.startdate
 order by t.startdate;

Note that this example follows the guidelines in the Usage section for this function,
including the use of the /*+ ORDERED */ optimizer hint.

This example might produce the following output:

day tstamp count min max avg
--------- -------------------- ---------- ---------- ---------- ----------
MONDAY 28-OCT-1996 00:00:00 6 23.69 79.688 63.7818333
MONDAY 04-NOV-1996 00:00:00 20 23.72 83.25 52.64925
MONDAY 11-NOV-1996 00:00:00 20 23.84 85.813 53.5503
MONDAY 18-NOV-1996 00:00:00 20 23.82 88.938 55.2897
MONDAY 25-NOV-1996 00:00:00 15 23.71 88.75 54.5533333
MONDAY 02-DEC-1996 00:00:00 20 23.75 89.875 57.8124
MONDAY 09-DEC-1996 00:00:00 20 23.4 94.375 60.12525
MONDAY 16-DEC-1996 00:00:00 19 23.36 95.875 59.6052632
MONDAY 23-DEC-1996 00:00:00 15 23.93 97 61.1606667
MONDAY 30-DEC-1996 00:00:00 8 24.11 99 63.951875
10 rows selected.
4-26 Oracle8i Time Series User’s Guide

GetIntervalEnd
GetIntervalEnd

Format
ORDSYS.TimeSeries.GetIntervalEnd(

inputCal IN ORDSYS.ORDTCalendar,

inputDate IN DATE

) RETURN DATE;

Description
Given a Calendar and an input timestamp (inputDate), returns the end of the
interval that includes the input timestamp.

Parameters

inputCal
The input calendar.

inputDate
Timestamp for which the end of the interval is to be returned.

Usage
If inputDate is a valid timestamp, the function returns a date. Otherwise, the
function returns a null.

An exception is returned if inputCal is null.

Example
Return the end of the interval for several timestamps:

DECLARE
inputCal ORDSYS.ORDTCalendar;
tstDate DATE;
retDate DATE;
tstDtTab ordsys.ordtdatetab;
BEGIN

 -- Select a Calendar into a local variable
Calendar Functions: Reference 4-27

GetIntervalEnd
 SELECT value(cal)
 INTO inputCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’BIWEEKLY’;

 -- Display the input Calendar
 ORDSYS.TimeSeries.Display(inputCal);

 DBMS_OUTPUT.PUT_LINE(’’);

 -- GetIntervalEnd of a Valid timestamp
 tstDate := TO_DATE(’01-JAN-1996’,’DD-MON-YYYY’);
 retDate := ORDSYS.Calendar.GetIntervalEnd(inputCal, tstDate);

 DBMS_OUTPUT.PUT_LINE(’GetIntervalEnd (’ ||
 TO_CHAR(tstDate, ’MM-DD-YYYY’) ||
 ’) = ’ ||
 TO_CHAR(retDate, ’MM-DD-YYYY’));

 -- GetIntervalEnd of an InValid timestamp - returns NULL
 tstDate := TO_DATE(’01-JUL-1996’,’DD-MON-YYYY’);
 retDate := ORDSYS.Calendar.GetIntervalEnd(inputCal, tstDate);

 DBMS_OUTPUT.PUT_LINE(’GetIntervalEnd (’ ||
 TO_CHAR(tstDate, ’MM-DD-YYYY’) ||
 ’) = ’ ||
 TO_CHAR(retDate, ’MM-DD-YYYY’));

 -- GetIntervalEnd of a Covered timestamp
 tstDate := TO_DATE(’08-JAN-1996’,’DD-MON-YYYY’);
 retDate := ORDSYS.Calendar.GetIntervalEnd(inputCal, tstDate);

 DBMS_OUTPUT.PUT_LINE(’GetIntervalEnd (’ ||
 TO_CHAR(tstDate, ’MM-DD-YYYY’) ||
 ’) = ’ ||
 TO_CHAR(retDate, ’MM-DD-YYYY’));

END;
/

This example might produce the following output:

Calendar Name = BIWEEKLY
 Frequency = 5 (week)
 MinDate is NULL
4-28 Oracle8i Time Series User’s Guide

GetIntervalEnd
 MaxDate is NULL
 patBits: 2
 patAnchor = 01/01/1996 00:00:00
 onExceptions :
 offExceptions :
 07/01/1996 00:00:00

GetIntervalEnd (01-01-1996) = 01-15-1996
GetIntervalEnd (07-01-1996) =
GetIntervalEnd (01-08-1996) = 01-15-1996
Calendar Functions: Reference 4-29

GetIntervalStart
GetIntervalStart

Format
ORDSYS.TimeSeries.GetIntervalStart(

inputCal IN ORDSYS.ORDTCalendar,

inputDate IN DATE

) RETURN DATE;

Description
Given a Calendar and an input timestamp (inputDate), returns the start of the
interval that includes the input timestamp.

Parameters

inputCal
The input calendar.

inputDate
Timestamp for which the start of the interval is to be returned.

Usage
If inputDate is a valid timestamp, the function returns a date. Otherwise, the
function returns a null.

An exception is returned if inputCal is null.

Example
Return the start of the interval for several timestamps:

DECLARE
inputCal ORDSYS.ORDTCalendar;
tstDate DATE;
retDate DATE;
tstDtTab ordsys.ordtdatetab;
BEGIN

 -- Select a Calendar into a local variable
4-30 Oracle8i Time Series User’s Guide

GetIntervalStart
 SELECT value(cal)
 INTO inputCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’BIWEEKLY’;

 -- Display the input Calendar
 ORDSYS.TimeSeries.Display(inputCal);

 DBMS_OUTPUT.PUT_LINE(’’);

 -- GetIntervalStart of a Valid timestamp
 tstDate := TO_DATE(’01-JAN-1996’,’DD-MON-YYYY’);
 retDate := ORDSYS.Calendar.GetIntervalStart(inputCal, tstDate);

 DBMS_OUTPUT.PUT_LINE(’GetIntervalStart (’ ||
 TO_CHAR(tstDate, ’MM-DD-YYYY’) ||
 ’) = ’ ||
 TO_CHAR(retDate, ’MM-DD-YYYY’));

 -- GetIntervalStart of an InValid timestamp - returns NULL
 tstDate := TO_DATE(’01-JUL-1996’,’DD-MON-YYYY’);
 retDate := ORDSYS.Calendar.GetIntervalStart(inputCal, tstDate);

 DBMS_OUTPUT.PUT_LINE(’GetIntervalStart (’ ||
 TO_CHAR(tstDate, ’MM-DD-YYYY’) ||
 ’) = ’ ||
 TO_CHAR(retDate, ’MM-DD-YYYY’));

 -- GetIntervalStart of a Covered timestamp
 tstDate := TO_DATE(’08-JAN-1996’,’DD-MON-YYYY’);
 retDate := ORDSYS.Calendar.GetIntervalStart(inputCal, tstDate);

 DBMS_OUTPUT.PUT_LINE(’GetIntervalStart (’ ||
 TO_CHAR(tstDate, ’MM-DD-YYYY’) ||
 ’) = ’ ||
 TO_CHAR(retDate, ’MM-DD-YYYY’));

END;
/

This example might produce the following output:

Calendar Name = BIWEEKLY
 Frequency = 5 (week)
 MinDate is NULL
Calendar Functions: Reference 4-31

GetIntervalStart
 MaxDate is NULL
 patBits: 2
 patAnchor = 01/01/1996 00:00:00
 onExceptions :
 offExceptions :
 07/01/1996 00:00:00

GetIntervalStart (01-01-1996) = 01-01-1996
GetIntervalStart (07-01-1996) =
GetIntervalStart (01-08-1996) = 01-01-1996
4-32 Oracle8i Time Series User’s Guide

GetOffset
GetOffset

Format
ORDSYS.TimeSeries.GetOffset(

inputCal IN ORDSYS.ORDTCalendar,

origin_date IN DATE,

reference_date IN DATE

) RETURN INTEGER;

Description
Given a calendar, one date (origin_date), and another date (reference_date), returns the
number of timestamps that the second date is offset from the first.

Parameters

inputCal
The input calendar.

origin_date
Date from which the offset is to be computed.

reference_date
Date whose offset from origin_date is to be returned.

Usage
The function considers the frequency, pattern, and exceptions of the calendar.

The returned integer is positive if reference_date is one or more timestamps in the
future with respect to origin_date, and negative if it is in the past with respect to
origin_date. For example, assume that the calendar includes Mondays through
Fridays, that 04-Jul-1997 (Friday) is an off-exception, and that 03-Jul-1997
(Thursday) is the origin_date. If 10-Jul-1997 (Thursday) is the reference_date, the
returned offset is 4; if the reference_date is 01-Jul-1997 (Monday), the returned offset
is -2.

If origin_date and reference_date are the same, the function returns 0 (zero).
Calendar Functions: Reference 4-33

GetOffset
An exception is returned if the calendar has an empty or null pattern.

Example
Return the offset of 05-Jun-1996 from 04-Mar-1996 in the GENERIC-CAL1 calendar:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;
DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
result INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get offset of 05-JUN-1996 from 04-MAR-1996.
 tstDate1 := TO_DATE(’04/03/1996’);
 tstDate2 := TO_DATE(’06/05/1996’);
 result := ORDSYS.Calendar.GetOffset(tstCal,tstDate1, tstDate2);
 DBMS_OUTPUT.PUT_LINE(’GetOffset(’ || tstDate1 ||’ , ’ || tstDate2
 || ’) = ’ || result);
END;
/

This example might produce the following output. In this example, 05-Jun-1996 is
45 timestamps later than 04-Mar-1996.

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
4-34 Oracle8i Time Series User’s Guide

GetOffset
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

GetOffset(04/03/1996 00:00:00 , 06/05/1996 00:00:00) = 45
Calendar Functions: Reference 4-35

Hour
Hour

Format
ORDSYS.Calendar.Hour(

[calname VARCHAR2]

[, anchorDate DATE]

) RETURN ORDSYS.ORDTCalendar;

Description
Creates a calendar with a frequency of hour, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

Parameters

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

Usage
This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.
4-36 Oracle8i Time Series User’s Guide

Hour
Example
Insert into the stockdemo_calendars table a calendar of hour frequency with a calendar
name of Hourly and an anchor date of 01-Jan-1997 (at midnight). The calendar has
no date boundaries (minDate or maxDate) or exceptions.

INSERT INTO stockdemo_calendars
VALUES(
 ORDSYS.Calendar.Hour(
 ’Hourly’,
 (to_date(’01-01-97 01’,’MM-DD-YY HH’))));
Calendar Functions: Reference 4-37

InsertExceptions
InsertExceptions

Format
ORDSYS.Calendar.InsertExceptions(

inputCal IN ORDSYS.ORDTCalendar,

newExcDate IN DATE

) RETURN ORDSYS.ORDTCalendar;

or

ORDSYS.Calendar.InsertExceptions(

inputCal IN ORDSYS.ORDTCalendar,

newExcTab IN ORDSYS.ORDTDateTab

) RETURN ORDSYS.ORDTCalendar;

Description
Inserts into the specified calendar all exceptions that either match a specified date
(newExcDate) or are included in a table of dates (newExcTab), and returns the
resulting calendar.

Parameters

inputCal
The calendar into which one or more exceptions are to be inserted.

newExcDate
The date to be inserted as an exception in the calendar.

newExcTab
A table of dates to be inserted as exceptions in the calendar.

Usage
For each date to be inserted, the function inserts it in the appropriate list (off-
exceptions or on-exceptions), according to the frequency and pattern of the
calendar.
4-38 Oracle8i Time Series User’s Guide

InsertExceptions
If a date to be inserted is already an exception in the calendar, the function ignores
the request to insert the date.

If newExcDate or newExcTab is empty or null, or if all dates to be inserted already
exist in the calendar as exceptions, the function returns the input calendar with no
changes.

Example
Insert some exceptions into a calendar.

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDTab ORDSYS.ordtDateTab;
resultCal ORDSYS.ORDTCalendar;
dummyVal INTEGER;
relOffset INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Populate tstDTab with some on- and off-exceptions.
 tstDTab := ORDSYS.ORDTDateTab(
 ’02/10/1996’, -- ON Exception
 ’07/09/1996’, -- OFF Exception
 ’03/17/1996’, -- ON Exception
 ’04/08/1996’);-- OFF Exception
 SELECT ORDSYS.TimeSeries.Display(tstDTab, ’Input DateTab’)
 INTO dummyVal
 FROM dual;

Calendar Functions: Reference 4-39

InsertExceptions
 -- Insert some exceptions in tstCal.
 resultCal := ORDSYS.Calendar.InsertExceptions(tstCal, tstDTab);
 SELECT ORDSYS.TimeSeries.Display(resultCal) INTO dummyVal
 FROM dual;

END;
/

This example might produce the following output. The second display of
information about GENERIC-CAL1 includes the added on-exceptions and off-
exceptions.

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

Input DateTab :

 02/10/1996 00:00:00 07/09/1996 00:00:00 03/17/1996 00:00:00
 04/08/1996 00:00:00

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 02/10/1996 00:00:00
 03/17/1996 00:00:00 03/24/1996 00:00:00 04/27/1996 00:00:00
 05/19/1996 00:00:00 06/23/1996 00:00:00 07/07/1996 00:00:00
4-40 Oracle8i Time Series User’s Guide

InsertExceptions
 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 04/08/1996 00:00:00 05/08/1996 00:00:00
 06/25/1996 00:00:00 07/09/1996 00:00:00
Calendar Functions: Reference 4-41

IntersectCals
IntersectCals

Format
ORDSYS.Calendar.IntersectCals(

cal1 ORDSYS.ORDTCalendar,

cal2 ORDSYS.ORDTCalendar

) RETURN ORDSYS.ORDTCalendar;

Description
Returns the intersection of two calendars.

Parameters

cal1
The first calendar to be intersected.

cal2
The second calendar to be intersected.

Usage
The function performs an intersection of the two input calendars, as follows:

■ The starting date of the resulting calendar is the later of the starting dates of the
two calendars, that is, resulting minDate = max(minDate1, minDate2).

■ The ending date of the resulting calendar is the earlier of the ending dates of the
two calendars, that is, resulting maxDate = min(maxDate1, maxDate2).

■ The intersection of the aligned patterns is computed. For example, if both
calendars have a day frequency with Sunday as the first day, and if cal1 has a
pattern of ’0,1,1,1,1,1,0’ and cal2 has a pattern of ’0,0,1,1,1,1,1’, the resulting
pattern is ’0,0,1,1,1,1,0’ (that is, the calendar includes only Tuesdays,
Wednesdays, Thursdays, and Fridays).

■ The intersection of the on-exception lists of the two calendars is computed. For
example, if cal1 has 30-Mar and 29-Jun as on-exceptions and cal2 has 29-Jun and
28-Sep as on-exceptions, the resulting calendar has only 29-Jun as an on-
exception.
4-42 Oracle8i Time Series User’s Guide

IntersectCals
■ The union of the off-exceptions of the two calendars is computed. For example,
if cal1 has 01-Jan and 04-Jul as off-exceptions and cal2 has 01-Jan and 14-Jul as
off-exceptions, the resulting calendar has 01-Jan, 04-Jul, and 14-Jul as off-
exceptions.

If the frequencies of the two calendars are not equal, the function returns NULL.

Contrast this function with UnionCals, which performs a union of two calendars.

IntersectCals and CombineCals differ as follows:

■ CombineCals requires the frequencies and the aligned patterns of the two
calendars to be equal, whereas IntersectCals requires only that the frequencies
be equal. However, IntersectCals does require that the patterns be of the same
length.

■ CombineCals lets you specify starting and ending dates for the resulting
calendar, whereas IntersectCals does not let you specify starting and ending
dates.

Example
Combine two calendars (GENERIC-CAL1 and GENERIC-CAL2), then intersect the
two calendars:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal1 ORDSYS.ORDTCalendar;
tstCal2 ORDSYS.ORDTCalendar;
resultCal ORDSYS.ORDTCalendar;
equalFlag INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select the calendars GENERIC-CAL1 into tstCal1
 -- and GENERIC-CAL2 into tstCal2
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal1
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;
 SELECT value(cal) INTO tstCal2
 FROM TSDEV.stockdemo_calendars cal
Calendar Functions: Reference 4-43

IntersectCals
 WHERE cal.name = ’GENERIC-CAL2’;

 -- Display the calendars tstCal1 and tstCal2.
 SELECT ORDSYS.TimeSeries.Display(tstCal1) INTO dummyVal FROM dual;
 SELECT ORDSYS.TimeSeries.Display(tstCal2) INTO dummyVal FROM dual;

 -- Combine tstCal1 and tstCal2.
 resultCal := ORDSYS.Calendar.CombineCals(tstCal1, tstCal2, equalFlag);
 SELECT ORDSYS.TimeSeries.Display(resultCal, ’result of CombineCals’)
 INTO dummyVal
 FROM dual;
 DBMS_OUTPUT.PUT_LINE(’equalFlag = ’ || equalFlag);

 -- Intersect tstCal1 and tstCal2.
 resultCal := ORDSYS.Calendar.IntersectCals(tstCal1, tstCal2);
 SELECT ORDSYS.TimeSeries.Display(resultCal, ’result of IntersectCals’)
 INTO dummyVal
 FROM dual;

END;
/

This example might produce the following output:

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

Calendar Name = GENERIC-CAL2
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1997 00:00:00
 patBits:
4-44 Oracle8i Time Series User’s Guide

IntersectCals
 1,1,1,1,1,0,0
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 10/13/1996 00:00:00 11/10/1996 00:00:00 12/14/1996 00:00:00
 01/04/1997 00:00:00 02/09/1997 00:00:00 03/08/1997 00:00:00
 04/05/1997 00:00:00 05/11/1997 00:00:00 06/08/1997 00:00:00
 offExceptions :
 07/09/1996 00:00:00 08/05/1996 00:00:00 09/10/1996 00:00:00
 10/23/1996 00:00:00 11/19/1996 00:00:00 12/12/1996 00:00:00
 01/01/1997 00:00:00 02/12/1997 00:00:00 03/04/1997 00:00:00
 04/07/1997 00:00:00 05/05/1997 00:00:00 06/09/1997 00:00:00

result of CombineCals :

 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00 08/05/1996 00:00:00 09/10/1996 00:00:00
 10/23/1996 00:00:00 11/19/1996 00:00:00 12/12/1996 00:00:00
equalFlag = 0

result of IntersectCals :

 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 1,1,1,1,1,0,0
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00 08/05/1996 00:00:00 09/10/1996 00:00:00
 10/23/1996 00:00:00 11/19/1996 00:00:00 12/12/1996 00:00:00
Calendar Functions: Reference 4-45

InvalidTimeStampsBetween
InvalidTimeStampsBetween

Format
ORDSYS.Calendar.InvalidTimeStampsBetween(

inputCal IN ORDSYS.ORDTCalendar,

startDate IN DATE,

endDate IN DATE

) RETURN ORDSYS.ORDTDateTab;

Description
Given starting and ending input timestamps, returns a table (ORDTDateTab)
containing the invalid timestamps within that range according to the specified
calendar.

Parameters

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for invalid timestamps.

endDate
Ending date in the range to be checked for invalid timestamps.

Usage
A timestamp is invalid if one or more of the following conditions are true:

■ It is outside the date range of the calendar.

■ It is an off-exception in the calendar.

■ It is imprecise (for example, a timestamp of 02-Jul-1997 if the calendar
frequency is month).

■ It is null.

startDate and endDate are included in the check for invalid timestamps.
4-46 Oracle8i Time Series User’s Guide

InvalidTimeStampsBetween
If there are no invalid timestamps in the date range, the function returns an empty
ORDTDateTab.

If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with TimeStampsBetween, which returns a table containing
the valid timestamps in a date range.

Example
Return a table of invalid timestamps between 03-Mar-1996 and 03-Jun-1996 in the
GENERIC-CAL1 calendar:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
resultDTab ORDSYS.ordtDateTab;
dummyVal INTEGER;
relOffset INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get all the invalid timestamps between 03-MAR-1996 and 03-JUN-1996.
 tstDate1 := TO_DATE(’03/03/1996’);
 tstDate2 := TO_DATE(’06/03/1996’);
 resultDTab := ORDSYS.Calendar.InvalidTimeStampsBetween
 (tstCal, tstDate1, tstDate2);
 SELECT ORDSYS.TimeSeries.Display(resultDTab, ’InValid timestamps’)
 INTO dummyVal
 FROM dual;
Calendar Functions: Reference 4-47

InvalidTimeStampsBetween
END;
/

This example might produce the following output:

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

InValid timestamps :

 03/03/1996 00:00:00 03/05/1996 00:00:00 03/09/1996 00:00:00
 03/10/1996 00:00:00 03/16/1996 00:00:00 03/17/1996 00:00:00
 03/23/1996 00:00:00 03/30/1996 00:00:00 03/31/1996 00:00:00
 04/04/1996 00:00:00 04/06/1996 00:00:00 04/07/1996 00:00:00
 04/13/1996 00:00:00 04/14/1996 00:00:00 04/20/1996 00:00:00
 04/21/1996 00:00:00 04/28/1996 00:00:00 05/04/1996 00:00:00
 05/05/1996 00:00:00 05/08/1996 00:00:00 05/11/1996 00:00:00
 05/12/1996 00:00:00 05/18/1996 00:00:00 05/25/1996 00:00:00
 05/26/1996 00:00:00 06/01/1996 00:00:00 06/02/1996 00:00:00
4-48 Oracle8i Time Series User’s Guide

IsValidCal
IsValidCal

Format
ORDSYS.Calendar.IsValidCal(

inputCal IN ORDSYS.ORDTCalendar

) RETURN BINARY_INTEGER

Description
Returns 1 if a calendar is valid and 0 if a calendar is not valid.

Parameters

inputCal
The calendar to be checked for validity.

Usage
A calendar is invalid (not valid) if it contains any errors. This function does not
correct any errors or perform any repair operations on the calendar.

Contrast this function with the ValidateCal function, which checks the validity of
the calendar and repairs any correctable errors. For detailed information on
calendar errors, see the information on ValidateCal in this chapter.

If the IsValidCal function returns 0, you should do the following before you attempt
to use the calendar:

1. Use the ValidateCal function to repair any correctable errors.

2. If there are any errors that ValidateCal cannot correct, correct these errors
yourself.

3. Repeat steps 1 and 2 as often as necessary until the resulting calendar is valid.

Example
Use the IsValidCal and ValidateCal functions and the DisplayValCal procedure with
an invalid calendar:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
Calendar Functions: Reference 4-49

IsValidCal
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
outMessage varchar2(32750);
invOnExc ORDSYS.ORDTDateTab;
invOffExc ORDSYS.ORDTDateTab;
impOnExc ORDSYS.ORDTDateTab;
impOffExc ORDSYS.ORDTDateTab;
dummyval integer;
validFlag integer;
tstCal1 ORDSYS.ORDTCalendar :=
 ORDSYS.ORDTCalendar(
 0,
 ’CALENDAR MYCAL’,
 4,
 ORDSYS.ORDTPattern(ORDSYS.ORDTPatternBits(1,1,1,1,1,0,0),
 TO_DATE(’01-08-1996 01:01:01’)),
 TO_DATE(’01-01-1975’),
 TO_DATE(’01-01-1999’),
 ORDSYS.ORDTExceptions(
 TO_DATE(’02-03-1969’), -- Date < minDate,
 TO_DATE(’02-14-1969’), -- Date < minDate,
 TO_DATE(’02-03-1999’), -- Date > maxDate,
 TO_DATE(’02-17-1999’), -- Date > maxDate,
 TO_DATE(’12-31-1995’), -- Maps to 0 in pattern (Sunday)
 TO_DATE(’01-13-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’02-24-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’03-30-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’02-02-1996 01:01:01’), -- Imprecise
 TO_DATE(’03-04-1996 01:01:01’), -- Imprecise
 TO_DATE(’04-05-1996 02:02:02’), -- Imprecise
 TO_DATE(’03-25-1996’), -- Valid off-exception
 TO_DATE(’01-22-1996’), -- Valid, but out of sequence
 TO_DATE(’02-12-1996’),
 TO_DATE(’04-30-1996’),
 NULL, -- Null date
 TO_DATE(’02-12-1996’), -- Duplicate date within OFFs
 NULL, -- Null date
 TO_DATE(’04-30-1996’), -- Duplicate off-exception
 NULL, -- Null date
 TO_DATE(’03-25-1996’), -- Duplicate off-exception
 TO_DATE(’01-22-1996’), -- Duplicate off-exception
 TO_DATE(’01-17-1996’), -- Added to on- and off-exceptions
 TO_DATE(’05-28-1996’), -- Added to on- and off-exceptions
 TO_DATE(’06-18-1996’), -- Added to on- and off-exceptions
4-50 Oracle8i Time Series User’s Guide

IsValidCal
 TO_DATE(’04-23-1996’), -- Added to on- and off-exceptions
 TO_DATE(’02-02-1996’),
 TO_DATE(’03-04-1996’),
 TO_DATE(’05-06-1997’)),
 ORDSYS.ORDTExceptions(
 TO_DATE(’02-08-1969’), -- Date < minDate,
 TO_DATE(’02-15-1969’), -- Date < minDate,
 TO_DATE(’02-13-1999’), -- Date > maxDate,
 TO_DATE(’02-20-1999’), -- Date > maxDate,
 TO_DATE(’01-03-1996’), -- Maps to 1 in pattern (Wednesday)
 TO_DATE(’02-19-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’03-18-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’05-27-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’03-23-1996 01:01:01’), -- Imprecise
 TO_DATE(’02-18-1996 01:01:01’), -- Imprecise
 TO_DATE(’05-26-1996 01:01:01’), -- Imprecise
 TO_DATE(’01-13-1996’), -- Valid on-exception
 TO_DATE(’01-14-1996’), -- Valid on-exception
 NULL, -- Null date
 NULL, -- Null date
 TO_DATE(’02-24-1996’), -- Valid on-exception
 TO_DATE(’03-23-1996’), -- Valid on-exception
 TO_DATE(’01-13-1996’), -- Duplicate on-exception
 TO_DATE(’01-14-1996’), -- Duplicate on-exception
 TO_DATE(’02-24-1996’), -- Duplicate on-exception
 TO_DATE(’03-23-1996’), -- Duplicate on-exception
 TO_DATE(’01-17-1996’), -- Added to on- and off-exceptions
 TO_DATE(’05-28-1996’), -- Added to on- and off-exceptions
 TO_DATE(’06-18-1996’), -- Added to on- and off-exceptions
 TO_DATE(’04-23-1996’), -- Added to on- and off-exceptions
 TO_DATE(’01-06-1996’), -- Valid, but out of sequence
 TO_DATE(’02-03-1996’),
 TO_DATE(’05-04-1997’))
);
BEGIN
 SELECT ORDSYS.TIMESERIES.Display(tstCal1, ’tstCal1’) INTO dummyval
 FROM dual;
 validFlag := ORDSYS.CALENDAR.IsValidCal(tstCal1);
 IF(validFlag = 0)
 THEN
 validFlag := ORDSYS.CALENDAR.ValidateCal(
 tstCal1, outMessage, invOnExc, invOffExc, impOnExc, impOffExc
);

 ORDSYS.TIMESERIES.DisplayValCal(
Calendar Functions: Reference 4-51

IsValidCal
 validFlag,
 outMessage,
 invOnExc,
 invOffExc,
 impOnExc,
 impOffExc,
 tstCal1,
 ’Your Message’
);
 END IF;
END;
/

This example might produce the following output:

tstCal1 :

Calendar Name = CALENDAR MYCAL
 Frequency = 4 (day)
 MinDate = 01/01/1975 00:00:00
 MaxDate = 01/01/1999 00:00:00
 patBits:
 1,1,1,1,1,0,0
 patAnchor = 01/08/1996 01:01:01
 onExceptions :
 02/08/1969 00:00:00 02/15/1969 00:00:00 02/13/1999 00:00:00
 02/20/1999 00:00:00 01/03/1996 00:00:00 02/19/1996 00:00:00
 03/18/1996 00:00:00 05/27/1996 00:00:00 03/23/1996 01:01:01
 02/18/1996 01:01:01 05/26/1996 01:01:01 01/13/1996 00:00:00
 01/14/1996 00:00:00
 02/24/1996 00:00:00 03/23/1996 00:00:00 01/13/1996 00:00:00
 01/14/1996 00:00:00 02/24/1996 00:00:00 03/23/1996 00:00:00
 01/17/1996 00:00:00 05/28/1996 00:00:00 06/18/1996 00:00:00
 04/23/1996 00:00:00 01/06/1996 00:00:00 02/03/1996 00:00:00
 05/04/1997 00:00:00
 offExceptions :
 02/03/1969 00:00:00 02/14/1969 00:00:00 02/03/1999 00:00:00
 02/17/1999 00:00:00 12/31/1995 00:00:00 01/13/1996 00:00:00
 02/24/1996 00:00:00 03/30/1996 00:00:00 02/02/1996 01:01:01
 03/04/1996 01:01:01 04/05/1996 02:02:02 03/25/1996 00:00:00
 01/22/1996 00:00:00 02/12/1996 00:00:00 04/30/1996 00:00:00
 02/12/1996 00:00:00
 04/30/1996 00:00:00 03/25/1996 00:00:00
 01/22/1996 00:00:00 01/17/1996 00:00:00 05/28/1996 00:00:00
 06/18/1996 00:00:00 04/23/1996 00:00:00 02/02/1996 00:00:00
4-52 Oracle8i Time Series User’s Guide

IsValidCal
 03/04/1996 00:00:00 05/06/1997 00:00:00

DisplayValCal Your Message:

TS-WRN: the input calendar has rectifiable errors. See the message for details

message output by validateCal:

TS-WRN: fixed precision of the pattern anchor date
TS-WRN: removed superfluous dates in the on exception list (refer invalidOnExc)
TS-WRN: fixed imprecise dates in the on exception list (refer impreciseOnExc)
TS-WRN: removed null dates in the on exception list
TS-WRN: sorted the on exceptions list
TS-WRN: removed duplicate dates in the on exceptions list
TS-WRN: removed superfluous dates in off exceptions list (refer invalidOffExc)
TS-WRN: fixed imprecise dates in the off exception list (refer impreciseOffExc)
TS-WRN: removed null dates in the off exception list
TS-WRN: sorted the off exceptions list
TS-WRN: removed duplicate dates in the off exceptions list
TS-WRN: the on exceptions list was trimmed between calendar minDate & maxDate
TS-WRN: the off exceptions list was trimmed between calendar minDate & maxDate

list of invalid on exceptions :

 01/03/1996 00:00:00 02/19/1996 00:00:00 03/18/1996 00:00:00
 05/27/1996 00:00:00 01/17/1996 00:00:00 05/28/1996 00:00:00
 06/18/1996 00:00:00 04/23/1996 00:00:00

list of invalid off exceptions :

 12/31/1995 00:00:00 01/13/1996 00:00:00 02/24/1996 00:00:00
 03/30/1996 00:00:00

list of imprecise on exceptions :

 03/23/1996 01:01:01 02/18/1996 01:01:01 05/26/1996 01:01:01

list of imprecise off exceptions :

 02/02/1996 01:01:01 03/04/1996 01:01:01 04/05/1996 02:02:02

the validated calendar :

Calendar Name = CALENDAR MYCAL
 Frequency = 4 (day)
Calendar Functions: Reference 4-53

IsValidCal
 MinDate = 01/01/1975 00:00:00
 MaxDate = 01/01/1999 00:00:00
 patBits:
 1,1,1,1,1,0,0
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
 01/06/1996 00:00:00 01/13/1996 00:00:00 01/14/1996 00:00:00
 02/03/1996 00:00:00 02/18/1996 00:00:00 02/24/1996 00:00:00
 03/23/1996 00:00:00 05/26/1996 00:00:00 05/04/1997 00:00:00
 offExceptions :
 01/17/1996 00:00:00 01/22/1996 00:00:00 02/02/1996 00:00:00
 02/12/1996 00:00:00 03/04/1996 00:00:00 03/25/1996 00:00:00
 04/05/1996 00:00:00 04/23/1996 00:00:00 04/30/1996 00:00:00
 05/28/1996 00:00:00 06/18/1996 00:00:00 05/06/1997 00:00:00
4-54 Oracle8i Time Series User’s Guide

IsValidDate
IsValidDate

Format
ORDSYS.Calendar.IsValidDate(

inputCal IN ORDSYS.ORDTCalendar,

checkDate IN DATE

) RETURN BINARY_INTEGER;

Description
Checks whether an input date is valid or invalid according to the specified calendar.

Parameters

inputCal
The calendar to be used to determine whether the input timestamp is valid or
invalid.

checkDate
The timestamp to be checked for validity according to the calendar.

Usage
If checkDate is valid, the function returns 1; if checkDate is invalid, the function
returns 0.

A timestamp is invalid if one or more of the following conditions are true:

■ It is outside the date range of the calendar.

■ It is an off-exception in the calendar.

■ It is not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the
calendar has a frequency of year).

■ It is null.

Example
Check if 02-Jan-1996 is a valid timestamp for a calendar (GENERIC-CAL1):

CONNECT TSUSER/TSUSER
Calendar Functions: Reference 4-55

IsValidDate
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;
DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
result INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Verify if 02-JAN-1996 (a Monday) is a valid date and display the result.
 tstDate1 := TO_DATE(’01/02/1996’);
 result := ORDSYS.Calendar.IsValidDate(tstCal,tstDate1);
 DBMS_OUTPUT.PUT_LINE(’IsValidDate(’ || tstDate1 || ’) = ’ || result);

END;
/

This example might produce the following output. In this example, the returned
value of 1 indicates that 02-Jan-1996 is a valid timestamp for the BUSINESS-96
calendar.

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
4-56 Oracle8i Time Series User’s Guide

IsValidDate
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

IsValidDate(01/02/1996 00:00:00) = 1
Calendar Functions: Reference 4-57

Minute
Minute

Format
ORDSYS.Calendar.Minute(

[calname VARCHAR2]

[, anchorDate DATE]

) RETURN ORDSYS.ORDTCalendar;

Description
Creates a calendar with a frequency of minute, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

Parameters

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

Usage
This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.
4-58 Oracle8i Time Series User’s Guide

Minute
Example
Insert into the stockdemo_calendars table a calendar of minute frequency with a
calendar name of Minute and an anchor date of 01-Jan-1997 (at midnight). The
calendar has no date boundaries (minDate or maxDate) or exceptions.

INSERT INTO stockdemo_calendars
VALUES(
 ORDSYS.Calendar.Minute(
 ’Minute’,
 (to_date(’01-01-97’,’MM-DD-YY’))));
Calendar Functions: Reference 4-59

Month
Month

Format
ORDSYS.Calendar.Month(

[calname VARCHAR2]

[, anchorDate DATE]

) RETURN ORDSYS.ORDTCalendar;

Description
Creates a calendar with a frequency of month, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

Parameters

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

Usage
This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.
4-60 Oracle8i Time Series User’s Guide

Month
Examples
Insert into the stockdemo_calendars table a calendar of month frequency with a
calendar name of Monthly and an anchor date of 01-Jan-1997. The calendar has no
date boundaries (minDate or maxDate) or exceptions.

INSERT INTO stockdemo_calendars
VALUES(
 ORDSYS.Calendar.Month(
 ’Monthly’,
 (to_date(’01-01-97’,’MM-DD-YY’))));

Return the sum of the daily trade volume for stock SAMCO for each month in the
entire time series. For scaling, use a monthly calendar with a null name, an anchor
date of 01-Jan-2001 (the default), no date boundaries (minDate or maxDate), and no
exceptions. This example generates a calendar within the statement, and thus
eliminates the need to specify a stored calendar that has the desired frequency.

SELECT to_char(tstamp) tstamp, value
 FROM tsdev.stockdemo_ts ts,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupSum(ts.volume,
 ORDSYS.Calendar.Month())
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.ticker=’SAMCO’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
11/01/96 10207000
12/01/96 3719450
2 rows selected.
Calendar Functions: Reference 4-61

NumInvalidTimeStampsBetween
NumInvalidTimeStampsBetween

Format
ORDSYS.Calendar.NumInvalidTimeStampsBetween(

inputCal IN ORDSYS.ORDTCalendar,

startDate IN DATE,

endDate IN DATE

) RETURN INTEGER;

Description
Given starting and ending input timestamps, returns the number of invalid
timestamps within that range according to the specified calendar.

Parameters

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for invalid timestamps.

endDate
Ending date in the range to be checked for invalid timestamps.

Usage
A timestamp is invalid if one or more of the following conditions are true:

■ It is outside the date range of the calendar.

■ It is an off-exception in the calendar.

■ It is not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the
calendar has a frequency of year).

■ It is null.

startDate and endDate are included in the check for invalid timestamps.

If there are no invalid timestamps in the date range, the function returns 0 (zero).
4-62 Oracle8i Time Series User’s Guide

NumInvalidTimeStampsBetween
If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with NumTimeStampsBetween, which returns the number of
valid timestamps in a date range.

Example
Return the number of invalid timestamps between 03-Feb-1996 and 16-May-1996 in
the GENERIC-CAL1 calendar:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
result INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get the number of invalid timestamps between 03-FEB-1996 and 16-MAY-1996.
 tstDate1 := TO_DATE(’02/03/1996’);
 tstDate2 := TO_DATE(’05/16/1996’);
 result := ORDSYS.Calendar.NumInvalidTimeStampsBetween(
 tstCal,tstDate1, tstDate2);
 DBMS_OUTPUT.PUT_LINE(’NumInvalidTimeStampsBetween(’ || tstDate1 ||’ , ’ ||
 tstDate2|| ’) = ’ || result);
END;
/

This example might produce the following output. In this example, there are 30
invalid timestamps in the specified date range.
Calendar Functions: Reference 4-63

NumInvalidTimeStampsBetween
Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

NumInvalidTimeStampsBetween(02/03/1996 00:00:00 , 05/16/1996 00:00:00) = 30
4-64 Oracle8i Time Series User’s Guide

NumOffExceptions
NumOffExceptions

Format
ORDSYS.Calendar.NumOffExceptions(

inputCal IN ORDSYS.ORDTCalendar,

startDate IN DATE,

endDate IN DATE

) RETURN INTEGER;

Description
Given starting and ending input timestamps, returns the number of off-exceptions
within that range according to the specified calendar.

Parameters

inputCal
The calendar to be used in computing the number of off-exceptions.

startDate
Starting date in the range to be checked for off-exceptions.

endDate
Ending date in the range to be checked for off-exceptions.

Usage
startDate and endDate are included in the check for off-exceptions. (For an
explanation of off-exceptions and on-exceptions, see Section 2.2.)

If startDate is greater (later) than endDate, an exception is raised.

Example
Return the number of off-exceptions between 02-Feb-1996 and 07-Jul-1996 in the
GENERIC-CAL1 calendar:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
Calendar Functions: Reference 4-65

NumOffExceptions
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
result INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get the number of off-exceptions between 02-FEB-1996 and 07-JUL-1996.
 tstDate1 := TO_DATE(’02/02/1996’);
 tstDate2 := TO_DATE(’07/07/1996’);
 result := ORDSYS.Calendar.NumOffExceptions(tstCal,tstDate1, tstDate2);
 DBMS_OUTPUT.PUT_LINE(’NumOffExceptions(’ || tstDate1 ||’ , ’ || tstDate2
 || ’) = ’ || result);
END;
/

This example might produce the following output. As the last line of the output
indicates, there are five off-exceptions in the specified date range (02-Feb-1996
through 07-Jul-1996).

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
4-66 Oracle8i Time Series User’s Guide

NumOffExceptions
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

NumOffExceptions(02/02/1996 00:00:00 , 07/07/1996 00:00:00) = 5
Calendar Functions: Reference 4-67

NumOnExceptions
NumOnExceptions

Format
ORDSYS.Calendar.NumOnExceptions(

 inputCal IN ORDSYS.ORDTCalendar,

 startDate IN DATE,

 endDate IN DATE

) RETURN INTEGER;

Description
Given starting and ending input timestamps, returns the number of on-exceptions
within that range according to the specified calendar.

Parameters

inputCal
The calendar to be used in computing the number of on-exceptions.

startDate
Starting date in the range to be checked for on-exceptions.

endDate
Ending date in the range to be checked for on-exceptions.

Usage
startDate and endDate are included in the check for on-exceptions. (For an
explanation of off-exceptions and on-exceptions, see Section 2.2.)

If startDate is greater (later) than endDate, an exception is raised.

Example
Return the number of on-exceptions between 02-Feb-1996 and 07-Jul-1996 in the
GENERIC-CAL1 calendar:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;
4-68 Oracle8i Time Series User’s Guide

NumOnExceptions
DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
result INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get the number of ON Exceptions between 02-FEB-1996 and 07-JUL-1996.
 tstDate1 := TO_DATE(’02/02/1996’);
 tstDate2 := TO_DATE(’07/07/1996’);
 result := ORDSYS.Calendar.NumOnExceptions(tstCal,tstDate1, tstDate2);
 DBMS_OUTPUT.PUT_LINE(’NumOnExceptions(’ || tstDate1 ||’ , ’ || tstDate2
 || ’) = ’ || result);
END;
/

This example might produce the following output. As the last line of the output
indicates, there are six on-exceptions in the specified date range (02-Feb-1996
through 07-Jul-1996).

