
Oracle8 i

Enterprise JavaBeans Developer’s Guide and Reference

Release 3 (8.1.7)

July 2000

Part No. A83725-01

Enterprise JavaBeans Developer’s Guide and Reference, Release 3 (8.1.7)

Part No. A83725-01

Release 3 (8.1.7)

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Authors: Sheryl Maring

Contributors: Tim Smith, Ellen Barnes, Matthieu Devin, Steve Harris, Hal Hildebrand, Susan Kraft,
Thomas Kurian, Wendy Liau, Angie Long, Sastry Malladi, John O’Duinn, Jeff Schafer, Aniruddha
Thakur, Iyad Elayyan, Cheuk Chau

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle products mentioned herein are trademarks or registered
trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xi

Preface .. i

1 Overview

About Enterprise JavaBeans ... 1-2
EJB Development Roles ... 1-2
Oracle8i EJB Implementation Features.. 1-3
RMI over IIOP ... 1-3
IIOP Transport Protocol... 1-4
JNDI .. 1-4
Stateful and Stateless Session Beans .. 1-5

Implementing an EJB ... 1-6
Basic Concepts ... 1-7
Types of EJBs ... 1-9

Session Beans... 1-10
Entity Beans ... 1-10

2 Enterprise JavaBeans

Invoking Enterprise JavaBeans .. 2-2
Creating Enterprise JavaBeans ... 2-3

Requirements for Remote and Home Interface Implementation .. 2-4
Creating the Remote Interface .. 2-4
Creating the Home Interface... 2-6
iii

Creating the Exception Class .. 2-7
Implementing the Bean ... 2-7

Interface Implemented ... 2-8
Bean Implementation Example... 2-10

Developing Your Client Application .. 2-12
Using the getEJBHome Method.. 2-13
Parameter Passing... 2-13
A Parameter Object... 2-14
The Client Code... 2-14

Deploying an EJB .. 2-19
Deployment Steps... 2-20
Write the Deployment Descriptor .. 2-21
Create the Oracle Deployment Map File ... 2-24
Create a JAR File ... 2-26
Publish the Home Interface... 2-26
Dropping an EJB ... 2-26
Run the Example... 2-27

Programming Restrictions... 2-28
Debugging Techniques .. 2-28

Using a Debug Agent for Debugging Server Applications .. 2-29

3 Configuring IIOP Applications

Overview... 3-2
Oracle8i Typical or Minimal Installation ... 3-3
Oracle8i Custom Installation .. 3-4
Manual Install and Configuration ... 3-8

Configuring Through Tools .. 3-8
Configuring Through Editing Initialization Files .. 3-9

Advanced Configuration Options.. 3-11
Database Listeners and Dispatchers .. 3-11
Dynamic Listener Endpoint Registration.. 3-15
Direct Dispatcher Connection... 3-16
Configuring SSL for EJB and CORBA.. 3-17
iv

4 Entity Beans

Definition of an Entity Bean ... 4-2
Managing Persistent Data ... 4-2
Uniquely Identified by a Primary Key .. 4-2
Performing Complex Logic Involving Dependent Objects .. 4-2

Difference Between Session and Entity Beans ... 4-5
Implementing Callback Methods.. 4-5

Using ejbCreate and ejbPostCreate .. 4-7
Using setEntityContext .. 4-8
Using ejbRemove .. 4-9
Using ejbStore and ejbLoad... 4-9

Creating Entity Beans... 4-9
Home Interface.. 4-10
Remote Interface ... 4-12
Primary Key... 4-12
Entity Bean Class .. 4-15
Create Database Table and Columns for Entity Data ... 4-23
Deploying the Entity Bean .. 4-24
Client Accessing Deployed Entity Bean.. 4-25

Difference Between Bean-Managed and Container-Managed Beans 4-27
Container-Managed Persistence... 4-28

Accessing EJB References and JDBC DataSources .. 4-36
EJB References... 4-36
JDBC DataSources .. 4-37

5 JNDI Connections and Session IIOP Service

JNDI Connection Basics .. 5-2
The Name Space.. 5-3
Execution Rights to Database Objects .. 5-4
URL Syntax .. 5-5

URL Components and Classes ... 5-6
Using JNDI to Access Bound Objects... 5-7

Importing JNDI Support Classes.. 5-9
Retrieving the JNDI InitialContext... 5-9

Session IIOP Service .. 5-13
v

Session IIOP Service Overview... 5-13
Session Management.. 5-15
Service Context Class ... 5-16
Session Context Class... 5-17
Session Management Scenarios .. 5-18
Setting Session Timeout... 5-27

Retrieving JServer Version Number.. 5-28
Activating In-Session EJB Objects From Non-IIOP Presentations ... 5-28
 Invoking EJB Objects From Applets .. 5-29

Using Signed JAR Files to Conform to Sandbox Security... 5-29
Performing Object Lookup in Applets .. 5-29
Modifying HTML for Applets that Access EJB Objects .. 5-31

6 IIOP Security

Overview... 6-2
Data Integrity ... 6-3

Using the Secure Socket Layer.. 6-3
SSL Version Negotiation.. 6-4

Authentication ... 6-5
Client-side Authentication.. 6-6

Using JNDI for Authentication ... 6-8
Providing Username and Password for Client-Side Authentication.................................... 6-9
Using Certificates for Client Authentication .. 6-13
AuroraCertificateManager Class .. 6-16

Server-Side Authentication... 6-20
Authorization... 6-26

Setting up Trust Points... 6-27
Parsing through the Server’s Certificate Chain.. 6-27
AuroraCurrent Class .. 6-28

7 Transaction Handling

Transaction Overview .. 7-2
Global and Local Transactions.. 7-2
Demarcating Transactions... 7-3
Container or Bean Managed Transactions .. 7-4
vi

Transaction Context Propagation... 7-5
Enlisting Resources .. 7-7
Two-Phase Commit.. 7-8
JTA Summary.. 7-10
JTA Limitations... 7-13

JTA Server-Side Demarcation... 7-13
Container-Managed Transactions.. 7-13
Bean-Managed Transactions... 7-14

JTA Client-Side Demarcation ... 7-16
Enlisting Resources on the Server-side ... 7-25

Configuring Two-Phase Commit Engine ... 7-29
Creating DataSource Objects Dynamically ... 7-38
Setting the Transaction Timeout .. 7-39
Using the Session Synchronization Interface ... 7-40
JDBC Restrictions ... 7-42

A XML Deployment Descriptors

Enterprise JavaBean Deployment Descriptor ... A-2
Header.. A-3
JAR file ... A-3
Enterprise JavaBeans Descriptor .. A-4
Application Assembler Section... A-15

Oracle-Specific Deployment Descriptor... A-22
Header.. A-22
Defining Mappings... A-23
Defining Two Phase Commit Engine for Transactions... A-26
Defining Run-As Identity .. A-26
Defining Container-Managed Persistence .. A-28
EJB Client JAR Section ... A-33

DTD for Oracle-Specific Deployment Descriptor .. A-33

B Example Code: EJB

Basic Example .. B-2
README.. B-2
Client .. B-6
vii

Home Interface for Hello ... B-7
Remote Interface for Hello .. B-7
Bean Implementation for Hello .. B-7

SQLJ Example .. B-8
README.. B-8
Client.. B-11
Home Interface... B-11
Remote Interface .. B-12
Bean Implementation .. B-12

Bean Inheritance Example.. B-13
README... B-13
Client.. B-17
Home Interface... B-18
Remote Interface .. B-19
Bean Implementation .. B-19

Entity Bean Examples.. B-21
Bean-Managed Entity Bean Example ... B-21

Client.. B-21
Home Interface... B-23
Remote Interface .. B-23
Bean Implementation .. B-24
Deployment Descriptor... B-28

Container-Managed Entity Bean Example .. B-29
Client.. B-29
Home Interface... B-32
Remote Interface .. B-32
Bean Implementation .. B-33
XML Deployment Descriptor... B-35
Oracle-Specific Deployment Descriptor ... B-36
Database Table Updates ... B-37

Session Example... B-37
README... B-37
Client.. B-40
Home Interface... B-41
Remote Interface .. B-42
viii

Bean Implementation ... B-42
SSL Examples .. B-44
Client-Side Authentication Example .. B-44

README.. B-44
Client .. B-45
Home Interface.. B-45
Remote Interface ... B-46
Bean Implementation ... B-46

Server-Side Authentication Example.. B-47
README.. B-47
Client .. B-47
Home Interface.. B-48
Remote Interface ... B-48
Bean Implementation ... B-49

C Abbreviations and Acronyms
ix

x

Send Us Your Comments

Enterprise JavaBeans Developer’s Guide and Reference, Release 3 (8.1.7)

Part No. A83725-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail — jpgcomnt@us.oracle.com

■ FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager

■ Postal service:

Oracle Corporation

Information Development Manager

500 Oracle Parkway, Mailstop 4op978

Redwood Shores, CA 94065

USA

Please indicate if you would like a reply.

If you have problems with the software, please contact your local Oracle World Wide Support Center.
xi

xii

Preface

This guide gets you started building Enterprise JavaBeans for Oracle8i. It includes

many code examples to help you develop your application.

Who Should Read This Guide?
Anyone developing server-side Enterprise JavaBeans for Oracle8i will benefit from

reading this guide. Written especially for programmers, it will also be of value to

architects, systems analysts, project managers, and others interested in

network-centric database applications. To use this guide effectively, you must have

a working knowledge of Java and Oracle8i.

Prerequisite Reading
Before consulting this Guide, you should read the following:

■ Oracle8i Java Developer’s Guide gives you the technical background information

necessary to understand Java in the database server. As well as a

comprehensive discussion of the advantages of the JServer implementation for

enterprise application development, it explains the fundamentals of the JServer

Java virtual machine and gives a technical overview of the tools that JServer

provides.

■ Sun Microsystems’s EJB 1.1 specification as a supplement to this Guide. This

guide assumes that you already have a base understanding of the EJB 1.1

specification details.

See "Your Comments Are Welcome" on page iv for more sources of information on

Enterprise JavaBeans.
i

Suggested Reading

Books
■ Core Java by Cornell & Horstmann, second edition, Volume II (Prentice-Hall,

1997) has good presentations of several Java concepts relevant to EJB. For

example, this book documents the Remote Method Invocation (RMI) interface.

■ The Developer’s Guide to Understanding Enterprise JavaBeans, an overview of EJBs,

is available at http://www.Nova-Labs.com.

Online Sources
There are many useful online sources of information about Java. For example, you

can view or download guides and tutorials from the Sun Microsystems home page

on the Web:

http://www.sun.com

The current 1.1 EJB specification is available at:

http://java.sun.com/products/ejb/docs.html

Another popular Java Web site is:

http://www.gamelan.com

For Java API documentation, see:

http://www.javasoft.com

A white paper by Anne Thomas of the Patricia Seybold group (paper sponsored by

Sun Microsystems) is available at:

http://java.sun.com/products/ejb/white_paper.html

Related Publications
Occasionally, this guide refers you to the following Oracle publications for

more information:

Oracle8i Application Developer’s Guide - Fundamentals

Oracle8i Java Developer’s Guide

Oracle8i JDBC Developer’s Guide and Reference

Oracle8i SQL Reference
ii

Oracle8i SQLJ Developer’s Guide and Reference

How This Guide Is Organized
This guide consists of the following:

Chapter 1, "Overview", presents a brief overview of the EJB development model

from an Oracle8i perspective.

Chapter 2, "Enterprise JavaBeans", discusses EJB development for the Oracle8i
server. Although this chapter is not a tutorial on EJB, it contains some of the basic

EJB concepts included in the Sun Microsystems specification. The examples focus

on a session bean implementation.

Chapter 3, "Configuring IIOP Applications", describes the configuration required to

execute an EJB within the database.

Chapter 4, "Entity Beans", describes how to implement an entity bean. This details

both a container-managed persistent and a bean-managed persistent model for

entity beans.

Chapter 5, "JNDI Connections and Session IIOP Service", covers session

management, the session IIOP service and the JNDI namespace. This chapter

contains examples and scenarios for accessing EJBs deployed within the server

using JNDI and the session IIOP service.

Chapter 6, "IIOP Security", discusses security options for authentication.

Chapter 7, "Transaction Handling", documents the JTA transaction interfaces that

you use when developing EJBs.

Appendix A, "XML Deployment Descriptors" describes both the EJB and

Oracle-specific deployment descriptors. This appendix contains the full details and

semantics for all elements contained within both deployment descriptors.

Appendix B, "Example Code: EJB", includes examples of EJB applications.

Appendix C, "Abbreviations and Acronyms", supplies a convenient list of

acronyms.

Notational Conventions
This guide follows these conventions:
iii

Java code examples follow these conventions:

Your Comments Are Welcome
We appreciate your comments and suggestions. In fact, your opinions are the most

important feedback we receive. We encourage you to use the Reader’s Comment

Form at the front of this book. You can also send comments to the

following address:

Documentation Manager, Oracle8i Java Products Group

Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

USA

email: jpgcomnt@us.oracle.com

Italic Italic font denotes terms being defined for the first time,
words being emphasized, error messages, and book titles.

Courier Courier font denotes Java program names, file names, path
names, and Internet addresses.

{ } Braces enclose a block of statements.

// A double slash begins a single-line comment, which extends
to the end of a line.

/* */ A slash-asterisk and an asterisk-slash delimit a multi-line
comment, which can span multiple lines.

... An ellipsis shows that statements or clauses irrelevant to the
discussion were left out.

lower case Lower case is used for keywords and for one-word names of
variables, methods, and packages.

UPPER CASE Upper case is used for names of constants (static final
variables) and for names of supplied classes that map to
built-in SQL datatypes.

Mixed Case Mixed case is used for names of classes and interfaces and for
multi-word names of variables, methods, and packages. The
names of classes and interfaces begin with an upper-case
letter. In all multi-word names, the second and succeeding
words also begin with an upper-case letter.
iv

Ove
1

Overview

This chapter gives you a general picture of distributed object development in the

Oracle8i JServer. This overview focuses on the aspects of Enterprise JavaBeans (EJB)

development particular to JServer, giving a brief general description of the EJB

standard development model.

This chapter covers the following topics:

■ About Enterprise JavaBeans

■ Implementing an EJB

■ Basic Concepts

■ Types of EJBs
rview 1-1

About Enterprise JavaBeans
About Enterprise JavaBeans
Oracle8i JServer complies with the EJB 1.1 specification and offers a highly scalable

and high-performance execution environment for EJBs.

Enterprise JavaBeans (EJB) is an architecture for developing distributed

applications. Additionally, EJB applications are developed entirely in Java. It is not

necessary for developers to learn a new language, such as IDL for CORBA

applications.

EJB is an architecture for transactional, component-based distributed computing.

The specification for EJBs lays out not just the format of a bean itself, but also a set

of services that must be provided by the container in which the bean runs. This

makes EJBs a powerful development methodology for distributed application

development. Neither the bean developer nor the client application programmer

needs to be concerned with service details such as transaction support, security,

remote object access, and many other complicated and error-prone issues. The EJB

server and container furnishes these features for you.

EJB architecture makes server-side development much easier for the Java

application programmer. Because the implementation details are hidden from the

developer, and because services such as transaction support and security are

provided in an easy-to-use manner, you can develop EJBs relatively quickly.

Furthermore, EJBs offer portability. A bean developed on one EJB server should run

on other EJB servers that meet the EJB specification.

EJB Development Roles
The EJB specification describes enterprise bean development in five roles:

■ The EJB developer writes the code that implements an individual EJB. This code

is the business logic of the application, usually involving database access.

The EJB developer is a Java applications programmer familiar with both SQL

and with database access using SQLJ or JDBC.

■ The EJB deployer installs and publishes the EJB. This involves interaction with

the EJB developer so that the transactional nature of the EJB is understood. The

EJB deployer writes the deployment descriptor files that specify the properties of

each bean to be deployed.

The EJB deployer must be familiar with the runtime environment of the EJBs,

including database-specific matters such as network ports, database roles

required, and other schema-specific requirements. For the Oracle8i server, the
1-2 Enterprise JavaBeans Developer’s Guide and Reference

About Enterprise JavaBeans
EJB deployer is responsible for publishing the EJB home interfaces in a database

and communicating this information to the client-side application developer.

■ The EJB server vendor implements the framework in which the EJB containers

run. For Oracle, the Oracle8i data server is the framework that supports the EJB

containers.

■ The EJB container vendor supplies the services that support the EJB at runtime.

For example, when a client expects the bean to handle transaction support

automatically, the container framework together with the data resource

supports this.

■ The application developer writes the client-side code that calls methods on server

EJBs.

The roles of the EJB server and EJB container developers are not clearly

distinguished. There is, for example, no standardized API between the container

and the server. For this reason, the same vendor is likely to perform initial

implementations for EJB servers and containers. This is the case for Oracle8i.

Oracle8 i EJB Implementation Features
The Oracle8i EJB implementation is able to leverage the Oracle database server and

offers the following features:

■ a simple-to-use way of locating and activating beans, using a JNDI interface to

an underlying OMG CosNaming service

■ a session name space that uses the database as a name server, with its

performance advantages, such as fast access to indexed tables

■ secure socket layer (SSL) connections for added security

■ standard Oracle database authentication and multi-layer access control to

objects

■ an implementation of the Java Transaction Architecture (JTA) for transaction

demarcation

■ a UserTransaction interface for bean-managed transactions

■ tools that assist you in deploying your EJB application

RMI over IIOP
EJB specifies Java Remote Method Invocation (RMI) as the transport protocol. EJBs

are based conceptually on the Java Remote Method Invocation (RMI) model. For
Overview 1-3

About Enterprise JavaBeans
example, remote object access and parameter passing for EJBs follow the

RMI specification.

The EJB specification does not prescribe that the transport mechanism has to be

pure RMI. The Oracle8i EJB server uses RMI over IIOP for its transport protocol.

Because the CORBA Internet Inter-ORB Protocol (IIOP) is the transport protocol for

CORBA and for a future version of RMI, Oracle8i effectively enables direct

object-oriented access to an array of open systems.

IIOP Transport Protocol
Oracle8i offers a Java interpreter for the IIOP protocol. Oracle embeds a pure Java

ORB of a major CORBA vendor (VisiBroker for Java version 3.4 by Inprise) and

repackaging the Visigenic Java IIOP interpreter to run in the database. Because

Oracle8i is a highly scalable server, only the essential components of the interpreter

are necessary—namely, a set of Java classes that do the following:

■ decode the IIOP protocol

■ find or activate the relevant Java object

■ invoke the method the IIOP message specifies

■ write the IIOP reply back to the client

Oracle8i does not use the ORB scheduling facilities. The Oracle multi-threaded

server performs the dispatching, enabling the server to process IIOP messages

efficiently and in a highly scalable manner.

On top of this infrastructure, Oracle8i implements the EJB programming model.

JNDI
EJB developers follow the EJB specification and use JNDI for access. Each bean is

published automatically during the deployment process. JNDI provides access to

the published bean through a CosNaming layer.
1-4 Enterprise JavaBeans Developer’s Guide and Reference

About Enterprise JavaBeans
Figure 1–1 shows how applications access remote objects published in the database

using JNDI.

Figure 1–1 Remote Object Access

Stateful and Stateless Session Beans
The EJB specification calls for two types of session bean: stateless and stateful beans.

■ Stateless beans—which do not share state or identity between method

invocations—find use mainly in middle tier application servers that provide a

pool of beans to process frequent and brief requests, such as those involved in

an OLTP application.

■ Stateful beans are useful for longer-duration sessions, in which it is necessary to

maintain state, such as instance variable values or transactional state, between

method invocations.

Because the Oracle8i ORB and Java VM run under the multi-threaded server (MTS),

the distinction between stateless and stateful session beans is not important for

JServer. Thus, EJB activates only stateful session beans on demand in a new session.

Stateful beans can offer the same performance as stateless beans, while preserving

the "conversational state".

object reference

JNDI

Session

activated object

published objects

name, class, helper
name, class, helper

Oracle8i
Overview 1-5

Implementing an EJB
Implementing an EJB
There are four major components that you must create to develop a complete EJB:

■ the home interface

■ the remote interface

■ the implementation of the remote interface—the actual bean class

■ a deployment descriptor for each EJB

The client application itself does not access the bean directly. Rather, the container

generates a server-side object known as the EJBObject that serves as a server-side

proxy for the bean. The EJBObject receives the messages from the client, and thus

the container can interpose its own processing before the messages are sent to the

bean implementation.

Figure 1–2 on page 1-7 illustrates the interaction among these components.

Component Description

The home interface Specifies the interface to an object that the container itself
implements: the home object. The home interface contains the
create() methods that specify how a bean is created. The
home interface, with the home object serves as a factory object
for EJBs.

The remote interface Specifies the methods that you implement in the bean. These
methods perform the business logic of the bean. The bean must
also implement additional service methods that the EJB
container calls at various times in the life cycle of a bean. See
Basic Concepts on page 1-7 for more information about these
service methods.

The bean
implementation

Contains the Java code that implements the remote interface and
the required container methods.

The deployment
descriptor

Specifies attributes of the bean for deployment and loading into
the database. For example, the deployment descriptor declares
the transactional properties of the bean. At deployment time, the
EJB deployer, together with the application developer, can
decide whether the container should manage transaction
support or have the client do it.
1-6 Enterprise JavaBeans Developer’s Guide and Reference

Basic Concepts
Figure 1–2 Basic EJB Component Relationships

Basic Concepts
Before going into details about implementing EJBs, some basic concepts must be

clarified. First of all, recall that a bean runs in a container. The container, which is

part of the EJB server, provides a number of services to the bean. These include

transaction services, synchronization services, and security.

To provide these services, the bean container must be able to intercept calls to bean

methods. For example, a client application calls a bean method that has a

transaction attribute that requires the bean to create a new transaction context. The

bean container must be able to interpose code to start a new transaction before the

method call, and to commit the transaction, if possible, when the method completes,

and before any values are returned to the client.

For this reason and others, a client application does not call the remote bean

methods directly. Instead, the client invokes the bean method through a two-step

process, mediated by the ORB and by the container:

1. The client invokes the bean method off of the remote interface object.

a. The client actually calls a local proxy stub for the remote method.

Container

Home
Interface

Remote
Interface

Bean
Instance

setX(...) {}
getX(...) {}

Oracle8i

Client

Server

xBean x=home.create();
.
.
.
setX(42, "hiya");
r3=getX();

create

ejbCreate

invoke
methods
Overview 1-7

Basic Concepts
b. The stub marshals any parameter data, and then calls a remote skeleton on

the server.

2. The skeleton unmarshals the data, and upcalls to the bean container.

This step is required because of the remote nature of the call. Note that this step

is completely transparent both to the client application developer as well as to

the bean developer. It is a detail that you do not need to know about to write

your application code, either on the client or the server. Nevertheless, it is

useful to know what is going on, especially when it comes to understanding

what happens during bean deployment.

3. The bean container receives the skeleton upcall, then interposes whatever

services are required by the context. These can include:

■ authenticating the client, on the first method call

■ performing transaction management

■ calling synchronization methods in the bean itself

■ identity checks and switch

4. The container delegates the method call to the bean.

5. The bean method executes.

6. When it returns, the thread of control returns to the bean container, which

interposes whatever services are required by the context.

For example, if the method is running in a transaction context, the bean

container performs a commit operation, if possible, depending on the

transaction attributes in the bean descriptor.

7. The bean container calls the skeleton, which marshals return data and returns it

to the client stub.

These steps are completely invisible to client-side and server-side application

developers. One of the major advantages of the EJB development model is that it

hides the complexity of transaction and identity management from developers.
1-8 Enterprise JavaBeans Developer’s Guide and Reference

Types of EJBs
Types of EJBs
There are two types of EJBs: session beans and entity beans. An easy way to think of

the difference is that a session bean implements one or more business tasks, while

an entity bean is a complex business entity. A session bean might contain methods

that query and update data in a relational table; an entity bean represents business

data directly or indirectly through another persistent bean.

Session beans are often used to implement services. For example, an application

developer might implement one or several session beans that retrieve and update

inventory data in a database. You can use session beans to replace stored

procedures in the database server, thereby achieving the scalability inherent in the

Oracle8i Java server.

Entity beans are often used to facilitate business services that involve data and

computations on that data. For example, an application developer might implement

an entity bean to retrieve and perform computation on items within a purchase

order. Your entity bean can manage multiple dependent persistent objects in

performing its necessary tasks.

Persistence
Session beans are not inherently persistent. Persistence can refer either to a

characteristic of the bean—entity beans are persistent, session beans are not

inherently persistent—or it can refer to data that a bean might save, so that the data

can be retrieved in a future instantiation. Persistent data is saved in the database.

Therefore, a session bean can save its state in an Oracle8i database, but it does not

directly represent business data. Entity beans persist the business data either

automatically—in a container-managed persistent entity bean—or by way of

methods that use JDBC or SQLJ and are coded into the bean—in a bean-managed

persistent entity bean.

Implementing the synchronization interface can make data storage and retrieval

automatic for session beans.
Overview 1-9

Types of EJBs
Session Beans
Created by a client, a session bean is usually specific to that client. In Oracle8i more

than one client can share a session bean.

Session beans are transient in that they do not survive a server crash or a network

failure. If, after a crash, you instantiate a bean that had previously existed, the state

of the previous instance is not restored. State can only be restored to entity beans.

Stateful Session Beans
A stateful session bean maintains its state between method calls. For example, a

single instance of a session bean might open a JDBC database connection and use

the connection to retrieve some initial data from the database. For example, a

shopping-cart application bean could load a customer profile from the database as

soon as it’s activated, then that profile would be available for any method in the

bean to use.

A typical stateful session EJB is a relatively coarse-grained object. A single bean

almost always contains more than one method, and the methods provide a unified,

logical service. For example, the session EJB that implements the server side of a

shopping cart on-line application would have methods to return a list of objects that

are available for purchase, put items in the customer’s cart, place an order, change a

customer’s profile, and so on.

The state that a session bean maintains is called the "conversational state" of the

bean, as the bean is maintaining a connection with a single client, similar to a

telephone conversation.

Keep in mind that the state of a bean is still transient data, with respect to the bean

itself. If the connection from the client to the bean is broken, the state can be lost.

This depends on whether the client is unable to reconnect before timeout.

Entity Beans
Entity beans are persistent in that they do survive a server crash or a network

failure. When an entity bean is re-instantiated, the state of previous instances is

automatically restored. For more information on entity beans, see "Definition of an

Entity Bean" on page 4-2.
1-10 Enterprise JavaBeans Developer’s Guide and Reference

Enterprise JavaB
2

Enterprise JavaBeans

This chapter describes the development and deployment of Enterprise JavaBeans in

the Oracle8i server environment. Although it is not a complete tutorial on EJB and

the EJB architecture, this chapter supplies you with enough information to start

developing EJB applications.

This chapter covers the following topics:

■ Invoking Enterprise JavaBeans

■ Creating Enterprise JavaBeans

■ Implementing the Bean

■ Developing Your Client Application

■ Deploying an EJB

■ Programming Restrictions

■ Debugging Techniques
eans 2-1

Invoking Enterprise JavaBeans
Invoking Enterprise JavaBeans
An Enterprise JavaBean has two client interfaces: a remote interface and a home

interface. The remote interface specifies the methods that the object’s clients can

invoke; the home interface defines how clients can create the object, which returns a

reference to the object. The client uses both of these interfaces when invoking a

method on a bean.

The events that occur when a client invokes a method within a bean are explained

in the following diagram and steps:

Figure 2–1 Sequence of events in a session bean lifecycle

The numbers in the figure correspond to the following numbered steps:

1. Client 1 looks up home interface of bean X.

During the JNDI lookup, the database creates a session for the server-side of the

request.

2. Reference to home interface X is returned to client 1.

3. Client 1 invokes create on home interface X.

The bean instance is created within the session that was established on the JNDI

lookup.

4. Home interface X instantiates remote interface X. The container instantiates the

bean for this client and is destroyed only when the client invokes the remove.

The object reference of remote interface X is returned to client 1.

Client 1

Container

Bean X

ref to remote

home
interface X

remote
interface X

lookup (1)

ref to home
 interface X (2)

create() (3)

(4) (6)

methods (5)

remove (7)

interface X (4)
2-2 Enterprise JavaBeans Developer’s Guide and Reference

Creating Enterprise JavaBeans
5. Client 1 uses remote interface X to invoke methods on bean instance X.

6. Remote interface X delegates call to a bean.

7. Client 1 invokes remove on remote interface X when it is done with the bean

instance. This destroys the remote interface and the bean instance.

Creating Enterprise JavaBeans
To create an EJB, you must perform the following steps:

1. Create a remote interface for the bean. The remote interface declares the

methods that a client can invoke. It must extend javax.ejb.EJBObject .

2. Create a home interface for the bean. The home interface must extend

javax.ejb.EJBHome . In addition, it defines the create method for your

bean.

3. Implement the bean. This includes the following:

a. The implementation for the methods declared in your remote interface.

b. The methods defined in either the javax.ejb.SessionBean or

javax.ejb.EntityBean interfaces. For the differences between these

types of beans, see "Definition of an Entity Bean" on page 4-2.

c. The ejbCreate method with parameters matching those of the create
method defined of the home interface.

4. Create the bean deployment descriptor. The deployment descriptor specifies

properties for the bean. See Chapter 4, "Creating Deployment Files".

5. Create an ejb-jar file containing the bean, the remote and home interfaces, and

the deployment descriptor. The ejb-jar file must define all beans within your

application. Refer to Chapter 4, "Creating Deployment Files" for more details.
Enterprise JavaBeans 2-3

Creating Enterprise JavaBeans
Requirements for Remote and Home Interface Implementation

Creating the Remote Interface
The remote interface of a bean provides an interface for the methods that the client

will invoke. That is, the remote interface defines the methods that you implement

for remote access.

1. The bean’s remote interface must extend the javax.ejb.EJBObject
interface, which has the following definition:

public interface javax.ejb.EJBObject extends java.rmi.Remote {
public abstract EJBHome getEJBHome()

throws java.rmi.RemoteException // returns reference to home
 // interface for this bean

public abstract Handle getHandle()
throws java.rmi.RemoteException // returns serializeable handle

public abstract Object getPrimaryKey()
throws java.rmi.RemoteException // returns key to an entity bean

public abstract boolean isIdentical(EJBObject obj)
throws java.rmi.RemoteException

public abstract void remove()
throws java.rmi.RemoteException, RemoveException //remove EJB object

}

You do not need to implement the methods in the EJBObject interface; these

methods are implemented for you by the container.

Requirement Description

RMI conformance Because the javax.ejb.EJBObject and

javax.ejb.EJBHome interfaces extend

java.rmi.Remote , they must be compliant with the

Remote Method Invocation (RMI) specification. This means

that their methods can only use the data types allowed in

RMI, and that methods in both interfaces must throw the

java.rmi.RemoteException exception.

You can get the RMI specifications from the JavaSoft site,

http://www.javasoft.com.

Naming conventions The interface names, method names, and constants defined

within these interfaces cannot start with an underbar (_) or

contain a dollar sign ($). In addition, the application and

bean names can include the slash sign (/).
2-4 Enterprise JavaBeans Developer’s Guide and Reference

Creating Enterprise JavaBeans
2. The signature for each method in the remote interface must match the signature

in the bean implementation.

3. The remote interface must be declared as public.

4. You do not declare public variables in the remote interface. Only the public

methods are declared.

5. Any exception can be thrown to the client, as long as it is serializable. Runtime

exceptions are transferred back to the client as a remote runtime exception.

Example
The following code sample shows a remote interface called Employee, which

declares the getEmployee method, which will be implemented in the bean.

Function Description

getEJBHome() Retrieves the object reference for the home interface

associated with this particular bean. Note that you cannot

typecast the returned object to the home interface type. See

"Using the getEJBHome Method" on page 2-13 for more

information.

getHandle() A serializable Java representation of the EJB object reference

can be obtained using the getHandle method of the remote

interface. The handle can be serialized and used to re-estab-

lish a connection to the same object. With session beans, the

connection is re-established as long as the bean instance is

still active; with entity beans, the connection is re-estab-

lished irregardless of whether the bean is active or not.

You use the getEJBObject method within the Handle

class to retrieve the bean instance.

getPrimaryKey() The getPrimaryKey method retrieves the primary key
associated with the EJB EntityBean.

isIdentical() Tests that the object calling this method and the object in the

argument are identical (as far as the container is concerned).

This identifies that both objects are the same for all pur-

poses.

remove() Deactivates the EJB bean. This, in turn, destroys the session

bean instance (if stateful).
Enterprise JavaBeans 2-5

Creating Enterprise JavaBeans
package employee;

import employee.EmpRecord;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Employee extends EJBObject {
 public EmpRecord getEmployee (int empNumber)
 throws java.sql.SQLException, EmpException, RemoteException;
}

Creating the Home Interface
The home interface should define the appropriate create method for your bean.

The home interface specifies one or more create methods. For each create
method, a corresponding ejbCreate method must be defined in the remote inter-

face. All of the create methods return the bean type; all of the ejbCreate meth-

ods return void.

The client invokes the create method declared within the home interface. The

container turns around and calls the ejbCreate method, with the appropriate

parameter signature, within your bean implementation. The parameter arguments

can be used to initialize the state of a new EJB object.

1. The home interface must extend the javax.ejb.EJBHome interface which has

the following definition:

public interface javax.ejb.EJBHome extends java.rmi.Remote {
public abstract EJBMetaData getEJBMetaData();
public abstract void remove(Handle handle);
public abstract void remove(Object primaryKey);

}

The methods in the EJBHome interface are implemented by the container. A

client can remove an EJB object using the remove methods defined in either of

its home or remote interfaces.

2. A bean’s home interface can also be used to retrieve metadata information

about the bean through the javax.ejb.EJBMetaData interface or remove the

bean instance, given a handle.

3. All create methods must throw the following exceptions:

■ javax.ejb.CreateException

■ either java.rmi.RemoteException or javax.ejb.EJBException
2-6 Enterprise JavaBeans Developer’s Guide and Reference

Implementing the Bean
Example
The following code sample shows a home interface called EmployeeHome. The

create method contains no arguments.

package employee;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface EmployeeHome extends EJBHome {
 public Employee create()
 throws CreateException, RemoteException;
}

Creating the Exception Class
Some methods in the Employee class can throw the EmpException exception. For

an exception to be transported from the object to the client, you need to define a

class for the exception.

The following code defines an exception class and is found in EmpException.java.

package employee;

public class EmpException extends RemoteException
{
 public EmpException(String msg)
 {
 super(msg);
 }
}

Implementing the Bean
The bean contains the business logic for your bean. It implements the following

methods:

■ The bean methods declared in the remote interface.

Note: The deployejb tool publishes a reference to the home

object in the database. See the Oracle8i Java Tools Reference for a full

description of deployejb .
Enterprise JavaBeans 2-7

Implementing the Bean
The bean in the example application consists of one class, EmployeeBean , that

retrieves an employee’s information.

■ The methods declared in the SessionBean or EntityBean interface.

■ The ejbCreate methods that corresponds to the create methods declared in

the home interface. The container invokes the ejbCreate method when the

client invokes the corresponding create method.

Interface Implemented
Your bean implements the methods within either the SessionBean or Entity-
Bean interface. This example implements the SessionBean interface. Basically, a

session bean is used for process oriented beans—those beans that perform tasks to

achieve an end. Entity beans are complex remote objects that are organized around

persistent data. See "Definition of an Entity Bean" on page 4-2 for more information

on the differences between the two types of beans.

The session bean implements the javax.ejb.SessionBean interface, which has

the following definition:

public interface javax.ejb.SessionBean extends javax.ejb.EnterpriseBean {
public abstract void ejbActivate();
public abstract void ejbPassivate();
public abstract void ejbRemove();
public abstract void setSessionContext(SessionContext ctx);

}

At a minimum, an EJB must implement the following methods, as specified in the

javax.ejb.SessionBean interface:

ejbActivate() Implement this as a null method, because it is never

called in this release of the EJB server.

ejbPassivate() Implement this as a null method, because it is never

called in this release of the server.

ejbRemove() A container invokes this method before it ends the

life of the session object. This method performs any

required clean-up, for example closing external

resources such as file handles.
2-8 Enterprise JavaBeans Developer’s Guide and Reference

Implementing the Bean
Using setSessionContext
This method is used by a session bean instance to retain a reference to its context.

Session beans have session contexts that the container maintains and makes avail-

able to the beans. The bean may use the methods in the session context to make call-

back requests to the container.

The container invokes setSessionContext method, after it first instantiates the

bean, to enable the bean to retrieve the session context. The container will never call

this method from within a transaction context. If the bean does not save the session

context at this point, the bean will never gain access to the session context.

When the container calls this method, it passes the reference of the SessionCon-
text object to the bean. The bean can then store the reference for later use. The fol-

lowing example shows the bean saving the session context in the sessctx variable.

import javax.ejb.*;
import oracle.oas.ejb.*;

public class myBean implements SessionBean {
SessionContext sessctx;

void setSessionContext(SessionContext ctx) {
sessctx = ctx; // session context is stored in

// instance variable
}
// other methods in the bean

}

The javax.ejb.SessionContext interface has the following definition:

public interface SessionContext extends javax.ejb.EJBContext {
 public abstract EJBObject getEJBObject();
}

And the javax.ejb.EJBContext interface has the following definition:

setSessionContext
(SessionContext ctx)

Associate’s a bean’s instance with context

information. The container calls this method after the

bean creation. The enterprise bean can store the

reference to the context object in an instance variable,

for use in transaction management. Beans that

manage their own transactions can use the session

context to get the transaction context.
Enterprise JavaBeans 2-9

Implementing the Bean
public interface EJBContext {
 public abstract Properties getEnvironment();
 public abstract UserTransaction getUserTransaction();
 public abstract boolean getRollbackOnly();
 public abstract void setRollbackOnly();
 public abstract boolean isCallerInRole(Identity);

// not supported
 public abstract Identity getCallerIdentity(); // not supported
 public abstract EJBHome getEJBHome();
}

A bean needs the session context when it wants to perform the operations listed in

Table 2–1.

Bean Implementation Example
The following code implements methods of a session bean called EmployeeBean .

The SessionBean interface methods are implemented along with the public meth-

ods declared in the remote interface.

The JDBC code opens a default connection, which is the standard way that JDBC

code that runs on the Oracle8i server opens a server-side connection. A JDBC

prepared statement is used to prepare the query, which has a WHERE clause. Then

the setInt method is used to associate the empNumber input parameter for the

getEmployee method with the’?’ placeholder in the prepared statement query.

This is identical to the JDBC code that you would write in a client application.

package employeeServer;

Table 2–1 SessionContext operations

Method Description

getEnvironment() Get the values of properties for the bean.

getUserTransaction() Get a transaction context, which allows you to demarcate

transactions programmatically. This is only valid for beans

that have been designated transactional.

setRollbackOnly() Set the current transaction so that it cannot be committed.

getRollbackOnly() Check whether the current transaction has been marked for

rollback only.

getEJBHome() Get the object reference to the bean’s corresponding

EJBHome (home interface).
2-10 Enterprise JavaBeans Developer’s Guide and Reference

Implementing the Bean
import java.sql.*;
import java.rmi.RemoteException;
import javax.ejb.*;

public class EmployeeBean implements SessionBean {
 SessionContext ctx;

 //implement the bean method, getEmployee
 public EmpRecord getEmployee (int empNumber)
 throws SQLException, RemoteException {

 //create a new employee record
 EmpRecord empRec = new EmpRecord();

 //establish a connection to the database using JDBC
 Connection conn =
 new oracle.jdbc.driver.OracleDriver().defaultConnection();

 //retrieve the employee’s information from the database
 PreparedStatement ps =
 conn.prepareStatement("select ename, sal from emp where empno = ?");
 ps.setInt(1, empNumber);
 ResultSet rset = ps.executeQuery();
 if (!rset.next())
 throw new RemoteException("no employee with ID " + empNumber);
 empRec.ename = rset.getString(1);
 empRec.sal = rset.getFloat(2);
 empRec.empno = empNumber;
 ps.close();
 return empRec;
 }

 //implement the SessionBean methods: ejbCreate, ejbActivate,
 // ejbPassivate, ejbRemove and setSessionContext

 //implement ejbCreate, which is called by the container when
 //the Home create is invoked by the client.
 public void ejbCreate () throws CreateException, RemoteException {
 //you can do any initialization for the bean at this point.
 //this particular example does not require any initialization or
 //environment variable retrieval.
 }

 //ejbActivate and ejbPassivate are never called in this release.
Enterprise JavaBeans 2-11

Developing Your Client Application
 //Both methods should be declared, but be null methods.
 public void ejbActivate () {
 }
 public void ejbPassivate () {
 }

 //implement anything that needs to be done before the
 //bean is destroyed. this would include closing any open
 //resources. however, for this example, no open resources need
 //to be closed. thus, the method is empty.
 public void ejbRemove () {
 }

 //retreive the session context
 public void setSessionContext (SessionContext ctx) {
 this.ctx = ctx;
 }
}

Developing Your Client Application
All EJB clients perform the following to instantiate a bean, invoke its methods, and

destroy the bean:

1. Look up the bean home interface, which is published in the Oracle8i database

as part of the bean deployment process. Use the Java Naming and Directory

Interface (JNDI) to look up the home interface.

2. Create instances of the bean in the server through the home interface. Invoking

the create method on the home interface causes a new bean to be instantiated.

This returns a bean reference to the bean’s remote interface.

3. Invoke the methods defined in the remote interface. The container forwards the

requests to the instantiated bean.

4. After the bean is no longer needed, invoke the remove method to destroy the

bean.

These steps are completely illustrated by example in Figure 2–1.

As a quick example, suppose that EmployeeHome is a reference that you have

obtained to the home interface of a bean called Employee . The Employee home

interface must have at least one create method that lets you instantiate the bean.

You create a new instance of the bean on the remote server by coding:

Context ic = new InitialContext(env);
2-12 Enterprise JavaBeans Developer’s Guide and Reference

Developing Your Client Application
EmployeeHome home =
 (EmployeeHome) ic.lookup(serviceURL + objectName); // lookup the bean
Employee testBean = home.create(); // create a bean instance

Then, you would invoke Employee methods using the usual syntax

testBean.getEmployee(empNumber);

Using the getEJBHome Method
When you use the getEJBHome method to retrieve the home interface given an

object reference, you cannot cast the returned object to the home interface’s type.

Instead, the returned object is of type org.omg.CORBA.Object . Once received,

the object is cast to the correct home interface type through the Helper.narrow
method. The following shows the Hello example retrieve Hello’s home interface

using JNDI, creating the remote interface, and then later retrieving the home

interface again using the getEJBHome interface. Notice that the

HelloHomeHelper.narrow method is used to correctly typecast the home interface:

HelloHome hello_home = (HelloHome)ic.lookup (serviceURL + objectName);
Hello hello = hello_home.create ();
System.out.println (hello.helloWorld ());

org.omg.CORBA.Object newHome = (org.omg.CORBA.Object) hello.getEJBHome();
HelloHome newHello = HelloHomeHelper.narrow(newHome);

Parameter Passing
When you implement an EJB or write the client code that calls EJB methods, you

have to be aware of the parameter-passing conventions used with EJBs.

A parameter that you pass to a bean method—or a return value from a bean

method—can be any Java type that is serializable. Java primitive types, such as int ,

double , are serializable. Any non-remote object that implements the

java.io.Serializable interface can be passed. A non-remote object passed as a

parameter to a bean or returned from a bean is passed by value, not by reference. So,

for example, if you call a bean method as follows:

public class theNumber {
 int x;
}
...
bean.method1(theNumber);
Enterprise JavaBeans 2-13

Developing Your Client Application
then method1() in the bean receives a copy of theNumber . If the bean changes the

value of theNumber object on the server, this change is not reflected back to the

client, because of pass-by-value semantics.

If the non-remote object is complex—such as a class containing several fields—only

the non-static and non-transient fields are copied.

When passing a remote object as a parameter, the stub for the remote object is

passed. A remote object passed as a parameter must extend remote interfaces.

The next section demonstrates parameter passing to a bean and remote objects as

return values.

A Parameter Object
The EmployeeBean getEmployee method returns an EmpRecord object, so this

object must be defined somewhere in the application. In this example, an

EmpRecord class is included in the same package as the EJB interfaces.

The class is declared as public, and must implement the java.io.Serializable
interface so that it can be passed back to the client by value, as a serialized remote

object. The declaration is as follows:

package employee;

public class EmpRecord implements java.io.Serializable {
 public String ename;
 public int empno;
 public double sal;
}

The Client Code
This section shows the client code that you can use to send messages to the example

bean described above, and get and print results from it. This client code

demonstrates how a client:

■ locates a remote object such as the bean home interface

■ authenticates itself to the server

Note: The java.io.Serializable interface specifies no

methods, it just indicates that the class is serializable. Therefore,

there is no need to implement extra methods in the EmpRecord
class.
2-14 Enterprise JavaBeans Developer’s Guide and Reference

Developing Your Client Application
■ activates an instance of the bean

■ invokes a method on the bean

Locating Remote Objects
The first step with any remote object implementation, whether it’s pure RMI, or

EJBs, or CORBA, is to find out how to locate a remote object. To get a remote object

reference you must know:

■ the name of the object

■ where the name server is located

With EJBs, the initial object name is the name of an EJB home interface, and you

locate it using the Java Naming and Directory Interface (JNDI). The EJB

specification requires that EJB implementations expose a JNDI interface as the

means of locating a remote bean.

About JNDI
JNDI is an interface to a naming and directory service. For example, JNDI can serve

as an interface to a file system that you can use to look up directories and the files

they contain. Or, JNDI can be used as an interface to a naming or directory service,

for example a directory protocol such as LDAP.

This section briefly describes JNDI. The EJB specification requires the use of JNDI

for locating remote objects by name.

This section of the manual describes only those parts of JNDI that you need to know

to write EJB applications for Oracle8i. To obtain the complete JNDI API (and SPI)

specifications, see http://www.javasoft.com/products/jndi .

Sun Microsystems supplies JNDI in the javax.naming package, so you must

import these classes in your client code:

import javax.naming.*;

For the Oracle8i EJB server, JNDI serves as an interface (SPI driver) to the OMG

CosNaming service. But you do not have to know all about CosNaming, or even all

about JNDI, to write and deploy EJBs for the Oracle8i server. To start, all you must

know is how to use the JNDI methods used to access permanently-stored home

interface objects and how to set up the environment for the JNDI Context object.

The remainder of this JNDI section describes the data structures and methods of the

javax.naming package that you will need to access EJB objects.
Enterprise JavaBeans 2-15

Developing Your Client Application
Getting the Initial Context
You use JNDI to retrieve a Context object. The first Context object that you

receive is bound to the root naming context of the Oracle8i publishing context. EJB

home interfaces are published in the database, and are arranged in a manner similar

to a file system hierarchy. See Oracle8i Java Tools Reference for more details about the

publish tool.

You get the root naming context by creating a new JNDI InitialContext , as

follows:

Context initialContext = new InitialContext(environment);

The environment parameter is a Java hashtable. Table 2–2 contains the six

properties that you can set in the hashtable that are passed to the

javax.naming.Context.

Table 2–2 Context Properties

Property Purpose

javax.naming.Context.
URL_PKG_PREFIXES

The environment property that specifies the list of
package prefixes to use when loading in URL context
factories. You must use the value
"oracle.aurora.jndi" for this property.

javax.naming.Context.
SECURITY_AUTHENTICATION

The type of security for the database connection. The
possible values are:

■ oracle.aurora.sess_iiop.ServiceCtx.
NON_SSL_LOGIN

■ oracle.aurora.sess_iiop.ServiceCtx.
SSL_CREDENTIAL

■ oracle.aurora.sess_iiop.ServiceCtx.
SSL_LOGIN

■ oracle.aurora.sess_iiop.ServiceCtx.
SSL_CLIENT_AUTH

javax.naming.Context.
SECURITY_PRINCIPAL

The Oracle8i username, for example "SCOTT".

javax.naming.Context.
SECURITY_CREDENTIALS

The password for the username, for example "TIGER".

oracle.aurora.sess_iiop.
ServiceCtx.SECURITY_ROLE

An optional property that establishes a database role for
the connection. For example, use the string "CLERK" to
connect with the CLERK role.
2-16 Enterprise JavaBeans Developer’s Guide and Reference

Developing Your Client Application
See Chapter 5, "JNDI Connections and Session IIOP Service", for more information

about JNDI and connecting to an Oracle8i instance.

Getting the Home Interface Object
Once you have the initial references context, you can invoke its methods to get a

reference to an EJB home interface. To do this, you must know the published full

pathname of the object, the host system where the object is located, the IIOP port for

the listener on that system, and the database system identifier (SID). When you

obtain this information—for example, from the EJB deployer—construct a URL

using the following syntax:

<service_name>://<hostname>:<iiop_listener_port>:<SID>/<published_obj_name>

For example, to get a reference to the home interface for a bean that has been

published as /test/myEmployee , on the system whose TCP/IP hostname is

myHost , the listener IIOP port is 2481, and the system identifier (SID) is ORCL,
construct the URL as follows:

sess_iiop://myHost:2481:ORCL/test/myEmployee

The listener port for IIOP requests is configured in the listener.ora file. The default

for Oracle8i is 2481. See the Net8 Administrator’s Guide for more information about

IIOP configuration information. See also Chapter 5, "JNDI Connections and Session

IIOP Service" for more information about IIOP connections.

You get the home interface using the lookup method on the initial context, passing

the URL as the parameter. For example, if the home interface’s published name is

/test/myEmployee , you would code:

...
String ejbURL = "sess_iiop://localhost:2481:ORCL/test/myEmployee";
Hashtable env = new Hashtable();
env.put(javax.naming.Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
// Tell sess_iiop who the user is
env.put(Context.SECURITY_PRINCIPAL, "SCOTT");
// Tell sess_iiop what the password is
env.put(Context.SECURITY_CREDENTIALS, "TIGER");

oracle.aurora.sess_iiop.
ServiceCtx.SSL_VERSION

The client-side SSL version number.

Table 2–2 Context Properties

Property Purpose
Enterprise JavaBeans 2-17

Developing Your Client Application
// Tell sess_iiop to use non-SSL login authentication
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
// Lookup the URL
EmployeeHome home = null;
Context ic = new InitialContext(env);
home = (EmployeeHome) ic.lookup(ejbURL);
...

Invoking EJB Methods
Once you have the home interface for the bean, you can invoke one of the bean’s

create methods to instantiate a bean. See Chapter 5, "JNDI Connections and

Session IIOP Service" for information about granting execution rights. For example:

Employee testBean = home.create();

Then you can invoke the EJB’s methods in the normal way:

int empNumber = 7499;
EmpRecord empRec = testBean.getEmployee(empNumber);

Here is the complete code for the client application:

import employee.Employee;
import employee.EmployeeHome;
import employee.EmpRecord;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client {

 public static void main (String [] args) throws Exception {

 String serviceURL = "sess_iiop://localhost:2481:ORCL";
 String objectName = "/test/myEmployee";
 int empNumber = 7499; // ALLEN
 Hashtable env = new Hashtable();

 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, "scott");
 env.put(Context.SECURITY_CREDENTIALS, "tiger");
2-18 Enterprise JavaBeans Developer’s Guide and Reference

Deploying an EJB
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);

 Context ic = new InitialContext(env);

 EmployeeHome home =
 (EmployeeHome) ic.lookup(serviceURL + objectName); // lookup the bean
 Employee testBean = home.create(); // create a bean instance
 EmpRecord empRec =
 testBean.getEmployee(empNumber); // get the data and print it
 System.out.println("Employee name is " + empRec.ename);
 System.out.println("Employee sal is " + empRec.sal);
 }
}

Deploying an EJB
The EJB deployment process consists of the following steps:

1. Get the beans from the EJB developer. In the typical case, you compile the beans

and put the beans and their accompanying classes, including the home and

remote interfaces and any classes dependent on the bean into a JAR file—one

JAR file for each bean.

2. Develop the EJB deployment descriptor for each bean.

3. Create the Oracle-specific deployment descriptor.

4. Run the deployejb tool, which:

a. reads the deployment descriptor and the bean JAR file

b. maps the logical names defined in the EJB deployment descriptor to

existing JNDI names and database tables

c. loads the bean classes into the Oracle8i database

d. publishes the bean home interface

5. Make sure that the application developer has the information necessary about

the bean remote interface and the name of the published beans.
Enterprise JavaBeans 2-19

Deploying an EJB
Deployment Steps
The format used to package EJBs is defined by the EJB specification. This section

describes the steps that the EJB developer and the EJB deployer take to compile,

package, and deploy an EJB. Oracle8i supplies a deployment tool, deployejb , that

automatically performs most of the steps necessary to deploy an EJB. The

deployejb tool deploys only one bean at a time. This tool is described in Oracle8i
Java Tools Reference.

To deploy an EJB, follow these four steps:

1. Compile the code for the bean. This includes:

■ the home interface

■ the remote interface

■ the bean implementation

■ all Java source files dependent on the bean implementation class (this

dependency is normally taken care of by the Java compiler)

Use the standard client-side Java compiler to compile the bean source files.

A bean typically consists of one or more Java source files and might have

associated resource files.

Oracle8i supports the Sun Microsystems Java Developer’s Kit compiler

versions 1.1.6 or 1.2. Alternatively, you might be able to use another

JCK-tested Java compiler to create EJBs to run in the Oracle8i server.

2. Write the XML deployment descriptor for the EJB. See Programming

Restrictions on page 2-28 for specific information about creating deployment

descriptors.

3. Write the Oracle deployment mapping file.

4. Create a JAR file containing the interface and implementation class files—the

home interface, the remote interface, and the bean implementation—for the

Note: The deployment process is the same for iAS as it is for

Oracle8i JServer. You simply have to provide the correct server for

the deployment. You can choose to either deploy within the

middle-tier or the database backend. If deploying to the

middle-tier, you must have either an iCache or Oracle8i JVM

installed in this tier. Then, pass the URL for the installed iCache or

JVM to the command-line tools.
2-20 Enterprise JavaBeans Developer’s Guide and Reference

Deploying an EJB
bean. If you have other dependent classes and resource files, it is better to create

a separate JAR file for these. The deployejb tool uses this JAR file as an input

file.

5. Call the deployejb tool (see Oracle8i Java Tools Reference for information on

deployejb) to load and publish the JAR’d bean.

Write the Deployment Descriptor
With EJB 1.1, the deployment descriptor is now defined using XML. Sun

Microsystems’s provides the DTD file, which describes the required entries for

defining the bean and application. The deployment descriptor was designed to

contain logical names—that is, names that do not necessarily match the true name

of the object loaded in JServer. These logical names are mapped to existing names

through a companion deployment file—the Oracle deployment mapping file. The

Oracle deployment mapping file can map the logical bean name to an existing JNDI

name and map any container-managed entity bean fields to existing database

columns.

Alternatively, if you use the actual JNDI and database column names within the

XML deployment file, the Oracle deployment map file will be created for you

automatically by deployejb .

The following example shows the sections necessary for the Employee example.

This example uses logical names within the XML deployment descriptor that map

to JNDI names within the Oracle deployment map file.

Example 2–1 XML Deployment Descriptor for Employee Bean

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems Inc.//DTD Enterprise JavaBeans 1.1
 //EN" "ejb-jar.dtd">
<ejb-jar>
 <enterprise-beans>
 <session>
 <description>Session Bean Employee Example</description>

Note: Since this chapter discusses session beans, the only fields

discussed here will pertain to session beans. For a full description

of the XML elements, see either Appendix A, "XML Deployment

Descriptors" or the "Deployment Descriptor" chapter within the EJB

1.1 specification, located on http://www.javasoft.com .
Enterprise JavaBeans 2-21

Deploying an EJB
 <ejb-name>Employee</ejb-name>
 <home>employee.EmployeeHome</home>
 <remote>employee.Employee</remote>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <security-role>
 <description>Public</description>
 <role-name>PUBLIC</role-name>
 </security-role>
 <method-permission>
 <description>public methods</description>
 <role-name>PUBLIC</role-name>
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <container-transaction>
 <description>no description</description>
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Supports</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

The following sections describes each of the pieces of the XML deployment

descriptor:

XML Version Number
<?xml version="1.0"?>

DTD Filename
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems Inc.//DTD Enterprise JavaBeans 1.1
//EN" "ejb-jar.dtd">
2-22 Enterprise JavaBeans Developer’s Guide and Reference

Deploying an EJB
JAR file
The first element to be declared is the <ejb-jar > element. Within this element,

you define two sections: the <enterprise-beans > section and the

<assembly-descriptor > section. The <enterprise-beans > section defines

the bean. The <assembly-descriptor > section defines the application’s security

and transaction attributes.

<ejb-jar> //Start of JAR file descriptor
 <enterprise-beans> //EJB Descriptor section
 ... //Bean definition
 </enterprise-beans>
 <assembly-descriptor> //Application Descriptor section
 ... //Transaction and security definition
 </assembly-descriptor>
</ejb-jar>

Enterprise JavaBeans Element
The beans are described within the <enterprise-beans > element. This element

contains information such as the type of bean, the home interface name, the remote

interface name, and the bean class name.

The following segment shows the following:

■ The bean is a session bean, denoted by the <session > element.

■ The logical name for this bean is Employee , defined within the <ejb-name >

element.

■ The home, remote, and bean class names are within the employee package and

are EmployeeHome , Employee , and EmployeeBean respectively.

■ All session beans within JServer are stateful.

■ The transaction is managed by the container, not by the bean.

 <enterprise-beans>
 <session>
 <description>Session Bean Employee Example</description>
 <ejb-name>Employee</ejb-name>
 <home>employee.EmployeeHome</home>
 <remote>employee.Employee</remote>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
Enterprise JavaBeans 2-23

Deploying an EJB
Assembly Descriptor Element
The <assembly-descriptor > element describes the security and transaction

attributes for the application.

■ For security, you must define the roles used within this application in the

<security-role > element. These roles are assigned to certain methods

within the bean within the <method-permission > element. In this example,

the Employee bean allows all methods to be accessed within PUBLIC.

■ For transactions, you define the type of transaction support necessary for each

method within the <container-transaction > element. In this example, all

methods require the Supports transactional attribute.

 <assembly-descriptor>
 <security-role>
 <description>Public</description>
 <role-name>PUBLIC</role-name>
 </security-role>
 <method-permission>
 <description>public methods</description>
 <role-name>PUBLIC</role-name>
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <container-transaction>
 <description>no description</description>
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Supports</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

Create the Oracle Deployment Map File
If you had declared the true JNDI name within <ejb-name >, you do not have to

create an Oracle deployment map file. This example used a logical name,

Employee , within the XML deployment file. In this example, the JNDI name for

Employee is /test/EmployeeBean .

In the Oracle deployment map file, you have the following structure:
2-24 Enterprise JavaBeans Developer’s Guide and Reference

Deploying an EJB
1. Headers for XML version and DTD file.

2. EJB logical name mapped to JNDI name.

In this example, the logical name defined within <ejb-name >—Employee —is

mapped to "/test/EmployeeBean " within the <jndi-name > element.

3. The identity that this bean will run under.

a. The <run-as > element defines the identity that the bean runs under within

the <mode> element. The possible values can be the following:

■ CLIENT_IDENTITY—The bean runs as the client.

■ SPECIFIED_IDENTITY—The bean runs as the specified identity. This

identity is defined in a <security-role > element. See Appendix A,

"XML Deployment Descriptors" for details.

■ SYSTEM_IDENTITY—The bean runs as the DBA or ROOT for the server.

For an Oracle8i server, the bean would run as SYS.

b. The <method > element under the <run-as > element defines the methods

that run under the <mode> identity.

In this example, all methods within the EmployeeBean run as the client.

Example 2–2 Oracle Deployment Map File for Employee

<?xml version="1.0"?>
<!DOCTYPE oracle-descriptor PUBLIC "-//Oracle Corporation.//DTD Oracle 1.1//EN"
"oracle-ejb-jar.dtd">
<oracle-descriptor>
 <mappings>
 <ejb-mapping>
 <ejb-name>Employee</ejb-name>
 <jndi-name>/test/EmployeeBean</jndi-name>
 </ejb-mapping>
 </mappings>
 <run-as>
 <description>no description</description>
 <mode>CLIENT_IDENTITY</mode>
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>*</method-name>
 </method>
 </run-as>
</oracle-descriptor>
Enterprise JavaBeans 2-25

Deploying an EJB
Create a JAR File
The deployejb command-line tool creates a JAR file to use on the client side to

access the bean.

deployejb -user scott -password tiger -service sess_iiop://dbserver:2481:orcl \
 -descriptor employee.xml -oracledescriptor oracle_employee.xml \
 -temp /tmp/ejb -generated empClient.jar employee.jar

One of the tasks that the deployejb tool performs is to create a JAR file with the

required stubs and skeletons, which is used by the client at execution time. Unless

this JAR file name is specified in the <ejb-client-jar > element in the XML

deployment descriptor, the default name for this JAR file is

server_generated.jar . This JAR file must be included in the CLASSPATH for

client execution.

Publish the Home Interface
A bean provider must make the bean’s home interface available for JNDI lookup so

that clients can find and activate the bean. However, when you create the JAR file

with the deployejb command-line tool, this tool publishes the bean in the JNDI

namespace under the <jndi-name > element name that you specify in the Oracle

deployment mapping file.

Dropping an EJB
Drop an EJB from the database by following these steps:

■ Run the dropjava tool to delete the classes from the database. Provide the

original bean JAR file that contains the class files for the bean.

■ Use the session shell tool to remove the bean home interface name from the

published object name space.

Note: If your application uses any circular method references

between beans, you will have to load the referred bean first using

loadjava , then invoke deployejb for the JAR file. A circular

method reference is when any method in bean A references a

method in bean B and any method within bean B references any

method in bean A. Even though they are different methods, the

loading resolution fails when it cannot find the referenced bean

already loaded within the database. If you load bean B using

loadjava , the load resolution succeeds.
2-26 Enterprise JavaBeans Developer’s Guide and Reference

Deploying an EJB
See Oracle8i Java Tools Reference for documentation of the dropjava and session

shell tools.

Run the Example
To run this example, execute the client class using the client-side JVM. For this

example, you must set the CLASSPATH for the java command to include:

■ the standard Java library archive (classes.zip)

■ any class files the client ORB uses, such as those in VisiBroker for Java

vbjapp.jar and vbjorb.jar

■ the Oracle8i-supplied JAR files: mts.jar and aurora_client.jar

If you are using JDBC, include one of the following JAR files:

■ classes111.zip for JDBC 1.1 support

■ classes12.zip for JDBC 1.2 support

If you are using SSL, include one of the following JAR files:

■ javax-ssl-1_1.jar and jssl-1_1.jar for SSL 1.1 support

■ javax-ssl-1_2.jar and jssl-1_2.jar for SSL 1.2 support

You can locate these libraries in the lib and jlib directories under the Oracle

home location in your installation.

The following invocation of the JDK java command runs this example.

% java -classpath .:$(ORACLE_HOME)/lib/aurora_client.jar |
:$(ORACLE_HOME/lib/mts.jar |
:$(ORACLE_HOME)/jdbc/lib/classes111.zip: |
$(ORACLE_HOME)/lib/vbjorb.jar: |
$(ORACLE_HOME)/lib/vbjapp.jar:$(JDK_HOME)/lib/classes.zip |

Client |
sess_iiop://localhost:2481:ORCL |
/test/myEmployee |
scott tiger

Note: The UNIX shell variable $ORACLE_HOME might be

represented as %ORACLE_HOME% on Windows NT. The

JDK_HOME is the installation location of the Java Development Kit

(JDK).
Enterprise JavaBeans 2-27

Programming Restrictions
Programming Restrictions
The EJB 1.1 specification contains the following programming restrictions, which

you must follow when implementing the methods of an EJB class:

■ An EJB should not start new threads nor attempt to terminate the

running thread. In the current release if an EJB starts a new thread no exception

is thrown, but the application behavior becomes unpredictable due to

interactions with local thread objects in the ORB.

■ An EJB is not allowed to use thread synchronization primitives.

■ An EJB can only use the javax.Transaction.UserTransaction interface

to demarcate transactions.

■ An EJB is not allowed to change its java.security.Identity . Any attempt

to do so results in the java.security.SecurityException being thrown.

■ An EJB is not allowed to use JDBC commit and rollback methods nor to issue

direct SQL commit or rollback commands using SQLJ or JDBC.

The 1.1 EJB specification states that "an EJB is not allowed to use read/write static

fields. Using read-only static fields is allowed. Therefore, all static fields must be

declared as final." This is not a restriction for Oracle8i.

Debugging Techniques
Until Java IDEs and JVMs support remote debugging, you can adopt several

techniques for debugging your CORBA client and server code.

1. Use JDeveloper for debugging any Java applications. JDeveloper has provided a

user interface that utilizes JServer’s debugging facilities. You can successfully

debug an object loaded into the database by using JDeveloper’s debugger. See

the JDeveloper documentation for instructions.

2. Use a prepublished DebugAgent object for debugging objects executing on a

server. See "Using a Debug Agent for Debugging Server Applications" on

page 2-29 for more information.

3. Perform stand-alone ORB debugging using one machine and ORB tracing.

Debug by placing both the client and server in a single address space in a single

process. Use of an IDE for client or server debugging is optional, though highly

desirable.

4. Use Oracle8i trace files.
2-28 Enterprise JavaBeans Developer’s Guide and Reference

Debugging Techniques
In the client, the output of System.out.println() goes to the screen.

However, in the Oracle8i ORB, all messages are directed to the server trace files.

The directory for trace files is a parameter specified in the database initialization

file. Assuming a default install of the product into a directory symbolically

named $ORACLE_HOME, then the trace file would appear as

${ORACLE_HOME}/admin/<SID>/bdump/ORCL_s000x_xxx.trc

where ORCL is the SID, and x_xxx represents a process ID number. Do not

delete trace files after the Oracle instance has been started, or no output is

written to a trace file. If you do delete trace files, stop and then restart

the server.

5. Use a single Oracle MTS server.

For debugging only, set the MTS_SERVERS parameter in your INITSID.ORA

file to MTS_SERVERS = 1, and set the MTS_MAX_SERVERS to 1. Having

multiple MTS servers active means that a trace file is opened for each server

process, and, thus, the messages get spread out over several trace files, as

objects get activated in more than one session.

6. Use the printback example to redirect System.out. This example is available in

the demo directory, demo/examples/corba/basic/printback .

Using a Debug Agent for Debugging Server Applications
The procedure for setting up your debugging environment is discussed fully in the

Oracle8i Java Developer’s Guide. However, it discusses starting the debug agent

using a DBMS_JAVA procedures. Within a CORBA application, you can start, stop,

and restart the debug agent using the oracle.aurora.debug .DebugAgent class

methods. These methods perform exactly as their DBMS_JAVA counterparts

perform.

public void start(java.lang.String host, int port, long timeout_seconds)
throws DebugAgentError

public void stop() throws DebugAgentError
public void restart(long timeout) throws DebugAgentError

Example 2–3 Starting a DebugAgent on the Server

The following example shows how to debug an object that exists on the server. First,

you need to start a debug proxy through the debugproxy command-line tool. This

example informs the debugproxy to start up the jdb debugger when contacted by

the debug agent.
Enterprise JavaBeans 2-29

Debugging Techniques
Once you execute this command, start your client, which will lookup the intended

object to be debugged, lookup the DebugAgent that is prepublished as

"/etc/debugagent ", and start up the DebugAgent .

Once the DebugAgent starts, the debugproxy starts up the jdb debugger and allows

you to set your breakpoints. Since you have a specified amount of time before the

DebugAgent times out, the first thing you should do is suspend all threads. Then,

set all of your breakpoints before resuming. This suspends the timeout until you are

ready to execute.

proxy window on tstHost

% debugproxy -port 2286 start jdb -password
. (wait until a debug agent starts up and
. contact this proxy... when it does, jdb
. starts up automatically and you can set

client code

main(...)
{
 //retrieve the object that you want to debug
 Bank b = (Bank)ic.lookup(sessURL + "/test/Bank");

 DebugAgent dbagt = (DebugAgent)ic.lookup(svcURL + "/etc/debugagent");
 //start the debug agent and give the proxy host, port, and a timeout
 dbagt.start("tstHost",2286,30);

 //lookup debugagent from JNDI

. breakpoints and debug the object, as follows:)
> suspend

 ...
 //execute methods within Bank)
 ...
 //stop the agent when you want to
 dbagt.stop();
 //restart the agent when you want to
 dbagt.restart(30);

> load SCOTT:Bank
> stop in Bank:updateAccount
> resume
> ...
2-30 Enterprise JavaBeans Developer’s Guide and Reference

Configuring IIOP Applica
3

Configuring IIOP Applications

Configuring IIOP-based applications, whether EJB or CORBA applications, involves

configuring the appropriate listener and MTS server for session-based IIOP

communications. The process for configuring IIOP-based applications involves both

database and network configuration. These elements are discussed in the sections

below:

■ Overview

■ Oracle8i Typical or Minimal Installation

■ Oracle8i Custom Installation

■ Manual Install and Configuration

■ Advanced Configuration Options
tions 3-1

Overview
Overview
Clients access EJB and CORBA applications in the database over an Internet

Inter-Orb Protocol (IIOP) connection. IIOP is an implementation of General

Inter-Orb Protocol (GIOP) over TCP/IP. All IIOP connections for CORBA or EJB

clients that communicate with the database must have IIOP configured on the

database and within the Net8 listener, unless you have the following scenario:

■ the listener that you want to connect to is on the same node as the database

■ the database that you want to use has configured a generic dispatcher

■ you use the dynamic registration tool described in "Dynamic Listener Endpoint

Registration" on page 3-15 to enable the listener to manage IIOP requests

Otherwise, you must configure the database and the listener, as follows:

The database supports incoming requests through a presentation. The presentation

protocol is responsible for making sure data is represented in a format the

application and session layers can accommodate. Both the listener and the

dispatcher accept incoming network requests based upon the presentation that is

configured. For IIOP, you configure a GIOP presentation.

Entity Description Configuration Tool

Database To support an IIOP connection, you must
configure the database for GIOP in MTS
mode.

Configure the database MTS
dispatchers for IIOP
through the Database
Configuration Assistant.
This tool is started under
the covers by the Typical
and Custom Oracle8i install.

Net8 Listener To support an IIOP connection, you must
configure the Net8 listener to accept an IIOP
connection over defined ports 2481 or 2482.

Configure the Net8 listener
for IIOP through the Net8
Assistant.
3-2 Enterprise JavaBeans Developer’s Guide and Reference

Oracle8i Typical or Minimal Installation
The configuration for an IIOP connection can be handled in one of three ways:

■ Oracle8i Typical or Minimal Installation—If you choose the Typical or Minimal

Oracle8i installation, you receive configuration for session-based, non-SSL IIOP

connections for both the database and the listener.

■ Oracle8i Custom Installation—If you choose the JServer option within a

"Custom" Oracle8i installation, you receive configuration for session-based,

non-SSL IIOP connections for the database. You have to invoke the Net8

Assistant to configure IIOP for the listener.

■ Manual Install and Configuration—If you install JServer by invoking the

initjvm.sql script, you must manually configure your IIOP connection. All

configuration is done manually either by invoking the Database Configuration

and Net8 Assistants directly or by editing the various initialization parameter

files.

Oracle8 i Typical or Minimal Installation
During a Typical installation of the server, JServer is installed and configured for

you. You automatically receive configuration for an MTS database with

session-based IIOP connections through the listener using non-SSL TCP/IP.

After the typical install is complete, the following line is added to your database

initialization file:

mts_dispatchers="(protocol=tcp)(presentation=oracle.aurora.server.SGiopServer)"

If, instead, you installed the Advanced Security Option and you want the SSL-based

TCP/IP connection, edit your database initialization file to remove the hash mark

(#) from the following line:

mts_dispatchers="(protocol=tcps)(presentation=oracle.aurora.server.SGiopServer)"

Note: For security concerns, you must decide if your IIOP

connection will be Security Socket Layer (SSL) enabled.

■ See "Using the Secure Socket Layer" on page 6-3 for

information on SSL.

■ See "Configuring SSL for EJB and CORBA" on page 3-17 for

information on how to configure SSL.
Configuring IIOP Applications 3-3

Oracle8i Custom Installation
In addition, the listener is configured for IIOP. The following is placed within your

listener.ora file:

listener=
(description_list =

(description=
(address=(...)
(protocol_stack=

(presentation=GIOP)
(session=RAW)

)
)

)

After configuration, the client directs its request to a URL that includes the host and

port, which identifies the listener, and either the SID or database service name,

which identifies the database. The following shows the syntax for this request:

session_iiop://< hostname >/:< portnumber >/:<SID | service_name >

Oracle8 i Custom Installation
If, within a Custom install, you choose the JServer option (as shown in Figure 3–1),

the Database Configuration Assistant configures an MTS database for session-based

IIOP connections, using non-SSL TCP/IP.

Note: The (protocol=tcps) attribute identifies the connection as

SSL-enabled.

Note: If you choose the Typical or Minimal options within the

custom choices, your configuration is the same as defined in

"Oracle8i Typical or Minimal Installation" on page 3-3.
3-4 Enterprise JavaBeans Developer’s Guide and Reference

Oracle8i Custom Installation
Figure 3–1 Choosing the JServer option

This places the following line within your database initialization file:

mts_dispatchers="(protocol=tcp)(presentation=oracle.aurora.server.SGiopServer)"

If, instead, you installed the Advanced Security Option and you want the SSL-based

TCP/IP connection, edit your database initialization file to remove the hash mark

(#) from the following line:

mts_dispatchers="(protocol=tcps)(presentation=oracle.aurora.server.SGiopServer)"

After the installation is complete, you must bring up the Net8 Assistant to configure

the listener for IIOP connections.

Note: The (protocol=tcps) attribute identifies the connection as

SSL-enabled.
Configuring IIOP Applications 3-5

Oracle8i Custom Installation
Net8 Assistant
The Net8 Assistant can modify any of the listener settings. The following is a brief

description of the task you must do to configure the listener through the Net8

Assistant. For a fuller explanation, see the Net8 Administrator’s Guide.

1. Start Net8 Assistant

■ On UNIX, run netasst at $ORACLE_HOME/bin.

■ On Windows NT, choose Start > Programs > Oracle - HOME_NAME >

Network Administration > Net8 Assistant.

2. In the navigator pane, expand Local > Listeners.

This brings you to the listener location panel, as shown in Figure 3–2.
3-6 Enterprise JavaBeans Developer’s Guide and Reference

Oracle8i Custom Installation
Figure 3–2 IIOP Listening Port Configuration

3. Select a listener.

4. From the list in the right pane, select Listening Locations.

5. Select the TCP/IP or TCP/IP with SSL protocol from the Protocol list.

6. Enter the host name of the database in the Host field.

7. Enter port 2481 in the Port field if the chosen protocol is TCP/IP, or enter port

2482 if the chosen protocol is TCP/IP with SSL.

8. Click "Dedicate this endpoint to IIOP connections".

9. Choose File > Save Network Configuration.
Configuring IIOP Applications 3-7

Manual Install and Configuration
This places the following within your listener.ora file:

listener=
(description_list =

(description=
(address=(protocol=tcp)(host=sales-server)(port=2481))))
(protocol_stack=

(presentation=GIOP)
(session=RAW)

)
)

)

After configuration, the client directs its request to a URL that includes the host and

port, which identifies the listener, and either the SID or database service name,

which identifies the database. The following shows the syntax for this request:

session_iiop://< hostname >/:< portnumber >/:<SID | service_name >

Manual Install and Configuration
If you did not install JServer through either the Typical or Custom install options,

you can add JServer to an existing database with the initjvm.sql script. See the

Oracle8i Java Developer’s Guide for more information on this script.

Once you have installed JServer, you can configure your IIOP connections either

through the tools—Database Configuration and Net8 Assistants—or by manually

editing the initialization files.

Configuring Through Tools
1. Configure the database for IIOP through the Database Configuration Assistant.

To start up the Database Configuration Assistant, do the following:

■ On UNIX, run dbassist at $ORACLE_HOME/bin.

■ On Windows NT, choose Start > Programs > Oracle - HOME_NAME >

Database Administration > Database Configuration Assistant.

After starting up the Database Configuration Assistant, choose the JServer

option. For information on what this does to your initialization files, see

"Oracle8i Custom Installation" on page 3-4

2. Configure the listener for IIOP through the Net8 Assistant. These steps are

described in "Net8 Assistant" on page 3-6.
3-8 Enterprise JavaBeans Developer’s Guide and Reference

Manual Install and Configuration
Configuring Through Editing Initialization Files
The presentation layer within the database identifies the type of connection your

client is using to access the database. To identify the GIOP presentation, you use

oracle.aurora.server.SGiopServer , which is the configuration for

session-based IIOP connections. EJB and CORBA applications can activate objects

within multiple sessions and are not limited to objects within the single session that

the client initiated. These connections identify both a session and the standard IIOP

semantics.

To configure an IIOP connection, you specify the GIOP presentation in the

following initialization files:

1. Configure the IIOP connection in the database initialization file—You configure

the PRESENTATION attribute of the MTS_DISPATCHERS parameter.

This section describes only the PRESENTATION attribute for the MTS_

DISPATCHERS parameter. For a full description of MTS configuration, see the

Net8 Administrator’s Guide.

2. Configure the Net8 listener for IIOP connections.

Both steps are described in more detail below.

1. Configure the IIOP Connection in the Database Initialization File
To configure an IIOP connection within the database, you can manually edit the

database initialization file.

The following is the syntax for the MTS_DISPATCHERS parameter:

mts_dispatchers="(protocol=tcp | tcps)
(presentation=oracle.aurora.server.SGiopServer)"

The attributes for MTS_DISPATCHER are described below:

Attribute Description

PROTOCOL (PRO or PROT) Specifies the TCP/IP or TCP/IP with SSL protocol,
which the dispatcher will generate a listening end
point for.

Valid values: TCP (for TCP/IP) or TCPS (for TCP/IP
with SSL)
Configuring IIOP Applications 3-9

Manual Install and Configuration
For example, to configure MTS for session-based IIOP connections through the

listener using non-SSL TCP/IP, add the following within your database

initialization file:

mts_dispatchers="(protocol=tcp)(presentation=oracle.aurora.server.SGiopServer)"

2. Configure a Listener for the Incoming Connection
Each listener is configured to listen on a well-known port number, and the client

communicates with the listener using this port number. To support CORBA and

EJB, the listener must be configured to listen for IIOP clients on either ports 2481 or

2482.

You can either use the Net8 Assistant to configure your listener or manually

configure the listener within the listener.ora file. Oracle recommends that you

use the Net8 Assistant. See "Net8 Assistant" on page 3-6 for information on the Net8

Assistant.

To configure the listener manually, you must modify the listener’s DESCRIPTION

parameter within the listener.ora file.

Modify the LISTENER.ORA DESCRIPTION Parameter You must configure the listener with

a GIOP listening address. The following example configures a GIOP presentation

for non-SSL TCP/IP with port number 2481. You use port 2481 for non-SSL and

port 2482 for SSL.

For GIOP, the PROTOCOL_STACK parameter is added to the DESCRIPTION when

configuring an IIOP connection to sales-server :

PRESENTATION (PRE or PRES) Enables support for GIOP. Supply the following value
for a GIOP presentation:

■ oracle.aurora.server.SGiopServer for
session-based GIOP connections. This
presentation is valid for TCP/IP and TCP/IP
with SSL.

Note: If you configure several MTS_DISPATCHERS within your

database initialization file, each MTS definition must follow each

other. You should not define any other configuration parameters

between the MTS_DISPATCHER definitions.

Attribute Description
3-10 Enterprise JavaBeans Developer’s Guide and Reference

Advanced Configuration Options
listener=
 (description_list=
 (description=

 (address=(protocol=tcp)(host=sales-server)(port=2481))
 (protocol_stack=
 (presentation=giop)
 (session=raw))))

The following table gives the definition for each of the GIOP parameters:

Advanced Configuration Options
■ Database Listeners and Dispatchers

■ Dynamic Listener Endpoint Registration

■ Direct Dispatcher Connection

■ Configuring SSL for EJB and CORBA

Database Listeners and Dispatchers
Figure 3–3 shows the interaction between the listener and the dispatchers, and also

illustrates how an Oracle8i ORB session is activated.

Attribute Description

PROTOCOL_STACK Identifies the presentation and session layer
information for a connection.

(PRESENTATION=GIOP) Identifies a presentation of GIOP for IIOP clients.
GIOP supports
oracle.aurora.server.SGiopServer using
TCP/IP.

 (SESSION=RAW) Identifies the session layer. There is no specific
session-layer for IIOP clients.

(ADDRESS=...) Specifies a listening address that uses TCP/IP on
either port 2481 for non-SSL or port 2482 for SSL. If
non-SSL, the protocol should be TCP; for SSL, the
protocol should be defined as TCPS.
Configuring IIOP Applications 3-11

Advanced Configuration Options
Figure 3–3 Listener/Dispatcher Interaction

1. Upon database startup, the dispatcher registers itself with the listener.

2. The client invokes a method, giving the listener’s URL address as the

destination.

3. The listener sends back a LOCATION_FORWARD response to the client’s ORB

layer informing it of the dispatcher’s address. This redirects the request to the

appropriate dispatcher.

4. The underlying ORB runtime layer resends the initial request to the dispatcher.

All future method invocations are directed to the dispatcher. The listener is no

longer a part of the communication.

The incoming request is examined by the shared server services to see if the request

is for an existing session. If so, the request is forwarded to the indicated session. If

not, the service creates a new database session for the request and activates the ORB

in the session. This session is very similar to the database sessions created for

incoming Net8 connections. In the session, the ORB reads the incoming IIOP

messages, authenticates the client, finds and activates the corresponding server-side

Note: The client is unaware of the redirection logic, which is

performed by the ORB runtime layer that supports the client.

 Client

Listener

Oracle8i

Dispatchers

LOCATION_FORWARD

Session Memory

SGA

session state

session state

Shared
Servers

registers at
start up1

2

3

4

3-12 Enterprise JavaBeans Developer’s Guide and Reference

Advanced Configuration Options
objects, and sends IIOP messages as needed to reply to the connected client.

Subsequent messages from the client are directed to the existing session.

When you configure a listener, you need to configure separate ports as listening

endpoints for both Net8 and IIOP connections. Similarly, if you want any endpoint

to use the secure socket layer (SSL), you will also need a separate endpoint for an

SSL-enabled IIOP endpoint. See "Using the Secure Socket Layer" on page 6-3 for

more information about connecting using IIOP and SSL.

Handling Incoming Requests
The administrator for your database configures an MTS server with a dispatcher

that is GIOP enabled. In addition, the administrator configures a listener that this

dispatcher registers with upon database startup.

When the database does start up, all dispatchers register with all listeners

configured within the same database initialization file. However, when an IIOP

client invokes a request, the listener will only redirect the request to a GIOP

dispatcher or hand off to a generic dispatcher.

These are discussed fully in the following sections:

■ Redirect to GIOP Dispatcher

■ Hand Off to Generic Dispatcher

Redirect to GIOP Dispatcher The listener recognizes the IIOP protocol and redirects the

request to a registered GIOP dispatcher.

Figure 3–4 IIOP Listener Redirect to GIOP Dispatcher

GIOP
dispatcher

IIOP
listener

IIOP
CLIENT

Oracle8i Database

1
2

3

4

Configuring IIOP Applications 3-13

Advanced Configuration Options
1. GIOP dispatcher registers itself with the listener.

2. IIOP client—an EJB or CORBA client—invokes a method, giving the address of

the listener. For redirection to occur, the listener must be statically configured to

receive IIOP requests.

3. The listener sends back a response to the client informing it of the GIOP

dispatcher’s address.

The listener redirects if a GIOP dispatcher is configured. If no GIOP dispatcher

is configured, the listener can hand off the request to a generic dispatcher. See

"Hand Off to Generic Dispatcher" on page 3-14 for more information.

4. The underlying ORB runtime layer on the client resends its initial request to the

GIOP dispatcher. All future method invocations are directed to the dispatcher.

The listener is no longer a part of the communication.

Hand Off to Generic Dispatcher If there is no GIOP dispatcher statically configured, but

there is a generic dispatcher configured, the listener can hand off the request to this

dispatcher. The only restrictions are that the listener and dispatcher must exist on

the same node in order for the hand off to occur and that the listener must be either

statically or dynamically configured to receive an IIOP request.

For hand off to occur, the listener forfeits the socket to the dispatcher. Thus, this can

only occur within a single node.

Figure 3–5 shows the dispatcher and listener combination in a hand off

environment.

Figure 3–5 Hand Off to Dispatcher

generic
dispatcher

listener

IIOP
CLIENT

Oracle8i Database

1
2

3

3-14 Enterprise JavaBeans Developer’s Guide and Reference

Advanced Configuration Options
1. When the database starts, the generic dispatcher registers itself with the

configured listener.

2. The client sends a request to the listener.

3. The listener hands off the request to the generic dispatcher. The listener

negotiates with the generic dispatcher on a separate channel. On this channel,

the socket is handed off to the dispatcher through the operating system

mechanisms.

The client communicates directly with the dispatcher from this point on. The

client is never made aware that the socket was handed off.

Dynamic Listener Endpoint Registration
As discussed in "Hand Off to Generic Dispatcher" on page 3-14, a listener will hand

off the socket to an existing generic dispatcher. In order for a hand off to occur for

an IIOP incoming request, the listener must have an IIOP endpoint registered. You

can register any listening endpoint through either of the following:

■ static configuration—configured by the Net8 configuration tool

■ dynamic configuration—registered by the dynamic registration tool, regep

The dynamic registration tool, regep , adds any type of listening endpoint to your

listener. This includes an IIOP listening endpoint. The following describes how to

use the dynamic registration tool for an IIOP listening endpoint.

The restrictions for this scenario are as follows:

■ Both the listener and generic dispatcher always exist on the same node.

■ A GIOP configured dispatcher cannot exist.

Note: The listener must be configured to receive IIOP requests. You

can either statically configure the listener through the Net8

configuration, or you can dynamically configure the listener

through a dynamic registration tool, regep . See "Dynamic Listener

Endpoint Registration" on page 3-15 for more information.
Configuring IIOP Applications 3-15

Advanced Configuration Options
The advantage for dynamically registering a listener endpoint is that you do not

need to restart your database for this listener to be IIOP enabled. The listening

endpoint is active immediately.

For full details on the regep tool, see the Oracle8i Java Tools Reference Guide.

Example 3–1 Dynamically Registering a LIstener at Port 2241

The following line dynamically registers a listener on the SUNDB host on endpoint

port number 2241. This tool logs on to the SUNDB host.

regep -pres oracle.aurora.server.SGiopServer -host sundb -port 2241

Direct Dispatcher Connection
If you want your client to go to a dispatcher directly, bypassing the listener, you

direct your client to the dispatcher’s port number. Do one of the following to

discover the dispatcher’s port number:

■ Configure a port number for the dispatcher by adding the ADDRESS parameter

that includes a port number.

■ Discover the port assigned to the dispatcher by invoking lsnrctl service .

If you choose to configure the port number, the following shows the syntax:

mts_dispatchers="(address=(protocol=tcp | tcps)
(host=< server_host>)(port=< port>))
(presentation=oracle.aurora.server.SGiopServer)"

The attributes are described below:

Note: If a GIOP configured dispatcher does exist, the listener will

redirect the request, rather than hand off the request, to the

configured dispatcher.

Attribute Description

ADDRESS (ADD or
ADDR)

Specifies the network address that the dispatchers will listen on.
The network address may include either the TCP/IP (TCP) or
the TCP/IP with SSL (TCPS) protocol, the host name of the
server, and a GIOP listening port, which may be any port you
choose that is not already in use.
3-16 Enterprise JavaBeans Developer’s Guide and Reference

Advanced Configuration Options
The client supplies the port number on its URL, as follows:

session_iiop://<hostname>/:<portnumber>

Notice that the URL excludes a SID or service name. The dispatcher does not need

the SID instance or service name because it is a directed request.

Configuring SSL for EJB and CORBA
Oracle8i also supports the use of authentication data such as certificates and private

keys required for use by SSL in combination with GIOP. To configure your

transport to be SSL-enabled with GIOP, do the following:

1. Enable the MTS_DISPATCHERS to be SSL-enabled.

2. Specify the SSL wallet to be used when configuring both the listener and

database.

3. Configure the listener to accept SSL.

The following sections detail how to accomplish these three steps.

Enable the MTS_DISPATCHERS for SSL
You must edit the database initialization file to add an SSL-enabled dispatcher.

Uncomment the MTS_DISPATCHERS parameter in the database initialization file

that defines the TCPS port. During installation, the Database Configuration

Assistant always includes a commented out line for SSL TCP/IP. This line is as

follows:

mts_dispatchers="(protocol=tcps)(presentation=oracle.aurora.server.SGiopServer)"

Configure the Wallet Location through Net8 Assistant
Modify the listener to accept SSL requests on port 2482.

1. Start Net8 Assistant.

PRESENTATION (PRE or
PRES)

Enables support for GIOP. Supply the following value for a
GIOP presentation:

■ oracle.aurora.server.SGiopServer for
session-based GIOP connections. This presentation is valid
for TCP/IP and TCP/IP with SSL.

Attribute Description
Configuring IIOP Applications 3-17

Advanced Configuration Options
■ On UNIX, run netasst at $ORACLE_HOME/bin.

■ On Windows NT, choose Start > Programs > Oracle - HOME_NAME >

Network Administration > Net8 Assistant.

2. In the navigator pane, expand Local > Profile.

3. From the pull-down list, select Oracle Advanced Security > SSL.

This brings you to the listening port panel, as shown in Figure 3–6.

Figure 3–6 IIOP listening port configuration

4. On the "Configure SSL for:" line, select the "Server" radio button.

5. Under "Wallet Directory", enter the location for the wallet.

6. If you desire a certain SSL version, choose the appropriate version on the SSL

version pulldown list.
3-18 Enterprise JavaBeans Developer’s Guide and Reference

Advanced Configuration Options
7. If you want the client to authenticate itself by providing certificates, select the

"Require Client Authentication" checkbox.

8. Choose File > Save Network Configuration.

These steps will add wallet and SSL configuration information into both the listener

and database configuration files. The SSL wallet location must be specified in both

the listener and database configuration files. Both entities must locate the wallet for

certificate handshake capabilities.

The listener.ora file:
ssl_client_authentication=false
ssl_version=undetermined

The default is for the database to authenticate the client. If you want the listener to

authenticate the client, change the ssl_client_authentication parameter to

true.

The database’s sqlnet.ora file:
ssl_client_authentication=true
ssl_version=0
sqlnet.crypto_seed=< seed_info >

If you did not request client authentication, the ssl_client_authentication
parameter will be false. The default value is for client authentication to be true. In

addition, you can specify a specific SSL version number, such as 3.0, in the ssl_
version parameter. The ssl_version value of 0 means that the version is

undetermined and will be agreed upon during handshake.

Within both the listener’s listener.ora and database’s sqlnet.ora files, the

wallet location is specified:

oss.source.my_wallet=
 (source=
 (method=file)
 (method_data=
 (directory= wallet_location)))

The Oracle Advanced Security Administrator’s Guide describes how to set up the SSL

wallet with the appropriate certificates.

Configure an SSL-Enabled Listener through Net8 Assistant
1. Back in the navigator pane, expand Local > Listener.
Configuring IIOP Applications 3-19

Advanced Configuration Options
This brings you to the listener location panel, as shown in Figure 3–2.

Figure 3–7 IIOP listening port configuration

2. Select a listener.

3. From the list in the right pane, select Listening Locations. If none of the current

listening addresses are feasible for your SSL listening address, you can add a

new address by clicking on the "Add Address" button.

4. Select the TCP/IP with SSL protocol from the Protocol list.

5. Enter the host name of the database in the Host field.

6. Enter port 2482 in the Port field.

7. Click "Dedicate this endpoint to IIOP connections".

8. Choose File > Save Network Configuration.
3-20 Enterprise JavaBeans Developer’s Guide and Reference

Advanced Configuration Options
This places the following in the listener.ora file: it modifies the listener to

specify TCPS —instead of TCP—as the protocol with port number 2482. The

following shows an example of an SSL-enabled listener on the sales-server
host.

listener=
 (description_list=
 (description=

 (address=(protocol=tcps)(host=sales-server)(port=2482))))
 (protocol_stack=
 (presentation=giop)
 (session=raw)))
Configuring IIOP Applications 3-21

Advanced Configuration Options
3-22 Enterprise JavaBeans Developer’s Guide and Reference

Entity B
4

Entity Beans

This chapter discusses what an entity bean is, how to create one, and how it is

different from a session bean.

■ Definition of an Entity Bean

■ Difference Between Session and Entity Beans

■ Implementing Callback Methods

■ Creating Entity Beans

■ Difference Between Bean-Managed and Container-Managed Beans

■ Accessing EJB References and JDBC DataSources
eans 4-1

Definition of an Entity Bean
Definition of an Entity Bean
An entity bean is a remote object that manages persistent data, performs complex

business logic, potentially uses several dependent Java objects, and can be uniquely

identified by a primary key. Entity beans are normally coarse-grained persistent

objects, in that they utilize persistent data stored within several fine-grained

persistent Java objects.

Managing Persistent Data
An entity bean manages its data persistentcy through callback methods, which are

defined in the javax.ejb.EntityBean interface. When you implement the

EntityBean interface in your bean class, you develop each of the callback

functions as designated by the type of persistence that you choose: bean-managed

persistence or container-managed persistence. The container invokes the callback

functions at designated times. That is, the contract between the container and the

entity bean designates the order that the callback methods are invoked and who

manages the bean’s persistent data.

Uniquely Identified by a Primary Key
Each entity bean has a persistent identity associated with it. That is, the entity bean

contains a unique identity that can be retrieved if you have the primary key. Given

the primary key, a client can retrieve the entity bean. If the bean is not available, the

container instantiates the bean and repopulates the persistent data for you.

The type for the unique key is defined by the bean provider.

Performing Complex Logic Involving Dependent Objects
When designing your EJB application, you need to keep in mind the aspects of each

type of object.

■ Session beans are typically used for performing simple tasks for a remote client.

Note: Fine-grained persistent Java objects typically manage

persistent data that has a one-to-one mapping between the data

and a table column. Coarse-grained persistent Java objects use or

manage persistent data stored in several fine-grained persistent

objects.
4-2 Enterprise JavaBeans Developer’s Guide and Reference

Definition of an Entity Bean
■ Entity beans are typically used for performing complex tasks that involve

coarse-grained persistence for remote clients.

■ Java objects, persistent or otherwise, are used for simple tasks for local clients.

Enterprise JavaBeans are remote objects and are used for interacting with clients

over a network. Remote objects have a higher overhead for verifying security and

transaction information. Thus, when you design your application, you may have an

entity or session bean interacting with the client, but also have the Enterprise

JavaBean invoke other dependent Java objects to perform tasks or manage

persistent data.

Entity beans are normally used to manage complex, coarse-grained persistent data

for a remote client. Be careful to separate the difference between an entity bean and

a persistent object. Your entity bean should be more than just a persistent object; it

should manage and return complex data to justify using a remote object for

managing data.

You can have an entity bean that calls one or more dependent objects within the

application. The entity bean is a remote object and thus its primary function is

interacting with the client over the network. You should not have an entity bean

invoking another entity bean within the same node on the network. If you need to

design multiple objects within your application, design your application so that the

entity bean facilitates the communication and data management between the client

and other Java objects.

Figure 4–1 demonstrates how the client interacts with either a session or an entity

bean, which then manages the application for the client with other Java objects

within the application. The Java objects that make up the backend of the application

can be persistent objects. The figure also shows how both the entity bean and a

persistent Java object can be persistent and store data within the database.
Entity Beans 4-3

Definition of an Entity Bean
Figure 4–1 Relationship of Enterprise JavaBeans to Java objects

For example, if you are managing a shopping cart for an online bookstore, you

would have the following requirements:

■ identify the customer for the shopping cart

■ add items to the customer’s shopping cart

■ calculate the price for all items taking into account any discounts, sale items,

and shipping costs

■ ship items to the customer

In this scenario, the entity bean could do the following:

■ retrieve the customer information from a dependent persistent object

■ retrieve item information from an item dependent persistent object

■ record the number of items for each item in the order

■ retrieve discount and shipping costs

■ coordinate the shipment to the designated customer address

Client

Oracle8i Database Session

EJB:
entity
bean

Java
object

EJB:
session
bean

Java
object

Oracle8i
Database
4-4 Enterprise JavaBeans Developer’s Guide and Reference

Implementing Callback Methods
Thus, this entity bean not only retrieves persistent information from other objects,

but would also maintain its own persistent data and perform complex calculations.

Difference Between Session and Entity Beans
The major differences between session and entity beans is that entity beans involve

a framework for persistent data management, a persistent identity, and complex

business logic. The interface requirements on entity beans provides callback

functions that the container calls when persistent data should be managed or when

a bean should be retrieved based upon its identity.

With an entity bean, the interfaces have been designed so that each callback method

is called at the appropriate time. For example, right before the transaction is

committed, the ejbStore method is always invoked. This enables the entity bean

to save all of its persistent data before the transaction is completed. Each of these

callback methods are discussed further in "Implementing Callback Methods" on

page 4-5.

The following table illustrates the different interfaces for session and entity beans.

Notice that the difference between the two types of EJBs exists within the bean class

and the primary key. All of the persistent data management is done within the bean

class methods.

Implementing Callback Methods
An entity bean is a remote object that manages its data persistently through callback

methods, which are defined in the javax.ejb.EntityBean interface. When you

implement the EntityBean interface in your bean class, you develop each of the

callback functions as designated by the type of persistence that you choose:

bean-managed persistence or container-managed persistence. The container invokes

the callback functions at designated times, to manage the bean and its persistent

Entity Bean Session Bean

Remote interface Extends
javax.ejb.EJBObject

Extends
javax.ejb.EJBObject

Home interface Extends javax.ejb.EJBHome Extends javax.ejb.EJBHome

Bean class Extends
javax.ejb.EntityBean

Extends
javax.ejb.SessionBean

Primary key Used to identify and retrieve
specific bean instances

Not used for session beans
Entity Beans 4-5

Implementing Callback Methods
data. That is, the contract between the container and the entity bean involves in

what order the callback methods are invoked and who manages the bean’s

persistent data.

Your bean class implements the methods of the EntityBean interface. The

javax.ejb.EntityBean interface has the following definition:

public interface javax.ejb.EntityBean extends javax.ejb.EnterpriseBean {
public abstract void ejbActivate();

 public abstract void ejbLoad();
public abstract void ejbPassivate();
public abstract void ejbRemove();

 public abstract void ejbStore();
public abstract void setEntityContext(EntityContext ctx);

 public abstract voic unsetEntityContext();
}

The container expects these methods to have the following functionality:

■ ejbCreate You must implement an ejbCreate method

corresponding to one create method declared in

the home interface. When the client invokes the

create method, the container first invokes the

constructor to instantiate the object, then it invokes

the corresponding ejbCreate method. The

ejbCreate method performs the following:

■ creates any persistent storage for its data, such

as database rows

■ intializes a unique primary key and returns it

■ ejbPostCreate The container invokes this method after the

environment is set. For each ejbCreate method,

an ejbPostCreate method must exist with the

same arguments. This method can be used to

initialize parameters within or from the entity

context.

■ ejbRemove The container invokes this method before it ends

the life of the session object. This method may

perform any required clean-up, for example

closing external resources such as file handles.
4-6 Enterprise JavaBeans Developer’s Guide and Reference

Implementing Callback Methods
Using ejbCreate and ejbPostCreate
An entity bean is similar to a session bean in that certain callback methods, such as

ejbCreate , are invoked at specified times. Entity beans use callback functions for

managing its persistent data, primary key, and context information. The following

diagram shows what methods are called when an entity bean is created.