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
Calendar Functions: Reference 4-69

NumOnExceptions
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

NumOnExceptions(02/02/1996 00:00:00 , 07/07/1996 00:00:00) = 6
4-70 Oracle8i Time Series User’s Guide

NumTimeStampsBetween
NumTimeStampsBetween

Format
ORDSYS.Calendar.NumTimeStampsBetween(

inputCal IN ORDSYS.ORDTCalendar,

startDate IN DATE,

endDate IN DATE

) RETURN INTEGER;

Description
Given starting and ending input timestamps, returns the number of valid
timestamps within that range according to the specified calendar.

Parameters

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for invalid timestamps.

endDate
Ending date in the range to be checked for invalid timestamps.

Usage
A timestamp is invalid if one or more of the following conditions are true:

■ It is outside the date range of the calendar.

■ It is an off-exception in the calendar.

■ It is not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the
calendar has a frequency of year).

■ It is null.

startDate and endDate are included in the check for valid timestamps.

If there are no valid timestamps in the date range, the function returns 0 (zero).
Calendar Functions: Reference 4-71

NumTimeStampsBetween
If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with NumInvalidTimeStampsBetween, which returns the
number of invalid timestamps in a date range.

Example
Return the number of valid timestamps between 03-Feb-1996 and 16-May-1996 in
the GENERIC-CAL1 calendar:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
result INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get the number of Valid timestamps between 03-FEB-1996 and 16-MAY-1996.
 tstDate1 := TO_DATE(’02/03/1996’);
 tstDate2 := TO_DATE(’05/16/1996’);
 result := ORDSYS.Calendar.NumTimeStampsBetween(tstCal,tstDate1, tstDate2);
 DBMS_OUTPUT.PUT_LINE(’NumTimeStampsBetween(’ || tstDate1 ||’ , ’ || tstDate2
 || ’) = ’ || result);
END;
/

This example might produce the following output. In this example, there are 74
valid timestamps in the specified date range.

Calendar Name = GENERIC-CAL1
4-72 Oracle8i Time Series User’s Guide

NumTimeStampsBetween
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

NumTimeStampsBetween(02/03/1996 00:00:00 , 05/16/1996 00:00:00) = 74
Calendar Functions: Reference 4-73

OffsetDate
OffsetDate

Format
ORDSYS.Calendar.OffsetDate(

inputCal IN ORDSYS.ORDTCalendar,

origin IN DATE,

relOffset IN INTEGER

) RETURN DATE;

Description
Given a reference date (origin) and an offset with respect to the origin (relOffset),
returns the timestamp corresponding to the offset input.

Parameters

inputCal
Calendar from which the date is to be returned.

origin
The date to which the offset value (relOffset) is to be applied in computing the
returned date.

relOffset
The relative offset of the returned date with respect to the origin.

Usage
The function returns the date of the timestamp at the relOffset number of
timestamps from the origin date. If relOffset is positive, the returned date is later
than origin; if relOffset is negative, the returned date is earlier than origin. If relOffset
is zero (0), the returned date is origin if origin is a valid date; however, if relOffset is
zero (0) and origin is not a valid date, the function returns NULL.

For example, assume a Monday through Friday business day calendar for 1997 with
04-Jul-1997 (Friday) defined as an off-exception, and assume that origin is 02-Jul-
1997 (Wednesday):

■ If relOffset = 2, the returned date is 07-Jul-1997 (Monday).
4-74 Oracle8i Time Series User’s Guide

OffsetDate
■ If relOffset = -2, the returned date is 30-Jun-1997 (Monday).

■ If relOffset = 0, the returned date is 02-Jul-1997 (Wednesday).

If the origin date is not in the calendar (inputCal), the next later date is used if
relOffset is positive or zero, and the next earlier date is used if relOffset is negative.
Using the calendar in the preceding example, if origin is specified as 04-Jul-1997 and
if relOffset = 2, then 07-Jul-1997 (Monday, the next business day) is used as origin,
and the returned date is 09-Jul-1997 (Wednesday).

If the calendar pattern is empty or null, an exception is raised.

Example
Get the dates 20 timestamps later and 20 timestamps earlier than 03-Mar-1996 in the
GENERIC-CAL1 calendar:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
resultDate date;
dummyVal INTEGER;
relOffset INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Offset 03-MAR-1996 by 20.
 tstDate1 := TO_DATE(’03/03/1996’);
 relOffset := 20;
 resultDate := ORDSYS.Calendar.OffsetDate(tstCal, tstDate1, relOffset);
 DBMS_OUTPUT.PUT_LINE(’OffsetDate(’ || tstDate1 || ’ , ’ || relOffset
 || ’) = ’ || resultDate);
Calendar Functions: Reference 4-75

OffsetDate
 DBMS_OUTPUT.NEW_LINE;

 -- Offset 03-MAR-1996 by -20.
 tstDate1 := TO_DATE(’03/03/1996’);
 relOffset := -20;
 resultDate := ORDSYS.Calendar.OffsetDate(tstCal, tstDate1, relOffset);
 DBMS_OUTPUT.PUT_LINE(’OffsetDate(’ || tstDate1 || ’ , ’ || relOffset
 || ’) = ’ || resultDate);
 DBMS_OUTPUT.NEW_LINE;

END;
/

This example might produce the following output. In this example, 29-Mar-1996 is
20 timestamps later than 03-Mar-1996, and 05-Feb-1996 is 20 timestamps earlier
than 03-Mar-1996.

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 12/31/1996 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 01/21/1996 00:00:00 02/03/1996 00:00:00 03/24/1996 00:00:00
 04/27/1996 00:00:00 05/19/1996 00:00:00 06/23/1996 00:00:00
 07/07/1996 00:00:00 08/04/1996 00:00:00 09/15/1996 00:00:00
 offExceptions :
 01/08/1996 00:00:00 02/02/1996 00:00:00 03/05/1996 00:00:00
 04/04/1996 00:00:00 05/08/1996 00:00:00 06/25/1996 00:00:00
 07/09/1996 00:00:00

OffsetDate(03/03/1996 00:00:00 , 20) = 03/29/1996 00:00:00

OffsetDate(03/03/1996 00:00:00 , -20) = 02/05/1996 00:00:00
4-76 Oracle8i Time Series User’s Guide

Quarter
Quarter

Format
ORDSYS.Calendar.Quarter(

[calname VARCHAR2]

[, anchorDate DATE]

) RETURN ORDSYS.ORDTCalendar;

Description
Creates a calendar with a frequency of quarter, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

Parameters

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

Usage
This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.
Calendar Functions: Reference 4-77

Quarter
Example
Insert into the stockdemo_calendars table a calendar of quarter frequency with a
calendar name of Quarterly and an anchor date of 01-Jan-1997. The calendar has no
date boundaries (minDate or maxDate) or exceptions.

INSERT INTO stockdemo_calendars
VALUES(
 ORDSYS.Calendar.Quarter(
 ’Quarterly’,
 (to_date(’01-01-97’,’MM-DD-YY’))));
4-78 Oracle8i Time Series User’s Guide

Second
Second

Format
ORDSYS.Calendar.Second(

[calname VARCHAR2]

[, anchorDate DATE]

) RETURN ORDSYS.ORDTCalendar;

Description
Creates a calendar with a frequency of second, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

Parameters

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

Usage
This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.
Calendar Functions: Reference 4-79

Second
Example
Insert into the stockdemo_calendars table a calendar of second frequency with a
calendar name of Second and an anchor date of 01-Jan-1997 (at midnight). The
calendar has no date boundaries (minDate or maxDate) or exceptions.

INSERT INTO stockdemo_calendars
VALUES(
 ORDSYS.Calendar.Second(
 ’Second’,
 (to_date(’01-01-97’,’MM-DD-YY’))));
4-80 Oracle8i Time Series User’s Guide

Semi_annual
Semi_annual

Format
ORDSYS.Calendar.Semi_annual(

[calname VARCHAR2]

[, anchorDate DATE]

) RETURN ORDSYS.ORDTCalendar;

Description
Creates a calendar with a frequency of semi_annual, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

Parameters

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

Usage
This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.
Calendar Functions: Reference 4-81

Semi_annual
Example
Insert into the stockdemo_calendars table a calendar of semi_annual frequency with a
calendar name of Semi_annual and an anchor date of 01-Jan-1997. The calendar has
no date boundaries (minDate or maxDate) or exceptions.

INSERT INTO stockdemo_calendars
VALUES(
 ORDSYS.Calendar.Semi_annual(
 ’Semi_annual’,
 (to_date(’01-01-97’,’MM-DD-YY’))));
4-82 Oracle8i Time Series User’s Guide

Semi_monthly
Semi_monthly

Format
ORDSYS.Calendar.Semi_monthly(

[calname VARCHAR2]

[, anchorDate DATE]

) RETURN ORDSYS.ORDTCalendar;

Description
Creates a calendar with a frequency of semi_monthly, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

Parameters

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. Must be the 1st or 16th day of a month. If
anchorDate is not specified, the anchor date is 01-Jan-2001 (a Monday).

Usage
This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.
Calendar Functions: Reference 4-83

Semi_monthly
Examples
Insert into the stockdemo_calendars table a calendar of semi_monthly frequency with a
calendar name of Semi_monthly and an anchor date of 01-Jan-1997. The calendar has
no date boundaries (minDate or maxDate) or exceptions.

INSERT INTO stockdemo_calendars
VALUES(
 ORDSYS.Calendar.Semi_monthly(
 ’Semi_monthly’,
 (to_date(’01-01-97’,’MM-DD-YY’))));

Return the sum of the daily trade volume for stock SAMCO for each semimonthly
period in the entire time series. For scaling, use a semimonthly calendar with a null
name, an anchor date of 01-Jan-2001 (the default), no date boundaries (minDate or
maxDate), and no exceptions.

SELECT * FROM THE
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupSum(
 ts.volume,
 ORDSYS.Calendar.Semi_monthly()))
 AS ORDSYS.ORDTNumTab)
 FROM TSDEV.stockdemo_ts ts
 WHERE ts.ticker=’SAMCO’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
11/01/96 6403150
11/16/96 3803850
12/01/96 1894200
12/16/96 1825250
4 rows selected.
4-84 Oracle8i Time Series User’s Guide

SetPrecision
SetPrecision

Format
ORDSYS.Calendar.SetPrecision(

cal ORDSYS.ORDTCalendar

timestamp IN DATE,

) RETURN DATE;

Description
Given a calendar and a timestamp, returns a timestamp that reflects the level of
precision implied by the frequency of the specified calendar.

Parameters

cal
Calendar whose frequency is to be applied in setting the precision.

timestamp
Timestamp whose precision is to be set.

Usage
The returned timestamp reflects the precision implied by the frequency, as
explained in Section 2.2.2. For example, if the input timestamp is 29-Dec-1997
12:45:00 and the frequency is 6 (month), the returned timestamp is 01-Dec-1997
00:00:00. Table 4–1 shows the frequencies, their precision conventions, and the
resulting precision if an input timestamp of 19-Sep-1997 09:09:09 is supplied.

Table 4–1 SetPrecision and Timestamp of 19-Sep-1997 09:09:09

Frequency (Every:) Precision Convention Result

second MM-DD-YYYY HH24:MI:SS 09-19-1997 09:09:09

minute MM-DD-YYYY HH24:MI:00 09-19-1997 09:09:00
Calendar Functions: Reference 4-85

SetPrecision
If the frequency is not valid, an exception is raised.

Example
Set the precision of an imprecise timestamp (here, a timestamp containing hour,
minute, and second values where the calendar has a day frequency):

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
resultDate date;
dummyVal INTEGER;
relOffset INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

hour MM-DD-YYYY HH24:00:00 09-19-1997 09:00:00

day MM-DD-YYYY 00:00:00 (midnight) 09-19-1997 00:00:00

month MM-01-YYYY 00:00:00 (midnight of
first day of month)

09-01-1997 00:00:00

year 01-01-YYYY 00:00:00 (midnight of
first day of year)

01-01-1997 00:00:00

Note: The Release 8.0.4 SetPrecision syntax specifying a
timestamp and a frequency (timestamp IN INTEGER, frequency IN
INTEGER) is still supported, but will not be supported in a future
release.

Table 4–1 SetPrecision and Timestamp of 19-Sep-1997 09:09:09 (Cont.)

Frequency (Every:) Precision Convention Result
4-86 Oracle8i Time Series User’s Guide

SetPrecision
 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

-- Set the precision of an imprecise date.
 tstDate1 := TO_DATE(’03/03/1996 01:01:01’);
 resultDate := ORDSYS.Calendar.SetPrecision(tstcal, tstDate1);
 DBMS_OUTPUT.PUT_LINE(’SetPrecision with timestamp ’ ||
 TO_CHAR(tstDate1) ||
 ’ and frequency ’ || tstCal.frequency);
 DBMS_OUTPUT.PUT_LINE(’ returns: ’ || TO_CHAR(resultDate));
END;
/

This example might produce the following output. In this example, the hour,
minute, and second components of the timestamp are set to zeroes because the
calendar frequency is 4 (day).

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/96 00:00:00
 MaxDate = 12/31/96 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/96 00:00:00
 onExceptions :
 01/21/96 00:00:00 02/03/96 00:00:00 03/24/96 00:00:00
 04/27/96 00:00:00 05/19/96 00:00:00 06/23/96 00:00:00
 07/07/96 00:00:00 08/04/96 00:00:00 09/15/96 00:00:00
 offExceptions :
 01/08/96 00:00:00 02/02/96 00:00:00 03/05/96 00:00:00
 04/04/96 00:00:00 05/08/96 00:00:00 06/25/96 00:00:00
 07/09/96 00:00:00

SetPrecision with timestamp 03/03/96 01:01:01 and frequency 4
 returns: 03/03/96 00:00:00
Calendar Functions: Reference 4-87

Ten_day
Ten_day

Format
ORDSYS.Calendar.Ten_day(

[calname VARCHAR2]

[, anchorDate DATE]

) RETURN ORDSYS.ORDTCalendar;

Description
Creates a calendar with a frequency of 10-day, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

Parameters

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. Must be the 1st, 11th, or 21st day of a
month. If anchorDate is not specified, the anchor date is 01-Jan-2001 (a Monday).

Usage
This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.
4-88 Oracle8i Time Series User’s Guide

Ten_day
Examples
Insert into the stockdemo_calendars table a calendar of 10-day frequency with a
calendar name of Ten_day and an anchor date of 01-Jan-1997. The calendar has no
date boundaries (minDate or maxDate) or exceptions.

INSERT INTO stockdemo_calendars
VALUES(
 ORDSYS.Calendar.Ten_day(
 ’Ten_day’,
 (to_date(’01-01-97’,’MM-DD-YY’))));

Return the sum of the daily trade volume for stock SAMCO for each 10-day period
in the entire time series. For scaling, use a 10-day calendar with a null name, an
anchor date of 01-Jan-2001 (the default), no date boundaries (minDate or maxDate),
and no exceptions.

SELECT * FROM THE
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupSum(
 ts.volume,
 ORDSYS.Calendar.Ten_day()))
 AS ORDSYS.ORDTNumTab)
 FROM TSDEV.stockdemo_ts ts
 WHERE ts.ticker=’SAMCO’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
11/01/96 361600
11/11/96 7281200
11/21/96 2564200
12/01/96 1433850
12/11/96 1437800
12/21/96 847800
6 rows selected.
Calendar Functions: Reference 4-89

TimeStampsBetween
TimeStampsBetween

Format
ORDSYS.Calendar.TimeStampsBetween(

inputCal IN ORDSYS.ORDTCalendar,

startDate IN DATE,

endDate IN DATE

) RETURN ORDSYS.ORDTDateTab;

Description
Given starting and ending input timestamps, returns a table (ORDTDateTab)
containing the valid timestamps within that range according to the specified
calendar.

Parameters

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for valid timestamps.

endDate
Ending date in the range to be checked for valid timestamps.

Usage
A timestamp is invalid if one or more of the following conditions are true:

■ It is outside the date range of the calendar.

■ It is an off-exception in the calendar.

■ It is not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the
calendar has a frequency of year).

■ It is null.

startDate and endDate are included in the check for valid timestamps.
4-90 Oracle8i Time Series User’s Guide

TimeStampsBetween
If there are no valid timestamps in the date range, the function returns an empty
ORDTDateTab.

If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with InvalidTimeStampsBetween, which returns a table
containing the invalid timestamps in a date range.

Example
Return a table of valid timestamps between 03-Mar-1996 and 03-Jun-1996 in the
GENERIC-CAL1 calendar:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
tstDate1 DATE;
tstDate2 DATE;
resultDTab ORDSYS.ordtDateTab;
dummyVal INTEGER;
relOffset INTEGER;

BEGIN

 -- Select a calendar (say, GENERIC-CAL1) into tstCal
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;

 -- Display the calendar.
 SELECT ORDSYS.TimeSeries.Display(tstCal) INTO dummyVal FROM dual;
 DBMS_OUTPUT.NEW_LINE;

 -- Get all the valid timestamps between 03-MAR-1996 and 03-JUN-1996.
 tstDate1 := TO_DATE(’03/03/1996’);
 tstDate2 := TO_DATE(’06/03/1996’);
 resultDTab := ORDSYS.Calendar.TimeStampsBetween(tstCal, tstDate1, tstDate2);
 SELECT ORDSYS.TimeSeries.Display(resultDTab, ’Valid timestamps’)
 INTO dummyVal
 FROM dual;

END;
Calendar Functions: Reference 4-91

TimeStampsBetween
/

This example might produce the following output:

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/96 00:00:00
 MaxDate = 12/31/96 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/96 00:00:00
 onExceptions :
 01/21/96 00:00:00 02/03/96 00:00:00 03/24/96 00:00:00
 04/27/96 00:00:00 05/19/96 00:00:00 06/23/96 00:00:00
 07/07/96 00:00:00 08/04/96 00:00:00 09/15/96 00:00:00
 offExceptions :
 01/08/96 00:00:00 02/02/96 00:00:00 03/05/96 00:00:00
 04/04/96 00:00:00 05/08/96 00:00:00 06/25/96 00:00:00
 07/09/96 00:00:00

Valid timestamps :

 03/04/96 00:00:00 03/06/96 00:00:00 03/07/96 00:00:00
 03/08/96 00:00:00 03/11/96 00:00:00 03/12/96 00:00:00
 03/13/96 00:00:00 03/14/96 00:00:00 03/15/96 00:00:00
 03/18/96 00:00:00 03/19/96 00:00:00 03/20/96 00:00:00
 03/21/96 00:00:00 03/22/96 00:00:00 03/24/96 00:00:00
 03/25/96 00:00:00 03/26/96 00:00:00 03/27/96 00:00:00
 03/28/96 00:00:00 03/29/96 00:00:00 04/01/96 00:00:00
 04/02/96 00:00:00 04/03/96 00:00:00 04/05/96 00:00:00
 04/08/96 00:00:00 04/09/96 00:00:00 04/10/96 00:00:00
 04/11/96 00:00:00 04/12/96 00:00:00 04/15/96 00:00:00
 04/16/96 00:00:00 04/17/96 00:00:00 04/18/96 00:00:00
 04/19/96 00:00:00 04/22/96 00:00:00 04/23/96 00:00:00
 04/24/96 00:00:00 04/25/96 00:00:00 04/26/96 00:00:00
 04/27/96 00:00:00 04/29/96 00:00:00 04/30/96 00:00:00
 05/01/96 00:00:00 05/02/96 00:00:00 05/03/96 00:00:00
 05/06/96 00:00:00 05/07/96 00:00:00 05/09/96 00:00:00
 05/10/96 00:00:00 05/13/96 00:00:00 05/14/96 00:00:00
 05/15/96 00:00:00 05/16/96 00:00:00 05/17/96 00:00:00
 05/19/96 00:00:00 05/20/96 00:00:00 05/21/96 00:00:00
 05/22/96 00:00:00 05/23/96 00:00:00 05/24/96 00:00:00
 05/27/96 00:00:00 05/28/96 00:00:00 05/29/96 00:00:00
 05/30/96 00:00:00 05/31/96 00:00:00 06/03/96 00:00:00
4-92 Oracle8i Time Series User’s Guide

TimeStampsBetween
Section 3.8.3 contains an example showing the use of TimeStampsBetween to create
a time series for use with the DeriveExceptions function.
Calendar Functions: Reference 4-93

UnionCals
UnionCals

Format
ORDSYS.Calendar.UnionCals(

cal1 ORDSYS.ORDTCalendar,

cal2 ORDSYS.ORDTCalendar

) RETURN ORDSYS.ORDTCalendar;

Description
Returns a calendar that is the union of two input calendars.

Parameters

cal1
The first calendar on which the union operation is to be performed.

cal2
The second calendar on which the union operation is to be performed.

Usage
The function performs a union of the two input calendars, as follows:

■ The starting date of the resulting calendar is the later of the starting dates of the
two calendars, that is, resulting minDate = max(minDate1, minDate2).

■ The ending date of the resulting calendar is the earlier of the ending dates of the
two calendars, that is, resulting maxDate = min(maxDate1, maxDate2).

■ The union of the aligned patterns is computed. For example, if both calendars
have a day frequency with Sunday as the first day, and if cal1 has a pattern of
’0,1,1,1,1,1,0’ and cal2 has a pattern of ’0,0,1,1,1,1,1’, the resulting pattern is
’0,1,1,1,1,1,1’ (that is, the calendar includes Mondays through Saturdays).

■ The union of the on-exception lists is computed. For example, if cal1 has 30-Mar
and 29-Jun as on-exceptions and cal2 has 29-Jun and 28-Sep as on-exceptions,
the resulting calendar has 30-Mar, 29-Jun, and 28-Sep on-exceptions.
4-94 Oracle8i Time Series User’s Guide

UnionCals
■ The intersection of the off-exception lists is computed. For example, if cal1 has
01-Jan and 04-Jul as off-exceptions and cal2 has 01-Jan and 14-Jul as off-
exceptions, the resulting calendar has only 01-Jan as an off-exception.

If the frequencies of the two calendars are not equal, the function returns NULL.

Contrast this function with IntersectCals, which intersects two calendars.

Example
Perform a union of two calendars:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal1 ORDSYS.ORDTCalendar;
tstCal2 ORDSYS.ORDTCalendar;
resultCal ORDSYS.ORDTCalendar;
equalFlag INTEGER;
dummyVal INTEGER;

BEGIN

 -- Select the calendars GENERIC-CAL1 into tstCal1
 -- and GENERIC-CAL2 into tstCal2
 -- from stockdemo_calendars.
 SELECT value(cal) INTO tstCal1
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL1’;
 SELECT value(cal) INTO tstCal2
 FROM TSDEV.stockdemo_calendars cal
 WHERE cal.name = ’GENERIC-CAL2’;

 -- Display the calendars tstCal1 and tstCal2.
 SELECT ORDSYS.TimeSeries.Display(tstCal1) INTO dummyVal FROM dual;
 SELECT ORDSYS.TimeSeries.Display(tstCal2) INTO dummyVal FROM dual;

 -- Union tstCal1 and tstCal2.
 resultCal := ORDSYS.Calendar.Unioncals(tstCal1, tstCal2);
 SELECT ORDSYS.TimeSeries.Display(resultCal, ’result of UnionCals’)
 INTO dummyVal
 FROM dual;

END;
Calendar Functions: Reference 4-95

UnionCals
/

This example might produce the following output:

Calendar Name = GENERIC-CAL1
 Frequency = 4 (day)
 MinDate = 01/01/96 00:00:00
 MaxDate = 12/31/96 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/96 00:00:00
 onExceptions :
 01/21/96 00:00:00 02/03/96 00:00:00 03/24/96 00:00:00
 04/27/96 00:00:00 05/19/96 00:00:00 06/23/96 00:00:00
 07/07/96 00:00:00 08/04/96 00:00:00 09/15/96 00:00:00
 offExceptions :
 01/08/96 00:00:00 02/02/96 00:00:00 03/05/96 00:00:00
 04/04/96 00:00:00 05/08/96 00:00:00 06/25/96 00:00:00
 07/09/96 00:00:00

Calendar Name = GENERIC-CAL2
 Frequency = 4 (day)
 MinDate = 01/01/96 00:00:00
 MaxDate = 12/31/97 00:00:00
 patBits:
 1,1,1,1,1,0,0
 patAnchor = 01/08/96 00:00:00
 onExceptions :
 07/07/96 00:00:00 08/04/96 00:00:00 09/15/96 00:00:00
 10/13/96 00:00:00 11/10/96 00:00:00 12/14/96 00:00:00
 01/04/97 00:00:00 02/09/97 00:00:00 03/08/97 00:00:00
 04/05/97 00:00:00 05/11/97 00:00:00 06/08/97 00:00:00
 offExceptions :
 07/09/96 00:00:00 08/05/96 00:00:00 09/10/96 00:00:00
 10/23/96 00:00:00 11/19/96 00:00:00 12/12/96 00:00:00
 01/01/97 00:00:00 02/12/97 00:00:00 03/04/97 00:00:00
 04/07/97 00:00:00 05/05/97 00:00:00 06/09/97 00:00:00

result of UnionCals :

 Frequency = 4 (day)
 MinDate = 01/01/96 00:00:00
 MaxDate = 12/31/96 00:00:00
 patBits:
 1,1,1,1,1,0,0
4-96 Oracle8i Time Series User’s Guide

UnionCals
 patAnchor = 01/08/96 00:00:00
 onExceptions :
 01/21/96 00:00:00 02/03/96 00:00:00 03/24/96 00:00:00
 04/27/96 00:00:00 05/19/96 00:00:00 06/23/96 00:00:00
 07/07/96 00:00:00 08/04/96 00:00:00 09/15/96 00:00:00
 10/13/96 00:00:00 11/10/96 00:00:00 12/14/96 00:00:00
 offExceptions :
 07/09/96 00:00:00
Calendar Functions: Reference 4-97

ValidateCal
ValidateCal

Format
ORDSYS.Calendar.ValidateCal(

cal INOUT ORDSYS.ORDTCalendar,

outMessage OUT VARCHAR2,

invOnExc OUT ORDTDateTab,

invOffExc OUT ORDTDateTab,

impOnExc OUT ORDTDateTab,

impOffExc OUT ORDTDateTab

) RETURN BINARY_INTEGER;

Description
Validates a calendar and, if necessary, repairs the calendar and generates
information related to the problems and repairs.

Parameters

cal
The calendar to be validated and (if necessary) repaired.

outMessage
Message describing how the calendar was repaired (if the return value = 1) or why
the calendar could not be repaired (if the return value = -1).

invOnExc
Table of the invalid on-exceptions found in the calendar.

invOffExc
Table of the invalid off-exceptions found in the calendar.

impOnExc
Table of the imprecise on-exceptions found in the calendar.

impOffExc
Table of the imprecise off-exceptions found in the calendar.
4-98 Oracle8i Time Series User’s Guide

ValidateCal
Usage
This function returns one of the following values:

Errors in the input calendar make it invalid. Depending on the error, it may be
correctable or uncorrectable. Correctable errors are repaired by the ValidateCal
function. If all errors are correctable, the resulting calendar is valid.

For a calendar to be valid, all timestamps in the off-exception and on-exception lists
must be consistent with the defined pattern for the calendar. If one or more
exception timestamps are not consistent with the pattern, the calendar is invalid.
For example, if 04-Jan-1997 (Saturday) is in the off-exception list of a calendar
whose pattern includes only Mondays through Fridays as normal business days, 04-
Jan-1997 is an invalid off-exception (because as a Saturday it would normally be an
"off" day).

Imprecise exception timestamps are repaired. For an explanation of precision, see
Section 2.2.2.

Table 4–2 lists correctable errors and the repair actions taken by the ValidateCal
function.

Value Meaning

0 The calendar is valid. No errors were found.

1 Correctable errors were found and corrected. The resulting calendar is valid.

-1 Uncorrectable errors were found. The calendar is not valid.

Table 4–2 Errors Repaired by ValidateCal

Error Repair Action

Imprecise anchor date The precision is adjusted.

Character other than 1 or 0 in the
pattern

All pattern characters other than 0 or 1 are set to
1.

Imprecise date The precision is adjusted.

Superfluous date (for example, a regular
valid date in the on-exceptions list)

The date is removed from the exceptions list.

Null date The date is removed from the calendar.

Unsorted dates The dates are sorted.

Duplicate dates in the on-exceptions or
off-exceptions list

Duplicates are removed; the date appears only
once in the list.
Calendar Functions: Reference 4-99

ValidateCal
The following errors are not correctable. The function returns -1 if one or more of
these errors are found:

■ The frequency is not valid.

■ The starting date is later than the ending date.

■ The pattern is null or empty.

■ All pattern bits are empty.

■ One or more pattern bits are null.

■ The anchor date is null and the pattern is not "all ones" or "all zeroes" (for
example, a pattern of ’0,1,1,1,1,1,0’ but no anchor date specified).

If the function returns -1, you should not use the calendar until you have fixed the
errors that ValidateCal could not fix. Then use ValidateCal again, and use the
calendar only if the function returns 0 or 1.

You can use the DisplayValCal procedure to display the information returned by the
ValidateCal function. See the information on DisplayValCal in this chapter.

The IsValidCal function (described in this chapter) checks the validity of the
calendar but does not perform any repair operations.

Example
Use the IsValidCal and ValidateCal functions and the DisplayValCal procedure with
an invalid calendar:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
outMessage varchar2(32750);
invOnExc ORDSYS.ORDTDateTab;
invOffExc ORDSYS.ORDTDateTab;

Date appearing in both the on-
exceptions and off-exceptions lists

The date is removed from the inappropriate list,
depending on the pattern and the anchor date.

Date outside the date range of the
calendar

The date is removed from the exceptions list.

Table 4–2 Errors Repaired by ValidateCal (Cont.)

Error Repair Action
4-100 Oracle8i Time Series User’s Guide

ValidateCal
impOnExc ORDSYS.ORDTDateTab;
impOffExc ORDSYS.ORDTDateTab;
dummyval integer;
validFlag integer;
tstCal1 ORDSYS.ORDTCalendar :=
 ORDSYS.ORDTCalendar(
 0,
 ’CALENDAR MYCAL’,
 4,
 ORDSYS.ORDTPattern(ORDSYS.ORDTPatternBits(1,1,1,1,1,0,0),
 TO_DATE(’01-08-1996 01:01:01’)),
 TO_DATE(’01-01-1975’),
 TO_DATE(’01-01-1999’),
 ORDSYS.ORDTExceptions(
 TO_DATE(’02-03-1969’), -- Date < minDate,
 TO_DATE(’02-14-1969’), -- Date < minDate,
 TO_DATE(’02-03-1999’), -- Date > maxDate,
 TO_DATE(’02-17-1999’), -- Date > maxDate,
 TO_DATE(’12-31-1995’), -- Maps to 0 in pattern (Sunday)
 TO_DATE(’01-13-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’02-24-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’03-30-1996’), -- Maps to 0 in pattern (Saturday)
 TO_DATE(’02-02-1996 01:01:01’), -- Imprecise
 TO_DATE(’03-04-1996 01:01:01’), -- Imprecise
 TO_DATE(’04-05-1996 02:02:02’), -- Imprecise
 TO_DATE(’03-25-1996’), -- Valid off-exception
 TO_DATE(’01-22-1996’), -- Valid, but out of sequence
 TO_DATE(’02-12-1996’),
 TO_DATE(’04-30-1996’),
 NULL, -- Null date
 TO_DATE(’02-12-1996’), -- Duplicate date within OFFs
 NULL, -- Null date
 TO_DATE(’04-30-1996’), -- Duplicate off-exception
 NULL, -- Null date
 TO_DATE(’03-25-1996’), -- Duplicate off-exception
 TO_DATE(’01-22-1996’), -- Duplicate off-exception
 TO_DATE(’01-17-1996’), -- Added to on- and off-exceptions
 TO_DATE(’05-28-1996’), -- Added to on- and off-exceptions
 TO_DATE(’06-18-1996’), -- Added to on- and off-exceptions
 TO_DATE(’04-23-1996’), -- Added to on- and off-exceptions
 TO_DATE(’02-02-1996’),
 TO_DATE(’03-04-1996’),
 TO_DATE(’05-06-1997’)),
 ORDSYS.ORDTExceptions(
 TO_DATE(’02-08-1969’), -- Date < minDate,
Calendar Functions: Reference 4-101

ValidateCal
 TO_DATE(’02-15-1969’), -- Date < minDate,
 TO_DATE(’02-13-1999’), -- Date > maxDate,
 TO_DATE(’02-20-1999’), -- Date > maxDate,
 TO_DATE(’01-03-1996’), -- Maps to 1 in pattern (Wednesday)
 TO_DATE(’02-19-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’03-18-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’05-27-1996’), -- Maps to 1 in pattern (Monday)
 TO_DATE(’03-23-1996 01:01:01’), -- Imprecise
 TO_DATE(’02-18-1996 01:01:01’), -- Imprecise
 TO_DATE(’05-26-1996 01:01:01’), -- Imprecise
 TO_DATE(’01-13-1996’), -- Valid on-exception
 TO_DATE(’01-14-1996’), -- Valid on-exception
 NULL, -- Null date
 NULL, -- Null date
 TO_DATE(’02-24-1996’), -- Valid on-exception
 TO_DATE(’03-23-1996’), -- Valid on-exception
 TO_DATE(’01-13-1996’), -- Duplicate on-exception
 TO_DATE(’01-14-1996’), -- Duplicate on-exception
 TO_DATE(’02-24-1996’), -- Duplicate on-exception
 TO_DATE(’03-23-1996’), -- Duplicate on-exception
 TO_DATE(’01-17-1996’), -- Added to on- and off-exceptions
 TO_DATE(’05-28-1996’), -- Added to on- and off-exceptions
 TO_DATE(’06-18-1996’), -- Added to on- and off-exceptions
 TO_DATE(’04-23-1996’), -- Added to on- and off-exceptions
 TO_DATE(’01-06-1996’), -- Valid, but out of sequence
 TO_DATE(’02-03-1996’),
 TO_DATE(’05-04-1997’))
);
BEGIN
 SELECT ORDSYS.TIMESERIES.Display(tstCal1, ’tstCal1’) INTO dummyval
 FROM dual;
 validFlag := ORDSYS.CALENDAR.IsValidCal(tstCal1);
 IF(validFlag = 0)
 THEN
 validFlag := ORDSYS.CALENDAR.ValidateCal(
 tstCal1, outMessage, invOnExc, invOffExc, impOnExc, impOffExc
);

 ORDSYS.TIMESERIES.DisplayValCal(
 validFlag,
 outMessage,
 invOnExc,
 invOffExc,
 impOnExc,
 impOffExc,
4-102 Oracle8i Time Series User’s Guide

ValidateCal
 tstCal1,
 ’Your Message’
);
 END IF;
END;
/

This example might produce the following output:

tstCal1 :

Calendar Name = CALENDAR MYCAL
 Frequency = 4 (day)
 MinDate = 01/01/1975 00:00:00
 MaxDate = 01/01/1999 00:00:00
 patBits:
 1,1,1,1,1,0,0
 patAnchor = 01/08/1996 01:01:01
 onExceptions :
 02/08/1969 00:00:00 02/15/1969 00:00:00 02/13/1999 00:00:00
 02/20/1999 00:00:00 01/03/1996 00:00:00 02/19/1996 00:00:00
 03/18/1996 00:00:00 05/27/1996 00:00:00 03/23/1996 01:01:01
 02/18/1996 01:01:01 05/26/1996 01:01:01 01/13/1996 00:00:00
 01/14/1996 00:00:00
 02/24/1996 00:00:00 03/23/1996 00:00:00 01/13/1996 00:00:00
 01/14/1996 00:00:00 02/24/1996 00:00:00 03/23/1996 00:00:00
 01/17/1996 00:00:00 05/28/1996 00:00:00 06/18/1996 00:00:00
 04/23/1996 00:00:00 01/06/1996 00:00:00 02/03/1996 00:00:00
 05/04/1997 00:00:00
 offExceptions :
 02/03/1969 00:00:00 02/14/1969 00:00:00 02/03/1999 00:00:00
 02/17/1999 00:00:00 12/31/1995 00:00:00 01/13/1996 00:00:00
 02/24/1996 00:00:00 03/30/1996 00:00:00 02/02/1996 01:01:01
 03/04/1996 01:01:01 04/05/1996 02:02:02 03/25/1996 00:00:00
 01/22/1996 00:00:00 02/12/1996 00:00:00 04/30/1996 00:00:00
 02/12/1996 00:00:00
 04/30/1996 00:00:00 03/25/1996 00:00:00
 01/22/1996 00:00:00 01/17/1996 00:00:00 05/28/1996 00:00:00
 06/18/1996 00:00:00 04/23/1996 00:00:00 02/02/1996 00:00:00
 03/04/1996 00:00:00 05/06/1997 00:00:00

DisplayValCal Your Message:

TS-WRN: the input calendar has rectifiable errors. See the message for details
Calendar Functions: Reference 4-103

ValidateCal
message output by validateCal:

TS-WRN: fixed precision of the pattern anchor date
TS-WRN: removed superfluous dates in the on exception list (refer invalidOnExc)
TS-WRN: fixed imprecise dates in the on exception list (refer impreciseOnExc)
TS-WRN: removed null dates in the on exception list
TS-WRN: sorted the on exceptions list
TS-WRN: removed duplicate dates in the on exceptions list
TS-WRN: removed superfluous dates in off exceptions list (refer invalidOffExc)
TS-WRN: fixed imprecise dates in the off exception list (refer impreciseOffExc)
TS-WRN: removed null dates in the off exception list
TS-WRN: sorted the off exceptions list
TS-WRN: removed duplicate dates in the off exceptions list
TS-WRN: the on exceptions list was trimmed between calendar minDate & maxDate
TS-WRN: the off exceptions list was trimmed between calendar minDate & maxDate

list of invalid on exceptions :

 01/03/1996 00:00:00 02/19/1996 00:00:00 03/18/1996 00:00:00
 05/27/1996 00:00:00 01/17/1996 00:00:00 05/28/1996 00:00:00
 06/18/1996 00:00:00 04/23/1996 00:00:00

list of invalid off exceptions :

 12/31/1995 00:00:00 01/13/1996 00:00:00 02/24/1996 00:00:00
 03/30/1996 00:00:00

list of imprecise on exceptions :

 03/23/1996 01:01:01 02/18/1996 01:01:01 05/26/1996 01:01:01

list of imprecise off exceptions :

 02/02/1996 01:01:01 03/04/1996 01:01:01 04/05/1996 02:02:02

the validated calendar :

Calendar Name = CALENDAR MYCAL
 Frequency = 4 (day)
 MinDate = 01/01/1975 00:00:00
 MaxDate = 01/01/1999 00:00:00
 patBits:
 1,1,1,1,1,0,0
 patAnchor = 01/08/1996 00:00:00
 onExceptions :
4-104 Oracle8i Time Series User’s Guide

ValidateCal
 01/06/1996 00:00:00 01/13/1996 00:00:00 01/14/1996 00:00:00
 02/03/1996 00:00:00 02/18/1996 00:00:00 02/24/1996 00:00:00
 03/23/1996 00:00:00 05/26/1996 00:00:00 05/04/1997 00:00:00
 offExceptions :
 01/17/1996 00:00:00 01/22/1996 00:00:00 02/02/1996 00:00:00
 02/12/1996 00:00:00 03/04/1996 00:00:00 03/25/1996 00:00:00
 04/05/1996 00:00:00 04/23/1996 00:00:00 04/30/1996 00:00:00
 05/28/1996 00:00:00 06/18/1996 00:00:00 05/06/1997 00:00:00
Calendar Functions: Reference 4-105

Week
Week

Format
ORDSYS.Calendar.Week(

[calname VARCHAR2]

[, anchorDate DATE]

) RETURN ORDSYS.ORDTCalendar;

Description
Creates a calendar with a frequency of week, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

Parameters

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

Usage
This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.
4-106 Oracle8i Time Series User’s Guide

Week
Examples
Insert into the stockdemo_calendars table a calendar of week frequency with a calendar
name of Weekly and an anchor date of 05-Jan-1997. The calendar has no date
boundaries (minDate or maxDate) or exceptions.

INSERT INTO stockdemo_calendars
VALUES(
 ORDSYS.Calendar.Week(
 ’Weekly’,
 (to_date(’01-05-97’,’MM-DD-YY’))));

Return the sum of the daily trade volume for stock SAMCO for each week in the
entire time series. For scaling, use a weekly calendar with a null name, an anchor
date of 01-Jan-2001 (the default), no date boundaries (minDate or maxDate), and no
exceptions.

SELECT * FROM THE
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupSum(
 ts.volume,
 ORDSYS.Calendar.Week()))
 AS ORDSYS.ORDTNumTab)
 FROM TSDEV.stockdemo_ts ts
 WHERE ts.ticker=’SAMCO’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
10/28/96 41550
11/04/96 320050
11/11/96 6041550
11/18/96 1909850
11/25/96 1894000
12/02/96 1051350
12/09/96 842850
12/16/96 977450
12/23/96 430800
12/30/96 417000
10 rows selected.
Calendar Functions: Reference 4-107

Year
Year

Format
ORDSYS.Calendar.Year(

[calname VARCHAR2]

[, anchorDate DATE]

) RETURN ORDSYS.ORDTCalendar;

Description
Creates a calendar with a frequency of year, a pattern of ’1’ (all timestamps
included), no lower or upper boundary dates (minDate or maxDate), no off-
exceptions or on-exceptions, a specified or default (null) name, and a specified or
default anchor date.

Parameters

calname
The name of the calendar. If calname is not specified, the calendar name is null.

anchorDate
The anchor date for the calendar pattern. If anchorDate is not specified, the anchor
date is 01-Jan-2001 (a Monday).

Usage
This function provides a convenient alternative to providing a complete calendar
definition when you are creating a calendar. If you need to modify the definition
later, you can do so (for example, using the InsertExceptions function to specify
exceptions).

For an explanation of calendar concepts (such as frequency, pattern, anchor date,
and exceptions), see Section 2.2.

The following functions create a calendar with a frequency corresponding to the
function name: Day, Hour, Minute, Month, Quarter, Second, Semi_annual,
Semi_monthly, Ten_day, Week, and Year.
4-108 Oracle8i Time Series User’s Guide

Year
Example
Insert into the stockdemo_calendars table a calendar of year frequency with a calendar
name of Yearly and an anchor date of 01-Jan-1997. The calendar has no date
boundaries (minDate or maxDate) or exceptions.

INSERT INTO stockdemo_calendars
VALUES(
 ORDSYS.Calendar.Year(
 ’Yearly’,
 (to_date(’01-01-97’,’MM-DD-YY’))));
Calendar Functions: Reference 4-109

Year
4-110 Oracle8i Time Series User’s Guide

Time Series Functions: Refe
5

Time Series Functions: Reference

The Oracle8i Time Series library consists of:

■ Data types (described in Section 2.3)

■ Calendar functions (described in Chapter 4)

■ Time series functions (described in this chapter)

■ Time scaling functions (described in Chapter 6)

■ Administrative tools procedures for creating time series schema objects
(described in Chapter 7)

Calendar functions are mainly used by product developers, such as ISVs, to develop
new time series functions and to administer and modify calendars.

Time series and time scaling functions and the administrative tools procedures are
used mainly by application developers.

Syntax notes:

■ The ORDSYS schema name and the package name must be used with the
function name, although public synonyms can be created to eliminate the need
for specifying the schema name (see Section 1.5). Each function is included in a
PL/SQL package, such as Calendar, TimeSeries, or TimeScale. The ORDSYS
schema name and the package name are included in the Format and in any
examples.

■ Function calls are not case sensitive, except for any quoted literal values. For
example, the following code line excerpts are valid and semantically identical:

select CAST(TimeSeries.ExtractTable(close) AS ORDTNumTab)
select cast(TIMESERIES.extracttable(close) as ordtnumtab)
select cast(TiMeSeRiEs.eXtRaCtTaBlE(ClosE) As ordtNUMtab)
rence 5-1

■ The syntax and examples show the reference-based interface (types
ORDTNumSeriesIOTRef and ORDTVarchar2SeriesIOTRef).

All time series and time scaling functions accept both references and instances as
parameters. (For example, an ORDTNumSeriesIOTRef parameter could also be
ORDTNumSeries.) All time series functions return instances. Thus, if you nest
functions, such as Cmax(Cmax(...), ...), the innermost nesting accepts a reference and
returns an instance, and any other functions in the nesting accept an instance and
return an instance.

For an explanation of the reference-based interface, see Section 2.7.2.
5-2 Oracle8i Time Series User’s Guide

Cavg
Cavg

Format
ORDSYS.TimeSeries.Cavg(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative average up to and including the corresponding element in the input
ORDTNumSeries.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

startDate
Starting date within the time series for which the cumulative average is to be
computed. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative average is to be
computed. If endDate is specified, startDate must also be specified.

Usage
Only non-null values are considered in computing the cumulative average.

An exception is returned if one or more of the following conditions are true:
Time Series Functions: Reference 5-3

Cavg
■ The time series (ts) is null.

■ endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative average is computed.

Example
Return the cumulative average of the closing price of stock ACME for November
1996:

SELECT to_char(tstamp) tstamp, value
FROM tsquick ts,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Cavg(ts.close,to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’30-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)) t
WHERE ts.ticker=’ACME’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 59
04-NOV-96 59.5
05-NOV-96 60
06-NOV-96 60.5
07-NOV-96 61
08-NOV-96 61.5
11-NOV-96 62
12-NOV-96 62.5
13-NOV-96 63
14-NOV-96 63.5
15-NOV-96 64
18-NOV-96 64.5
19-NOV-96 65
20-NOV-96 65.5
21-NOV-96 66
22-NOV-96 66.5
25-NOV-96 67
26-NOV-96 67.5
27-NOV-96 68
29-NOV-96 68.5
20 rows selected.
5-4 Oracle8i Time Series User’s Guide

Cmax
Cmax

Format
ORDSYS.TimeSeries.Cmax(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative maximum up to and including the corresponding element in the input
ORDTNumSeries.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

startDate
Starting date within the time series for which the cumulative maximum is to be
returned. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative maximum is to be
returned. If endDate is specified, startDate must also be specified.

Usage
Only non-null values are considered in determining the cumulative maximum.

An exception is returned if one or more of the following conditions are true:
Time Series Functions: Reference 5-5

Cmax
■ The time series (ts) is null.

■ endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative maximum is computed.

Example
Return the cumulative maximum of the closing price of stock ACME for November
1996:

SELECT to_char(tstamp) tstamp, value
FROM tsquick ts,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Cmax(ts.close,to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’30-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)) t
WHERE ts.ticker=’ACME’;

This example might produce the following output. (Note that this output reflects
the simplified artificial data in the usage demo database, where the closing price
rises one point each day.)

TSTAMP VALUE
--------- ----------
01-NOV-96 59
04-NOV-96 60
05-NOV-96 61
06-NOV-96 62
07-NOV-96 63
08-NOV-96 64
11-NOV-96 65
12-NOV-96 66
13-NOV-96 67
14-NOV-96 68
15-NOV-96 69
18-NOV-96 70
19-NOV-96 71
20-NOV-96 72
21-NOV-96 73
22-NOV-96 74
25-NOV-96 75
26-NOV-96 76
27-NOV-96 77
5-6 Oracle8i Time Series User’s Guide

Cmax
29-NOV-96 78
20 rows selected.
Time Series Functions: Reference 5-7

Cmin
Cmin

Format
ORDSYS.TimeSeries.Cmin(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative minimum up to and including the corresponding element in the input
ORDTNumSeries.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

startDate
Starting date within the time series for which the cumulative minimum is to be
returned. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative minimum is to be
returned. If endDate is specified, startDate must also be specified.

Usage
Only non-null values are considered in determining the cumulative minimum.

An exception is returned if one or more of the following conditions are true:
5-8 Oracle8i Time Series User’s Guide

Cmin
■ The time series (ts) is null.

■ endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative minimum is computed.

Example
Return the cumulative minimum of the closing price of stock ACME for November
1996:

SELECT to_char(tstamp) tstamp, value
FROM tsquick ts,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Cmin(ts.close,to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’30-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)) t
WHERE ts.ticker=’ACME’;

This example might produce the following output. (Note that this output reflects
the simplified artificial data in the usage demo database, where the closing price
rises one point each day.)

TSTAMP VALUE
--------- ----------
01-NOV-96 59
04-NOV-96 59
05-NOV-96 59
06-NOV-96 59
07-NOV-96 59
08-NOV-96 59
11-NOV-96 59
12-NOV-96 59
13-NOV-96 59
14-NOV-96 59
15-NOV-96 59
18-NOV-96 59
19-NOV-96 59
20-NOV-96 59
21-NOV-96 59
22-NOV-96 59
25-NOV-96 59
26-NOV-96 59
27-NOV-96 59
Time Series Functions: Reference 5-9

Cmin
29-NOV-96 59
20 rows selected.
5-10 Oracle8i Time Series User’s Guide

Cprod
Cprod

Format
ORDSYS.TimeSeries.Cprod(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative product of multiplication up to and including the corresponding
element in the input ORDTNumSeries.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

startDate
Starting date within the time series for which the cumulative product is to be
computed. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative product is to be
computed. If endDate is specified, startDate must also be specified.

Usage
Only non-null values are considered in computing the cumulative product.

An exception is returned if one or more of the following conditions are true:
Time Series Functions: Reference 5-11

Cprod
■ The time series (ts) is null.

■ endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative product is computed.

Example
Return the cumulative product of the daily volume of stock ACME for the first four
trading days of November 1996. (This example is presented merely to illustrate the
function; the results of this query have no practical value for financial analysis.)

SELECT to_char(tstamp) tstamp, value
FROM tsquick ts,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Cprod(ts.volume,to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’06-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)) t
WHERE ts.ticker=’ACME’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 1000
04-NOV-96 1000000
05-NOV-96 1000000000
06-NOV-96 1.0000E+12
4 rows selected.
5-12 Oracle8i Time Series User’s Guide

Csum
Csum

Format
ORDSYS.TimeSeries.Csum(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative sum up to and including the corresponding element in the input
ORDTNumSeries.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

startDate
Starting date within the time series for which the cumulative sum is to be
computed. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative sum is to be computed.
If endDate is specified, startDate must also be specified.

Usage
Only non-null values are considered in computing the cumulative sum.

An exception is returned if one or more of the following conditions are true:
Time Series Functions: Reference 5-13

Csum
■ The time series (ts) is null.

■ endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative sum is computed.

Example
Return the cumulative sum of the daily volume of stock ACME for November 1996:

SELECT to_char(tstamp) tstamp, value
FROM tsquick ts,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Csum(ts.volume,to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’30-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)) t
WHERE ts.ticker=’ACME’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 1000
04-NOV-96 2000
05-NOV-96 3000
06-NOV-96 4000
07-NOV-96 5000
08-NOV-96 6000
11-NOV-96 7000
12-NOV-96 8000
13-NOV-96 9000
14-NOV-96 10000
15-NOV-96 11000
18-NOV-96 12000
19-NOV-96 13000
20-NOV-96 14000
21-NOV-96 15000
22-NOV-96 16000
25-NOV-96 17000
26-NOV-96 18000
27-NOV-96 19000
29-NOV-96 20000
20 rows selected.
5-14 Oracle8i Time Series User’s Guide

DeriveExceptions
DeriveExceptions

Format
Approach 1:

ORDSYS.TimeSeries.DeriveExceptions(

inputTS ORDTNumSeriesIOTRef

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;

or

ORDSYS.TimeSeries.DeriveExceptions(

inputTS ORDTVarchar2SeriesIOTRef

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;

Approach 1A:

ORDSYS.TimeSeries.DeriveExceptions(

inputCal IN ORDSYS.ORDTCalendar,

DateTab IN ORDSYS.ORDTDateTab

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;

Approach 2:

ORDSYS.TimeSeries.DeriveExceptions(

series1 ORDTNumSeriesIOTRef,

series2 ORDTNumSeriesIOTRef

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;

or

ORDSYS.TimeSeries.DeriveExceptions(
Time Series Functions: Reference 5-15

DeriveExceptions
series1 ORDTVarchar2SeriesIOTRef,

series2 ORDTVarchar2SeriesIOTRef

[, startDate DATE [, endDate DATE]]

) RETURN ORDSYS.ORDTCalendar;

Description
Derives calendar exceptions from a time series (Approach 1), a calendar and a table
of dates (Approach 1A), or two time series (Approach 2).

Parameters

inputTS
The time series whose calendar is to be used as the basis for the returned calendar
and whose timestamps are to be used to populate the off- and on-exceptions lists of
the returned calendar.

startDate
Starting date within the time series for which the exceptions are to be derived. If
startDate is not specified, it is the minDate of the calendar and endDate is the maxDate
of the calendar.

endDate
Ending date within the time series for which the exceptions are to be derived. If
endDate is specified, startDate must also be specified. If startDate is specified and
endDate is not specified, endDate is the maxDate of the calendar.

inputCal
The calendar that contains no exceptions and for which exceptions are to be
derived.

DateTab
The table of dates that includes all dates in the time series (for example, all dates on
which stock XYZ traded).

series1
The "reference" time series that contains no exceptions and all valid timestamps
from the calendar (for example, all Monday through Friday dates within the date
range of the calendar).
5-16 Oracle8i Time Series User’s Guide

DeriveExceptions
series2
The time series that contains the timestamps to be used in deriving the exceptions
for the resulting calendar (for example, all dates on which stock XYZ traded).

Usage
Approach 1 is the most convenient method. You specify a time series (for example,
daily closing prices of stock XYZ) that has an associated calendar. A calendar is
returned that is defined on the same pattern and frequency as the calendar for the
input time series, and the exceptions lists of the returned calendar are populated to
be consistent with the time series data.

Approach 1A is a variation of Approach 1 in which you specify a calendar and a
table of the desired timestamps (for example, dates on which stock XYZ traded).

Approach 2 involves creating a time series (series1) that in effect functions as a
calendar, and then using a second time series (series2) with desired timestamps to
populate the exceptions lists. Approach 2 offers a performance advantage if you
need to derive exceptions for many calendars based on many time series.

See Section 2.2.5 for a detailed explanation of the approaches to using this function.

Example
See Section 3.8 for examples of the approaches to using this function.
Time Series Functions: Reference 5-17

Display
Display

Format
ORDSYS.TimeSeries.Display(

ts ORDSYS.[see parameter description]

[,mesg VARCHAR2]

) RETURN INTEGER;

Description
Displays various information (see the description of the ts parameter) using
DBMS_OUTPUT routines.

Parameters

ts
The object to be displayed. Because the function is overloaded, this parameter can
be any of the following data types:

■ ORDTNumSeriesIOTRef or ORDTNumSeries

■ ORDTVarchar2SeriesIOTRef or ORDTVarcharSeries

■ ORDTNumTab

■ ORDTVarchar2Tab

■ ORDTNumCell

■ ORDTVarchar2Cell

■ ORDTDateTab

■ ORDTCalendar

■ ORDTExceptions

■ ORDTPattern

mesg
Optional message text to be included in the display heading ("Timeseries dump for
<mesg>").
5-18 Oracle8i Time Series User’s Guide

Display
Usage
Use the SET SERVEROUTPUT ON statement to view the output of the Display
function. However, the default display buffer of 2000 bytes is often too small to
display a large time series. In such cases you must use the ENABLE procedure of
the DBMS_OUTPUT package to specify a larger display buffer size. For example:

DBMS_OUTPUT.ENABLE(1000000);

You should use Display only for development and debugging. Specify a display
buffer larger than 2000 only when necessary, because the display buffer uses shared
system resources, and a large value might affect the performance of other users.

Because the Display function uses DBMS_OUTPUT routines, it is subject to the
limitations of these routines. These limitations include the following:

■ Output cannot exceed 1 megabyte.

■ The Display function cannot be used with the OCI.

■ SQL*Plus does not support DBMS_OUTPUT in the context of a SELECT
statement, but it does support DBMS_OUTPUT for anonymous PL/SQL blocks.

Example
Display the output for a query that returns the 10 highest closing prices for stock
ACME for the month of November 1996:

SET SERVEROUTPUT ON
DECLARE
 tmp INTEGER;
BEGIN
SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TSMaxN(close,10,
 to_date(’11011996’,’MMDDYYYY’),
 to_date(’11301996’,’MMDDYYYY’)))
 INTO tmp
FROM TSDEV.stockdemo_ts
WHERE ticker =’ACME’;
END;
/

This example might produce the following output:

Tab Data:

 Date Value
Time Series Functions: Reference 5-19

Display
 29-NOV-96 78
 27-NOV-96 77
 26-NOV-96 76
 25-NOV-96 75
 22-NOV-96 74
 21-NOV-96 73
 20-NOV-96 72
 19-NOV-96 71
 18-NOV-96 70
 15-NOV-96 69

The preceding example works from both SQL*Plus and the Server Manager
(svrmgrl) prompt. The following version of the example works from the Server
Manager prompt but not from SQL*Plus:

SET SERVEROUTPUT ON
SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TSMaxN(close,10,
 to_date(’11011996’,’MMDDYYYY’),
 to_date(’11301996’,’MMDDYYYY’)))
FROM TSDEV.stockdemo_ts
WHERE ticker =’ACME’;

See the TSMaxN function for an example that returns the same information, but that
uses a subquery instead of the Display function.
5-20 Oracle8i Time Series User’s Guide

DisplayValTS Procedure
DisplayValTS Procedure

Format
ORDSYS.TimeSeries.DisplayValTS(

validFlag IN INTEGER,

outMessage IN VARCHAR2,

loDateTab IN ORDSYS.ORDTDateTab,

hiDateTab IN ORDSYS.ORDTDateTab,

impreciseDateTab IN ORDSYS.ORDTDateTab,

duplicateDateTab IN ORDSYS.ORDTDateTab,

extraDateTab IN ORDSYS.ORDTDateTab,

missingDateTab IN ORDSYS.ORDTDateTab,

mesg IN VARCHAR2

);

Description
Displays the results returned by the ValidateTS function.

Parameters

validFlag
The return value from the ValidateTS function.

outMessage
The diagnostic returned by the ValidateTS function.

loDateTab
A table of dates before the starting date of the calendar associated with the time
series.

Note: DisplayValTS is a procedure, not a function. Procedures do
not return values.
Time Series Functions: Reference 5-21

DisplayValTS Procedure
hiDateTab
A table of dates after the starting date of the calendar associated with the time
series.

impreciseDateTab
A table of the imprecise dates found in the time series.

duplicateDateTab
A table of the duplicate dates (dates that appear more than once in the time series).

extraDateTab
A table of dates that are included in the time series but that should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

missingDateTab
A table of dates that are excluded from the time series but that should be included
based on the calendar definition (for example, a Wednesday date that is not a
holiday in a Monday-Friday calendar and for which there is no data). Such dates
can be considered as "holes" in the time series.

mesg
Optional message.

Usage
This procedure is intended to be used with the ValidateTS function. See the
information on ValidateTS in this chapter.

The DisplayValTS procedure uses the DBMS_OUTPUT package. See the Usage
information for the Display function for limitations relating to the use of
DBMS_OUTPUT.

Example
Use the IsValidTS and ValidateTS functions and the DisplayValTS procedure with
an invalid time series:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
 numTS ORDSYS.ORDTNumSeries;
 tempVal integer;
5-22 Oracle8i Time Series User’s Guide

DisplayValTS Procedure
 retIsValid integer;
 retValTS integer;
 loDateTab ORDSYS.ORDTDateTab := NULL;
 hiDateTab ORDSYS.ORDTDateTab := NULL;
 impDateTab ORDSYS.ORDTDateTab := NULL;
 dupDateTab ORDSYS.ORDTDateTab := NULL;
 extraDateTab ORDSYS.ORDTDateTab := NULL;
 missingDateTab ORDSYS.ORDTDateTab := NULL;
 outMesg varchar2(2000);

BEGIN

 -- Set the buffer size
 DBMS_OUTPUT.ENABLE(100000);

 --
 -- NOTE: Here, an instance of the time series is materialized
 -- so that it could be modified to generate an invalid time series.
 --
 SELECT ORDSYS.TIMESERIES.GetSeries(ts.open) INTO numTS
 FROM tsdev.stockdemo_ts ts
 WHERE ts.ticker = ’ACME’;

 -- Example of validating a valid time series.
 SELECT ordsys.timeseries.display(numTS, ’A VALID TIME SERIES’) INTO tempVal
 FROM dual;
 retIsValid := ORDSYS.TIMESERIES.IsValidTS(numTS);
 retValTS := ORDSYS.TIMESERIES.ValidateTS(numTS, outMesg, loDateTab,
 hiDateTab, impDateTab, dupDateTab,
 extraDateTab, missingDateTab);
 DBMS_OUTPUT.PUT_LINE(’Value returned by IsValid = ’ || retIsValid);
 DBMS_OUTPUT.PUT_LINE(’Value returned by ValidateTS = ’ || retValTS);
 ORDSYS.TIMESERIES.DisplayValTS(retValTS, outMesg, loDateTab, hiDateTab,
 impDateTab, dupDateTab, extraDateTab, missingDateTab,
 ’Testing DisplayValTS’);
 DBMS_OUTPUT.NEW_LINE;

 -- For illustration let us first create an invalid timeseries.
 --
 -- Here we are adjusting the calendar’s minDate and maxDate to avoid
 -- getting a huge list of missing dates.
 --
 numTS.cal.minDate := TO_DATE(’10/28/1996’);
 numTS.cal.maxDate := TO_DATE(’01/05/1997’);
Time Series Functions: Reference 5-23

DisplayValTS Procedure
 -- Add Dates Before numTS.cal.minDate
 numTS.series(10).tstamp := numTS.cal.minDate - 1;
 numTS.series(11).tstamp := numTS.cal.minDate - 2;

 -- Add Dates Beyond numTS.cal.maxDate
 numTS.series(12).tstamp := numTS.cal.maxDate + 1;
 numTS.series(13).tstamp := numTS.cal.maxDate + 2;

 -- Add some null timestamps
 numTS.series(14).tstamp := NULL;
 numTS.series(15).tstamp := NULL;

 -- Add some imprecise dates (some are duplicated)
 numTS.series(17).tstamp := numTS.series(16).tstamp + 1/24;
 numTS.series(18).tstamp := numTS.series(16).tstamp + 15/24;

 -- Add some duplicate timestamps
 numTS.series(19).tstamp := numTS.series(18).tstamp;
 numTS.series(21).tstamp := numTS.series(20).tstamp;

 -- Add some extra dates in the middle
 numTS.series(37).tstamp := TO_DATE(’12/28/1996’);
 numTS.series(36).tstamp := TO_DATE(’12/29/1996’);

 -- Add some holes at the end
 numTS.series(numTS.series.count).tstamp := TO_DATE(’01/04/1997’);

 -- Example of validating an invalid time series.
 SELECT ordsys.timeseries.display(numTS, ’AN INVALID TIME SERIES’)
 INTO tempVal FROM dual;
 retIsValid := ORDSYS.TIMESERIES.IsValidTS(numTS);
 retValTS := ORDSYS.TIMESERIES.ValidateTS(numTS, outMesg,
 loDateTab, hiDateTab, impDateTab,
 dupDateTab, extraDateTab, missingDateTab);
 DBMS_OUTPUT.PUT_LINE(’Value returned by IsValid = ’ || retIsValid);
 DBMS_OUTPUT.PUT_LINE(’Value returned by ValidateTS = ’ || retValTS);
 ORDSYS.TIMESERIES.DisplayValTS(retValTS, outMesg, loDateTab, hiDateTab,
 impDateTab, dupDateTab, extraDateTab, missingDateTab,
 ’Testing DisplayValTS’);
END;
/

This example might produce the following output:

A VALID TIME SERIES :
5-24 Oracle8i Time Series User’s Guide

DisplayValTS Procedure
Name = OPEN ACME
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4 (day)
 MinDate = 11/01/1996 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 11/14/1996 00:00:00 68
 11/15/1996 00:00:00 69
 11/18/1996 00:00:00 70
 11/19/1996 00:00:00 71
 11/20/1996 00:00:00 72
 11/21/1996 00:00:00 73
 11/22/1996 00:00:00 74
 11/25/1996 00:00:00 75
 11/26/1996 00:00:00 76
 11/27/1996 00:00:00 77
 11/29/1996 00:00:00 78
 12/02/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
Time Series Functions: Reference 5-25

DisplayValTS Procedure
 12/13/1996 00:00:00 88
 12/16/1996 00:00:00 89
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/23/1996 00:00:00 94
 12/24/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 12/31/1996 00:00:00 99

Value returned by IsValid = 1
Value returned by ValidateTS = 1

DisplayValTS: Testing DisplayValTS:

TS-SUC: the input time series is a valid time series

AN INVALID TIME SERIES :

Name = OPEN ACME
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4 (day)
 MinDate = 10/28/1996 00:00:00
 MaxDate = 01/05/1997 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
5-26 Oracle8i Time Series User’s Guide

DisplayValTS Procedure
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 10/27/1996 00:00:00 68
 10/26/1996 00:00:00 69
 01/06/1997 00:00:00 70
 01/07/1997 00:00:00 71
 72
 73
 11/22/1996 00:00:00 74
 11/22/1996 01:00:00 75
 11/22/1996 15:00:00 76
 11/22/1996 15:00:00 77
 11/29/1996 00:00:00 78
 11/29/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
 12/13/1996 00:00:00 88
 12/16/1996 00:00:00 89
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/29/1996 00:00:00 94
 12/28/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 01/04/1997 00:00:00 99

Value returned by IsValid = 0
Value returned by ValidateTS = 0

DisplayValTS: Testing DisplayValTS:

TS-WRN: the input time series has errors. See the message for details
Time Series Functions: Reference 5-27

DisplayValTS Procedure
message output by validateTS:

TS-ERR: the input time series is unsorted
TS-ERR: the time series has null timestamps
TS-ERR: the time series has timestamps < calendar minDate (refer LoDateTab)
TS-ERR: the time series has timestamps > calendar maxDate (refer HiDateTab)
TS-ERR: the time series has imprecise timestamps (refer impreciseDateTab)
TS-ERR: the time series has duplicate timestamps (refer DuplicateDateTab)

list of dates < calendar minDate - lowDateTab :

 10/26/1996 00:00:00 10/27/1996 00:00:00

list of dates > calendar maxDate - hiDateTab :

 01/06/1997 00:00:00 01/07/1997 00:00:00

list of imprecise dates - impreciseDateTab :

 11/22/1996 01:00:00 11/22/1996 15:00:00

list of duplicate dates - duplicateDateTab :

 11/22/1996 15:00:00 11/29/1996 00:00:00

ExtraDateTab :

 12/28/1996 00:00:00 12/29/1996 00:00:00 01/04/1997 00:00:00

MissingDateTab :

 10/28/1996 00:00:00 10/29/1996 00:00:00 10/30/1996 00:00:00
 10/31/1996 00:00:00 11/14/1996 00:00:00 11/15/1996 00:00:00
 11/18/1996 00:00:00 11/19/1996 00:00:00 11/20/1996 00:00:00
 11/21/1996 00:00:00 11/25/1996 00:00:00 11/26/1996 00:00:00
 11/27/1996 00:00:00 12/02/1996 00:00:00 12/23/1996 00:00:00
 12/24/1996 00:00:00 12/31/1996 00:00:00 01/01/1997 00:00:00
 01/02/1997 00:00:00 01/03/1997 00:00:00
5-28 Oracle8i Time Series User’s Guide

ExtractCal
ExtractCal

Format
ORDSYS.TimeSeries.ExtractCal(

ts ORDSYS.ORDTNumSeriesIOTRef

) RETURN ORDSYS.ORDTCalendar;

or

ORDSYS.TimeSeries.ExtractCal(

ts ORDSYS.ORDTVarchar2SeriesIOTRef

) RETURN ORDSYS.ORDTCalendar;

Description
Given a time series, returns a calendar that is the same as the calendar on which the
time series is based.

Parameters

ts
The input time series.

Usage
The function returns a calendar that has the same starting and ending timestamps,
pattern, frequency, and exceptions (on- and off-) as the calendar on which the
specified time series is based.

An exception is returned if the time series (ts) is null.

Example
Return a calendar that matches the one on which the time series for the ACME
ticker is based:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
Time Series Functions: Reference 5-29

ExtractCal
dummyval INTEGER;

BEGIN

 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.ExtractCal(ts.open), ’ExtractCal Results’) INTO dummyval
 FROM TSDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
/

This example might produce the following output:

ExtractCal Results :

Calendar Name = BUSINESS-96
 Frequency = 4 (day)
 MinDate = 11/01/1996 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
5-30 Oracle8i Time Series User’s Guide

ExtractDate
ExtractDate

Format
ORDSYS.TimeSeries.ExtractDate(

cell ORDSYS.ORDTNumCell

) RETURN DATE;

or

ORDSYS.TimeSeries.ExtractDate(

cell ORDSYS.ORDTVarchar2Cell

) RETURN DATE;

Description
Given an element in a time series, returns the date.

Parameters

cell
The time series element for which you want the date.

Usage
The time series element must first be identified, such as by using the
GetNthElement function.

An exception is returned if the time series element (cell) is null.

Example
Return the date associated with the tenth element in a specified time series:

SELECT to_char(ORDSYS.TimeSeries.ExtractDate(
 ORDSYS.TimeSeries.GetNthElement(open, 10)),
 ’MM/DD/YYYY HH24:MI:SS’)
 FROM TSDEV.stockdemo_ts
 WHERE ticker = ’ACME’;

This example might produce the following output:
Time Series Functions: Reference 5-31

ExtractDate
TO_CHAR(ORDSYS.TIME

11/14/1996 00:00:00
1 row selected.
5-32 Oracle8i Time Series User’s Guide

ExtractTable
ExtractTable

Format
ORDSYS.TimeSeries.ExtractTable(

ts ORDSYS.ORDTNumSeriesIOTRef

) RETURN ORDSYS.ORDTNumTab;

or

ORDSYS.TimeSeries.ExtractTable(

ts ORDSYS.ORDTVarchar2SeriesIOTRef

) RETURN ORDSYS.ORDTVarchar2Tab;

Description
Given a time series, returns the time series table (ORDTNumTab or
ORDTVarchar2Tab) associated with the time series.

Parameters

ts
The input time series.

Usage
The function returns the time series table (ORDTNumTab or ORDTVarchar2Tab)
associated with the time series.

An exception is returned if the time series (ts) is null.

Example
Return the closing prices for stock ACME:

SELECT * FROM the
 (SELECT CAST(ORDSYS.TimeSeries.ExtractTable(ts.close)
 as ORDSYS.ORDTNumTab)
 FROM TSDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’);
Time Series Functions: Reference 5-33

ExtractTable
This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 59
04-NOV-96 60
05-NOV-96 61

31-DEC-96 99
41 rows selected.
5-34 Oracle8i Time Series User’s Guide

ExtractValue
ExtractValue

Format
ORDSYS.TimeSeries.ExtractValue(

cell ORDSYS.ORDTNumCell

) RETURN NUMBER;

or

ORDSYS.TimeSeries.ExtractValue(

cell ORDSYS.ORDTVarchar2Cell

) RETURN VARCHAR2;

Description
Given an element in a time series, returns the value stored in it.

Parameters

cell
The time series element for which you want the value.

Usage
The time series element must first be identified, such as by using the
GetNthElement function.

An exception is returned if the time series element (cell) is null.

Example
Return the value of the tenth opening price in the stockdemo_ts table:

SELECT ORDSYS.TimeSeries.ExtractValue(
 ORDSYS.TimeSeries.GetNthElement(open, 10))
 FROM TSDEV.stockdemo_ts
 WHERE ticker = ’ACME’;

This example might produce the following output:
Time Series Functions: Reference 5-35

ExtractValue
ORDSYS.TIM

 68
1 row selected.
5-36 Oracle8i Time Series User’s Guide

Fill
Fill

Format
ORDSYS.TimeSeries.Fill(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef

[, fill_type INTEGER]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series and optionally a fill type, returns a time series in which values
for missing dates are inserted. A missing date is a date that is defined by the
calendar and within the time series bounds, but that is not in the current time series.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

fill_type
One of the following integers indicating how missing values are to be filled:

■ 0 = null: Insert nulls.

■ 1 = forward repeat: Use the values from the preceding (most recent) timestamp.

■ 2 = backward repeat: Use the values from the following (next in the future)
timestamp.

If fill_type is omitted, 0 is assumed.

Usage
The function inserts timestamps and associated values for timestamps that are
included in a calendar but for which no entries exist in the time series.
Time Series Functions: Reference 5-37

Fill
The fill_type parameter lets you choose the manner in which missing values will be
defaulted. For example, assume that data for 30-Jan-1997 (Thursday) is missing
from a time series and that it should be included because this date is within the
calendar definition. Assume the following closing prices for stock XYZ:

■ 49 on 29-Jan-1997

■ 50 on 31-Jan-1997

The following table shows the closing price that would be inserted for 30-Jan-1997
with each of the fill_type parameter values:

Some potential uses for this function include:

■ Deriving the price of a stock for a nontrading day

For example, you may want to compare prices for a stock that trades on several
stock exchanges, where the exchanges have different trading days.

■ Converting a quarterly time series to a daily time series

For example, earnings per share (EPS) is computed quarterly, and stocks trade
daily. To compute a price-earnings (PE) ratio, earnings per share is first
converted to a daily time series using forward repeat. Then, the daily PE ratio is
calculated by dividing the daily price time series value by the corresponding
daily EPS time series value.

An exception is returned if the specified fill_type value is not 0, 1, or 2.

Example
Return a time series illustrating each fill_type value:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;
-- For illustrating Fill we need a time series with missing dates.
-- In the following example, the time series ’FOO’ has some missing dates
-- (07-DEC-1996 and 08-DEC-1996). Also, note that the calendar associated
-- with ’FOO’ has an ’all one’ pattern.
--

fill_type Closing Price for 30-Jan-1997

0 null

1 49

2 50
5-38 Oracle8i Time Series User’s Guide

Fill
DECLARE
tstCal ORDSYS.ORDTCalendar;
ts ORDSYS.ordtnumseries :=
 ORDSYS.ordtnumseries(
 ’FOO’,
 ORDSYS.ORDTCalendar(
 0,
 ’FOO CALENDAR’,
 4,
 ORDSYS.ORDTPattern(
 ORDSYS.ORDTPatternBits(1,1,1,1,1,1,1),
 TO_DATE(’01/07/1996’)),
 TO_DATE(’01/01/1996’),
 TO_DATE(’01/01/1997’),
 ORDSYS.ORDTExceptions(),
 ORDSYS.ORDTExceptions()
),
 ORDSYS.ordtnumtab(
 ORDSYS.ordtnumcell(TO_DATE(’12/02/1996’), 1),
 ORDSYS.ordtnumcell(TO_DATE(’12/03/1996’), 2),
 ORDSYS.ordtnumcell(TO_DATE(’12/04/1996’), 3),
 ORDSYS.ordtnumcell(TO_DATE(’12/05/1996’), 4),
 ORDSYS.ordtnumcell(TO_DATE(’12/06/1996’), 5),
 ORDSYS.ordtnumcell(TO_DATE(’12/09/1996’), 6),
 ORDSYS.ordtnumcell(TO_DATE(’12/10/1996’), 7),
 ORDSYS.ordtnumcell(TO_DATE(’12/11/1996’), 8),
 ORDSYS.ordtnumcell(TO_DATE(’12/12/1996’), 9),
 ORDSYS.ordtnumcell(TO_DATE(’12/13/1996’), 10))
);

dummyval INTEGER;

BEGIN

 -- Generate a time series by from XCORP’s high (repeat forward).
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.Fill(ts, 1),
 ’Fill Forward’) INTO dummyval
 FROM dual;

 -- Generate a time series by from XCORP’s high (repeat backward).
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.Fill(ts, 2),
 ’Fill Backward’) INTO dummyval
 FROM dual;
Time Series Functions: Reference 5-39

Fill
 -- Generate a time series by from XCORP’s high (null fill).
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.Fill(ts, 0),
 ’Null Fill’) INTO dummyval
 FROM dual;

END;
/

This example might produce the following output:

Fill Forward :

Calendar Data:
Calendar Name = FOO CALENDAR
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 01/01/1997 00:00:00
 patBits:
 1,1,1,1,1,1,1
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
Series Data:

 Date Value
 12/02/1996 00:00:00 1
 12/03/1996 00:00:00 2
 12/04/1996 00:00:00 3
 12/05/1996 00:00:00 4
 12/06/1996 00:00:00 5
 12/07/1996 00:00:00 5
 12/08/1996 00:00:00 5
 12/09/1996 00:00:00 6
 12/10/1996 00:00:00 7
 12/11/1996 00:00:00 8
 12/12/1996 00:00:00 9
 12/13/1996 00:00:00 10

Fill Backward :

Calendar Data:
Calendar Name = FOO CALENDAR
5-40 Oracle8i Time Series User’s Guide

Fill
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 01/01/1997 00:00:00
 patBits:
 1,1,1,1,1,1,1
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
Series Data:

 Date Value
 12/02/1996 00:00:00 1
 12/03/1996 00:00:00 2
 12/04/1996 00:00:00 3
 12/05/1996 00:00:00 4
 12/05/1996 00:00:00 4
 12/06/1996 00:00:00 5
 12/07/1996 00:00:00 6
 12/08/1996 00:00:00 6
 12/09/1996 00:00:00 6
 12/10/1996 00:00:00 7
 12/11/1996 00:00:00 8
 12/12/1996 00:00:00 9
 12/13/1996 00:00:00 10

Null Fill :

Calendar Data:
Calendar Name = FOO CALENDAR
 Frequency = 4 (day)
 MinDate = 01/01/1996 00:00:00
 MaxDate = 01/01/1997 00:00:00
 patBits:
 1,1,1,1,1,1,1
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
Series Data:

 Date Value
 12/02/1996 00:00:00 1
 12/03/1996 00:00:00 2
 12/04/1996 00:00:00 3
 12/05/1996 00:00:00 4
Time Series Functions: Reference 5-41

Fill
 12/06/1996 00:00:00 5
 12/07/1996 00:00:00
 12/08/1996 00:00:00
 12/09/1996 00:00:00 6
 12/10/1996 00:00:00 7
 12/11/1996 00:00:00 8
 12/12/1996 00:00:00 9
 12/13/1996 00:00:00 10

5-42 Oracle8i Time Series User’s Guide

First
First

Format
ORDSYS.TimeSeries.First(

ts ORDSYS.ORDTNumSeriesIOTRef

) RETURN ORDSYS.ORDTNumCell;

Description
Given a time series, returns the first element in it.

Parameters

ts
The input time series.

Usage
A null is returned if the time series (ts) is empty.

An exception is returned if the time series (ts) is null.

Example
Return the first timestamp and opening price for stock ACME in the stockdemo_ts
time series:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
dummyval INTEGER;

BEGIN

 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.First(ts.open), ’First Results’) INTO dummyval
 FROM TSDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
Time Series Functions: Reference 5-43

First
/

This example might produce the following output:

First Results :

 Timestamp : 11/01/1996 00:00:00
 Value : 59
5-44 Oracle8i Time Series User’s Guide

FirstN
FirstN

Format
ORDSYS.TimeSeries.FirstN(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

NumValues NUMBER

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series and a number of elements (NumValues) to return, returns the
first NumValues elements in the time series.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

NumValues
Number of elements from the beginning of the time series to be returned.

startDate
Starting date within the time series for which NumValues elements are to be
returned. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which NumValues elements are to be
returned. If endDate is specified, startDate must also be specified.
Time Series Functions: Reference 5-45

FirstN
Usage
The function returns a time series populated with the first NumValues cells from the
input time series (ts). The calendar of the output time series is the same as that of
the input time series.

An exception is returned if the time series (ts) is null, if NumValues is zero (0) or
negative, or if endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the first NumValues cells are returned.

Example
Return the first 10 timestamps and opening prices in the time series for stock
ACME.:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
dummyval INTEGER;

BEGIN

 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.FirstN(ts.open, 10), ’FirstN Results’) INTO dummyval
 FROM TSDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
/

This example might produce the following output:

FirstN Results :

Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4 (day)
 MinDate = 11/01/1996 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
5-46 Oracle8i Time Series User’s Guide

FirstN
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 11/14/1996 00:00:00 68

Time Series Functions: Reference 5-47

GetDatedElement
GetDatedElement

Format
ORDSYS.TimeSeries.GetDatedElement (

ts ORDSYS.ORDTNumSeriesIOTRef,

target_date date

) RETURN ORDSYS.ORDTNumCell;

Description
Given a time series and a date, returns the time series element for that date.

Parameters

ts
The input time series.

target_date
Positive integer specifying the date of the element to be returned.

Usage
The function returns the cell from the input time series (ts) at the specified date
(target_date). If there is no data in ts at target_date, the function returns a null.

An exception is returned if the time series (ts) is null.