■ ejbStore The container invokes this method right before a

transaction commits. It saves the persistent data to

an outside resource, such as a database.

■ ejbLoad The container invokes this method within a

transaction when the data should be reinitialized

from the database. This normally occurs after the

transaction begins.

■ setEntityContext Associates the bean instance with context

information. The container calls this method after

the bean creation. The enterprise bean can store the

reference to the context object in an instance

variable, for use in transaction management. Beans

that manage their own transactions can use the

session context to get the transaction context.

You can also allocate any resources that will exist

for the lifetime of the bean within this method. You

should release these resources in

unsetEntityContext .

■ unsetEntityContext Unset the associated entity context and release any

resources allocated in setEntityContext .

■ ejbActivate Implement this as a null method, because it is

never called in this release of the server.

■ ejbPassivate Implement this as a null method, because it is

never called in this release of the server.
Entity Beans 4-7

Implementing Callback Methods
Figure 4–2 Creating the Entity Bean

Using setEntityContext
This method is used by an entity bean instance to retain a reference to its context.

Entity beans have contexts that the container maintains and makes available to the

beans. The bean may use the methods in the entity context to retrieve information

about the bean, such as security, and transactional role. Refer to the Enterprise Java-

Beans 1.1 specification for the full range of information that you can retrieve about

the bean from the context.

The container invokes setEntityContext method, after it first instantiates the

bean, to enable the bean to retrieve the context. The container will never call this

method from within a transaction context. If the bean does not save the context at

this point, the bean will never gain access to the context.

When the container calls this method, it passes the reference of the EntityCon-
text object to the bean. The bean can then store the reference for later use. The fol-

lowing example shows the bean saving the context in the this.ctx variable.

public void setEntityContext(EntityContext ctx)
{
 this.ctx = ctx;
 Properties props = ctx.getEnvironment();
}

Note: You can also use the setEntityContext and

unsetEntityContext methods to allocate and destroy any

resources that will exist for the lifetime of the instance.

Client Entity Bean

create

<Bean> constructor
ejbCreate(...)
 primary key constructor
ejbSetEntityContext()
ejbPostCreate(...){{
4-8 Enterprise JavaBeans Developer’s Guide and Reference

Creating Entity Beans
Using ejbRemove
When the client invokes the remove method, the container invokes the following

methods.

Figure 4–3 Removing the Entity Bean

Using ejbStore and ejbLoad
In addition, the ejbStore and ejbLoad methods are called for managing your

persistent data. These are the most important callback methods—for bean-managed

persistent beans.

■ The ejbStore method is called by the container whenever a transaction is

about to end. Its purpose is to save the persistent data to an outside resource,

such as a database.

■ The ejbLoad method is called by the container whenever a transaction has

begun or when an entity bean is instantiated. Its purpose is to restore any

persistent data that exists for this particular bean instance.

Creating Entity Beans
The steps for creating an entity bean are the same as for a session bean. The

difference is contained in the methods and data within the bean class. There are two

types of entity beans: bean-managed persistent and container-managed persistent.

This section discusses a bean-managed persistent bean. The "Container-Managed

Persistence" on page 4-28 gives an example of a container-managed persistent bean.

To create an entity bean, you perform the following steps:

1. Create a remote interface for the bean. The remote interface declares the

methods that a client can invoke. It must extend javax.ejb.EJBObject .

Client Entity Bean

remove
ejbUnsetEntityContext()
ejbRemove(){
Entity Beans 4-9

Creating Entity Beans
2. Create a home interface for the bean. The home interface must extend

javax.ejb.EJBHome . It defines the create and finder methods, including

findByPrimaryKey , for your bean.

3. Define the primary key for the bean. The primary key identifies each entity

bean instance. The primary key must either be a well-known class, such as

java.lang.String , or be defined within its own class.

4. Implement the bean. This includes the following:

a. The implementation for the methods declared in your remote interface.

b. An empty constructor for the bean.

c. The methods defined in the javax.ejb.EntityBean interface.

d. The methods that match the methods declared in your home interface. This

includes the following:

* The ejbCreate and ejbPostCreate methods with parameters

matching those of the create method defined of the home interface.

* An ejbFindByPrimary key method which corresponds to the

findByPrimaryKey method of the home interface.

* Any other finder methods that were defined in the home interface.

5. If the persistent data is saved to or restored from a database, you must ensure

that the correct tables exist for the bean.

6. Create the bean deployment descriptor. The deployment descriptor specifies

properties for the bean through XML properties. See "Deploying an EJB" on

page 2-19 for more details.

7. Create an ejb-jar file containing the bean, the remote and home interfaces, and

the deployment descriptor. The ejb-jar file must define all beans within your

application. Refer to "Create a JAR File" on page 2-26 for more details.

Home Interface
Similar to session beans, the entity bean’s home interface must contain a create
method, which the client invokes to create the bean instance. Each create method

can have a different signature.

For an entity bean, you must develop a findByPrimaryKey method. Because of

the persistent data associated with the instance, each entity bean instance is

uniquely identified by a primary key. The type for the unique key is defined by the

developer. For example, the customer bean’s primary key is the customer number.
4-10 Enterprise JavaBeans Developer’s Guide and Reference

Creating Entity Beans
The purchase order’s primary key is a purchase order number. The primary key can

be anything—as long as it is unique.

When the entity bean is first created, the ejbCreate method creates a primary key

to identify the bean. A unique primary key is created and initialized within the

ejbCreate method in the bean class. From this time onward, this bean is

associated with this primary key. Thus, you can retrieve the bean by providing the

primary key object to the findByPrimaryKey method.

Optionally, you can develop other finder methods to find the bean. These methods

are named find< name>.

Example 4–1 Purchase Order Home Interface

To demonstrate an entity bean, we are creating a bean that manages a purchase

order. The entity bean contains a list of items ordered by the customer.

The home interface extends javax.ejb.EJBHome and defines the create and

findByPrimaryKey methods.

package purchase;

import javax.ejb.*;
import java.rmi.RemoteException;
import java.sql.SQLException;

public interface PurchaseOrderHome extends EJBHome
{
 // Create a new PO
 public PurchaseOrder create () throws CreateException, RemoteException;

 // Find an existing one
 public PurchaseOrder findByPrimaryKey (String POnumber)

Note: The return type for all finder methods within the home

interface must be either the entity bean’s remote interface or an

Enumeration of objects that implement the entity bean’s remote

interface. Returning a Collection is not supported.

The return type for all finder methods implemented within the

bean class returns the primary key or an Enumeration of primary

keys. The container retrieves the appropriate entity bean remote

interface for each primary key returned on any ejbFind< name>
method.
Entity Beans 4-11

Creating Entity Beans
 throws FinderException, RemoteException;
 }

Remote Interface
The entity bean remote interface is the interface that the customer sees and invokes

methods upon. It extends javax.ejb.EJBObject and defines the business logic

methods. For our purchase order entity bean, the remote interface contains methods

for adding items to the purchase order, for retrieving a list of all items within the

purchase order, and computing the full price for the purchase order.

package purchase;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import java.sql.SQLException;
import java.util.Vector;

public interface PurchaseOrder extends EJBObject {
 // Price the purchase order
 public float price () throws RemoteException;

 // getContents returns a Vector of LineItem objects in the purchase
 public Vector getContents () throws RemoteException;

 //Add items to the purchase
 public void addItem (int sku, int count) throws RemoteException;
}

Primary Key
Each entity bean instance has a primary key that uniquely identifies it from other

instances. You can define your primary key in one of two ways:

■ Define the type of the primary key to be a well-known type, such as

java.lang.String . If the primary key is a well-known data type, define the

type in the <prim-key-class> in the deployment descriptor.

■ Define the type of the primary key as a serializable object within <name>PK
class. If the primary key is a complex data type, define the primary key in a

class that is serializable. This class is declared in the <prim-key-class>
element in the deployment descriptor.
4-12 Enterprise JavaBeans Developer’s Guide and Reference

Creating Entity Beans
Defining Primary Key as Well-known Type
Define your primary key to be a well-known type by defining the data type of the

primary key within the deployment descriptor.

The purchase example defines its primary key as a java.lang.String .

<enterprise-beans>
 <entity>
 <ejb-name>test/purchase</ejb-name>
 <home>purchase.PurchaseOrderHome</home>
 <remote>purchase.PurchaseOrder</remote>
 <ejb-class>purchaseServer.PurchaseOrderBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 </entity>
...
</enterprise-beans>

Defining the Primary Key in a Class
If your primary key is more complex than a simple data type, your primary key

must be a class that is serializable of the name <name>PK. Within this class, you

should implement the equals and hashCode methods to provide for an

implementation specific to this primary key.

The customer example declares its primary key—a customer identifier—within the

PurchaseOrderPK.java .

package purchase;

public class PurchaseOrderPK implements java.io.Serializable
{
 public int orderid;

 public boolean equals(Object obj) {
 if ((obj instanceof PurchaseOrderPK) &&
 (((PurchaseOrderPK)obj).orderid == this.orderid))
 return true;
 return false;
 }

 public int hashCode() {
 return orderid;
 }
}

Entity Beans 4-13

Creating Entity Beans
The class that defines the primary key is declared within the deployment descriptor,

as follows:

<enterprise-beans>
 <entity>
 <ejb-name>test/purchase</ejb-name>
 <home>purchase.PurchaseOrderHome</home>
 <remote>purchase.PurchaseOrder</remote>
 <ejb-class>purchaseServer.PurchaseOrderBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>purchase.PurchaseOrderPK</prim-key-class>
 <reentrant>False</reentrant>
 </entity>
...
</enterprise-beans>

Manage the Primary Key
The ejbCreate method is responsible primarily for the creation of the primary

key. This involves creating the primary key, creating the persistent data

representation for the key, initializing the key to a unique value, and returning this

key to the invoker. The ejbFindByPrimaryKey method is responsible for

verifying that the primary key is still unique and returns it again to the container.

In the purchase order example, these methods perform the following:

■ The ejbCreate method initializes the primary key, ponumber , to the next

available number in the purchase order number sequence.

■ The ejbFindByPrimaryKey method is implemented to check that the

purchase order number is valid and returns this number to the container.

// The create methods takes care of generating a new PO and returns
// its primary key
public String ejbCreate () throws CreateException, RemoteException
{
 String ponumber = null;
 try {
 //retrieve the next available purchase order number
 #sql { select ponumber.nextval into :ponumber from dual };
 //assign this number as this instance’s identification number
 #sql { insert into pos (ponumber, status) values (:ponumber, ’OPEN’) };
 } catch (SQLException e) {
 throw new PurchaseException (this, "create", e);
 }
4-14 Enterprise JavaBeans Developer’s Guide and Reference

Creating Entity Beans
 return ponumber;
}

// The ejbFindByPrimaryKey method verifies that the POnumber exists. This
// method must return the primary key to the container.. which in turn
// retrieves the instance based on the primary key. So.. this method must
// only verify that the primary key is valid.
public String ejbFindByPrimaryKey (String ponumber)
 throws FinderException, RemoteException
{
 try {
 int count;
 #sql { select count (ponumber) into :count from pos
 where ponumber = :ponumber };

 // There has to be one
 if (count != 1)
 throw new FinderException ("Inexistent PO: " + ponumber);
 } catch (SQLException e) {
 throw new PurchaseException (this, "findByPrimaryKey", e);
 }
 // The ponumber is the primary key
 return ponumber;
}

Entity Bean Class
The entity bean class implements the following methods:

■ An empty constructor for creating the bean instance.

■ The target methods for the methods declared in the home interface, which

includes the ejbCreate method and any finder methods, including ejbFind-
ByPrimaryKey .

■ The business logic methods declared in the remote interface.

■ The methods declared in the EntityBean interface.

The following code implements methods of an entity bean called PurchaseOr-
derBean .
Entity Beans 4-15

Creating Entity Beans
1. Declaring Variables
The purchase order bean declares a vector to store all of the items within the

customer’s shopping cart. In addition, to retrieve environment information for the

entity bean, an entity context is defined.

#sql iterator ItemsIter (int skunumber, int count, String description,
 float price);

public class PurchaseOrderBean implements EntityBean {
 EntityContext ctx;
 Vector items; // The items in the PO (instances of LineItem)

2. Implementing Remote Interface Methods
The following is the implementation for the bean methods that were declared in the

remote interface: price , getContents , and addItem .

 public float price () throws RemoteException {
 float price = 0;
 Enumeration e = items.elements ();
 while (e.hasMoreElements ()) {
 LineItem item = (LineItem)e.nextElement ();
 price += item.quantity * item.price;
 }

 // 5% discount if buying more than 10 items
 if (items.size () > 10)
 price -= price * 0.05;

 // Shipping is a constant plus function of the number of items
 price += 10 + (items.size () * 2);

 return price;
 }

 // The getContents methods has to load the descriptions
 public Vector getContents () throws RemoteException {
 return items;
 }

 // The add Item method gets the price and description
 public void addItem (int sku, int count) throws RemoteException {
 try {
 String description;
 float price;
4-16 Enterprise JavaBeans Developer’s Guide and Reference

Creating Entity Beans
 #sql { select price, description into :price, :description
 from skus where skunumber = :sku };
 items.addElement (new LineItem (sku, count, description, price));
 } catch (SQLException e) {
 throw new PurchaseException (this, "addItem", e);
 }
 }

3. Implementing EntityBean Interface Methods
Once you have implemented the business logic methods, you also must provide the

following:

■ A public constructor for the bean instance—This constructor takes no

arguments. The container invokes the constructor to create an instance of the

entity bean class. The constructor can be an empty implementation.

■ An ejbCreate method for each create method defined in the home

interface.

■ An ejbFind< name> method for each of the find< name> methods defined in

the home interface. This includes at least an ejbFindByPrimary key method

that returns the primary key to the container.

■ An implementation for the EntityBean methods—These methods are callback

methods that the container calls when necessary. Most of the callback methods

pertain to managing the persistence of the entity bean’s data.

Public Constructor The public constructor is called by the container to create the bean

instance. The ejbCreate and ejbPostCreate methods are invoked to intialize

this instance. The following is the purchase order constructor.

//provide an empty constructor for the creating the instance
public void PurchaseOrderBean () {}

The Create Methods: ejbCreate and ejbPostCreate As shown in Figure 4–2, the

ejbCreate and ejbPostCreate methods are invoked when the corresponding

create method—the methods all have the same arguments—is invoked. Typically,

the ejbCreate method initializes all of the persistent data; the ejbPostCreate
does any initialization that involves the entity’s context. The context information is

not available at ejbCreate time, but is available at ejbPostCreate time.

The following example shows the ejbCreate and ejbPostCreate for the

purchase order example. The ejbCreate method initializes the primary key, which
Entity Beans 4-17

Creating Entity Beans
is the purchase order number, and returns this key to the invoker. The purchase

order line item vector is initialized within the ejbPostCreate .

// The create methods takes care of generating a new PO and returns
// its primary key
public String ejbCreate () throws CreateException, RemoteException
{
 String ponumber = null;
 try {
 //retrieve the next available purchase order number
 #sql { select ponumber.nextval into :ponumber from dual };
 //assign this number as this instance’s identification number
 #sql { insert into pos (ponumber, status) values (:ponumber, ’OPEN’) };
 } catch (SQLException e) {
 throw new PurchaseException (this, "create", e);
 }
 return ponumber;
}

// create a vector to contain the purchase order line items. since this
// is performed only once and needed for the lifetime of the object, it is
// appropriate to create the vector in either ejbCreate or ejbPostCreate.
public void ejbPostCreate () {
 items = new Vector ();
}

The Finder Methods All entity beans must provide an ejbFindByPrimaryKey
method. You can also have other types of finder methods. Since the developer must

implement any finder method declared within the home interface, there is no

limitation on how many of these types of methods you can have. The only

restrictions is that any finder method, other than the ejbFindByPrimaryKey
method, must return either a reference to the remote interface or an Enumeration
containing multiple references to remote interfaces. The ejbFindByPrimaryKey
method must return the primary key.

In order to provide other finder methods, you must do the following:

1. Declare the method as find< name> in the home interface.

2. Implement the method as ejbFind< name> in the bean class.

Note: The return type cannot be a Collection , as it is not

currently supported.
4-18 Enterprise JavaBeans Developer’s Guide and Reference

Creating Entity Beans
The following is the ejbFindByPrimaryKey method for the purchase order

example. It verifies that the primary key is valid. If so, it returns the key to the

container. The container retrieves the correct bean instance for this key and returns

the reference to the client.

// The findByPrimaryKey method verifies that the POnumber exists. This
// method must return the primary key to the container.. which in turn
// retrieves the instance based on the primary key. So.. this method must
// only verify that the primary key is valid.
public String ejbFindByPrimaryKey (String ponumber)
 throws FinderException, RemoteException
{
 try {
 int count;
 #sql { select count (ponumber) into :count from pos
 where ponumber = :ponumber };

 // There has to be one
 if (count != 1)
 throw new FinderException ("Inexistent PO: " + ponumber);
 } catch (SQLException e) {
 throw new PurchaseException (this, "findByPrimaryKey", e);
 }
 // The ponumber is the primary key
 return ponumber;
}

The EntityBean Methods: Load and Store The main difference between entity and

session beans is that entity beans possess persistent data that must be managed.

When data is defined as persistent, it must be continually saved to or restored from

a resource, such as a database or file. If the bean is destroyed, the persistent data can

be restored without any loss.

The EntityBean interface, which all entity beans implement, defines the following

callback methods for managing the persistent data:

■ ejbStore —saves the data to persistent storage

The container always invokes ejbStore right before a transaction commits or

the bean is removed to save the existing values of the persistent data.

■ ejbLoad —loads the data saved within persistent storage into the bean

The container invokes ejbLoad right after a bean is instantiated or a

transaction begins.
Entity Beans 4-19

Creating Entity Beans
Figure 4–4 shows how the persistent data within an entity bean can be saved to a

database using ejbStore . In addition, the data is restored from the database

through ejbLoad .

Figure 4–4 Persistent Data Management

The following are the methods from the purchase order example. The ejbStore
method saves the purchase order items to the database. The ejbLoad method

restores the purchase order items from the database.

// The store method replaces all entries in the lineitems table with the
// new entries from the bean
public void ejbStore () throws RemoteException {
 // Get the purchase order number
 String ponumber = (String)ctx.getPrimaryKey();

 try {
 // Delete old entries in the database
 #sql { delete from lineitems where ponumber = :ponumber };

 // Insert new entries from the vector in the bean. Crude, but effective.
 Enumeration e = items.elements ();
 while (e.hasMoreElements ()) {
 LineItem item = (LineItem)e.nextElement ();
 #sql { insert into lineitems (ponumber, skunumber, count)
 values (:ponumber, :(item.sku), :(item.quantity))
 };
 }
 } catch (SQLException e) {
 throw new PurchaseException (this, "store", e);
 }
}

// The load method populates the items array with all the saved
// line items
public void ejbLoad () throws RemoteException {

Entity Bean Oracle8i
database

ejbStore()

ejbLoad()
4-20 Enterprise JavaBeans Developer’s Guide and Reference

Creating Entity Beans
 // Get the purchase order number
 String ponumber = (String)ctx.getPrimaryKey();

 // Load all line items into a new vector.
 try {
 items = new Vector ();
 ItemsIter iter = null;
 try {
 #sql iter = {
 select lineitems.skunumber, lineitems.count,
 skus.description, skus.price
 from lineitems, skus
 where ponumber = :ponumber and lineitems.skunumber = skus.skunumber
 };

 while (iter.next ()) {
 LineItem item =
 new LineItem (iter.skunumber(), iter.count(), iter.description(),
 iter.price());
 items.addElement (item);
 }
 } finally {
 if (iter != null) iter.close ();
 }
 } catch (SQLException e) {
 throw new PurchaseException (this, "load", e);
 }
}

The EntityBean Methods: Remove The ejbRemove method is invoked when the client

invokes the remove method. For a bean-managed persistent bean, you must remove

the data from the database that is associated with the bean within this method.

The following example shows how the purchase order line items are removed from

the database.

// The remove method deletes all line items belonging to the purchase order
public void ejbRemove () throws RemoteException {
 // Get the purchase order number from the session context
 String ponumber = (String)ctx.getPrimaryKey();
 try {
 //delete the line item vector for the purchase order
 #sql { delete from lineitems where ponumber = :ponumber };
 //delete the row associated with the purchase order
 #sql { delete from pos where ponumber = :ponumber };
Entity Beans 4-21

Creating Entity Beans
 } catch (SQLException e) {
 throw new PurchaseException (this, "remove", e);
 }
}

The EntityBean Methods: Setting the Context If you want to access any information

within the context during the lifetime of your application, you must save the

context within the setEntityContext .

//Set the provided context to this.ctx
public void setEntityContext (EntityContext ctx)
{
 this.ctx = ctx;
}

//reinitialize the context to null
public void unsetEntityContext ()
{
 this.ctx = null;
}

The Entity Bean Methods: Activate and Passivate Oracle does not currently support

activation and passivation. However, you still must provide an empty

implementation for these methods. ,

//There are no requirements for ejbActivate for this bean
public void ejbActivate ()
{
}

//There are no requirements for ejbPassivate for this bean
public void ejbPassivate ()
{
}

4. LineItem Class
The purchase order application persistently stores the individual orders within the

purchase using a persistent Java object, called LineItem . That is, the entity bean

delegates management of each item in the purchase order to a non-EJB Java object.

package purchase;

public class LineItem implements java.io.Serializable {
 public int sku;
 public int quantity;
4-22 Enterprise JavaBeans Developer’s Guide and Reference

Creating Entity Beans
 public String description;
 public float price;

 //Persistently manage each line item within the purchase order.
 public LineItem (int sku, int quantity, String description, float price) {
 //Each line item has the following information: SKU number, quantity,
 // description, and price.
 this.sku = sku;
 this.quantity = quantity;
 this.description = description;
 this.price = price;
 }
}

Create Database Table and Columns for Entity Data
If your entity bean stores its persistent data within a database, you need to create

the appropriate table with the proper columns for the entity bean. This table must

be created before the bean is loaded into the database.

In our purchase order example, you must create the following tables:

The following shows the SQL commands that create these fields.

-- This sql scripts create the SQL tables used by the PurchaseOrder bean

-- The sku table lists all the items available for purchase
create table skus (skunumber number constraint pk_skus primary key,
 description varchar2(2000),

Table Columns Description

SKUS ■ skunumber: item number

■ description: item description

■ price: price of item

Each item in the warehouse
is described in this table.

POS ■ ponumber:purchase order number

■ status: open, executed, or shipped

The table that manages the
state of the purchase order
for a customer. Contains the
state of the order.

LINEITEMS ■ ponumber: purchase order number

■ skunumber: item number

■ count: number of items ordered.

The table that contains all of
the individual items ordered
by a customer.
Entity Beans 4-23

Creating Entity Beans
 price number);

-- The pos table stores information about purchase orders
-- The status column is ’OPEN’, ’EXECUTED’ or ’SHIPPED’
create table pos (ponumber number constraint pk_pos primary key,
 status varchar2(30));

-- The ponumber sequence is used to generate PO ids
create sequence ponumber;

-- The lineitems table stores the contents of a po
-- The skunumber is a reference into the skus table
-- The ponumber is a reference into the pos table
create table lineitems (ponumber number constraint fk_pos references pos,
 skunumber number constraint fk_skus references skus,
 count number);
commit;

exit;

Deploying the Entity Bean
You deploy the entity bean the same way as the session bean, which is detailed in

"Deploying an EJB" on page 2-19. In the same manner, you must create the XML

deployment descriptors for the bean, create a JAR file containing all of the bean’s

files, and use deployejb tool to load and publish the bean in the database.

The XML deployment descriptors are explained fully in Appendix A, "XML

Deployment Descriptors". See the appendix for a full description on defining

persistence for entity beans. For completeness, the following is how the purchase

order example deployment descriptors are organized. Since the purchase order does

not define any logical names that must be mapped and do not use the <run-as>
option, only the EJB deployment descriptor is required.

Example 4–2 Purchase Order EJB Deployment Descriptor

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems Inc.//DTD Enterprise JavaBeans 1.1
//EN" "ejb-jar.dtd">
<ejb-jar>
 <enterprise-beans>
 <entity>
 <description>no description</description>
 <ejb-name>test/purchase</ejb-name>
4-24 Enterprise JavaBeans Developer’s Guide and Reference

Creating Entity Beans
 <home>purchase.PurchaseOrderHome</home>
 <remote>purchase.PurchaseOrder</remote>
 <ejb-class>purchaseServer.PurchaseOrderBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <security-role>
 <description>no description</description>
 <role-name>PUBLIC</role-name>
 </security-role>
 <method-permission>
 <description>no description</description>
 <role-name>PUBLIC</role-name>
 <method>
 <ejb-name>test/purchase</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <container-transaction>
 <description>no description</description>
 <method>
 <ejb-name>test/purchase</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Client Accessing Deployed Entity Bean
To access a deployed entity bean, the client does one of the following:

■ Create a New Entity Bean

■ Access an Existing Entity Bean

Create a New Entity Bean
When you access an entity bean, you must first locate the bean’s home interface.

You retrieve the home interface from the name space through JNDI. The URL must

be of the following syntax:
Entity Beans 4-25

Creating Entity Beans
<service_name>://<hostname>:<iiop_listener_port>:<SID>/<published_obj_name>

This syntax is described more in "Getting the Home Interface Object" on page 2-17.

Example 4–3 Retrieving the Home Interface from the JNDI Name Space

The following example retrieves the home interface of the EJB located published in

/test/purchase . The host, port, and SID are localhost, 2471, and ORCL

respectively.

String serviceURL = "sess_iiop://localhost:2471:ORCL";
String objectName = "/test/purchase";

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, user);
env.put(Context.SECURITY_CREDENTIALS, password);
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);

CustomerHome ch = (CustomerHome)ic.lookup (serviceURL + objectName);
Customer myCust = (Customer) ch.create();

Access an Existing Entity Bean
A client can access an existing entity bean through one of the following methods:

■ Receive the reference from another party—for example, as a returned parameter

on a method call.

■ Given a primary key for the entity bean, invoke the findByPrimaryKey
method, which returns the entity bean’s remote reference.

■ Given a Handle object for the bean, invoke the getEJBObject method on the

Handle object. This handle was created from the entity bean object using the

getHandle method. The handle can be passed, as is, to another object or it can

be serialized and stored to be used at a later date.

Note: Notice how the type casting on the lookup does not require

the narrow method. The Oracle8i lookup method automatically

performs the proper narrowing function for you. Although you still

must provide the type that the returned object is cast to.
4-26 Enterprise JavaBeans Developer’s Guide and Reference

Difference Between Bean-Managed and Container-Managed Beans
Difference Between Bean-Managed and Container-Managed Beans
There are two methods for managing the persistent data within an entity bean:

bean-managed and container-managed persistence. The main difference between

bean-managed and container-managed persistent beans is defined by who manages

the persistence of the entity bean’s data.

In practical terms, the following table provides a definition for both types and a

summary of the programmatic and declarative differences between them:

Bean-Managed Persistence Container-Managed Persistence

Persistence management You are required to implement the
persistence management within the
ejbStore and ejbLoad EntityBean
methods. These methods must contain
logic for saving and restoring the
persistent data.

For example, the ejbStore method
must have logic in it to store the entity
bean’s data to the appropriate database.
If it does not, the data can be lost. See "3.
Implementing EntityBean Interface
Methods" on page 4-17 for an example
of implementing bean-managed
persistence.

The management of the persistent data
is done for you. That is, the container
invokes a persistence manager on behalf
of your bean.

You use ejbStore and ejbLoad for
preparing the data before the commit or
for manipulating the data after it is
refreshed from the database. The
container always invokes the ejbStore
method right before the commit. In
addition, it always invokes the ejbLoad
method right after reinstating CMP data
from the database.

Finder methods allowed The findByPrimaryKey method and
any other finder method you wish to
implement are allowed.

Only the findByPrimaryKey method
and a finder method for the where
clause are allowed.

Defining CMP fields N/A Required within the EJB deployment
descriptor. The primary key must also
be declared as a CMP field.

Mapping CMP fields to
resource destination.

N/A Required. Dependent on persistence
manager.

Definition of persistence
manager.

N/A Required within the Oracle-specific
deployment descriptor. See the next
section for a description of a persistence
manager.
Entity Beans 4-27

Difference Between Bean-Managed and Container-Managed Beans
Container-Managed Persistence
You can choose to have the container manage your persistent data for the bean. You

have less to develop and manage, as the container stores and reloads your

persistent data to and from the database.

When you use container-managed persistence, the container invokes a persistence

manager class that provides the persistence management business logic. For this

release, the only supported persistence manager is Oracle Persistence Service

Interface Reference Implementation (PSI-RI).

To enable the container to manage your persistent data, you need to perform the

following:

1. Modify the appropriate bean class callback methods

2. Define the primary key

3. Declare the container-managed persistent fields within the deployment

descriptor

4. Declare the persistence manager class

5. Map container-managed persistent fields to a database

Modify Bean Class Callback Methods
If you do not want to manage your persistent data, choose to have your bean

managed by the container. This means that you do not have to implement some of

the callback methods as the container and the persistence manager performs the

persistence and primary key management for you. The container will still call these

methods—so you can add logic for other purposes. You still must provide at least

an empty implementation for all callback methods.

The following table details the implementation requirements for the bean class’

callback functions:

Callback Method Functionality Required

ejbCreate The same functionality as bean-managed persistent beans.
You must initialize all container-managed persistent fields,
including the primary key.

ejbPostCreate The same functionality as bean-managed persistent beans.
You have the option to provide any other initialization,
which can involve the entity context.
4-28 Enterprise JavaBeans Developer’s Guide and Reference

Difference Between Bean-Managed and Container-Managed Beans
A Finder Method for the Where Clause Oracle enables you to perform a SQL query

against the persistent data table through a CMP-only finder method with a

find< name> naming syntax. This method takes a String that denotes the "where "

ejbRemove No functionality for removing the persistent data from the
outside resource is required. The persistent manager
removes all persistent data associated with the entity bean
from the database. You must at least provide an empty
implementation for the callback, which means that you can
add logic for performing any cleanup functionality you
require.

ejbFindByPrimaryKey No functionality is required for returning the primary key to
the container. The container manages the primary key—after
it is initialized by the ejbCreate method. Thus, the
container performs the functionality normally required of
this method. You still must provide an empty
implementation for this method.

ejbStore No functionaltiy is required for saving persistent data within
this method. The persistent manager saves all persistent data
to the database for you. However, you must provide at least
an empty implementation as the container invokes the
ejbStore method before invoking the persistent manager.
This enables you to perform any data management or
cleanup before the persistent data is saved.

ejbLoad No functionality is required for restoring persistent data
within this method. The persistence manager restores all
persistent data for you. However, you must provide at least
an empty implementation as the container invokes the
ejbLoad method after invoking the persistent manager.
This enables you to perform any logic to manipulate the
persistent data after it is restored to the bean.

setEntityContext Associates the bean instance with context information. The
container calls this method after the bean creation. The
enterprise bean can store the reference to the context object
in an instance variable, for use in transaction management.
Beans that manage their own transactions can use the session
context to get the transaction context.

You can also allocate any resources that will exist for the
lifetime of the bean within this method. You should release
these resources in unsetEntityContext .

unsetEntityContext Unset the associated entity context and release any resources
allocated in setEntityContext .

Callback Method Functionality Required
Entity Beans 4-29

Difference Between Bean-Managed and Container-Managed Beans
clause of a SQL query. Thus, the String would include the entire statement except

for the "select * from <table" . If you supply an empty string, all values are

selected from this table.

You must define any such finder method within the Home interface. The container

will provide the implementation for satisfying the where clause for the finder

method.

For example, the following defines finder methods within the home interface,

where one retrieves all customers and the other retrieves a single customer. Notice

how the findAllCustomers method, which retrieves all customers in the table,

returns an Enumeration .

public Customer findByWhere (String whereString)
throws RemoteException, FinderException;

public java.util.Enumeration findMultipleCustomers (String whereString)
throws RemoteException, FinderException;

If you want to retrieve a single customer, provide the name, the SQL would be

constructed as follows:

select * from customer where name = "Smith, John";

The findbyWhere finder method would include the entire statement except for the

"select * from customer ". It assumes that you want to select against the

persistence table, as follows:

Customer find_customer = findByWhere ("where name = ", + custname);

If you want to select a few rows from employee based upon a certain condition, the

SQL would be constructed as follows:

select * from customer where item_bought = treadmill order by name;

The find< name> method, which in this example is findByWhere, would include

the entire statement except for the "select * from employee ". It assumes that you

want to select all matches against the persistence table. This is demonstrated below:

Note: Normally, the return type for multiple items in a finder

method would be a Collection . However, Collection is not

supported in this release. You must use the Enumeration type to

receive multiple items from any finder method.
4-30 Enterprise JavaBeans Developer’s Guide and Reference

Difference Between Bean-Managed and Container-Managed Beans
Enumeration customer_list = findMultipleCustomers(
"where item_bought = treadmill order by name");

Or, if you wanted a full customer listing, provide an empty string. The container

will invoke a "select * from customer " and retrieve all records.

Enumeration customer_list = findMultipleCustomers();

Define Your Primary Key
The main difference between defining a bean-managed and container-managed

persistent primary key is that the fields within the key must be declared as

container-managed persistent fields in the deployment descriptor. All fields within

the primary key are restricted to be either primitive, serializable, and types that can

be mapped to SQL types. See "Persistence Fields" on page 4-17 for more

information.

You can define your primary key in one of two ways:

■ Defining A Single Object as your Primary Key

■ Defining a Complex Primary Key Class

Defining A Single Object as your Primary Key Define your primary key as a

container-managed persistent field and its type within the deployment descriptor.

The following shows the primary key, custid , declared as a <cmp-field> and

<primkey-field> and its type declared within the <prim-key-class> :

<enterprise-beans>
 <entity>
 <description>customer bean</description>
 <ejb-name>/test/customer</ejb-name>
 <home>customer.CustomerHome</home>
 <remote>customer.Customer</remote>
 <ejb-class>customerServer.CustomerBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>

 <primkey-field>custid</primkey-field>
 <reentrant>False</reentrant>

 <cmp-field><field-name>custid</field-name></cmp-field>
 <cmp-field><field-name>name</field-name></cmp-field>
 <cmp-field><field-name>addr</field-name></cmp-field>
 </entity>
</enterprise-beans>
Entity Beans 4-31

Difference Between Bean-Managed and Container-Managed Beans
The primary key variable declared within the bean class must be declared as

public .

This should be a Java type that can be mapped to a SQL type through SQLJ. Also,

this object must be serializable. See "Entity Bean Elements" on page 4-13 for a full

description.

Defining a Complex Primary Key Class If your primary key is more complex than a

simple data type, you define the fields that make up the primary key as

container-managed fields within the deployment descriptor. Then, you declare

these fields as the primary key within a class. This class must be serializable. Also,

all primary key variables declared within the bean class must be types that can be

mapped to SQL types.

Within the bean class, the primary key variables must be declared as public . Also,

you must provide a constructor with no arguments for creating an empty primary

key instance.

Within the serializable primary key class, you implement the equals and

hashCode methods to provide for an implementation specific to this primary key.

The following example is a cruise ship cabin bean primary key that identifies each

cabin with ship name, deck name, and cabin number.

package cruise;

public class CabinPK implements java.io.Serializable
{
//Ship names { Castaway, LightFantastic, FantasyRide }
 public String ship;

//Deck names { Upper Promendade, Promenade, Lower Promenade, Main Deck,
 Lower Deck }
 public String deck;

 //Cabin numbers A100-N300
 public String cabin;

 //empty constructor
 public CabinPK () { }

 public boolean equals(Object obj) {
 if ((obj instanceof CabinPK) &&
 (((CabinPK)obj).ship == this.ship) &&
 (((CabinPK)obj).deck == this.deck) &&
 (((CabinPK)obj).cabin == this.cabin))
4-32 Enterprise JavaBeans Developer’s Guide and Reference

Difference Between Bean-Managed and Container-Managed Beans
 return true;
 return false;
 }

 public int hashCode() {
 return ((ship + deck + cabin).hash);
 }

The class that defines the primary key is declared within the XML deployment

descriptor, as follows:

<enterprise-beans>
 <entity>
 <ejb-name>CabinBean</ejb-name>
 <home>cruise.CabinHome</home>
 <remote>cruise.Cabin</remote>
 <ejb-class>cruiseServer.CabinBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>cruise.CabinPK</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field><field-name>deck</field-name></cmp-field>
 <cmp-field><field-name>cabin</field-name></cmp-field>
...
</enterprise-beans>

See "Entity Bean Elements" on page 4-13 for a full description of the deployment

descriptor definition.

Manage the Primary Key You must initialize all CMP fields, including the primary

key, within the ejbCreate method. The ejbCreate method for the purchase

order example initializes the primary key, ponumber , to the next available number

in the purchase order number sequence.

// The create methods takes care of generating a new PO and returns
// its primary key
public String ejbCreate () throws CreateException, RemoteException
{
 String ponumber = null;
 try {
 //retrieve the next available purchase order number
 #sql { select ponumber.nextval into :ponumber from dual };
 //assign this number as this instance’s identification number
 #sql { insert into pos (ponumber, status) values (:ponumber, ’OPEN’) };
 } catch (SQLException e) {
 throw new PurchaseException (this, "create", e);
Entity Beans 4-33

Difference Between Bean-Managed and Container-Managed Beans
 }
 return ponumber;
}

Declare Persistence Fields
All container-managed persistent fields must be declared as public within your

bean class. They cannot be transient. In addition, these fields are restricted to be

either primitive, serializable, and types that can be mapped to SQL types. See

Table A–2, "Unsupported Java Types for Persistent Variables" on page A-30 for more

information.

Declare Persistence Provider
The container invokes a persistence provider for managing your CMP bean. This

release supports Oracle Persistence Service Interface Reference Implementation

(PSI-RI). For more information on defining the provider, see "Defining

Container-Managed Persistence" on page A-28 for a full description.

The following shows the portion of the Oracle-specific deployment descriptor that

defines the persistence manager:

...
<persistence-provider>
 <description> specifies a type of persistence manager </description>
 <persistence-name>psi-ri</persistence-name>
 <persistence-deployer>oracle.aurora.ejb.persistence.ocmp.OcmpEntityDeployer</p
ersistence-deployer>
</persistence-provider>

<persistence-descriptor>
 <description> This specifies a particular type of persistence manager to be us
ed for a bean. param is where you would put bean specific persistence info in t
he format of params. The deployment process just passes what’s in the param to
the persistence deployer. For the baby persistence, we do parse the persistence
-mapping but for other persistence backend we don’t do anything with the params
 </description>
 <ejb-name>customerbean</ejb-name>
 <persistence-name>psi-ri</persistence-name>
 <psi-ri>

Note: Make sure that the class that contains the persistence

manager is loaded within the database.
4-34 Enterprise JavaBeans Developer’s Guide and Reference

Difference Between Bean-Managed and Container-Managed Beans
 <schema>SCOTT</schema>
 <table>customers</table>
 <attr-mapping>
 <field-name>custid</field-name>
 <column-name>cust_id</column-name>
 </attr-mapping>
 <attr-mapping>
 <field-name>name</field-name>
 <column-name>cust_name</column-name>
 </attr-mapping>
 <attr-mapping>
 <field-name>addr</field-name>
 <column-name>cust_addr</column-name>
 </attr-mapping>
 </psi-ri>
</persistence-descriptor>
</oracle-descriptor>

Map Container-Managed Persistence Fields
All CMP data fields defined within your bean must be declared within the

deployment descriptor in the <cmp-field> element. See "Entity Bean Elements"

on page 4-13 for a full description. In addition, you must map these fields to the

intended database table and respective columns. See "Persistence Fields" on

page 4-17 for more information.

The following is a portion of the Oracle-specific deployment descriptor, which maps

the primary key and any container-managed persistence fields from the customer

example (with the single primary key field) to the database table and column that

the persistence provider stores the values for these fields within. Specifically, the

container-manager stores the persistent fields into the customers table in SCOTT’s

schema. The persistent fields are mapped as follows:

<psi-ri>
 <schema>SCOTT</schema>
 <table>customers</table>
 <attr-mapping>

Persistent Field Table Column

custid (primary key) cust_id column in the customers table

name cust_name column in the customers table

addr cust_addr column in the customers table
Entity Beans 4-35

Accessing EJB References and JDBC DataSources
 <field-name>custid</field-name>
 <column-name>cust_id</column-name>
 </attr-mapping>
 <attr-mapping>
 <field-name>name</field-name>
 <column-name>cust_name</column-name>
 </attr-mapping>
 <attr-mapping>
 <field-name>addr</field-name>
 <column-name>cust_addr</column-name>
 </attr-mapping>
</psi-ri>

Accessing EJB References and JDBC DataSources
You can access EJB references and JDBC DataSources through your bean’s

environment.

■ EJB References

■ JDBC DataSources

EJB References
The entity bean may create an environment reference for a target bean within the

deployment descriptors. The URL of an EJB environment reference should have the

following syntax:

"java:comp/env/ejb/"< ejb-ref-name >

The "java:comp/env/ejb" prefix is a subcontext that instructs JNDI to locate the

EJB reference within the EJB references defined in the deployment descriptor. The

<ejb-ref-name> is the logical environment name of the EJB reference defined in

the deployment descriptor. The following shows how a bean looks up another

bean’s reference within its deployed environment:

Context ic = new InitialContext ();

CustomerHome ch = (CustomerHome)ic.lookup ("java:comp/env/ejb/PurchaseOrder");

See "Environment References To Other Enterprise JavaBeans" on page A-9 for a full

description of EJB environment references.
4-36 Enterprise JavaBeans Developer’s Guide and Reference

Accessing EJB References and JDBC DataSources
JDBC DataSources
The entity bean had the option of creating an environment reference for JDBC

DataSources bound within JNDI. These were declared for the bean within the

deployment descriptors. If defined, the serviceURL and objectName contains

the URL of an EJB environment reference, which is of the following syntax:

"java:comp/env/jdbc/"< resource-ref-name >

The "java:comp/env/jdbc" prefix is a subcontext that instructs JNDI to locate

the JDBC DataSource within the <resource-ref> elements defined in the

deployment descriptor, which actually defines the logical environment name.

The following is the definition of the JDBC DataSource within the EJB deployment

descriptor for the purchase order:

<resource-ref>
 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
</resource-ref>

The following shows the JNDI context initialization for the purchase order example:

#import javax.sql.*

String dbURL = "java:comp/env/jdbc/EmployeeAppDB";

DataSource dbRes = (DataSource)ic.lookup (dbURL);
Connection conn = dbRes.getConnection;

See "Environment References To Resource Manager Connection Factory References"

on page A-12 for a full description of JDBC DataSource variables.

Note: Only the Application option is supported for

<res-auth> for this release.
Entity Beans 4-37

Accessing EJB References and JDBC DataSources
4-38 Enterprise JavaBeans Developer’s Guide and Reference

JNDI Connections and Session IIOP Se
5

JNDI Connections and

Session IIOP Service

This chapter describes in detail how clients connect to an Oracle8i server session

and how they authenticate themselves to the server. The term client, as used in this

chapter, includes client applications and applets running on a network PC or a

workstation, as well as distributed objects such as EJBs and CORBA server objects

that are calling other distributed server objects and, thus, acting as clients to these

objects.

In addition to authentication, this chapter discusses security of access control to

objects in the database. A published object in the data server has a set of

permissions that determine who can access and modify the object. In addition,

classes that are loaded in the data server are loaded into a particular schema, and

the person who deploys the classes can control who can use them.

This chapter covers the following topics:

■ JNDI Connection Basics

■ The Name Space

■ Execution Rights to Database Objects

■ URL Syntax

■ Using JNDI to Access Bound Objects

■ Session IIOP Service

■ Retrieving JServer Version Number

■ Activating In-Session EJB Objects From Non-IIOP Presentations

■ Invoking EJB Objects From Applets
rvice 5-1

JNDI Connection Basics
JNDI Connection Basics
The client example in Chapter 2 showed how to connect to Oracle, start a database

server session, and activate an object using a single URL specification. This was

performed through the following steps:

1. Hashtable env = new Hashtable();
2. env.put(javax.naming.Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
3. env.put(javax.naming.Context.SECURITY_PRINCIPAL, username);
4. env.put(javax.naming.Context.SECURITY_CREDENTIALS, password);
5. env.put(javax.naming.Context.SECURITY_AUTHENTICATION,

ServiceCtx.NON_SSL_LOGIN);
6. Context ic = new InitialContext(env);
7. HelloHome hello_home =
 (HelloHome) ic.lookup("sess_iiop://localhost:2481:ORCL/test/myHello");
 myHello hello = hello_home.create ();
8. System.out.println(hello.helloWorld());

In this example, there are four basic operations:

■ Lines 1-5 set up an environment for the JNDI initial context.

■ Line 6 creates the JNDI initial context.

■ Line 7 looks up a published object. (See "URL Syntax" on page 5-5 for a

discussion of the URL syntax.)

■ Line 8 invokes a method on the object.

When a client looks up an object through the JNDI lookup method, the client and

server automatically perform the following logic:

■ A session IIOP connection is created to the ORCL instance of the local host

database.

■ The server establishes a database session.

■ The client is authenticated, using the NON_SSL_LOGIN protocol, with the

username and password specified in the environment context.

■ The published object, /test/myHello , is located in the session namespace

and a reference to it is returned to the client.

When the client invokes a method—such as helloWorld() —on the returned

reference, the server activates the object in the server.
5-2 Enterprise JavaBeans Developer’s Guide and Reference

The Name Space
The Name Space
The name space in the database looks just like a typical file system. You can

examine and manipulate objects in the publishing name space using the session

shell tool. See the "sess_sh " tool in the Oracle8i Tools Reference Guide for

information about the session shell.

There is a root directory, indicated by a forward slash (’/’). The root directory is

built to contain three other directories: bin , etc , and test . The /test directory is

where most objects are published for the example programs. You can create new

directories under root to hold objects for separate projects; however, you must have

access as database user SYS to create new directories under the root.

There is no effective limit to the depth that you can nest directories.

The /etc directory contains objects the ORB uses. Do not delete objects in the /etc
directory. The objects contained in /etc are:

deployejb execute loadjava login transactionFactory

The entries in the name space are represented by objects that are instances of the

following classes:

■ oracle.aurora.AuroraServices.PublishingContext —represents a

class that can contain other objects (a directory)

■ oracle.aurora.AuroraServices.PublishedObject —used for the leafs

of the tree, that is the object names themselves.

These classes are documented in the JavaDoc on the product CD.

Published names for objects are stored in a database table. Each published object

also has a set of associated permissions. Each class or resource file can have a

combination (union) of the following permissions:

read The holder of read rights can list the class or the attributes of the class, such as

its name, its helper class, and its owner.

write The holder of write for a context can bind new object names into a context. For

an object (a leaf node of the tree), write allows the holder to republish the object

under a different name.

Note: The initial values in the publishing name space are set up

when the JServer product for Oracle8i is installed.
JNDI Connections and Session IIOP Service 5-3

Execution Rights to Database Objects
execute You must have execute rights to resolve and activate an object represented

by a context or published object name.

You use the chmod command of the session shell tool to view and change object

rights.

Execution Rights to Database Objects
In addition to authentication and privacy, Oracle8i supports controlled access to the

classes that make up CORBA and EJB objects. Only users or roles that have been

granted execute rights to the Java class of an object stored in the database can

activate the object and invoke methods on it.

You can control execute rights on Java classes with the following tools:

■ At load time with the -grant argument to loadjava . See the Oracle8i Java
Developer’s Guide for more information about loadjava and execution rights

on Java classes in the database.

■ Using SQL commands—You use the SQL DDL GRANT EXECUTE command to

grant execute permission on a Java class loaded in the database. For example, if

SCOTT has loaded a class Hello, then SCOTT (or SYS) can grant execute

privileges on that class to another user, say OTTO, by issuing the SQL

command:

SQL> GRANT EXECUTE ON "Hello" TO OTTO;

Use the SQL command REVOKE EXECUTE to remove execute rights for a user

from a loaded Java class.

■ At publish time—Published objects are not restricted to a specific schema; they

are potentially available to all users in the instance. Published objects have

permissions that can differ from underlying classes. For example, if user SCOTT

has execute permission on a published object name, but does not have execute

permission on the class that the published object represents, SCOTT will not be

able to activate the object.

You can control permissions on a published object through the following:

1. Using the -grant option with the publish tool.

2. Using the chmod and chown commands within the Session Shell. You must

be connected to the Session Shell as the user SYS to use the chown
command.
5-4 Enterprise JavaBeans Developer’s Guide and Reference

URL Syntax
Use the ls -l command in the session shell to view the permissions

(EXECUTE, READ, and WRITE) and the owner of a published object.

There are three "built-in" server objects that a client can access without being

authenticated, as shown below:

■ the Name Service

■ the InitialReferences object (the boot service)

■ the Login object

You can activate these objects using serviceCtx.lookup() without

authentication. See the "Logging In and Out of the JServer Session" on page 6-11 for

an example that access the Login object explicitly.

URL Syntax
Oracle8i provides universal resource locator (URL) syntax to access services and

sessions. The URL lets you use JNDI requests to start up services and sessions, and

also to access components published in the database instance. An example service

URL is shown in Figure 5–1.

Figure 5–1 Service URL

The service URL is composed of four components:

1. The URL prefix followed by a colon and two slashes: sess_iiop:// for a session

IIOP request.

2. The system name (the hostname). For example: myPC-1. You can also use

localhost or the numeric form of the IP address for the host.

3. The listener port number for IIOP services. The default is 2481.

URL Prefix

Hostname

System Identifier (SID) or
Service Name

Listener Port Number for IIOP

sess_iiop://localhost:2481:ORCL
JNDI Connections and Session IIOP Service 5-5

URL Syntax
4. The system identifier (SID)—for example, ORCL—or the service name—for

example, mySID.myDomain .

■ SID—The system identifier is defined in your database initialization file as

the db_name. This identifies the database instance you are connecting to. If

you choose to add the SID to your service URL, the listener will load

balance incoming requests across multiple dispatchers for the database

instance.