Example
Return the timestamp and opening price for 26-Nov-1996 for stock ACME:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
dummyval INTEGER;
tstDate date;

BEGIN

 -- Get the cell for 26-NOV-1996 from ACME’s open and display it
5-48 Oracle8i Time Series User’s Guide

GetDatedElement
 tstDate := TO_DATE(’11/26/1996’);

 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.GetDatedElement(ts.open, tstDate),
 ’GetDatedElement Results’) INTO dummyval
 FROM TSDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
/

This example might produce the following output:

GetDatedElement Results :

 Timestamp : 11/26/1996 00:00:00
 Value : 76
Time Series Functions: Reference 5-49

GetNthElement
GetNthElement

Format
ORDSYS.TimeSeries.GetNthElement

(ts ORDSYS.ORDTNumSeriesIOTRef,

target_index INTEGER

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumCell;

Description
Given a time series, a number (target_index), and optionally a date range, returns the
Nth element (element whose position corresponds to target_index) in the specified
time series, or within the date range if one is specified.

Parameters

ts
The input time series.

target_index
Positive integer specifying the position of the element to be returned.

startDate
Starting date within the time series to which target_index is to be applied. If
target_index = 1, the function returns the element for startDate. If startDate is
specified, endDate must also be specified.

endDate
Ending date within the time series to which target_index is to be applied. If endDate
is specified, startDate must also be specified.

Usage
An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ target_index is not an integer, or is zero (0) or a negative number.
5-50 Oracle8i Time Series User’s Guide

GetNthElement
■ endDate is earlier than startDate.

Example
Return the tenth opening price for stock ACME:

SELECT ORDSYS.TimeSeries.ExtractValue(
 ORDSYS.TimeSeries.GetNthElement(open, 10))
 FROM TSDEV.stockdemo_ts
 WHERE ticker = ’ACME’;

This example might produce the following output:

ORDSYS.TIM

 68
1 row selected.
Time Series Functions: Reference 5-51

GetSeries
GetSeries

Format
ORDSYS.TimeSeries.GetSeries(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.GetSeries(

[tsname VARCHAR2,]

ts ORDSYS.ORDTVarchar2SeriesIOTRef

) RETURN ORDSYS.ORDTVarchar2Series;

Description
Given a reference to a time series of references (ORDTNumSeriesIOTRef or
ORDTVarchar2SeriesIOTRef), returns a time series instance (ORDTNumSeries or
ORDTVarchar2Series).

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

Usage
The function materializes the input time series.

An exception is returned if the time series (ts) is null.

Example
Return an instance of a specified time series (opening prices for stock ACME):
5-52 Oracle8i Time Series User’s Guide

GetSeries
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
dummyval INTEGER;

BEGIN

 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.GetSeries(ts.open), ’GetSeries Results’) INTO dummyval
 FROM TSDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
/

This example might produce the following output:

GetSeries Results :

Name = OPEN ACME
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4 (day)
 MinDate = 11/01/1996 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 11/14/1996 00:00:00 68
Time Series Functions: Reference 5-53

GetSeries
 11/15/1996 00:00:00 69
 11/18/1996 00:00:00 70
 11/19/1996 00:00:00 71
 11/20/1996 00:00:00 72
 11/21/1996 00:00:00 73
 11/22/1996 00:00:00 74
 11/25/1996 00:00:00 75
 11/26/1996 00:00:00 76
 11/27/1996 00:00:00 77
 11/29/1996 00:00:00 78
 12/02/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
 12/13/1996 00:00:00 88
 12/16/1996 00:00:00 89
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/23/1996 00:00:00 94
 12/24/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 12/31/1996 00:00:00 99

5-54 Oracle8i Time Series User’s Guide

IsValidTS
IsValidTS

Format
ORDSYS.TimeSeries.IsValidTS(

ts ORDSYS.ORDTNumSeriesIOTRef

) RETURN INTEGER;

or

ORDSYS.TimeSeries.IsValidTS(

ts ORDSYS.ORDTVarchar2SeriesIOTRef

) RETURN INTEGER;

Description
Returns 1 if the time series is valid and 0 if the time series is invalid.

Parameters

ts
The input time series.

Usage
A time series is invalid if one or more of the following conditions are true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ The calendar associated with the time series is invalid.

■ The timestamps are not sorted.

■ One or more timestamps are null, imprecise, or outside the date range of the
calendar.

■ One or more timestamps are included in the time series but should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).
Time Series Functions: Reference 5-55

IsValidTS
■ One or more timestamps are excluded from the time series but should be
included based on the calendar definition (for example, a Wednesday date that
is not a holiday in a Monday-Friday calendar and for which there is no data).
Such dates can be considered as "holes" in the time series.

Contrast this function with ValidateTS, which checks whether a time series is valid,
and if the time series is not valid, generates a diagnostic message and tables with
timestamps that are causing the time series to be invalid.

Example
Use the IsValidTS and ValidateTS functions and the DisplayValTS procedure with
an invalid time series:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
 numTS ORDSYS.ORDTNumSeries;
 tempVal integer;
 retIsValid integer;
 retValTS integer;
 loDateTab ORDSYS.ORDTDateTab := NULL;
 hiDateTab ORDSYS.ORDTDateTab := NULL;
 impDateTab ORDSYS.ORDTDateTab := NULL;
 dupDateTab ORDSYS.ORDTDateTab := NULL;
 extraDateTab ORDSYS.ORDTDateTab := NULL;
 missingDateTab ORDSYS.ORDTDateTab := NULL;
 outMesg varchar2(2000);

BEGIN

 -- Set the buffer size
 DBMS_OUTPUT.ENABLE(100000);

 --
 -- NOTE: Here, an instance of the time series is materialized
 -- so that it could be modified to generate an invalid time series.
 --
 SELECT ORDSYS.TIMESERIES.GetSeries(ts.open) INTO numTS
 FROM tsdev.stockdemo_ts ts
 WHERE ts.ticker = ’ACME’;

 -- Example of validating a valid time series.
 SELECT ordsys.timeseries.display(numTS, ’A VALID TIME SERIES’) INTO tempVal
5-56 Oracle8i Time Series User’s Guide

IsValidTS
 FROM dual;
 retIsValid := ORDSYS.TIMESERIES.IsValidTS(numTS);
 retValTS := ORDSYS.TIMESERIES.ValidateTS(numTS, outMesg, loDateTab,
 hiDateTab, impDateTab, dupDateTab,
 extraDateTab, missingDateTab);
 DBMS_OUTPUT.PUT_LINE(’Value returned by IsValid = ’ || retIsValid);
 DBMS_OUTPUT.PUT_LINE(’Value returned by ValidateTS = ’ || retValTS);
 ORDSYS.TIMESERIES.DisplayValTS(retValTS, outMesg, loDateTab, hiDateTab,
 impDateTab, dupDateTab, extraDateTab, missingDateTab,
 ’Testing DisplayValTS’);
 DBMS_OUTPUT.NEW_LINE;

 -- For illustration let us first create an invalid timeseries.
 --
 -- Here we are adjusting the calendar’s minDate and maxDate to avoid
 -- getting a huge list of missing dates.
 --
 numTS.cal.minDate := TO_DATE(’10/28/1996’);
 numTS.cal.maxDate := TO_DATE(’01/05/1997’);

 -- Add Dates Before numTS.cal.minDate
 numTS.series(10).tstamp := numTS.cal.minDate - 1;
 numTS.series(11).tstamp := numTS.cal.minDate - 2;

 -- Add Dates Beyond numTS.cal.maxDate
 numTS.series(12).tstamp := numTS.cal.maxDate + 1;
 numTS.series(13).tstamp := numTS.cal.maxDate + 2;

 -- Add some null timestamps
 numTS.series(14).tstamp := NULL;
 numTS.series(15).tstamp := NULL;

 -- Add some imprecise dates (some are duplicated)
 numTS.series(17).tstamp := numTS.series(16).tstamp + 1/24;
 numTS.series(18).tstamp := numTS.series(16).tstamp + 15/24;

 -- Add some duplicate timestamps
 numTS.series(19).tstamp := numTS.series(18).tstamp;
 numTS.series(21).tstamp := numTS.series(20).tstamp;

 -- Add some extra dates in the middle
 numTS.series(37).tstamp := TO_DATE(’12/28/1996’);
 numTS.series(36).tstamp := TO_DATE(’12/29/1996’);

 -- Add some holes at the end
Time Series Functions: Reference 5-57

IsValidTS
 numTS.series(numTS.series.count).tstamp := TO_DATE(’01/04/1997’);

 -- Example of validating an invalid time series.
 SELECT ordsys.timeseries.display(numTS, ’AN INVALID TIME SERIES’)
 INTO tempVal FROM dual;
 retIsValid := ORDSYS.TIMESERIES.IsValidTS(numTS);
 retValTS := ORDSYS.TIMESERIES.ValidateTS(numTS, outMesg,
 loDateTab, hiDateTab, impDateTab,
 dupDateTab, extraDateTab, missingDateTab);
 DBMS_OUTPUT.PUT_LINE(’Value returned by IsValid = ’ || retIsValid);
 DBMS_OUTPUT.PUT_LINE(’Value returned by ValidateTS = ’ || retValTS);
 ORDSYS.TIMESERIES.DisplayValTS(retValTS, outMesg, loDateTab, hiDateTab,
 impDateTab, dupDateTab, extraDateTab, missingDateTab,
 ’Testing DisplayValTS’);
END;
/

This example might produce the following output:

A VALID TIME SERIES :

Name = OPEN ACME
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4 (day)
 MinDate = 11/01/1996 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
5-58 Oracle8i Time Series User’s Guide

IsValidTS
 11/14/1996 00:00:00 68
 11/15/1996 00:00:00 69
 11/18/1996 00:00:00 70
 11/19/1996 00:00:00 71
 11/20/1996 00:00:00 72
 11/21/1996 00:00:00 73
 11/22/1996 00:00:00 74
 11/25/1996 00:00:00 75
 11/26/1996 00:00:00 76
 11/27/1996 00:00:00 77
 11/29/1996 00:00:00 78
 12/02/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
 12/13/1996 00:00:00 88
 12/16/1996 00:00:00 89
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/23/1996 00:00:00 94
 12/24/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 12/31/1996 00:00:00 99

Value returned by IsValid = 1
Value returned by ValidateTS = 1

DisplayValTS: Testing DisplayValTS:

TS-SUC: the input time series is a valid time series

AN INVALID TIME SERIES :
Time Series Functions: Reference 5-59

IsValidTS
Name = OPEN ACME
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4 (day)
 MinDate = 10/28/1996 00:00:00
 MaxDate = 01/05/1997 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 10/27/1996 00:00:00 68
 10/26/1996 00:00:00 69
 01/06/1997 00:00:00 70
 01/07/1997 00:00:00 71
 72
 73
 11/22/1996 00:00:00 74
 11/22/1996 01:00:00 75
 11/22/1996 15:00:00 76
 11/22/1996 15:00:00 77
 11/29/1996 00:00:00 78
 11/29/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
 12/13/1996 00:00:00 88
5-60 Oracle8i Time Series User’s Guide

IsValidTS
 12/16/1996 00:00:00 89
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/29/1996 00:00:00 94
 12/28/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 01/04/1997 00:00:00 99

Value returned by IsValid = 0
Value returned by ValidateTS = 0

DisplayValTS: Testing DisplayValTS:

TS-WRN: the input time series has errors. See the message for details

message output by validateTS:

TS-ERR: the input time series is unsorted
TS-ERR: the time series has null timestamps
TS-ERR: the time series has timestamps < calendar minDate (refer LoDateTab)
TS-ERR: the time series has timestamps > calendar maxDate (refer HiDateTab)
TS-ERR: the time series has imprecise timestamps (refer impreciseDateTab)
TS-ERR: the time series has duplicate timestamps (refer DuplicateDateTab)

list of dates < calendar minDate - lowDateTab :

 10/26/1996 00:00:00 10/27/1996 00:00:00

list of dates > calendar maxDate - hiDateTab :

 01/06/1997 00:00:00 01/07/1997 00:00:00

list of imprecise dates - impreciseDateTab :

 11/22/1996 01:00:00 11/22/1996 15:00:00

list of duplicate dates - duplicateDateTab :

 11/22/1996 15:00:00 11/29/1996 00:00:00
Time Series Functions: Reference 5-61

IsValidTS
ExtraDateTab :

 12/28/1996 00:00:00 12/29/1996 00:00:00 01/04/1997 00:00:00

MissingDateTab :

 10/28/1996 00:00:00 10/29/1996 00:00:00 10/30/1996 00:00:00
 10/31/1996 00:00:00 11/14/1996 00:00:00 11/15/1996 00:00:00
 11/18/1996 00:00:00 11/19/1996 00:00:00 11/20/1996 00:00:00
 11/21/1996 00:00:00 11/25/1996 00:00:00 11/26/1996 00:00:00
 11/27/1996 00:00:00 12/02/1996 00:00:00 12/23/1996 00:00:00
 12/24/1996 00:00:00 12/31/1996 00:00:00 01/01/1997 00:00:00
 01/02/1997 00:00:00 01/03/1997 00:00:00
5-62 Oracle8i Time Series User’s Guide

Lag
Lag

Format
ORDSYS.TimeSeries.Lag (

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

units INTEGER

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.Lag (

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

lead_date DATE

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a positive or negative number (units) or a date (lead_date), and
optionally a starting and ending timestamp within the time series, returns a time
series that lags or (for negative numeric values) leads the input time series by the
appropriate number of timestamps.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.
Time Series Functions: Reference 5-63

Lag
ts
The input time series.

units
Integer specifying the number of timestamps by which the output time series is to
be adjusted. If units is positive, each element in the output time series is the same as
the element in the input time series for that relative position minus the units. If units
is negative, each element in the output time series is the same as the element in the
input time series for that relative position plus the units.

lead_date
The date relative to the starting date reflecting the number of timestamps by which
the output time series is to be adjusted. The function calculates the number of
timestamps between lead_date and startDate, and then uses that number as if it were
a units parameter value. (If lead_date is later than startDate, the effective units value
is positive; if lead_date is before the starting date, the effective units value is
negative.)

startDate
Starting date to be used in calculating the lead or lag value; also the starting date in
the input time series for which the output time series is to be created. If startDate is
specified, endDate must also be specified.

endDate
Ending date in the input time series for which the output time series is to be
created. If endDate is specified, startDate must also be specified.

Usage
The function creates a time series whose elements reflect an input time series
adjusted by a number of timestamps. For example, using the United States stock
trading calendar for 1997, if the first timestamp in the input time series is 06-Jan-
1997 (Monday) and the units value is 2, the first timestamp in the output time series
is 02-Jan-1997 (Thursday) and its associated value (such as closing price) is the same
as that for 06-Jan-1997 in the input time series. Subsequent elements of the output
time series reflect the timestamp adjustment.
5-64 Oracle8i Time Series User’s Guide

Lag
For example, assuming the United States stock trading calendar for 1997, Table 5–1
shows some time series data with a two-day lag period.

For convenience, both the Lead and Lag functions are provided.The functions
operate identically, except that they interpret the sign of the units value in opposite
ways. For example, Lead with -10 for units is equivalent to Lag with 10 for units.
Moreover, because of the way the lead_date parameter is interpreted, Lead and Lag
with a lead_date operate identically.

The Lead and Lag functions do not operate on irregular time series. For an
explanation of irregular time series, see Section 2.1.1.

Example
Return a time series starting with 03-Mar-1997 using closing prices from the time
series from 01-Nov-1996 through 30-Nov-1996 for stock ACME. The returned time
series has the same number of timestamps as are in the specified date range
(startDate through endDate).

SELECT to_char(tstamp) tstamp, value
FROM stockdemo_ts ts,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Lag(ts.close,
 to_date(’03-MAR-97’,’DD-MON-YY’),
 to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’30-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)) t
WHERE ts.ticker=’ACME’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
03-MAR-97 59

Table 5–1 Lagging a Time Series by Two Days

Input Time Series: Output Time Series:

Timestamp Closing Price Timestamp Closing Price

06-Jan-1997 49.50 02-Jan-1997 49.50

07-Jan-1997 49.25 03-Jan-1997 49.25

08-Jan-1997 50.00 06-Jan-1997 50.00

...
Time Series Functions: Reference 5-65

Lag
04-MAR-97 60
05-MAR-97 61
06-MAR-97 62
07-MAR-97 63
10-MAR-97 64

27-MAR-97 77
28-MAR-97 78
20 rows selected.
5-66 Oracle8i Time Series User’s Guide

Last
Last

Format
ORDSYS.TimeSeries.Last(

ts ORDSYS.ORDTNumSeriesIOTRef

) RETURN ORDSYS.ORDTNumCell;

Description
Given a time series, returns the last element in it.

Parameters

ts
The input time series.

Usage
A null is returned if the time series (ts) is empty.

An exception is returned if the time series (ts) is null.

Example
Return the last timestamp and opening price for stock ACME in the stockdemo_ts
time series:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
dummyval INTEGER;

BEGIN

 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.Last(ts.open), ’Last Results’) INTO dummyval
 FROM TSDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
Time Series Functions: Reference 5-67

Last
/

This example might produce the following output:

Last Results :

 Timestamp : 12/31/1996 00:00:00
 Value : 99
5-68 Oracle8i Time Series User’s Guide

LastN
LastN

Format
ORDSYS.TimeSeries.LastN(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

NumValues NUMBER

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series and a number of elements (NumValues) to return, returns the last
NumValues elements in the time series.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

NumValues
Number of elements from the end of the time series to be returned.

startDate
Starting date within the time series for which NumValues elements are to be
returned. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which NumValues elements are to be
returned. If endDate is specified, startDate must also be specified.
Time Series Functions: Reference 5-69

LastN
Usage
The function returns a time series populated with the last NumValues cells from the
input time series (ts). The calendar of the output time series is the same as that of
the input time series.

An exception is returned if the time series (ts) is null, if NumValues is zero (0) or
negative, or if endDate is earlier than startDate.

If startDate and endDate are specified, the time series is trimmed to the date range
before the last NumValues cells are returned.

Example
Return the last 10 timestamps and opening prices in the time series for stock
ACME.:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
dummyval INTEGER;

BEGIN

 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.LastN(ts.open, 10), ’LastN Results’) INTO dummyval
 FROM TSDEV.stockdemo_ts ts
 WHERE ts.ticker=’ACME’;

END;
/

This example might produce the following output:

LastN Results :

Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4 (day)
 MinDate = 11/01/1996 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
5-70 Oracle8i Time Series User’s Guide

LastN
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/23/1996 00:00:00 94
 12/24/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 12/31/1996 00:00:00 99

Time Series Functions: Reference 5-71

Lead
Lead

Format
ORDSYS.TimeSeries.Lead (

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

units INTEGER

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.Lead (

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

lead_date DATE

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a positive or negative number (units) or a date (lead_date), and
optionally a starting and ending timestamp within the time series, returns a time
series that leads or (for negative numeric values) lags the input time series by the
appropriate number of timestamps.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.
5-72 Oracle8i Time Series User’s Guide

Lead
ts
The input time series.

units
Integer specifying the number of timestamps by which the output time series is to
be adjusted. If units is positive, each element in the output time series is the same as
the element in the input time series for that relative position plus the units. If units is
negative, each element in the output time series is the same as the element in the
input time series for that relative position minus the units.

lead_date
The date relative to the starting date reflecting the number of timestamps by which
the output time series is to be adjusted. The function calculates the number of
timestamps between lead_date and startDate, and then uses that number as if it were
a units parameter value. (If lead_date is later than startDate, the effective units value
is positive; if lead_date is before startDate, the effective units value is negative.)

startDate
Starting date to be used in calculating the lead or lag value; also the starting date in
the input time series for which the output time series is to be created. If startDate is
specified, endDate must also be specified.

endDate
Ending date in the input time series for which the output time series is to be
created. If endDate is specified, startDate must also be specified.

Usage
The function creates a time series whose elements reflect an input time series
adjusted by a number of timestamps. For example, using the United States stock
trading calendar for 1997, if the first timestamp in the input time series is 02-Jan-
1997 (Thursday) and the units value is 2, the first timestamp in the output time
series is 06-Jan-1997 (Monday) and its associated value (such as closing price) is the
same as that for 02-Jan-1997 in the input time series. Subsequent elements of the
output time series reflect the timestamp adjustment.
Time Series Functions: Reference 5-73

Lead
For example, assuming the United States stock trading calendar for 1997, Table 5–2
shows some time series data with a two-day lead period.

For convenience, both the Lead and Lag functions are provided. The functions
operate identically, except that they interpret the sign of the units value in opposite
ways. For example, Lead with -10 for units is equivalent to Lag with 10 for units.
Moreover, because of the way the lead_date parameter is interpreted, Lead and Lag
with a lead_date operate identically.

The Lead and Lag functions do not operate on irregular time series. For an
explanation of irregular time series, see Section 2.1.1.

Example
Return a time series starting with 03-Mar-1997 using closing prices from the time
series from 01-Nov-1996 through 30-Nov-1996 for stock ACME. The returned time
series has the same number of timestamps as are in the specified date range
(startDate through endDate).

SELECT to_char(tstamp) tstamp, value
FROM stockdemo_ts ts,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Lead(ts.close,
 to_date(’03-MAR-97’,’DD-MON-YY’),
 to_date(’01-NOV-96’,’DD-MON-YY’),
 to_date(’30-NOV-96’,’DD-MON-YY’))
) AS ORDSYS.ORDTNumTab)) t
WHERE ts.ticker=’ACME’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
03-MAR-97 59

Table 5–2 Leading a Time Series by Two Days

Input Time Series: Output Time Series:

Timestamp Closing Price Timestamp Closing Price

02-Jan-1997 49.00 06-Jan-1997 49.00

03-Jan-1997 50.00 07-Jan-1997 50.00

06-Jan-1997 49.50 08-Jan-1997 49.50

...
5-74 Oracle8i Time Series User’s Guide

Lead
04-MAR-97 60
05-MAR-97 61
06-MAR-97 62
07-MAR-97 63
10-MAR-97 64

27-MAR-97 77
28-MAR-97 78
20 rows selected.
Time Series Functions: Reference 5-75

Mavg
Mavg

Format
ORDSYS.TimeSeries.Mavg(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

k INTEGER

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given an input ORDTNumSeries, returns a moving average for the time series, or
for the date range if one is specified. Each value in the returned time series is the
average of the value for the current timestamp plus the value for each of the
previous specified number of timestamps minus one.

For example, a 30-day moving average of closing prices for a stock on any given
date is the average of that day’s closing price and the 29 preceding closing prices.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

k
Positive integer specifying the lookback window (number of timestamps, including
the current one, over which to compute the moving average).

startDate
Starting date within the time series for which to return moving averages. If startDate
is specified, endDate must also be specified.
5-76 Oracle8i Time Series User’s Guide

Mavg
endDate
Ending date within the time series for which to return moving averages. If endDate
is specified, startDate must also be specified.

Usage
The returned time series has nulls for any entry where there are not k-1 timestamps
preceding it in the calendar. For example, if a stock trading calendar for 1997 starts
on 02-Jan-1997, the series of 5-day moving averages of the closing price for a stock
for the year has nulls for the closing price for the first four timestamps (02-Jan, 03-
Jan, 06-Jan, and 07-Jan), because there are insufficient timestamps for computing the
average.

Any nulls in the entries for the k timestamps are ignored, as explained in
Section 2.4.1.

An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.

Example
Return a table of 10-day moving average values of the closing price for stock ACME
for the month of December 1996:

SELECT to_char(tstamp) tstamp, value
FROM tsquick ts,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Mavg(ts.close,to_date(’01-DEC-96’,’DD-MON-YY’),
 to_date(’31-DEC-96’,’DD-MON-YY’),10)
) AS ORDSYS.ORDTNumTab)) t
WHERE ts.ticker=’ACME’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
02-DEC-96 74.5
03-DEC-96 75.5
04-DEC-96 76.5
05-DEC-96 77.5
06-DEC-96 78.5
09-DEC-96 79.5
10-DEC-96 80.5
Time Series Functions: Reference 5-77

Mavg
11-DEC-96 81.5
12-DEC-96 82.5
13-DEC-96 83.5
16-DEC-96 84.5
17-DEC-96 85.5
18-DEC-96 86.5
19-DEC-96 87.5
20-DEC-96 88.5
23-DEC-96 89.5
24-DEC-96 90.5
26-DEC-96 91.5
27-DEC-96 92.5
30-DEC-96 93.5
31-DEC-96 94.5
21 rows selected.
5-78 Oracle8i Time Series User’s Guide

Msum
Msum

Format
ORDSYS.TimeSeries.Msum(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

k INTEGER

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given an input ORDTNumSeries, returns a moving sum for the time series, or for
the date range if one is specified. Each value in the returned time series is the sum
of the value for the current timestamp plus the value for each of the previous
specified number of timestamps minus one.

For example, a 30-day moving sum for a stock’s daily trading volume on any given
date is the sum of that day’s volume and the 29 preceding daily volumes.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

k
Positive integer specifying the lookback window (number of timestamps, including
the current one, over which to compute the moving sum).

startDate
Starting date within the time series for which to return moving sums. If startDate is
specified, endDate must also be specified.
Time Series Functions: Reference 5-79

Msum
endDate
Ending date within the time series for which to return moving sums. If endDate is
specified, startDate must also be specified.

Usage
The returned time series has nulls for any entry where there are not k-1 timestamps
preceding it in the calendar. For example, if a stock trading calendar for 1997 starts
on 02-Jan-1997, the series of 5-day moving sums of the trading volume for a stock
for the year has nulls for the volume for the first four timestamps (02-Jan, 03-Jan, 06-
Jan, and 07-Jan), because there are insufficient timestamps for computing the sum.

Any nulls in the entries for the k timestamps are ignored, as explained in
Section 2.4.1.

An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.

Example
Return a table of 30-day moving sum values of trading volume for stock ACME for
December 1996:

SELECT to_char(tstamp) tstamp, value
FROM tsquick ts,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeSeries.Msum(ts.volume,to_date(’01-DEC-96’,’DD-MON-YY’),
 to_date(’31-DEC-96’,’DD-MON-YY’),30)
) AS ORDSYS.ORDTNumTab)) t
WHERE ts.ticker=’ACME’;

With the simplified data in the demo database (where all ACME daily volumes are
1000 and there are no ACME timestamps before November 1996), this example
might produce the following output:

TSTAMP VALUE
--------- ----------
02-DEC-96
03-DEC-96
04-DEC-96
05-DEC-96
06-DEC-96
09-DEC-96
5-80 Oracle8i Time Series User’s Guide

Msum
10-DEC-96
11-DEC-96
12-DEC-96
13-DEC-96 30000
16-DEC-96 30000
17-DEC-96 30000
18-DEC-96 30000
19-DEC-96 30000
20-DEC-96 30000
23-DEC-96 30000
24-DEC-96 30000
26-DEC-96 30000
27-DEC-96 30000
30-DEC-96 30000
31-DEC-96 30000
21 rows selected.
Time Series Functions: Reference 5-81

TrimSeries
TrimSeries

Format
ORDSYS.TimeSeries.TrimSeries(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

startDate DATE,

endDate DATE

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.TrimSeries(

[tsname VARCHAR2,]

ts ORDSYS.ORDTVarchar2SeriesIOTRef,

startDate DATE,

endDate DATE

) RETURN ORDSYS.ORDTVarchar2Series;

Description
Given an input ORDT series, returns an ORDT series of the same type with all data
outside of the given date range removed. The calendar of the returned series will be
the same as that of the original series.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.
5-82 Oracle8i Time Series User’s Guide

TrimSeries
startDate
Starting date within the time series. You must specify a value, either null or not null.
If you specify a null value, the starting date (minDate) of the calendar (if any)
associated with ts is used.

endDate
Ending date within the time series. You must specify a value, either null or not null.
If you specify a null value, the ending date (maxDate) of the calendar (if any)
associated with ts is used.

Usage
An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.

Example
Return the opening prices for stock ACME for dates in the calendar from 01-Dec-
1996 through 31-Dec-1996:

SET SERVEROUTPUT ON
DECLARE
 tmp INTEGER;
 tstDate1 DATE;
 tstDate2 DATE;
BEGIN
-- Set tstDate values
 tstDate1 := TO_DATE(’12/01/1996 00:00:00’,’MM/DD/YYYY HH24:MI:SS’);
 tstDate2 := TO_DATE(’12/31/1996 00:00:00’,’MM/DD/YYYY HH24:MI:SS’);
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TrimSeries(open, tstDate1, tstDate2))
 INTO tmp
 FROM TSDEV.stockdemo_ts
 WHERE ticker = ’ACME’;
END;
/

This statement might produce the following output:

Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4 (day)
 MinDate = 01-JAN-90 00:00:00
Time Series Functions: Reference 5-83

TrimSeries
 MaxDate = 01-JAN-01 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 07-JAN-96 00:00:00
 onExceptions :
 offExceptions :
 28-NOV-96 00:00:00 25-DEC-96 00:00:00
Series Data:

 Date Value
 02-DEC-96 00:00:00 79
 03-DEC-96 00:00:00 80
 04-DEC-96 00:00:00 81
 05-DEC-96 00:00:00 82
 06-DEC-96 00:00:00 83
 09-DEC-96 00:00:00 84
 10-DEC-96 00:00:00 85
 11-DEC-96 00:00:00 86
 12-DEC-96 00:00:00 87
 13-DEC-96 00:00:00 88
 16-DEC-96 00:00:00 89
 17-DEC-96 00:00:00 90
 18-DEC-96 00:00:00 91
 19-DEC-96 00:00:00 92
 20-DEC-96 00:00:00 93
 23-DEC-96 00:00:00 94
 24-DEC-96 00:00:00 95
 26-DEC-96 00:00:00 96
 27-DEC-96 00:00:00 97
 30-DEC-96 00:00:00 98
 31-DEC-96 00:00:00 99

5-84 Oracle8i Time Series User’s Guide

TSAdd
TSAdd

Format
ORDSYS.TimeSeries.TSAdd (

[tsname VARCHAR2,]

ts1 ORDSYS.ORDTNumSeriesIOTRef,

ts2 ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.TSAdd (

[tsname VARCHAR2,]

ts1 ORDSYS.ORDTNumSeriesIOTRef,

k NUMBER

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the addition of the first two
parameters.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts1
The time series (or first time series) whose elements are to be added either to
corresponding elements in the second time series or to a constant.
Time Series Functions: Reference 5-85

TSAdd
ts2
The time series whose elements are to be added to corresponding elements in the
first time series.

k
A constant to be added to corresponding elements in the first time series.

startDate
Starting date within the time series for which the addition is to be performed. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the addition is to be performed. If
endDate is specified, startDate must also be specified.

Usage
The function performs a pairwise addition operation on each element of the time
series. This operation determines the value of each element of the returned time
series. For example:

■ If two time series contain daily trade volumes for two stocks, each element of
the returned time series contains the sum of the trade volumes for the two
stocks for that day.

■ If a time series (ts1) contains closing prices for a stock and if a constant (k) of 1 is
specified, each element of the returned time series contains the closing price of
ts1 incremented by 1.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these two
time series.

An exception is returned if one or more of the following conditions are true:

■ An input time series is null.

■ The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

■ endDate is earlier than startDate.

Example
Add the high price for stock ACME and the low price for stock FUNCO for each
trading day from 14-Nov-1996 through 14-Dec-1996:
5-86 Oracle8i Time Series User’s Guide

TSAdd
CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
startDate date;
endDate date;
dummyval INTEGER;

BEGIN

 startDate := TO_DATE(’11/14/1996’);
 endDate := TO_DATE(’12/14/1996’);
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TSAdd(ts1.high, ts2.low, startDate, endDate),
 ’TSAdd Results’) INTO dummyval
 FROM TSDEV.stockdemo_ts ts1, TSDEV.stockdemo_ts ts2
 WHERE ts1.ticker=’ACME’ and ts2.ticker=’FUNCO’;

END;
/

This example might produce the following output:

TSAdd Results :

Calendar Data:
 Frequency = 4 (day)
 MinDate = 11/01/1996 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/14/1996 00:00:00 92.87
 11/15/1996 00:00:00 93.84
 11/18/1996 00:00:00 94.87
 11/19/1996 00:00:00 95.85
 11/20/1996 00:00:00 96.82
Time Series Functions: Reference 5-87

TSAdd
 11/21/1996 00:00:00 97.84
 11/22/1996 00:00:00 98.85
 11/25/1996 00:00:00 99.81
 11/26/1996 00:00:00 100.78
 11/27/1996 00:00:00 101.71
 11/29/1996 00:00:00 102.75
 12/02/1996 00:00:00 103.88
 12/03/1996 00:00:00 105.03
 12/04/1996 00:00:00 106.02
 12/05/1996 00:00:00 107.13
 12/06/1996 00:00:00 107.75
 12/09/1996 00:00:00 108.77
 12/10/1996 00:00:00 109.8
 12/11/1996 00:00:00 110.5
 12/12/1996 00:00:00 111.41
 12/13/1996 00:00:00 112.4

5-88 Oracle8i Time Series User’s Guide

TSAvg
TSAvg

Format
ORDSYS.TimeSeries.TSAvg (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the average of all non-null time series entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the average is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the average is to be calculated. If
endDate is specified, startDate must also be specified.

Usage
An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.

Example
Return the average, variance, and standard deviation of the closing price of stock
ACME:

--
Time Series Functions: Reference 5-89

TSAvg
-- Compute various aggregate statistics.
--
SELECT ORDSYS.TimeSeries.TSAvg(close), ORDSYS.TimeSeries.TSVariance(close),
ORDSYS.TimeSeries.TSStdDev(close)
 FROM TSDEV.stockdemo_ts
 WHERE ticker=’ACME’;

This example might produce the following output:

ORDSYS.TIM ORDSYS.TIM ORDSYS.TIM
---------- ---------- ----------
 79 143.5 11.9791486
1 row selected.
5-90 Oracle8i Time Series User’s Guide

TSCount
TSCount

Format
ORDSYS.TimeSeries.TSCount (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the count of all non-null time series entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the count is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the count is to be calculated. If endDate
is specified, startDate must also be specified.

Usage
Nulls are ignored in computing the count.

An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.

Example
Return the total number of daily closing prices for stock ACME for the month of
November 1996:
Time Series Functions: Reference 5-91

TSCount
SELECT ORDSYS.TimeSeries.TSCount(close,
 to_date(’11/01/1996 00:00:00’,
 ’MM/DD/YYYY HH24:MI:SS’),
 to_date(’11/30/1996 23:59:59’,
 ’MM/DD/YYYY HH24:MI:SS’)) TSCount
 FROM TSDEV.stockdemo_ts
 WHERE ticker=’ACME’;

This example might produce the following output:

TSCOUNT

 20
1 row selected.
5-92 Oracle8i Time Series User’s Guide

TSDivide
TSDivide

Format
ORDSYS.TimeSeries.TSDivide (

[tsname VARCHAR2,]

ts1 ORDSYS.ORDTNumSeriesIOTRef,

ts2 ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.TSDivide (

[tsname VARCHAR2,]

ts1 ORDSYS.ORDTNumSeriesIOTRef,

k NUMBER

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the division of the first
parameter by the second parameter.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts1
The time series (or first time series) whose elements are to be divided by either the
corresponding elements in the second time series or a constant.
Time Series Functions: Reference 5-93

TSDivide
ts2
The time series whose elements are to be divided into corresponding elements in
the first time series.

k
A constant to be divided into corresponding elements in the first time series.

startDate
Starting date within the time series for which the division is to be performed. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the division is to be performed. If
endDate is specified, startDate must also be specified.

Usage
The function performs a pairwise division operation on each element of the time
series (or first time series) by the corresponding element in the second time series or
by a constant. This operation determines the value of each element of the returned
time series. For example:

■ If two time series contain daily trade volumes for two stocks, each element of
the returned time series contains the result of dividing the volume in the first
time series by the volume in the second time series for that day.

■ If a time series (ts1) contains closing prices for a stock and if a constant (k) of 2 is
specified, each element of the returned time series contains the closing price of
ts1 divided by 2.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these two
time series.

An exception is returned if one or more of the following conditions are true:

■ An input time series is null.

■ The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

■ endDate is earlier than startDate.
5-94 Oracle8i Time Series User’s Guide

TSDivide
Example
Divide the high price for stock ACME by the low price for stock FUNCO for each
trading day from 14-Nov-1996 through 14-Dec-1996:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
startDate date;
endDate date;
dummyval INTEGER;

BEGIN

 startDate := TO_DATE(’11/14/1996’);
 endDate := TO_DATE(’12/14/1996’);
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TSDivide(ts1.high, ts2.low, startDate, endDate),
 ’TSDivide Results’) INTO dummyval
 FROM TSDEV.stockdemo_ts ts1, TSDEV.stockdemo_ts ts2
 WHERE ts1.ticker=’ACME’ and ts2.ticker=’FUNCO’;

END;
/

This example might produce the following output:

TSDivide Results :

Calendar Data:
 Frequency = 4 (day)
 MinDate = 11/01/1996 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/14/1996 00:00:00 2.89065772936740678676162547130289065773
Time Series Functions: Reference 5-95

TSDivide
 11/15/1996 00:00:00 2.93624161073825503355704697986577181208
 11/18/1996 00:00:00 2.97444490992878089652283200670297444491
 11/19/1996 00:00:00 3.01886792452830188679245283018867924528
 11/20/1996 00:00:00 3.0646515533165407220822837951301427372
 11/21/1996 00:00:00 3.10402684563758389261744966442953020134
 11/22/1996 00:00:00 3.1446540880503144654088050314465408805
 11/25/1996 00:00:00 3.19193616127677446451070978580428391432
 11/26/1996 00:00:00 3.23801513877207737594617325483599663583
 11/27/1996 00:00:00 3.28975115984816533108393083087304934627
 11/29/1996 00:00:00 3.32631578947368421052631578947368421053
 12/02/1996 00:00:00 3.35008375209380234505862646566164154104
 12/03/1996 00:00:00 3.37078651685393258426966292134831460674
 12/04/1996 00:00:00 3.41382181515403830141548709408825978351
 12/05/1996 00:00:00 3.43970161624533775383340240364691255698
 12/06/1996 00:00:00 3.53684210526315789473684210526315789474
 12/09/1996 00:00:00 3.57593605384938998737904922170803533866
 12/10/1996 00:00:00 3.61344537815126050420168067226890756303
 12/11/1996 00:00:00 3.70212765957446808510638297872340425532
 12/12/1996 00:00:00 3.75907731738573259290901324220418624519
 12/13/1996 00:00:00 3.8034188034188034188034188034188034188

5-96 Oracle8i Time Series User’s Guide

TSMax
TSMax

Format
ORDSYS.TimeSeries.TSMax (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the highest (maximum) of all non-null time series
entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the maximum is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the maximum is to be calculated. If
endDate is specified, startDate must also be specified.

Usage
An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.

Example
Return the highest closing price for stock ACME for the month of November 1996:

SELECT ORDSYS.TimeSeries.TSMax(close,
Time Series Functions: Reference 5-97

TSMax
 to_date(’11/01/1996 00:00:00’,
 ’MM/DD/YYYY HH24:MI:SS’),
 to_date(’11/30/1996 23:59:59’,
 ’MM/DD/YYYY HH24:MI:SS’)) TSMax
 FROM TSDEV.stockdemo_ts
 WHERE ticker=’ACME’;

This example might produce the following output:

TSMAX

 78
1 row selected.
5-98 Oracle8i Time Series User’s Guide

TSMaxN
TSMaxN

Format
ORDSYS.TimeSeries.TSMaxN (

ts ORDSYS.ORDTNumSeriesIOTRef,

NumValues INTEGER,

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumTab;

Description
Given an input ORDTNumSeries, a number of values to return, and optionally
starting and ending dates, returns an ORDTNumTab with the specified number
(NumValues) of the top (highest) values.

Parameters

ts
The input time series.

NumValues
Number of values to return.

startDate
Starting date within the time series for which the top values are to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the top values are to be calculated. If
endDate is specified, startDate must also be specified.

Usage
An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.
Time Series Functions: Reference 5-99

TSMaxN
■ NumValues is zero (0) or negative.

Example
Return the 10 highest closing prices for stock ACME for the month of November
1996:

SELECT * FROM THE(SELECT CAST(
 ORDSYS.TimeSeries.TSMaxN(close, 10,
 to_date(’11011996’,’MMDDYYYY’),
 to_date(’11301996’,’MMDDYYYY’))
 as ORDSYS.ORDTNumTab)
 FROM TSDEV.stockdemo_ts
 WHERE ticker =’ACME’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
29-NOV-96 78
27-NOV-96 77
26-NOV-96 76
25-NOV-96 75
22-NOV-96 74
21-NOV-96 73
20-NOV-96 72
19-NOV-96 71
18-NOV-96 70
15-NOV-96 69
10 rows selected.
5-100 Oracle8i Time Series User’s Guide

TSMedian
TSMedian

Format
ORDSYS.TimeSeries.TSMedian (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the median of all non-null time series entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the median is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the median is to be calculated. If
endDate is specified, startDate must also be specified.

Usage
An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.