■ Service name—The service name is equivalent to either the service_name
or the db_name.db_domain parameters defined in your database

initialization file. If you use the service name within your service URL, the

listener will load balance incoming requests across multiple database

instances: that is, all database instances registered with the listener. This

options is good when you are using parallel servers.

Always use colons to separate the hostname, port, and SID or service name.

URL Components and Classes
When you make a connection to Oracle and look up a published object using JNDI,

you use a URL that specifies the service (service name, host, port, and SID), as well

as the name of a published object to look up and activate. For example, a complete

URL could look like:

sess_iiop://localhost:2481:ORCL/:default/projectAurora/Plans816/getPlans

where sess_iiop://localhost:2481:ORCL specifies the service name,

:default indicates the default session (when a session has already been

established), /projectAurora/Plans816 specifies a directory path in the

namespace, and getPlans is the name of a published object to look up.

Note: If you do use the service name, you must specify the

-useServiceName flag on any tool that takes in the URL. If you do

not specify this flag, the tool assumes that the last string is a SID.

Note: If you specify a dispatcher port instead of a listener port,

and you specify a SID, an ObjectNotFound exception is thrown

by the server. Because applications that connect directly to

dispatcher ports do not scale well, Oracle does not recommend

direct connection to dispatchers.
5-6 Enterprise JavaBeans Developer’s Guide and Reference

Using JNDI to Access Bound Objects
Each component of the URL represents a Java class. For example, the service name

is represented by a ServiceCtx class instance, the session by a SessionCtx
instance. See "Using JNDI to Access Bound Objects" and "Session IIOP Service"

starting on page 5-7 for more information on the service and session names within

the URL.

CosNaming Restriction for JNDI Name
The JNDI bound name for the published object must use JNDI syntax rules. The

underlying naming service that JServer JNDI uses is CosNaming. Thus, if your

name includes a dot (".") in one of the names, the behavior diverges from normal

CosNaming rules, as follows:

■ The substring before the dot is treated as a CosNaming NameComponent id.

■ The substring after the dot is treated as a CosNaming NameComponent kind.

■ Both id and kind are concatenated into a full JNDI name.

Normally, in retrieving a CosNaming object, you supply the id and kind as separate

entities. The JServer implementation concatenates both id and kind. Thus, to

retrieve the object, your application refers to the full name with the dot included as

part of the JNDI name, rather than as a separator.

Using JNDI to Access Bound Objects
Clients use the Java Naming and Directory Interface (JNDI) interface to look up

published objects in the JServer namespace. JNDI is an interface supplied by Sun

Microsystems that gives the Java application developer a methodology to access

name and directory services. This section discusses only those parts of the JNDI API

that are needed to look up and activate published objects. To obtain a complete set

of documentation for JNDI, see the web site URL

http://java.sun.com/products/jndi/index.html .

Note: You do not specify the session name when no session has

been established for that connection. That is, on the first look up

there is no session active; therefore, :default as a session name

has no meaning. In addition, :default is implied, so you can use

a URL without a session name.
JNDI Connections and Session IIOP Service 5-7

Using JNDI to Access Bound Objects
As described in "URL Syntax" on page 5-5, the JNDI URL required to access any

bound name in the JServer namespace requires a compound name consisting of the

following two components:

■ Service name—the service name is used by JServer to retrieve a handle to the

correct namespace.

Several namespaces will exist within your network. The service specifies which

namespace to retrieve the JNDI bound object from. Service names can be one of

the following:

■ Session name—the actual JNDI bound name of the object within the designated

namespace. The syntax mimics a UNIX file system syntax. The session name

can be represented by a SessionCtx object.

You can utilize the service and session contexts to perform some advanced

techniques, such as opening different sessions within a database or enabling several

clients to access an object in a single session. These are discussed further in the

"Session IIOP Service" on page 5-13. However, for simple JNDI lookup invocations,

you should use the URL syntax specified in "URL Syntax" on page 5-5.

Note: It is also possible to access the session namespace without

using JNDI. Instead, you can use CosNaming methods.

Service Name Description

sess_iiop://<hostname>:<port>:<SID> Specifies the host, port, and SID that the
desired namespace is located. Specifying this
service name only without a session name
returns a ServiceCtx object. The session IIOP
service is the main service used by IIOP
applications. It retrieves objects and object
references bound in JNDI namespaces on
different database hosts. See "Session IIOP
Service" on page 5-13 for a full description.

jdbc_access: Specifies that the desired object exists in a
well-known namespace. Used primarily to
retrieve JTA UserTransaction and DataSource
objects from the namespace.

java: Used to specify that the bound name is
actually an EJB environment variable that was
specified within its deployment descriptor.
5-8 Enterprise JavaBeans Developer’s Guide and Reference

Using JNDI to Access Bound Objects
Importing JNDI Support Classes
When you use JNDI in your client or server object implementations, be sure to

include the following import statements in each source file:

import javax.naming.Context; // the JNDI Context interface
import javax.naming.InitialContext;
import oracle.aurora.jndi.sess_iiop.ServiceCtx; // JNDI property constants
import java.util.Hashtable; // hashtable for the initial context environment

Retrieving the JNDI InitialContext
Context is an interface in the javax.naming package that is used to retrieve the

InitialContext . All Oracle8i EJB and CORBA clients use the InitialContext
for JNDI lookup() . Before you perform a JNDI lookup() , you set the

environment variables, such as authentication information into the Context . You

can use a hash table or a properties list for the environment. Then, this information

is made available to the naming service when the lookup() is performed. The

examples in this guide always use a Java Hashtable , as follows:

Hashtable environment = new Hashtable();

Next, you set up properties in the hash table. You must always set the Context
URL_PKG_PREFIXES property, whether you are on the client or server. The

remaining properties are used for authentication, which primarily are used by

clients or by a server authenticating itself as another user.

■ javax.naming.Context.URL_PKG_PREFIXES

■ javax.naming.Context.SECURITY_PRINCIPAL

■ javax.naming.Context.SECURITY_CREDENTIALS

■ javax.naming.Context.SECURITY_ROLE

■ javax.naming.Context.SECURITY_AUTHENTICATION

■ USE_SERVICE_NAME

URL_PKG_PREFIXES
Context.URL_PKG_PREFIXES holds the name of the environment property for

specifying the list of package prefixes to use when loading in URL context factories.

The value of the property should be a colon-separated list of package prefixes for

the class name of the factory class that will create a URL context factory.
JNDI Connections and Session IIOP Service 5-9

Using JNDI to Access Bound Objects
In the current implementation, you must always supply this property in the Context

environment, and it must be set to the String "oracle.aurora.jndi ".

SECURITY_PRINCIPAL
Context.SECURITY_PRINCIPAL holds the database username.

SECURITY_CREDENTIALS
Context.SECURITY_CREDENTIAL holds the clear-text password. This is the

Oracle database password for the SECURITY_PRINCIPAL (the database user). In all

of the three authentication methods mentioned in SECURITY_AUTHENTICATION

below, the password is encrypted when it is transmitted to the server.

SECURITY_ROLE
Context.SECURITY_ROLE holds the Oracle8i database role with which the user is

connecting. For example, "CLERK" or "MANAGER".

SECURITY_AUTHENTICATION
Context.SECURITY_AUTHENTICATION holds the name of the environment

property that specifies the type of authentication to use. Values for this property

provide for the authentication types supported by Oracle8i. There are four possible

values, which are defined in the ServiceCtx class:

■ ServiceCtx.NON_SSL_LOGIN : The client authenticates itself to the server

with a username and password using the Login protocol over a standard

TCP/IP connection (not a secure socket layer connection). The Login protocol

provides for encryption of the password as it is transmitted from the client to

the server. The server does not authenticate itself to the client. See "Providing

Username and Password for Client-Side Authentication" on page 6-9 for more

information about this protocol.

■ ServiceCtx.SSL_CREDENTIAL : The client authenticates itself to the server

providing a username and password that are encrypted over a secure socket

layer (SSL) connection. The server authenticates itself to the client by providing

credentials.

■ SSL_LOGIN: The client authenticates itself to the server with a username and

password within the Login protocol, over an SSL connection. The server does

not authenticate itself to the client.

■ SSL_CLIENT_AUTH: Both the client and the server authenticate themselves to

each other by providing certificates to each other over an SSL connection.
5-10 Enterprise JavaBeans Developer’s Guide and Reference

Using JNDI to Access Bound Objects
USE_SERVICE_NAME
If you are using a service name instead of an SID in the URL, you set this property

to true. Otherwise, the last string in the URL must contain the SID. Given a

Hashtable within the variable, env , the following designates that the service name

is used instead of the SID within the URL:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
env.put("USE_SERVICE_NAME", "true");
Context ic = new InitialContext(env);

The default is false.

The URL given within the lookup should contain a service name, instead of an SID.

The following URL contains the service name, orasun12 :

myHello hello =
 (myHello) ic.lookup("sess_iiop://localhost:2481: orasun12 /test/myHello");

The JNDI InitialContext Methods
InitialContext is a class in the javax.naming package that implements the

Context interface. All naming operations are relative to a context. The initial

context implements the Context interface and provides the starting point for

resolution of names.

Constructor
You construct a new initial context using the constructor:

Note: To use an SSL connection, you must be able to access a

listener that has an SSL port configured, and the listener must be

able to redirect requests to an SSL-enabled database IIOP port. You

must also include the following JAR files when you compile and

build your application:

■ If your client uses JDK 1.1, import jssl-1_1.jar and
javax-ssl-1_1.jar.

■ If your client uses Java 2, import jssl-1_2.jar and
javax-ssl-1_2.jar .
JNDI Connections and Session IIOP Service 5-11

Using JNDI to Access Bound Objects
public InitialContext(Hashtable environment)

It requires a Hashtable for the input parameter that contains the environment

information described in "Retrieving the JNDI InitialContext" above. The following

code fragment sets up an environment for a typical client, and creates a new initial

context:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext(env);

lookup
This is the most common initial context class method that the CORBA or EJB

application developer will use:

public Object lookup(String URL)

You use lookup() to retrieve an object instance or to create a new service context.

■ To retrieve an object instance, specify a URL for the service name and append

the JNDI bound name (the session name). The returned result must be cast to

the expected object type. For example, to retrieve the Hello interface, you would

do the following:

HelloHome hello_home =
 (HelloHome) ic.lookup("sess_iiop://localhost:2481:ORCL/test/myHello");
myHello hello = hello_home.create ();

The service name is "sess_iiop://localhost:2481:ORCL "; the JNDI

bound name for Hello’s home interface is "/test/myHello ".

■ To retrieve a handle to a specific namespace, specify the desired service context.

The return result must be cast to ServiceCtx when a new service context is

being created. For example, if initContext is a JNDI initial context, the

following statement creates a new service context:

ServiceCtx service =
 (ServiceCtx) initContext.lookup("sess_iiop://localhost:2481:ORCL");

See "Session Management Scenarios" on page 5-18 for examples on how to use the

JNDI lookup method within an EJB or CORBA application.
5-12 Enterprise JavaBeans Developer’s Guide and Reference

Session IIOP Service
Session IIOP Service
All client/server network communications route requests over an accepted protocol

between both entities. Most network communications to the Oracle8i database

routed over the two-task common (TTC) layer. This is the service that processes

incoming Net8 requests for database SQL services. However, with the addition of

Java into the database, JServer required that clients communicate with the server

over an IIOP transport that recognized database sessions. This is accomplished

through the session IIOP service.

The session IIOP service is used for facilitating requests for IIOP applications,

which includes CORBA and EJB applications. The following sections describe how

to manage your applications within one or more database sessions:

■ Session IIOP Service Overview

■ Session Management

■ Service Context Class

■ Session Context Class

■ Session Management Scenarios

■ Setting Session Timeout

Session IIOP Service Overview
As discussed in the Oracle8i Java Developer’s Guide, since the EJB is loaded into the

database, your client application must start up the EJB within the context of a

database session. Because beans are activated within a session, each client cannot

see bean instances active in another session, unless given a handle to that session.

Also, you can activate objects within the existing session or another session.

The session IIOP service session component tag—TAG_SESSION_IIOP— exists

inside the IIOP profile—SessionIIOP . The value for this Oracle session IIOP

component tag is 0x4f524100 and contains information that uniquely identifies the

session in which the object was activated. The client ORB runtime uses this

information to send requests to objects in a particular session.

Although the Oracle8i session IIOP service provides an enhancement of the

standard IIOP protocol—it includes session ID information—it does not differ from

standard IIOP in its on-the-wire data transfer protocol.
JNDI Connections and Session IIOP Service 5-13

Session IIOP Service
Client Requirements
Clients must have an ORB implementation that supports session IIOP to be able to

access objects in different sessions simultaneously, from within the same program,

and to be able to disconnect from and reconnect to the same session. The version of

the Visigenic ORB that ships with Oracle8i has been extended to support session

IIOP.

Session Routing
When a client makes an IIOP connection to the database, Oracle8i decides if a new

session should be started to handle the request, or if the request should be routed to

an existing session. If the client initializes a new request for a connection (using the

InitialContext .lookup() method) and no session is active for that connection,

a new session is automatically started. If a session has already been activated for the

client, the session identifier is encoded into the object key of the object. This

information enables the session IIOP service to route the request to the correct

session. In addition, you can also use this session identifier to allow a single client to

access multiple sessions. See "Session Management Scenarios" on page 5-18 for

more information.

JServer Tools
When using the Oracle8i JServer tools, especially when developing EJB and CORBA

applications, it is very important to distinguish the two network service protocol

types: TTC and IIOP.
5-14 Enterprise JavaBeans Developer’s Guide and Reference

Session IIOP Service
Figure 5–2 TTC and IIOP Services

Figure 5–2 shows which tools and requests use TTC and which use IIOP database

ports. 1521 is the default port number for TTC, and 2481 is the default for IIOP.

■ Tools such as publish , deployejb , and the session shell access IIOP objects,

and so must connect using an IIOP port. In addition, EJB and CORBA clients

must use an IIOP port when sending requests to Oracle.

■ Tools such as loadjava and dropjava connect using a TTC port.

Session Management
In the simple cases, a client (or a server object acting as a client) starts a new server

session implicitly when it performs the lookup for a server object. Oracle8i also

gives you the ability to control session start-up explicitly. Two Oracle-specific

classes are provided that gives you control over the session IIOP service connection

and over the sessions within the database.

■ Service Context Class—Controls the session IIOP service connection to the

database. Given a URL to that database, you can create a service context. Off of

this service context, you can open one or more named sessions within the

database.

Client

SQL*Plus

OCI

dropjava

loadjava

publish

deployejb

session shell

IIOP requests

TTC

IIOP
JNDI Connections and Session IIOP Service 5-15

Session IIOP Service
■ Session Context Class—Controls named database sessions created off of a

service context. Once created, you can activate CORBA or EJB objects within the

session using the named session context object.

Service Context Class
Controls the session IIOP service connection to the database. Given a URL to that

database, you can create a service context. Off of this service context, you can open

one or more named sessions within the database. This Oracle-specific class extends

the JNDI Context class.

Variables
The ServiceCtx class defines a number of final public static variables that you can

use to define environment properties and other variables. Table 5–1 shows these.

Methods
The public methods in this class that CORBA and EJB application developers can

use are as follows:

public Context createSubcontext(String name)

Table 5–1 ServiceCtx Public Variables

String Name Value

NON_SSL_CREDENTIAL "Credential"

NON_SSL_LOGIN "Login"

SSL_CREDENTIAL "SecureCredential"

SSL_LOGIN "SecureLogin"

SSL_CLIENT_AUTH "SslClientAuth"

SSL_30 "30"

SSL_20 "20"

SSL_30_WITH_20_HELLO "30_WITH_20_HELLO"

Integer Name Integer Constructor

SESS_IIOP new Integer(2)

IIOP new Integer(1)
5-16 Enterprise JavaBeans Developer’s Guide and Reference

Session IIOP Service
This method takes a Java String as the parameter and returns a JNDI Context
object representing a session in the database. The method creates a new named

session. The parameter is the name of the session to be created, which must start

with a colon (:).

The return result should be cast to a SessionCtx object.

Throws javax.naming.NamingException .

public Context createSubcontext(Name name)

(Each of the methods that takes a String parameter has a corresponding method

that takes a Name parameter. The functionality is the same.)

public static org.omg.CORBA.ORB init(String username,
 String password,
 String role,
 boolean ssl,
 java.util.Properties props)

Gets access to the ORB created when you perform a look up. Set the ssl parameter

to true for SSL authentication. Clients that do not use JNDI to access server objects

should use this method.

See "sharedsession" in Appendix A of the Oracle8i CORBA Developer’s Guide for a

usage example.

public Object lookup(String string)

lookup() looks up a published object in the database instance associated with the

service context, and either returns an activated instance of the object, or throws

javax.naming.NamingException.

Session Context Class
Controls named database sessions created off of a service context. Once created, you

can activate CORBA or EJB objects within the session using the named session

context object. Session contexts represent sessions and contain methods that enable

you to perform session operations such as authenticating the client to the session or

activating objects. This class extends the JNDI Context class.
JNDI Connections and Session IIOP Service 5-17

Session IIOP Service
Methods
The session context methods that a client uses are the following:

public synchronized boolean login()

login() authenticates the client using the initial context environment properties

passed in the InitialContext constructor: username, password, and role.

public synchronized boolean login(String username,
 String password,
 String role)

login() authenticates the client using the username, password, and optional

database role supplied as parameters.

public Object activate(String name)

Looks up and activates a published object having the name.

Session Management Scenarios
The following sections describe the different scenarios for managing database

sessions:

■ Client Accessing a Single Session—client activates and accesses an object in the

:default session.

■ Ending a Session—discusses methods that explicitly terminate a session.

■ Client Starting a Named Session—client activates and accesses one or more

objects in a session other than the :default session. This session is identified by a

name within a SessionCtx .

■ Two Clients Accessing the Same Session—two or more clients can access an

activated object within a session by providing x and y to both clients.

■ In-Session Activation—a server object, acting as a client, activates another object

within the same session.

Note: Creating a subcontext within the session context affects the

object type returned on the final JNDI lookup. See "Lookup of

Objects Off of JNDI Context" on page 5-25 for more information.
5-18 Enterprise JavaBeans Developer’s Guide and Reference

Session IIOP Service
■ Lookup of Objects Off of JNDI Context—lookup of a partial JNDI name requires

that you activate the bound object.

Client Accessing a Single Session In general, when you look up a published object

from a client with a URL, hostname, and port, the object is activated in a new

session. For example, a client would perform the following:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext(env);
SomeObjectHome myObj_home =
 (SomeObjectHome) ic.lookup("sess_iiop://localhost:2481:ORCL/test/myObj");
SomeObject myObj = myObj_home.create ();

Activating an object in a new session from a server object is identical to starting a

session from an application client. If the lookup method is invoked within the

server object, the second object instance is activated in a separate session from the

originating session.

Ending a Session Normally, a session terminates when the client terminates.

However, if you want to explicitly terminate a session, you can do one of the

following:

Terminate A Session From The Server-Side Using The Endsession Method
The server can control session termination by executing the following method:

oracle.aurora.mts.session.Session.THIS_SESSION().endSession();

Terminate A Session From The Client-side Using The Logout Object
If the client wishes to exit the session, it can execute the logout method of the

LogoutServer object, which is pre-published as "/etc/logout ". Only the

session owner is allowed to logout. Any other owner receives a NO_PERMISSION

exception.

The LogoutServer object is analogous to the LoginServer object, which is

pre-published as "/etc/login ". You can use the LoginServer object to retrieve

the Login object, which is used to authenticate to the server. This is an alternative

method to using the Login object within the JNDI lookup.

The following example shows how a client can authenticate using the

LoginServer object and can exit the session through the LogoutServer object.
JNDI Connections and Session IIOP Service 5-19

Session IIOP Service
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.AuroraServices.LogoutServer;
...
// To log in using the LoginServer object
LoginServer loginServer = (LoginServer)ic.lookup(serviceURL + "/etc/login");
Login login = new Login(loginServer);
System.out.println("Logging in ..");
login.authenticate(user, password, null);
...
//To logout using the LogoutServer
LogoutServer logout = (LogoutServer)ic.lookup(serviceURL + "/etc/logout");
logout.logout();

Client Starting a Named Session You can explicitly create multiple session on the

database instance through the JNDI methods provided in the ServiceCtx and

SessionCtx classes.

The following lookup method contains a URL that defines the IIOP service URL of

"sess_iiop://localhost:5521:ORCL " and a default session context.

SomeObjectHome myObj_home =
 (SomeObjectHome) ic.lookup("sess_iiop://localhost:2481:ORCL/test/myObj");
SomeObject myObj = myObj_home.create ();

In this simple case, the JNDI initial context lookup method implicitly starts a

session and authenticates the client. This session becomes the default session, which

is identified by the name ":default ". All sessions are named. However, in the

default case, the client does not need to know the name of the session, because all

requests go to this single session. Unless specified, all additional objects activated

will be activated in the default session. Even if you create a new JNDI initial context

and look up the same or a new object, the object is instantiated in the same session

as the first object.

The only way to activate objects within another session is to create a named session.

You can create other sessions in place of or in addition to the default session by

creating session contexts off of the service context. Each session would be a named

session, so that you can activate objects in different sessions within the database.

1. Instantiate a new hashtable for the environment properties to be passed to the

server.

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
5-20 Enterprise JavaBeans Developer’s Guide and Reference

Session IIOP Service
2. Create a new JNDI Context.

Context ic = new InitialContext(env);

3. Use the JNDI lookup method on the initial context, passing in the service URL,

to establish a service context. This example uses a service URL with the service

prefix of hostname, listener port, and SID.

ServiceCtx service =
 (ServiceCtx) ic.lookup("sess_iiop://localhost:2481:ORCL");

4. Create a session by invoking the createSubcontext method on the service

context object. Provide the name for the session as a parameter to the

createSubcontext method. A new session is created within the database.

SessionCtx session = (SessionCtx) service.createSubcontext(":session1");

5. Authenticate the client program to the database by invoking the login method

on the session context object.

session.login("scott", "tiger", null); // role is null

6. Activate the object, identified by its bound JNDI name, in the named session.

The activation of an EJB returns the home interface for the bean. Basically, steps

1-6 performs the same functionality as performing a JNDI lookup() for the

home interface. It simply allows you to specify the specific named session to

activate the object in.

Note: Only the URL_PKG_PREFIXES Context variable is filled

in—the other information will be provided in the

login.authenticate() method parameters.

Note: Provide only the service URL of hostname, listener port,

and database SID. If you provide the JNDI name of the desired

object, a default session will be created for you.

Note: You must name a new session when you create it. The

session name must start with a colon (:), and cannot contain a slash

(/), but is not otherwise restricted.
JNDI Connections and Session IIOP Service 5-21

Session IIOP Service
// Activate one Hello object in the session
HelloHome hello_home = (HelloHome)session.activate (objectName);

7. Retrieve the Remote interface and invoke a method on the Hello Bean.

 Hello hello = hello_home.create ();
 System.out.println (hello.helloWorld ());

Example 5–1 Activating Objects in Named Sessions

The following example creates two named sessions of the name :session1 and

:session2 . Each one retrieves the Hello object separately. The client invokes both

Hello objects in each named session.

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

// Get a SessionCtx that represents a database instance
ServiceCtx service = (ServiceCtx) ic.lookup ("sess_iiop://localhost:2481:ORCL");

// Create and authenticate a first session in the instance.
SessionCtx session1 = (SessionCtx) service.createSubcontext (":session1");

// Authenticate
session1.login("scott", "tiger", null);

// Create and authenticate a second session in the instance.
SessionCtx session2 = (SessionCtx) service.createSubcontext (":session2");

// Authenticate using a login object (not required, just shown for example).
LoginServer login_server2 = (LoginServer)session2.activate ("/etc/login");
Login login2 = new Login (login_server2);
login2.authenticate ("scott", "tiger", null);

// Activate one Hello object in each session
HelloHome hello_home1 = (HelloHome)session1.activate (objectName);
HelloHome hello_home2 = (HelloHome)session2.activate (objectName);

//create the bean and retrieve the remote interface
Hello hello1 = hello_home1.create ();
Hello hello2 = hello_home2.create ();

// Verify that the objects are indeed different
System.out.println (hello1.helloWorld ());
System.out.println (hello2.helloWorld ());
5-22 Enterprise JavaBeans Developer’s Guide and Reference

Session IIOP Service
Two Clients Accessing the Same Session When the client invokes the JNDI lookup

method, JServer creates a session. If you want a second client to access the

instantiated object in this session, you must do the following:

1. The first client saves both the object instance handle and a Login object

reference.

2. The second client retrieves the handle and Login object reference and uses

them to access the object instance.

Example 5–2 Two Clients Accessing a Single Instance

1. The first client authenticates itself to the database by providing a username and

password through the authenticate method on a Login object.

2. The session is created through the lookup method given the URL.

3. The bean is instantiated with the create method of the home interface.

4. Both the LoginServer object and the server object instance handle are saved

to a file for the second client to retrieve.

// Login to the 8i server
LoginServer lserver = (LoginServer)ic.lookup (serviceURL + "/etc/login");
new Login (lserver).authenticate (username, password, null);

// Activate a Hello in the 8i server
// This creates a first session in the server
HelloHome hello_home = (HelloHome)ic.lookup (serviceURL + objectName);
Hello hello = hello_home.create ();
hello.setMessage ("As created by Client1");
System.out.println ("Client1: " + hello.helloWorld ());

// save Login object into a file, loginFile, for Client2 to read
com.visigenic.vbroker.orb.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();
String log = orb.object_to_string (lserver);
OutputStream os = new FileOutputStream (loginFile);
os.write (log.getBytes ());
os.close ();

// save object instance handle into a file, helloFile,
// for Client2 to read
Handle obj_hndl = testBean.getHandle ();
OutputStream os = new FileOutputStream (helloFile);
os.write (obj_hndl.getBytes ());
os.close ();
JNDI Connections and Session IIOP Service 5-23

Session IIOP Service
The second client would access the Hello object instance in the active session by

doing the following:

1. Retrieve the object handle and the Login object. This example uses

implementation-defined methods of readHandle and readLogin to retrieve

these objects from storage.

2. Retrieve the EJB reference through the getEJBObject method.

3. Authenticate to the database session with the same Login object as the first

client through the authenticate method. You can recreate the Login object

from the LoginServer object through the Login constructor.

FileInputStream finstream = new FileInputStream (hellofile);
ObjectInputStream istream = new ObjectInputStream (finstream);
javax.ejb.Handle handle = (javax.ejb.Handle)istream.readObject ();
Hello hello = (Hello)helloHandle.getEJBObject ();
finstream.close ();

// Authenticate with the login Object
LoginServer lserver = (LoginServer) readLogin(loginFile);

//Set the VisiBroker bind options to specify that the
//login is to not try recursively, which means that if it
//fails on the first try, return with the error immediately.
//See VisiBroker manuals for more information.
lserver._bind_options (new BindOptions (false, false));

Login login = new Login (lserver);
login.authenticate (username, password, null);

In-Session Activation If the server object wants to look up and activate a new

published object in the same session in which it is running, the server object can

execute the following:

Context ic = new InitialContext();
SomeObject myObj = (SomeObject) ic.lookup("/test/Hello");

Notice that there are no environment settings for authentication information in the

environment or a session URL in the lookup. The authentication already succeeded

in order to log into the session. Plus, the object exists on the local machine. So, any

other object activation within the session can proceed without specifying

authentication information or a target sess_iiop URL address.
5-24 Enterprise JavaBeans Developer’s Guide and Reference

Session IIOP Service
In-Session Activation in Pre-8.1.7 Releases In releases previous to Release 8.1.7,

in-session activation was performed with the thisServer/:thisSession
notation in place of the hostname:port:SID in the URL. This notation is still

valid, but only for IIOP clients.

For example, to look up and activate an object in the same session, do the following:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext(env);
SomeObject myObj =
 (SomeObject) ic.lookup("sess_iiop://thisServer/:thisSession/test/Hello");

In this case, myObj is activated in the same session in which the invoking object is

running. Note that there is no need to supply login authentication information, as

the client (a server object in this case) is already authenticated to Oracle8i.

Realize that objects are not authenticated, instead, clients must be authenticated to a

session. However, when a separate session is to be started, then some form of

authentication must be done—either login or SSL credential authentication.

Lookup of Objects Off of JNDI Context In the Sun Microsystems JNDI, if you bind a

name of "/test/myObject ", you can retrieve an object from a Context when

executing the following:

Context ctx = ic.lookup("/test");
MyObject myobj = ctx.lookup("myObject");

The returned object is activated and ready for you to perform method invocations

off of it.

In Oracle8i, trying to retrieve an object from a Context results in an inactive object

being returned. Instead, you must do the following:

Note: In-session activation as demonstrated in this section is valid

for both IIOP and non-IIOP clients.

Note: You can only use the thisServer notation on the server

side, that is, from server objects. You cannot use it in a client

program.
JNDI Connections and Session IIOP Service 5-25

Session IIOP Service
1. Retrieve a SessionCtx , instead of a Context . You can retrieve the

SessionCtx from a ServiceCtx , in one of the two following ways:

■ Retrieve the ServiceCtx first and the SessionCtx from the

ServiceCtx , as follows:

ServiceCtx service =
 (ServiceCtx) ic.lookup("sess_iiop://localhost:2481:ORCL");
//Retrieve the ServiceCtx subcontext
SessionCtx sess = (SessionCtx) service.lookup("/test");

■ Retrieve the ServiceCtx and SessionCtx in the same lookup, as

follows:

SessionCtx sess =
 (SessionCtx) ic.lookup("sess_iiop://localhost:2481:ORCL/test");

2. Execute the Oracle-specific SessionCtx.activate method for each object in

the session that you want to retrieve. This method activates the object in the

session and returns the object reference. You cannot just perform a lookup of

the object, as it will return an inactive object. Instead, execute the activate
method, as follows:

MyObjectHome myObj_home = (MyObjectHome) sess.activate("myObject");

3. Finally, create the bean instance and invoke the bean’s methods.

//create the bean and retrieve the remote interface
MyObject myObj = myObj_home.create ();

// Verify that the objects are indeed different
System.out.println (myObj.printMe ());

The JServer JNDI implementation provides two implementations of the Context
object:

■ ServiceCtx —identifies the database instance through a sess_iiop URL

■ SessionCtx —represents database session within the database

In performing a lookup, you must lookup both the ServiceCtx for identifying the

database and the SessionCtx for retrieving the actual JNDI bound object.

Normally, you supply the URLs for both objects within the JNDI URL given to the

lookup method. However, you can also retrieve each individually as demonstrated

above.
5-26 Enterprise JavaBeans Developer’s Guide and Reference

Session IIOP Service
Setting Session Timeout
A session—with its state—normally exits when the last connection terminates.

However, there are situations where you may want a session and its state to idle for

a specified amount of time after the last connection terminates, such as the

following:

■ A middle-tier layer does not want to keep connections open to the session

because connections are expensive; but, the middle-tier may want to keep the

session open in case of another incoming client request.

■ If you experience a network problem that abnormally terminates the

connection, the session will stay around for the specified amount of time to

allow the connection to be re-established.

■ If your application passes a handle to an existing object within the session to

another client before its connection terminates, the second client has time to

access the session.

The timeout clock starts when the last connection to the session terminates. If

another connection to the session starts within the timed window, the timeout clock

is reset. If not, the session exits.

You can set the session idle timeout either from the client or from within a server

object:

■ Set the Session Timeout from the Client

■ Set the Session Timeout from a Server Object

Set the Session Timeout from the Client
You can set the idle timeout on the client through the pre-published utility

object—oracle.aurora.AuroraServices.Timeout . This object is

pre-published under "/etc/timeout ". Use the setTimeout method from this

object.

1. Retrieve the Timeout object through a JNDI lookup of "/etc/timeout "

2. Set the timeout with the setTimeout method giving the number of seconds

for session idle.

Timeout timeout = (Timeout)ic.lookup(serviceURL + "/etc/timeout");
System.out.println("Setting a timeout of 20 seconds ");
timeout.setTimeout(20);
JNDI Connections and Session IIOP Service 5-27

Retrieving JServer Version Number
Set the Session Timeout from a Server Object
A server object can control the session timeout by using the

oracle.aurora.net.Presentation object, which contains the

sessionTimeout() method. This method takes one parameter; the session

timeout value in seconds. For example:

int timeoutValue = 30;
...
// set the timeout to 30 seconds
oracle.aurora.net.Presentation.sessionTimeout(timeoutValue);
...
// set the timeout to a very long time
oracle.aurora.net.Presentation.sessionTimout(Integer.MAX_INT);

Retrieving JServer Version Number
You can retrieve the version of JServer that is installed in the database through the

pre-published oracle.aurora.AuroraServices.Version object, which is

published as "/etc/version " in the JNDI namespace. The Version object

contains the getVersion method, which returns a string that contains the version,

such as "8.1.7". You can retrieve the Version object by providing "/etc/version "

within the JNDI lookup. The following example retrieves the version number:

Version version = (Version)ic.lookup(serviceURL + "/etc/version");
System.out.println("The server version is : " + version.getVersion());

Activating In-Session EJB Objects From Non-IIOP Presentations
Non-IIOP server requests, such as HTTP or DCOM, can activate an EJB object

within the same session.

Note: When you use the sessionTimeout() method, you must

add $(ORACLE_HOME)/javavm/lib/aurora.zip to your

CLASSPATH.

■ HTTP An HTTP client interacts with the JServer webserver and executes a

JSP or servlet, which can activate the EJB object within the same

session that it is running in.

■ DCOM A DCOM client uses a DCOM bridge to access JServer. While within

the JServer session, the DCOM bridge session can activate the EJB

object within the same session that it is running in.
5-28 Enterprise JavaBeans Developer’s Guide and Reference

Invoking EJB Objects From Applets
If the non-IIOP server object wants to look up and activate a new published object

in the same session in which it is running, the server object can execute the following:

Context ic = new InitialContext();
SomeObject myObj = (SomeObject) ic.lookup("/test/Hello");

Notice that there are no environment settings for authentication information in the

environment or a URL specified in the lookup. The authentication already

succeeded in order to log into the session. Plus, the object exists on the local

machine. So, any other object activation within the session can proceed without

specifying authentication information or a target URL address.

Invoking EJB Objects From Applets
You invoke a server object from an applet in the same manner as from a client. The

only differences are the following:

■ You must conform to the applet standards.

■ You must conform to the Java plug-in standards. The Java plug-ins that are

supported are JDK 1.1, Java 2, and Oracle’s JInitiator.

■ You set the following properties within the initial context environment before

the object lookup: ORBdisableLocator , ORBClass , and

ORBSingletonClass.

Using Signed JAR Files to Conform to Sandbox Security
The security sandbox constricts your applet from accessing anything on the local

disk or from connecting to a remote host other than the host that the applet was

downloaded from. If you create a signed JAR file as a trusted party, you can bypass

the sandbox security. See http://java.sun.com for more information on applet

sandbox security and signed JAR files.

Performing Object Lookup in Applets
You perform the JNDI lookup within the applet the same as within any Oracle Java

client, except that you set the following property within the initial context:

env.put(ServiceCtx.APPLET_CLASS, this);

Note: Once you retrieve the IIOP object reference through this

method, you cannot pass this object to a remote client or server.
JNDI Connections and Session IIOP Service 5-29

Invoking EJB Objects From Applets
By default, you do not need to install any JAR files on the client to run the applet.

However, if you want to place the Oracle JAR files on the client machine, set the

ClassLoader property in the InitialContext environment, as follows:

env.put(’ClassLoader’, this.getClass().getClassLoader());

The following shows the init method within an applet that invokes the Bank

example. The applet sets up the initial context—including setting the

APPLET_CLASS property—and performs the JNDI lookup giving the URL.

public void init() {
 // This GUI uses a 2 by 2 grid of widgets.
 setLayout(new GridLayout(2, 2, 5, 5));
 // Add the four widgets.
 add(new Label("Account Name"));
 add(_nameField = new TextField());
 add(_checkBalance = new Button("Check Balance"));
 add(_balanceField = new TextField());
 // make the balance text field non-editable.
 _balanceField.setEditable(false);
 try {
 // Initialize the ORB (using the Applet).
 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, "scott");
 env.put(Context.SECURITY_CREDENTIALS, "tiger");
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 env.put(ServiceCtx.APPLET_CLASS, this);

 Context ic = new InitialContext(env);
 _manager = (AccountManager)ic.lookup

("sess_iiop://hostfunk:2222/test/myBank");
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 throw new RuntimeException();
 }
 }

Within the action method, the applet invokes methods off of the retrieved object.

In this example, the open method of the retrieved AccountManager object is

invoked.

 public boolean action(Event ev, Object arg) {
5-30 Enterprise JavaBeans Developer’s Guide and Reference

Invoking EJB Objects From Applets
 if(ev.target == _checkBalance) {
 // Request the account manager to open a named account.
 // Get the account name from the name text widget.
 Bank.Account account = _manager.open(_nameField.getText());
 // Set the balance text widget to the account’s balance.
 _balanceField.setText(Float.toString(account.balance()));
 return true;
 }
 return false;
 }

Modifying HTML for Applets that Access EJB Objects
Oracle8i supports only the following Java plug-ins for the HTML page that loads in

the applet: JDK 1.1, Java 2, and Oracle JInitiator. Each plug-in contains different

syntax for the applet information. However, each HTML page may contain

definitions for the following two properties:

■ ORBdisableLocator set to TRUE—Required for all applets.

■ ORBClass and ORBSingletonClass definitions—Required for the applets

that use the Java 2 or JInitiator plug-in.

The examples in the following sections show how to create the correct HTML

definition for each plug-in type. Each HTML definition defines the applet bank

example.

■ Example 5–3, "HTML Definition for JDK 1.1 Plug-in"

■ Example 5–4, "HTML Definition for Java 2 Plug-in"

■ Example 5–5, "HTML Definition for JInitiator Plug-in"

Example 5–3 HTML Definition for JDK 1.1 Plug-in

<pre>
<html>

Note: Because of the sandbox security rules, you cannot set or

read any system properties. Therefore, any values that you want to

pass on to the ORB runtime, you may set within the applet

parameters. This is the method used to set the

ORBdisableLocator , ORBClass and ORBSingletonClass
properties.
JNDI Connections and Session IIOP Service 5-31

Invoking EJB Objects From Applets
<title>Applet talking to 8i</title>
<h1>applet talking to 8i using java plug in 1.1 </h1>
<hr>
The bank example
Specify the plugin in codebase, the class within the CODE parameter, the JAR
files in the ARCHIVE parameter, the plugin version in the type parameter, and
set ORBdisableLocator to true.
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

WIDTH = 500 HEIGHT = 50
codebase="http://java.sun.com/products/plugin/1.1/

jinstall-11-win32.cab#Version=1,1,0,0">
<PARAM NAME = CODE VALUE = OracleClientApplet.class >
<PARAM NAME = ARCHIVE VALUE = "oracleClient.jar,

aurora_client.jar,vbjorb.jar,vbjapp.jar" >
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1">
<PARAM NAME="ORBdisableLocator" VALUE="true">

<COMMENT>
Set the plugin version in the type, set ORBdisableLocator to true, the applet
class within the java_CODE tag, the JAR files in the java_ARCHIVE tag, and the
plug-in source site within the pluginspage tag.
<EMBED type="application/x-java-applet;version=1.1"

ORBdisableLocator="true"
java_CODE = OracleClientApplet.class
java_ARCHIVE = "oracleClient.jar,
aurora_client.jar,vbjorb.jar,vbjapp.jar"
WIDTH = 500 HEIGHT = 50

pluginspage="http://java.sun.com/products/plugin/1.1/plugin-install.html">
<NOEMBED></COMMENT>
</NOEMBED></EMBED>
</OBJECT>

</center>
<hr>
</pre>

Example 5–4 HTML Definition for Java 2 Plug-in

<pre>
<html>
<title>applet talking to 8i</title>
<h1>applet talking to 8i using Java plug in 1.2 </h1>
<hr>
The bank example
Specify the plugin in codebase, the class within the CODE parameter, the JAR
files in the ARCHIVE parameter, the plugin version in the type parameter, and
5-32 Enterprise JavaBeans Developer’s Guide and Reference

Invoking EJB Objects From Applets
set ORBdisableLocator to true.
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

WIDTH = 500 HEIGHT = 50
codebase="http://java.sun.com/products/plugin/1.2/jinstall-11-win32.cab#

Version=1,1,0,0">
<PARAM NAME = CODE VALUE = OracleClientApplet.class >
<PARAM NAME = ARCHIVE VALUE = "oracleClient.jar,
aurora_client.jar,vbjorb.jar,vbjapp.jar" >
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1.2">
<PARAM NAME="ORBdisableLocator" VALUE="true">
<PARAM NAME="org.omg.CORBA.ORBClass" VALUE="com.visigenic.vbroker.orb.ORB">
<PARAM NAME="org.omg.CORBA.ORBSingletonClass"

VALUE="com.visigenic.vbroker.orb.ORB">
<COMMENT>
Set the plugin version in the type, set ORBdisableLocator to true, the ORBClass
and ORBSingletonClass to the correct ORB class, the applet
class within the java_CODE tag, the JAR files in the java_ARCHIVE tag, and the
plug-in source site within the pluginspage tag.
<EMBED type="application/x-java-applet;version=1.1.2"

ORBdisableLocator="true"
org.omg.CORBA.ORBClass="com.visigenic.vbroker.orb.ORB"
org.omg.CORBA.ORBSingletonClass="com.visigenic.vbroker.orb.ORB"
java_CODE = OracleClientApplet.class
java_ARCHIVE = "oracleClient.jar,

aurora_client.jar,vbjorb.jar,vbjapp.jar"
WIDTH = 500 HEIGHT = 50

pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">
<NOEMBED></COMMENT>
</NOEMBED></EMBED>
</OBJECT>

</center>
<hr>
</pre>

Example 5–5 HTML Definition for JInitiator Plug-in

<h1> applet talking to 8i using JInitiator 1.1.7.18</h1>
 <COMMENT>
 Set the plugin version in the type, set ORBdisableLocator to true, the
 ORBClass and ORBSingletonClass to the correct ORB class, the applet
 class within the java_CODE tag, the source of the applet in the java_CODEBASE
 and the JAR files in the java_ARCHIVE tag.
 <EMBED type="application/x-jinit-applet;version=1.1.7.18"
 java_CODE="OracleClientApplet"
JNDI Connections and Session IIOP Service 5-33

Invoking EJB Objects From Applets
 java_CODEBASE="http://hostfunk:8080/applets/bank"
 java_ARCHIVE="oracleClient.jar,aurora_client.jar,vbjorb.jar,vbjapp.jar"
 WIDTH=400
 HEIGHT=100
 ORBdisableLocator="true"
 org.omg.CORBA.ORBClass="com.visigenic.vbroker.orb.ORB"
 org.omg.CORBA.ORBSingletonClass="com.visigenic.vbroker.orb.ORB"
 serverHost="orasundb"
 serverPort=8080
 <NOEMBED>
 </COMMENT>
 </NOEMBED>
 </EMBED>
5-34 Enterprise JavaBeans Developer’s Guide and Reference

IIOP Se
6

IIOP Security

Security involves data integrity, authentication, and authorization.

■ For data integrity, Oracle8i enables your application to use IIOP over a secure

socket layer (SSL).

■ For authentication, your application can choose between providing a

username/password combination or a certificate.

■ For authorization, you can choose the level of trust points that any incoming

clients will be required to give.

The following sections explain these subjects in detail:

■ Overview

■ Data Integrity

■ Authentication

■ Client-side Authentication

■ Server-Side Authentication

■ Authorization
curity 6-1

Overview
Overview
As discussed in the Oracle8i Java Developer’s Guide, there are several security issues

you must think about for your application. The Oracle8i Java Developer’s Guide
divides security into network connection, database contents, and JVM security

issues. All these issues are pertain to IIOP. However, IIOP has specific

implementation issues for both the networking and the JVM security, as listed

below:

■ JVM security includes both utilizing Java2 permissions and granting execution

rights. For IIOP, you can grant execution privileges in one of two ways:

* CORBA—The owner grants execution rights to CORBA objects with an

option on the loadjava tool. See the loadjava discussion in the

Oracle8i Java Developer’s Guide for information on granting execution

rights when loading the CORBA classes.

* EJB—The owner grants execution rights to EJB objects and, potentially,

methods within the deployment descriptor. See the section on "Access

Control" in the Oracle8i Enterprise JavaBeans Developer’s Guide for more

information on defining execution rights within your deployment

descriptor.

■ Network connection security includes the following issues:

* Data Integrity—To prevent a sniffer from reading the transmission

directly off the wire, all transmissions are encoded. Oracle supports

Secure Socket Layer (SSL) for encryption.

* Authentication—To prevent an invalid user from impersonating a valid

user, the client or server provides authentication information. This

information can take the form of a username/password combination or

certificates.

* Authorization—To prove that the user is allowed access to the object,

two types of authorization are performed:

- Session authorization—The session is authorized to the user. In this

case, the client is authorized to access the server through validating

either the username or certificate provided.

- User authorization—The client or server can perform authorization on

a provided certificate. This type of authorization can be performed only

when the client or server authenticates itself by providing a certificate.
6-2 Enterprise JavaBeans Developer’s Guide and Reference

Data Integrity
This section describes fully the network connection security issues that IIOP

applications must consider.

Data Integrity
Do you want your transport line to be encrypted? Do you want data integrity and

confidentiality? If you believe that the physical connection can be tampered with,

you can consider encrypting all transmissions by using the secure socket layer (SSL)

encryption technology. However, because adding encryption to your transmission

affects your connection performance, if you do not have any transport security

issues, you should transmit unencrypted.

Figure 6–1 Data Integrity Decision Tree

Using the Secure Socket Layer
JServer’s CORBA and EJB implementations rely on the Secure Socket Layer (SSL)

for data integrity and authentication. SSL is a secure networking protocol, originally

defined by Netscape Communications, Inc. Oracle8i JServer supports SSL over the

IIOP protocol used for the ORB.

When a connection is requested between a client and the server, the SSL layer

within both parties negotiate during the connection handshake to verify if the

connection is allowed. The connection is verified at several levels:

encrypt?

Is my physical
transport safe?

Yes

No

Use SSL for
data integrity

Do not use SSL;
transmit in the
clear
IIOP Security 6-3

Data Integrity
1. The SSL version on both the client and the server must agree for the transport to

be guaranteed for data integrity.

2. If server-side authentication with certificates is requested, the certificates

provided by the server are verified by the client at the SSL layer. This means

that the server is guaranteed to be itself. That is, it is not a third party

pretending to be the server.

3. If client-side authentication with certificates is requested, the certificates

provided by the client are verified at the SSL layer. The server receives the

client’s certificates for authentication or authorization of the client.

The SSL layer performs authentication between the peers. After the handshake, you

can be assured that the peers are authenticated to be who they say they are. You can

perform additional tests on their certificate chain to authorize that this user can

access your application. See "Authorization" on page 6-26 on how to go beyond

authentication.

SSL Version Negotiation
SSL makes sure that both the client and server side agree on an SSL protocol version

number. The values that you can specify are as follows:

■ Undetermined: SSL_UNDETERMINED. This is the default setting.

■ 3.0 with 2.0 Hello: This setting is not supported.

■ 3.0: SSL_30.

Note: Normally, client-side authentication means only that the

server verifies that the client is not an impersonator and is trusted.

However, when you specify SSL_CLIENT_AUTH in JServer, you

are requesting both server-side and client-side authentication.

Note: If you decide to use SSL, your client must import the

following JAR files:

■ If your client uses JDK 1.1, import jssl-1_1.jar and

javax-ssl-1_1.jar.

■ If your client uses Java 2, import jssl-1_2.jar and

javax-ssl-1_2.jar .
6-4 Enterprise JavaBeans Developer’s Guide and Reference

Authentication
■ 2.0: This setting is not supported.

On the database, the default is "Undetermined". The database does not support 2.0

or 3.0 with 2.0 Hello. Thus, you can use only the Undetermined or 3.0 setting for the

client.

■ The server’s version is set within the database SQLNET.ORA file, using the

SSL_VERSION parameter. For example, SSL_VERSION = 3.0.

■ For the client, you set the SSL client version number in the client’s JNDI

environment, as follows:

environment.put("CLIENT_SSL_VERSION", ServiceCtx.SSL_30);

Table 6–1 shows which handshakes resolve to depending on SSL version settings on

both the client and the server. The star sign "✸" indicates cases where the handshake

fails.

Table 6–1 SSL Version Numbers

Authentication
Authentication is the process where one party supplies to a requesting party

information that identifies itself. This information guarantees that the originator is

not an imposter. In the client/server distributed environment, authentication can be

required from the client or the server:

■ Server-side authentication—The server sends identifying information to

authenticate itself. The client uses this information to verify that the server is

itself and not an imposter. If you request SSL, the server will always send

certificate-based authentication information.

 Server Setting

 Client Setting Undetermined
3.0 W/2.0 Hello

(not supported) 3.0
 2.0 (not
 supported)

 Undetermined 3.0 ✸ ✸ ✸

 3.0 W/2.0 Hello
 (not supported)

 ✸ ✸ ✸ ✸

 3.0 3.0 ✸ 3.0 ✸

 2.0 (not supported) ✸ ✸ ✸ ✸
IIOP Security 6-5

Client-side Authentication
■ Client-side authentication—For the same reasons, the client sends identifying

information to the server, which includes either a username/password

combination or certificates. Since the client is logging on to a database, the client

must always authenticate itself to the database.

■ Callout authentication—The server initiates a call to another object. This causes

the server to act as a client; as such, the server cannot use the database

authentication information, but must provide information and authenticate

itself as an independent party.

■ Callback authentication—The server is given either a CORBA IOR or an EJB

handle for calling back to an object that exists on the client. In this scenario, the

server is acting as a client; as such, the server cannot use the database

authentication information, but must provide information and authenticate

itself as an independent party.

Client-side Authentication
The Oracle data server is a secure server; a client application cannot access data

stored in the database without first being authenticated by the database server.

Oracle8i CORBA server objects and Enterprise JavaBeans execute in the database

server. For a client to activate such an object and invoke methods on it, the client

must authenticate itself to the server. The client authenticates itself when a CORBA

or EJB object starts a new session. The following are examples of how each IIOP

client must authenticate itself to the database:

■ When a client initially starts a new session, it must authenticate itself to the

database.

■ When a client passes an object reference (a CORBA IOR or an EJB bean handle)

to a second client, the second client connects to the session specified in the

object reference. The second client authenticates itself to the server.

The client authenticates itself by providing one of the following types:

Authentication type Definition

Certificates You can provide the user certificate, the Certificate Authority
certificate (or a chain that contains both, including other identifying
certificates), and a private key.

Username and
password
combination

You can provide the username and password through either
credentials or the login protocol. In addition, you can pass a database
role to the server, along with the username and password.
6-6 Enterprise JavaBeans Developer’s Guide and Reference

Client-side Authentication
The type of client-side authentication can be determined by the server’s

configuration. If, within the SQLNET.ORA file, the

SSL_CLIENT_AUTHENTICATION parameter is TRUE, the client must provide

certificate-based authentication. If SSL_CLIENT_AUTHENTICATION is FALSE, the

client authenticates itself with a username/password combination. If

SSL_CLIENT_AUTHENTICATION is TRUE and the client provides a

username/password, the connection handshake will fail.

The following table gives a brief overview of the options that the client has for

authentication.

■ The columns represent the options available if you have chosen to use SSL for

data integrity.

■ The rows demonstrate the three authentication vehicles: login protocol,

credentials, and certificates.

■ The table entries detail the different methods you must employ when

implementing the client-side authentication type.

Authentication vehicle
NON-SSL transport SSL transport

Providing username and
password using the login protocol

■ Implicit method: Set JNDI
property to NON_SSL_LOGIN;
provide username and password
in JNDI properties.

■ Explicit method: Create a Login
object with username and
password.

■ Implicit method: Set JNDI
property to SSL_LOGIN;
provide username and
password in JNDI properties.

■ Explicit method: Create a
Login object with username
and password.

Providing username and
password using credentials

Not supported because the password
would transmit in the clear.

Set JNDI property to
SSL_CREDENTIAL; username
and password are implicitly sent
to the server in the handshake.

Providing certificates Not supported because certificates
require an SSL transport.

Set JNDI property to
SSL_CLIENT_AUTH; provide
client certificate, CA certificate,
and private key in JNDI
properties.

Pure CORBA objects use
AuroraCertificateManager
class to specify certificates, CA
certificate, and private key.
IIOP Security 6-7

Client-side Authentication
As the table demonstrates, most of the authentication options include setting an

appropriate value in JNDI properties.

Using JNDI for Authentication
To set up client-side authentication using JNDI, you set the

javax.naming.Context.SECURITY_AUTHENTICATION attribute to one of the

following values:

■ ServiceCtx.NON_SSL_LOGIN —A plain IIOP connection is used. Because SSL

is not used, all data flowing over the line is not encrypted. Thus, to protect the

password, the client uses the login protocol to authenticate itself. In addition,

the server does not provide SSL certificates to the client to identify itself.

■ ServiceCtx.SSL_LOGIN —An SSL-enabled IIOP connection is used. All data

flowing over the transport is encrypted. If you do not want to provide a

certificate for the client authentication, use the login protocol to provide the

username and password.

Because this is an SSL connection, the server sends its certificate identity to the

client. The client is responsible for verifying the server’s certificate, if interested,

for server authentication. Optionally, the client can set up trust points for the

server’s certificate to be verified against.

■ ServiceCtx.SSL_CREDENTIAL —An SSL-enabled IIOP connection is used.

All data flowing over the transport is encrypted. The client provides the

username and password without using the login protocol for client

authentication to the server. The username and password are automatically

passed to the server in a security context, on the first message.

The server provides its certificate identity to the client. The client is responsible

for verifying the server’s certificate, if interested, for server authentication.

■ ServiceCtx.SSL_CLIENT_AUTH —An SSL-enabled IIOP connection is used.

All data flowing over the transport is encrypted. The client provides

appropriate certificates for client-side authentication to the server. In addition,

the server provides its certificate identity to the client. If interested, the client is

responsible for authorizing the server’s certificate.

Note: The client’s password is not encrypted, as it is with SSL. It

might be slightly more efficient than SSL_LOGIN, where

encrypting a password over an SSL connection is redundant.
6-8 Enterprise JavaBeans Developer’s Guide and Reference

Client-side Authentication
■ Nothing is specified. The client must activate the login protocol explicitly before

activating and invoking methods on a server-side object. Use this method when

a client must connect to an existing session and invoke methods on an existing

object. See the demo/examples/corba/session/sharedsession example

for more information. The username and password in the initial context

environment are automatically passed as parameters to the login object’s

authenticate() method.

Within each of these options, you choose to do one or more of the following:

For information on how to implement each of these methods for client or server

authentication, see the following sections:

■ Providing Username and Password for Client-Side Authentication

■ Using Certificates for Client Authentication

■ Server-Side Authentication

Providing Username and Password for Client-Side Authentication
The client authenticates itself to the database server either through a

username/password or by supplying appropriate certificates. The

username/password can be supplied either through Oracle’s login protocol or

credentials over the SSL transport connection.

■ Provide a username and password by setting JNDI properties, which implicitly

sets these values in a login protocol. Set SECURITY_AUTHENTICATION to
ServiceCtx.SSL_LOGIN or ServiceCtx.NON_SSL_LOGIN .

■ Provide a username and password through credentials. The username and

password are provided implicitly and are shipped to the server over the

encrypted SSL transport. Set SECURITY_AUTHENTICATION to
serviceCtx.SSL_CREDENTIAL .

■ Provide a username and password in an explicitly activated login protocol.

 Client authentication ■ authenticate itself to the server using login protocol

■ authenticate itself to the server using straight username and
password

■ authenticate itself to the server using SSL certificates

 Server authentication ■ authenticate itself to the client using SSL certificates
IIOP Security 6-9

Client-side Authentication
Username Sent by Setting JNDI Properties for the Login Protocol
A client can use the login protocol to authenticate itself to the Oracle8i data server.

You can use the login protocol either with or without SSL encryption, because a

secure handshaking encryption protocol is built in to the login protocol.

If your application requires an SSL connection for client-server data security, specify

the SSL_LOGIN service context value for the SECURITY_AUTHENTICATION

property that is passed when the JNDI initial context is obtained. The following

example defines the connection to be SSL-enabled for the login protocol. Notice that

the username and password are set.

Hashtable env = new Hashtable();
env.put(javax.naming.Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(javax.naming.Context.SECURITY_PRINCIPAL, username);
env.put(javax.naming.Context.SECURITY_CREDENTIALS, password);
env.put(javax.naming.Context.SECURITY_AUTHENTICATION, ServiceCtx. SSL_LOGIN);
Context ic = new InitialContext(env);
...
If your application does not use an SSL connection, specify NON_SSL_LOGIN
within the SECURITY_AUTHENTICATION parameter as shown below:

env.put(javax.naming.Context.SECURITY_AUTHENTICATION, ServiceCtx. NON_SSL_LOGIN);

When you specify values for all four JNDI Context

variables—URL_PKG_PREFIXES, SECURITY_PRINCIPAL,

SECURITY_CREDENTIALS, and SECURITY_AUTHENTICATION—the first

invocation of the Context.lookup() method performs a login automatically.

If the client setting up the connection is not using JNDI look up because it already

has an IOR, the user that gave them the IOR for the object should have also passed

in a Login object that exists in the same session as the active object. You must

Note: The Login class serves as an implementation of the client

side of the login handshaking protocol and as a proxy object for

calling the server login object. This component is packaged in the

aurora_client.jar file. All Oracle8i ORB applications must

import this library.

Note: The login handshaking is secured by encryption, but the

remainder of the client-server interaction is not secure.
6-10 Enterprise JavaBeans Developer’s Guide and Reference

Client-side Authentication
provide the username and password in the authenticate method of the Login

object, before invoking the methods on the active object.

Logging In and Out of the JServer Session If the session owner wishes to exit the

session, the owner can use the logout method of the LogoutServer object, which

is pre-published as "/etc/logout ". You use the LogoutServer object to exit the

session. Only the session owner is allowed to logout. Any other owner receives a

NO_PERMISSION exception.

The LogoutServer object is analogous to the LoginServer object, which is

pre-published as "/etc/login ". You can use the LoginServer object to retrieve

the Login object, which is used to authenticate to the server. This is an alternative

method to using the Login object within the JNDI lookup.

The following example shows how a client can authenticate using the

LoginServer object and can exit the session through the LogoutServer object.

import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.AuroraServices.LogoutServer;
...
// To log in using the LoginServer object
LoginServer loginServer = (LoginServer)ic.lookup(serviceURL + "/etc/login");
Login login = new Login(loginServer);
System.out.println("Logging in ..");
login.authenticate(user, password, null);
...
//To logout using the LogoutServer
LogoutServer logout = (LogoutServer)ic.lookup(serviceURL + "/etc/logout");
logout.logout();

Username Sent Implicitly by using Credentials
Using the ServiceCtx.SSL_CREDENTIAL authentication type means that the

username, password, and, potentially, a role are passed to the server on the first

request. Because this information is passed over an SSL connection, the password is

encrypted by the transfer protocol, and there is no need for the handshaking that

the Login protocol uses. This is slightly more efficient and is recommended for SSL

connections.

Username Sent by Explicitly Activating a Login Object
You can explicitly create and populate a Login object for the database login.

Typically, you would do this if you wanted to create and use more than a single
IIOP Security 6-11

Client-side Authentication
session from a client. The following example shows a client creating and logging on

to two different sessions. To do this, you must perform the following steps:

1. Create the initial context.

2. Perform a look up on a URL for the destination database.

3. On this database service context, create two subcontexts—one for each session.

4. Login to each session using a Login object, providing a username and

password.

// Prepare a simplified Initial Context as we are going to do
// everything by hand
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

// Get a SessionCtx that represents a database instance
ServiceCtx service = (ServiceCtx)ic.lookup (serviceURL);

// Create and authenticate a first session in the instance.
SessionCtx session1 = (SessionCtx)service.createSubcontext (":session1");
LoginServer login_server1 = (LoginServer)session1.activate ("etc/login");
Login login1 = new Login (login_server1);
login1.authenticate (user, password, null);

// Create and authenticate a second session in the instance.
SessionCtx session2 = (SessionCtx)service.createSubcontext (":session2");
LoginServer login_server2 = (LoginServer)session2.activate ("etc/login");
Login login2 = new Login (login_server2);
login2.authenticate (user, password, null);

// Activate one Hello object in each session
Hello hello1 = (Hello)session1.activate (objectName);
Hello hello2 = (Hello)session2.activate (objectName);

Note: The username and password for both sessions are identical

because the destination database is the same database. If the client

were to connect to two different databases, the username and

password may need to be different for logging on.
6-12 Enterprise JavaBeans Developer’s Guide and Reference

Client-side Authentication
Using Certificates for Client Authentication
Client authentication through certificates requires the client sending a certificate or

certificate chain to the server; the server verifies that the client is truly who the

client said it was and that it is trusted.

You set up the client for certificate authentication through one of the following

methods:

■ Specifying Certificates in a File

■ Specifying Certificates in Individual JNDI Properties

■ Specifying Certificates using AuroraCertificateManager

Specifying Certificates in a File
You can set up a file that contains the user certificate, the issuer certificate, the entire

certificate chain, an encrypted private key, and the trustpoints. Once created, you

can specify that the client use the file during connection handshake for client

authentication.

1. Create the client certificate file—This file can be created through an export

feature in the Wallet Manager. The Oracle Wallet Manager has an option that

creates this file. You must populate a wallet using the Wallet Manager before

requesting that the file is created.

After you create a valid wallet, bring up the Wallet Manager and perform the

following:

■ From the menu bar pull down, click on Operations > Export Wallet.

■ Within the filename field, enter the name that you want the certificate file

known as.

This creates a base-64 encoded file that contains all certificates, keys, and

trustpoints that you added within your wallet. For information on how to

create the wallet, see the Oracle Advanced Security Administrator’s Guide.

2. Specify the client certificates file for the connection—Within the client code, set

the SECURITY_AUTHENTICATION property to

ServiceCtx.SSL_CLIENT_AUTH . Provide the appropriate certificates and

Note: All certificates, trustpoints, and the private key should be in

base-64 encoded format.
IIOP Security 6-13

Client-side Authentication
trustpoints for the server to authenticate against. Specify the filename and

decrypting key in the JNDI properties, as follows:

The following code is an example of how to set up the JNDI properties to define

the client certificate file:

Hashtable env = new Hashtable();
env.put(javax.naming.Context.URL_PKG_PREFIXES, “oracle.aurora.jndi”);
env.put(javax.naming.Context.SECURITY_PRINCIPAL, <filename>);
env.put(javax.naming.Context.SECURITY_CREDENTIAL, <decrypting_key>);
env.put(javax.naming.Context.SECURITY_AUTHENTICATION,

ServiceCtx. SSL_CLIENT_AUTH);
Context ic = new InitialContext(env);
...
For example, if your decrypting key is welcome12 and the certificate file is

credsFile , the following two lines would specify these values within the

JNDI context:

env.put(Context.SECURITY_CREDENTIALS, "welcome12");
env.put(Context.SECURITY_PRINCIPAL, "credsFile");

Specifying Certificates in Individual JNDI Properties
You can provide each certificate, private key, and trust point programmatically, by

setting each item individually within JNDI properties. Once you populate the JNDI

properties with the user certificate, issuer (Certificate Authority) certificate,

encrypted private key, and trust points, they are used during connection handshake

for authentication. To identify client-side authentication, set the

SECURITY_AUTHENTICATION property to serviceCtx.SSL_CLIENT_AUTH .

You can choose any method for setting up your certificates within the JNDI

properties. All authorization information values must be set up before initializing

the context.

Values Set in JNDI Property

Name of the certificate file SECURITY_PRINCIPAL

Key for decrypting the private key SECURITY_CREDENTIAL

Note: Only a single issuer certificate can be set through JNDI

properties.
6-14 Enterprise JavaBeans Developer’s Guide and Reference

Client-side Authentication
The following example declares the certificates as a static variable. However, this is

just one of many options. Your certificate must be base-64 encoded. For example, in

the following code, the testCert_base64 is a base-64 encoded client certificate

declared as a static variable. The other variables for CA certificate, private key, and

so on, are not shown, but they are defined similarly.

final private static String testCert_base64 =
 "MIICejCCAeOgAwIBAgICAmowDQYJKoZIhvcNAQEEBQAwazELMAkGA1UEBhMCVVMx" +
 "DzANBgNVBAoTBk9yYWNsZTEoMCYGA1UECxMfRW50ZXJwcmlzZSBBcHBsaWNhdGlv" +
 "biBTZXJ2aWNlczEhMB8GA1UEAxMYRUFTUUEgQ2VydGlmaWNhdGUgU2VydmVyMB4X" +
 "DTk5MDgxNzE2MjIxMloXDTAwMDIxMzE2MjIxMlowgYUxCzAJBgNVBAYTAlVTMRsw" +
 "GQYDVQQKExJPcmFjbGUgQ29ycG9yYXRpb24xPDA6BgNVBAsUMyoqIFNlY3VyaXR5" +
 "IFRFU1RJTkcgQU5EIEVWQUxVQVRJT04gT05MWSB2ZXJzaW9uMiAqKjEbMBkGA1UE" +
 "AxQSdGVzdEB1cy5vcmFjbGUuY29tMHwwDQYJKoZIhvcNAQEBBQADawAwaAJhANG1" +
 "Kk2K7uOOtI/UBYrmTe89LVRrG83Eb0/wY3xWGelkBeEUTwW57a26u2M9LZAfmT91" +
 "e8Afksqc4qQW23Sjxyo4ObQK3Kth6y1NJgovBgfMu1YGtDHaSn2VEg8p58g+nwID" +
 "AQABozYwNDARBglghkgBhvhCAQEEBAMCAMAwHwYDVR0jBBgwFoAUDCHwEuJfIFXD" +
 "a7tuYNO8bOw1EYwwDQYJKoZIhvcNAQEEBQADgYEARC5rWKge5trqgZ18onldinCg" +
 "Fof6D/qFT9b6Cex5JK3a2dEekg/P/KqDINyifIZL0DV7z/XCK6PQDLwYcVqSSK/m" +
 "487qjdH+zM5X+1DaJ+ROhqOOX54UpiAhAleRMdLT5KuXV6AtAx6Q2mc8k9bzFzwq" +
 "eR3uI+i5Tn0dKgxhCZU=\n";

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx. SSL_CLIENT_AUTH);
//decrypting key
env.put(Context.SECURITY_CREDENTIALS, "welcome12");

// you may also set the certificates individually, as shown bellow.
//User certificate
env.put(ServiceCtx.SECURITY_USER_CERT, testCert_base64);
//Certificate Authority’s certificate
env.put(ServiceCtx.SECURITY_CA_CERT, caCert_base64);
//Private key

Note: When setting individual certificates as static variables, any

certificates for Oracle8i parties do not have any separators.

However, if you are setting a certificate for a Visigenic ORB (as the

client callback object does in a callback scenario), the certificate

must be delineated by "BEGIN CERTIFICATE" and "END

CERTIFICATE" identifying lines. See the Visigenic documentation

for the format of these strings.
IIOP Security 6-15

Client-side Authentication
env.put(ServiceCtx.SECURITY_ENCRYPTED_PKEY, encryptedPrivateKey_base64);
// setup the trust point
env.put(ServiceCtx.SECURITY_TRUSTED_CERT, trustedCert);

Context ic = new InitialContext(env);

Specifying Certificates using AuroraCertificateManager
CORBA clients that do not use JNDI can use AuroraCertificateManager for

setting the user and issuer certificates, the encrypted private key, and the trust

points.

AuroraCertificateManager maintains certificates for your application. For the

certificates to be passed on the SSL handshake for the connection, you must set the

certificates before an SSL connection is made. Setting up a certificate in this manner

is only required if the following is true:

■ The client sets its certificates through AuroraCertificateManager if

client-side authentication is required, and the client does not want to use JNDI

properties for setting certificates.

■ The server sets its certificates through AuroraCertficateManager if it is

executing a callout or a callback. The typical server-side authentication for a

simple client/server exchange is taken care of by the database wallet. However,

if this server intends to act as a client by executing a callout or callback, it needs

to set certificates identifying itself; it cannot use the database certificate that is

contained in the wallet.

AuroraCertificateManager Class
The methods offered by this object allow you to:

■ Set the SSL protocol version. The default is Undetermined.

■ Set the private key and certificate chain.

■ Require that client applications authenticate themselves by presenting their

certificate chain. This method is used only by servers.

Invoking the ORB.resolve_initial_references method with the parameter

SSLCertificateManager will return an object that can be narrowed to a

AuroraCertificateManager . Example 6–1 shows a code example of the

following methods.
6-16 Enterprise JavaBeans Developer’s Guide and Reference

Client-side Authentication
addTrustedCertificate
This method adds the specified certificate as a trusted certificate. The certificate

must be in DER encoded format. The client adds trustpoints through this method

for server-side authentication.

When your client wants to authenticate a server, the server sends its certificate chain

to the client. You might not want to check every certificate in the chain. For

example, you have a chain composed of the following certificates: Certificate

Authority, enterprise, business unit, a company site, and a user. If you trust the

company site, you would check the user’s certificate, but you might stop checking

the chain when you get to the company site’s certificate, because you accept the

certificates above the company sites in the hierarchical chain.

Syntax

void addTrustedCertificate(byte[] derCert);

requestClientCertificate
This method is invoked by servers that wish to require certificates from client

applications. This method is not intended for use by client applications.

Syntax

void requestClientCertificate(boolean need);

Parameter Description

derCert The DER encoded byte array containing the certificate.

Note: The requestClientCertificate method is not currently

required, because the SQLNET.ORA and LISTENER.ORA

configuration parameter SSL_CLIENT_AUTHENTICATION

performs its function.

Parameter Description

need If true, the client must send a certificate for authentication. If
false, no certificate is requested from the client.
IIOP Security 6-17

Client-side Authentication
setCertificateChain
This method sets the certificate chain for your client application or server object and

can be invoked by clients or by servers. The certificate chain always starts with the

Certificate Authority certificate. Each subsequent certificate is for the issuer of the

preceding certificate. The last certificate in the chain is the certificate for the user or

process.

Syntax

void setCertificateChain(byte[][] derCertChain)

setEncryptedPrivateKey
This method sets the private key for your client application or server object. You

must specify the key in PKCS5 or PKCS8 format.

Syntax

void setEncryptedPrivateKey(byte[] key, String password);

setProtocolVersion
This method sets the SSL protocol version that can be used for the connection. A 2.0

Client trying to establish an SSL connection with a 3.0 Server will fail and the

converse. We recommend using Version_Undetermined, because it lets the peers

establish an SSL connection whether they are using the same protocol version or

not. SSL_Version_Undetermined is the default value.

Syntax

void setProtocolVersion(int protocolVersion);

Parameter Description

derCertChain A byte array containing an array of certificates.

Parameter Description

key The byte array that contains the encrypted private key.

password A string containing a password for decrypting the private key.
6-18 Enterprise JavaBeans Developer’s Guide and Reference

Client-side Authentication
Example 6–1 Setting SSL Security Information Using AuroraCertificateManager

This example does the following:

1. Retrieve the AuroraCertificateManager .

2. Initialize this client’s SSL information:

a. Set the certificate chain through setCertificateChain .

b. Set the trustpoint through addTrustedCertificate.

c. Set the private key through setEncryptedPrivateKey .

// Get the certificate manager
AuroraCertificateManager cm = AuroraCertificateManagerHelper.narrow(

orb.resolve_initial_references("AuroraSSLCertificateManager"));

BASE64Decoder decoder = new BASE64Decoder();
byte[] userCert = decoder.decodeBuffer(testCert_base64);
byte[] caCert = decoder.decodeBuffer(caCert_base64);

// Set my certificate chain, ordered from CA to user.
byte[][] certificates = {
 caCert, userCert
};
cm.setCertificateChain(certificates);
cm.addTrustedCertificate(caCert);

// Set my private key.
byte[] encryptedPrivateKey =
decoder.decodeBuffer(encryptedPrivateKey_base64);

cm.setEncryptedPrivateKey(encryptedPrivateKey, "welcome12");

Parameter Description

protocolVersion The protocol version being specified. The value you supply is defined
in oracle.security.SSL.OracleSSLProtocolVersion . This
class defines the following values:

■ SSL_Version_Undetermined : Version is undetermined. This is
used to connect to SSL 2.0 and SSL 3.0 peers. This is the default
version.

■ SSL_Version_3_0_With_2_0_Hello : Not supported.

■ SSL_Version_3_0 : Used to connect to 3.0 peers only.

■ SSL_Version_2_0 : Not supported.
IIOP Security 6-19

Server-Side Authentication
Server-Side Authentication
The server can require a different type of authentication depending on its role. If

you are utilizing the database as a server in a typical client/server environment,

you use certificates that are set within a wallet for the database for server-side

authentication. However, if you are using the server to callout to another object or

callback to an object on the client, the server is now acting as a client and so requires

its own identifying certificates. That is, in a callout or callback scenario, the server

cannot use the wallet generated for database server-side authentication.

The following sections describe this in more detail:

■ Typical Client/Server

■ Callouts using Security

■ Callbacks using Security

Typical Client/Server
Server-side authentication takes place when the server provides certificates for

authentication to the client. When requested, the server will authenticate itself to

the client, also known as server-side authentication, by providing certificates to the

client. The SSL layer authenticates both peers during the connection handshake.

The client requests server-side authentication by setting any of the SSL_* values in

the JNDI property. See "Using JNDI for Authentication" on page 6-8 for more

information on these JNDI values.

For server-side authentication, you must set up a database wallet with the

appropriate certificates, using the Wallet Manager. See the Oracle Advanced Security
Administrator’s Guide for information on how to create a wallet.

Server activity Authentication method

Typical client/server Use database wallet generated by Oracle Wallet Manager

Callout to another object Set identifying certificates using either JNDI properties or
AuroraCurrentManager class.

Callback to client object Set identifying certificates using AuroraCurrentManager
class.
6-20 Enterprise JavaBeans Developer’s Guide and Reference

Server-Side Authentication
Callouts using Security
A callout is when a Java object loaded within the database invokes a method within

another Java object. If the original call from the client required a certain level of

security—certificate-based or username/password security—the server object is

also required to provide the same level of security information for itself before

invoking the method on the second server object.

Figure 6–2 Server callout requires security

■ Username/password: If the client sent a username/password combination for

authenticating to the database, the server object is also required to send its own

username/password combination to the second object. The server object cannot

forward along the client’s username/password combination, but must supply

its own. You can set the username/password combination in the same manner

as the client. See "Providing Username and Password for Client-Side

Authentication" on page 6-9 for more information.

■ Certificate-based: Similarly, if the client sent certificates for authentication, the

server object must do the same. Additionally, the server must create and send

its own certificates, it cannot forward on the client’s certificates for

authentication. You set up your server object certificates using either the

appropriate JNDI properties or the AuroraCertificateManager as

discussed in "Using Certificates for Client Authentication" on page 6-13.

Callbacks using Security
A callback is when the client passes the server object an object reference to an object

that exists on the client. As shown in Figure 6–3, the server object receives the object

Note: If the client wants to verify the server against trustpoints or

authorize the server, it is up to the client to set up its trustpoints

and parse the server’s certificates for authorization. See

"Authorization" on page 6-26 for more information.

client object1 object2
client
security object1

security
information

information
IIOP Security 6-21

Server-Side Authentication
reference and invokes methods. This effectively calls out of the server and back to

an object located in the client. See "Debugging Techniques" on page 2-28 for more

information on callbacks.

Figure 6–3 Server callout requires security

The type of security you can use for callbacks is certificate-based security over SSL.

When you add SSL security to callbacks, you can have one of two situations:

1. Server-side authentication only

a. The client is not required to authenticate itself with a certificate. However, it

must still authenticate itself to the database using a username/password

combination.

b. The server, since server-side authentication is always required with SSL,

authenticates itself to the client by providing certificates contained in the

database wallet.

c. When the server calls back to the client, it acts as a client; thus, it is not

required to provide certificates for authentication.

client object1
client
certificate

object1
certificate

client
object1

username/password

server wallet

no certificate

certificate for

server-side authentication

a.

b.

c.

d.

obj2
6-22 Enterprise JavaBeans Developer’s Guide and Reference

Server-Side Authentication
d. The called object, although contained in the client, is the server object in the

callback scenario. Thus, since server-side authentication rules hold, the

callback object must provide certificates to authenticate itself.

Example 6–2 Callback code with server-side authentication only

The following code shows the client code that performs (a) and (d) steps above. The

first half of the client code sets up a username and password for authenticating

itself to the database. It retrieves the server object. However, before it invokes the

server’s method, the last half of the code sets up the client callback object by setting

certificates, initializing the BOA, and instantiating the callback object. Finally, the

server method is invoked.

public static void main (String[] args) throws Exception {
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

//set up username/password for authentication to database. Set up
//security to be SSL_LOGIN - login authentication for client and server-side
//authentication.
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx. SSL_LOGIN);
Context ic = new InitialContext (env);

// Get the server object before preparing the client object.
// You have to do it in this order to get the ORB initialized correctly
Server server = (Server)ic.lookup (serviceURL + objectName);

// Create the client object and export it to the ORB in the client
// First, set up the ORB properties for the callback object
java.util.Properties props = new java.util.Properties();
props.put("ORBservices", " oracle.aurora.ssl ");

// Initialize the ORB.
com.visigenic.vbroker.orb.ORB orb = (com.visigenic.vbroker.orb.ORB)

oracle.aurora.jndi.orb_dep.Orb.init(args, props);

// Get the certificate manager
AuroraCertificateManager certificateManager =
 AuroraCertificateManagerHelper.narrow(
IIOP Security 6-23

Server-Side Authentication
 orb.resolve_initial_references(" AuroraSSLCertificateManager "));

// Set up client callback certificate chain , ordered from user to CA.
byte[] testCert = new byte[testCert_base64.length()];
testCert_base64.getBytes(0, testCert_base64.length(), testCert, 0);

byte[] caCert = new byte[caCert_base64.length()];
caCert_base64.getBytes(0, caCert_base64.length(), caCert, 0);

// Set my certificate chain, ordered from user to CA.
byte[][] certificates = {
 testCert, caCert
 };
certificateManager.setCertificateChain(certificates);

// Set client callback object’s private key.
byte[] encryptedPrivateKey = new byte[encryptedPrivateKey_base64.length()];
encryptedPrivateKey_base64.getBytes(0, encryptedPrivateKey_base64.length(),
 encryptedPrivateKey, 0);

certificateManager.setEncryptedPrivateKey(encryptedPrivateKey,"welcome12");

// Initialize the BOA with SSL
org.omg.CORBA.BOA boa = orb.BOA_init("AuroraSSLTSession", null);

//Instantiate the client callback object
ClientImpl client = new ClientImpl ();

//register callback object with BOA
boa.obj_is_ready (client);

// Invoke the server method, passing the client to call us back
System.out.println (server.hello (client));
 }
}

6-24 Enterprise JavaBeans Developer’s Guide and Reference

Server-Side Authentication
2. Client-side and Server-side authentication

a. The client is required to authenticate itself with a certificate.

b. The server, since server-side authentication is always required with SSL,

authenticates itself to the client by providing certificates contained in the

database wallet.

c. When the server calls back to the client, it acts as a client; thus, it is required

to provide its own certificates for authentication.

d. The called object, although contained in the client, is the server object in the

callback scenario. Thus, since server-side authentication rules hold, the

callback object must provide certificates to authenticate itself.

The code for the client shown in Example 6–2 is the same for this scenario, except

that instead of providing a username and password, the client provides certificates.

Since client-side authentication is required and because the server is acting as a

client, the server code sets up identifying certificates for itself before invoking the

callback object. The server must create and send its own certificates, it cannot

forward on the client’s certificates for authentication. You set up your server object

certificates using either the appropriate JNDI properties or the

AuroraCertificateManager as discussed in "Using Certificates for Client

Authentication" on page 6-13.

Example 6–3 Server code in callback with client-side authentication

The following server code does the following:

1. Retrieve the Oracle8i ORB reference by invoking the init method.

2. Retrieve the AuroraCertificateManager

client
object1

client certificate

server wallet

server certificate

certificate for

server-side authentication

a.

b.

c.

d.

obj2
IIOP Security 6-25

Authorization
3. Set certificates and key through AuroraCertificateManager methods.

4. Invoke the client callback method, hello .

public String hello (Client client) {
BASE64Decoder decoder = new BASE64Decoder();
com.visigenic.vbroker.orb.ORB orb = (com.visigenic.vbroker.orb.ORB)

 oracle.aurora.jndi.orb_dep.Orb.init ();

try {
// Get the certificate manager
 AuroraCertificateManager cm = AuroraCertificateManagerHelper.narrow(
 orb.resolve_initial_references(" AuroraSSLCertificateManager "));

 byte[] userCert = decoder.decodeBuffer(testCert_base64);
 byte[] caCert = decoder.decodeBuffer(caCert_base64);

 // Set my certificate chain, ordered from CA to user.
 byte[][] certificates = { caCert, userCert };
 cm. setCertificateChain (certificates);

 // Set my private key.
 byte[] encryptedPrivateKey =

decoder.decodeBuffer(encryptedPrivateKey_base64);

 cm. setEncryptedPrivateKey (encryptedPrivateKey, "welcome12");

 } catch (Exception e) {
 e.printStackTrace();
 throw new org.omg.CORBA.INITIALIZE("Couldn’t initialize SSL context");
 }

 return "I Called back and got: " + client.helloBack ();
}

Authorization
The SSL layer authenticates the peers during the connect handshake. After the

handshake, you can be assured that the peer is authenticated to be who they said

they are. In addition, since the server has specified, within an Oracle wallet, its

trustpoints, the SSL adapter on the server will authorize the client. However, the

client has the option of how much authorization is done against the server.

■ The client can direct the SSL layer to authorize the server by setting up

trustpoints.
6-26 Enterprise JavaBeans Developer’s Guide and Reference

Authorization
■ The client can authorize the server itself by extracting the server’s certificate

chain and parsing through the chain.

Setting up Trust Points
The server automatically has trustpoints established through the installed Oracle

Wallet. The trustpoints in the wallet are used to verify the client’s certificates.

However, if the client wants to verify the server’s certificates against certain

trustpoints, it can set up its these trustpoints, as follows:

■ If server-side authentication is requested, the client does not have any

certificates set. Thus, to verify the server’s certificates, the client can set a single

trustpoint through JNDI, or if it is a pure CORBA application—that does not

use JNDI—can add trustpoints through the

AuroraCertificateManager.addTrustedCertificate method. See

Example 6–4 on how to set a single trustpoint through JNDI.

■ If client-side authentication is requested, the client has set up certificates. Thus,

the client can add trustpoints to the file that contains its certificates, can add a

single trustpoint through JNDI, or if it is a pure CORBA application—that does

not use JNDI—can add trustpoints through the

AuroraCertificateManager.addTrustedCertificate method.

If the client does not set up trust points, it does not hinder the authorization. That is,

JServer assumes that the client trusts the server.

Example 6–4 Verifying Trustpoints

The following example shows how the client sets up its trustpoints through JNDI.

The JNDI SECURITY_TRUSTED_CERT property can take only a single certificate.

// setup the trust point
env.put(ServiceCtx. SECURITY_TRUSTED_CERT, trustedCert);

Parsing through the Server’s Certificate Chain
The client retrieves the certificates to perform any authorization checks. In the past,

you could retrieve the single issuer certificate. Now, you receive the entire issuer

certificate chain. You must parse the certificate chain for the information that you

need. You can parse the chain through the AuroraCurrent object.
IIOP Security 6-27

Authorization
AuroraCurrent contains three methods for retrieving and managing the

certificate chain. For creating and parsing the certificate chain, you can use the

X509Cert class methods. For information on this class, see Sun Microsystems’s

JDK documentation. Note that the X509Cert class manipulates the certificate chain

differently in JDK 1.1 than in Java 2.

The AuroraCurrent class methods are as follows:

■ getPeerDERCertChain —obtain the peer’s certificate chain, which enables

you to verify that the peer is authorized to access your application methods.

■ getNegotiatedProtocolVersion —obtain the SSL protocol version being

used by the connection, to verify the versioning.

■ getNegotiatedCipherSuite —obtain the cipher suite used to encrypt

messages passed over the connection, to verify that the encryption is strong

enough for your purposes.

When the handshake occurs, the protocol version and the type of encryption used is

negotiated. The type of encryption can be full or limited encryption, which complies

with the United States legal restrictions. After the handshake completes, the

AuroraCurrent can retrieve what was resolved in the negotiation.

AuroraCurrent Class
The following describes the methods contained within AuroraCurrent . See

Example 6–5 for a code example of these methods.

getNegotiatedCipherSuite
This method obtains the type of encryption negotiated in the handshake with the

peer.

Syntax

Note: You must configure the database and listener to be

SSL-enabled, as described in Chapter 3, "Configuring IIOP

Applications".

Note: JDK 1.1 certificate classes were contained within

javax.security.cert . In JDK 1.2, these classes moved to

java.security.cert .
6-28 Enterprise JavaBeans Developer’s Guide and Reference

Authorization
String getNegotiatedCipherSuite(org.omg.CORBA.Object peer);

Returns

A string one of the following values:

Export ciphers:

■ SSL_RSA_EXPORT_WITH_RC4_40_MD5

■ SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

■ SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

■ SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

■ SSL_RSA_WITH_NULL_SHA

■ SSL_RSA_WITH_NULL_MD5

Domestic ciphers

■ SSL_RSA_WITH_3DES_EDE_CBC_SHA

■ SSL_RSA_WITH_RC4_128_SHA

■ SSL_RSA_WITH_RC4_128_MD5

■ SSL_RSA_WITH_DES_CBC_SHA

■ SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

■ SSL_DH_anon_WITH_RC4_128_MD5

■ SSL_DH_anon_WITH_DES_CBC_SH

getPeerDERCertificateChain
This method obtains the peer’s certificate chain. After retrieving the chain, you can

parse through the certificates within the chain, to authorize the peer to your

application.

Syntax

byte [] [] getPeerDERCertificateChain(org.omg.CORBA.Object peer);

Parameter Description

peer The peer from which you obtain the negotiated cipher.
IIOP Security 6-29

Authorization
Returns

A byte array containing an array of certificates.

getNegotiatedProtocolVersion
This method obtains the negotiated SSL protocol version of a peer.

Syntax

String getNegoriatedProtocolVersion(org.omg.CORBA.Object peer);

Returns

A string with one of the following values:

■ SSL_Version_Undetermined

■ SSL_Version_3_0

Example 6–5 Retrieving a Peer’s SSL information for Authorization

This example shows how to authorize a peer by retrieving the certificate

information using the AuroraCurrent object.

1. To retrieve an AuroraCurrent object, invoke the

ORB.resolve_initial_references method with AuroraSSLCurrent as

the argument.

2. Retrieve the SSL information from the peer through AuroraCurrent methods:

getNegotiatedCipherSuite , getNegotiatedProtocolVersion , and

getPeerDERCertChain .

3. Authorize the peer. You can authorize the peer based on its certificate chain.

Parameter Description

peer The peer from which you obtain its certificate chain.

Parameter Description

peer The peer from which you obtain the negotiated protocol version.
6-30 Enterprise JavaBeans Developer’s Guide and Reference

Authorization
static boolean verifyPeerCert(org.omg.CORBA.Object obj) throws Exception
 {
 org.omg.CORBA.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();

 // Get the SSL current
AuroraCurrent current = AuroraCurrentHelper.narrow

 (orb.resolve_initial_references(" AuroraSSLCurrent "));

 // Check the cipher
 System.out.println("Negotiated Cipher: " +
 current. getNegotiatedCipherSuite (obj));
 // Check the protocol version
 System.out.println("Protocol Version: " +
 current. getNegotiatedProtocolVersion (obj));
 // Check the peer’s certificate
 System.out.println("Peer’s certificate chain : ");
 byte [] [] certChain = current. getPeerDERCertChain (obj);

 //Parse through the certificate chain using the X509Certificate methods
 System.out.println("length : " + certChain.length);
 System.out.println("Certificates: ");
 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 //For each certificate in the chain
 for(int i = 0; i < certChain.length; i++) {
 ByteArrayInputStream bais = new ByteArrayInputStream(certChain[i]);
 Certificate xcert = cf.generateCertificate(bais);
 System.out.println(xcert);
 if(xcert instanceof X509Certificate)
 {
 X509Certificate x509Cert = (X509Certificate)xcert;
 String globalUser = x509Cert.getSubjectDN().getName();
 System.out.println("DN out of the cert : " + globalUser);
 }
 }

 return true;
 }

Note: This example uses the x509Certificate class methods for

parsing the certificate chain and is specific to Java 2. If you are

using Java 1.1, you must use the x509Certificate class methods

specific to Java 1.1.
IIOP Security 6-31

Authorization
Note: The x509Certificate class is a Java 2 class. See Sun

Microsystems’s documentation for more information. In addition,

you can find information in the javadoc for javax.net.ssl .
6-32 Enterprise JavaBeans Developer’s Guide and Reference

Transaction Han
7

Transaction Handling

In Oracle8i, Enterprise JavaBeans use Java Transaction API (JTA) 1.0.1 for managing

transactions. JTA provides the ability for both bean-managed and

container-managed transactions:

■ Bean-managed transactions are programmatically demarcated within your bean

implementation. The transaction is completely controlled by the application.

■ Container-managed transactions are controlled by the container. That is, the

container either joins the client’s transaction or starts the transaction for the

application—as defined within the deployment descriptor—and ends the

transaction when the bean completes. Your implementation does not need to

provide code for managing the transaction.

This chapter assumes that you have a working knowledge of JTA. The discussion

focuses mostly on examples and explaining the differences between the Sun

Microsystems JTA specification and the Oracle JTA implementation. See

http://www.javasoft.com for the Sun Microsystems JTA specification.

■ Transaction Overview

■ JTA Server-Side Demarcation

■ JTA Client-Side Demarcation

■ Configuring Two-Phase Commit Engine

■ Creating DataSource Objects Dynamically

■ Setting the Transaction Timeout

■ JDBC Restrictions
dling 7-1

Transaction Overview
Transaction Overview
Transactions manage changes to multiple databases within a single application as a

unit of work. That is, if you have an application that manages data within one or

more databases, you can ensure that all changes in all databases are committed at

the same time if they are managed within a transaction.

Transactions are described in terms of ACID properties, which are as follows:

■ Atomic: all changes to the database made in a transaction are rolled back if any

change fails.

■ Consistent: the effects of a transaction take the database from one consistent

state to another consistent state.

■ Isolated: the intermediate steps in a transaction are not visible to other users of

the database.

■ Durable: when a transaction is completed (committed or rolled back), its effects

persist in the database.

The JTA implementation, specified by Sun Microsystems, relies heavily on the JDBC

2.0 specification and XA architecture. The result is a complex requirement on

applications in order to ensure that the transaction is managed completely across all

databases. Sun Microsystems’s specifies Java Transaction API (JTA) 1.0.1 and JDBC

2.0 on http://www.javasoft.com .

You should be aware of the following when using JTA within the Oracle8i
environment:

■ Global and Local Transactions

■ Demarcating Transactions

■ Transaction Context Propagation

■ Two-Phase Commit

■ Enlisting Resources

■ JTA Limitations

Global and Local Transactions
Whenever your application connected to a database using JDBC or a SQL server,

you were creating a transaction. However, the transaction involved only the single

database and all updates made to the database were committed at the end of these

changes. This is referred to as a local transaction.
7-2 Enterprise JavaBeans Developer’s Guide and Reference

Transaction Overview
A global transaction involves a complicated set of management objects—objects

that track all of the objects and databases involved in the transaction. These global

transaction objects—TransactionManager and Transaction —track all objects

and resources involved in the global transaction. At the end of the transaction, the

TransactionManager and Transaction objects ensure that all database

changes are atomically committed at the same time.

Demarcating Transactions
A transaction is said to be demarcated, which means that each transaction has a

definite start and stop point. For example, in an interactive tool such as SQL*Plus,

each SQL DML statement implicitly begins a new transaction, if it is not already

part of a transaction. A transaction ends when a SQL COMMIT or ROLLBACK

statement is issued.

The important designation for a transaction depends on the originator of the

transaction and whether explicitly or implicitly demarcated:

■ Transaction originator—In a distributed object application, transactions are

demarcated differently if the originator is the client or the server. Where the

transaction originates defines the transaction as client-side demarcated or

server-side demarcated. See "JTA Client-Side Demarcation" on page 7-16 and "JTA

Server-Side Demarcation" on page 7-13 for more information.

■ Explicit or implicit demarcation

* Explicit demarcation means that either the client or bean-managed

transactional bean programmatically demarcates the transaction by

executing the appropriate begin or commit methods. Explicit

demarcation is discussed further in both "JTA Client-Side Demarcation"

on page 7-16 and "JTA Server-Side Demarcation" on page 7-13.

* Implicit demarcation is specified within the deployment descriptor for

container-managed transactional beans. The container begins and ends

the transaction depending on the configuration for the bean within the

deployment descriptor. See "JTA Server-Side Demarcation" on page 7-13

for more information on implicit demarcation.
Transaction Handling 7-3

Transaction Overview
Container or Bean Managed Transactions
Enterprise JavaBeans can specify whether the bean demarcates and manages any

transactions within itself or whether the container should demarcate and manage

the transaction.

Container-Managed Transactional
The bean specifies itself as container-managed transactional; it does not have any

transactional implementation within its methods. All transactional logic is executed

by the container based on the transactional attribute specified in the EJB

deployment descriptor. See the following for more information:

■ "Defining Transactions" on page A-19 describes the EJB deployment descriptor

specification for container-managed transactions.

■ "Propagating the Transactional Context to Container-Managed Transactional

Beans" on page 7-6 describes what the container performs depending on the

deployment descriptor specified transactional attribute.

Bean-Managed Transactional
If the bean specifies itself as bean-managed transactional, it has the following

responsibility:

■ All global transactions are started within itself. It cannot accept a transactional

context from any other object—client or server. Thus, a bean-managed

transactional bean is not involved in any other object’s global transaction. If the

invoking object is involved in a transaction, that transaction is suspended while

the bean-managed transactional bean is executing. The invoking object’s

transaction is resumed when the bean-managed transactional bean returns.

■ If the bean wants another object involved in the global transaction, it must

invoke a container-managed bean with a transactional attribute that accepts

propagated transaction contexts.

Note: The originating client or object that starts the transaction

must also end the transaction with a commit or rollback. However,

the originator can end the transaction in a different method than

the originating method. For example, if the client begins the

transaction, calls out to a server object, the client must end the

transaction after the invoked method returns. The invoked server

object cannot end the transaction.
7-4 Enterprise JavaBeans Developer’s Guide and Reference

Transaction Overview
■ The bean can request resources to be automatically enlisted in the same manner

as detailed in "Enlisting Resources" on page 7-7.

Transaction Context Propagation
When you begin a transaction within either a client or a server instance, JTA

denotes the originator in the transaction manager. As the transaction involves more

objects and resources, the transaction manager tracks all of these objects and

resources in the transaction and manages the transaction for these entities.

When an object calls another object, in order for the invoked object to be included in

the transaction, JTA propagates the transaction context to the invoked object.

Propagation of the transaction context is necessary for including the invoked object

into the global transaction.

As shown in Figure 7–1, if the client begins a global transaction, calls a server object

in the database, the transaction context is propagated to the server object. If the

server object supports transactions, this object is attached to the transaction

manager as involved in the global transaction. If this server object invokes another

server object, within the same or a remote database, the transaction context is

propagated to this object as well. This ensures that all objects that are supposed to

be involved in the global transaction are tracked by the transaction manager.

Figure 7–1 Connection to an Object over IIOP

Note: Since all server objects are loaded within a database, JTA

automatically enlists the database as a resource included in the

global transaction along with the server object.

Client Server ObjectIIOP

connection
Server Object

IIOP

connection
Transaction Handling 7-5

Transaction Overview
Propagating the Transactional Context to Container-Managed Transactional
Beans
The definition of the transaction attribute within the EJB deployment descriptor for

container-managed transactional beans determines whether the global transaction

context is propagated to the server object. The following table lists each transaction

attribute and the behavior that occurs for each server object type and for any

resources.

Table 7–1 Effect of Transactional Attributes for Container-Managed Transactional
Beans

Deployment Transaction
Attribute

Client Transaction
Demarcation

Behavior for Target Server
Object or Resource (Database)

NotSupported Does not start transaction No transaction started

Starts transaction Invoker’s transaction is
suspended while the bean
executes, resumed when control
returns to the invoker.

Required Does not start transaction A new transaction is started

Starts transaction Invoker’s transaction context is
propagated. Server object and the
local resource joins the
transaction.

Supports Does not start transaction No transaction started

Starts transaction Invoker’s transaction context is
propagated. Server object and the
local resource joins the
transaction.

RequiresNew Does not start transaction A new transaction is started

Starts transaction Invoker’s transaction is
suspended. A new transaction is
started and committed before
returning to the invoker. The
invoker’s transaction is resumed
when control is returned to it.
7-6 Enterprise JavaBeans Developer’s Guide and Reference

Transaction Overview
Enlisting Resources
Each resource, including databases, that you want managed in the global

transaction must be enlisted. The Oracle8i JTA implementation automatically enlists

all databases if you open a JDBC connection to the database within the context of a

global transaction. The Oracle8i JDBC Developer’s Guide contains more information

on how to open a JDBC connection to a database within a transaction.

JTA automatically enlists a database resource when one of the following occurs:

Enlisting the Local Database
The following JDBC methods are used within a local transaction for accessing the

local database. In order to ensure that the statements are included within a global

transaction, execute these methods and subsequent SQL statements after the global

transaction has started.

Mandatory Does not start transaction Error is returned. This object
requires a transactional context.

Starts transaction Invoker’s transaction context is
propagated. Server object and the
local resource joins the
transaction.

Never Does not start transaction No transaction is started

Starts transaction An error is returned. This object
cannot be called from any
object—client or server—that is
involved in a transaction.

Table 7–2 JDBC Methods Used For Enlisting Databases

Retrieval Method Description

OracleDriver().
 defaultConnection()

Pre-JDBC 2.0 method for retrieving the local
connection. If using the #sqlj macro for updating
your database tables, note that this macro invokes
the defaultConnection method for you.

DriverManager.getConnection
 ("jdbc:oracle:kprb:")

Pre-JDBC 2.0 method for retrieving the local
connection.

Table 7–1 Effect of Transactional Attributes for Container-Managed Transactional
Beans

Deployment Transaction
Attribute

Client Transaction
Demarcation

Behavior for Target Server
Object or Resource (Database)
Transaction Handling 7-7

Transaction Overview
An example for each of these methods of automatic enlistment are detailed in

"Enlisting Resources on the Server-side" on page 7-25.

Enlisting a Remote Database
An object—client or server object—can only enlist a database within the global

transaction through JDBC 2.0 methods within the DataSource object. The

getConnection method must be invoked after the begin method of the

UserTransaction object.

If your transaction involves more than one database, you must specify an Oracle8i
database as the two-phase commit engine. See "Configuring Two-Phase Commit

Engine" on page 7-29 for more information.

Two-Phase Commit
One of the primary advantages for a global transaction is the number of objects and

database resources managed as a single unit within the transaction. If your global

transaction involves more than one database resource, you must specify a

two-phase commit engine, which is an Oracle8i database designated to manage the

changes to all databases within the transaction. The two-phase commit engine is

responsible for ensuring that when the transaction ends, all changes to all databases

are either totally committed or fully rolled back.

On the other hand, if your global transaction has multiple server objects, but only a

single database resource, you do not need to specify a two-phase commit engine.

The two-phase commit engine is required only to synchronize the changes for

multiple databases. If you have only a single database, single-phase commit can be

performed by the transaction manager.