Example
Return the median closing price for stock ACME for the month of November 1996:

SELECT ORDSYS.TimeSeries.TSMedian(close,
 to_date(’11/01/1996 00:00:00’,
Time Series Functions: Reference 5-101

TSMedian
 ’MM/DD/YYYY HH24:MI:SS’),
 to_date(’11/30/1996 23:59:59’,
 ’MM/DD/YYYY HH24:MI:SS’)) TSMedian
 FROM TSDEV.stockdemo_ts
 WHERE ticker=’ACME’;

This example might produce the following output:

TSMEDIAN

 68.5
1 row selected.
5-102 Oracle8i Time Series User’s Guide

TSMin
TSMin

Format
ORDSYS.TimeSeries.TSMin (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the lowest (minimum) of all non-null time series entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the minimum is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the minimum is to be calculated. If
endDate is specified, startDate must also be specified.

Usage
An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.

Example
Return the lowest closing price for stock ACME for the month of November 1996:

SELECT ORDSYS.TimeSeries.TSMin(close,
 to_date(’11/01/1996 00:00:00’,
Time Series Functions: Reference 5-103

TSMin
 ’MM/DD/YYYY HH24:MI:SS’),
 to_date(’11/30/1996 23:59:59’,
 ’MM/DD/YYYY HH24:MI:SS’)) TSMin
 FROM TSDEV.stockdemo_ts
 WHERE ticker=’ACME’;

This example might produce the following output:

TSMIN

 59
1 row selected.
5-104 Oracle8i Time Series User’s Guide

TSMinN
TSMinN

Format
ORDSYS.TimeSeries.TSMinN (

ts ORDSYS.ORDTNumSeriesIOTRef,

NumValues INTEGER,

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumTab;

Description
Given an input ORDTNumSeries, a number of values to return, and optionally
starting and ending dates, returns an ORDTNumTab with the specified number
(NumValues) of the bottom (lowest) values.

Parameters

ts
The input time series.

NumValues
Number of values to return.

startDate
Starting date within the time series for which the bottom values are to be calculated.
If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the bottom values are to be calculated.
If endDate is specified, startDate must also be specified.

Usage
An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.
Time Series Functions: Reference 5-105

TSMinN
■ NumValues is zero (0) or negative.

Example
Return the 10 lowest closing prices for stock ACME for the month of November
1996:

SELECT * FROM THE(SELECT CAST(
 ORDSYS.TimeSeries.TSMinN(close, 10,
 to_date(’11011996’,’MMDDYYYY’),
 to_date(’11301996’,’MMDDYYYY’))
 as ORDSYS.ORDTNumTab)
 FROM TSDEV.stockdemo_ts
 WHERE ticker =’ACME’);

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 59
04-NOV-96 60
05-NOV-96 61
06-NOV-96 62
07-NOV-96 63
08-NOV-96 64
11-NOV-96 65
12-NOV-96 66
13-NOV-96 67
14-NOV-96 68
10 rows selected.
5-106 Oracle8i Time Series User’s Guide

TSMultiply
TSMultiply

Format
ORDSYS.TimeSeries.TSMultiply (

[tsname VARCHAR2,]

ts1 ORDSYS.ORDTNumSeriesIOTRef,

ts2 ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.TSMultiply (

[tsname VARCHAR2,]

ts1 ORDSYS.ORDTNumSeriesIOTRef,

k NUMBER

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the multiplication of the first
parameter by the second parameter.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts1
The time series (or first time series) whose elements are to be multiplied by either
the corresponding elements in the second time series or a constant.
Time Series Functions: Reference 5-107

TSMultiply
ts2
The time series whose elements are to be multiplied by corresponding elements in
the first time series.

k
A constant to be multiplied by corresponding elements in the first time series.

startDate
Starting date within the time series for which the multiplication is to be performed.
If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the multiplication is to be performed.
If endDate is specified, startDate must also be specified.

Usage
The function performs a pairwise multiplication operation on each element of the
time series (or first time series) by the corresponding element in the second time
series or by a constant. This operation determines the value of each element of the
returned time series. For example:

■ If two time series contain daily trade volumes for two stocks, each element of
the returned time series contains the result of multiplying the volume in the
first time series by the volume in the second time series for that day.

■ If a time series (ts1) contains closing prices for a stock and if a constant (k) of 2 is
specified, each element of the returned time series contains the closing price of
ts1 multiplied by 2.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these two
time series.

An exception is returned if one or more of the following conditions are true:

■ An input time series is null.

■ The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

■ endDate is earlier than startDate.
5-108 Oracle8i Time Series User’s Guide

TSMultiply
Example
Multiply the high price for stock ACME by the low price for stock FUNCO for each
trading day from 14-Nov-1996 through 14-Dec-1996:

CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
startDate date;
endDate date;
dummyval INTEGER;

BEGIN

 startDate := TO_DATE(’11/14/1996’);
 endDate := TO_DATE(’12/14/1996’);
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TSMultiply(ts1.high, ts2.low, startDate, endDate),
 ’TSMultiply Results’) INTO dummyval
 FROM TSDEV.stockdemo_ts ts1, TSDEV.stockdemo_ts ts2
 WHERE ts1.ticker=’ACME’ and ts2.ticker=’FUNCO’;

END;
/

This example might produce the following output:

TSMultiply Results :

Calendar Data:
 Frequency = 4 (day)
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/14/1996 00:00:00 1647.03
Time Series Functions: Reference 5-109

TSMultiply
 11/15/1996 00:00:00 1668.8
 11/18/1996 00:00:00 1694.77
 11/19/1996 00:00:00 1717.2
 11/20/1996 00:00:00 1738.86
 11/21/1996 00:00:00 1764.16
 11/22/1996 00:00:00 1788.75
 11/25/1996 00:00:00 1809.56
 11/26/1996 00:00:00 1831.06
 11/27/1996 00:00:00 1849.38
 11/29/1996 00:00:00 1876.25
 12/02/1996 00:00:00 1910.4
 12/03/1996 00:00:00 1946.43
 12/04/1996 00:00:00 1969.64
 12/05/1996 00:00:00 2002.79
 12/06/1996 00:00:00 1995
 12/09/1996 00:00:00 2020.45
 12/10/1996 00:00:00 2046.8
 12/11/1996 00:00:00 2044.5
 12/12/1996 00:00:00 2060.08
 12/13/1996 00:00:00 2082.6

5-110 Oracle8i Time Series User’s Guide

TSProd
TSProd

Format
ORDSYS.TimeSeries.TSProd (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the product (result of multiplication) of all non-null
time series entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the product is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the product is to be calculated. If
endDate is specified, startDate must also be specified.

Usage
An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.

Example
Return the product resulting from multiplying the daily closing prices for stock
ACME for the month of November 1996. (This example is not very plausible, but is
presented merely to illustrate the syntax.)
Time Series Functions: Reference 5-111

TSProd
SELECT ORDSYS.TimeSeries.TSProd(close,
 to_date(’11/01/1996 00:00:00’,
 ’MM/DD/YYYY HH24:MI:SS’),
 to_date(’11/30/1996 23:59:59’,
 ’MM/DD/YYYY HH24:MI:SS’)) TSProd
 FROM TSDEV.stockdemo_ts
 WHERE ticker=’ACME’;

This example might produce the following output:

TSPROD

4.8177E+36
1 row selected.
5-112 Oracle8i Time Series User’s Guide

TSStdDev
TSStdDev

Format
ORDSYS.TimeSeries.TSStdDev (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the standard deviation of all non-null time series
entries. (This function returns a value that is the square root of the value returned
by the TSVar function.)

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the standard deviation is to be
calculated. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the standard deviation is to be
calculated. If endDate is specified, startDate must also be specified.

Usage
If the date range refers to a time series with fewer than two timestamps, a null is
returned.

An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.
Time Series Functions: Reference 5-113

TSStdDev
Example
Return the average, variance, and standard deviation of the closing price of stock
ACME:

--
-- Compute various aggregate statistics.
--
SELECT ORDSYS.TimeSeries.TSAvg(close), ORDSYS.TimeSeries.TSVariance(close),
ORDSYS.TimeSeries.TSStdDev(close)
 FROM TSDEV.stockdemo_ts
 WHERE ticker=’ACME’;

This example might produce the following output:

ORDSYS.TIM ORDSYS.TIM ORDSYS.TIM
---------- ---------- ----------
 79 143.5 11.9791486
1 row selected.
5-114 Oracle8i Time Series User’s Guide

TSSubtract
TSSubtract

Format
ORDSYS.TimeSeries.TSSubtract (

[tsname VARCHAR2,]

ts1 ORDSYS.ORDTNumSeriesIOTRef,

ts2 ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.TSSubtract (

[tsname VARCHAR2,]

ts1 ORDSYS.ORDTNumSeriesIOTRef,

k NUMBER

[,startDate DATE, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the subtraction of the second
parameter from the first parameter.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts1
The time series (or first time series) whose elements are to be decreased either by
corresponding elements in the second time series or by a constant.
Time Series Functions: Reference 5-115

TSSubtract
ts2
The time series whose elements are to be subtracted from corresponding elements
in the first time series.

k
A constant to be subtracted from corresponding elements in the first time series.

startDate
Starting date within the time series for which the subtraction is to be performed. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the subtraction is to be performed. If
endDate is specified, startDate must also be specified.

Usage
The function performs a pairwise subtraction operation on each element of ts1,
decreasing it by either the corresponding element in ts2 or by k. This operation
determines the value of each element of the returned time series. For example:

■ If two time series contain daily trade volumes for two stocks, each element of
the returned time series contains the result of subtracting the ts2 volume from
the ts1 volume for that day.

■ If a time series (ts1) contains closing prices for a stock and if a constant (k) of 1 is
specified, each element of the returned time series contains the closing price of
ts1 decreased by 1.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these two
time series.

An exception is returned if one or more of the following conditions are true:

■ An input time series is null.

■ The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

■ endDate is earlier than startDate.

Example
Subtract the low price for stock FUNCO from the high price for stock ACME for
each trading day from 14-Nov-1996 through 14-Dec-1996:
5-116 Oracle8i Time Series User’s Guide

TSSubtract
CONNECT TSUSER/TSUSER
SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

DECLARE
tstCal ORDSYS.ORDTCalendar;
startDate date;
endDate date;
dummyval INTEGER;

BEGIN

 startDate := TO_DATE(’11/14/1996’);
 endDate := TO_DATE(’12/14/1996’);
 SELECT ORDSYS.TimeSeries.Display(
 ORDSYS.TimeSeries.TSSubtract(ts1.high, ts2.low, startDate, endDate),
 ’TSSubtract Results’) INTO dummyval
 FROM TSDEV.stockdemo_ts ts1, TSDEV.stockdemo_ts ts2
 WHERE ts1.ticker=’ACME’ and ts2.ticker=’FUNCO’;

END;
/

This example might produce the following output:

TSSubtract Results :

Calendar Data:
 Frequency = 4 (day)
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/14/1996 00:00:00 45.13
 11/15/1996 00:00:00 46.16
 11/18/1996 00:00:00 47.13
 11/19/1996 00:00:00 48.15
 11/20/1996 00:00:00 49.18
Time Series Functions: Reference 5-117

TSSubtract
 11/21/1996 00:00:00 50.16
 11/22/1996 00:00:00 51.15
 11/25/1996 00:00:00 52.19
 11/26/1996 00:00:00 53.22
 11/27/1996 00:00:00 54.29
 11/29/1996 00:00:00 55.25
 12/02/1996 00:00:00 56.12
 12/03/1996 00:00:00 56.97
 12/04/1996 00:00:00 57.98
 12/05/1996 00:00:00 58.87
 12/06/1996 00:00:00 60.25
 12/09/1996 00:00:00 61.23
 12/10/1996 00:00:00 62.2
 12/11/1996 00:00:00 63.5
 12/12/1996 00:00:00 64.59
 12/13/1996 00:00:00 65.6

5-118 Oracle8i Time Series User’s Guide

TSSum
TSSum

Format
ORDSYS.TimeSeries.TSSum (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the sum of all non-null time series entries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the sum is to be calculated. If startDate
is specified, endDate must also be specified.

endDate
Ending date within the time series for which the sum is to be calculated. If endDate
is specified, startDate must also be specified.

Usage
An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.

Example
Return the sum of the daily trading volumes for stock ACME for the month of
November 1996 (that is, the total ACME volume for the month):

SELECT ORDSYS.TimeSeries.TSSum(volume,
Time Series Functions: Reference 5-119

TSSum
 to_date(’11/01/1996 00:00:00’,
 ’MM/DD/YYYY HH24:MI:SS’),
 to_date(’11/30/1996 23:59:59’,
 ’MM/DD/YYYY HH24:MI:SS’)) TSSum
 FROM TSDEV.stockdemo_ts
 WHERE ticker=’ACME’;

This example might produce the following output:

TSSUM

 20000
1 row selected.
5-120 Oracle8i Time Series User’s Guide

TSVariance
TSVariance

Format
ORDSYS.TimeSeries.TSVariance (

ts ORDSYS.ORDTNumSeriesIOTRef

[,startDate DATE, endDate DATE]

) RETURN NUMBER;

Description
Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the variance of all non-null time series entries. (This
function is analogous to the SQL group function VAR.)

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the variance is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the variance is to be calculated. If
endDate is specified, startDate must also be specified.

Usage
If the date range refers to a time series with fewer than two timestamps, a null is
returned.

An exception is returned if one or more of the following conditions are true:

■ The time series (ts) is null.

■ endDate is earlier than startDate.
Time Series Functions: Reference 5-121

TSVariance
Example
Return the average, variance, and standard deviation of the closing price of stock
ACME:

--
-- Compute various aggregate statistics.
--
SELECT ORDSYS.TimeSeries.TSAvg(close), ORDSYS.TimeSeries.TSVariance(close),
ORDSYS.TimeSeries.TSStdDev(close)
 FROM TSDEV.stockdemo_ts
 WHERE ticker=’ACME’;

This example might produce the following output:

ORDSYS.TIM ORDSYS.TIM ORDSYS.TIM
---------- ---------- ----------
 79 143.5 11.9791486
1 row selected.
5-122 Oracle8i Time Series User’s Guide

ValidateTS
ValidateTS

Format
ORDSYS.TimeSeries.ValidateTS(

ts IN ORDSYS.ORDTNumSeriesIOTRef,

outMesg OUT VARCHAR2,

loDateTab OUT ORDSYS.ORDTDateTab,

hiDateTab OUT ORDSYS.ORDTDateTab,

impreciseDateTab OUT ORDSYS.ORDTDateTab,

duplicateDateTab OUT ORDSYS.ORDTDateTab,

extraDateTab OUT ORDSYS.ORDTDateTab,

missingDateTab OUT ORDSYS.ORDTDateTab

) RETURN INTEGER;

or

ORDSYS.TimeSeries.ValidateTS(

ts IN ORDSYS.ORDTVarchar2SeriesIOTRef,

outMesg OUT VARCHAR2,

loDateTab OUT ORDSYS.ORDTDateTab,

hiDateTab OUT ORDSYS.ORDTDateTab,

impreciseDateTab OUT ORDSYS.ORDTDateTab,

duplicateDateTab OUT ORDSYS.ORDTDateTab,

extraDateTab OUT ORDSYS.ORDTDateTab,

missingDateTab OUT ORDSYS.ORDTDateTab

) RETURN INTEGER;
Time Series Functions: Reference 5-123

ValidateTS
Description
Checks whether a time series is valid, and if the time series is not valid, generates a
diagnostic message and tables with timestamps that are causing the time series to
be invalid.

Parameters

ts
The time series to be checked for validity.

outMesg
If the time series is invalid (if the return value = 0), contains a diagnostic message
describing any problems.

loDateTab
A table of dates before the starting date of the calendar associated with the time
series.

hiDateTab
A table of dates after the ending date of the calendar associated with the calendar.

impreciseDateTab
A table of the imprecise timestamps found in the time series.

duplicateDateTab
A table of the duplicate timestamps found in the time series.

extraDateTab
A table of dates that are included in the time series but that should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

missingDateTab
A table of dates that are excluded from the time series but that should be included
based on the calendar definition (for example, a Wednesday date that is not a
holiday in a Monday-Friday calendar and for which there is no data). Such dates
can be considered as "holes" in the time series.
5-124 Oracle8i Time Series User’s Guide

ValidateTS
Usage
The function returns one of the following values:

A time series is invalid if one or more of the following conditions are true:

■ The time series (ts) is null.

■ The time series (ts) does not have an associated calendar.

■ The calendar associated with the time series is invalid.

■ The timestamps are not sorted.

■ One or more timestamps are null, imprecise, or outside the date range of the
calendar.

■ One or more timestamps are included in the time series but should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

■ One or more timestamps are excluded from the time series but should be
included based on the calendar definition (for example, a Wednesday date that
is not a holiday in a Monday-Friday calendar and for which there is no data).
Such dates can be considered as "holes" in the time series.

Contrast this function with IsValidTS, which simply checks to determine if a time
series is valid.

You can use the DisplayValTS procedure (documented in this chapter) to display
the information returned by the ValidateTS function.

The ValidateTS function cannot be called from SQL. It must be called from PL/SQL
because of the OUT parameters.

Example
Use the IsValidTS and ValidateTS functions and the DisplayValTS procedure with
an invalid time series:

SET SERVEROUTPUT ON
ALTER SESSION SET NLS_DATE_FORMAT = ’MM/DD/YYYY HH24:MI:SS’;

Value Meaning

1 The time series is valid. No errors were found.

0 The time series in invalid.
Time Series Functions: Reference 5-125

ValidateTS
DECLARE
 numTS ORDSYS.ORDTNumSeries;
 tempVal integer;
 retIsValid integer;
 retValTS integer;
 loDateTab ORDSYS.ORDTDateTab := NULL;
 hiDateTab ORDSYS.ORDTDateTab := NULL;
 impDateTab ORDSYS.ORDTDateTab := NULL;
 dupDateTab ORDSYS.ORDTDateTab := NULL;
 extraDateTab ORDSYS.ORDTDateTab := NULL;
 missingDateTab ORDSYS.ORDTDateTab := NULL;
 outMesg varchar2(2000);

BEGIN

 -- Set the buffer size.
 DBMS_OUTPUT.ENABLE(100000);

 --
 -- NOTE: Here, an instance of the time series is materialized
 -- so that it could be modified to generate an invalid time series.
 --
 SELECT ORDSYS.TIMESERIES.GetSeries(ts.open) INTO numTS
 FROM tsdev.stockdemo_ts ts
 WHERE ts.ticker = ’ACME’;

 -- Example of validating a valid time series.
 SELECT ordsys.timeseries.display(numTS, ’A VALID TIME SERIES’) INTO tempVal
 FROM dual;
 retIsValid := ORDSYS.TIMESERIES.IsValidTS(numTS);
 retValTS := ORDSYS.TIMESERIES.ValidateTS(numTS, outMesg, loDateTab,
 hiDateTab, impDateTab, dupDateTab,
 extraDateTab, missingDateTab);
 DBMS_OUTPUT.PUT_LINE(’Value returned by IsValid = ’ || retIsValid);
 DBMS_OUTPUT.PUT_LINE(’Value returned by ValidateTS = ’ || retValTS);
 ORDSYS.TIMESERIES.DisplayValTS(retValTS, outMesg, loDateTab, hiDateTab,
 impDateTab, dupDateTab, extraDateTab, missingDateTab,
 ’Testing DisplayValTS’);
 DBMS_OUTPUT.NEW_LINE;

 -- For illustration let us first create an invalid timeseries.
 --
 -- Here we are adjusting the calendar’s minDate and maxDate to avoid
 -- getting a huge list of missing dates.
 --
5-126 Oracle8i Time Series User’s Guide

ValidateTS
 numTS.cal.minDate := TO_DATE(’10/28/1996’);
 numTS.cal.maxDate := TO_DATE(’01/05/1997’);

 -- Add Dates Before numTS.cal.minDate
 numTS.series(10).tstamp := numTS.cal.minDate - 1;
 numTS.series(11).tstamp := numTS.cal.minDate - 2;

 -- Add Dates Beyond numTS.cal.maxDate
 numTS.series(12).tstamp := numTS.cal.maxDate + 1;
 numTS.series(13).tstamp := numTS.cal.maxDate + 2;

 -- Add some null timestamps
 numTS.series(14).tstamp := NULL;
 numTS.series(15).tstamp := NULL;

 -- Add some imprecise dates (some are duplicated)
 numTS.series(17).tstamp := numTS.series(16).tstamp + 1/24;
 numTS.series(18).tstamp := numTS.series(16).tstamp + 15/24;

 -- Add some duplicate timestamps
 numTS.series(19).tstamp := numTS.series(18).tstamp;
 numTS.series(21).tstamp := numTS.series(20).tstamp;

 -- Add some extra dates in the middle
 numTS.series(37).tstamp := TO_DATE(’12/28/1996’);
 numTS.series(36).tstamp := TO_DATE(’12/29/1996’);

 -- Add some holes at the end
 numTS.series(numTS.series.count).tstamp := TO_DATE(’01/04/1997’);

 -- Example of validating an invalid time series.
 SELECT ordsys.timeseries.display(numTS, ’AN INVALID TIME SERIES’)
 INTO tempVal FROM dual;
 retIsValid := ORDSYS.TIMESERIES.IsValidTS(numTS);
 retValTS := ORDSYS.TIMESERIES.ValidateTS(numTS, outMesg,
 loDateTab, hiDateTab, impDateTab,
 dupDateTab, extraDateTab, missingDateTab);
 DBMS_OUTPUT.PUT_LINE(’Value returned by IsValid = ’ || retIsValid);
 DBMS_OUTPUT.PUT_LINE(’Value returned by ValidateTS = ’ || retValTS);
 ORDSYS.TIMESERIES.DisplayValTS(retValTS, outMesg, loDateTab, hiDateTab,
 impDateTab, dupDateTab, extraDateTab, missingDateTab,
 ’Testing DisplayValTS’);
END;
/

Time Series Functions: Reference 5-127

ValidateTS
This example might produce the following output:

A VALID TIME SERIES :

Name = OPEN ACME
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4 (day)
 MinDate = 01/01/1990 00:00:00
 MaxDate = 01/01/2001 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 11/14/1996 00:00:00 68
 11/15/1996 00:00:00 69
 11/18/1996 00:00:00 70
 11/19/1996 00:00:00 71
 11/20/1996 00:00:00 72
 11/21/1996 00:00:00 73
 11/22/1996 00:00:00 74
 11/25/1996 00:00:00 75
 11/26/1996 00:00:00 76
 11/27/1996 00:00:00 77
 11/29/1996 00:00:00 78
 12/02/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
5-128 Oracle8i Time Series User’s Guide

ValidateTS
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
 12/13/1996 00:00:00 88
 12/16/1996 00:00:00 89
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/23/1996 00:00:00 94
 12/24/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 12/31/1996 00:00:00 99

Value returned by IsValid = 1
Value returned by ValidateTS = 1

DisplayValTS: Testing DisplayValTS:

TS-SUC: the input time series is a valid time series

AN INVALID TIME SERIES :

Name = OPEN ACME
Calendar Data:
Calendar Name = BUSINESS-96
 Frequency = 4 (day)
 MinDate = 10/28/1996 00:00:00
 MaxDate = 01/05/1997 00:00:00
 patBits:
 0,1,1,1,1,1,0
 patAnchor = 01/07/1996 00:00:00
 onExceptions :
 offExceptions :
 11/28/1996 00:00:00 12/25/1996 00:00:00
Series Data:

 Date Value
 11/01/1996 00:00:00 59
 11/04/1996 00:00:00 60
 11/05/1996 00:00:00 61
Time Series Functions: Reference 5-129

ValidateTS
 11/06/1996 00:00:00 62
 11/07/1996 00:00:00 63
 11/08/1996 00:00:00 64
 11/11/1996 00:00:00 65
 11/12/1996 00:00:00 66
 11/13/1996 00:00:00 67
 10/27/1996 00:00:00 68
 10/26/1996 00:00:00 69
 01/06/1997 00:00:00 70
 01/07/1997 00:00:00 71
 72
 73
 11/22/1996 00:00:00 74
 11/22/1996 01:00:00 75
 11/22/1996 15:00:00 76
 11/22/1996 15:00:00 77
 11/29/1996 00:00:00 78
 11/29/1996 00:00:00 79
 12/03/1996 00:00:00 80
 12/04/1996 00:00:00 81
 12/05/1996 00:00:00 82
 12/06/1996 00:00:00 83
 12/09/1996 00:00:00 84
 12/10/1996 00:00:00 85
 12/11/1996 00:00:00 86
 12/12/1996 00:00:00 87
 12/13/1996 00:00:00 88
 12/16/1996 00:00:00 89
 12/17/1996 00:00:00 90
 12/18/1996 00:00:00 91
 12/19/1996 00:00:00 92
 12/20/1996 00:00:00 93
 12/29/1996 00:00:00 94
 12/28/1996 00:00:00 95
 12/26/1996 00:00:00 96
 12/27/1996 00:00:00 97
 12/30/1996 00:00:00 98
 01/04/1997 00:00:00 99

Value returned by IsValid = 0
Value returned by ValidateTS = 0

DisplayValTS: Testing DisplayValTS:
5-130 Oracle8i Time Series User’s Guide

ValidateTS
TS-WRN: the input time series has errors. See the message for details

message output by validateTS:

TS-ERR: the input time series is unsorted
TS-ERR: the time series has null timestamps
TS-ERR: the time series has timestamps < calendar minDate (refer LoDateTab)
TS-ERR: the time series has timestamps > calendar maxDate (refer HiDateTab)
TS-ERR: the time series has imprecise timestamps (refer impreciseDateTab)
TS-ERR: the time series has duplicate timestamps (refer DuplicateDateTab)

list of dates < calendar minDate - lowDateTab :

 10/26/1996 00:00:00 10/27/1996 00:00:00

list of dates > calendar maxDate - hiDateTab :

 01/06/1997 00:00:00 01/07/1997 00:00:00

list of imprecise dates - impreciseDateTab :

 11/22/1996 01:00:00 11/22/1996 15:00:00

list of duplicate dates - duplicateDateTab :

 11/22/1996 15:00:00 11/29/1996 00:00:00

ExtraDateTab :

 12/28/1996 00:00:00 12/29/1996 00:00:00 01/04/1997 00:00:00

MissingDateTab :

 10/28/1996 00:00:00 10/29/1996 00:00:00 10/30/1996 00:00:00
 10/31/1996 00:00:00 11/14/1996 00:00:00 11/15/1996 00:00:00
 11/18/1996 00:00:00 11/19/1996 00:00:00 11/20/1996 00:00:00
 11/21/1996 00:00:00 11/25/1996 00:00:00 11/26/1996 00:00:00
 11/27/1996 00:00:00 12/02/1996 00:00:00 12/23/1996 00:00:00
 12/24/1996 00:00:00 12/31/1996 00:00:00 01/01/1997 00:00:00
 01/02/1997 00:00:00 01/03/1997 00:00:00
Time Series Functions: Reference 5-131

ValidateTS
5-132 Oracle8i Time Series User’s Guide

Time Scaling Functions: Refe
6

Time Scaling Functions: Reference

The Oracle8i Time Series library consists of:

■ Data types (described in Section 2.3)

■ Calendar functions (described in Chapter 4)

■ Time series functions (described in Chapter 5)

■ Time scaling functions (described in this chapter)

■ Administrative tools procedures for creating time series schema objects
(described in Chapter 7)

Calendar functions are mainly used by product developers, such as ISVs, to develop
new time series functions and to administer and modify calendars.

Time series and time scaling functions and the administrative tools procedures are
used mainly by application developers.

Syntax notes:

■ The ORDSYS schema name and the package name must be used with the
function name, although public synonyms can be created to eliminate the need
for specifying the schema name (see Section 1.5). Each function is included in a
PL/SQL package, such as Calendar, TimeSeries, or TimeScale. The ORDSYS
schema name and the package name are included in the Format and in any
examples.

■ Function calls are not case sensitive, except for any quoted literal values. For
example, the following code line excerpts are valid and semantically identical:

select CAST(TimeSeries.ExtractTable(close) AS ORDTNumTab)
select cast(TIMESERIES.extracttable(close) as ordtnumtab)
select cast(TiMeSeRiEs.eXtRaCtTaBlE(ClosE) As ordtNUMtab)
rence 6-1

■ The syntax and examples show the reference-based interface (types
ORDTNumSeriesIOTRef and ORDTVarchar2SeriesIOTRef).

All time series and time scaling functions accept both references and instances as
parameters. (For example, an ORDTNumSeriesIOTRef parameter could also be
ORDTNumSeries.) All time series functions return instances. Thus, if you nest
functions, such as Cmax(Cmax(...), ...), the innermost nesting accepts a reference and
returns an instance, and any other functions in the nesting accept an instance and
return an instance.

For an explanation of the reference-based interface, see Section 2.7.2.
6-2 Oracle8i Time Series User’s Guide

ScaledownInterpolate
ScaledownInterpolate

Format
ORDSYS.TimeScale.ScaledownInterpolate(

[tsname VARCHAR2,]

inputTS ORDSYS.ORDTNumSeriesIOTRef,

targetCal ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series in which data values are interpolated between
values in the input time series. For example, in a semi-annual (January and July) to
month scaledown, if the data value for a January input timestamp is 100 and the
data value for the next (July) input timestamp is 160, the data values for the
monthly timestamps for January through June will be 100, 110, 120, 130, 140, and
150.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

inputTS
The input time series.

targetCal
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.
Time Scaling Functions: Reference 6-3

ScaledownInterpolate
endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Usage
inputTS cannot be an irregular time series (a time series with no associated
calendar).

An exception is returned for any of the following conditions:

■ The input time series (inputTS) or the specified calendar (targetCal) is null.

■ The frequency of the calendar on which the time series is based is shorter than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is day and the specified calendar’s frequency is month).

■ The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is month and the frequency of targetCal is week.)

■ Any data in the input time series has no corresponding interval in the target
time series.

■ An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example
Scale quarterly unemployment rate values down to monthly values, using
interpolation:

SELECT to_char(tstamp) tstamp, value
 FROM myts ts, tsdev.stockdemo_calendars cal,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaledownInterpolate(ts.unemployment_rate,
 VALUE(cal))
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.region=’1’ AND cal.name =’Monthly’;

Assume the following timestamps and values for unemployment_rate:
6-4 Oracle8i Time Series User’s Guide

ScaledownInterpolate
This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-JAN-98 4
01-FEB-98 3.72444444
01-MAR-98 3.47555556
01-APR-98 3.2
01-MAY-98 4.15604396
01-JUN-98 5.14395604
01-JUL-98 6.1
01-AUG-98 5.35869565
01-SEP-98 4.6173913
01-OCT-98 3.9
10 rows selected.

Note that only 10 rows are returned here, as opposed to 12 rows in the
ScaledownRepeat example. Interpolation cannot be performed for the months of
November and December in this example because the input time series does not
contain a timestamp for the following January.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.

Timestamp Value

01-Jan-1998 4.0

01-Apr-1998 3.2

01-Jul-1998 5.1

01-Oct-1998 3.9
Time Scaling Functions: Reference 6-5

ScaledownRepeat
ScaledownRepeat

Format
ORDSYS.TimeScale.ScaledownRepeat(

[tsname VARCHAR2,]

inputTS ORDSYS.ORDTNumSeriesIOTRef,

targetCal ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series in which data values in the input time series are
repeated. For example, in a semi-annual (January and July) to month scaledown, if
the data value for a January input timestamp is 100 and the data value for the next
(July) input timestamp is 160 (or any other value), the data values for the monthly
timestamps for January through June will all be 100.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

inputTS
The input time series.

targetCal
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.
6-6 Oracle8i Time Series User’s Guide

ScaledownRepeat
Usage
inputTS cannot be an irregular time series (a time series with no associated
calendar).

An exception is returned for any of the following conditions:

■ The input time series (inputTS) or the specified calendar (targetCal) is null.

■ The input time series (inputTS) does not have an associated calendar.

■ The frequency of the calendar on which the time series is based is shorter than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is day and the specified calendar’s frequency is month).

■ The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is month and the frequency of targetCal is week.)

■ Any data in the input time series has no corresponding interval in the target
time series.

■ An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example
Scale quarterly unemployment rate values down to monthly values, using
repetition:

SELECT to_char(tstamp) tstamp, value
 FROM myts ts, tsdev.stockdemo_calendars cal,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaledownRepeat(ts.unemployment_rate,
 VALUE(cal))
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.region=’1’ AND cal.name =’Monthly’;

Assume the following timestamps and values for unemployment_rate:
Time Scaling Functions: Reference 6-7

ScaledownRepeat
This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-JAN-98 4
01-FEB-98 4
01-MAR-98 4
01-APR-98 3.2
01-MAY-98 3.2
01-JUN-98 3.2
01-JUL-98 6.1
01-AUG-98 6.1
01-SEP-98 6.1
01-OCT-98 3.9
01-NOV-98 3.9
01-DEC-98 3.9
12 rows selected.

Note that 12 rows are returned here, as opposed to only 10 rows in the
ScaledownInterpolate example. Repetition is performed for the months of
November and December based on the October value, and is not dependent on the
value for the following January.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.

Timestamp Value

01-Jan-1998 4.0

01-Apr-1998 3.2

01-Jul-1998 5.1

01-Oct-1998 3.9
6-8 Oracle8i Time Series User’s Guide

ScaledownSplit
ScaledownSplit

Format
ORDSYS.TimeScale.ScaledownSplit(

[tsname VARCHAR2,]

inputTS ORDSYS.ORDTNumSeriesIOTRef,

targetCal ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series in which data values reflect the division of the
data value in the input time series by the number of associated timestamps in the
resulting time series. For example, in a semi-annual (January and July) to month
scaledown, if the data value for a January input timestamp is 100 and the data value
for the next (July) input timestamp is 160 (or any other value), the data values for
the monthly timestamps for January through June will all be 16.667 (1/6 of 100).

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

inputTS
The input time series.

targetCal
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.
Time Scaling Functions: Reference 6-9

ScaledownSplit
endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Usage
inputTS cannot be an irregular time series (a time series with no associated
calendar).

An exception is returned for any of the following conditions:

■ The input time series (inputTS) or the specified calendar (targetCal) is null.

■ The input time series (inputTS) does not have an associated calendar.

■ The frequency of the calendar on which the time series is based is shorter than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is day and the specified calendar’s frequency is month).

■ The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is month and the frequency of targetCal is week.)

■ Any data in the input time series has no corresponding interval in the target
time series.

■ An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example
Scale quarterly widget production values down to monthly values, dividing each
quarter’s value evenly among the three months in that quarter:

SELECT to_char(tstamp) tstamp, value
 FROM myts ts, tsdev.stockdemo_calendars cal,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaledownSplit(ts.widget_production,
 VALUE(cal))
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.region=’1’ AND cal.name =’Monthly’;

With quarterly widget_production values of 1000, 1500, 900, and 1200, this example
might produce the following output:
6-10 Oracle8i Time Series User’s Guide

ScaledownSplit
TSTAMP VALUE
--------- ----------
01-JAN-98 333.333333
01-FEB-98 333.333333
01-MAR-98 333.333333
01-APR-98 500
01-MAY-98 500
01-JUN-98 500
01-JUL-98 300
01-AUG-98 300
01-SEP-98 300
01-OCT-98 400
01-NOV-98 400
01-DEC-98 400
12 rows selected.

For example, one-third (333.33...) of the quarterly value of 1000 for 01-Jan is
returned as the monthly value for 01-Jan, 01-Feb, and 01-Mar.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.
Time Scaling Functions: Reference 6-11

ScaleupAvg
ScaleupAvg

Format
ORDSYS.TimeScale.ScaleupAvg(

[tsname VARCHAR2,]

inputTS ORDSYS.ORDTNumSeriesIOTRef,

targetCal ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the average value of each scaled group
of values.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

inputTS
The input time series.

targetCal
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.
6-12 Oracle8i Time Series User’s Guide

ScaleupAvg
options
Either or both of the following options:

■ ORDSYS.TimeScale.IgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

■ ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their
use.

Usage
An exception is returned for any of the following conditions:

■ The input time series (ts) or the specified calendar (targetCal) is null.

■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

■ The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

■ Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

■ An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example
Return the average closing prices for stock SAMCO for each month for the entire
time series:

SELECT to_char(tstamp) tstamp, value
 FROM tsdev.stockdemo_ts ts, tsdev.stockdemo_calendars cal,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupAvg(ts.close,
 VALUE(cal))
) AS ORDSYS.ORDTNumTab)) t
Time Scaling Functions: Reference 6-13

ScaleupAvg
 WHERE ts.ticker=’SAMCO’ and cal.name=’Monthly’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 39.83125
01-DEC-96 38.2738095
2 rows selected.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.
6-14 Oracle8i Time Series User’s Guide

ScaleupAvgX
ScaleupAvgX

Format
ORDSYS.TimeScale.ScaleupAvgX(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the average value of each scaled group
of values plus the immediately preceding source period.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.
Time Scaling Functions: Reference 6-15

ScaleupAvgX
options
Either or both of the following options:

■ ORDSYS.TimeScale.IgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

■ ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their
use.

Usage
ScaleupAvgX is like ScaleupAvg, except that ScaleupAvgX also considers the last
timestamp before the current scaling period. For example:

■ The monthly average closing price for January for a stock is the average of the
closing price on trading days in January and the last trading day in December.

■ The quarterly average unemployment rate for the first calendar quarter (scaling
up from monthly data) is the average of the rates for December, January,
February, and March.

An exception is returned for any of the following conditions:

■ The input time series (ts) or the specified calendar (targetCal) is null.

■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

■ The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

■ Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

■ An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.
6-16 Oracle8i Time Series User’s Guide

ScaleupAvgX
Example
Return the average closing prices for stock SAMCO for each month plus the last
trading day of the preceding month for the entire time series:

SELECT to_char(tstamp) tstamp, value
 FROM tsdev.stockdemo_ts ts, tsdev.stockdemo_calendars cal,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupAvgX(ts.close,
 VALUE(cal))
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.ticker=’SAMCO’ and cal.name=’Monthly’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 39.83125
01-DEC-96 38.2727273
2 rows selected.

Note that the value for 01-Dec-1996 in this example is different from the value in the
ScaleupAvg example, because this ScaleupAvgX value for 01-Dec considers the
closing price for the last timestamp in November. (There is no October data in the
stockdemo_ts table, and thus the 01-Nov values are the same in the ScaleupAvg and
ScaleupAvgX examples.)

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.
Time Scaling Functions: Reference 6-17

ScaleupCount
ScaleupCount

Format
ORDSYS.TimeScale.ScaleupCount(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the count of non-null timestamps in
each scaled group of values.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.
6-18 Oracle8i Time Series User’s Guide

ScaleupCount
options
Either or both of the following options:

■ ORDSYS.TimeScale.IgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

■ ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their
use.

Usage
An exception is returned for any of the following conditions:

■ The input time series (ts) or the specified calendar (targetCal) is null.

■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

■ The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

■ Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

■ An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example
Return the monthly count of daily closing prices for stock SAMCO for the period
01-Nov-1996 through 31-December 1996:

SELECT to_char(tstamp) tstamp, value
 FROM tsdev.stockdemo_ts ts, tsdev.stockdemo_calendars cal,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupCount(ts.close,
 VALUE(cal),
 to_date(’01-NOV-1996’,’DD-MON-YYYY’),
Time Scaling Functions: Reference 6-19

ScaleupCount
 to_date(’31-DEC-1996’,’DD-MON-YYYY’))
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.ticker=’SAMCO’ and cal.name=’Monthly’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 20
01-DEC-96 21
2 rows selected.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.
6-20 Oracle8i Time Series User’s Guide

ScaleupFirst
ScaleupFirst

Format
ORDSYS.TimeScale.ScaleupFirst(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the first non-null value of each scaled
group of values.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.
Time Scaling Functions: Reference 6-21

ScaleupFirst
options
Either or both of the following options:

■ ORDSYS.TimeScale.IgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

If IgnoreNulls (the default) is enabled, the first non-null value of the group is
returned (unless all values of the group are null, in which case a null is
returned). If IgnoreNullsOFF is enabled, the first value of the group is returned.

■ ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their
use.

Usage
An exception is returned for any of the following conditions:

■ The input time series (ts) or the specified calendar (targetCal) is null.

■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

■ The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

■ Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

■ An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example
Return the first closing prices for stock SAMCO for the months of November and
December of 1996:

SELECT to_char(tstamp) tstamp, value
 FROM tsdev.stockdemo_ts ts, tsdev.stockdemo_calendars cal,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
6-22 Oracle8i Time Series User’s Guide

ScaleupFirst
 ORDSYS.TimeScale.ScaleupFirst(ts.close,
 VALUE(cal),
 to_date(’01-NOV-1996’,’DD-MON-YYYY’),
 to_date(’31-DEC-1996’,’DD-MON-YYYY’))
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.ticker=’SAMCO’ and cal.name=’Monthly’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 41.875
01-DEC-96 38.125
2 rows selected.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.
Time Scaling Functions: Reference 6-23

ScaleupGMean
ScaleupGMean

Format
ORDSYS.TimeScale.ScaleupGMean(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the geometric mean of each scaled
group of values.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.
6-24 Oracle8i Time Series User’s Guide

ScaleupGMean
options
Either or both of the following options:

■ ORDSYS.TimeScale.IgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

■ ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their
use.

Usage
The geometric mean of each scaled group is computed by taking the sum of the
logarithms (base 10) of the values for the corresponding source period, and then
raising 10 to the power of the logarithm sum divided by the number of elements in
the corresponding source period. That is: POWER(10, log_sum/number_elements).

An exception is returned for any of the following conditions:

■ The input time series (ts) or the specified calendar (targetCal) is null.

■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

■ The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

■ Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

■ An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example
Return the geometric mean of closing prices for stock SAMCO for each month for
the entire time series:

SELECT to_char(tstamp) tstamp, value
 FROM tsdev.stockdemo_ts ts, tsdev.stockdemo_calendars cal,
Time Scaling Functions: Reference 6-25

ScaleupGMean
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupGMean(ts.close,
 VALUE(cal))
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.ticker=’SAMCO’ and cal.name=’Monthly’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 39.7833842
01-DEC-96 38.2719057
2 rows selected.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.
6-26 Oracle8i Time Series User’s Guide

ScaleupLast
ScaleupLast

Format
ORDSYS.TimeScale.ScaleupLast(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the last non-null value of each scaled
group of values.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.
Time Scaling Functions: Reference 6-27

ScaleupLast
options
Either or both of the following options:

■ ORDSYS.TimeScale.IgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

If IgnoreNulls (the default) is enabled, the last non-null value of the group is
returned (unless all values of the group are null, in which case a null is
returned). If IgnoreNullsOFF is enabled, the last value of the group is returned.

■ ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their
use.

Usage
An exception is returned for any of the following conditions:

■ The input time series (ts) or the specified calendar (targetCal) is null.

■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

■ The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

■ Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

■ An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example
Return the last closing prices for stock SAMCO for the months of November and
December of 1996:

SELECT to_char(tstamp) tstamp, value
 FROM tsdev.stockdemo_ts ts, tsdev.stockdemo_calendars cal,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
6-28 Oracle8i Time Series User’s Guide

ScaleupLast
 ORDSYS.TimeScale.ScaleupLast(ts.close,
 VALUE(cal),
 to_date(’01-NOV-1996’,’DD-MON-YYYY’),
 to_date(’31-DEC-1996’,’DD-MON-YYYY’))
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.ticker=’SAMCO’ and cal.name=’Monthly’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 38.25
01-DEC-96 39.75
2 rows selected.

Note that each timestamp reflects the first date of the month in the calendar
(following the convention illustrated in Table 2–3 in Section 2.2.2), and each value in
this case reflects the closing price on the last date for that month in the calendar.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.
Time Scaling Functions: Reference 6-29

ScaleupMax
ScaleupMax

Format
ORDSYS.TimeScale.ScaleupMax(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the maximum value of each scaled
group of values.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.
6-30 Oracle8i Time Series User’s Guide

ScaleupMax
options
Either or both of the following options:

■ ORDSYS.TimeScale.IgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

■ ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their
use.

Usage
An exception is returned for any of the following conditions:

■ The input time series (ts) or the specified calendar (targetCal) is null.

■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

■ The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

■ Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

■ An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example
Return the highest (maximum) closing prices for stock SAMCO for each month in
the entire time series:

SELECT to_char(tstamp) tstamp, value
 FROM tsdev.stockdemo_ts ts, tsdev.stockdemo_calendars cal,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupMax(ts.close,
 VALUE(cal))
) AS ORDSYS.ORDTNumTab)) t
Time Scaling Functions: Reference 6-31

ScaleupMax
 WHERE ts.ticker=’SAMCO’ and cal.name=’Monthly’;

This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 43.75
01-DEC-96 39.75
2 rows selected.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.
6-32 Oracle8i Time Series User’s Guide

ScaleupMin
ScaleupMin

Format
ORDSYS.TimeScale.ScaleupMin(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the minimum value of each scaled
group of values.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.
Time Scaling Functions: Reference 6-33

ScaleupMin
options
Either or both of the following options:

■ ORDSYS.TimeScale.IgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

■ ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their
use.

Usage
An exception is returned for any of the following conditions:

■ The input time series (ts) or the specified calendar (targetCal) is null.

■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

■ The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

■ Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

■ An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example
Return the lowest (minimum) closing prices for stock SAMCO for each month in the
entire time series:

SELECT to_char(tstamp) tstamp, value
 FROM tsdev.stockdemo_ts ts, tsdev.stockdemo_calendars cal,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupMin(ts.close,
 VALUE(cal))
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.ticker=’SAMCO’ and cal.name=’Monthly’;
6-34 Oracle8i Time Series User’s Guide

ScaleupMin
This example might produce the following output:

TSTAMP VALUE
--------- ----------
01-NOV-96 37.375
01-DEC-96 37.875
2 rows selected.

See also the Month function in Chapter 4 for an example of using a calendar-
creation function (in this case, Month) to perform scaling, as opposed to specifying
a stored calendar that has the desired frequency.
Time Scaling Functions: Reference 6-35

ScaleupSum
ScaleupSum

Format
ORDSYS.TimeScale.ScaleupSum(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the sum of each scaled group of values.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

options
Either or both of the following options:
6-36 Oracle8i Time Series User’s Guide

ScaleupSum
■ ORDSYS.TimeScale.IgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

■ ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their
use.

Usage
An exception is returned for any of the following conditions:

■ The input time series (ts) or the specified calendar (targetCal) is null.

■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

■ The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

■ Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

■ An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example
Return the sum of the daily trade volume for stock SAMCO for each month in the
time series:

SELECT to_char(tstamp) tstamp, value
 FROM tsdev.stockdemo_ts ts, tsdev.stockdemo_calendars cal,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupSum(ts.volume,
 VALUE(cal))
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.ticker=’SAMCO’ and cal.name=’Monthly’;

This example might produce the following output:
Time Scaling Functions: Reference 6-37

ScaleupSum
TSTAMP VALUE
--------- ----------
01-NOV-96 10207000
01-DEC-96 3719450
2 rows selected.

Note that the following example uses the Month function to produce the same
output. Using the Month function eliminates the need to have and specify a stored
calendar with a month frequency.

SELECT to_char(tstamp) tstamp, value
 FROM tsdev.stockdemo_ts ts,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupSum(ts.volume,
 ORDSYS.Calendar.Month())
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.ticker=’SAMCO’;
6-38 Oracle8i Time Series User’s Guide

ScaleupSumAnnual
ScaleupSumAnnual

Format
ORDSYS.TimeScale.ScaleupSumAnnual(

[tsname VARCHAR2,]

ts ORDSYS.ORDTNumSeriesIOTRef,

calendar ORDSYS.ORDTCalendar,

annualfactor

[, startDate DATE

, endDate DATE]

[,options]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the sum, expressed as an annual rate,
of each scaled group of values.

Parameters

tsname
Name of the returned time series. Specify this parameter if you need to assign a
name to the resulting time series, for example, to insert it into an object table.

ts
The input time series.

calendar
The calendar to be used for the scaling.

annualfactor
The factor by which to multiply the sum of each scaled group in order to obtain the
desired annualized value. You must specify a value, either null or not null. If you
specify a null value, a default value is used depending on the frequency of calendar,
as shown in Table 6–1.
Time Scaling Functions: Reference 6-39

ScaleupSumAnnual
startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

options
Either or both of the following options:

■ ORDSYS.TimeScale.IgnoreNulls (default) | IgnoreNullsOFF. The default is to
ignore null input values in performing the scaleup.

■ ORDSYS.TimeScale.DiscardError (default) | DiscardErrorOFF. The default is to
raise an exception if any data in the input time series has no corresponding
interval in the target time series.

See Section 2.11.2 for detailed information about these options and examples of their
use.

Usage
ScaleupSumAnnual is like ScaleupSum, except that ScaleupSumAnnual converts
each scaled group to an annual rate by multiplying the scaled group’s value by the
annualfactor value.

Table 6–1 annualfactor Default Values for ScaleupSumAnnual

Frequency annualfactor Default Value

second 31536000

minute 525600

hour 8760

day 365

week 52

month 12

quarter 4

year 1

10-day 36

semi-monthly 24

semi-annual 2
6-40 Oracle8i Time Series User’s Guide

ScaleupSumAnnual
The pattern and exceptions lists of calendar are not considered.

An exception is returned for any of the following conditions:

■ The input time series (ts) or the specified calendar (targetCal) is null.

■ The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

■ The frequency of the calendar on which the time series is based is incompatible
for scaling to the frequency of the specified calendar because the smaller
interval does not divide evenly into the larger interval. (For example, the time
series calendar’s frequency is week and the frequency of targetCal is month.)

■ Any data in the input time series has no corresponding interval in the target
time series and DiscardErrorOFF is not specified.

■ An interval of the input time series straddles two or more intervals of the target
scaling calendar.

For an explanation of concepts related to time scaling, see Section 2.11.

Example
Return the sum of the daily trade volume for stock SAMCO for each month in the
entire time series, with each month’s value expressed as if it were an annual value.
In this case, each monthly value is computed and then multiplied by 12, the default
annualfactor for monthly data.

SELECT to_char(tstamp) tstamp, value
 FROM tsdev.stockdemo_ts ts, tsdev.stockdemo_calendars cal,
 TABLE (CAST(ORDSYS.TimeSeries.ExtractTable(
 ORDSYS.TimeScale.ScaleupSumAnnual(ts.volume,
 VALUE(cal),
 NULL)
) AS ORDSYS.ORDTNumTab)) t
 WHERE ts.ticker=’SAMCO’ and cal.name=’Monthly’;

This example might produce the following output. (Note that each value is 12 times
the corresponding value in the ScaleupAvg example.)

TSTAMP VALUE
--------- ----------
01-NOV-96 122484000
01-DEC-96 44633400
2 rows selected.
Time Scaling Functions: Reference 6-41

ScaleupSumAnnual
See also the ScaleupSum function in this chapter and the Month function in
Chapter 4 for examples of using a calendar-creation function (in this case, Month) to
perform scaling, as opposed to specifying a stored calendar that has the desired
frequency.
6-42 Oracle8i Time Series User’s Guide

Administrative Tools Procedures: Refe
7

Administrative Tools Procedures:

Reference

The Oracle8i Time Series library consists of:

■ Data types (described in Section 2.3)

■ Calendar functions (described in Chapter 4)

■ Time series functions (described in Chapter 5)

■ Time scaling functions (described in Chapter 6)

■ Administrative tools procedures for creating time series schema objects
(described in this chapter)

The procedures described in this chapter simplify the task of creating the schema
objects (tables, views, triggers, and so forth) required for using Oracle8i Time Series.

For an overview of these procedures and requirements for using them, see
Section 2.12. For an example showing the use of several procedures to create a time
series group, see Section 3.1. Many of these procedures are used in the quick-start
demo, described in Section 1.6.1, and in the retrofit.sql file included with the retrofit
demo.

Syntax notes:

■ The ORDSYS schema name and the package name must be used with the
procedure name, although public synonyms can be created to eliminate the

Note: This chapter documents procedures, not functions.
Procedures do not return values
rence 7-1

need for specifying the schema name (see Section 1.5). Each procedure is
included in a PL/SQL package named TSTools. The ORDSYS schema name and
the package name are included in the Format and in any examples.

■ Procedure and function calls are not case sensitive, except for any quoted literal
values. For example, the following code line excerpts are valid and semantically
identical:

select CAST(TimeSeries.ExtractTable(close) AS ORDTNumTab)
select cast(TIMESERIES.extracttable(close) as ordtnumtab)
select cast(TiMeSeRiEs.eXtRaCtTaBlE(ClosE) As ordtNUMtab)
7-2 Oracle8i Time Series User’s Guide

Add_Existing_Column
Add_Existing_Column

Format
ORDSYS.TSTools.Add_Existing_Column(

colname IN VARCHAR2

);

Description
Adds a column attribute from an existing flat table to a time series.

Parameters

colname
The name of the column attribute to be added to the time series.

Usage
Use this procedure when you are creating a time series from an existing flat table.
To use this procedure, you must first call the Set_Flat_Attributes procedure and set
detail_table_exists to 1.

An exception is raised if Begin_Create_TS_Group has not been called to initialize
the context. Standard Oracle exceptions are raised if the number attributes are
invalid.

If an exception is raised, call Get_Status to determine if the exception canceled an
ongoing Begin_Create_TS_Group sequence.

Example
Create a time series group, specify the appropriate existing tables, and add existing
columns to the time series group. (This example is taken in slightly modified form
from the retrofit.sql file in the retrofit demo directory.)

DECLARE

BEGIN

--
-- Establish ’stockdemo_ts’ as the time series group name for purposes of the
Administrative Tools Procedures: Reference 7-3

Add_Existing_Column
-- administrative tools procedures.
--
 ORDSYS.TSTools.Begin_Create_TS_Group(’stockdemo_ts’,’flat’);

 --
 -- Assert that the detail, map, and calendar tables exist,
 -- and define the names for these tables.
 -- Note that these tables are defined in a separate file.
 -- Explicitly set the name of the relational view.
 -- Explicitly set the names of the timestamp and time series name
 -- columns.
 --

 ordsys.tstools.set_flat_attributes(
 detail_table_name => ’stockdemo’,
 detail_table_exists => 1,
 map_table_name => ’stockdemo_metadata’,
 map_table_exists => 1,
 cal_table_name => ’stockdemo_calendars’,
 cal_table_exists => 1,
 tstamp_colname => ’tstamp’,
 tsname_colname => ’ticker’,
 rel_view_name => ’stockdemo_sv’);

 --
 -- Tell TSTools the names of existing time series columns
 -- (as defined for the table stockdemo).
 --

 ORDSYS.TSTools.Add_Existing_Column(’open’);
 ORDSYS.TSTools.Add_Existing_Column(’high’);
 ORDSYS.TSTools.Add_Existing_Column(’low’);
 ORDSYS.TSTools.Add_Existing_Column(’close’);
 ORDSYS.TSTools.Add_Existing_Column(’volume’);

-- End the specification of schema objects and create the objects.

 ORDSYS.TSTools.End_Create_TS_Group;

 exception
 when others then
 begin
 ORDSYS.TSTools.Cancel_Create_TS_Group;
 raise;
 end;
7-4 Oracle8i Time Series User’s Guide

Add_Existing_Column
END;
/

Administrative Tools Procedures: Reference 7-5

Add_Integer_Column
Add_Integer_Column

Format
ORDSYS.TSTools.Add_Integer_Column(

colname IN VARCHAR2

);

Description
Adds an integer column attribute to an ongoing flat time series creation
specification.

Parameters

colname
The name of the column attribute to be added to the time series.

Usage
An exception is raised if Begin_Create_TS_Group has not been called to initialize
the context. Standard Oracle exceptions are raised if the number attributes are
invalid.

An exception returned by this procedure might clear the package state. If the
package state is cleared, the ongoing Begin_Create_TS_Group sequence is canceled,
and you must reissue the complete sequence of administrative tools procedure calls.
If the package state is not cleared, the ongoing Begin_Create_TS_Group sequence is
not canceled, and you can reissue just the most recent procedure call. You can call
Get_Status to determine if an exception cleared the package state.

Example
The following example specifies a flat-model time series named MYTS and adds
one VARCHAR2 column (ticker), four NUMBER columns (open, close, low, and high),
and one INTEGER column (volume). The End_Create_TS_Group call ends the
specification of the time series and creates the schema objects.

DECLARE

BEGIN
7-6 Oracle8i Time Series User’s Guide

Add_Integer_Column
 ORDSYS.TSTools.Begin_Create_TS_Group(’MYTS’,’flat’);

 ORDSYS.TSTools.Add_Varchar2_Column(’ticker’,10);
 ORDSYS.TSTools.Add_Number_Column(’open’);
 ORDSYS.TSTools.Add_Number_Column(’close’);
 ORDSYS.TSTools.Add_Number_Column(’low’);
 ORDSYS.TSTools.Add_Number_Column(’high’);
 ORDSYS.TSTools.Add_Integer_Column(’volume’);

 ORDSYS.TSTools.End_Create_TS_Group;
END;
/

Administrative Tools Procedures: Reference 7-7

Add_Number_Column
Add_Number_Column

Format
ORDSYS.TSTools.Add_Number_Column(

colname IN VARCHAR2

[,colprecision IN NUMBER,

colscale IN NUMBER]

);

Description
Adds a number column attribute to an ongoing flat time series creation
specification.

Parameters

colname
The name of the column attribute to be added to the time series.

colprecision
The precision of the column attribute, that is, the maximum number of digits
permitted to the left of the decimal point. Must be between 1 and 38. If colprecision is
specified, colscale must also be specified.

colscale
The scale of the column attribute, that is, the number of digits to the right of the
decimal point. Must be between -84 and 127. If colscale is specified, colprecision must
also be specified.

Usage
If you specify colprecision, you must also specify colscale. If you specify either
colprecision or colscale, you cannot omit the other parameter or specify a null for it.
For example, to specify that close (closing price) can have up to 4 digits to the left of
the decimal point and 3 digits to the right of the decimal point, specify the
following:

ORDSYS.TSTools.Add_Number_Column(’close’,4,3);
7-8 Oracle8i Time Series User’s Guide

Add_Number_Column
For this definition, the following close values would be valid: 127.25, 9.875, 53, and
27.5.

For this definition, the following close values would be invalid: 12345.6 (exceeds
colprecision) and 6.1234 (exceeds colscale).

An exception is raised if Begin_Create_TS_Group has not been called to initialize
the context. Standard Oracle exceptions are raised if the number attributes are
invalid.

An exception returned by this procedure might clear the package state. If the
package state is cleared, the ongoing Begin_Create_TS_Group sequence is canceled,
and you must reissue the complete sequence of administrative tools procedure calls.
If the package state is not cleared, the ongoing Begin_Create_TS_Group sequence is
not canceled, and you can reissue just the most recent procedure call. You can call
Get_Status to determine if an exception cleared the package state.

Example
The following example specifies a flat-model time series named MYTS and adds
one VARCHAR2 column (ticker), four NUMBER columns (open, close, low, and high),
and one INTEGER column (volume). The End_Create_TS_Group call ends the
specification of the time series and creates the schema objects.

DECLARE

BEGIN

 ORDSYS.TSTools.Begin_Create_TS_Group(’MYTS’,’flat’);

 ORDSYS.TSTools.Add_Varchar2_Column(’ticker’,10);
 ORDSYS.TSTools.Add_Number_Column(’open’);
 ORDSYS.TSTools.Add_Number_Column(’close’);
 ORDSYS.TSTools.Add_Number_Column(’low’);
 ORDSYS.TSTools.Add_Number_Column(’high’);
 ORDSYS.TSTools.Add_Integer_Column(’volume’);

 ORDSYS.TSTools.End_Create_TS_Group;
END;
/

Administrative Tools Procedures: Reference 7-9

Add_Varchar2_Column
Add_Varchar2_Column

Format
ORDSYS.TSTools.Add_Varchar2_Column(

colname IN VARCHAR2,

length IN INTEGER

);

Description
Adds a VARCHAR2 column attribute to an ongoing flat time series creation
specification.

Parameters

colname
The name of the column attribute to be added to the time series.

length
The name of the column attribute to be added to the time series. Must be between 1
and 4000.

Usage
An exception is raised if Begin_Create_TS_Group has not been called to initialize
the context. Standard Oracle exceptions are raised if the number attributes are
invalid.

An exception returned by this procedure might clear the package state. If the
package state is cleared, the ongoing Begin_Create_TS_Group sequence is canceled,
and you must reissue the complete sequence of administrative tools procedure calls.
If the package state is not cleared, the ongoing Begin_Create_TS_Group sequence is
not canceled, and you can reissue just the most recent procedure call. You can call
Get_Status to determine if an exception cleared the package state.

Example
The following example specifies a flat-model time series named MYTS and adds
one VARCHAR2 column (ticker), four NUMBER columns (open, close, low, and high),
7-10 Oracle8i Time Series User’s Guide

Add_Varchar2_Column
and one INTEGER column (volume). The End_Create_TS_Group call ends the
specification of the time series and creates the schema objects.

DECLARE

BEGIN

 ORDSYS.TSTools.Begin_Create_TS_Group(’MYTS’,’flat’);

 ORDSYS.TSTools.Add_Varchar2_Column(’ticker’,10);
 ORDSYS.TSTools.Add_Number_Column(’open’);
 ORDSYS.TSTools.Add_Number_Column(’close’);
 ORDSYS.TSTools.Add_Number_Column(’low’);
 ORDSYS.TSTools.Add_Number_Column(’high’);
 ORDSYS.TSTools.Add_Integer_Column(’volume’);

 ORDSYS.TSTools.End_Create_TS_Group;
END;
/

Administrative Tools Procedures: Reference 7-11

Begin_Create_TS_Group
Begin_Create_TS_Group

Format
ORDSYS.TSTools.Begin_Create_TS_Group(

name IN VARCHAR2,

storage_model IN VARCHAR2

);

Description
Initiates the context for creating a time series group (the schema objects for a time
series).

Parameters

name
Name of the time series group to be created.

storage_model
Storage model for the time series. Must be ’FLAT’ or ’OBJECT’ (not case sensitive).

Usage
To avoid possible naming conflicts, name should be different from any other object
names under the current schema. (For example, user SCOTT should not create a
time series group named EMP because there is already a table with that name.)

This procedure returns an error if the context for creating time series schema objects
is active, that is, has been initiated and not canceled or closed.

Example
The following example specifies a flat-model time series named MYTS and adds
one VARCHAR2 column (ticker), four NUMBER columns (open, close, low, and high),
and one INTEGER column (volume). The End_Create_TS_Group call ends the
specification of the time series and creates the schema objects.

DECLARE

BEGIN
7-12 Oracle8i Time Series User’s Guide

Begin_Create_TS_Group
 ORDSYS.TSTools.Begin_Create_TS_Group(’MYTS’,’flat’);

 ORDSYS.TSTools.Add_Varchar2_Column(’ticker’,10);
 ORDSYS.TSTools.Add_Number_Column(’open’);
 ORDSYS.TSTools.Add_Number_Column(’close’);
 ORDSYS.TSTools.Add_Number_Column(’low’);
 ORDSYS.TSTools.Add_Number_Column(’high’);
 ORDSYS.TSTools.Add_Integer_Column(’volume’);

 ORDSYS.TSTools.End_Create_TS_Group;
END;
/

Administrative Tools Procedures: Reference 7-13

Cancel_Create_TS_Group
Cancel_Create_TS_Group

Format
ORDSYS.TSTools.Cancel_Create_TS_Group;

Description
Cancels the creation of a time series group, that is, cancels the context initiated by
the Begin_Create_TS_Group procedure.

Parameters
None.

Usage
This procedure clears all package state information that was created by
Begin_Create_TS_Group and other Oracle8i Time Series administrative tools
procedures. To create a time series group, you must reissue the complete sequence
of administrative tools procedure calls.

Example
The following example cancels the creation of the current time series group if an
exception occurs:

...
 ORDSYS.TSTools.End_Create_TS_Group;
 exception
 when others then
 begin
 ORDSYS.TSTools.Cancel_Create_TS_Group;
 raise;
 end;
...
7-14 Oracle8i Time Series User’s Guide

Close_Log
Close_Log

Format
ORDSYS.TSTools.Close_Log;

Description
Closes the log file that had been opened by the Open_Log procedure.

Parameters
None.

Usage
This procedure is equivalent to calling UTL_FILE.FCLOSE. For information on the
PL/SQL file I/O procedure UTL_FILE, see the Oracle8i Application Developer’s
Reference - Packages manual.

The log file (Open_Log...Close_Log) and the debug display (Trace_On...Trace_Off)
contain the same information.

Example
The following example opens a log file named ts1.log in the logdir directory, creates
time series schema objects, and closes the log file:

 ...
 ORDSYS.TSTools.Open_Log(’logdir’,’ts1.log’);
 ORDSYS.TSTools.Begin_Create_TS_Group(’myts’,’flat’);
 ...
 ORDSYS.TSTools.End_Create_TS_Group;
 ORDSYS.TSTools.Close_Log;
 ...
Administrative Tools Procedures: Reference 7-15

Display_Attributes
Display_Attributes

Format
ORDSYS.TSTools.Display_Attributes:

Description
Displays information about the time series group being created.

Parameters
None.

Usage
This procedure displays the current values of all attributes that can be set using the
Set_xxx function (Set_Flat_Attributes or Set_Object_Attributes) appropriate for the
current type of time series group.

The output is displayed to SERVEROUTPUT.

Example
The following example displays the attributes for the time series being created:

ORDSYS.TSTools.Display_Attributes;

This example might produce the following output:

current settings for begin_create_ts_group
NAME = MYTS
STORAGE_MODEL = FLAT
SCHEMA = TSDEV
REL_VIEW_NAME = MYTS_RVW
DETAIL_TABLE_NAME = MYTS_TAB
DETAIL_TABLE_ATTR = ORGANIZATION INDEX
DETAIL_TABLE_PK = MYTS_TPK
DETAIL_TABLE_EXISTS = 0
TSTAMP_COLNAME = TSTAMP
TSNAME_COLNAME = TSNAME
TSNAME_LENGTH = 25
MAP_TABLE_NAME = MYTS_MAP
MAP_TABLE_ATTR =
MAP_TABLE_PK = MYTS_MPK
7-16 Oracle8i Time Series User’s Guide

Display_Attributes
MAP_TABLE_EXISTS = 0
CAL_TABLE_NAME = MYTS_CAL
CAL_TABLE_ATTR =
CAL_TABLE_PK = MYTS_CPK
CAL_TABLE_EXISTS = 0
REL_VIEW_TRIGGER_NAME = MYTS_TR

COLUMN NAME = TICKER
 TYPE = VARCHAR2
 LENGTH = 10
 PRECISION =
 SCALE =
COLUMN NAME = OPEN
 TYPE = NUMBER
 LENGTH = 22
 PRECISION =
 SCALE =
COLUMN NAME = CLOSE
 TYPE = NUMBER
 LENGTH = 22
 PRECISION =
 SCALE =
COLUMN NAME = LOW
 TYPE = NUMBER
 LENGTH = 22
 PRECISION =
 SCALE =
COLUMN NAME = HIGH
 TYPE = NUMBER
 LENGTH = 22
 PRECISION =
 SCALE =
COLUMN NAME = VOLUME
 TYPE = NUMBER
 LENGTH = 22
 PRECISION =
 SCALE =
Administrative Tools Procedures: Reference 7-17

Drop_TS_Group
Drop_TS_Group

Format
ORDSYS.TSTools.Drop_TS_Group(

name IN VARCHAR2

[, schema IN VARCHAR2]

);

Description
Deletes the time series group definition and views associated with it. However, the
underlying tables (calendar tables, detail data tables, and so on) are not deleted.

Parameters

name
Name of the time series group to be deleted.

schema
The schema (user) where the name objects are located. The default is the current
schema.

Usage
Contrast this procedure with Drop_TS_Group_All, which deletes all the underlying
tables. For example, if you have an existing time series table filled with data and
want to add a column, you could use Drop_TS_Group as follows:

1. Use Drop_TS_Group.

2. Add the desired column to the underlying table (ALTER TABLE...ADD...).

3. Add data for the new column (INSERT...).

4. Create the time series schema objects again, including the new column.

If an attempt to delete a specific object fails, an exception is raised and the
procedure attempts to delete any remaining appropriate objects.

To delete time series schema objects that were not created by the current user, you
must have been granted the DBA or TIMESERIES_DBA role.
7-18 Oracle8i Time Series User’s Guide

Drop_TS_Group
Example
The following example deletes the schema objects, but not the underlying tables, for
the time series group MYTS:

DECLARE

BEGIN

 ORDSYS.TSTools.Drop_TS_Group(’MYTS’);
 exception
 when others then
 raise;

END;
/

Administrative Tools Procedures: Reference 7-19

Drop_TS_Group_All
Drop_TS_Group_All

Format
ORDSYS.TSTools.Drop_TS_Group_All(

name IN VARCHAR2

[, schema IN VARCHAR2]

);

Description
Deletes the time series group definition and all tables, views, indexes, constraints,
and triggers associated with it.

Parameters

name
Name of the time series group to be deleted.

schema
The schema (user) where the name objects are located. The default is the current
schema.

Usage
Contrast this procedure with Drop_TS_Group, which does not delete the
underlying tables.

If an attempt to delete a specific object fails, an exception is raised and the
procedure attempts to delete any remaining appropriate objects.

To delete time series schema objects that were not created by the current user, you
must have been granted the DBA or TIMESERIES_DBA role.

Example
The following example deletes all schema objects, including underlying tables, for
the time series group MYTS:
7-20 Oracle8i Time Series User’s Guide

Drop_TS_Group_All
DECLARE

BEGIN

 ORDSYS.TSTools.Drop_TS_Group_All(’MYTS’);
 exception
 when others then
 raise;

END;
/

Administrative Tools Procedures: Reference 7-21

End_Create_TS_Group
End_Create_TS_Group

Format
ORDSYS.TSTools.End_Create_TS_Group(

[in_description IN VARCHAR2]

);

Description
Closes the context established by the Begin_Create_TS_Group procedure and
creates all appropriate schema objects.

Parameters

in_description
Optional comment or other information; will be included in the log if logging is in
effect.

Usage
An exception is raised if the time series being created is missing any required
elements. For example, at least one column must be specified.

Example
The following example specifies a flat-model time series named MYTS and adds
one VARCHAR2 column (ticker), four NUMBER columns (open, close, low, and high),
and one INTEGER column (volume). The End_Create_TS_Group call ends the
specification of the time series and creates the schema objects.

DECLARE

BEGIN

 ORDSYS.TSTools.Begin_Create_TS_Group(’MYTS’,’flat’);

 ORDSYS.TSTools.Add_Varchar2_Column(’ticker’,10);
 ORDSYS.TSTools.Add_Number_Column(’open’);
 ORDSYS.TSTools.Add_Number_Column(’close’);
 ORDSYS.TSTools.Add_Number_Column(’low’);
7-22 Oracle8i Time Series User’s Guide

End_Create_TS_Group
 ORDSYS.TSTools.Add_Number_Column(’high’);
 ORDSYS.TSTools.Add_Integer_Column(’volume’);

 ORDSYS.TSTools.End_Create_TS_Group;
END;
/

Administrative Tools Procedures: Reference 7-23

Get_Flat_Attributes
Get_Flat_Attributes

Format
ORDSYS.TSTools.Get_Flat_attributes(

tstamp_colname OUT VARCHAR2,

tsname_colname OUT VARCHAR2,

tsname_length OUT NUMBER,

rel_view_name OUT VARCHAR2,

detail_table_name OUT VARCHAR2,

detail_table_attr OUT VARCHAR2,

detail_table_pk OUT VARCHAR2,

detail_table_exists OUT INTEGER,

map_table_name OUT VARCHAR2,

map_table_attr OUT VARCHAR2,

map_table_pk OUT VARCHAR2,

map_table_exists OUT VARCHAR2,

cal_table_name OUT VARCHAR2,

cal_table_attr OUT VARCHAR2,

cal_table_pk OUT VARCHAR2,

cal_table_exists OUT INTEGER

rv_trigger_name OUT VARCHAR2);

Description
Retrieves the attributes of a flat time series.

Parameters

tstamp_colname
Name of the timestamp column.
7-24 Oracle8i Time Series User’s Guide

Get_Flat_Attributes
tsname_colname
Name of the column that identifies a time series instance.

tsname_length
Length of tsname_colname.

rel_view_name
Name of the relational view created on the underlying (detail) table identified by
detail_table_name.

detail_table_name
Name of the table containing the composite data.

detail_table_attr
Attributes of the table identified by detail_table_name.

detail_table_pk
Primary key for the table identified by detail_table_name.

detail_table_exists
Contains 1 if the table identified by detail_table_name exists; contains 0 if this table
does not exist.

map_table_name
Name of the table that maps time series to calendars.

map_table_attr
Attributes of the table identified by map_table_name.

map_table_pk
Primary key for the table identified by map_table_name.

map_table_exists
Contains 1 if the table identified by map_table_name exists; contains 0 if this table
does not exist.

cal_table_name
Name of the table containing the calendar definitions.

cal_table_attr
Attributes of the table identified by cal_table_name.
Administrative Tools Procedures: Reference 7-25

Get_Flat_Attributes
cal_table_pk
Primary key for the table identified by cal_table_name.

cal_table_exists
Contains 1 if the table identified by cal_table_name exists; contains 0 if this table does
not exist.

rv_trigger_name
Name of the INSTEAD OF trigger for insert, update, or delete operations on the
relational view.

Usage
This procedure returns the attributes into variables that you specify. If you simply
want to display the attributes of the time series being created, you can use the
Display_Attributes procedure.

To return the attributes of an object-model time series, use the
Get_Object_Attributes procedure.

Example
The following example gets the attributes of the flat time series being created:

DECLARE

 tstamp_colname VARCHAR2(30);
 tsname_colname VARCHAR2(30);
 tsname_length NUMBER;
 rel_view_name VARCHAR2(30);
 detail_table_name VARCHAR2(30);
 detail_table_attr VARCHAR2(30);
 detail_table_pk VARCHAR2(30);
 detail_table_exists INTEGER;
 map_table_name VARCHAR2(30);
 map_table_attr VARCHAR2(30);
 map_table_pk VARCHAR2(30);
 map_table_exists INTEGER;
 cal_table_name VARCHAR2(30);
 cal_table_attr VARCHAR2(30);
 cal_table_pk VARCHAR2(30);
 cal_table_exists INTEGER;
 rv_trigger_name VARCHAR2(30);

BEGIN
7-26 Oracle8i Time Series User’s Guide

Get_Flat_Attributes
 ORDSYS.TSTools.Get_Flat_Attributes(
 tstamp_colname,
 tsname_colname,
 tsname_length,
 rel_view_name,
 detail_table_name,
 detail_table_attr,
 detail_table_pk,
 detail_table_exists,
 map_table_name,
 map_table_attr,
 map_table_pk,
 map_table_exists,
 cal_table_name,
 cal_table_attr,
 cal_table_pk,
 cal_table_exists,
 rv_trigger_name);

 DBMS_OUTPUT.PUT_LINE(’tstamp_colname = ’||tstamp_colname);
 DBMS_OUTPUT.PUT_LINE(’tsname_colname = ’||tsname_colname);
 DBMS_OUTPUT.PUT_LINE(’tsname_length = ’||tsname_length);
 DBMS_OUTPUT.PUT_LINE(’rel_view_name = ’||rel_view_name);
 DBMS_OUTPUT.PUT_LINE(’detail_table_name = ’||detail_table_name);
 DBMS_OUTPUT.PUT_LINE(’detail_table_attr = ’||detail_table_attr);
 DBMS_OUTPUT.PUT_LINE(’detail_table_pk = ’||detail_table_pk);
 DBMS_OUTPUT.PUT_LINE(’detail_table_exists = ’||detail_table_exists);
 DBMS_OUTPUT.PUT_LINE(’map_table_name = ’||map_table_name);
 DBMS_OUTPUT.PUT_LINE(’map_table_attr = ’||map_table_attr);
 DBMS_OUTPUT.PUT_LINE(’map_table_pk = ’||map_table_pk);
 DBMS_OUTPUT.PUT_LINE(’map_table_exists = ’||map_table_exists);
 DBMS_OUTPUT.PUT_LINE(’cal_table_name = ’||cal_table_name);
 DBMS_OUTPUT.PUT_LINE(’cal_table_attr = ’||cal_table_attr);
 DBMS_OUTPUT.PUT_LINE(’cal_table_pk = ’||cal_table_pk);
 DBMS_OUTPUT.PUT_LINE(’cal_table_exists = ’||cal_table_exists);
 DBMS_OUTPUT.PUT_LINE(’rv_trigger_name = ’||rv_trigger_name);

END;
/

This example might produce the following output:

tstamp_colname = TSTAMP
tsname_colname = TSNAME
Administrative Tools Procedures: Reference 7-27

Get_Flat_Attributes
tsname_length = 25
rel_view_name = MYTS_RVW
detail_table_name = MYTS_TAB
detail_table_attr = ORGANIZATION INDEX
detail_table_pk = MYTS_TPK
detail_table_exists = 0
map_table_name = MYTS_MAP
map_table_attr =
map_table_pk = MYTS_MPK
map_table_exists = 0
cal_table_name = MYTS_CAL
cal_table_attr =
cal_table_pk = MYTS_CPK
cal_table_exists = 0
rv_trigger_name = MYTS_TR
7-28 Oracle8i Time Series User’s Guide

Get_Object_Attributes
Get_Object_Attributes

Format
ORDSYS.TSTools.Get_Object_Attributes(

object_table_name OUT VARCHAR2,

object_table_type OUT VARCHAR2,

object_table_exists OUT INTEGER,

storage_table_name OUT VARCHAR2,

rel_view_name OUT VARCHAR2,

ov_trigger_name OUT VARCHAR2,

nt_trigger_name OUT VARCHAR2,

rv_trigger_name OUT VARCHAR2,

object_table_attributes OUT VARCHAR2,

storage_table_attributes OUT VARCHAR2,

object_table_pk OUT VARCHAR2,

);

Description
Retrieves the attributes of an object-model time series.

Parameters

object_table_name
Name of the table containing the composite data.

object_table_attr
Attributes of the table identified by object_table_name.

object_table_exists
Contains 1 if the table identified by object_table_name exists; contains 0 if this table
does not exist.
Administrative Tools Procedures: Reference 7-29

Get_Object_Attributes
storage_table_name
Name of the nested storage table.

rel_view_name
Name of the relational view created on the object table identified by
object_table_name.

ov_trigger_name
Name of the INSTEAD OF trigger for insert and update operations on the object
view.

nt_trigger_name
Name of the INSTEAD OF trigger for insert, update, and delete operations on the
nested table.

rv_trigger_name
Name of the INSTEAD OF trigger for insert, update, and delete operations on the
relational view.

object_table_attributes
Attributes of the table identified by object_table_name.

storage_table_attributes
Attributes of the nested storage table.

object_table_pk
Primary key of the table identified by object_table_name.

Usage
This procedure returns the attributes into variables that you specify. If you simply
want to display the attributes of the time series being created, you can use the
Display_Attributes procedure.

To return the attributes of a flat time series, use the Get_Flat_Attributes procedure.

Example
The following example gets the attributes of an object-model time series being
created.

DECLARE

 object_table_name VARCHAR2(30);
 object_table_type VARCHAR2(30);
7-30 Oracle8i Time Series User’s Guide

Get_Object_Attributes
 object_table_exists INTEGER;
 storage_table_name VARCHAR2(30);
 rel_view_name VARCHAR2(30);
 ov_trigger_name VARCHAR2(30);
 nt_trigger_name VARCHAR2(30);
 rv_trigger_name VARCHAR2(30);
 rv_utrigger_name VARCHAR2(30);
 rv_dtrigger_name VARCHAR2(30);
 object_table_attributes VARCHAR2(30);
 storage_table_attributes VARCHAR2(30);
 object_table_pk VARCHAR2(30);

BEGIN

 ORDSYS.TSTools.Get_Object_Attributes(
 object_table_name,
 object_table_type,
 object_table_exists,
 storage_table_name,
 rel_view_name,
 ov_trigger_name,
 nt_trigger_name,
 rv_trigger_name,
 object_table_attributes,
 storage_table_attributes,
 object_table_pk);

 DBMS_OUTPUT.PUT_LINE(’object_table_name = ’||object_table_name);
 DBMS_OUTPUT.PUT_LINE(’object_table_type = ’||object_table_type);
 DBMS_OUTPUT.PUT_LINE(’object_table_exists = ’||object_table_exists);
 DBMS_OUTPUT.PUT_LINE(’storage_table_name = ’||storage_table_name);
 DBMS_OUTPUT.PUT_LINE(’rel_view_name = ’||rel_view_name);
 DBMS_OUTPUT.PUT_LINE(’ov_trigger_name = ’||ov_trigger_name);
 DBMS_OUTPUT.PUT_LINE(’nt_trigger_name = ’||nt_trigger_name);
 DBMS_OUTPUT.PUT_LINE(’rv_trigger_name = ’||rv_trigger_name);
 DBMS_OUTPUT.PUT_LINE(’object_table_attributes = ’||object_table_attributes);
 DBMS_OUTPUT.PUT_LINE(’storage_table_attributes = ’
 ||storage_table_attributes);
 DBMS_OUTPUT.PUT_LINE(’object_table_pk = ’||object_table_pk);

END;
/

Administrative Tools Procedures: Reference 7-31

Get_Object_Attributes
This example might produce the following output:

object_table_name = AUTO_PROD
object_table_type = ORDTNUMSERIES
object_table_exists = 0
storage_table_name = MYTS_STAB
rel_view_name = MYTS_RVW
ov_trigger_name = MYTS_TO
nt_trigger_name = MYTS_TNT
rv_trigger_name = MYTS_TR
object_table_attributes =
storage_table_attributes = ORGANIZATION INDEX
object_table_pk = MYTS_OTPK
7-32 Oracle8i Time Series User’s Guide

Get_Status
Get_Status

Format
ORDSYS.TSTools.Get_Status(

out_status OUT INTEGER

);

Description
Checks to see if a time series creation sequence is in progress.