DataSource.getConnection
 ("jdbc:oracle:kprb:")

JDBC 2.0 method for retrieving connections to the
local databases.

Note: You should use either the JDBC 2.0 method or the pre-2.0

JDBC methods for retrieving connections to databases. You must

not mix both methods within the same bean.

Table 7–2 JDBC Methods Used For Enlisting Databases

Retrieval Method Description
7-8 Enterprise JavaBeans Developer’s Guide and Reference

Transaction Overview
Figure 7–2 shows three databases enlisted in a global transaction and another

database that is designated as the two-phase commit engine. All databases,

including the local database, are automatically enlisted when a JDBC connection is

opened after the global transaction starts. See "Enlisting Resources" on page 7-7 for

more information on database enlistment.

When the global transaction ends, the two-phase commit engine ensures that all

changes made to the databases A, B, and the local are committed or rolled back

simultaneously.

Figure 7–2 Two-Phase Commit for Global Transactions

Note: Your two-phase commit engine can be any Oracle8i
database. It can be the database where your server object exists, or

even a database that is not involved in the transaction at all. See

"Configuring Two-Phase Commit Engine" on page 7-29 for a full

explanation of the two-phase commit engine setup.

Client Server Object

:default database server

Database B

Database A

JDBC
connection

IIOP

connection

JDBC connection

table X

two-phase
 commit
 engine

manage
transactional
updates
to all three
databases
Transaction Handling 7-9

Transaction Overview
JTA Summary
The following sections summarize the details for demarcating the transaction and

enlisting the database in the transaction. These details are explained and

demonstrated in the rest of the chapter. However, these tables provide a reference

point for you.

Table 7–3 Environment Setup For Transactional Object Retrieval

Source Qualifiers Environment Setup

Setup includes authentication information, namespace
URL, and OracleDriver registration.

Client retrieve remote object or remote database
connection.

Always

Server use in-session activation; retrieving a local
object or local database connection

Never

retrieve remote object or remote database
connection

Always

Table 7–4 Differences Between Using JDBC 2.0 DataSource or Pre-2.0 JDBC Drivers

JDBC 2.0 DataSource Pre-2.0 JDBC Drivers:
OracleDriver or DriverManager

Binding Differences You must bind the DataSource into the
namespace with the bindds command.

No binding of any JDBC objects is
required.

Code Differences

You perform a JNDI
lookup, as follows:

Client

1. Provide the following environment setup:
the environment Hashtable contains
authentication information and namespace
URL, and register the OracleDriver .

2. Retrieve the DataSource object through a
JNDI lookup that contains the "jdbc_
access:// " prefix.

Cannot be used in the client.

Server Do one of the following:

■ Retrieve the DataSource object using
in-session activation. Environment setup
and "jdbc_access:// " prefix is not
required.

■ Lookup a database through an
environment variable that was previously
specified in the deployment descriptor.
This uses the "java:comp/env " prefix.

The pre-2.0 JDBC
drivers—OracleDriver and
DriverManager —can only be used
within a server object. Retrieval of JDBC
connections is the same as in previous
releases.
7-10 Enterprise JavaBeans Developer’s Guide and Reference

Transaction Overview
Table 7–5 Differences Between Container and Bean-Managed Transactions

Container-Managed Transaction Bean-Managed Transaction

Single-Phase
Commit

Deployment
Descriptor

■ Define that this is
container-managed in the
<transaction-type> element.

■ Define the type of container
management attribute, one of the
values described in Table 7–1, within
the <container-transaction>
element in the XML deployment
descriptor.

■ Define that this is bean-managed
in the <transaction-type>
element.

Binding ■ No binding required for
UserTransaction . The
UserTransaction object is created
for you.

■ If using a DataSource object in the
transaction, bind it using the
bindds command. However, you
do not need any database links.

■ No binding required for
UserTransaction . The
UserTransaction object is
created for you.

■ If using a DataSource object in
the transaction, bind it using the
bindds command. However, you
do not need any database links.

Runtime ■ Do not retrieve the
UserTransaction . The container
manages the UserTransaction for
you.

■ If using the DataSource object to
manage SQL DML statements
within the transaction, retrieve the
DataSource .

■ Retrieve the UserTransaction
either through the EJB 1.0
getUserTransaction method
of SessionCtx or the EJB 1.1
method of a JNDI lookup with
the "java:comp/
UserTransaction " string.

■ Your runtime is responsible for
starting and terminating the
transaction.

■ If using the DataSource object to
manage SQL DML statements
within the transaction, retrieve the
DataSource .
Transaction Handling 7-11

Transaction Overview
Two-Phase
Commit

Deployment
Descriptor

In addition to the single-phase
requirements, you must also add the
JNDI bound name for the
UserTransaction object in the
<transaction-manager> element in
the Oracle-specific deployment
descriptor.

Same requirements as the
container-managed transaction.

Binding ■ You must bind a
UserTransaction object with the
fully-qualified database address of
the two-phase commit engine and its
username and password.

■ The user that was bound within the
UserTransaction is the one that
must have the privilege to commit
the transaction. Thus, make sure that
this user has the "FORCE ANY
TRANSACTION" privilege.

■ You must bind DataSource objects
for each database involved in the
transaction with a database link
from the two-phase commit engine
to itself.

■ You must bind a
UserTransaction object with
the fully-qualified database
address of the two-phase commit
engine and its username and
password.

■ You must bind DataSource
objects for each database involved
in the transaction with a database
link from the two-phase commit
engine to itself.

Runtime ■ Do not retrieve the
UserTransaction . The container
manages the UserTransaction for
you.

■ Retrieve the DataSource .

■ Retrieve the UserTransaction
either through the EJB 1.0
getUserTransaction method
of SessionCtx or the EJB 1.1
method of a JNDI lookup with
the "java:comp/
UserTransaction " string.

■ Your runtime is responsible for
starting and terminating the
transaction.

■ If using the DataSource object to
manage SQL DML statements
within the transaction, retrieve the
DataSource .

Table 7–5 Differences Between Container and Bean-Managed Transactions (Cont.)

Container-Managed Transaction Bean-Managed Transaction
7-12 Enterprise JavaBeans Developer’s Guide and Reference

JTA Server-Side Demarcation
JTA Limitations
The following are the portions of the JTA specification that Oracle8i does not

support.

Nested Transactions
Nested transactions are not supported in this release. If you attempt to begin a new

transaction before committing or rolling back any existing transaction, the

transaction service throws a NotSupportedException exception.

Interoperability
The transaction services supplied with this release do not interoperate with other

JTA implementations.

JTA Server-Side Demarcation
Server-side demarcation can occur either implicitly through container-managed

transaction or explicitly through bean-managed transactions. A container-managed

transaction is specified within the EJB deployment descriptor for the bean. Most

EJBs use container-managed transactions as it requires no transaction

implementation within the application.

No matter which way that the server object decides to demarcate transactions, the

enlistment of the database is the same for both container and bean-managed

transactions.

■ Container-Managed Transactions

■ Bean-Managed Transactions

■ Enlisting Resources on the Server-side

Container-Managed Transactions
You can declare that the container manages the transaction for the bean within the

EJB deployment descriptor. This requires that you specify "Container " within the

<transaction-type> element and the container-managed transaction attribute

(see Table 7–1) within the <container-transaction> element. See "Defining

Transactions" on page A-19 for full instructions.

Based upon the transaction attribute you specify within the EJB deployment

descriptor, the container will begin, commit, or rollback global transactions when a

method in the bean instance is invoked. Each bean can be specified with different
Transaction Handling 7-13

JTA Server-Side Demarcation
transaction attributes. The transaction attributes specify how the transaction

demarcation is handled. This means that your bean does not retrieve the

UserTransaction object, nor invokes any of its methods. The container does this

for you.

The container does not enlist the database resources for you. Bind each

DataSource within the namespace as indicated within Table 7–5 on page 7-11.

Your code enlists each database by retrieving the database connection through one

of the methods listed in Table 7–2 on page 7-7. A full example using

container-managed transactional beans and database enlistment is shown in the

section "Configuring Two-Phase Commit Engine" on page 7-29.

Bean-Managed Transactions
Only session beans have the option to use bean-managed transactions. This means

that only session beans can demarcate the transaction with the begin , commit , and

rollback methods. In order to specify that this session bean is going to

programmatically demarcate its transaction, it must specify the following in its EJB

deployment descriptor:

<enterprise-beans>
 <session>
 . . .
 <transaction-type>Bean</transaction-type>
 </session>
</enterprise-beans>

The session bean implementation demarcates transactions in the same manner as a

client would. It invokes the begin , commit , and rollback methods off of the

UserTransaction object. The only difference is how the UserTransaction
object is retrieved. There are two methods for retrieving the UserTransaction
object on the server side in a bean-managed transactional bean:

■ SessionContext getUserTransaction method

■ JNDI lookup

Note: See "Defining Transactions" on page 7-13 for a full

description of defining transaction management in the EJB

deployment descriptor.
7-14 Enterprise JavaBeans Developer’s Guide and Reference

JTA Server-Side Demarcation
SessionContext getUserTransaction method
The bean retrieves the UserTransaction object from the SessionContext
object, which was set within the setSessionContext method. This is the EJB 1.0

methodology for retrieving the UserTransaction object and can only be used in

a single-phase commit environment.

The container has already retrieved the UserTransaction object for you. The

following shows that the session context is saved in the ctx variable.

public void setSessionContext (SessionContext ctx) {
 this.ctx = ctx;
}

Within the bean implementation, retrieve the UserTransaction from the session

context and begin the transaction.

UserTransaction ut = ctx.getUserTransaction();
ut.begin();
...
ut.commit();

JNDI lookup
The EJB 1.1 method retrieves the UserTransaction object by performing an

in-session lookup with the following JNDI name:

"java:comp/UserTransaction ". In a single-phase commit environment, the

container will create the UserTransaction object for you; in a two-phase

environment, you must have already bound a UserTransaction object with the

two-phase commit information (username, password, and two-phase commit URL)

into the namespace. After retrieval, you use this object to demarcate your global

transaction.

The following demonstrates retrieving a UserTransaction object from the

namespace:

ic = new InitialContext ();

// lookup the usertransaction
UserTransaction ut = (UserTransaction)ic.lookup ("java:comp/UserTransaction");
ut.begin ();
...
ut.commit();
Transaction Handling 7-15

JTA Client-Side Demarcation
JTA Client-Side Demarcation
For JTA, client-side demarcated transactions are explicitly demarcated

programmatically through the UserTransaction object, which must be bound

with the bindut command into the namespace. With client-side transaction

demarcation, the client controls the transaction. The client starts a global transaction

by invoking the UserTransaction begin method; it ends the transaction by

invoking either the commit or rollback methods.

In addition, the client must always set up an environment including a Hashtable
with authentication information and namespace location URL. It must also register

an OracleDriver when retrieving the transaction objects from the namespace.

Figure 7–3 shows a client invoking a server object—which, in this example, is a

container-managed transactional bean. The client starts a global transaction, then

invokes the bean. Since the bean is a container-managed transactional bean and is

specified with the transactional attribute of "Supports", the transactional context is

propagated to include the server object.

Figure 7–3 Client Demarcated Global Transaction

The following must occur for the client to demarcate the transaction:

1. Initialize a Hashtable environment with the namespace address and

authentication information.

2. Register the OracleDriver .

3. Retrieve the UserTransaction object from the namespace within the client

logic. When you retrieve the UserTransaction object from any client, the

URL must consist of "jdbc_access:// " prefix before the JNDI name.

Client Server ObjectIIOP

connection
7-16 Enterprise JavaBeans Developer’s Guide and Reference

JTA Client-Side Demarcation
4. Start the global transaction within the client using

UserTransaction.begin() .

5. Retrieve the server bean.

6. Invoke any object methods to be included in the transaction.

7. End the transaction through UserTransaction.commit() or

UserTransaction.rollback() .

Example 7–1 shows a client that invokes a server bean within the transaction.

Example 7–1 Employee Client Code for Client Demarcated Transaction

Before starting the client, you must first bind the UserTransaction object in the

namespace.

Bind UserTransaction Object in the Namespace
You bind the UserTransaction object in the namespace through the bindut
command of the sess_sh tool. To bind a UserTransaction object to the name

"/test/myUT " in the namespace located on nsHost , execute the following:

sess_sh -service jdbc:oracle:thin:@nsHost:5521:ORCL -user SCOTT -password TIGER
& bindut /test/myUT

Verify that the user bound with the UserTransaction has FORCE ANY

TRANSACTION granted to the user that bound this object. This privilege enables

the user to commit this transaction. In this example, you would execute the

following:

GRANT FORCE ANY TRANSACTION TO SCOTT

Developing the Client Application
After binding the UserTransaction object, your client code can retrieve the

UserTransaction object and start a global transaction. Since the client is

retrieving the UserTransaction object from a remote site, the lookup requires

authentication information, location of the namespace, the OracleDriver
registration, and the "jdbc_access:// " prefix.

import employee.Employee;

Note: The client needs the same information to retrieve the

UserTransaction as you give within the bindut command.
Transaction Handling 7-17

JTA Client-Side Demarcation
import employee.EmployeeHome;
import employee.EmployeeInfo;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
import javax.transaction.*;

public class Client
{
 public static void main (String[] args) throws Exception {

 //Set up the service URL to where the UserTransaction object
 //is bound. Since from the client, the connection to the database
 //where the namespace is located can be communicated with over either
 //a Thin or OCI8 JDBC driver. This example uses a Thin JDBC driver.
 String namespaceURL = "jdbc:oracle:thin:@nsHost:1521:ORCL";

 //User and password are case sensitive.
 String user = "SCOTT";
 String password = "TIGER";

 //1.(a) Authenticate to the database.
 // create InitialContext and initialize for authenticating client
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 //1.(b) Specify the location of the namespace where the transaction objects

 // are bound.
 env.put(jdbc_accessURLContextFactory.CONNECTION_URL_PROP, namespaceURL);

 Context ic = new InitialContext (env);

 //2. Register a JDBC OracleDriver. Requirement for opening JDBC connection
 // to retrieve UserTransaction object from namespace
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

 //3. Retrieve the UserTransaction object from JNDI namespace
 UserTransaction ut = (UserTransaction)ic.lookup ("jdbc_access://test/myUT");

 //4. Start the transaction
 ut.begin();

 //5. Retrieve the EJB
7-18 Enterprise JavaBeans Developer’s Guide and Reference

JTA Client-Side Demarcation
 // get an handle to the employee_home object
 EmployeeHome employee_home =
 (EmployeeHome)ic.lookup ("sess_iiop://myhost:1521:orcl/test/employee");

 // get an handle to the remote bean
 Employee employee = employee_home.create ();

 //6. Perform bean business logic.
 // get an info of an employee
 EmployeeInfo info = employee.getEmployee ("SCOTT");
 System.out.println ("Beginning salary = " + info.salary);

 // do work on the info-object
 info.salary += (info.salary * 10) / 100;

 // call update on the server-side
 employee.updateEmployee (info);

 //7. End the transaction
 //Commit the updated value
 ut.commit();
 }
}

Example 7–2 Container-Managed Transactional Bean with Supports Attribute

In the EJB deployment descriptor, the container-managed transactional session bean

is specified with the Supports attribute. These transactional specifications are

defined in the <transaction-type> and <container-transaction>
elements.

XML Deployment Descriptor
<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Oracle Corporation//DTD Enterprise JavaBeans 1.1
//EN" "ejb-jar.dtd">
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>test/myEmployee</ejb-name>
 <home>employee.EmployeeHome</home>
 <remote>employee.Employee</remote>
 <ejb-class>employeeServer.EmployeeBean</ejb-class>
 <session-type>Stateful</session-type>

 <transaction-type>Container</transaction-type>
Transaction Handling 7-19

JTA Client-Side Demarcation
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Supports</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Since the session bean allows the container to manage the transaction and the bean

is specified as supporting existing transactions, the transaction context is

propagated to the bean when the client invokes it. The bean itself contains no

transactional logic within it. It only contains the bean implementation code, as

follows:

package employeeServer;

import employee.*;

import javax.ejb.SessionBean;
import javax.ejb.CreateException;
import javax.ejb.SessionContext;
import java.rmi.RemoteException;

import java.sql.SQLException;

public class EmployeeBean implements SessionBean
{
 // Methods of the Employee interface
 public EmployeeInfo getEmployee (String name)

throws RemoteException, SQLException
 {
 int empno = 0;

Note: The database that this bean resides on is automatically

enlisted. Thus, any SQLJ statement is executed against the database

and its changes are included in the global transaction. See "Local

Database Enlistment" on page 7-25 for full details on the automatic

enlistment of a local database.
7-20 Enterprise JavaBeans Developer’s Guide and Reference

JTA Client-Side Demarcation
 double salary = 0.0;
 #sql { select empno, sal into :empno, :salary from emp
 where ename = :name };

 return new EmployeeInfo (name, empno, salary);
 }

 public void updateEmployee (EmployeeInfo employee)
 throws RemoteException, SQLException
 {
 #sql { update emp set ename = :(employee.name),
 sal = :(employee.salary)
 where empno = :(employee.number) };
 return;
 }

 // Methods of the SessionBean
 public void ejbCreate () throws RemoteException, CreateException {}
 public void ejbRemove () {}
 public void setSessionContext (SessionContext ctx) {}
 public void ejbActivate () {}
 public void ejbPassivate () {}
}

JTA Client-Side Demarcation Including Databases
The previous example showed how a transaction context was propagated to server

objects from a client within the JTA global transaction. When you execute the server

object, the transaction is propagated over the IIOP transport layer. In addition to

invoking IIOP server objects, you may wish to update databases over JDBC

connections. This section shows how you enlist databases using a JDBC connection

in tandem with the IIOP server object propagation.

To include a remote database within the transaction from a client, you must use a

DataSource object, which has been bound in the namespace as a JTA

DataSource . Then, invoke the getConnection method of the DataSource
object after the transaction has started, and the database is included in the global

transaction. See "Enlisting Resources" on page 7-7 for more information.

The following must occur in the client runtime to demarcate the transaction:

1. Initialize a Hashtable environment with the namespace address and

authentication information.

2. Register the OracleDriver .
Transaction Handling 7-21

JTA Client-Side Demarcation
3. Retrieve the UserTransaction object from the namespace within the client

logic. When you retrieve the UserTransaction object from the client, the

URL must consist of "jdbc_access:// " prefix before the JNDI name.

4. Start the global transaction within the client using

UserTransaction.begin() .

5. Enlist any database resources to be included in the transaction by opening a

connection to the specified database, as follows:

a. Retrieve the DataSource object from the namespace within the client

logic. When you retrieve the DataSource object from any client, the URL

must consist of "jdbc_access:// " prefix before the JNDI name.

b. Open a connection to the database through

DataSource.getConnection method.

6. Retrieve the bean reference.

7. Invoke any object methods to be included in the transaction.

8. Invoke SQL DML statements against any enlisted databases.

9. End the transaction through UserTransaction.commit() or

UserTransaction.rollback() .

Example 7–3 shows a client that invokes a bean and enlists a single database within

the transaction.

Example 7–3 Employee Client Code for Client Demarcated Transaction

Before starting the client, you must first bind the UserTransaction and

DataSource objects in the namespace. See "Bind UserTransaction Object in the

Namespace" on page 7-17 for directions on the binding the UserTransaction
object.

Bind DataSource Object in the Namespace
Use the bindds command of the sess_sh tool to bind an DataSource object in

the namespace. The full command is detailed in the Oracle8i Java Tools Reference.

To bind a DataSource object for a single-phase commit transaction with the

empHost database to the name "/test/empDatabase " in the namespace located

on nsHost , execute the following:

sess_sh -service jdbc:oracle:thin:@nsHost:5521:ORCL -user SCOTT -password TIGER
& bindds /test/empDatabase -url jdbc:oracle:thin:@empHost:5521:ORCL -dstype jta
7-22 Enterprise JavaBeans Developer’s Guide and Reference

JTA Client-Side Demarcation
After binding the DataSource object in the namespace, the server can enlist the

database within a global transaction.

Developing the Client Application
The following example follows the steps listed in "JTA Client-Side Demarcation

Including Databases" on page 7-21.

import employee.Employee;
import employee.EmployeeHome;
import employee.EmployeeInfo;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
import javax.transaction.*;

public class Client
{
 public static void main (String[] args) throws Exception {

 //Set up the service URL to where the UserTransaction object
 //is bound. Since from the client, the connection to the database
 //where the namespace is located can be communicated with over either
 //a Thin or OCI8 JDBC driver. This example uses a Thin JDBC driver.
 String namespaceURL = "jdbc:oracle:thin:@nsHost:1521:ORCL";

 //User and password are case sensitive.
 String user = "SCOTT";
 String password = "TIGER";

 //1.(a) Authenticate to the database.
 // create InitialContext and initialize for authenticating client
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 //1.(b) Specify the location of the namespace where the transaction objects

 // are bound.

Note: If using more than one database, you will need to setup for

a two-phase commit. See "Configuring Two-Phase Commit Engine"

on page 7-29 for more information.
Transaction Handling 7-23

JTA Client-Side Demarcation
 env.put(jdbc_accessURLContextFactory.CONNECTION_URL_PROP, namespaceURL);
 Context ic = new InitialContext (env);

 //2. Register a JDBC OracleDriver. Required for retrieving UserTransaction
 // and the DataSource objects from namespace over JDBC connection.
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

 //3. Retrieve the UserTransaction object from JNDI namespace
 UserTransaction ut;
 ut = (UserTransaction)ic.lookup ("jdbc_access://test/myUT");

 //4. Start the transaction
 ut.begin();

 //5.(a) Retrieve the DataSource (that was previously bound with bindds in
 // the namespace. After retrieving the DataSource...
 // get a connection to a database. You need to provide authentication info
 // for a remote database lookup, similar to what you would do from a client.
 // In addition, if this was a two-phase commit transaction, you must provide
 // the username and password.
 DataSource ds = (DataSource)ic.lookup ("jdbc_access://test/empDB");

 // 5.(b) Get connection to the database through DataSource.getConnection
 // in this case, the database requires the same username and password as
 // set in the environment.
 Connection conn = ds.getConnection ();

 //6. Retrieve the EJB
 // get an handle to the employee_home object
 EmployeeHome employee_home =
 (EmployeeHome)ic.lookup (serviceURL + objectName);

 // get an handle to the remote bean
 Employee employee = employee_home.create ();

 //7. (a) Perform bean business logic.
 // get an info of an employee
 EmployeeInfo info = employee.getEmployee ("SCOTT");
 System.out.println ("Beginning salary = " + info.salary);

 // do work on the info-object
 info.salary += (info.salary * 10) / 100;

 // call update on the server-side
 employee.updateEmployee (info);
7-24 Enterprise JavaBeans Developer’s Guide and Reference

JTA Client-Side Demarcation
 //7. (b) Execute SQL statements against the enlisted database.
 Statement stmt = conn.createStatement ();
 int cnt = stmt.executeUpdate ("insert into my_tab values (39304)");

 //8. Close the database connection.
 conn.close ();

 //9. End the transaction
 //Commit the updated value
 ut.commit();
 }
}

The deployment descriptor and bean implementation code is the same as described

in Example 7–2.

Enlisting Resources on the Server-side
Whether your bean instance uses bean-managed or container-managed

transactions, the databases that the bean accesses must be enlisted to be included

within the global transaction. This is discussed more in "Enlisting Resources" on

page 7-7 and "Bind DataSource Object in the Namespace" on page 7-22.

Once bound, you can enlist the database after the transaction begins.

■ Local Database Enlistment

■ Remote Oracle8i Database Enlistment

Local Database Enlistment
Because your bean has been deployed into an Oracle8i database, the container

enlists this database automatically within the transaction. This database is known as

the local database. Thus, if you execute any SQL against this database, the results

are committed when the transaction is committed.
Transaction Handling 7-25

JTA Client-Side Demarcation
Always execute these methods and subsequent SQL statements after the global

transaction has started.

Example 7–4 DataSource.getConnection Method Example

The following example is a container-managed transactional bean with

RequiresNew attribute, so the global transaction is initialized when the bean is first

invoked. The local connection is retrieved through the

DataSource.getConnection method, which enlists the database in the

transaction. SQL statements are executed against the local database. These

statements are committed when the global transaction is committed by the

container when the bean exits.

public EmpRecord query (int empNumber) throws SQLException, RemoteException
 {
 //Retrieving the UserTransaction and DataSource using in-session activation
 Context ic = new InitialContext ();

■ SQLJ As discussed in the Oracle8i SQLJ Developer’s Guide and Reference, an

implicit local connection is supplied to the database that the object is

running in. Any statements executed within the SQLJ statement is

executed against the local database. However, in order for the

statement results to be part of the transaction, you must execute the

SQLJ statement within an open global transaction. That is, the SQLJ

statement must be executed after the UserTransaction.begin
method is invoked. However, do not commit the transaction within a

SQLJ statement. Commitment of the transaction should only occur

within by the UserTransaction.commit method.

■ JDBC You can create a local connection by executing the methods specified

in Table 7–6.

Table 7–6 Local Database Retrieval Methods

Retrieval Method Description

OracleDriver().
 defaultConnection()

See Example 7–6

DriverManager.getConnection
 ("jdbc:oracle:kprb:")

See Example 7–5

DataSource.getConnection
 ("jdbc:oracle:kprb:")

See Example 7–4
7-26 Enterprise JavaBeans Developer’s Guide and Reference

JTA Client-Side Demarcation
 //Retrieve the DataSource using in-session activation
 DataSource ds = (DataSource) ic.lookup("/test/myDB");

 //Retrieve the local connection object to the local database
 Connection conn = ds.getConnection ();

 //prepare and execute a sql statement against the local database.
 PreparedStatement ps =
 conn.prepareStatement ("select ename, sal from emp where empno = ?");
 try {
 ps.setInt (1, empNumber);
 ResultSet rset = ps.executeQuery ();
 if (!rset.next ())
 throw new RemoteException ("no employee with ID " + empNumber);
 return new EmpRecord (rset.getString (1), empNumber, rset.getFloat (2));
 } finally {
 ps.close();
 }

 //close the database connection
 conn.close();
 }

Example 7–5 DriverManager.getConnection Method Example

The following example is the same as Example 7–4, except for the database retrieval

method. Substitute the following to retrieve the connection:

//Retrieve the local connection object to the local database
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:kprb:");

Example 7–6 OracleDriver().defaultConnection Method Example

The following example is the same as Example 7–4, except for the database retrieval

method. Substitute the following to retrieve the connection:

//Retrieve the local connection object to the local database
 Connection conn =
 new oracle.jdbc.driver.OracleDriver().defaultConnection ();

Remote Oracle8 i Database Enlistment
If you access a remote Oracle8i database from the server that should be included in

the transaction, you must open the connection to the database after the global

transaction starts.
Transaction Handling 7-27

JTA Client-Side Demarcation
Example 7–7 Enlist Database in Single Phase Transaction

The following example enlists a database in the global transaction within a

bean-managed transactional bean.

The following example is a container-managed transactional bean, so it does not

retrieve the UserTransaction . However, it does retrieve a DataSource to start a

JDBC 2.0 connection.

package employeeServer;

import employee.*;

import javax.ejb.SessionBean;
import javax.ejb.CreateException;
import javax.ejb.SessionContext;
import java.rmi.RemoteException;
import java.sql.SQLException;
import javax.transaction.*;

public class EmployeeBean implements SessionBean
{
 SessionContext ctx;

 // Methods of the Employee interface
 public EmployeeInfo getEmployee (String name)
 throws RemoteException, SQLException
 {
 // get a connection to the local database. If this was a two-phase commit
 // transaction, you would provide the username and password
 // for the 2pc engine
 DataSource ds = (DataSource)ic.lookup ("/test/myDS");

 // get connection to the local database through DataSource.getConnection
 Connection conn = ds.getConnection ();

 //perform your SQL against the database.
 //prepare and execute a sql statement.
 //retrieve the employee’s selected benefits
 PreparedStatement ps =

Note: At this time, the Oracle JTA implementation does not

support including non-Oracle databases in a global transaction.
7-28 Enterprise JavaBeans Developer’s Guide and Reference

Configuring Two-Phase Commit Engine
 conn.prepareStatement ("update emp set ename = :(employee.name),
sal = :(employee.salary) where empno = :(employee.number)");

 try {
 ps.setInt (1, empNumber);
 ResultSet rset = ps.executeQuery ();
 if (!rset.next ())
 throw new RemoteException ("no employee with ID " + empNumber);
 return new EmpRecord (rset.getString (1), empNumber, rset.getFloat (2));
 } finally {
 ps.close();
 }

 //close the connection
 conn.close();

 return new EmployeeInfo (name, empno, salary);

 }

 // Methods of the SessionBean
 public void ejbCreate () throws RemoteException, CreateException {}
 public void ejbRemove() {}
 public void setSessionContext (SessionContext ctx) {
 this.ctx = ctx;
 }
 public void ejbActivate () {}
 public void ejbPassivate () {}
}

Configuring Two-Phase Commit Engine
If you have more than a single database involved in your transaction, you must

designate a two-phase commit engine for managing all changes to all databases

involved in the transaction. A two-phase commit engine is responsible for

contacting all of the databases at the end of the transaction and managing the

commit or rollback of all updates to all included databases. Thus, this two-phase

commit engine must have access to database links to each database included within

the transaction.

To configure for a two-phase commit, your system administrator must do the

following:

1. Designate an Oracle8i database as the two-phase commit engine.
Transaction Handling 7-29

Configuring Two-Phase Commit Engine
2. Configure database links from the two-phase commit engine to each database

that may be involved in the global transaction. This is necessary for the

two-phase commit engine to communicate with each database at the end of the

transaction.

3. Provide the database link name in the -dblink option of bindds for each

individual database when binding that database’s DataSource into the

namespace.

bindds /test/empDatabase -url jdbc:oracle:thin:@empHost:5521:ORCL
-dstype jta -dblink 2pcToEmp.oracle.com

4. Provide the two-phase commit engine’s fully-qualified database address,

username, and password when binding the UserTransaction into the

namespace.

bindut /test/myUT -url sess_iiop://dbsun.mycompany.com:2481:ORCL
-user SCOTT -password TIGER

5. Update the Oracle-specific deployment descriptor with the JNDI name for the

two-phase commit engine. This name should be included in the

<transaction-manager> element. This element only needs to be defined in

the bean where the transaction is started. See "Defining Two Phase Commit

Engine for Transactions" on page A-26 for more information.

Once all of this configuration is complete, your application differs from the

single-phase commit scenario in the following aspects:

■ If you are demarcating your transaction from the client, you can chose to not

supply the username and password in the UserTransaction binding; but

instead, provide the username/password when retrieving the

UserTransaction object within the Hashtable in the InitialContext
used when looking up the UserTransaction .

■ You can only retrieve database connections through

DataSource.getConnection . Since this object is bound with the database

Note: Verify that the user bound with the UserTransaction has

FORCE ANY TRANSACTION granted to the user that bound this

object. This privilege enables the user to commit this transaction. In

this example, you would execute the following:

GRANT FORCE ANY TRANSACTION TO SCOTT
7-30 Enterprise JavaBeans Developer’s Guide and Reference

Configuring Two-Phase Commit Engine
link, which the two-phase commit engine needs to manage the changes within

the database, you can only use the DataSource to enlist database resources.

Figure 7–4 shows the client invoking EmployeeBean , which opens a connection to

its local database and a connection to a remote database.

Figure 7–4 Including Remote Oracle8i Databases in a Global Transaction

Example 7–8 Client Code

The only difference between this client and the client in Example 7–1 is that this

client does not start the transaction. When the client invokes the EmployeeBean,
the container starts the transaction.

package client;
import common.*;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class Client
{
 public static void main (String[] args) throws Exception
 {
 if (args.length != 6)
 {
 System.out.println ("usage: Client serviceURL jdbcURL objectName " +

 "user password");
 System.exit (1);
 }
 String serviceURL = args [0];
 String jdbcURL = args [1];

Client EmployeeBeanIIOP

connection

EmployeeDS

HRDS

JDBC
connection

JDBC
connection
Transaction Handling 7-31

Configuring Two-Phase Commit Engine
 String objectName = args [2];
 String user = args [3];
 String password = args [4];

 // set up the initial context
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 // lookup the home and remote interfaces fro the employee
 EmployeeHome home = (EmployeeHome)ic.lookup (serviceURL + objectName);
 EmployeeRemote remote = home.create ();
 Employee employee = null;

 // retrieve info abount this employee in this session
 employee = remote.getEmployeeForUpdate ("SCOTT");
 System.out.println ("Beginning salary for " + employee.name + " is " +

employee.salary);

 // increase salary
 // employee.salary += 0.1 * employee.salary;
 employee.salary += 100;

 // update the infomation in the transaction
 remote.updateEmployee (employee);

 // Get and print the info in the transaction
 employee = remote.getEmployee ("SCOTT");
 System.out.println ("End salary for " + employee.name + " is " +

employee.salary);
 }
}

Example 7–9 EmployeeBean EJB Deployment Descriptor

The EmployeeBean is specified as a container-managed transaction bean with the

RequiresNew attribute. Also, the JDBC 2.0 and pre-2.0 objects are defined as

environment variables.

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems Inc.//DTD Enterprise JavaBeans 1.1
//EN" "ejb-jar.dtd">
7-32 Enterprise JavaBeans Developer’s Guide and Reference

Configuring Two-Phase Commit Engine
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>test/EmployeeBean</ejb-name>
 <home>common.EmployeeHome</home>
 <remote>common.EmployeeRemote</remote>
 <ejb-class>server.EmployeeBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>

 <env-entry>
 <env-entry-name>EmployeeBean.KPRB_URL</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>jdbc:oracle:kprb:</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>EmployeeBean.JDBCDriverName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>oracle.jdbc.driver.OracleDriver</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>EmployeeBean.JDBC_URL</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 JDBC_URL=jdbc:oracle:thin:@localhost:5521:jis1
 </env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>EmployeeBean.DB_LINK</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 LOOP2.REGRESS.RDBMS.DEV.US.ORACLE.COM
 </env-entry-value>
 </env-entry>
 <resource-ref>

 <res-ref-name>jdbc/EmployeeDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
 <resource-ref>
 <res-ref-name>jdbc/HRDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
 </session>
 </enterprise-beans>
Transaction Handling 7-33

Configuring Two-Phase Commit Engine
 <assembly-descriptor>
 <security-role>
 <description>no description</description>
 <role-name>PUBLIC</role-name>
 </security-role>
 <method-permission>
 <description>no description</description>
 <role-name>PUBLIC</role-name>
 <method>
 <ejb-name>test/EmployeeBean</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <container-transaction>
 <description>no description</description>
 <method>
 <ejb-name>test/EmployeeBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>RequiresNew</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Example 7–10 EmployeeBean Oracle-Specific Deployment Descriptor

The environment variables for the JDBC objects are mapped to the JNDI bound

names. The UserTransaction that is bound with the two-phase commit engine

URL is specified in the <transaction-manager> element.

<?xml version="1.0"?>
<!DOCTYPE oracle-descriptor PUBLIC "-//Sun Microsystems Inc.//DTD Enterprise Jav
aBeans 1.1//EN" "oracle-ejb-jar.dtd">
<oracle-descriptor>
 <mappings>
 <ejb-mapping>
 <ejb-name>EmployeeBean</ejb-name>
 <jndi-name>test/EmployeeBean</jndi-name>
 </ejb-mapping>
 <security-role-mapping>
 <security-role>
 <description>just a role</description>
 <role-name>SECURITY_CLERK</role-name>
 </security-role>
 <oracle-role>CLERK</oracle-role>
7-34 Enterprise JavaBeans Developer’s Guide and Reference

Configuring Two-Phase Commit Engine
 </security-role-mapping>
 <resource-ref-mapping>
 <res-ref-name>jdbc/EmployeeDS</res-ref-name>
 <jndi-name>test/DataSource/empDS</jndi-name>
 </resource-ref-mapping>
 <resource-ref-mapping>
 <res-ref-name>jdbc/HRDS</res-ref-name>
 <jndi-name>test/DataSource/hrDS</jndi-name>
 </resource-ref-mapping>
 <transaction-manager>
 <jndi-name>test/UserTransaction/testut</jndi-name>
 </transaction-manager>
 </mappings>
</oracle-descriptor>

Example 7–11 EmployeeBean Using Bean-Managed Transactions

The container-managed transactional EmployeeBean retrieves connections to both

the local and a remote Oracle8i database.

package server;

import common.*;
import java.sql.*;
import java.util.Hashtable;
import java.rmi.RemoteException;
import javax.sql.*;
import javax.naming.*;
import javax.ejb.*;
import oracle.aurora.jndi.sess_iiop.*;
import sqlj.runtime.ref.DefaultContext;
import javax.transaction.*;

import oracle.aurora.transaction.xa.OracleJTADataSource;

public class EmployeeBean implements SessionBean
{
 SessionContext ctx;
 Context ic = null; // inSession Lookup Context
 Connection localConn = null;
 Connection remoteConn = null;
 DefaultContext remoteCtx = null;
 Employee remoteEmployee = null;
 String remoteEmpName = "SMITH";
Transaction Handling 7-35

Configuring Two-Phase Commit Engine
 private void setupDSConnections ()
 throws SQLError, RemoteException
 {
 try {
 if (ic == null)

ic = new InitialContext ();

 //retrieve the remote connection
 remoteConn = getRemoteDSConnection ();
 if (remoteConn == null)

System.out.println ("remote connection is NULL");
 else

System.out.println ("got remote connection");

 //setup the context for issuing SQLJ against the remote database
 remoteCtx = new DefaultContext (remoteConn);

 //retrieve the local connection
 localConn = getLocalDSConnection ();
 if (localConn == null)

System.out.println ("local connection is NULL");
 else

System.out.println ("got local connection");
 } catch (NamingException e) {
 e.printStackTrace ();
 throw new SQLError ("setupDSConnection failed:" + e.toString ());
 } catch (SQLException e) {
 e.printStackTrace ();
 throw new SQLError ("setupDSConnection failed:" + e.toString ());
 }
 }

 private Connection getLocalDSConnection ()
 throws SQLException, SQLError
 {
 try {
 System.out.println ("looking up EmployeeDS in JNDI");
 // get a connection to the local DB using an environment variable
 //specified in the deployment descriptor
 DataSource localDS = (DataSource)ic.lookup

("java:comp/env/jdbc/EmployeeDS");
 System.out.println ("getLocalDSConnection: " +

 ((OracleJTADataSource)localDS).getURL());

 // get a connectoin to the local DB
7-36 Enterprise JavaBeans Developer’s Guide and Reference

Configuring Two-Phase Commit Engine
 return localDS.getConnection ();
 } catch (NamingException e) {
 e.printStackTrace ();
 throw new SQLError ("getLocalDSConnection failed:" + e.toString ());
 }
 }

 private Connection getRemoteDSConnection ()
 throws SQLException, SQLError
 {
 try {
 // get a connection to the remopte DB
 System.out.println ("looking up HRDS in JNDI");
 //retrieve the remote database DataSource HRDS using the environment
 //variable specified in the deployment descriptor
 DataSource remoteDS = (DataSource)ic.lookup ("java:comp/env/jdbc/HRDS");
 System.out.println ("getRemoteDSConnection: "+

 ((OracleJTADataSource)remoteDS).getURL());

 // get a connection to the remote DB passing in the usernamd and
 // password for this database. (Otherwise, it would have had to be
 // specified in the Context environment.
 return remoteDS.getConnection ("scott", "tiger");
 } catch (NamingException e) {
 e.printStackTrace ();
 throw new SQLError ("getRemoteDSConnection failed:" + e.toString ());
 }
 }

 public void updateEmployee (Employee employee)
 throws SQLError, RemoteException
 {
 try {
 setupDSConnections ();

 //issue SQL DML statements against the local database
 #sql { update emp set ename = :(employee.name), sal = :(employee.salary)
 where empno = :(employee.number) };

 remoteEmployee.salary += 200;

 //issue SQL DML statemetns against the remote database
 #sql [remoteCtx] { update emp set ename = :(remoteEmployee.name),

sal = :(remoteEmployee.salary)
 where empno = :(remoteEmployee.number) };
Transaction Handling 7-37

Creating DataSource Objects Dynamically
 //close both database connections
 localConn.close();
 remoteConn.close ();
 } catch (SQLException e) {
 e.printStackTrace ();
 throw new SQLError ("updateEmployee failed: " + e.toString ());
 }
 }

 public void setSessionContext(SessionContext ctx)
 {
 this.ctx = ctx;
 }

 public void ejbCreate() throws CreateException, RemoteException {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void ejbRemove() {}

}

Creating DataSource Objects Dynamically
If you want to bind only a single DataSource object in the namespace to be used

for multiple database resources, you must do the following:

1. Bind the DataSource without specifying the URL, host, port, SID, or driver

type. Thus, you execute the bindds tool with only the -dstype jta option, as

follows:

sess_sh -service jdbc:oracle:thin:@nsHost:5521:ORCL -user SCOTT -password
TIGER
& bindds /test/empDatabase -dstype jta

2. Retrieve the DataSource in your code. When you perform the lookup, you

must cast the returned object to OracleJTADataSource instead of

DataSource . The Oracle-specific version of the DataSource class contains

methods to set the DataSource properties.

3. Set the following properties:

■ URL with the OracleJTADataSource.setURL method
7-38 Enterprise JavaBeans Developer’s Guide and Reference

Setting the Transaction Timeout
■ Host, port, SID, and driver type if you did not set the URL with the

following OracleJTADataSource methods: setURL ,

setDatabaseName , setPortNumber , and setDriverType

■ Database link if using two-phase commit engine with the

OracleJTADataSource.setDBLink method

■ Username and password if need to provide authentication information for a

two-phase commit engine. This information could have been provided on

the initial context environment or can be provided in the getConnection
method. However, if you want to set it with the OracleJTADataSource
methods, you can through the setUser and setPassword methods.

4. Retrieve the connection through the

OracleJTADataSource .getConnection method as indicated in the other

examples.

Example 7–12 Retrieving Generic DataSource

The following example retrieves a generically bound DataSource from the

namespace using in-session lookup and initializes all relevant fields.

//retrieve an in-session generic DataSource object
OracleJTADataSource ds = (OracleJTADataSource)ic.lookup ("/test/genericDS");

//set all relevant properties for my database
//URL is for a local database so use the KPRB URL
ds.setURL ("jdbc:oracle:kprb:");
//Used in two-phase commit, so provide the fully qualified database link that
//was created from the two-phase commit engine to this database
ds.setDBLink("localDB.oracle.com");

//Finally, retrieve a connection to the local database using the DataSource
Connection conn = ds.getConnection ();

Setting the Transaction Timeout
A global transaction automatically has an idle timeout of 60 seconds. If the object

attached to the transaction is idle for over the timeout limit, the transaction is rolled

back. To initialize a different timeout, set the timeout value—in seconds—through

the setTransactionTimeout method before the transaction is begun. If you

change the timeout value after the transaction begins, it will not affect the current

transaction. The following example sets the timeout to 2 minutes (120 seconds)

before the transaction begins.
Transaction Handling 7-39

Using the Session Synchronization Interface
//create the initial context
InitialContext ic = new InitialContext ();

//retrieve the UserTransaction object
ut = (UserTransaction)ic.lookup ("/test/myUT");

//set the timeout value to 2 minutes
ut.setTransactionTimeout (120);

//begin the transaction
ut.begin

//Update employee table with new employees
updateEmployees(emp, newEmp);

//end the transaction.
ut.commit ();

Using the Session Synchronization Interface
An EJB that is a session bean can optionally implement the session synchronization

interface, to be notified by the container of the transactional state of the bean. The

following methods are specified in the javax.ejb.SessionSynchronization
interface:

afterBegin
public abstract void afterBegin() throws RemoteException

The afterBegin() method notifies a session Bean instance that a new transaction

has started, and that the subsequent methods on the instance are invoked in the

context of the transaction.

A bean can use this method to read data from a database and cache the data in the

bean’s fields.

This method executes in the proper transaction context.

beforeCompletion
public abstract void beforeCompletion() throws RemoteException

The container calls the beforeCompletion() method to notify a session bean that

a transaction is about to be committed. You can implement this method to, for

example, write any cached data to the database.
7-40 Enterprise JavaBeans Developer’s Guide and Reference

Using the Session Synchronization Interface
afterCompletion
public abstract void afterCompletion(boolean committed) throws RemoteException

The container calls afterCompletion() to notify a session bean that a transaction

commit protocol has completed. The parameter tells the bean whether the

transaction has been committed or rolled back.

This method executes with no transaction context.

Example 7–13 SessionSynch Example

In order for the container to invoke your bean implementation before and after

every transaction, your bean must implement the SessionSynch interface.

package employeeServer;

import employee.*;

import javax.ejb.SessionBean;
import javax.ejb.CreateException;
import javax.ejb.SessionContext;
import java.rmi.RemoteException;

import java.sql.SQLException;

public class EmployeeBean implements SessionBean implements SessionSynch
{
 // Methods of the Employee interface
 public EmployeeInfo getEmployee (String name)
 throws RemoteException, SQLException
 {
 int empno = 0;
 double salary = 0.0;
 #sql { select empno, sal into :empno, :salary from emp
 where ename = :name };

 return new EmployeeInfo (name, empno, salary);
 }

 public void updateEmployee (EmployeeInfo employee)
 throws RemoteException, SQLException
 {
 #sql { update emp set ename = :(employee.name),
 sal = :(employee.salary)
 where empno = :(employee.number) };
Transaction Handling 7-41

JDBC Restrictions
 return;
 }

 // Methods of the SessionBean
 public void ejbCreate () throws RemoteException, CreateException {}
 public void ejbRemove () {}
 public void setSessionContext (SessionContext ctx) {}
 public void ejbActivate () {}
 public void ejbPassivate () {}

 public void beforeBegin()
 {
 ... perform work ...
 }
 public void afterCompletion()
 {
 ... perform work ...
 }
}

JDBC Restrictions
If you are using JDBC calls in your bean to update a database, and you have an

active transaction context, you should not also use JDBC to perform transaction

services, by calling methods on the JDBC connection. Do not code JDBC transaction

management methods. For example:

Connection conn = ...
...
conn.commit(); // DO NOT DO THIS!!

Doing so will cause a SQLException to be thrown. Instead, you must commit

using the UserTransaction object retrieved to handle the global transaction.

When you commit using the JDBC connection, you are instructing a local

transaction to commit, not the global transaction. When the connection is involved

in a global transaction, trying to commit a local transaction within the global

transaction causes an error to occur.

In the same manner, you must also avoid doing direct SQL commits or rollbacks

through JDBC. Code the bean to either handle transactions directly using the

UserTransaction interface or let the bean container manage the

bean transactions.
7-42 Enterprise JavaBeans Developer’s Guide and Reference

JDBC Restrictions
Transaction Handling 7-43

JDBC Restrictions
7-44 Enterprise JavaBeans Developer’s Guide and Reference

XML Deployment Descr
A

XML Deployment Descriptors

To deploy your Enterprise JavaBean component into the database, you must

provide the appropriate deployment descriptors. There are two possible

deployment descriptors. Both deployment descriptors are written using XML

notation.

The following table describes both deployment descriptors:

Note: All values entered in either deployment descriptor are case

sensitive. This includes usernames and passwords.

Deployment
Descriptor

Required/
Optional

Description

Enterprise

JavaBean

Deployment

Descriptor

Required This deployment descriptor is defined by Sun

Microsystems’s Enterprise JavaBeans 1.1

specification. It contains information on the

names and features for the bean.
iptors A-1

Enterprise JavaBean Deployment Descriptor
This appendix briefly describes the sections within both of the deployment

descriptors. For more information on the Sun Microsystems’s XML deployment

descriptor, see the "Deployment Descriptor" chapter in the Enterprise Javabeans 1.1

specification located at http://www.javasoft.com . For more information on the

Oracle-specific deployment descriptor, see "DTD for Oracle-Specific Deployment

Descriptor" on page A-33.

Enterprise JavaBean Deployment Descriptor
This is the main deployment descriptor that contains most of the information about

the bean: the bean identification, security roles, transaction demarcation, and any

optional environment definition.

■ Header

■ JAR file

■ Enterprise JavaBeans Descriptor

■ Application Assembler Section

■ EJB Client JAR Section

Oracle-Specific

Deployment

Descriptor

Optional The Oracle-specific deployment descriptor

contains information specific to beans

deployed in an Oracle8i database. It is required

only if one of the following is true:

■ The names provided within the XML

deployment descriptor can be logical

names and not the actual names.

■ If you need to specify the <run-as>
element. This was an EJB 1.0 feature that is

supported within the Oracle-specific

deployment descriptor.

■ If you use container-managed persistence

for your bean, the persistence manager and

container managed fields are defined

within the Oracle-specific deployment

descriptor.
A-2 Enterprise JavaBeans Developer’s Guide and Reference

Enterprise JavaBean Deployment Descriptor
Header
The following is the required header for all Oracle8i EJB deployment descriptors. It

details the XML version and the XML DTD file, which details the syntax required

for the descriptor.

XML Version Number
<?xml version="1.0"?>

DTD Filename
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems Inc.//DTD Enterprise JavaBeans 1.1
//EN" "ejb-jar.dtd">

JAR file
The first element to be declared is the <ejb-jar> element. Within this element,

you define two sections: the <enterprise-beans> section and the

<assembly-descriptor> section.

The overall structure for the EJB deployment descriptor follows this syntax:

<ejb-jar> //Start of JAR file descriptor
 <description> </description> //Description of JAR file
 <enterprise-beans> //EJB Descriptor section
 . . .
 </enterprise-beans>
 <assembly-descriptor> //Application Descriptor section
 . . .
 </assembly-descriptor>
 <ejb-client-jar> //specify output JAR file for
 ... //client stubs
 </ejb-client-jar>
</ejb-jar>

Deployment Section Description

<enterprise-beans> This section defines each bean and each bean’s

environment.

<assembly-descriptor> This section defines security roles and transactional

attributes for the beans. If you decide to use the

defaults, this section is optional.
XML Deployment Descriptors A-3

Enterprise JavaBean Deployment Descriptor
Enterprise JavaBeans Descriptor
The beans are described within the <enterprise-beans> section. This section

contains information such as the type of bean—entity or session, the home interface

name, the remote interface name, the bean class name, and the type of

persistence—container-managed or bean-managed. The following shows the

elements contained within the <enterprise-beans> section.

<enterprise-beans> //beginning of the EJB descriptor
 <entity> or <session> //define EJB type: entity or session
 <description> </description> //text display description
 <ejb-name> </ejb-name> //logical name for the bean
 <home> </home> //home interface name
 <remote> </remote> //remote interface name
 <ejb-class> </ejb-class> //bean class name
 <persistence-type> </persistence-type> //For entity beans: container or
 //bean-managed?
 <prim-key-class> </prim-key-class> //For entity beans: primary key class
 <primkey-field> </prim-key-field> //For entity beans: primary key field
 <reentrant> </reentrant> //Reentrant boolean: True or False
 <cmp-field> </cmp-field> //Container-managed
 //fields for entity beans
 <transaction-type> </transaction-type> //transaction information for bean
 <env-entry> </env-entry> //bean environment definition
 <ejb-ref> </ejb-ref> //EJB environment definition
 <resource-ref> </resource-ref> //database resource environment
 <security-role-ref> </security-role-ref> //security role for bean
 </session> or </entity>
</enterprise-beans>

Type of Bean
The first item you must define is whether the bean is a session or an entity bean.

You do this with the <entity> or <session> element.

Bean Names
There are four names necessary to define the bean within the descriptor:

■ The home interface is defined within the <home> element.

■ The remote interface is defined within the <remote> element.

■ The bean class is defined within the <ejb-class> element.

■ The logical name within the JAR file is defined within the <ejb-name>
element. You can do one of two things with this element. You can declare the
A-4 Enterprise JavaBeans Developer’s Guide and Reference

Enterprise JavaBean Deployment Descriptor
actual JNDI name within this element or you can define a logical name that

identifies your bean within the deployment descriptor. Ultimately, the

<ejb-name> must resolve to the JNDI bound name for the bean. So, if you use

a logical name, this name must be mapped to the JNDI name within the

Oracle-specific deployment descriptor.

Example A–1 Purchase Order Bean Descriptor

The following defines the purchase order bean as an entity bean with the following

components:

■ home interface—purchase.PurchaseOrderHome

■ remote interface—purchase.PurchaseOrder

■ bean implementation—purchaseServer.PurchaseOrderBean

■ logical name for the bean within the descriptor—/test/purchase

 <enterprise-beans>
 <entity>

 <description>no description</description>
 <ejb-name>test/purchase</ejb-name>

 <home>purchase.PurchaseOrderHome</home>
 <remote>purchase.PurchaseOrder</remote>
 <ejb-class>purchaseServer.PurchaseOrderBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>

 </entity>
 </enterprise-beans>

Entity Bean Elements
Certain elements define items that pertain only to entity beans. These are as follows:

Note: This example used the JNDI name, "/test/purchase ",

within the <ejb-name> element. If a logical name had been used,

such as PurchaseOrder , then PurchaseOrder would have to be

mapped to "/test/purchase " within the <mappings> element

in the Oracle-specific deployment descriptor. See "Defining

Mappings" on page A-23 for more information.
XML Deployment Descriptors A-5

Enterprise JavaBean Deployment Descriptor
■ Define the bean as container-managed or bean-managed through the

<persistence-type> element. Value can be either "Container " or "Bean".

■ Define the data fields for a container-managed persistent (CMP) entity bean

with the <cmp-field> element. Each data field is listed within its own

<cmp-field> <field-name> section.

■ Define the primary key for the entity bean. Note that this is only required for

CMP beans.

The primary key can be declared as a single field of a Java type that is consistent

with SQL types, such as java.lang.String or declared as a combination of

several container-managed fields. The one restriction is that you cannot define

the primary key to be a byte array that is mapped to a Long Raw column in the

database.

Example A–2 CMP Entity Bean

In this example, the customer bean is a CMP entity bean with a customer number as

its primary key and two persistent fields: customer name and address.

■ The bean is defined as container-managed persistent within the

<persistence-type> element.

■ The primary key is a customer id, custid , which is declared as

java.lang.String .

1. The custid is defined in a <cmp-field>.

Primary Key
Declaration Methodology Required

Java data type
consistent with SQL
types

1. You declare the data type for the primary key within the
<prim-key-class> element.

2. Define the field that will become the primary key as CMP
within a <cmp-field> element.

3. Designate the CMP field by defining it within the
<primkey-field> element.

Combination of
container-managed
persistent fields for
primary key

1. Define all fields within the primary key as CMP within the
<cmp-field> element.

2. Define a serializable class of the name <bean_name>PK
that contains the names of the <cmp-field> elements that
are included in the primary key.

3. List the primary key class within the <prim-key-class>
element.
A-6 Enterprise JavaBeans Developer’s Guide and Reference

Enterprise JavaBean Deployment Descriptor
2. Map the custid to the primary key within <primkey-field>

3. Declare the custid ’s data type within the <prim-key-class> element.

■ The other container-managed persistent fields are defined within the

<cmp-field> elements as name and addr .

<enterprise-beans>
 <entity>
 <description>customer bean</description>
 <ejb-name>/test/customer</ejb-name>
 <home>customer.CustomerHome</home>
 <remote>customer.Customer</remote>
 <ejb-class>customerServer.CustomerBean</ejb-class>

 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>

 <primkey-field>custid</primkey-field>
 <reentrant>False</reentrant>

 <cmp-field><field-name>custid</field-name></cmp-field>
 <cmp-field><field-name>name</field-name></cmp-field>
 <cmp-field><field-name>addr</field-name></cmp-field>
 </entity>
</enterprise-beans>

Example A–3 CMP Entity Bean with Complex Primary Key

In this example, the customer bean is a CMP entity bean with a complex primary

key defined within its own serializable class. In addition, the CMP bean declares

two persistent fields: customer name and address.

■ The bean is defined as container-managed persistent within the

<persistence-type> element.

■ The primary key is defined within the customer.CustomerPK class.

1. The elements of the primary key are a customer last name and date of birth:

custname and dobirth . Both fields are defined in a <cmp-field>.

2. Declare the custid’s data type within the <prim-key-class> element.

Note: The method for translating the container-managed fields

into actual persistent storage is dependent on the persistent

manager that you choose. See "Defining Container-Managed

Persistence" on page A-28 for more information.
XML Deployment Descriptors A-7

Enterprise JavaBean Deployment Descriptor
■ The other container-managed persistent fields are defined within the

<cmp-field> elements as name and addr .

<enterprise-beans>
 <entity>
 <description>customer bean</description>
 <ejb-name>/test/customer</ejb-name>
 <home>customer.CustomerHome</home>
 <remote>customer.Customer</remote>
 <ejb-class>customerServer.CustomerBean</ejb-class>

 <persistence-type>Container</persistence-type>
 <prim-key-class>customer.CustomerPK</prim-key-class>
 <reentrant>False</reentrant>

 <cmp-field><field-name>custname</field-name></cmp-field>
 <cmp-field><field-name>dobirth</field-name></cmp-field>

 <cmp-field><field-name>name</field-name></cmp-field>
 <cmp-field><field-name>addr</field-name></cmp-field>
 </entity>
</enterprise-beans>

Environment Elements
You can create three types of environment elements that are accessible to your bean

during runtime: environment variables, EJB references, and resource managers

(JDBC DataSource). These environment elements are static and can not be

changed by the bean.

ISVs typically develop EJBs that are independent from the EJB container. In order to

distance the bean implementation from the container specifics, you can create

environment elements that map to one of the following: defined variables, entity

beans, or resource managers. This indirection enables the bean developer to refer to

existing variables, EJBs, and a JDBC DataSource without specifying the actual

name. These names are defined in the deployment descriptor and are linked to the

actual names within the Oracle-specific deployment descriptor.

Environment variables you can create environment variables that your bean can access

through a lookup on the InitialContext . These variables are defined within an

Note: The method for translating the container-managed fields

into actual persistent storage is dependent on the persistent

manager that you choose. See "Defining Container-Managed

Persistence" on page A-28 for more information.
A-8 Enterprise JavaBeans Developer’s Guide and Reference

Enterprise JavaBean Deployment Descriptor
<env-entry> element and can be of the following types: String , Integer ,

Boolean , Double , Byte , Short , Long , and Float . The name of the environment

variable is defined within <env-entry-name> , the type is defined in

<env-entry-type> , and its initialized value is defined in <env-entry-value> .

The <env-entry-name> is relative to the "java:comp/env" context.

For example, the following two environment variables are declared within the XML

deployment descriptor for java:comp/env/minBalance and

java:comp/env/maxCreditBalance .

<env-entry>
 <env-entry-name>minBalance</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>500</env-entry-value>
 </env-entry>
<env-entry>
 <env-entry-name>maxCreditBalance</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>10000</env-entry-value>
</env-entry>

Within the bean’s code, you would access these environment variables through the

InitialContext , as follows:

InitialContext ic = new InitialContext();
Integer min = (Integer)ic.lookup("java:comp/env/minBalance");
Integer max = (Integer) ic.lookup("java:comp/env/maxCreditBalance"));

Notice that to retrieve the values of the environment variables, you prefix each

environment element with "java:comp/env/ ", which is the location that the

container stored the environment variable.

Environment References To Other Enterprise JavaBeans You can define a reference to an

EJB within the deployment descriptor. If you know that your bean will call out to

another bean, you can define this reference within the deployment descriptors. The

deployejb tool binds the EJB reference to the bean’s home interface, which

enables the target bean to be retrieved without the originating bean needing to

know the exact JNDI name for the target. Either way, you use JNDI to retrieve the

target bean’s home. Once retrieved, the bean referenced by the returned EJB

reference is instantiated in the same session.

Declaring the target bean as an environment EJB reference provides a level of

indirection, so that the originating bean can refer to the target bean with a logical
XML Deployment Descriptors A-9

Enterprise JavaBean Deployment Descriptor
name. This is useful when the target bean’s JNDI name within the name space may

be different depending on the operating environment.

To define an EJB within the environment, you provide the following:

1. Name—provide a logical name for the target bean. This name is what the bean

uses within the JNDI URL for accessing the target bean. The name should begin

with "ejb/ ", such as "ejb/myEmployee ", and will be available within the

"java:comp/env/ejb " context.

2. Type—define whether the bean is a session or an entity bean. Value should be

either "Session " or "Entity ".

3. Home—provide the fully qualified home interface name.

4. Remote—provide the fully qualified remote interface name.

5. Link —provide a name that links this EJB reference with the actual JNDI URL.

As shown in Figure A–1, the logical name for the bean is mapped to the JNDI

name by providing the same link name, "HelloWorldBean ", in both the

<ejb-link> in the EJB deployment descriptor and the <ejb-name> within

the <ejb-mapping> element in the Oracle-specific deployment descriptor.

Figure A–1 EJB Reference Mapping

Note: Using the <ejb-link> field to map a logical name to a

JNDI URL defined within the Oracle-specific deployment

descriptor is a different implementation than stated within the

Enterprise JavaBeans 1.1 specification.

EJB Deployment Descriptor Oracle-specific Deployment Descriptor

.

.
<ejb-ref>
 <ejb-ref-name>ejb/HelloWorld</ejb-ref-name>
 .
 .
 <ejb-link>HelloWorldBean </ejb-link>
</ejb-ref>

<mappings>
 <ejb-mapping>
 <ejb-name>HelloWorldBean </ejb-name>
 <jndi-name>test/myHello</jndi-name>
 </ejb-mapping>
</mappings>

.

.

.

A-10 Enterprise JavaBeans Developer’s Guide and Reference

Enterprise JavaBean Deployment Descriptor
Example A–4 Defining an EJB Reference Within the Environment

The following example defines a reference to the Hello bean, as follows:

1. The logical name used for the target bean within the originating bean is

"java:comp/env/ejb/HelloWorld ".

2. The target bean is a session bean.

3. Its home interface is hello.HelloHome ; its remote interface is hello.Hello .

4. The link to the JNDI URL for this bean is defined in the Oracle-specific

deployment descriptor under the "HelloWorldBean " name.

As shown in Figure A–1, the <ejb-link> is mapped to <ejb-name> within the

<ejb-mapping> element in the Oracle-specific deployment descriptor by

providing the same logical name in both elements. The Oracle-specific deployment

descriptor would have the following definition to map the logical bean name of

"java:comp/env/ejb/HelloWorld " to the JNDI URL "/test/myHello ".

EJB
Deployment
Descriptor

<ejb-ref>
 <description>Hello World Bean</description>
 <ejb-ref-name>ejb/HelloWorld</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>hello.HelloHome</home>
 <remote>hello.Hello</remote>

<ejb-link>HelloWorldBean</ejb-link>
</ejb-ref>

Oracle-specific
Deployment
Descriptor

<mappings>
 <ejb-mapping>

 <ejb-name>HelloWorldBean</ejb-name>

</ejb-ref>

<jndi-name>/test/myHello</jndi-name>
 </ejb-mapping>
</mappings>
. . .
XML Deployment Descriptors A-11

Enterprise JavaBean Deployment Descriptor
To invoke this bean from within your implementation, you use the

<ejb-ref-name > defined in the deployment descriptor. You prefix this name with

"java:comp/env/ejb/ ", which is where the container places the EJB references

defined in the deployment descriptor.

InitialContext ic = new InitialContext();
HelloHome hh = (HelloHome)ic.lookup("java:comp/env/ejb/HelloWorld");

Environment References To Resource Manager Connection Factory References The

resource manager connection factory references can include resource managers such

as JMS, mail, XML, and JDBC DataSource objects. In this release, the only resource

manager connection factory that Oracle8i supports is the JDBC DataSource .

Similar to the EJB references, you can access a database through JDBC either using

the traditional method or by creating an environment element for a JDBC

DataSource .

In order to create an environment element for your JDBC DataSource , you must

do the following:

1. Bind your JDBC DataSource within the JNDI name space.

2. Create a logical name within the EJB deployment descriptor. This name should

always start with "java:comp/env/jdbc ".

3. Map the logical name within the EJB deployment descriptor to the JNDI name,

created in step 1, within the Oracle-specific deployment descriptor.

As shown in Figure A–2, the JDBC DataSource was bound to the JNDI name

"test/OrderDataSource ". The logical name that the bean knows this resource as

is "jdbc/OrderDB ". These names are mapped together within the Oracle-specific

deployment descriptor. Thus, within the bean’s implementation, the bean can

retrieve the connection to OrderDataSource by using the

"java:comp/env/jdbc/OrderDB " environment element.

Note: For more information on the Oracle-specific deployment

descriptor, see "Oracle-Specific Deployment Descriptor" on

page A-22.
A-12 Enterprise JavaBeans Developer’s Guide and Reference

Enterprise JavaBean Deployment Descriptor
Figure A–2 JDBC Resource Manager Mapping

The JDBC DataSource environment element is defined with the following

information:

Example A–5 Defining an environment element for JDBC Connection

The environment element is defined within the EJB deployment descriptor by

providing the logical name, "jdbc/OrderDB ", its type of

javax.sql.DataSource , and the authenticator of "Application ".

Element Description

<res-ref-name> The logical name of the JDBC DataSource to be used within the
originating bean. The name should be prefixed with "jdbc /". In
our example, the logical name for our ordering database is
"jdbc/OrderDB ".

<res-type> The Java type of the resource. For JDBC, this is
javax.sql.DataSource .

<res-auth> Define who is responsible for signing on to the database. At this
time, the only value supported is "Application ". The
application provides the authentication information for the
database by providing the username and password within the
DataSource.

EJB Deployment Descriptor Oracle-specific Deployment Descriptor

<enterprise-beans>
 .
<resource-ref>
 <res-ref-name>jdbc/OrderDB </res-ref-name>
 <res-type>javax.sql.DataSource</res-type>

<mappings>
 <resource-ref-mapping>
 <res-ref-name>jdbc/OrderDB </res-ref-name>
 <jndi-name>test/OrderDataSource</jndi-name>
 </resource-ref-mapping>
</mappings>

 <res-auth>Application</res-auth>

</enterprise-beans>
</resource-ref>

EJB
Deployment
Descriptor

<resource-ref>
 <res-ref-name> jdbc/OrderDB </res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
</resource-ref>
XML Deployment Descriptors A-13

Enterprise JavaBean Deployment Descriptor
The environment element of "jdbc/OrderDB " is mapped to the JNDI bound name

for the connection, "test/OrderDataSource " within the Oracle-specific

deployment descriptor.

Once deployed, your application can retrieve the JDBC DataSource as follows:

javax.sql.DataSource db;
java.sql.Connection conn;
.
.
.
db = (javax.sql.DataSource) initCtx.lookup("java:comp/env/jdbc/OrderDB");
conn = db.getConnection();

Bean Services
The transaction, security, and reentrancy for the bean is defined by the following

elements:

■ Define reentrancy for the bean through the <reentrant> element. Value

should be either "True " or "False ".

■ Define the type of transaction demarcation for a session bean through the

<transaction-type> element. Value should be "Bean" if the session bean

uses bean demarcation or "Container " if the session bean uses container

demarcation for its transaction control.

Note that the transaction information—for both session and entity beans—is

defined in more detail within the <assembly-descriptor> section. See

"Defining Transactions" on page A-19 for more information.

■ Define the security role logical name for the bean with the

<security-role-ref> element. This refers to a security role name used

within the bean and should map to an actual security role defined within the

<assembly-descriptor> section. See "Defining Security" on page A-15 for

more information.

Oracle-specific
Deployment
Descriptor

<mappings>
 <resource-ref-mapping>
 <res-ref-name> jdbc/OrderDB </res-ref-name>
 <jndi-name>test/OrderDataSource</jndi-name>
 </resource-ref-mapping>
</mappings
A-14 Enterprise JavaBeans Developer’s Guide and Reference

Enterprise JavaBean Deployment Descriptor
Example A–6 Reentrancy, Transaction Demarcation, and Security Role

The following example defines a customer bean that is not reentrant, uses

bean-demarcated transactions, and uses the "CustRole " logical name within the

bean implementation when referring to its security role. This role name is mapped

to SCOTT.

<enterprise-beans>
 <session>
 <ejb-name>CustomerBean</ejb-name>
 <home>customer.CustomerHome</home>
 <remote>customer.Customer</remote>
 <ejb-class>customerServer.CustomerBean</ejb-class>
 <reentrant>False</reentrant>
 <transaction-type>Bean</transaction-type>
 <security-role-ref>
 <role-name>CustRole</role-name>
 <role-link>SCOTT</role-link>
 </security-role-ref>
 </session>
</enterprise-beans>

Application Assembler Section
The application assembler adds generic information about all of the beans in this

descriptor in the <assembly-descriptor> section. This section has the following

structure:

<assembly-descriptor>
 <security-role> </security-role>
 <method-permission> </method-permission>
 <container-transaction> </container-transaction>
</assembly-descriptor>

These sections describe the security and transaction attributes.

Defining Security
You can manage some of your security for the user and method permissions from

within the deployment descriptor. If you do not specify any method permissions,

the default is that no users are allowed access.

In addition, as shown in Figure A–3, you can use a logical name for a role within

your bean implementation, and map this logical name to the correct database role

or user. The mapping of the logical name to a database role is specified in the
XML Deployment Descriptors A-15

Enterprise JavaBean Deployment Descriptor
Oracle-specific deployment descriptor. See "Security Role" on page A-25 for more

information.

Figure A–3 Security Mapping

If you use a logical name for a database role within your bean implementation for

methods such as isCallerInRole , you can map the logical name to an actual

database role by doing the following:

1. Declare the logical name within the <enterprise-beans> section

<security-role-ref> element. For example, to define a role used within the

purchase order example, you may have checked, within the bean’s

implementation, to see if the caller had authorization to sign a purchase order.

Thus, the caller would have to be signed in under a correct role. In order for the

bean to not need to be aware of database roles, you can check

isCallerInRole on a logical name, such as POMgr, since only purchase order

managers can sign off on the order. Thus, you would define the logical security

role, POMgr within the <security-role-ref><role-name> element

within the <enterprise-beans> section, as follows:

<enterprise-beans>
...
 <security-role-ref>
 <role-name>POMgr</role-name>
 <role-link>SCOTT</role-link>
 </security-role-ref>

EJB Deployment Descriptor

<enterprise-beans>
...
 <security-role-ref>
 <role-name>POMgr</role-name>
 <role-link>SCOTT</role-link>
 <security-role-ref
...
</enterprise-beans>
<assembly-descriptor>
...
 <security-role>
 <role-name>SCOTT</role-name>
 </security-role>
 <method-permission>
 <role-name>SCOTT</role-name>
 <method>. . .</method>
 </method-permission>
...
</assembly-descriptor>
A-16 Enterprise JavaBeans Developer’s Guide and Reference

Enterprise JavaBean Deployment Descriptor
</enterprise-beans>

The <role-link> element within the <security-role-ref> element can

be the actual database role, which is defined further within the

<assembly-descriptor> section. Alternatively, it can be another logical

name, which is still defined more in the <assembly-descriptor> section

and is mapped to an actual database role within the Oracle-specific deployment

descriptor.

2. Define the role and the methods that it applies to. In the purchase order

example, any method executed within the PurchaseOrder bean must have

authorized itself as SCOTT. Note that PurchaseOrder is the name declared in

the <entity | session><ejb-name> element.

Thus, the following defines the role as SCOTT, the EJB as PurchaseOrder , and

all methods by denoting the ’*’ symbol.

<assembly-descriptor>
 <security-role>
 <description>Role needed purchase order authorization</description>
 <role-name>SCOTT</role-name>
 </security-role>
 <method-permission>
 <role-name>SCOTT</role-name>
 <method>
 <ejb-name>PurchaseOrder</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
...
</assembly-descriptor>

After performing both steps, you can refer to POMgr within the bean’s

implementation and the container translates POMgr to SCOTT.

The <method> element is used to define one or more methods within an interface

or implementation. According to the EJB specification, this definition can be of one

of three forms:

Note: SCOTT is the same as the <role-link> element within the

<enterprise-beans> section. This ties the logical name of

POMgr to the SCOTT definition.
XML Deployment Descriptors A-17

Enterprise JavaBean Deployment Descriptor
1. Defining all methods within a bean by specifying the bean name and using the

’*’ character to denote all methods within the bean, as follows:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

2. Defining a specific method that is uniquely identified within the bean. Use the

appropriate interface name and method name, as follows:

<method>
<ejb-name>myBean</ejb-name>
<method-name>myMethodInMyBean</method-name>

</method>>

3. Defining a method with a specific signature among many overloaded versions,

as follows:

<method>
<ejb-name>myBean</ejb-name>
<method-name>myMethod</method-name>
<method-params>

<method-param>javax.lang.String</method-param>
<method-param>javax.lang.String</method-param>

<method-params>
<method>

The parameters are the fully-qualified Java types of the method’s input

parameters. If the method has no input arguments, the <method-params >

element contains no elements. Arrays are specified by the array element’s type,

followed by one or more pair of square brackets, such as int [][].

4. Defining a specific method name that is defined in two or more interfaces. You

could have the same method name defined both in the bean implementation

and within either the remote or home interface. In this case, you must specify

which method you are defining by using the <method-intf > element, as

follows:

<method>

Note: If there are multiple methods with the same overloaded

name, the element of this style refers to all the methods with the

overloaded name.
A-18 Enterprise JavaBeans Developer’s Guide and Reference

Enterprise JavaBean Deployment Descriptor
<ejb-name>EmployeeService</ejb-name>
<method-intf>Remote</method-intf>
<method-name>create</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>

</method-params>
</method>

Defining the remote interface in the <method-intf > element differentiates the

create(String, String) method defined in the remote interface from the

create(String, String) method defined in the home interface, which

would be defined as follows:

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf>Home</method-intf>
<method-name>create</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>

</method-params>
</method>

Defining Transactions
Entity beans can only use container-managed transactions; session beans can use

either bean-managed or container-managed transactions. If you have a session

bean, you define whether it uses bean or container-managed transactions within the

<enterprise-beans> section with the <transaction-type> element. Values

should be either "Bean" or "Container ". For example, the following defines a

session bean as a bean-managed transactional bean:

<enterprise-beans>
 <session>
 . . .
 <transaction-type>Bean</transaction-type>
 </session>
</enterprise-beans>

Note: The <method-intf > element must be defined before the

<method-name > element.
XML Deployment Descriptors A-19

Enterprise JavaBean Deployment Descriptor
For container-managed beans, you define the how the container maintains the

transactions for the bean through transaction attributes. The transaction attributes

define in what situations to start a new transaction, to continue an existing

transaction, and others. If you have a bean-managed bean, you do not define any of

these attributes for the bean. However, if your bean-managed bean invokes another

bean, the target bean can be either bean or container-managed.

The transaction attributes are specified in the <trans-attribute > element and

are detailed in Table A–1.

Table A–1 Transaction Attributes

You can define the transaction attributes on a whole bean or on an individual

method within the bean. Each definition is contained within the

<container-transaction> element. If you are defining an attribute for the

entire bean, you supply the bean name (the <ejb-name> defined within the

Transaction Attribute Description

NotSupported The bean is not involved in a transaction. If the client calls the
bean while involved in a transaction, the client’s transaction is
suspended, the bean executes, and when the bean returns to the
client, the client’s transaction is resumed.

Required The bean must be involved in a transaction. If the client is
involved in a transaction, the bean uses the client’s transaction.
If the client is not involved in a transaction, the container starts a
new transaction for the bean.

Supports Whatever transactional state that the client is involved in is used
for the bean. If the client has begun a transaction, the client’s
transaction context is used by the bean. If the client is not
involved in a transaction, neither is the bean.

RequiresNew Whether the client is involved in a transaction or not, this bean
requires a new transaction that exists only for itself. If the client
calls while involved in a transaction, the client’s transaction is
suspended until the bean completes.

Mandatory The client must be involved in a transaction before invoking this
bean. The bean uses the client’s transaction context.

Never The bean is not involved in a transaction. Furthermore, the client
cannot be involved in a transaction when calling the bean. If the
client is involved in a transaction, a RemoteException is
thrown.
A-20 Enterprise JavaBeans Developer’s Guide and Reference

Enterprise JavaBean Deployment Descriptor
<session> or <entity> element) within the <container-transaction>
<method> <ejb-name> element.

The following example defines the following:

■ All methods (denoted by the ’*’ character) within the PurchaseOrder bean

must have a transaction (Required).

■ The price method within the PurchaseOrder bean must always have a new

transaction (RequiresNew).

<assembly-descriptor>
...
 <container-transaction>
 <method>
 <ejb-name>PurchaseOrder</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute> Required </trans-attribute>
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>PurchaseOrder</ejb-name>
 <method-name>price</method-name>
 </method>
 <trans-attribute> RequiresNew </trans-attribute>
 </container-transaction>
 . . .
</assembly-descriptor>

Finally, if you are using two-phase commit for your global transaction, you must

provide the UserTransaction object’s JNDI name to the

<transaction-manager> element within the Oracle-specific deployment

descriptor. See "Defining Two Phase Commit Engine for Transactions" on page A-26

for more information.

Note: The methods can be specified exactly as within the

<method-permission > element. See "Defining Security" on

page A-15 for more information.
XML Deployment Descriptors A-21

Oracle-Specific Deployment Descriptor
Oracle-Specific Deployment Descriptor
The Oracle-specific deployment descriptor is used for the following:

■ Defining Mappings

■ Defining Two Phase Commit Engine for Transactions

■ Defining Run-As Identity

■ Defining Container-Managed Persistence

This deployment descriptor has the following structure:

<?xml version="1.0"?>
<!DOCTYPE oracle-descriptor PUBLIC "-//Oracle Corporation//DTD Enterprise
JavaBeans 1.1//EN" "oracle-ejb-jar.dtd">

<oracle-descriptor>
 <mappings>
 <ejb-mapping> </ejb-mapping>
 <resource-ref-mapping> </resource-ref-mapping>
 </mappings>
 <run-as> </run-as>
 <persistence-provider> </persistence-provider>
 <persistence-descriptor> </persistence-descriptor>
</oracle-descriptor>

Header
The following is the required header for all Oracle8i EJB deployment descriptors. It

details the XML version and the XML DTD file.

XML Version Number
<?xml version="1.0"?>

DTD Filename
<!DOCTYPE oracle-descriptor PUBLIC "-//Oracle Corporation.//DTD Oracle 1.1//EN"
"oracle-ejb-jar.dtd">

Note: The entire DTD is listed "DTD for Oracle-Specific

Deployment Descriptor" on page A-33.
A-22 Enterprise JavaBeans Developer’s Guide and Reference

Oracle-Specific Deployment Descriptor
Defining Mappings
The primary use of the Oracle-specific deployment descriptor is to map logical

names used within the EJB deployment descriptor to actual names used within the

Oracle8i database. The different names that can be mapped are as follows:

Bean Name
As described in "Bean Names" on page A-4, the bean name can be either a logical

name or a JNDI name. If you defined a logical name, as demonstrated in the

following example, you must map this name to the actual JNDI name within the

<mappings> section.

Example A–7 EJB Name

The following defines a logical name of PurchaseOrder for the bean with in the

EJB deployment descriptor.

 <enterprise-beans>
 <entity>
 <description>no description</description>
 <ejb-name>PurchaseOrder</ejb-name>
 <home>purchase.PurchaseOrderHome</home>
 <remote>purchase.PurchaseOrder</remote>
 <ejb-class>purchaseServer.PurchaseOrderBean</ejb-class>
 <persistence-type>Bean</persistence-type>

EJB Logical Name Description

Bean name defined in
<session | entity>
<ejb-name>

If a logical name was used within the <ejb-name> element
instead of the JNDI name, this name should be mapped to the
actual JNDI name.

EJB reference
environment elements

If you provided a logical name for the target bean within
<ejb-ref> , you must map this to the actual JNDI name for the
EJB.

JDBC DataSource
environment element

If you defined a JDBC DataSource as an environment element,
you must map the <res-ref-name> to the actual JNDI name.

Security roles If you used a logical name within the
<security-role><role-name> element within the
<assembly-descriptor> , this logical name must be mapped
to the actual user name used within the database.

Transaction Manager If you are using a two phase commit engine for your global
transaction, specify the JNDI name for the OracleJTADataSource
object that represents this database.
XML Deployment Descriptors A-23

Oracle-Specific Deployment Descriptor
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 </entity>
 </enterprise-beans>

The PurchaseOrder logical name is mapped to its JNDI name within the

<mappings> section of the Oracle-specific deployment descriptor. The following

example shows how the bean name is defined in the <ejb-name> element and the

corresponding JNDI name is defined in the <jndi-name> element.

<oracle-descriptor>
 <mappings>
 <ejb-mapping>
 <ejb-name>PurchaseOrder</ejb-name>
 <jndi-name>/test/purchase</jndi-name>
 </ejb-mapping>
 </mappings>
. . .
</oracle-descriptor>

EJB Reference
The EJB reference mapping is described in "Environment References To Other

Enterprise JavaBeans" on page A-9. The structure of the mapping is the same as the

bean name, demonstrated in "Bean Name" on page A-23.

JDBC DataSource
The JDBC DataSource connection mapping is described in "Environment

References To Resource Manager Connection Factory References" on page A-12. You

map the JDBC DataSource to the bound JNDI name with the

<resource-ref-mapping> element, as follows:

<oracle-descriptor>
 <mappings>
 <resource-ref-mapping>
 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
 <jndi-name>jdbc/OracleDataSource</jndi-name>
 </resource-ref-mapping>
 </mappings>
 ...
</oracle-descriptor>

The <res-ref-name> element contains the JDBC DataSource defined in the EJB

deployment descriptor. The <jndi-name> element contains the JNDI name bound
A-24 Enterprise JavaBeans Developer’s Guide and Reference

Oracle-Specific Deployment Descriptor
to the JDBC DataSource within the name space. This example maps the

"jdbc:comp/env/jdbc/EmployeeAppDB " environment name to the JNDI name

"jdbc/OracleDataSource ".

Security Role
If you defined a logical name for the <role-name> within the

<assembly-descriptor> , this logical name must be mapped to an actual

database role or user within the Oracle-specific deployment descriptor.

For example, you define a logical role of POMGR for the role necessary for purchase

order authorization within the <assembly-descriptor> . The actual database

role that is allowed to make this authorization is SCOTT. The following would be

the necessary mapping definition within the Oracle-specific deployment descriptor:

<mappings>
 <security-role-mapping>
 <security-role>
 <description>POMGR role mapping</description>
 <role-name>POMGR</role-name>
 </security-role>
 <oracle-role>SCOTT</oracle-role>
 </security-role-mapping>
</mappings>

 As shown in Figure A–4, the <role-name> of POMGR defined in the

<assembly-descriptor><security-role><role-name> is mapped to

SCOTT within the Oracle-specific deployment descriptor in the

<security-role-mapping> element.
XML Deployment Descriptors A-25

Oracle-Specific Deployment Descriptor
Figure A–4 Security Mapping

Defining Two Phase Commit Engine for Transactions
If you are using two-phase commit for your global transaction, you must provide

the UserTransaction object’s JNDI name to the <transaction-manager>
element. The following example specifies the UserTransaction object

"/test/myUTFor2pc ":

<mappings>
 ...
 <transaction-manager>
 <jndi-name>/test/myUTFor2pc<jndi-name>
 </transaction-manager>
</mappings>

Defining Run-As Identity
The <run-as> element is an EJB 1.0 element that Oracle still supports within the

Oracle-specific deployment descriptor. You can define that a particular EJB will run

under the specified identity with the <run-as> element. There are three types of

identity that you can specify for your bean. They are as follows:

Run-As Identity Description

CLIENT_IDENTITY The bean runs under the client’s identity. This is the default.

EJB Deployment Descriptor

<enterprise-beans>
...
 <security-role-ref>
 <role-name>POMgr</role-name>
 <role-link>POMGR</role-link>
 <security-role-ref
...
</enterprise-beans>
<assembly-descriptor>
...
 <security-role>
 <role-name>POMGR</role-name>
 </security-role>
 <method-permission>
 <role-name>POMGR</role-name>
 <method>. . .</method>
 </method-permission>
...
</assembly-descriptor>

Oracle-specific Deployment Descriptor

<mappings>
 . . .
 <security-role-mapping>
 <security-role>
 <description>mapping POMGR</description>
 <role-name>POMGR</role-name>
 <oracle-role>SCOTT</oracle-role>
 </security-role>
 </security-role-mapping>
...
</mappings>
A-26 Enterprise JavaBeans Developer’s Guide and Reference

Oracle-Specific Deployment Descriptor
The <method > element specifies the methods that the <run-as > definition applies

to. It takes in the following definitions:

■ <ejb-name >: The logical name of the bean defined in the XML deployment

descriptor.

■ <method-name >: The method name (* implies all methods) that this mode

applies to within the bean.

■ <method-params >: If you have more than one method of this name with

overloaded parameters and you want the <run-as > to apply to only one of

them, specify the parameters within this element.

For example, the following defines that the price method, which requires two

String parameters, in the PurchaseOrder EJB will always run as SCOTT when

invoked.

 <run-as>
 <description>no description</description>
 <mode>SPECIFIED_IDENTITY</mode>
 <security-role>
 <role-name>SCOTT</role-name>
 </security-role>
 <method>
 <ejb-name>PurchaseOrder</ejb-name>
 <method-name>price</method-name>
 <methodl-params>
 <method-param>java.lang.String<method-param>
 <method-param>java.lang.String<method-param>
 </method>
 </run-as>

SYSTEM_IDENTITY The bean runs under the SYSTEM identity. This is specific to the
type of environment the bean is running on. For example, on an
Oracle8i database, the SYSTEM identity is equivalent to SYS.

SPECIFIED_IDENTITY You can specify a specific identity or role that the bean runs as
when invoked. This identity is specified within the
<security-role> element.

Run-As Identity Description
XML Deployment Descriptors A-27

Oracle-Specific Deployment Descriptor
Defining Container-Managed Persistence
If you have chosen to have the container manage the persistent variables for your

entity bean, you need to provide the name of the persistence provider and map each

persistence provider to the container-managed persistent bean. This version

supports the Oracle Persistence Service Interface Reference Implementation (PSI-RI)

persistence manager. Using this manager, you must define the mappings of the

persistent fields to the database.

Persistence Provider The persistence provider controls the management of all

container-managed fields. It defines how to map the fields within the bean to

corresponding persistent storage. It also defines how to save and update these fields

from the bean to the storage.

You define the Oracle PSI-RI persistence provider is defined within the

<persistence-provider> element. The following elements describe the

persistence provider:

The following defines the Oracle PSI-RI persistence provider. The logical name is

defined as "PSI-RI " and the class called for persistence management is

oracle.aurora.ejb.persistence.ocmp.OcmpEntityDeployer .

<persistence-provider>
 <description> specifies a type of persistence manager </description>
 <persistence-name> psi-ri< /persistence-name>
 <persistence-deployer> oracle.aurora.ejb.persistence.ocmp.OcmpEntityDeployer

Note: Specify the <security-role > element only for the

SPECIFIED_IDENTITY value. The <security-role > element is

ignored for both CLIENT_IDENTITY and SYSTEM_IDENTITY

values.

Persistence Provider
Elements

Description

<description> Gives a description of the provider.

<persistence-name> Defines a logical name for the provider. In this release,
only Oracle PSI-RI is supported.

<persistence-deployer> Provides the Java class used for the persistence
maintenance. This class is called by Oracle’s container
when persistence is required.
A-28 Enterprise JavaBeans Developer’s Guide and Reference

Oracle-Specific Deployment Descriptor
 </persistence-deployer>
</persistence-provider>

Persistence Fields The persistent fields were defined in the EJB deployment

descriptor in the <cmp-field> elements. Each of these <cmp-field> elements

need to be persistently managed by your provider. You define a single provider for

all <cmp-field> elements within a single bean through the

<persistence-descriptor> element. You define the provider for the bean

through the combination of the logical names for the bean and for the provider

within the <persistence-descriptor> . These fields are as follows:

For example, to define that Oracle PSI-RI manages all persistent fields within the

purchase order bean, you specify the logical bean name, PurchaseOrder , and the

logical persistence provider name, Oracle PSI-RI, within the following fields:

<persistence-descriptor>
 <ejb-name> PurchaseOrder </ejb-name>
 <persistence-name> psi-ri< /persistence-name>
 . . .
</persistence-descriptor>

The Oracle PSI-RI maps the persistent data types to database rows. It uses SQL to

update the persistent fields between the bean and the database. Each persistent data

type is mapped to the Oracle SQLJ data types documented in the Oracle8i SQLJ

Developer’s Guide and Reference. The data type mapping is documented fully on

Table 5-1, "Type Mappings for Supported Host Expression Types" on page 5-2. The

only restrictions is that the following data types are not supported:

Persistence Elements Description

<description> Provides a text description of the persistence
elements.

<ejb-name> The EJB that contains the persistent fields. This would
be the same <ejb-name> for the entity bean that
defined the <cmp-field> elements.

<persistence-name> The logical name of the persistence provider defined
within the <persistence-provider>
<persistence-name> element.
XML Deployment Descriptors A-29

Oracle-Specific Deployment Descriptor
If you decide to use PSI-RI, you must define the following within the <psi-ri>
element, which exists within the <persistence-descriptor> .

For example, the following <psi-ri> maps the customer bean persistence

fields—primary key, customer name, and address—to the customers table within

SCOTT’s schema
<persistence-descriptor>
 <ejb-name> PurchaseOrder </ejb-name>
 <persistence-name> psi-ri< /persistence-name>

Table A–2 Unsupported Java Types for Persistent Variables

Java Type Oracle Types Definition Oracle Datatype

SQLJ stream classes ■ sqlj.runtime.BinaryStream ■ LONGVARBINARY ■ LONG RAW

■ sqlj.runtime.AsciiStream ■ LONGVARCHAR ■ LONG

■ sqlj.runtime.UnicodeStream ■ LONGVARCHAR ■ LONG

Oracle extensions ■ oracle.sql.ROWID ■ ROWID ■ ROWID

■ oracle.sql.BLOB ■ BLOB ■ BLOB

■ oracle.sql.CLOB ■ CLOB ■ CLOB

Query result objects ■ java.sql.ResultSet ■ CURSOR ■ CURSOR

■ SQLJ iterator objects ■ CURSOR ■ CURSOR

Persistence Elements Description

<schema> Define the schema where the database table resides.

<table> Define the table where the persistent fields are saved.

<attr-mapping> Define each container-managed field and its
corresponding table row within this element.

<field-name> Define the container-managed field name as defined
within the bean.

<column-name> Define the database row where the <field-name> is
saved.

Note: Before you can deploy this bean, the table and its

appropriate rows must exist within the schema.
A-30 Enterprise JavaBeans Developer’s Guide and Reference

Oracle-Specific Deployment Descriptor
 <psi-ri>
 <schema> SCOTT</schema>
 <table> customers </table>
 <attr-mapping>
 <field-name> custid </field-name>
 <column-name> cust_id </column-name>
 </attr-mapping>
 <attr-mapping>
 <field-name> name</field-name>
 <column-name> cust_name </column-name>
 </attr-mapping>
 <attr-mapping>
 <field-name> addr </field-name>
 <column-name> cust_addr </column-name>
 </attr-mapping>
 </psi-ri>
</persistence-descriptor>

If the persistent fields that you define are objects, you can ask Oracle PSI-RI to

serialize some or all fields defined as persistent into a single database column. This

column must be defined as either long Raw or Raw.

You define the fields and the destination column within the

<serialize-mapping> element. The persistent fields are mapped either within

the <attr-mapping> or the <serialize-mapping> elements, but not in both.

The following example serializes the customer bean persistent fields—customer

name, and address—and save them into the custinfo column. Normally, you

would do this if you wanted to serialize an object.

<persistence-descriptor>
 <ejb-name> PurchaseOrder </ejb-name>
 <persistence-name> psi-ri< /persistence-name>
 <psi-ri>
 <schema> SCOTT</schema>

Note: There is a limitation of 4 KB for any Raw columns.

Note: There is one restriction: you cannot include the primary key

within the <serialize-mapping> element. It hinders finding an

object through findByPrimaryKey .
XML Deployment Descriptors A-31

Oracle-Specific Deployment Descriptor
 <table> customers </table>
 <serialize-mapping>
 <field-name>name</field-name>
 <field-name>addr</field-name>
 <column-name>custinfo</column-name>
 </serialize-mapping>
 </psi-ri>
</persistence-descriptor>

Example A–8 Container-Managed Persistence

The following is the full example for defining container-managed persistence for the

customer example.

<persistence-provider>
 <description>use the simple CMP provider</description>
 <persistence-name>psi-ri</persistence-name>
 <persistence-deployer>oracle.aurora.ejb.persistence.ocmp.OcmpEntityDeployer
 </persistence-deployer>
</persistence-provider>

<persistence-descriptor>
 <ejb-name>customerbean</ejb-name>
 <persistence-name>psi-ri</persistence-name>
 <psi-ri>
 <schema>SCOTT</schema>
 <table>customers</table>
 <attr-mapping>
 <field-name>custid</field-name>
 <column-name>cust_id</column-name>
 </attr-mapping>
 <attr-mapping>
 <field-name>name</field-name>
 <column-name>cust_name</column-name>
 </attr-mapping>
 <attr-mapping>
 <field-name>addr</field-name>
 <column-name>cust_addr</column-name>
 </attr-mapping>
 </psi-ri>
</persistence-descriptor>
</oracle-descriptor>
A-32 Enterprise JavaBeans Developer’s Guide and Reference

DTD for Oracle-Specific Deployment Descriptor
EJB Client JAR Section
One of the tasks that the deployejb tool performs is to create a JAR file with the

required stubs and skeletons, which is used by the client at execution time. Unless

this JAR file name is specified in the <ejb-client-jar > element in the XML

deployment descriptor, the default name for this JAR file is server_
generated.jar . This JAR file must be included in the CLASSPATH for client

execution.

The following defines that deployejb should create the client’s stubs and

skeletons in myClient.jar :

<ejb-client-jar>myClient.jar</ejb-client-jar>

DTD for Oracle-Specific Deployment Descriptor
<!--
This is the XML DTD for the Oracle Specific EJB deployment descriptor
-->
<!--
The oracle-descriptor element is the root element of the Oracle-specific
deployment descriptor. It contains an optional description, optional structural
information about logical name mappings, optional definitions for run-as
beans and/or methods, and definitions of container-managed persistence. -->
<!ELEMENT oracle-descriptor (mappings*, run-as*, persistence-provider*,
persistence-descriptor*)>
<!--
The mappings section enables you to map logical names defined in the XML
deployment descriptor to actual names. Bean logical names are mapped to JNDI
names; security logical names are mapped to database roles or users. -->
<!ELEMENT mappings (ejb-mapping*, security-role-mapping*,
resource-ref-mapping*, transaction-manager*)>
<!--
The ejb-mapping element maps an EJB to its bound JNDI name -->
<!ELEMENT ejb-mapping (ejb-name, jndi-name)>
<!--
The security-role-mapping element maps security logical names to a database
role or user -->
<!ELEMENT security-role-mapping (security-role, oracle-role)>
<!--
The resource-ref-mapping element maps any environment variable defined in the
XML deployment descriptor to the JNDI name for the target object -->
<!ELEMENT resource-ref-mapping (res-ref-name, jndi-name)>
<!--
The transaction manager defines the UserTransaction JNDI name that manages
XML Deployment Descriptors A-33

DTD for Oracle-Specific Deployment Descriptor
the global transaction. This is only required for transactions that use
two-phase commit -->
<!ELEMENT transaction-manager (description?, jndi-name)>
<!--
The jndi-name element specifies a JNDI name for a bound object -->
<!ELEMENT jndi-name (#PCDATA)>
<!--
The run-as element enables you to specify a bean or certain methods within
a bean to run with an identity other than its own. The modes allowed are
CLIENT_IDENTITY (default), SYSTEM_IDENTITY, and SPECIFIED_IDENTITY. With the
SPECIFIED_IDENTITY mode, you must provide the identity within the
<security-role> element.
-->
<!ELEMENT run-as (description?, mode, security-role, method)>
<!--
The mode element specifies the type of <run-as> identity. The values
can be one of the following:SYSTEM_IDENTITY, SPECIFIED_IDENTITY, CLIENT_IDENTITY
if mode is SPECIFIED_IDENTITY, security-role must be specified
if mode is SYSTEM_IDENTITY or CLIENT_IDENTITY and security-role is
specified, security-role is ignored
-->
<!ELEMENT mode (#PCDATA)>
<!--
The security-role element specifies a database role -->
<!ELEMENT security-role (description?, role-name)>
<!-- The role-name element specifies a database role or user -->
<!ELEMENT role-name (#PCDATA)>
<!--
The method element defines a method by the bean’s logical name, optionally
adding the interface name, the method name, and if overloading is present for
this method, the parameters of the method you are indicating.
-->
<!ELEMENT method (description?, ejb-name, method-intf?, method-name,
method-params?)>
<!--
The ejb-name element defines the logical name for the bean that was used in the
XML deployment descriptor -->
<!ELEMENT ejb-name (#PCDATA)>
<!--The method interface defines where the method is specified-->
<!ELEMENT method-intf (#PCDATA)>
<!--
The method name element takes in the actual name of a method defined. -->
<!ELEMENT method-name (#PCDATA)>
<!--
The method-params element specifies one or more parameters for a method. -->
A-34 Enterprise JavaBeans Developer’s Guide and Reference

DTD for Oracle-Specific Deployment Descriptor
<!ELEMENT method-params (method-param*)>
<!--
The method-param defines a single parameter for a method by its class type-->
<!ELEMENT method-param (#PCDATA)>
<!-- The oracle-role element specifies a database role or user -->
<!ELEMENT oracle-role (#PCDATA)>
<!-- The ejb-ref-name is the logical name for the EJB reference specified
in the XML deployment descriptor -->
<!ELEMENT ejb-ref-name (#PCDATA)>
<!-- The res-ref-name element is the logical name for the resource reference
specified in the XML deployment descriptor -->
<!ELEMENT res-ref-name (#PCDATA)>

<!---
persistence-provider describes the container managed persistence
-->
<!--
The persistence-provider element specifies the CMP provider that you are using.
At this time, only Oracle8i’s PSI-RI is supported. -->
<!ELEMENT persistence-provider (description?, persistence-name,
persistence-deployer)>
<!ELEMENT description (#PCDATA)>
<!--
The persistence-name element defines the name of the provider. For Oracle8i,
this should be psi-ri -->
<!ELEMENT persistence-name (#PCDATA)>
<!-- The persistence-deployer is the class of the CMP provider. This should be
oracle.aurora.ejb.persistence.ocmp.OcmpEntityDeployer. -->
<!ELEMENT persistence-deployer (#PCDATA)>
<!-- The persistence-descriptor element defines the persistence fields in the
bean that must be managed by the CMP provider -->
<!ELEMENT persistence-descriptor (description?, ejb-name,
persistence-name, persistence-param*, psi-ri*)>
<!ELEMENT persistence-param (#PCDATA)>
<!-- The psi-ri element defines how the persistence fields int he beans are
mapped to database tables and columns. -->
<!ELEMENT psi-ri (schema, table, attr-mapping+, serialize-mapping?)>
<!-- The schema element specifies the schema where the table exists -->
<!ELEMENT schema (#PCDATA)>
<!-- The table element specifies the table where to store the persistent fields
-->
<!ELEMENT table (#PCDATA)>
<!-- The attr-mapping element specifies how each persistent field is mapped to a
corresponding column in the table -->
<!ELEMENT attr-mapping (field-name, column-name)>
XML Deployment Descriptors A-35

DTD for Oracle-Specific Deployment Descriptor
<!-- If you serialize all persistent fields into a single column, use the
serialize-mapping element -->
<!ELEMENT serialize-mapping (field-name+, column-name)>
<!-- The field-name element specifies the persistent variable in the bean -->
<!ELEMENT field-name (#PCDATA)>
<!-- The column-name element specifies the column for a single persistent field
-->
<!ELEMENT column-name (#PCDATA)>
A-36 Enterprise JavaBeans Developer’s Guide and Reference

Example Code
B

Example Code: EJB

Oracle8i JServer installs several samples under the demo directory. Some of these

samples are included in this appendix for your perusal.