Parameters

out_status
Contains 1 if a time series creation sequence is in progress; contains 0 if a time series
creation sequence is not in progress.

Usage
This call can be made after a previous TSTools procedure raises an exception, to
determine if you need to reissue only the last administrative tools procedure call or
the complete sequence of administrative tools procedure calls.

If the exception caused the package state to be cleared, out_status contains 0 and you
must reissue the complete sequence of administrative tools procedure calls. If the
exception did not cause the package state to be cleared, out_status contains 1 and
you can reissue just the most recent administrative tools procedure call.

Example
The following example gets the status, stores it in a variable named status, and
displays the value:

DECLARE
 status INTEGER;
BEGIN
 ORDSYS.TSTools.Get_Status(status);
 DBMS_OUTPUT.PUT_LINE(’Status = ’||status);
END;
/

Administrative Tools Procedures: Reference 7-33

Get_Status
This example might produce the following output:

Status = 0
7-34 Oracle8i Time Series User’s Guide

Open_Log
Open_Log

Format
ORDSYS.TSTools.Open_Log(

location IN VARCHAR2,

filename IN VARCHAR2

);

Description
Opens a log file that will contain the data definition language (DDL) statements
generated by the administrative tools procedures.

Parameters

location
Directory location in which to create the log file on the server system. Must be a
valid specification for the server system operating system.

filename
Name of the log file, including any extension.

Usage
This procedure is equivalent to calling UTL_FILE.FOPEN. For information on the
PL/SQL file I/O procedure UTL_FILE, see the Oracle8i Application Developer’s
Reference - Packages manual.

To use this procedure, one or more directories for UTL_FILE output must be
defined using the UTL_FILE_DIR parameter in the Oracle initialization file. For
information about the UTL_FILE_DIR parameter, see the Oracle8i Reference manual.

The log file (Open_Log...Close_Log) and the debug display (Trace_On...Trace_Off)
contain the same information.

Example
The following example opens a log file named ts1.log in the logdir directory, creates
time series schema objects, and closes the log file:
Administrative Tools Procedures: Reference 7-35

Open_Log
 ...
 ORDSYS.TSTools.Open_Log(’logdir’,’ts1.log’);
 ORDSYS.TSTools.Begin_Create_TS_Group(’myts’,’flat’);
 ...
 ORDSYS.TSTools.End_Create_TS_Group;
 ORDSYS.TSTools.Close_Log;
 ...
7-36 Oracle8i Time Series User’s Guide

Set_Flat_Attributes
Set_Flat_Attributes

Format
ORDSYS.TSTools.Set_Flat_Attributes(

tstamp_colname IN VARCHAR2 DEFAULT NULL,

tsname_colname IN VARCHAR2 DEFAULT NULL,

tsname_length IN NUMBER DEFAULT NULL,

rel_view_name IN VARCHAR2 DEFAULT NULL,

detail_table_name IN VARCHAR2 DEFAULT NULL,

detail_table_attr IN VARCHAR2 DEFAULT NULL,

detail_table_pk IN VARCHAR2 DEFAULT NULL,

detail_table_exists IN INTEGER DEFAULT NULL,

map_table_name IN VARCHAR2 DEFAULT NULL,

map_table_attr IN VARCHAR2 DEFAULT NULL,

map_table_pk IN VARCHAR2 DEFAULT NULL,

map_table_exists IN VARCHAR2 DEFAULT NULL,

cal_table_name IN VARCHAR2 DEFAULT NULL,

cal_table_attr IN VARCHAR2 DEFAULT NULL,

cal_table_pk OUT VARCHAR2 DEFAULT NULL,

cal_table_exists IN INTEGER DEFAULT NULL,

rv_trigger_name IN VARCHAR2 DEFAULT NULL

);

Description
Sets the attributes of a flat time series.
Administrative Tools Procedures: Reference 7-37

Set_Flat_Attributes
Parameters

tstamp_colname
Name of the timestamp column in a composite.

tsname_colname
Name of the column that identifies a time series instance in a composite.

tsname_length
Length of tsname_colname.

rel_view_name
Name of the relational view created on the underlying (detail) table identified by
detail_table_name.

detail_table_name
Name of the table containing the composite data.

detail_table_attr
Attributes of the table identified by detail_table_name.

detail_table_pk
Primary key for the table identified by detail_table_name.

detail_table_exists
1 if the table identified by detail_table_name exists; 0 if this table does not exist.

map_table_name
Name of the table that maps time series to calendars.

map_table_attr
Attributes of the table identified by map_table_name.

map_table_pk
Primary key for the table identified by map_table_name.

map_table_exists
1 if the table identified by map_table_name exists; 0 if this table does not exist.

cal_table_name
Name of the table containing the calendar definitions.
7-38 Oracle8i Time Series User’s Guide

Set_Flat_Attributes
cal_table_attr
Attributes of the table identified by cal_table_name.

cal_table_pk
Primary key for the table identified by cal_table_name.

cal_table_exists
1 if the table identified by cal_table_name exists; 0 if this table does not exist.

rv_trigger_name
Name of the INSTEAD OF trigger for insert, update, and delete operations on the
relational view.

Usage
This procedure can be used to override some or all of the attributes of a flat-model
time series. To leave an attribute unchanged, pass a null value for that attribute. To
display the current attributes, use the Display_Attributes procedure; to retrieve the
current attributes, use the Get_Flat_Attributes procedure.

If detail_table_exists is 1 (TRUE), the following attributes must be null:
detail_table_attr, tsname_length, and detail_table_pk.

If map_table_exists is 1 (TRUE), the following attributes must be null: map_table_attr
and map_table_pk.

If cal_table_exists is 1 (TRUE), the following attributes must be null: cal_table_attr and
cal_table_pk.

An exception is raised if one or more of the following conditions are true: a time
series is not being created, the time series being created is not of the flat model, or a
calendar in the table identified by cal_table_name has an invalid frequency.

An exception is also raised if the procedure is called after a successful call to the
same procedure during the creation of a time series group (that is, before the call to
End_Create_TS_Group). For example, the following sequence of calls is not valid:

ORDSYS.TSTools.Set_Flat_Attributes(detail_table_name => ’mytable’);
ORDSYS.TSTools.Set_Flat_Attributes(map_table_name => ’mymap’);

However, the following call is valid:

ORDSYS.TSTools.Set_Flat_Attributes(detail_table_name => ’mytable’,
 map_table_name => ’mymap’);
Administrative Tools Procedures: Reference 7-39

Set_Flat_Attributes
For convenience in PL/SQL coding, because of the number of parameters for this
procedure, you may want to use the association operator (=>) instead of positional
notation. For example, to specify a maximum length of 25 for the timestamp column
name, use the following:

ORDSYS.TSTools.Set_Flat_Attributes(tsname_length => 25);

Example
The following example begins the creation of schema objects for a flat time series
named MYTS, and sets the tsname_length attribute to 25 (that is, maximum of 25
characters for the name of the time series):

ORDSYS.TSTools.Begin_Create_TS_Group(’MYTS’,’flat’);
ORDSYS.TSTools.Set_Flat_Attributes(tsname_length => 25);
....
7-40 Oracle8i Time Series User’s Guide

Set_Object_Attributes
Set_Object_Attributes

Format
ORDSYS.TSTools.Set_Object_Attributes(

object_table_name IN VARCHAR2 DEFAULT NULL,

object_table_type IN VARCHAR2 DEFAULT NULL,

object_table_exists IN INTEGER DEFAULT NULL,

storage_table_name IN VARCHAR2 DEFAULT NULL,

rel_view_name IN VARCHAR2 DEFAULT NULL,

ov_trigger_name IN VARCHAR2 DEFAULT NULL,

nt_trigger_name IN VARCHAR2 DEFAULT NULL,

rv_trigger_name IN VARCHAR2 DEFAULT NULL,

object_table_attributes IN VARCHAR2 DEFAULT NULL,

storage_table_attributes IN VARCHAR2 DEFAULT NULL,

object_table_pk IN VARCHAR2 DEFAULT NULL

);

Description
Sets the attributes of an object-model time series.

Parameters

object_table_name
Name of the object table.

object_table_type
Type associated with the object table: numseries or varchar2series.

object_table_exists
1 if the table identified by object_table_name exists; 0 if this table does not exist.

storage_table_name
Name of the nested storage table.
Administrative Tools Procedures: Reference 7-41

Set_Object_Attributes
rel_view_name
Name of the relational view created on the object table identified by
object_table_name.

ov_trigger_name
Name of the INSTEAD OF trigger for insert and update operations on the object
view.

nt_trigger_name
Name of the INSTEAD OF trigger for insert, update, and delete operations on the
nested table.

rv_trigger_name
Name of the INSTEAD OF trigger for insert, update, and delete operations on the
relational view.

object_table_attributes
Attributes of the table identified by object_table_name. Must include an OVERFLOW
clause if object_table_type is varchar2series.

storage_table_attributes
Attributes of the nested storage table.

object_table_pk
Primary key of the table identified by object_table_name.

Usage
This procedure can be used to override some or all of the attributes of an object-
model time series. To leave an attribute unchanged, pass a null value for that
attribute. To display the current attributes, use the Display_Attributes procedure; to
retrieve the current attributes, use the Get_Object_Attributes procedure.

If object_table_exists is 1 (TRUE), the following attributes must be null:
object_table_attributes, storage_table_name, storage_table_attributes, and object_table_pk.

An exception is raised if a time series is not being created or if the time series being
created is not of the object model.

An exception is also raised if the procedure is called after a successful call to the
same procedure during the creation of a time series group (that is, before the call to
End_Create_TS_Group). For example, the following sequence of calls is not valid:

ORDSYS.TSTools.Set_Object_Attributes(object_table_name => ’mytable’);
ORDSYS.TSTools.Set_Object_Attributes(storage_table_name => ’mystore’);
7-42 Oracle8i Time Series User’s Guide

Set_Object_Attributes
However, the following call is valid:

ORDSYS.TSTools.Set_Object_Attributes(object_table_name => ’mytable’,
 storage_table_name => ’mystore’);

For convenience in PL/SQL coding, because of the number of parameters for this
procedure, you may want to use the association operator (=>) instead of positional
notation. For example, to specify mytable as the object table name, use the following:

ORDSYS.TSTools.Set_Object_Attributes(object_table_name => ’mytable’);

Example
The following example starts the creation of schema objects for an object-model
time series, sets the object table name to auto-prod (because this time series will
contain the number of automobiles produced each calendar frequency interval), and
accepts default attributes for the other object-model time series group attributes.
The example also displays the attributes.

DECLARE

BEGIN

 ORDSYS.TSTools.Begin_Create_TS_Group('myts','object');

 ORDSYS.TSTools.Set_Object_Attributes(
 object_table_name => 'auto_prod'
);

 ORDSYS.TSTools.Display_Attributes;

END;
/

This example might produce the following output:

current settings for begin_create_ts_group
NAME = MYTS
STORAGE_MODEL = OBJECT
SCHEMA = TSDEV
OBJECT_TABLE_NAME = AUTO_PROD
OBJECT_TABLE_TYPE = ORDTNUMSERIES
OBJECT_TABLE_EXISTS = 0
STORAGE_TABLE_NAME = MYTS_STAB
OBJECT_TABLE_ATTRIBUTES =
Administrative Tools Procedures: Reference 7-43

Set_Object_Attributes
STORAGE_TABLE_ATTRIBUTES = ORGANIZATION INDEX
OBJECT_TABLE_PK = MYTS_OTPK
REL_VIEW_NAME = MYTS_RVW
OBJECT_VIEW_TRIGGER_NAME = MYTS_TO
NESTED_TABLE_TRIGGER_NAME= MYTS_TNT
REL_VIEW_TRIGGER_NAME = MYTS_TR
7-44 Oracle8i Time Series User’s Guide

Trace_Off
Trace_Off

Format
ORDSYS.TSTools.Trace_Off;

Description
Disables debugging for Oracle8i Time Series administrative tools procedures. Any
data definition language (DDL) statements and errors encountered when generating
DDL statements will not be logged to SERVEROUTPUT.

Parameters
None.

Usage
The log file (Open_Log...Close_Log) and the debug display (Trace_On...Trace_Off)
contain the same information.

Example
The following example enables debugging for Oracle8i Time Series administrative
tools procedures, creates time series schema objects, and disables debugging for
Oracle8i Time Series administrative tools procedures:

 ...
 ORDSYS.TSTools.Trace_On;
 ORDSYS.TSTools.Begin_Create_TS_Group(’myts’,’flat’);
 ...
 ORDSYS.TSTools.End_Create_TS_Group;
 ORDSYS.TSTools.Trace_Off;
 ...
Administrative Tools Procedures: Reference 7-45

Trace_On
Trace_On

Format
ORDSYS.TSTools.Trace_On;

Description
Enables debugging for Oracle8i Time Series administrative tools procedures. Any
data definition language (DDL) statements and errors encountered when generating
DDL statements will be logged to SERVEROUTPUT.

Parameters
None.

Usage
The log file (Open_Log...Close_Log) and the debug display (Trace_On...Trace_Off)
contain the same information.

Example
The following example enables debugging for Oracle8i Time Series administrative
tools procedures, creates time series schema objects, and disables debugging for
Oracle8i Time Series administrative tools procedures:

 ...
 ORDSYS.TSTools.Trace_On;
 ORDSYS.TSTools.Begin_Create_TS_Group(’myts’,’flat’);
 ...
 ORDSYS.TSTools.End_Create_TS_Group;
 ORDSYS.TSTools.Trace_Off;
 ...
7-46 Oracle8i Time Series User’s Guide

Error Messa
A

Error Messages

This appendix lists the Oracle8i Time Series error messages, including the cause and
recommended user action for each.

TS-00500, "internal error"
Cause: This is the generic internal error number for Time Series exceptions.
This indicates that a process has encountered an exception.

Action: Report as a bug.

TS-00501, "the input patterns are not of the same length"
Cause: The input calendars have patterns of different lengths. For example,
’0,1,1,1,1,1,0’ and ’0,1,1,1,1,0’ were specified.

Action: Use calendars with patterns of the same length.

TS-00502, "patanchor cannot be on the 29th or 30th day of the month"
Cause: Oracle8i Time Series encountered a calendar having a pattern anchor on
the 29th or 30th day of the month.

Action: Ensure that all calendar pattern anchors are not on the 29th or 30th day
of the month.

TS-00503, "patanchor can be null only for all-zero or all-one patterns"
Cause: Pattern anchor was null, and pattern was not acceptable for a null
patanchor. The anchor can be null only when using all-zero or all-one pattern
bits.

Action: Supply a pattern anchor date, or adjust the pattern bits.

TS-00504, "illegal validflag parameter was passed to DisplayValCal/
DisplayValTS"
Cause: DisplayValCal or DisplayValTS was called with invalid parameters.
ges A-1

Action: Only call DisplayValCal and DisplayValTS with the output of Validate-
Cal or ValidateTS, respectively.

TS-00505, "illegal outmessage parameter was passed to DisplayValCal/
DisplayValTS"
Cause: DisplayValCal or DisplayValTS was called with invalid parameters.

Action: Only call DisplayValCal and DisplayValTS with the output of Validate-
Cal or ValidateTS, respectively.

TS-00506, "the calendar pattern is null"
Cause: Oracle8i Time Series encountered a calendar having a null pattern.

Action: Ensure that all calendars have a non-null pattern.

TS-00507, "the calendar has an imprecise mindate or maxdate"
Cause: Oracle8i Time Series encountered a calendar having an imprecise
mindate or maxdate.

Action: Ensure that all calendar mindates and maxdates are precise.

TS-00508, "a NULL patanchor is illegal for calendars with frequencies -
5,7,10,16,18"
Cause: Oracle8i Time Series encountered a calendar having a null pattern
anchor date with one of the following frequencies: week (5), quarter (7), 10-day
(10), semi-monthly (16), semi-annual (18).

Action: Ensure that all calendars with the frequency value in (5,10,16,18) have
non-null pattern anchor dates.

TS-00509, "the input calendars have unequal pattern bits greater than 1"
Cause: Oracle8i Time Series encountered calendars having patterns with
pattern bits greater than 1 and the corresponding pattern bits being unequal.
For Union and Intersection operations, the two input calendars need to have
matching pattern bits if the bits are greater than 1.

Action: Ensure that the two input calendars passed in have patterns with
matching pattern bits.

TS-00510, "datetab has dates outside the bounds of the calendar"
Cause: DeriveExceptions encountered dates outside of the input calendar’s
mindate/maxdate.

Action: Adjust mindate/maxdate or remove extraneous dates from the input
DateTab.
A-2 Oracle8i Time Series User’s Guide

TS-00511, "calendar pattern bits array is either empty or null"
Cause: Oracle8i Time Series encountered a calendar with an empty or null
array of pattern bits.

Action: Update the calendar to include a valid array of pattern bits.

TS-00512, "invalid frequency value"
Cause: Oracle8i Time Series encountered a calendar with an unsupported
frequency.

Action: Restrict all calendars to frequencies: 1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 18.

TS-00513, "the input dates are in the wrong order"
Cause: The date range provided was in reverse order.

Action: When specifying a date range, always list the earlier date first.

TS-00514, "calendar pattern has an imprecise anchor date"
Cause: Oracle8i Time Series encountered a calendar with an anchor having the
wrong precision.

Action: Adjust the precision of the anchor to match the calendar’s frequency.

TS-00515, "input date is beyond the calendar mindate/maxdate"
Cause: Oracle8i Time Series encountered a date less than the mindate or greater
than the maxdate.

Action: Ensure that all input dates are within the mindate-maxdate range of the
calendar.

TS-00516, "input date is greater than calendar maxdate"
Cause: Oracle8i Time Series encountered a date greater than maxdate.

Action: Ensure that all input dates are within the mindate-maxdate range of the
calendar.

TS-00517, "unable to set precision of calendar pattern anchor"
Cause: Oracle8i Time Series encountered a calendar with a pattern anchor
whose precision cannot be set. Setting the precision of the anchor takes it
beyond the allowed Oracle dates.

Action: Ensure that the calendar pattern anchor is at least frequency units from
the minimum Oracle date (Julian 1). Pattern anchors have to be within the fol-
lowing range: [Oracle Mindate + frequency, Oracle Maxdate]

TS-00519, "the series attribute of the time series type is null"
Error Messages A-3

Cause: Oracle8i Time Series encountered a null series within a time series.

Action: Ensure that all time series have a non-null series component.

TS-00520, "the input calendar is null"
Cause: Oracle8i Time Series encountered a null calendar.

Action: Ensure that all calendars are non-null.

TS-00522, "error scaling date to calendar"
Cause: Input date cannot be scaled to given calendar.

Action: Ensure that the given calendar is valid and that the calendar’s mindate
and maxdate encompass all potential timestamp values.

TS-00523, "the input date is null"
Cause: Scaleup has encountered a null date. No scaling semantics are defined
for a null date.

Action: Ensure that all input to Scaleup is non-null.

TS-00525, "the input time series is null"
Cause: Oracle8i Time Series encountered a null time series.

Action: Ensure that all time series are not atomically null.

TS-00526, "the input time series has a null calendar"
Cause: Oracle8i Time Series encountered a null calendar within a time series.

Action: Ensure that all time series include valid (non-null) calendars.

TS-00527, "error scaling up to the target calendar frequency"
Cause: Scaleup encountered a target calendar of finer frequency than that of
the input time series’ calendar.

Action: Scaleup requires a target calendar of equal or coarser (timestamps at
less frequent intervals) frequency.

TS-00528, "calendar has a null mindate or a null maxdate"
Cause: Oracle8i Time Series encountered a calendar with a null mindate or
maxdate.

Action: Ensure that all calendars have a valid mindate and maxdate.

TS-00529, "calendar mindate is greater than its maxdate"
Cause: Oracle8i Time Series encountered a calendar with mindate > maxdate.
A-4 Oracle8i Time Series User’s Guide

Action: Ensure that all calendars have a valid mindate <= maxdate.

TS-00530, "series indexes must be greater than 0"
Cause: GetNthElement encountered an index less than 1.

Action: Use indexes greater than 0.

TS-00531, "the input time series has a null calendar reference"
Cause: Oracle8i Time Series encountered a time series with a null calendar
reference.

Action: Ensure that all calendar references are valid.

TS-00532, "unable to DEREF calendar referenced by time series"
Cause: Oracle8i Time Series was unable to dereference a calendar reference.

Action: Verify that the user executing the query has select privileges for the
calendar table storing the object, and that the correct calendar has been refer-
enced by the time series reference.

TS-00533, "the time series has data beyond its calendar mindate/maxdate"
Cause: Oracle8i Time Series encountered a time series with data beyond
mindate/maxdate.

Action: Ensure that all timestamps in a time series are within the calendar’s
mindate/maxdate.

TS-00534, "the number of rows requested must be a positive integer"
Cause: The requested number of rows was less than 0.

Action: Use a positive number to specify the number of rows requested.

TS-00535, "the time series ref has a null table_name parameter"
Cause: Oracle8i Time Series encountered a time series reference having a null
table_name.

Action: Ensure that all time series references include a valid table name.

TS-00536, "the time series ref has a null tstamp_colname parameter"
Cause: Oracle8i Time Series encountered a time series reference having a null
tstamp_colname.

Action: Ensure that all time series references include a valid timestamp col-
umn name.

TS-00537, "the time series ref has a null value_colname parameter"
Error Messages A-5

Cause: Oracle8i Time Series encountered a time series reference having a null
value_colname.

Action: Ensure that all time series references include a valid value column
name.

TS-00538, "the time series ref has a null qualifier_colname parameter"
Cause: Oracle8i Time Series encountered a time series reference having a null
qualifier_colname.

Action: Ensure that all time series references include a valid qualifier column
name.

TS-00539, "the time series ref has a null qualifier_value parameter"
Cause: Oracle8i Time Series encountered a time series reference having a null
qualifier_value.

Action: Ensure that all time series references include a valid qualifier value.

TS-00540, "the projected lead timestamp is beyond the calendar mindate/
maxdate"
Cause: The given parameters result in timestamps outside of mindate/maxdate.

Action: Adjust the lead timestamp or lead units to remain within calendar min-
date/maxdate, or extend the mindate/maxdate.

TS-00541, "the projected lag timestamp is beyond the calendar mindate/maxdate"
Cause: The given parameters result in timestamps outside of mindate/maxdate.

Action: Adjust the lag timestamp or lag units to remain within calendar mind-
ate/maxdate, or extend the mindate/maxdate.

TS-00542, "the window size for mavg/msum must be >= 1"
Cause: Window size parameter passed to moving average/sum was not
greater than 0.

Action: Use a window size parameter greater than or equal to 1.

TS-00547, "the input fill type is invalid"
Cause: Fill has been called with a filltype less than 0 or greater than 2.

Action: Use a valid filltype: 0, 1, or 2.

TS-00548, "the target timestamp for leading is invalid"
Cause: The target timestamp input to the Lead function was invalid with
respect to the input time series calendar.
A-6 Oracle8i Time Series User’s Guide

Action: Ensure that the target timestamp input to the Lead function is a valid
timestamp with respect to the input time series calendar.

TS-00551, "error parsing the SQL statement with the time series ref"
Cause: The SQL statement constructed from the time series reference was
invalid.

Action: Verify the validity of the time series reference:

■ Verify the validity of all components of the time series reference.

■ No spaces or invalid punctuation may appear in table or column names.

■ The user must have select privileges on the table referenced.

■ The table name must be qualified with its schema name.

TS-00552, "error executing the SQL statement with the time series ref"
Cause: The SQL statement constructed from the time series reference was
invalid.

Action: Verify the validity of the time series reference:

■ Verify the validity of all components of the time series reference.

■ No spaces or invalid punctuation may appear in table or column names.

■ The user must have select privileges on the table referenced.

■ The table name must be qualified with its schema name.

TS-00553, "divide by zero error"
Cause: An attempt was made to divide by zero with TSDivide.

Action: When dividing by a constant, ensure that the constant is nonzero.

TS-00554, "the input calendar patterns are not equal"
Cause: DeriveExceptions requires the calendar of the reference time series to
have the same pattern as the calendar of the time series being processed.

Action: Ensure that DeriveExceptions is called only with time series having
calendars with the same pattern.

TS-00555, "the input calendar frequencies are not equal"
Cause: DeriveExceptions requires the calendar of the reference time series to
have the same frequency as the calendar of the time series being processed.
Error Messages A-7

Action: Ensure that DeriveExceptions is called only with time series having
calendars with the same frequency.

TS-00556, "mindate of the ref calendar exceeds the mindate of the target calendar"
Cause: DeriveExceptions encountered a reference time series whose calendar
has a mindate greater than that of the calendar of the target time series.

Action: Ensure that DeriveExceptions is called only with appropriate time
series.

TS-00557, "maxdate of the target calendar exceeds the maxdate of the ref calendar"
Cause: DeriveExceptions encountered a reference time series whose calendar
has a maxdate less than that of the calendar of the target time series.

Action: Ensure that DeriveExceptions is called only with appropriate time
series.

TS-00558, "the target calendar should have empty on/off exception lists"
Cause: DeriveExceptions encountered a target time series whose calendar has
non-empty exception lists.

Action: Ensure that DeriveExceptions is called only with target time series
whose calendars have empty exception lists.

TS-00559, "the caltype field in the calendar has an illegal value"
Cause: Oracle8i Time Series encountered a calendar with an invalid calendar
type.

Action: Ensure that all calendars have valid calendar type value. Valid calen-
dar types are: (Exception-driven calendars = 0)

TS-00560, "the input data includes imprecise timestamps"
Cause: DeriveExceptions function encountered an imprecise date in the time
series (or datetab) input.

Action: Ensure that all the timestamps in the time series (datetab) are precise
with respect to the target calendar before calling DeriveExceptions.

TS-00561, "begin_create_ts_group has not been called"
Cause: BEGIN_CREATE_TS_GROUP must be called before calling this
procedure.

Action: Call BEGIN_CREATE_TS_GROUP before calling this procedure.

TS-00562, "the column name is a duplicate"
A-8 Oracle8i Time Series User’s Guide

Cause: Two column names given for a time series were the same.

Action: Provide a unique column name for each time series column. Ensure
that this column name does not conflict with any other column name including
the explicit or default column name of the tstamp column or the column name of
the group_name column. Use GET_ATTRIBUTES to determine default values.

TS-00563, "missing column attributes"
Cause: A time series was defined without defining columns.

Action: Define at least one column for the time series using ADD_VARCHAR2,
ADD_NUMBER, or ADD_INTEGER.

TS-00564, "unknown storage model"
Cause: The time series storage model specified does not correspond to a valid
storage model.

Action: Ensure that the procedure is called with a valid storage model descrip-
tor: ’OBJECT’ or ’FLAT’.

TS-00565, "wrong storage model"
Cause: The time series procedure cannot be called for the storage model
currently being defined.

Action: Ensure that the procedure called is appropriate for the time series being
created.

TS-00566, "unknown time series group"
Cause: The time series definition specified is not known.

Action: Ensure that the call references a known time series definition.

TS-00567, "unsupported datatype"
Cause: The column data type specified for a time series is not supported.

Action: Ensure that the column data type for a time series is NUMBER, INTE-
GER, or VARCHAR2.

TS-00568, "illegal call sequence"
Cause: The function is not being called in the correct sequence.

Action: Ensure that the function is called in the correct sequence.

TS-00569, "not all attributes dropped"
Error Messages A-9

Cause: Not all objects belonging to a time series group could be dropped
(deleted). This was either because underlying objects no longer exist or because
another time series definition references them.

Action: Get privileges to drop (delete) the object directly.

TS-00570, "too many columns declared"
Cause: Too many columns were declared for the time series. Please consult the
documentation for a limit on the maximum number of columns allowed.

Action: Declare another time series to accommodate the extra columns.

TS-00571, "detail table must exist"
Cause: ADD_EXISTING_COLUMN is invalid if the detail table does not exist.

Action: Call ADD_VARCHAR2_COLUMN or ADD_NUMBER_COLUMN pro-
cedure.

TS-00572, "column not found"
Cause: ADD_EXISTING_COLUMN was called for a column that does not exist
in the detail table.

Action: Specify a NUMBER or VARCHAR2 column table in the existing detail
table.

TS-00573, "detail table must not exist"
Cause: ADD_VARCHAR2_COLUMN, ADD_NUMBER_COLUMN is invalid if
the detail table does not exist.

Action: Call ADD_COLUMN function when detail table exists.

TS-00574, "log file is already open"
Cause: OPEN_LOG was called when a log file is already open.

Action: Call CLOSE_LOG to close the current log file before calling
OPEN_LOG.

TS-00575, "parameters conflict with detail_table_exists"
Cause: The detail_table_attr, detail_table_pk, or tsname_length field was set to non-
null values when detail_table_exists was called with value of 1.

Action: When calling SET_FLAT_ATTRIBUTES with detail_table_exists=1, the
detail_table_attr, detail_table_pk, and detail_tsname_length parameters must be
null.

TS-00576, "parameters conflict with map_table_exists"
A-10 Oracle8i Time Series User’s Guide

Cause: The map_table_attr or map_table_pk field was set to non-null values when
map_table_exists was called with value of 1.

Action: When calling SET_FLAT_ATTRIBUTES with map_table_exists=1, the
map_table_attr and map_table_pk parameters must be null.

TS-00577, "parameters conflict with cal_table_exists"
Cause: The cal_table_attr or cal_table_pk field was set to non-null values when
cal_table_exists was called with value of 1.

Action: When calling SET_FLAT_ATTRIBUTES with cal_table_exists=1, the
cal_table_attr and cal_table_pk parameters must be null.

TS-00578, "detail table not found"
Cause: The detail table specified in SET_FLAT_ATTRIBUTES could not be
found.

Action: Ensure that the detail table specified in SET_FLAT_ATTRIBUTES
exists.

TS-00579, "the tstamp field specified in SET_FLAT_ATTRIBUTES does not exist"
Cause: The tstamp field is not found in the existing detail table.

Action: Ensure that the tstamp column name specified in
SET_FLAT_ATTRIBUTES is in the detail table.

TS-00580, "the tstamp field specified is not a DATE column"
Cause: The call specified a tstamp field that is not a DATE data type.

Action: Specify a tstamp column that is a DATE data type.

TS-00581, "the tsname field specified in SET_FLAT_ATTRIBUTES does not exist"
Cause: The tsname field is not found in the existing detail table.

Action: Ensure that the tsname field column name specified in
SET_FLAT_ATTRIBUTES is in the detail table.

TS-00582, "the tsname field specified is not a VARCHAR2 column"
Cause: The call specified a tsname field that is not a VARCHAR2 data type.

Action: Specify a tsname column that is a VARCHAR2 data type.

TS-00583, "existing detail table missing primary key constraint"
Cause: An attempt was made to build a time series on a detail table that is
missing a required primary key constraint.
Error Messages A-11

Action: Ensure that the detail table has a primary key constraint on the tsname
and tstamp columns.

TS-00584, "existing detail table missing index with tsname as first column"
Cause: An attempt was made to build a time series on a detail table that does
not specify the tsname field as the first column of a primary key index.

Action: Ensure that the detail table has a primary key constraint on the tsname
and tstamp columns.

TS-00585, "existing detail table missing index with tstamp as second column"
Cause: An attempt was made to build a time series on a detail table that does
not specify the tstamp field as the second column of a primary key index.

Action: Ensure that the detail table has a primary key constraint on the tsname
and tstamp columns.

TS-00586, "calendar table not found"
Cause: The calendar table specified in SET_FLAT_ATTRIBUTES could not be
found.

Action: Ensure that the calendar table specified in SET_FLAT_ATTRIBUTES
exists.

TS-00587, "calendar table not correct type"
Cause: The calendar table specified in SET_FLAT_ATTRIBUTES was not an
object table of type ORDSYS.ORDTCALENDAR.

Action: Ensure that the calendar table specified in SET_FLAT_ATTRIBUTES is
an object table of type ORDSYS.ORDTCALENDAR.

TS-00588, "calendar table missing primary key constraint"
Cause: An attempt was made to build a time series on a calendar table that is
missing a required primary key constraint.

Action: Ensure that the calendar table has a primary key constraint on the name
field.

TS-00589, "existing calendar table missing index with NAME as first column"
Cause: An attempt was made to build a time series on a calendar table that
does not specify the name field as the first column of a primary key index.

Action: Ensure that the calendar table has a primary key constraint on the name
field.
A-12 Oracle8i Time Series User’s Guide

TS-00590, "map table not found"
Cause: The map table specified in SET_FLAT_ATTRIBUTES could not be
found.

Action: Ensure that the map table specified in SET_FLAT_ATTRIBUTES exists.

TS-00591, "existing map table missing CALNAME field"
Cause: The map table specified should have field called calname of type
VARCHAR2(256).

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00592, "the CALNAME field in the existing map table is not a VARCHAR2
field"
Cause: The existing map table specified should have a field called calname of
type VARCHAR2.

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00593, "the CALNAME VARCHAR2 field is not of length 256"
Cause: The existing map table specified should have a VARCHAR2 field called
calname of a length of 256.

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00594, "the existing map table is missing the tsname column"
Cause: The existing map table specified should have a field of the same name
as the tsname column in the detail table.

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00595, "the tsname field in the map table is not a VARCHAR2 column"
Cause: The tsname field in the existing map table must be a VARCHAR2 field.

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00596, "the length of the tsname field in the existing map table is incorrect"
Cause: The length of the tsname field in the existing map table must be the
same length as the tsname field in the detail table.
Error Messages A-13

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00597, "the map table is missing a primary key constraint"
Cause: The map table specified must have a primary key constraint on the
tsname field.

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00598, "the map table is missing an index on the tsname field"
Cause: An attempt was made to build a time series on a map table that does
not specify the tsname field as the first column of a primary key index.

Action: Check to see that the existing map table specified is correct and has the
required fields.

TS-00599, "illegal input param values"
Cause: The combination or the values of the input parameters are invalid.

Action: Check to see that the values and combination of input parameters to
the call are correct.

TS-00600, "update of tstamp value is illegal"
Cause: An INSTEAD OF trigger detected an attempt to update the tstamp field.

Action: Updates of tstamp fields in a time series are not permitted.

TS-00601, "update of tsname value is illegal"
Cause: An update trigger detected an attempt to update the tsname field.

Action: Updates of tsname fields in a time series are not permitted.

TS-00602, "no calendar found"
Cause: An insert or delete trigger failed to retrieve a calendar for a regular time
series.

Action: Check to see that the time series being updated has a calendar associ-
ated with it.

TS-00603, "tstamp date not valid"
Cause: An insert was done using a timestamp date value that was not valid for
the calendar.

Action: Check to see that the timestamp date is valid for the calendar of the
time series.
A-14 Oracle8i Time Series User’s Guide

TS-00604, "time stamp must be next valid date before startdate"
Cause: An attempt was made to insert a timestamp that was not the first valid
date before the starting date.

Action: Check to see that the timestamp date is valid for the calendar of the
time series.

TS-00605, "time stamp must be next valid date after enddate"
Cause: An attempt was made to insert a timestamp that was not the first valid
date after the ending date.

Action: Check to see that the timestamp date is valid for the calendar of the
time series.

TS-00606, "cannot delete a legal date in the middle of a time series"
Cause: An attempt was made to delete a timestamp in the middle of a time
series.

Cause: Delete timestamps from the ends of the time series.

TS-00607, "time series group exists"
Cause: The time series group specified already exists.

Action: Ensure that BEGIN_CREATE_TS_GROUP specifies a time series group
that does not already exist.

TS-00608, "no time series instance found"
Cause: An insert or delete trigger failed to retrieve the time series instance.

Action: Check to see that the time series instance specified exists.

TS-00609, "begin_create_ts_group already called"
Cause: An attempt was made to call BEGIN_CREATE_TS_group while
currently defining a time series group.

Action: Call CANCEL_CREATE_TS_group or complete a time series group
definition that has been started.

TS-00610, "nothing to cancel"
Cause: Tried to call CANCEL_CREATE_TS_GROUP when no time series group
definition has been started.

Action: Avoid making this call if a time series definition has not been started.

TS-00611, "the frequency is not valid"
Error Messages A-15

Cause: The frequency passed into the function does not correspond to a valid
calendar frequency value.

Action: Ensure that the call is passed a valid calendar frequency value.

TS-00612, "the time series type specified is not supported"
Cause: A wrong type was specified for the time series object table to be
created.

Action: The only supported types for the time series object table are ORD-
SYS.ORDTNumSeries and ORDSYS.ORDTVarchar2Series.

TS-00613, "time series object table not found"
Cause: The time series object table specified in SET_OBJECT_ATTRIBUTES
could not be found.

Action: Ensure that the time series object table specified in
SET_OBJECT_ATTRIBUTES exists.

TS-00614, "existing object table is of different type"
Cause: The type of the (existing) object table does not match the type of the
time series specified.

Action: Ensure that while trying to build a time series group on an existing
object table, the type of the time series matches the type of the object table. Note
that the only supported types for the time series are ORDSYS.ORDTNumSeries
and ORDSYS.ORDTVarchar2Series.

TS-00615, "time series object table missing primary key constraint"
Cause: Tried to build a time series on an object table that is missing a required
primary key constraint.

Action: Ensure that the time series object table has a primary key constraint on
the name field.

TS-00616, "existing time series object table missing index on the NAME attribute"
Cause: An attempt was made to build a time series on an object table that does
not specify the name field as the first column of a primary key index.

Action: Ensure that the time series object table has a primary key constraint on
the name field.

TS-00617, "parameters conflict with object_table_exists"
A-16 Oracle8i Time Series User’s Guide

Cause: The object_table_attributes, storage_table_name, storage_table_attributes, or
object_table_pk field was set to non-null value when SET_OBJECT_ATTRIBUTES
was called with object_table_exists set to 1.

Action: Ensure that when SET_OBJECT_ATTRIBUTES is called with
object_table_exists set to 1, object_table_attributes, storage_table_name,
storage_table_attributes, and object_table_pk are all set to null.

TS-00620, "time series is invalid"
Cause: An object view insert or update trigger failed because the new time
series instance was not a valid time series.

Action: Check to see that the new time series being inserted or updated is a
valid time series.

TS-00630, "an irregular time series is not a valid input"
Cause: DeriveExceptions function requires that the input time series be a
regular time series. (An irregular time series does not have an associated
calendar and therefore is not valid as input to the DeriveExceptions function.)

Action: Ensure that the time series input to the DeriveExceptions function is a
regular time series.

TS-00631, "lead and lag operations not supported for irregular time series"
Cause: Lead and Lag operations require calendars to compute the timestamps
of the resulting time series.

Action: Ensure that Lead and Lag are only used with time series that have cal-
endars.

TS-00632, "fill is not supported for irregular time series"
Cause: Fill requires a calendar to compute the timestamps of the resulting time
series.

Action: Ensure that Fill is only used with time series that have calendars.

TS-00633, "table attribute value is too large"
Cause: A table attribute value passed in is too large.

Action: Ensure that the table attribute VARCHAR2 value is less than 1023.

TS-00640, "time series cannot be scaled to target calendar - frequencies
incompatible"
Cause: The frequencies of the time series and the calendar are not compatible.
Error Messages A-17

Action: Ensure that the calendar associated with the scaled time series is com-
patible with the target calendar.

TS-00641, "time series cannot be scaled to target calendar - calendar anchors
incompatible"
Cause: The calendar anchors associated with the time series and the calendar
are not compatible.

Action: Ensure that the calendar associated with the scaled time series is com-
patible with the target calendar.

TS-00642, "time scaling error: input interval straddles two or more output
intervals"
Cause: An interval of the source time series straddles two or more intervals of
the target scaling calendar.

Action: Ensure that the time series to be scaled is compatible with the target
calendar.

TS-00643, "time scaling error: input interval maps to non-existing output interval"
Cause: One or more cells of the input time series have no associated interval of
the target calendar.

Action: Ensure that the time series to be scaled is compatible with the target
calendar.

TS-00644, "time scaling error: permitDropData parameter out of bounds"
Cause: An invalid value of DiscardError was supplied as a parameter to
Scaleup

Action: Ensure that the DiscardError option is either 0 or 1.

TS-00645, "scaledownrepeat is not supported for irregular time series"
Cause: A time series with a null calendar was passed to ScaleDownRepeat.

Action: Ensure that all time series used with ScaleDownRepeat have calendars.

TS-00646, "scaledownsplit is not supported for irregular time series"
Cause: A time series with a null calendar was passed to ScaleDownSplit.

Action: Ensure that all time series used with ScaleDownSplit have calendars.

TS-00647, "invalid scaleup option"
Cause: An unrecognized option has been used with a ScaleUp function.

Action: Consult the documentation for a list of valid options.
A-18 Oracle8i Time Series User’s Guide

TS-00648, "invalid combination of scaleup options"
Cause: Multiple numeric options or a combination of numeric and named
options has been used with ScaleUp.

Action: Consult the documentation for a list of valid options, and ensure that
named options are not used with a numeric option, and that no more than one
numeric option is specified.

TS-00649, "invalid scaleup option"
Cause: An unrecognized numeric option has been used with a ScaleUp
function. Valid numeric options include 0, 1, 10, and 11.

Action: Be sure to only use valid numeric options, or consult the documenta-
tion for information about using named options.

TS-00650, "duplicate scaleup option"
Cause: A ScaleUp option has been specified twice, or two conflicting options
have been specified.

Action: When using multiple named options, be sure not to duplicate options
and not to use conflicting options. Consult the documentation for a list of con-
flicting options.
Error Messages A-19

A-20 Oracle8i Time Series User’s Guide

Oracle8i Time Series Metadata Vie
B

Oracle8i Time Series Metadata Views

This appendix describes the views that Oracle8i Time Series uses to store
information about time series schema objects:

■ ALL_TIMESERIES_GROUPS

■ ALL_TIMESERIES_OBJS

■ ALL_TIMESERIES_COLS

■ DBA_TIMESERIES_GROUPS

■ DBA_TIMESERIES_OBJS

■ DBA_TIMESERIES_COLS

■ USER_TIMESERIES_GROUPS

■ USER_TIMESERIES_OBJS

■ USER_TIMESERIES_COLS

These views are created when Oracle8i Time Series is installed, and they are
updated when time series schema objects are created, deleted, or altered.

Access to these views is determined as follows:

■ ALL_TIMESERIES_xxx views are accessible if you can use the time series from
your schema. To use the time series, you must have been granted select
privilege on the object relational view, the detail table, and the calendar table.
Moreover, for ALL_TIMESERIES_OBJS, the corresponding ALL_xxx views must
be accessible. For example, to access the map table as an object in ALL_
TIMESERIES_OBJS, you must be able to access the time series and to access the
map table in ALL_TABLES.

■ DBA_TIMESERIES_xxx views are accessible if you have been granted either or
both of the following roles: DBA or TIMESERIES_DBA.
ws B-1

View Definitions
■ USER_TIMESERIES_xxx views are accessible if the objects have been created
under your schema.

You can query these views to get information about time series schema objects. For
example, to display the available information about all time series schemas, enter
the following query:

SELECT * from ALL_TIMESERIES_GROUPS;

In addition to examining these views, you can examine certain standard Oracle
dictionary views for metadata relating to specific schema names. For example, the
following queries return names of objects associated with any time series schemas
with names containing MYTS:

SELECT table_name from USER_TABLES where table_name like ’MYTS%’;
SELECT trigger_name from USER_TRIGGERS where trigger_name like ’MYTS%’;
SELECT view_name from USER_VIEWS where view_name like ’MYTS%’;
SELECT table_name from USER_OBJECT_TABLES where table_name like ’MYTS%’;

For information about standard Oracle dictionary views, see the Oracle8i Reference
manual.

B.1 View Definitions
This section shows the definitions of the Oracle8i Time Series metadata views.

For explanations of the columns in these views, see Section B.2.

B.1.1 ALL_TIMESERIES_xxx View Definitions
The following code example shows the definitions of the ALL_TIMESERIES_
GROUPS, ALL_TIMESERIES_OBJS, and ALL_TIMESERIES_COLS views:

SVRMGR> DESCRIBE ALL_TIMESERIES_GROUPS;
Column Name Null? Type
------------------------------ -------- ----
OWNER VARCHAR2(30)
GROUP_NAME VARCHAR2(30)
STORAGE_MODEL VARCHAR2(30)
DESCRIPTION VARCHAR2(4000)

SVRMGR> DESCRIBE ALL_TIMESERIES_OBJS;
Column Name Null? Type
------------------------------ -------- ----
OWNER VARCHAR2(30)
B-2 Oracle8i Time Series User’s Guide

View Definitions
GROUP_NAME VARCHAR2(30)
OBJ_NAME VARCHAR2(30)
OBJ_TYPE VARCHAR2(30)
TS_OBJ_TYPE VARCHAR2(30)
OWNED CHAR(1)
STORAGE_MODEL VARCHAR2(30)
DESCRIPTION VARCHAR2(4000)

SVRMGR> DESCRIBE ALL_TIMESERIES_COLS;
Column Name Null? Type
------------------------------ -------- ----
OWNER NOT NULL VARCHAR2(30)
GROUP_NAME NOT NULL VARCHAR2(30)
TS_OBJ_TYPE NOT NULL VARCHAR2(30)
VIEW_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
DATA_TYPE NOT NULL VARCHAR2(106)
DATA_LENGTH NUMBER
DATA_PRECISION NUMBER
DATA_SCALE NUMBER
IS_TSNAME NOT NULL CHAR(1)
IS_TSTAMP NOT NULL CHAR(1)
IS_TSVALUE NOT NULL CHAR(1)
COLUMN_ID NOT NULL NUMBER

B.1.2 DBA_TIMESERIES_xxx View Definitions
The following code example shows the definitions of the DBA_TIMESERIES_
GROUPS, DBA_TIMESERIES_OBJS, and DBA_TIMESERIES_COLS views:

SVRMGR> DESCRIBE DBA_TIMESERIES_GROUPS;
Column Name Null? Type
------------------------------ -------- ----
OWNER NOT NULL VARCHAR2(30)
GROUP_NAME NOT NULL VARCHAR2(30)
STORAGE_MODEL NOT NULL VARCHAR2(30)
DESCRIPTION VARCHAR2(4000)

SVRMGR> DESCRIBE DBA_TIMESERIES_OBJS;
Column Name Null? Type
------------------------------ -------- ----
OWNER NOT NULL VARCHAR2(30)
GROUP_NAME NOT NULL VARCHAR2(30)
OBJ_NAME NOT NULL VARCHAR2(30)
OBJ_TYPE NOT NULL VARCHAR2(30)
Oracle8i Time Series Metadata Views B-3

View Definitions
TS_OBJ_TYPE NOT NULL VARCHAR2(30)
OWNED NOT NULL CHAR(1)
STORAGE_MODEL NOT NULL VARCHAR2(30)
DESCRIPTION VARCHAR2(4000)

SVRMGR> DESCRIBE DBA_TIMESERIES_COLS;
Column Name Null? Type
------------------------------ -------- ----
OWNER NOT NULL VARCHAR2(30)
GROUP_NAME NOT NULL VARCHAR2(30)
TS_OBJ_TYPE NOT NULL VARCHAR2(30)
VIEW_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
DATA_TYPE NOT NULL VARCHAR2(106)
DATA_LENGTH NUMBER
DATA_PRECISION NUMBER
DATA_SCALE NUMBER
IS_TSNAME NOT NULL CHAR(1)
IS_TSTAMP NOT NULL CHAR(1)
IS_TSVALUE NOT NULL CHAR(1)
COLUMN_ID NOT NULL NUMBER

B.1.3 USER_TIMESERIES_xxx View Definitions
The following code example shows the definitions of the USER_TIMESERIES_
GROUPS, USER_TIMESERIES_OBJS, and USER_TIMESERIES_COLS views:

SVRMGR> DESCRIBE USER_TIMESERIES_GROUPS;
Column Name Null? Type
------------------------------ -------- ----
GROUP_NAME NOT NULL VARCHAR2(30)
STORAGE_MODEL NOT NULL VARCHAR2(30)
DESCRIPTION VARCHAR2(4000)

SVRMGR> DESCRIBE USER_TIMESERIES_OBJS;
Column Name Null? Type
------------------------------ -------- ----
GROUP_NAME NOT NULL VARCHAR2(30)
OBJ_NAME NOT NULL VARCHAR2(30)
OBJ_TYPE NOT NULL VARCHAR2(30)
TS_OBJ_TYPE NOT NULL VARCHAR2(30)
OWNED NOT NULL CHAR(1)
STORAGE_MODEL NOT NULL VARCHAR2(30)
DESCRIPTION VARCHAR2(4000)
B-4 Oracle8i Time Series User’s Guide

Column Descriptions
SVRMGR> DESCRIBE USER_TIMESERIES_COLS;
Column Name Null? Type
------------------------------ -------- ----
GROUP_NAME NOT NULL VARCHAR2(30)
TS_OBJ_TYPE NOT NULL VARCHAR2(30)
VIEW_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
DATA_TYPE NOT NULL VARCHAR2(106)
DATA_LENGTH NUMBER
DATA_PRECISION NUMBER
DATA_SCALE NUMBER
IS_TSNAME NOT NULL CHAR(1)
IS_TSTAMP NOT NULL CHAR(1)
IS_TSVALUE NOT NULL CHAR(1)
COLUMN_ID NOT NULL NUMBER

B.2 Column Descriptions
This section describes the columns in the Oracle8i Time Series metadata views.

The corresponding ALL_TIMESERIES_xxx, DBA_TIMESERIES_xxx, and USER_
TIMESERIES_xxx views have the same columns, except that the ALL_TIMESERIES_
xxx and DBA_TIMESERIES_xxx views also include owner as the first column. The
USER_TIMESERIES_xxx views do not contain an owner column.

B.2.1 xxx_TIMESERIES_GROUPS Columns
Table B–1 describes the columns in the ALL_TIMESERIES_GROUPS, DBA_
TIMESERIES_GROUPS, and USER_TIMESERIES_GROUPS, views. Note that owner
is not included in the USER_TIMESERIES_GROUPS view.

Table B–1 xxx_TIMESERIES_GROUPS Columns

Column Name Data Type Explanation

owner VARCHAR2(30) Identifies the schema under which the time series
schema objects are defined.

group_name VARCHAR2(30) Contains the name of the time series schema, which
is also the name of the time series object relational
view (flat storage model) or object view (object
storage model).
Oracle8i Time Series Metadata Views B-5

Column Descriptions
B.2.2 xxx_TIMESERIES_COLS Columns
Table B–2 describes the columns in the ALL_TIMESERIES_COLS, DBA_
TIMESERIES_COLS, and USER_TIMESERIES_COLS, views. Note that owner is not
included in the USER_TIMESERIES_COLS view.

storage_model VARCHAR2(30) Contains FLAT for flat storage model or OBJECT for
nested table storage.

description VARCHAR2(4000) Optional descriptive comment.

Table B–2 xxx_TIMESERIES_COLS Columns

Column Name Data Type Explanation

owner VARCHAR2(30) Identifies the schema under which the time series
schema objects are defined.

group_name VARCHAR2(30) Contains the name of the time series schema, which is
also the name of the time series object relational view
(flat storage model) or object view (object storage
model).

ts_obj_type VARCHAR2(30) Contains RELATIONAL VIEW for a relational view or
OBJECT RELATIONAL VIEW for an object view.

view_name VARCHAR2(30) Name of the view.

column_name VARCHAR2(30) Name of the column in the view (for example, open,
close, tstamp, ticker, volume using the flat storage
model).

data_type VARCHAR2(106) Data type of column_name.

data_length NUMBER Maximum length in bytes of column_name data.

data_precision NUMBER The precision of column_name (if numeric), that is, the
maximum number of digits permitted to the left of the
decimal point.

data_scale NUMBER The scale of column_name (if numeric), that is, the
number of digits to the right of the decimal point.

is_tsname CHAR(1) Contains Y if column_name is the time series name;
contains N if column_name is not the time series name.

Table B–1 xxx_TIMESERIES_GROUPS Columns (Cont.)

Column Name Data Type Explanation
B-6 Oracle8i Time Series User’s Guide

Column Descriptions
B.2.3 xxx_TIMESERIES_OBJS Columns
Table B–3 describes the columns in the ALL_TIMESERIES_OBJS, DBA_
TIMESERIES_OBJS, and USER_TIMESERIES_OBJS, views. Note that owner is not
included in the USER_TIMESERIES_COLS view.

Table B–4 lists the values that the ts_obj_type column in Table B–3 can contain.

is_tstamp CHAR(1) Contains Y if column_name is the timestamp column;
contains N if column_name is not the timestamp
column.

is_tsvalue CHAR(1) Contains Y if column_name is a data value column;
contains N if column_name is not a data value column.

column_id NUMBER Internally assigned ID number.

Table B–3 xxx_TIMESERIES_OBJS Columns

Column Name Data Type Explanation

owner VARCHAR2(30) Identifies the schema under which the
time series schema objects are defined.

group_name VARCHAR2(30) Contains the name of the time series
schema, which is also the name of the
time series object relational view (flat
storage model) or object view (object
storage model).

obj_name VARCHAR2(30) Name of the Oracle DDL object.

obj_type VARCHAR2(30) Type of Oracle DDL object (for example,
TABLE or VIEW).

ts_obj_type VARCHAR2(30) Type of Oracle time series object See
Table B–4 for a list of ts_obj_type values.

owned VARCHAR2(1) Contains Y if the object was created by a
TSTools procedure; contains N if was
not originally created by a TSTools
procedure.

storage_model VARCHAR2(30) Indicates the storage model: FLAT or
OBJECT.

description VARCHAR2(4000) Optional descriptive comment.

Table B–2 xxx_TIMESERIES_COLS Columns (Cont.)

Column Name Data Type Explanation
Oracle8i Time Series Metadata Views B-7

Column Descriptions
Table B–4 ts_obj_type Column Values

Value Explanation

CALENDAR TABLE Calendar table in the flat storage model.

DETAIL TABLE Detail table in the flat storage model.

MAP TABLE Map table in the flat storage model.

OBJECT RELATIONAL
VIEW

Time series view for time series and time scaling functions in the
flat storage model.

OBJECT TABLE Time series table in the object storage model.

OBJECT VIEW Time series view for time series and time scaling functions in the
object storage model.

OBJECT VIEW NT
TRIGGER

Trigger on the object view (object storage model) for nested table
insert, update, and delete operations.

OBJECT VIEW
TRIGGER

Trigger on the object view (object storage model) for object insert
and update operations.

RELATIONAL VIEW Relational view for the flat storage model or object storage
model.

RELATIONAL VIEW
TRIGGER

Trigger on the relational view (flat or object storage model) for
relational insert, update, and delete operations.

STORAGE TABLE Nested table storage for the nested table (object storage model).
B-8 Oracle8i Time Series User’s Guide

Deprecated Featu
C

Deprecated Features

This appendix describes the new and old (deprecated) behavior or certain Oracle8i
Time Series features. The old behaviors are deprecated features for the Oracle8i
release. These deprecated features were documented in the previous edition of this
guide, but are not in this edition. The features continue to work for this release, but
they may not work in subsequent releases, and you are encouraged not to use them.
If you are currently using any of these features, you are encouraged to choose a
documented alternative before the next release of Oracle8i Time Series.

C.1 SetPrecision Function
The SetPrecision function takes a calendar rather than a frequency as one of its
input parameters. The release 8.0.4 SetPrecision syntax specifying a timestamp and
a frequency (timestamp IN INTEGER, frequency IN INTEGER) is still supported,
but will not be supported in a future release. See the SetPrecision description in
Chapter 4 for more information.

C.2 Lookback Window (k) Parameter for Mavg and Msum
The lookback window (k) parameter for the Mavg and Msum functions now comes
before any optional start-end date range. The old format, as documented in the
previous version of this guide, is a deprecated feature.

C.3 Scaleup Function (GROUP BY Interface)
The Scaleup function and explanations of the GROUP BY interface for scaleup
operations are removed. The Scaleup function and the GROUP BY interface are still
supported, but their use is discouraged and they may not be supported in a future
res C-1

Package for Scaleup Functions
release.The use of the collection-based interface for scaleup, as documented in
Section 2.11.1, is encouraged.

C.4 Package for Scaleup Functions
All scaling functions (scaleup and scaledown) are included in the TimeScale
package. Scaleup functions that were available in release 8.0.4 can still be called
specifying the TimeSeries package; however, this usage is discouraged and may not
be supported in a future release.
C-2 Oracle8i Time Series User’s Guide

Glossary

anchor date

The date to be used for establishing the start of a pattern and (based on the pattern)
which timestamps are to be included in and excluded from the calendar. For
example, consider a pattern of ‘0,1,1,1,1,1,0’ over a day frequency defines a calendar
over all weekdays. If an anchor date of 01-Jun-1997 (or any Sunday) is specified,
then the 7-day pattern begins each Sunday; and Sunday and Saturday (0) are
excluded from the calendar, while Monday through Friday (1) are included in the
calendar.

calendar

A data structure that maps human-meaningful time values to underlying machine
representations of time. The calendar definition includes a frequency and a pattern,
and optionally exceptions and date boundaries (upper and lower).

exception

A timestamp that does not conform to the calendar pattern but that is significant for
the calendar definition. There are two kinds of exceptions: off-exceptions and
on-exceptions. (See the glossary definitions for each.)

frequency

The granularity of the calendar representation. The supported frequencies are
second, minute, hour, day, week, 10-day, semi-monthly, month, quarter, semi-annual, and
year.

group

See time series group.
Glossary-1

irregular time series

A time series that does not have an associated calendar. Often, irregular time series
are data-driven, where unpredictable bursts of data arrive at unspecified points in
time or most timestamps cannot be characterized by a repeating pattern. However,
an irregular time series can be used with predictable data where it is simply not
necessary to deal with a calendar.

off-exception

An exception to the non-zero bits in the pattern, and thus is a timestamp to be
excluded from the calendar. For example, to ensure that Wednesday, 25-Dec-1996, is
excluded from the calendar when Wednesdays normally are included, define that
date as an off-exception.

on-exception

An exception to the zero (0) bits in the pattern, and thus is a timestamp to be
included in the calendar. For example, to ensure that Saturday, 28-Jun-1997, is
included in the calendar when Saturdays are excluded, define that date as an
on-exception.

pattern

The repeating pattern of frequencies and an anchor date that identifies a valid
timestamp for the first element in the pattern. For example, if the frequency is set to
day, the pattern can define which days of the week are included in the calendar.

pattern anchor date

See anchor date.

precision

The degree of exactness to which a timestamp needs to be specified. Each frequency
has an associated precision. Oracle8i Time Series functions require that input
timestamps be of the precision of the frequency associated with the calendar. A
timestamp that is not consistent with the frequency is said to be imprecise.

regular time series

A time series that has an associated calendar. In a regular time series, data arrives
predictably at predefined intervals. For example, daily summaries of stock market
data form regular time series, and such time series might include the set of trade
volumes and opening, high, low, and closing prices for stock XYZ for the year 1997.
Glossary-2

time series

A set of timestamped data entries. Each time series consists of an identifier (such as
stock ticker ACME), and multiple timestamp-value pairs (such as all trading days
and the closing price for ACME on each trading day).

time series group

The schema objects for a time series. The time series group is created by
administrative tools procedures, starting with a call to Begin_Create_TS_Group and
ending with a call to End_Create_TS_Group.
Glossary-3

Glossary-4

Index

Numerics
8.1

documentation changes for release 8.1, xix

A
Add_Existing_Column procedure, 7-3
Add_Integer_Column procedure, 7-6
Add_Number_Column procedure, 7-8
Add_Varchar2_Column procedure, 7-10
addition

TSAdd function, 5-85
TSSum function, 5-119

administrative tools procedures, 2-43, 7-1
role requirement, 2-44
UTL_FILE requirements, 2-45

advanced-developer demo, 1-9
aggregate functions, 2-34
ALL_TIMESERIES_xxx views, B-2
API

Java client, 1-14
architecture

Oracle8i Time Series, 2-18
arithmetic functions, 2-35
average

TSAvg function, 5-89
average, moving

Mavg function, 2-36, 5-76

B
Begin_Create_TS_Group procedure, 7-12
bottom values

TSMinN function, 5-105
bulk loading of time series data, 3-8

consistency, 2-29, 3-9

C
calendar, 2-5

data types, 2-14
defining, 2-10
exceptions, 2-6
frequency, 2-6
pattern, 2-5
precision, 2-9
shared, 2-5, 3-7
validating, 4-49, 4-98

calendar functions, 2-30, 4-1
calendar precision, 2-8
calendar-creation functions, 2-30
Cancel_Create_TS_Group procedure, 7-14
Cavg function, 5-3
changes to documentation for release 8.1, xix
client-side API

Java, 1-14
Close_Log procedure, 7-15
Cmax function, 5-5
Cmin function, 5-8
collection-based interface, 2-22
CombineCals function, 4-3
compatibility matrix for scaleup/scaledown, 2-39
consistency of time series data

approaches, 2-29, 3-9
conventional path (SQL*Loader), 3-11
conversion functions, 2-37
count
Index-1

TSCount function, 5-91
Cprod function, 5-11
cumulative sequence functions, 2-36

D
data types

calendar, 2-14
time series, 2-14

Database Configuration Assistant (ODCA), 1-7
data-driven time series, 2-2
Day function, 4-8
DBA_TIMESERIES_xxx views, B-3
defining

calendar, 2-10
DeleteExceptions function, 4-10
demos (demonstration files)

advanced-developer, 1-9
electric utility, 1-9
Java, 1-9, 1-14
Oracle Call Interface (OCI), 1-10
Oracle Developer, 1-10
PRO*C/C++, 1-9
quick-start, 1-10
retrofitting existing tables, 1-9
usage, 1-9

deprecated features, C-1
DeriveExceptions function, 2-12, 5-15
Developer/2000 (Oracle Developer) demo, 1-10
direct path (SQL*Loader), 3-11
DiscardError options for scaleup, 2-41
Display function, 5-18
Display_Attributes procedure, 7-16
DisplayValCal procedure, 4-13
DisplayValTS procedure, 5-21
division

TSDivide function, 5-93
Drop_TS_Group procedure, 7-18
Drop_TS_Group_All procedure, 7-20

E
electric utility demo, 1-9
End_Create_TS_Group procedure, 7-22
EqualCals function, 4-20

error messages, A-1
errors

DiscardError options for scaleup, 2-41
exceptions, 2-6

deriving, 2-12
ExtractCal function, 5-29
ExtractDate function, 5-31
extraction functions, 2-33
ExtractTable function, 5-33
ExtractValue function, 5-35

F
Fill function, 5-37
First function, 5-43
FirstN function, 5-45
flat IOT storage model, 2-19
frequency, 2-6
functions

Add_Existing_Column procedure, 7-3
Add_Integer_Column procedure, 7-6
Add_Number_Column procedure, 7-8
Add_Varchar2_Column procedure, 7-10
Begin_Create_TS_Group procedure, 7-12
calendar, 2-30, 4-1
calendar-creation, 2-30
Cancel_Create_TS_Group procedure, 7-14
Cavg, 5-3
Close_Log procedure, 7-15
Cmax, 5-5
Cmin, 5-8
CombineCals, 4-3
Cprod, 5-11
Day, 4-8
DeleteExceptions, 4-10
DeriveExceptions, 2-12, 5-15
Display, 5-18
Display_Attributes procedure, 7-16
DisplayValCal procedure, 4-13
DisplayValTS procedure, 5-21
Drop_TS_Group procedure, 7-18
Drop_TS_Group_All procedure, 7-20
End_Create_TS_Group procedure, 7-22
EqualCals, 4-20
ExtractCal, 5-29
Index-2

ExtractDate, 5-31
ExtractTable, 5-33
ExtractValue, 5-35
Fill, 5-37
First, 5-43
FirstN, 5-45
GenDateRangeTab, 4-23
Get_Flat_Attributes procedure, 7-24
Get_Object_Attributes procedure, 7-29
Get_Status procedure, 7-33
GetDatedElement, 5-48
GetIntervalEnd, 4-27
GetIntervalStart, 4-30
GetNthElement, 5-50
GetOffset, 4-33
GetSeries, 5-52
Hour, 4-36
InsertExceptions, 4-38
IntersectCals, 4-42
InvalidTimeStampsBetween, 4-46
IsValidCal, 4-49
IsValidDate, 4-55
IsValidTS, 5-55
Lag, 5-63
Last, 5-67
LastN, 5-69
Lead, 5-72
Mavg, 5-76
Minute, 4-58
Month, 4-60
Msum, 5-79
NumInvalidTimeStampsBetween, 4-62
NumOffExceptions, 4-65
NumOnExceptions, 4-68
NumTimeStampsBetween, 4-71
OffsetDate, 4-74
Open_Log procedure, 7-35
Quarter, 4-77
ScaledownInterpolate, 6-3
ScaledownRepeat, 6-6
ScaledownSplit, 6-9
ScaleupAvg, 6-12
ScaleupAvgX, 6-15
ScaleupCount, 6-18
ScaleupFirst, 6-21

ScaleupGMean, 6-24
ScaleupLast, 6-27
ScaleupMax, 6-30
ScaleupMin, 6-33
ScaleupSum, 6-36
ScaleupSumAnnual, 6-39
Second, 4-79
Semi_annual, 4-81
Semi_monthly, 4-83
Set_Flat_Attributes procedure, 7-37
Set_Object_Attributes procedure, 7-41
SetPrecision, 4-85
Ten_day, 4-88
time scaling, 2-37, 6-1
time series, 2-32, 5-1
TimeStampsBetween, 4-90
Trace_Off procedure, 7-45
Trace_On procedure, 7-46
TrimSeries, 5-82
TSAdd, 5-85
TSAvg, 5-89
TSCount, 5-91
TSDivide, 5-93
TSMax, 5-97
TSMaxN, 5-99
TSMedian, 5-101
TSMin, 5-103
TSMinN, 5-105
TSMultiply, 5-107
TSProd, 5-111
TSStdDev, 5-113
TSSubtract, 5-115
TSSum, 5-119
TSVariance, 5-121
UnionCals, 4-94
ValidateCal, 4-98
ValidateTS, 5-123
Week, 4-106
Year, 4-108

G
GenDateRangeTab function, 4-23
Get_Flat_Attributes procedure, 7-24
Get_Object_Attributes procedure, 7-29
Index-3

Get_Status procedure, 7-33
GetDatedElement function, 5-48
GetIntervalEnd function, 4-27
GetIntervalStart function, 4-30
GetNthElement function, 5-50
GetOffset function, 4-33
GetSeries function, 5-52
group (time series), 7-12

H
highest values

TSMaxN, 5-99
Hour function, 4-36

I
IgnoreNulls options for scaleup, 2-41
imprecise timestamps, 2-8
incremental loading of time series data, 3-10
index-organized table (IOT)

flat (storage model), 2-19
nested (storage model), 2-20

InsertExceptions function, 4-38
installing the product, 1-7
instance-based interface, 2-22
interpolation with scaledown, 6-3
IntersectCals function, 4-42
InvalidTimeStampsBetween function, 4-46
irregular time series, 1-4, 2-2
IsValidCal function, 4-49
IsValidDate function, 4-55
IsValidTS function, 5-55

J
Java

client-side API, 1-14
demos, 1-9, 1-14

K
kit installation, 1-7

L
Lag function, 5-63
Last function, 5-67
LastN function, 5-69
Lead function, 5-72
loading

time series data, 3-7
logging

UTL_FILE procedure used, 2-45
lowest values

TSMinN, 5-105

M
map table, 3-6
Mavg function, 2-36, 5-76
maxDate

effect if null, 2-12
maximum

TSMax function, 5-97
median

TSMedian function, 5-101
messages

error, A-1
metadata (map) table, 3-6
metadata for usage demo, 1-13, 2-25
metadata views

Oracle8i Time Series metadata, B-1
minDate

effect if null, 2-12
minimum

TSMin function, 5-103
Minute function, 4-58
Month function, 4-60
moving average

Mavg function, 2-36, 5-76
moving sum

Msum function, 2-36, 5-79
Msum function, 2-36, 5-79
multiplication

TSMultiply function, 5-107
TSProd function, 5-111
Index-4

N
nested IOT storage model, 2-20
null minDate or maxDate for calendar, 2-12
null operand semantics, 2-16

scaleup options, 2-41
NumInvalidTimeStampsBetween function, 4-62
NumOffExceptions function, 4-65
NumOnExceptions function, 4-68
NumTimeStampsBetween function, 4-71

O
object model (nested IOT storage), 2-20
object relational technology, 1-2
object view, 1-13
OCI demo, 1-10
off-exception, 2-6

semantics, 2-17
OffsetDate function, 4-74
on-exception, 2-6
Open_Log procedure, 7-35
Oracle Call Interface (OCI) demo, 1-10
Oracle Database Configuration Assistant

(ODCA), 1-7
Oracle Developer demo, 1-10
Oracle Forms demo, 1-10
Oracle Universal Installer, 1-7
ORDSYS schema, 1-9
ORDTCalendar data type, 2-14
ORDTDateRange data type, 2-16
ORDTDateRangeTab data type, 2-16
ORDTDateTab data type, 2-15
ORDTExceptions data type, 2-14
ORDTNumCell data type, 2-14
ORDTNumSeries data type, 2-14
ORDTNumSeriesIOTRef data type, 2-15
ORDTNumSeriesIOTRef type, 2-24
ORDTNumTab data type, 2-14
ORDTPattern data type, 2-14
ORDTPatternBits data type, 2-14
ordtsyn.sql (public synonyms), 1-9
ORDTVarchar2Cell data type, 2-15
ORDTVarchar2Series data type, 2-15
ORDTVarchar2SeriesIOTRef data type, 2-15

ORDTVarchar2Tab data type, 2-15

P
package names

public synonyms for, 1-9
package state, 7-33
pattern, 2-5
PRAGMA RESTRICT_REFERENCES

with ORDTNumSeriesIOTRef view, 2-25
precision, 2-8, 2-9
privilege (role) requirements for tools

procedures, 2-44
PRO*C/C++ demo, 1-9
procedures

Add_Existing_Column, 7-3
Add_Integer_Column, 7-6
Add_Number_Column, 7-8
Add_Varchar2_Column, 7-10
administrative tools, 2-43, 7-1
Begin_Create_TS_Group, 7-12
Cancel_Create_TS_Group, 7-14
Close_Log, 7-15
Display_Attributes, 7-16
DisplayValCal, 4-13
DisplayValTS, 5-21
Drop_TS_Group, 7-18
Drop_TS_Group_All, 7-20
End_Create_TS_Group, 7-22
Get_Flat_Attributes, 7-24
Get_Object_Attributes, 7-29
Get_Status, 7-33
Open_Log, 7-35
Set_Flat_Attributes, 7-37
Set_Object_Attributes, 7-41
Trace_Off, 7-45
Trace_On, 7-46

product
TSProd function, 5-111

public synonyms for package names, 1-9

Q
Quarter function, 4-77
quick-start demo, 1-10
Index-5

files, 1-11

R
README.txt files, 1-10
reference-based interface, 2-24
reference-based view, 1-13
regular time series, 2-2
relational view, 1-13
release 8.1 documentation changes, xix
repeat with scaledown, 6-6
RESTRICT_REFERENCES

with ORDTNumSeriesIOTRef view, 2-25
retrofit demo, 1-9
retrofitting existing tables to create time series

schema objects, 3-11
role requirement for administrative tools

procedures, 2-44

S
scaledown

compatibility matrix, 2-39
ScaledownInterpolate function, 6-3
ScaledownRepeat function, 6-6
ScaledownSplit function, 6-9
scaleup

compatibility matrix, 2-39
ScaleupAvg function, 6-12
ScaleupAvgX function, 6-15
ScaleupCount function, 6-18
ScaleupFirst function, 6-21
ScaleupGmean function, 6-24
ScaleupLast function, 6-27
ScaleupMax function, 6-30
ScaleupMin function, 6-33
ScaleupSum function, 6-36
ScaleupSumAnnual function, 6-39
Second function, 4-79
semantics

null operands, 2-16
off-exception operands, 2-17

Semi_annual function, 4-81
Semi_monthly function, 4-83
server output, setting, 5-19

SET SERVEROUTPUT ON statement, 5-19
Set_Flat_Attributes procedure, 7-37
Set_Object_Attributes procedure, 7-41
SetPrecision function, 4-85
shared calendar, 2-5, 3-7
shift functions, 2-34
split with scaledown, 6-9
SQL formatting functions, 2-34
SQL*Loader utility, 3-7

bulk loading, 3-8
conventional and direct paths, 3-11
incremental loading, 3-10

standard deviation
TSStdDev function, 5-113

state
package, 7-33

stockdemo_metadata table, 1-13, 2-25
stockdemo_sv object view, 1-13
stockdemo_sv relational view, 1-13
stockdemo_ts reference-based view, 1-13
stockdemo_ts view, 2-25
subtraction

TSSubtract function, 5-115
sum

TSSum function, 5-119
sum, moving

Msum function, 2-36, 5-79
synonyms

public (package names), 1-9

T
Ten_day function, 4-88
time scaling functions, 2-37, 6-1
time series

architecture, 2-18
data storage, 2-19
data types, 2-14
irregular, 1-4, 2-2
regular, 2-2
validating, 3-9, 5-55, 5-123

time series functions, 2-32, 5-1
time series group, 7-12
TIMESERIES_DBA role, 2-44
TIMESERIES_DEVELOPER role, 2-44
Index-6

TimeStampsBetween function, 4-90
tools procedures, 7-1

role requirement, 2-44
UTL_FILE requirements, 2-45

top values
TSMaxN function, 5-99

Trace_Off procedure, 7-45
Trace_On procedure, 7-46
trim functions, 2-33
TrimSeries function, 5-82
TSAdd function, 5-85
TSAvg function, 5-89
TSCount function, 5-91
TSDivide function, 5-93
TSMax function, 5-97
TSMaxN function, 5-99
TSMedian function, 5-101
TSMin function, 5-103
TSMinN function, 5-105
TSMultiply function, 5-107
TSProd function, 5-111
TSStdDev function, 5-113
TSSubtract function, 5-115
TSSum function, 5-119
TSVariance function, 5-121

U
UnionCals function, 4-94
usage demo, 1-9

files, 1-12
tables and views, 1-13, 2-25

USER_TIMESERIES_xxx views, B-4
utility (electric) demo, 1-9
UTL_FILE procedure and logging, 2-45
UTL_FILE_DIR parameter in Oracle initialization

file, 2-45

V
ValidateCal function, 4-98
ValidateTS function, 5-123
validating

calendar, 4-49, 4-98
time series, 3-9, 5-55, 5-123

variance
TSVariance function, 5-121

view
with ORDTNumSeriesIOTRef data type, 2-25

views
Oracle8i Time Series metadata, B-1

W
Week function, 4-106

Y
Year function, 4-108
Index-7

Index-8

	PDF Directory
	Send Us Your Comments
	Preface
	Intended Audience
	Structure
	Related Documents
	Conventions
	Changes to This Guide

	1 Introduction
	1.1� Oracle8i Time Series and Object-Relational Technology
	1.2� Storing and Accessing Data
	1.3� Time Series Usage Models
	1.3.1� No Need for Calendars
	1.3.2� Need for Calendars

	1.4� Installing the Kit
	1.4.1� Required Software for Using Oracle8i Time Series
	1.4.2� After Installing Oracle8i Time Series
	1.4.3� Creating Database Objects Without Using ODCA

	1.5� Creating Public Synonyms for Oracle8i Time Series Packages
	1.6� Oracle8i Time Series Demos (Demonstrations)
	1.6.1� Quick-Start Demo
	1.6.2� Usage Demo

	1.7� Java Client-Side API (Prototype)

	2 Time Series Concepts
	2.1� Overview of Time Series Data
	2.1.1� Regular and Irregular Time Series
	2.1.2� Data Generation for a Time Series
	2.1.3� Historical Data

	2.2� Calendars
	2.2.1� Frequency
	2.2.2� Precision
	2.2.3� Pattern
	2.2.4� Overview of Calendar Definition
	2.2.5� Deriving Calendar Exceptions from Time Series Data

	2.3� Data Types
	2.3.1� Calendar Data Types
	2.3.2� Time Series Data Types

	2.4� Conventions and Semantics
	2.4.1� Semantics of Null Operands
	2.4.2� Semantics of Off-Exception Operands

	2.5� Oracle8i Time Series Architecture
	2.6� Storage of Time Series Data
	2.6.1� Flat IOT or Flat Table Storage
	2.6.2� Nested IOT Storage (Object Model)

	2.7� Interfaces to Time Series and Time Scaling Functions
	2.7.1� Instance-Based Interface
	2.7.2� Reference-Based Interface

	2.8� Consistency of Time Series Data
	2.8.1� Rules for Time Series Consistency
	2.8.2� Enforcing Time Series Consistency with Relational Views
	2.8.3� Bulk Loading and Consistency

	2.9� Calendar Functions
	2.9.1� End-User Functions
	2.9.2� Product-Developer Functions

	2.10� Time Series Functions
	2.10.1� Extraction, Retrieval, and Trim Functions
	2.10.2� Shift Functions
	2.10.3� SQL Formatting Functions
	2.10.4� Aggregate Functions
	2.10.5� Arithmetic Functions
	2.10.6� Cumulative Sequence Functions
	2.10.7� Moving Average and Sum Functions
	2.10.8� Conversion Functions

	2.11� Time Scaling Functions
	2.11.1� Time Scaling on Collections
	2.11.2� Scaleup Options: IgnoreNulls and DiscardError

	2.12� Administrative Tools Procedures
	2.12.1� Role Requirement for Administrative Tools Procedures
	2.12.2� Other Requirements for Administrative Tools Procedures

	3 Time Series Usage
	3.1� Creating a Time Series Group
	3.2� Creating a Calendar
	3.3� Maintaining a Map Table
	3.4� Populating the Detail Table Using SQL*Loader
	3.4.1� Bulk Loading
	3.4.2� Incremental Loading

	3.5� Retrofitting Existing Tables
	3.6� Validating Time Series Consistency
	3.7� Formulating Time Series Queries
	3.8� Deriving Calendar Exceptions
	3.8.1� Deriving Exceptions Using a Time Series (Approach 1)
	3.8.2� Deriving Exceptions Using a Calendar and Table of Dates (Approach 1A)
	3.8.3� Deriving Exceptions Using Two Time Series Parameters (Approach 2)

	3.9� Using Product-Developer Functions

	4 Calendar Functions: Reference
	CombineCals
	Day
	DeleteExceptions
	DisplayValCal Procedure
	EqualCals
	GenDateRangeTab
	GetIntervalEnd
	GetIntervalStart
	GetOffset
	Hour
	InsertExceptions
	IntersectCals
	InvalidTimeStampsBetween
	IsValidCal
	IsValidDate
	Minute
	Month
	NumInvalidTimeStampsBetween
	NumOffExceptions
	NumOnExceptions
	NumTimeStampsBetween
	OffsetDate
	Quarter
	Second
	Semi_annual
	Semi_monthly
	SetPrecision
	Ten_day
	TimeStampsBetween
	UnionCals
	ValidateCal
	Week
	Year

	5 Time Series Functions: Reference
	Cavg
	Cmax
	Cmin
	Cprod
	Csum
	DeriveExceptions
	Display
	DisplayValTS Procedure
	ExtractCal
	ExtractDate
	ExtractTable
	ExtractValue
	Fill
	First
	FirstN
	GetDatedElement
	GetNthElement
	GetSeries
	IsValidTS
	Lag
	Last
	LastN
	Lead
	Mavg
	Msum
	TrimSeries
	TSAdd
	TSAvg
	TSCount
	TSDivide
	TSMax
	TSMaxN
	TSMedian
	TSMin
	TSMinN
	TSMultiply
	TSProd
	TSStdDev
	TSSubtract
	TSSum
	TSVariance
	ValidateTS

	6 Time Scaling Functions: Reference
	ScaledownInterpolate
	ScaledownRepeat
	ScaledownSplit
	ScaleupAvg
	ScaleupAvgX
	ScaleupCount
	ScaleupFirst
	ScaleupGMean
	ScaleupLast
	ScaleupMax
	ScaleupMin
	ScaleupSum
	ScaleupSumAnnual

	7 Administrative Tools Procedures: Reference
	Add_Existing_Column
	Add_Integer_Column
	Add_Number_Column
	Add_Varchar2_Column
	Begin_Create_TS_Group
	Cancel_Create_TS_Group
	Close_Log
	Display_Attributes
	Drop_TS_Group
	Drop_TS_Group_All
	End_Create_TS_Group
	Get_Flat_Attributes
	Get_Object_Attributes
	Get_Status
	Open_Log
	Set_Flat_Attributes
	Set_Object_Attributes
	Trace_Off
	Trace_On

	A Error Messages
	B Oracle8i Time Series Metadata Views
	B.1� View Definitions
	B.1.1� ALL_TIMESERIES_xxx View Definitions
	B.1.2� DBA_TIMESERIES_xxx View Definitions
	B.1.3� USER_TIMESERIES_xxx View Definitions

	B.2� Column Descriptions
	B.2.1� xxx_TIMESERIES_GROUPS Columns
	B.2.2� xxx_TIMESERIES_COLS Columns
	B.2.3� xxx_TIMESERIES_OBJS Columns

	C Deprecated Features
	C.1� SetPrecision Function
	C.2� Lookback Window (k) Parameter for Mavg and Msum
	C.3� Scaleup Function (GROUP BY Interface)
	C.4� Package for Scaleup Functions

	Glossary
	Index