The examples in the demo directory include a UNIX makefile and Windows NT

batch file to compile and run each example. You need a Java-enabled Oracle8i
database with the standard EMP and DEPT demo tables to run the examples.

The emphasis in these short examples is on demonstrating features of the ORB and

CORBA, not on elaborate Java coding techniques. Each of the examples includes a

README file that tell you what files the example contains, what the example does,

and how to compile and run the example.

■ Basic Example

■ SQLJ Example

■ Bean Inheritance Example

■ Entity Bean Examples

■ Session Example

■ SSL Examples
: EJB B-1

Basic Example
Basic Example

README
Overview
========

This is the most basic program that you can create for the Orcale8i
EJB server. One bean, HelloBean, is implemented. The bean and
associated classes are loaded into the database, and the bean home
interface is published as /test/myHello, as specified in the bean
deployment descriptor hello.ejb.

The bean contains a single method: helloWorld, which simply returns a
String containing the JavaVM version number to the client that invokes
it.

This example shows the minimum number of files that you must provide
to implement an EJB application: five. The five are:

(1) the bean implementation: helloServer/HelloBean.java in this example
(2) the bean remote interface: hello/Hello.java
(3) the bean home interface: hello/HelloHome.java
(4) the deployment descriptor: hello.ejb
(5) a client app or applet: Client.java is the application in this example

Source Files
============

Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the

 - service URL (service ID, hostname, port, and SID if port is a listener)
 - name of the published bean to lookup and instantiate
 - username
 - password that authenticates the client to the Oracle8i database server

For example:
B-2 Enterprise JavaBeans Developer’s Guide and Reference

Basic Example
% java -classpath LIBs Client sess_iiop://localhost:2222 /test/myHello scott
tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
#If using Java 2, use classes12.zip instead of classes111.zip
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

(Note: for NT users, the environment variables would be %ORACLE_HOME% and
%JAVA_HOME%.)

The client code performs the following steps:

 - gets the arguments passed on the command line
 - creates a new JNDI Context (InitialContext())
 - looks up the published bean to find and activate its home interface
 - using the home interface, instantiates through its create()
 method a new bean object, hello
 - invokes the helloWorld() method on the hello object and prints the results

The printed output is:

Hello client, your javavm version is 8.1.5.

hello.ejb

The bean deployment descriptor. This source file does the following:

 - shows the class name of the bean implementation in the deployment name:
 helloServer.HelloBean
 - names the published bean "/test/myHello"
 - declares the remote interface implementation: hello.Hello
 - declares the home interface: hello.HelloHome
 - sets RunAsMode to the client's identity (SCOTT in this case)
 - allows all members of the group PUBLIC to run the bean
 - sets the transaction attribute to TX_SUPPORTS

The deployement descriptor is read by the deployejb tool, which uses
it to load the required classes, and publish the bean home
Example Code: EJB B-3

Basic Example
interface. (Deployejb does much else also. See the Tools chapter in
the Oracle8i EJB and CORBA Developer's Guide for more information.)

helloServer/HelloBean.java

This is the EJB implementation. Note that the bean class is public,
and that it implements the SessionBean interface, as required by the
EJB specification.

The bean implements the one method specified in the remote interface:
helloWorld(). This method gets the system property associated with
"oracle.server.version" as a String, and returns a greeting plus the
version number as a String to the invoking client.

The bean implementation also implements ejbCreate() with no parameters,
following the specification of the create() method in hello/HelloHome.java.

Finally, the methods ejbRemove(), setSessionContext(), ejbActivate(), and
ejbPassivate() are implemented as required by the SessionBean interface. In
this simple case, the methods are implemented with null bodies.

(Note that ejbActivate() and ejbPassivate() are never called in the
8.1.5 release of the EJB server, but they must be implemented as
required by the interface.)

hello/Hello.java

This is the bean remote interface. In this example, it specifies only
one method: helloWorld(), which returns a String object. Note the two
import statements, which are required, and that the helloWorld()
method must be declared as throwing RemoteException. All bean methods
must be capable of throwing this exception. If you omit the
declaration, the deployejb tool will catch it and error when you try
to deploy the bean.

hello/HelloHome.java

This is the bean home interface. In this example, a single create()
method is declared. It returns a Hello object, as you saw in the
B-4 Enterprise JavaBeans Developer’s Guide and Reference

Basic Example
Client.java code.

Note especially that the create() method must be declared as able to
throw RemoteException and CreateException. These are required. If you
do not declare these, the deployejb tool will catch it and error when
you try to deploy the bean.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
Example Code: EJB B-5

Basic Example
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

Client
import hello.Hello;
import hello.HelloHome;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{
 public static void main (String[] args) throws Exception {
 if (args.length != 4) {
 System.out.println ("usage: Client serviceURL objectName user password");
 System.exit (1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];

 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 HelloHome hello_home = (HelloHome)ic.lookup (serviceURL + objectName);
 Hello hello = hello_home.create ();
 System.out.println (hello.helloWorld ());
 }
}

B-6 Enterprise JavaBeans Developer’s Guide and Reference

Basic Example
Home Interface for Hello
package hello;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public interface HelloHome extends EJBHome
{
 public Hello create () throws RemoteException, CreateException;
}

Remote Interface for Hello
package hello;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Hello extends EJBObject
{
 public String helloWorld () throws RemoteException;
}

Bean Implementation for Hello
package helloServer;

import javax.ejb.SessionBean;
import javax.ejb.CreateException;
import javax.ejb.SessionContext;
import java.rmi.RemoteException;

public class HelloBean implements SessionBean
{
 // Methods of the Hello interface
 public String helloWorld () throws RemoteException {
 String v = System.getProperty("oracle.server.version");
 return "Hello client, your javavm version is " + v + ".";
 }

 // Methods of the SessionBean
 public void ejbCreate () throws RemoteException, CreateException {}
 public void ejbRemove() {}
Example Code: EJB B-7

SQLJ Example
 public void setSessionContext (SessionContext ctx) {}
 public void ejbActivate () {}
 public void ejbPassivate () {}
}

SQLJ Example

README
Overview
========

This example demonstrates doing a database query using SQLJ. pay
attention to the makefile (UNIX) or the makeit.bat batch file (Windows
NT), and note that the files that SQLJ generates (SER files converted
to class files) must be loaded into the database with deployejb also.

Compare this example with the jdbcimpl basic EJB example, which uses
JDBC instead of SQLJ to perform exactly the same query.

Source files
============

Client.java

Invoke the client program from the command line, passing it four
arguments:
 - the name of the service URL, e.g. sess_iiop://localhost:2222
 - the path and name of the published bean, e.g. /test/employeeBean
 - the username for db authentication
 - the password (you wouldn't do this in a production program, of course)

For example

% java Client -classpath LIBs sess_iiop://localhost:2222 /test/employeeBean
 scott tiger

The client looks up and activates the bean, then invokes the query() method on
the bean. query() returns an EmpRecord structure with the salary and the name
of the employee whose ID number was passed to query().
B-8 Enterprise JavaBeans Developer’s Guide and Reference

SQLJ Example
There is no error checking in this code. See the User's Guide for more
information about the appropriate kinds of error checking in this kind of
client code.

The client prints:

Emp name is ALLEN
Emp sal is 3100.0

employeeServer/employeeBean.sqlj

This class is the bean implementation. A SQLJ named iterator is declared to
hold the results of the query. The myIter.next(); statement is used as is to
keep the code simple: after all the parameter passed in is a known valid
primary key for the EMP table. (See what happens if you try an empno that is
not in the table.)

The EmpIter getter methods are used to retrieve the query results into the
EmpRecord object, which is then returned *by value*, as a serialized object,
to the client.

employeeServer/EmpRecord.java

A class that is in essence a struct to contain the employee name and salary,
as well as the ID number.

Note that the class *must* be defined as implementing the java.rmi.Serializable
interface, to make it a valid serializable RMI object that can be passed from
server to the client.

employee/employee.java

The bean remote interface.

employee/employeeHome.java

The bean home interface.
Example Code: EJB B-9

SQLJ Example
Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.
B-10 Enterprise JavaBeans Developer’s Guide and Reference

SQLJ Example
Client
import employee.Employee;
import employee.EmployeeHome;
import employee.EmpRecord;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client {
 public static void main (String [] args) throws Exception {
 if (args.length != 4) {
 System.out.println("usage: Client serviceURL objectName user password");
 System.exit(1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, user);
 env.put(Context.SECURITY_CREDENTIALS, password);
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 EmployeeHome home = (EmployeeHome)ic.lookup (serviceURL + objectName);
 Employee testBean = home.create();
 EmpRecord empRec = empRec = testBean.query (7499);
 System.out.println ("Emp name is " + empRec.ename);
 System.out.println ("Emp sal is " + empRec.sal);
 }
}

Home Interface
package employee;

import javax.ejb.*;
import java.rmi.RemoteException;
Example Code: EJB B-11

SQLJ Example
public interface EmployeeHome extends EJBHome {
 public Employee create()
 throws CreateException, RemoteException;
}

Remote Interface
package employee;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Employee extends EJBObject {
 public EmpRecord query (int empNumber)
 throws java.sql.SQLException, RemoteException;
}

Bean Implementation

EmployeeBean.sqlj
package employeeServer;

import employee.EmpRecord;

import java.sql.*;
import java.rmi.RemoteException;
import javax.ejb.*;

public class EmployeeBean implements SessionBean {
 //SessionContext ctx;

 public void ejbCreate() throws CreateException, RemoteException {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void ejbRemove() {}
 public void setSessionContext(SessionContext ctx) {
 //this.ctx = ctx;
 }

 public EmpRecord query (int empNumber) throws SQLException, RemoteException
 {
 String ename;
 double sal;
B-12 Enterprise JavaBeans Developer’s Guide and Reference

Bean Inheritance Example
 #sql { select ename, sal into :ename, :sal from emp
 where empno = :empNumber };
System.out.println ("ename = " + ename);
System.out.println ("sal = " + sal);

 return new EmpRecord (ename, empNumber, sal);
 }
}

EmpRecord.java
package employee;

public class EmpRecord implements java.io.Serializable {
 public String ename;
 public int empno;
 public double sal;

 public EmpRecord (String ename, int empno, double sal) {
 this.ename = ename;
 this.empno = empno;
 this.sal = sal;
 }
}

Bean Inheritance Example

README
Overview
========

This example show two beans: Foo and Bar. In the example, the Bar bean
inherits from the Foo bean. The required coding and the effects of
this bean inheritance are demonstrated in this example.

Source Files
============

Client.java

Example Code: EJB B-13

Bean Inheritance Example
You invoke the client program from a command prompt, and pass it four
arguments, the

 - service URL (service ID, hostname, port, and SID if port is a listener)
 - name of the published bean to lookup and instantiate
 - username
 - password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2222 /test/myHello scott
tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
#If using Java 2, use classes12.zip instead of classes111.zip
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

(Note: for NT users, the environment variables would be %ORACLE_HOME% and
%JAVA_HOME%.)

The client code performs the following steps:

 - gets the arguments passed on the command line
 - creates a new JNDI Context (InitialContext())
 - looks up the published bean to find and activate its home interface
 - using the home interface, instantiates through its create()
 method a new bean object, hello
 - invokes the helloWorld() method on the hello object and prints the results

The printed output is:

Hello World
Hello World from bar
Hello World 2 from bar
Hello World from bar

foo.ejb

B-14 Enterprise JavaBeans Developer’s Guide and Reference

Bean Inheritance Example
The Foo bean deployment descriptor. See ../helloworld/readme.txt for a
more complete description of a typical example deployment descriptor.

bar.ejb

The bar bean deployment descriptor.

inheritance/FooHome.java

The Foo bean home interface. Specifies a single no-parameter create() method.

inheritance/Foo.java

The Foo remote interface. Note that only a single method, hello(), is
specified.

inheritance/BarHome.java

The Bar bean home interface. Specifies a single no-parameter create() method.

inheritance/Bar.java

The Bar remote interface. Note that only a single method, hello2(), is
specified.

inheritanceServer/FooBean.java

The Foo bean implementation. Implements the hello() method of
inheritance/Foo.java, returning a String greeting.

inheritanceServer/BarBean.java

Example Code: EJB B-15

Bean Inheritance Example
The Bar bean implementation. Implements both the hello() method inherited from
FooBean, as well as the hello2() method specified in inheritance/Bar.java.

Note that this bean extends FooBean, so it does not implement SessionBean or
any of its methods, such as ejbRemove(0, ejbActivate(), and so on, which is
normally a requirement of a session bean. This is because BarBeam inherits the
implementation of these from FooBean.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.
B-16 Enterprise JavaBeans Developer’s Guide and Reference

Bean Inheritance Example
See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

Client
import inheritanceServer.*;
import inheritance.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{
 public static void main(String[] args) throws Exception {
 if (args.length != 5) {
 System.out.println("usage: Client serviceURL fooBeanName "
 + "barBeanName username password");
 System.exit(1);
 }

 String serviceURL = args [0];
 String fooBeanName = args [1];
 String barBeanName = args[2];
 String username = args[3];
 String password = args[4];

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, username);
 env.put(Context.SECURITY_CREDENTIALS, password);
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext(env);

 // Get a foo object from a foo published bean
 FooHome home = (FooHome) ic.lookup(serviceURL + fooBeanName);
 Foo foo = home.create();
Example Code: EJB B-17

Bean Inheritance Example
 System.out.println(foo.hello());

 // Get a bar object from a bar published bean
 BarHome barHome = (BarHome) ic.lookup(serviceURL + barBeanName);
 Bar bar = barHome.create();
 System.out.println(bar.hello());
 System.out.println(bar.hello2());

 // Get a foo object from a bar published bean
 BarHome fooBarHome = (BarHome)ic.lookup(serviceURL + barBeanName);
 Foo fooBar = (Foo) fooBarHome.create();
 System.out.println(fooBar.hello());
 }
}

Home Interface

BarHome.java
package inheritance;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public interface FooHome extends EJBHome
{
 public Foo create () throws RemoteException, CreateException;
}

FooHome.java
package inheritance;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public interface FooHome extends EJBHome
{
 public Foo create () throws RemoteException, CreateException;
}

B-18 Enterprise JavaBeans Developer’s Guide and Reference

Bean Inheritance Example
Remote Interface

Bar.java
package inheritance;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Foo extends EJBObject
{
 public String hello () throws RemoteException;
}

Foo.java
package inheritance;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Foo extends EJBObject
{
 public String hello () throws RemoteException;
}

Bean Implementation

BarBean.java
package inheritanceServer;

import java.rmi.RemoteException;
import javax.ejb.*;
import oracle.aurora.jndi.sess_iiop.*;

public class FooBean implements SessionBean
{
 // Methods of the interface
 public String hello () throws RemoteException {
 return "Hello World";
 }

 // Methods of the SessionBean
Example Code: EJB B-19

Bean Inheritance Example
 public void ejbCreate () throws RemoteException, CreateException {
 }

 public void ejbRemove() {
 }

 public void setSessionContext (SessionContext ctx) {
 }

 public void ejbActivate () {
 }

 public void ejbPassivate () {
 }
}

FooBean.java
package inheritanceServer;

import java.rmi.RemoteException;
import javax.ejb.*;
import oracle.aurora.jndi.sess_iiop.*;

public class FooBean implements SessionBean
{
 // Methods of the interface
 public String hello () throws RemoteException {
 return "Hello World";
 }

 // Methods of the SessionBean
 public void ejbCreate () throws RemoteException, CreateException {
 }

 public void ejbRemove() {
 }

 public void setSessionContext (SessionContext ctx) {
 }

 public void ejbActivate () {
 }

 public void ejbPassivate () {
B-20 Enterprise JavaBeans Developer’s Guide and Reference

Bean-Managed Entity Bean Example
 }
}

Entity Bean Examples
The following two examples show how to implement entity beans either using

bean-managed or container-managed options:

■ Bean-Managed Entity Bean Example

■ Container-Managed Entity Bean Example

Bean-Managed Entity Bean Example

Client
import purchase.PurchaseOrder;
import purchase.PurchaseOrderHome;
import purchase.LineItem;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.transaction.UserTransaction;
import java.util.*;

public class Client {
 public static void main (String [] args) throws Exception {
 System.out.println("Running client");
 if (args.length != 4) {
 System.out.println("usage: Client serviceURL objectName user password");
 System.exit(1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, user);
 env.put(Context.SECURITY_CREDENTIALS, password);
Example Code: EJB B-21

Bean-Managed Entity Bean Example
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 PurchaseOrderHome home =
 (PurchaseOrderHome)ic.lookup (serviceURL + objectName);

 // Begin a transaction to create a new PO
 UserTransaction ut;
 ut = (UserTransaction)ic.lookup ("local://corbaut");
 ut.begin();

 // Create a new PO and add items to it
 PurchaseOrder po = home.create();
 po.addItem (111111, 2);
 po.addItem (333333, 4);

 // Price the PO
 System.out.println ("PO price $" + po.price ());

 // Get the po number for future reference
 String ponumber = (String)po.getPrimaryKey ();

 // Commit the transaction
 ut.commit();

 // This is now the future:

 // Start another transaction
 ut.begin ();

 // Retrieve the PO from its primary key
 PurchaseOrder po2 = home.findByPrimaryKey(ponumber);

 // Add another item
 po.addItem (222222, 1);

 // Check the PO contents
 System.out.println ("Contents of the PO:");
 Vector items = po.getContents ();
 Enumeration e = items.elements ();
 while (e.hasMoreElements ()) {
 LineItem item = (LineItem)e.nextElement ();
 System.out.println (item.quantity + " " + item.description + " at $"
 + (int)item.price + " each");
 }
B-22 Enterprise JavaBeans Developer’s Guide and Reference

Bean-Managed Entity Bean Example
 // Compute the price again
 System.out.println ("PO price $" + po.price ());

 // Rollback the change
 ut.rollback ();
 }

}

Home Interface
import javax.ejb.*;
import java.rmi.RemoteException;
import java.sql.SQLException;

public interface PurchaseOrderHome extends EJBHome {
 // Create a new PO
 public PurchaseOrder create() throws CreateException, RemoteException;

 // Find an existing one
 public PurchaseOrder findByPrimaryKey (String POnumber)
 throws FinderException, RemoteException;
}

Remote Interface
package purchase;

/*
 PurchaseOrder is an entity bean.

 It is a remote interface to a purchasing application.

 The remote interface lets you manage PO contents (getContents,
 addItem) and execute complex logic on the server side (price).

*/

import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import java.sql.SQLException;
import java.util.Vector;
Example Code: EJB B-23

Bean-Managed Entity Bean Example
public interface PurchaseOrder extends EJBObject {
 // Price the PO
 public float price() throws RemoteException;

 // Manage contents

 // getContents returns a Vector of LineItem objects
 public Vector getContents() throws RemoteException;

 public void addItem (int sku, int count) throws RemoteException;
}

Bean Implementation

PurchaseOrderBean.sqlj
package purchaseServer;

/*
 This is the PurchaseOrder Bean.

 The bean manages its own persistence. The PO line items are stored
 in the LINEITEMS table. This table references the SKUS table that
 contain individual pricing information.

*/

import purchase.*;
import java.sql.*;
import java.rmi.RemoteException;
import javax.ejb.*;
import java.util.*;

#sql iterator ItemsIter (int skunumber, int count, String description,
 float price);

public class PurchaseOrderBean implements EntityBean {
 EntityContext ctx;

 Vector items;// The items in the PO (instances of LineItem)

 public void PurchaseOrderBean() {}

 // Bean Managed Persistence methods
B-24 Enterprise JavaBeans Developer’s Guide and Reference

Bean-Managed Entity Bean Example
 // The create methods takes care of generating a new PO and returns
 // its primary key
 public String ejbCreate () throws CreateException, RemoteException
 {
 String ponumber = null;
 try {
 #sql { select ponumber.nextval into :ponumber from dual };
 #sql { insert into pos (ponumber, status) values (:ponumber, 'OPEN') };
 } catch (SQLException e) {
 throw new PurchaseException (this, "create", e);
 }
 return ponumber;
 }

 // Nothing to do here
 public void ejbPostCreate () {
 items = new Vector ();
 }

 // The remove method deletes all line items belonging to the PO
 public void ejbRemove() throws RemoteException {
 // Get the PO number and delete
 String ponumber = (String)ctx.getPrimaryKey();
 try {
 #sql { delete from lineitems where ponumber = :ponumber };
 #sql { delete from pos where ponumber = :ponumber };
 } catch (SQLException e) {
 throw new PurchaseException (this, "remove", e);
 }
 }

 // The load method populates the items array with all the existing
 // line items
 public void ejbLoad() throws RemoteException {
 // Get the PO number
 String ponumber = (String)ctx.getPrimaryKey();

 // Load all line items.
 try {
 items = new Vector ();
 ItemsIter iter = null;
 try {
 #sql iter = {
 select lineitems.skunumber, lineitems.count,
Example Code: EJB B-25

Bean-Managed Entity Bean Example
 skus.description, skus.price
 from lineitems, skus
 where ponumber = :ponumber and lineitems.skunumber = skus.skunumber
};

 while (iter.next ()) {
 LineItem item =
 new LineItem (iter.skunumber(), iter.count(), iter.description(),
 iter.price());
 items.addElement (item);
}
 } finally {
if (iter != null) iter.close ();
 }
 } catch (SQLException e) {
 throw new PurchaseException (this, "load", e);
 }
 }

 // The store method replaces all entries in the lineitems table with the
 // new entries from the bean
 public void ejbStore() throws RemoteException {
 // Get the PO number
 String ponumber = (String)ctx.getPrimaryKey();

 try {
 // Delete old entries
 #sql { delete from lineitems where ponumber = :ponumber };

 // Insert new entries
 Enumeration e = items.elements ();
 while (e.hasMoreElements ()) {
LineItem item = (LineItem)e.nextElement ();
 #sql { insert into lineitems (ponumber, skunumber, count)
 values (:ponumber, :(item.sku), :(item.quantity))
};
 }
 } catch (SQLException e) {
 throw new PurchaseException (this, "store", e);
 }
 }

 // The findByPrimaryKey method verifies that the POnumber exists
 public String ejbFindByPrimaryKey (String ponumber)
 throws FinderException, RemoteException
B-26 Enterprise JavaBeans Developer’s Guide and Reference

Bean-Managed Entity Bean Example
 {
 try {
 int count;
 #sql { select count (ponumber) into :count from pos
 where ponumber = :ponumber };

 // There has to be one
 if (count != 1)
throw new FinderException ("Inexistent PO: " + ponumber);
 } catch (SQLException e) {
 throw new PurchaseException (this, "findByPrimaryKey", e);
 }
 // The ponumber is the primary key
 return ponumber;
 }

 // Business Methods

 // Price the PO
 public float price() throws RemoteException {
 float price = 0;
 Enumeration e = items.elements ();
 while (e.hasMoreElements ()) {
 LineItem item = (LineItem)e.nextElement ();
 price += item.quantity * item.price;
 }

 // 5% discount if buying more than 10 items
 if (items.size () > 10)
 price -= price * 0.05;

 // Shipping is a constant plus function of the number of items
 price += 10 + (items.size () * 2);

 return price;
 }

 // The getContents methods has to load the descriptions
 public Vector getContents() throws RemoteException {
 return items;
 }

 // The add Item method gets the price and description
 public void addItem (int sku, int count) throws RemoteException {
 try {
Example Code: EJB B-27

Bean-Managed Entity Bean Example
 String description;
 float price;
 #sql { select price, description into :price, :description
 from skus where skunumber = :sku };
 items.addElement (new LineItem (sku, count, description, price));
 } catch (SQLException e) {
 throw new PurchaseException (this, "addItem", e);
 }
 }

 // EntityBean Methods
 public void setEntityContext(EntityContext ctx) { this.ctx = ctx; }
 public void unsetEntityContext() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
}

LineItem.java
package purchase;

/*

 This class represents one line item

*/

public class LineItem implements java.io.Serializable {
 public int sku;
 public int quantity;
 public String description;
 public float price;

 public LineItem (int sku, int quantity, String description, float price) {
 this.sku = sku;
 this.quantity = quantity;
 this.description = description;
 this.price = price;
 }
}

Deployment Descriptor
<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems Inc.//DTD Enterprise JavaBeans 1.1
B-28 Enterprise JavaBeans Developer’s Guide and Reference

Container-Managed Entity Bean Example
//EN" "ejb-jar.dtd">
<ejb-jar>
 <enterprise-beans>
 <entity>
 <description>no description</description>
 <ejb-name>test/purchase</ejb-name>
 <home>purchase.PurchaseOrderHome</home>
 <remote>purchase.PurchaseOrder</remote>
 <ejb-class>purchaseServer.PurchaseOrderBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <security-role>
 <description>no description</description>
 <role-name>PUBLIC</role-name>
 </security-role>
 <method-permission>
 <description>no description</description>
 <role-name>PUBLIC</role-name>
 <method>
 <ejb-name>test/purchase</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <container-transaction>
 <description>no description</description>
 <method>
 <ejb-name>test/purchase</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Container-Managed Entity Bean Example

Client
import customer.Customer;
Example Code: EJB B-29

Container-Managed Entity Bean Example
import customer.CustomerHome;

import javax.naming.InitialContext;
import javax.naming.NamingException;
import java.rmi.RemoteException;
import javax.ejb.RemoveException;
import javax.ejb.CreateException;
import javax.ejb.FinderException;
import java.util.Enumeration;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import java.util.Hashtable;
import javax.naming.Context;

public class CustomerClient
{
 public static void main(String[] argv)
 {

 System.out.println("client is running");
 try
 {

if (argv.length != 4) {
 System.out.println("usage: Client serviceURL

objectName user password");
 System.exit(1);
}
String serviceURL = argv [0];
String objectName = argv [1];
String user = argv [2];
String password = argv [3];

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, user);
env.put(Context.SECURITY_CREDENTIALS, password);
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext (env);
CustomerHome ch = (CustomerHome)ic.lookup (serviceURL + objectName);

Customer cust = ch.create("Jake Terwilliger", "Pine Drive");
System.out.println("created " + cust.getName());
System.out.println (" address = " + cust.getAddress());
String pk = (String) cust.getPrimaryKey();
System.out.println("Primarykey = " + pk);
B-30 Enterprise JavaBeans Developer’s Guide and Reference

Container-Managed Entity Bean Example
//imagine that time passes here, or this program is
//finished, and a later program wants to use the
//primary key
Customer cust1 = ch.create("Al Smith", "Sesame Street");

Customer cust2 = ch.create("Bob Davidson", "Elm Street");

Customer cust3 = ch.create("Carol Fernandez", "Cedar Blvd");

cust = null;
cust = ch.findByPrimaryKey(pk);
System.out.println("Found by primary key lookup");
System.out.println (" name = " + cust.getName());
System.out.println (" address = " + cust.getAddress());
cust.remove();
System.out.println("removed bean");

cust = ch.findByWhere("where cust_addr = 'Elm Street'");
System.out.println("Found by findByWhere");
System.out.println (" name = " + cust.getName());
System.out.println (" address = " + cust.getAddress());
cust.remove();
System.out.println("removed bean");

Enumeration e = ch.findAllCustomers("");
while(e.hasMoreElements())
 {
 cust = (Customer) e.nextElement();
 System.out.println (" name = " + cust.getName());
 System.out.println (" address = " + cust.getAddress());
 }

 }
 catch (RemoveException e)
 {

System.out.println("RemoveException caught:" + e);
e.printStackTrace();

 }
 catch (NamingException e)
 {

System.out.println("NamingException caught:" + e);
e.printStackTrace();

 }
 catch (FinderException e)
 {
Example Code: EJB B-31

Container-Managed Entity Bean Example
System.out.println("FinderException caught:" + e);
e.printStackTrace();

 }

 catch (CreateException e)
 {

System.out.println("CreateException caught:" + e);
e.printStackTrace();

 }

 catch (RemoteException e)
 {

System.out.println("RemoteException caught:" + e);
e.printStackTrace();

 }
 }
}

Home Interface
package customer;
import javax.ejb.EJBHome;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.FinderException;

public interface CustomerHome extends EJBHome
{
 public Customer findByPrimaryKey(String pk) throws RemoteException,

FinderException;
 public Customer findByWhere(String whereString) throws RemoteException,

FinderException;
 public java.util.Enumeration findAllCustomers(String whereString) throws

RemoteException, FinderException;
 public Customer create(String custname, String custaddr) throws

RemoteException, CreateException;
}

Remote Interface
package customer;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Customer extends EJBObject
B-32 Enterprise JavaBeans Developer’s Guide and Reference

Container-Managed Entity Bean Example
{
 public String getName() throws RemoteException;
 public String getAddress() throws RemoteException;
 public void setAddress(String addr) throws RemoteException;
}

Bean Implementation
package customerServer;
import customer.*;
import javax.ejb.*;
import java.sql.*;
import java.util.*;
import java.rmi.RemoteException;
import java.io.Serializable;

public class CustomerBean implements EntityBean
{
 private transient EntityContext ctx;
 public String name;
 public String addr;

 public String getName() throws RemoteException
 {
 return name;
 }
 public void setName(String name) throws RemoteException
 {
 this.name = name;
 }
 public String getAddress() throws RemoteException
 {
 return addr;
 }
 public void setAddress(String addr) throws RemoteException
 {
 this.addr = addr;
 }
 public void setEntityContext(EntityContext ctx)
 {
 this.ctx = ctx;
 Properties props = ctx.getEnvironment();

 }
 public void unsetEntityContext()
Example Code: EJB B-33

Container-Managed Entity Bean Example
 {
 this.ctx = null;
 }

 public String ejbCreate(String custname, String custaddr) throws
CreateException, RemoteException
 {
 try {
 setName(custname);
 setAddress(custaddr);
 } catch (java.rmi.RemoteException e) {
 throw new CreateException();
 }
 return null;
 }

public String ejbFindByPrimaryKey(String pk) throws RemoteException,
FinderException {
 return null;
}

 public void ejbPostCreate(String custname, String custaddr) throws
CreateException
 {
 // get primarykey
 String pk = (String)ctx.getPrimaryKey();
 }

 public void ejbActivate()
 {

 }

 public void ejbPassivate()
 {

 }

 public void ejbRemove()
 {
 }

 public void ejbLoad()
B-34 Enterprise JavaBeans Developer’s Guide and Reference

Container-Managed Entity Bean Example
 {
 // You can get to the primary key
 String pk = (String)ctx.getPrimaryKey();
 }

 public void ejbStore()
 {
 }

}

XML Deployment Descriptor
<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems Inc.//DTD Enterprise JavaBeans 1.1
//EN" "ejb-jar.dtd">
<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>customerbean</ejb-name>
 <home>customer.CustomerHome</home>
 <remote>customer.Customer</remote>
 <ejb-class>customerServer.CustomerBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field><field-name>name</field-name></cmp-field>
 <cmp-field><field-name>addr</field-name></cmp-field>
 <primkey-field>name</primkey-field>
 <env-entry>
 <env-entry-name>realmName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>my.realm</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>customerBean.databaseURL</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>jdbc:oracle:kprb:</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>customerBean.JDBCDriverName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>oracle.jdbc.driver.OracleDriver</env-entry-value>
 </env-entry>
 </entity>
Example Code: EJB B-35

Container-Managed Entity Bean Example
 </enterprise-beans>
 <assembly-descriptor>
 <security-role>
 <role-name>PUBLIC</role-name>
 </security-role>
 <method-permission>
 <role-name>PUBLIC</role-name>
 <method>
 <ejb-name>test/customer</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <container-transaction>
 <method>
 <ejb-name>test/customer</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>RequiresNew</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Oracle-Specific Deployment Descriptor
<?xml version="1.0"?>
<!DOCTYPE oracle-descriptor PUBLIC "-//Oracle Corporation.//DTD Oracle 1.1//EN"
"oracle-ejb-jar.dtd">
<oracle-descriptor>
<mappings>
 <ejb-mapping>
 <ejb-name>customerbean</ejb-name>
 <jndi-name>test/customer2</jndi-name>
 </ejb-mapping>
</mappings>

<persistence-provider>
 <persistence-name>psi-ri</persistence-name>
 <persistence-deployer>oracle.aurora.ejb.persistence.ocmp.OcmpEntityDeployer
 </persistence-deployer>
</persistence-provider>

<persistence-descriptor>
 <ejb-name>customerbean</ejb-name>
 <persistence-name>psi-ri</persistence-name>
 <psi-ri>
B-36 Enterprise JavaBeans Developer’s Guide and Reference

Session Example
 <schema>SCOTT</schema>
 <table>customers</table>
 <attr-mapping>
 <field-name>name</field-name>
 <column-name>cust_name</column-name>
 </attr-mapping>
 <attr-mapping>
 <field-name>addr</field-name>
 <column-name>cust_addr</column-name>
 </attr-mapping>
 </psi-ri>
</persistence-descriptor>
</oracle-descriptor>

Database Table Updates
connect scott/tiger

drop table CUSTOMERS;

create table CUSTOMERS (CUST_NAME VARCHAR(64) NOT NULL, CUST_ADDR VARCHAR(64),
CUST_SERIALIZE LONG RAW);

Session Example

README
Overview
========

This EJB example shows how you can create a second EJB in
the same server, but in a different session. The same username and
password are used to create the second object, and it accesses the
same published EJB.

Source Files
============

Client.java

You invoke the client program from a command prompt, and pass it four
Example Code: EJB B-37

Session Example
arguments, the

 - service URL (service ID, hostname, port, and SID if port is a listener)
 - name of the published bean to lookup and instantiate
 - username
 - password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2481:ORCL |
 /test/myHello scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
#If using Java 2, use classes12.zip instead of classes111.zip
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

 - gets the arguments passed on the command line
 - creates a new JNDI Context (InitialContext())
 - looks up the published bean to find and activate its home interface
 - using the home interface, instantiates through its create()
 method a new bean object, hello
 - sets the hello bean's message to "Hello World!"
 - asks the first hello bean to create another bean, by invoking the
 getOtherHello() method, passing it the authentication, service URL,
 and bean name parameters
 - invokes otherHelloWorld() on the first bean, and printing its
 return value, which is derived from the second created bean

The printed output is:

Hello World!
Hello from the Other HelloBean Object

hello.ejb

The bean deployment descriptor.
B-38 Enterprise JavaBeans Developer’s Guide and Reference

Session Example
helloServer/HelloBean.java

The EJB implementation.

hello/Hello.java

The bean remote interface.

hello/HelloHome.java

The bean's home interface.

Compiling and Running the Example
=================================
Before running this example, the user 'scott' needs to have
javauserpriv. This can be enabled by doing:
$ svrmgrl
SVRMGRL> connect internal
SVRMGRL> grant javauserpriv to scott;
SVRMGRL> quit
$

The configuration file INITSID.ORA must also specify that at least two
MTS servers can be activated. That is, the parameters MTS_SERVERS and
MTS_MAX_SERVERS must be set to at least the following:

mts_servers=2
mts_max_servers=2

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.
Example Code: EJB B-39

Session Example
Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

Client
import hello.Hello;
import hello.HelloHome;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

B-40 Enterprise JavaBeans Developer’s Guide and Reference

Session Example
 public static void main (String[] args) throws Exception {
 if (args.length != 4) {
 System.out.println ("usage: Client serviceURL objectName user password");
 System.exit (1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];

 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 // Activate a Hello in the 8i server
 // This creates a first session in the server
 HelloHome hello_home = (HelloHome)ic.lookup (serviceURL + objectName);
 Hello hello = hello_home.create ();
 hello.setMessage ("Hello World!");
 System.out.println (hello.helloWorld ());

 // Ask the first Hello to activate another Hello in the same server
 // This creates Another SESSION used by the first session
 hello.getOtherHello (user, password, serviceURL + objectName);
 System.out.println (hello.otherHelloWorld ());
 }
}

Home Interface
package hello;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public interface HelloHome extends EJBHome
{
 public Hello create () throws RemoteException, CreateException;
}

Example Code: EJB B-41

Session Example
Remote Interface
package hello;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import javax.ejb.CreateException;

public interface Hello extends EJBObject
{
 public String helloWorld () throws RemoteException;

 public void setMessage (String message) throws RemoteException;

 public void getOtherHello (String user, String password, String otherBeanURL)
 throws RemoteException, CreateException;

 public String otherHelloWorld () throws RemoteException;
}

Bean Implementation
package helloServer;

import hello.*;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

import javax.ejb.CreateException;
import java.rmi.RemoteException;
import javax.naming.NamingException;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class HelloBean implements SessionBean
{
 String message;
 Hello otherHello;

 // Methods of the Hello interface
 public String helloWorld () throws RemoteException {
B-42 Enterprise JavaBeans Developer’s Guide and Reference

Session Example
 return message;
 }

 public void setMessage (String message) throws RemoteException {
 this.message = message;
 }

 public void getOtherHello (String user, String password, String otherBeanURL)
 throws RemoteException, CreateException
 {
 try {
 // start a new session
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 // create the other Bean instance
 HelloHome other_HelloHome = (HelloHome)ic.lookup (otherBeanURL);
 otherHello = other_HelloHome.create ();
 otherHello.setMessage ("Hello from the Other HelloBean Object");
 } catch (NamingException e) {
 e.printStackTrace ();
 }
 }

 public String otherHelloWorld () throws RemoteException {
 if (otherHello != null)
 return otherHello.helloWorld ();
 else
 return "otherBean is not accessed yet";
 }

 // Methods of the SessionBean
 public void ejbCreate () throws RemoteException, CreateException {}
 public void ejbRemove () {}
 public void setSessionContext (SessionContext ctx) {}
 public void ejbActivate () {}
 public void ejbPassivate () {}
}

Example Code: EJB B-43

SSL Examples
SSL Examples

Client-Side Authentication Example

README
Overview
========

This is the exact same example as under examples/ejb/basic/helloworld,
except that this example is using SSL client auth. So, except for the
SSL details, please refer to the readme file under
examples/ejb/basic/helloworld for other details.

The purpose of the example is to show how to use ssl client side
authentication instead of username/password combination.

Setup required

You need to open the encrypted wallet(ewallet.der) provided in this directory
using the wallet manager tool provided by Oracle, and save it as clear
text wallet (cwallet.sso). The password is welcome12.
Copy the generated cwallet.sso into TNS_ADMIN directory.

The encrypted wallet(ewallet.der) is only valid for Solaris platforms. For
other platforms, you should generate the wallet using Oracle's owm tool.

This test also requires B64 encoded wallet(cert.txt) which is already present
in this directory. You can also generate your own using Oracle's owmgui tool
and using export option in the tool.

The parameter SSL_CLIENT_AUTHENTICATION in $TNSADMIN/sqlnet.ora should be set
to TRUE.

Restart the database.

The setup also requires creation of a global user, say guest. The script to
create
global user is in this directory(create.sh). This script prompts for username
and password of a privileged user as input to this script.
B-44 Enterprise JavaBeans Developer’s Guide and Reference

Client-Side Authentication Example
Client
import hello.Hello;
import hello.HelloHome;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{
 public static void main (String[] args) throws Exception {
 if (args.length != 4) {
 System.out.println ("usage: Client serviceURL objectName credentials_file
password");
 System.exit (1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String credsFile = args [2];
 String password = args [3];

 Hashtable env = new Hashtable ();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.SSL_CLIENT_AUTH);
 env.put(Context.SECURITY_CREDENTIALS, password);
 // Simply specify a file that contains all the credential info. This is
 // the file generated by the wallet manager tool.
 env.put(Context.SECURITY_PRINCIPAL, credsFile);

 Context ic = new InitialContext (env);

 HelloHome hello_home = (HelloHome)ic.lookup (serviceURL + objectName);
 Hello hello = hello_home.create ();
 System.out.println (hello.helloWorld ());
 }
}

Home Interface
package hello;

import javax.ejb.EJBHome;
Example Code: EJB B-45

Client-Side Authentication Example
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public interface HelloHome extends EJBHome
{
 public Hello create () throws RemoteException, CreateException;
}

Remote Interface
package hello;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Hello extends EJBObject
{
 public String helloWorld () throws RemoteException;
}

Bean Implementation
package helloServer;

import javax.ejb.SessionBean;
import javax.ejb.CreateException;
import javax.ejb.SessionContext;
import java.rmi.RemoteException;

public class HelloBean implements SessionBean
{
 // Methods of the Hello interface
 public String helloWorld () throws RemoteException {
 String v = System.getProperty("oracle.server.version");
 return "Hello client, your javavm version is " + v + ".";
 }

 // Methods of the SessionBean
 public void ejbCreate () throws RemoteException, CreateException {}
 public void ejbRemove() {}
 public void setSessionContext (SessionContext ctx) {}
 public void ejbActivate () {}
 public void ejbPassivate () {}
}

B-46 Enterprise JavaBeans Developer’s Guide and Reference

Server-Side Authentication Example
Server-Side Authentication Example

README
Overview
========

This is the exact same example as under examples/ejb/basic/helloworld,
except that this example is using SSL server side auth. So, except for the
SSL details, please refer to the readme file under
examples/ejb/basic/helloworld for other details.

The purpose of the example is to show how to use ssl server side
authentication. Since the client doesn't have certificate in this
case, it still passes username/password.

Setup required

You need to open the encrypted wallet(ewallet.der) provided in this directory
using the wallet manager tool provided by Oracle, and save it as clear
text wallet (cwallet.sso). The password is welcome12.
Copy the generated cwallet.sso into TNS_ADMIN directory.

The encrypted wallet(ewallet.der) is only valid for Solaris platforms. For
other platforms, you should generate the wallet using Oracle's owm tool.

The parameter SSL_CLIENT_AUTHENTICATION in $TNSADMIN/sqlnet.ora should be set
to FALSE.

Restart the database.

Client
import hello.Hello;
import hello.HelloHome;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
Example Code: EJB B-47

Server-Side Authentication Example
{
 public static void main (String[] args) throws Exception {
 if (args.length != 4) {
 System.out.println ("usage: Client serviceURL objectName user password");
 System.exit (1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];

 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.SSL_CREDENTIAL);
 Context ic = new InitialContext (env);

 HelloHome hello_home = (HelloHome)ic.lookup (serviceURL + objectName);
 Hello hello = hello_home.create ();
 System.out.println (hello.helloWorld ());
 }
}

Home Interface
package hello;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public interface HelloHome extends EJBHome
{
 public Hello create () throws RemoteException, CreateException;
}

Remote Interface
package hello;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Hello extends EJBObject
B-48 Enterprise JavaBeans Developer’s Guide and Reference

Server-Side Authentication Example
{
 public String helloWorld () throws RemoteException;
}

Bean Implementation
package helloServer;

import javax.ejb.SessionBean;
import javax.ejb.CreateException;
import javax.ejb.SessionContext;
import java.rmi.RemoteException;

public class HelloBean implements SessionBean
{
 // Methods of the Hello interface
 public String helloWorld () throws RemoteException {
 String v = System.getProperty("oracle.server.version");
 return "Hello client, your javavm version is " + v + ".";
 }

 // Methods of the SessionBean
 public void ejbCreate () throws RemoteException, CreateException {}
 public void ejbRemove() {}
 public void setSessionContext (SessionContext ctx) {}
 public void ejbActivate () {}
 public void ejbPassivate () {}
}

Example Code: EJB B-49

Server-Side Authentication Example
B-50 Enterprise JavaBeans Developer’s Guide and Reference

Abbreviations and Acro
C

Abbreviations and Acronyms

This appendix lists some of the most common acronyms that you will find in the

areas of networks, distributed object development, and Java. In cases where an

acronym refers to a product or a concept that is associated with a specific group,

company or product, the group, company, or product is indicated in brackets

following the acronym expansion. For example: CORBA ... [OMG].

This acronym list is intended as a helpful guide only. There are no guarantees that it

is complete or even completely accurate.

3GL third generation language

4GL fourth generation language

ACID atomicity, consistency, isolation, durability

ACL access control list

ADT abstract datatype

AFC application foundation classes [Microsoft]

ANSI American National Standards Institute

API application program interface

AQ advanced queuing [Oracle8]

ASCII American standard code for information interchange

ASP active server pages [Microsoft]

application service provider

AWT abstract windowing toolkit [Java]

BDK beans developer kit [Java]

BLOB binary large object
nyms C-1

BOA basic object adapter [CORBA]

BSD Berkeley system distribution [UNIX]

C/S client/server

CGI common gateway interface

CICS customer information control system [IBM]

CLI call level interface [SAG]

CLOB character large object

COM common object model [Microsoft]

COM+ common object model, extended [Microsoft]

CORBA common object request broker architecture [OMG]

DB database

DBA database administrator, database administration

DBMS database management system

DCE distributed computing environment [OSF]

DCOM distributed common object model [Microsoft]

DDCF distributed document component facility

DDE dynamic data exchange [Microsoft]

DDL data definition language [SQL]

DLL dynamic link library [Microsoft]

DLM distributed lock manager [Oracle8]

DML data manipulation language [SQL]

DOS disk operating system

DSOM distributed system object model [IBM]

DSS decision support system

DTP distributed transaction processing

EBCDIC extended binary-coded decimal interchange code [IBM]

EJB Enterprise JavaBean

ERP enterprise resource planning

ESIOP environment-specific inter-orb protocol
C-2 CORBA Developer’s Guide and Reference

FTP file transfer protocol

GB gigabyte

GIF graphics interchange format

GIOP general inter-orb protocol

GUI graphical user interface

GUID globally-unique identifier

HTML hypertext markup language

HTTP hypertext transfer protocol

IDE integrated development environment

interactive development environment

IDL interface definition language

IEEE Institute of Electrical and Electronics Engineers

IIOP internet inter-ORB protocol

IIS Internet information server [Microsoft]

IP internet protocol

IPC interprocess communication

IS information services

ISAM indexed sequential access method

ISAPI Internet server API [Microsoft]

ISO international standards organization (translation)

ISP internet service provider

ISQL interactive SQL [Interbase]

ISV independent software vendor

IT information technology

J2EE Java 2 Enterprise Edition [Sun]

JAR Java archive (on analogy with tar, q.v.)

JCK Java compatibility kit [Sun]

JDBC "Java database connectivity"

JDK Java developer kit
Abbreviations and Acronyms C-3

JFC Java foundation classes

JIT just in time

JLS Java language specification

JMF Java media framework

JMS Java messaging service

JNDI Java naming and directory interface

JNI Java native interface

JOB Java Objects for Business [Sun]

JPEG joint photographic experts group

JRMP Java remote ??message protocol

JSP Java server pages [Sun]

(sometimes used for Java Stored Procedure [Oracle])

JTA Java transaction API

JTS Java transaction service

JWS Java Web Server [Sun]

KB kilobyte

LAN local area network

LDAP lightweight directory access protocol

LDIF LDPA data interchange format

LOB large object

MB megabyte

MIME multipurpose Internet mail extensions

MIS management information services

MOM message-oriented middleware

MPEG motion picture experts group

MTS multi-threaded server [Oracle]

MTS Microsoft Transaction Server [Microsoft]

NCLOB national character large object

NIC network information center [internet]
C-4 CORBA Developer’s Guide and Reference

NNTP net news transfer protocol

NSAPI Netscape server application programming interface

NSP network service provider

NT New Technology [Microsoft]

OCI Oracle call interface

OCX OLE common control [Microsoft]

ODBC open database connectivity [Microsoft]

ODBMS object database management system

ODL object definition language [Microsoft]

ODMG Object Database Management Group

OEM original equipment manufacturer

OID object identifier

OLE object linking and embedding

OLTP on line transaction processing

OMA object management architecture [OMG]

OMG Object Management Group

OO object-oriented, object orientation

OODBMS object-oriented database management system

OQL object query language

ORB object request broker

ORDBMS object-relational database management system

OS operating system

OSF Open System Foundation

OSI open systems interconnect

OSQL object SQL

OTM object transaction monitor

OTS object transaction service

OWS Oracle Web Server

PB petabyte
Abbreviations and Acronyms C-5

PDF portable document format [Adobe]

PGP pretty good privacy

PL/SQL procedural language/SQL [Oracle]

POA portable object adapter [CORBA]

RAM random access memory

RAS remote access service [Microsoft]

RCS revision control system

RDBMS relational database management system

RFC request for comments

RFP request for proposal

RMI remote method invocation [Sun]

ROM read only memory

RPC remote procedure call

RTF rich text file

SAF server application function [Netscape]

SAG SQL Access Group

SCSI small computer system interface

SDK software developer kit

SET secure electronic transaction

SGML standard generalized markup language

SID system identifier [Oracle]

SLAPD standalone LDAP daemon

SMP symmetric multiprocessing

SMTP simple mail transfer protocol

SPI service provider interface

SQL structured query language

SQLJ SQL for Java

SRAM static (or synchronous) random access memory

SSL secure socket layer
C-6 CORBA Developer’s Guide and Reference

TB terabyte

TCPS TCP for SSL

TCP/IP transmission control protocol/internet protocol

TP transaction processing

TPC Transaction Processing Council

TPCW TPC web benchmark

TPF transaction processing facility

TPM transaction processing monitor

UCS universal character set [ISO 10646]

UDP user datagram protocol

UI user interface

UML unified modeling language [Rational]

URI uniform resource identifier

URL universal resource locator

URN universal resource name

VAR value-added reseller

VB Visual Basic [Microsoft]

VRML virtual reality modeling language

WAI web application interface [Netscape]

WAN wide area network

WIPS web interactions per second [TPCW]

WWW world wide web

XA extended architecture [X/Open]

XML extended markup language

jdb Java debugger [Sun]

tar tape archive, tape archiver [UNIX]

tps transactions per second
Abbreviations and Acronyms C-7

C-8 CORBA Developer’s Guide and Reference

Index

Symbols
<assembly-descriptor> section, 2-23, 2-24, A-3,

A-14

<attr-mapping> element, A-30

<cmp-field> element, 4-31, 4-35, A-6, A-29

<column-name> element, A-30

<container-transaction> element, 2-24, A-20

<ejb-class> element, A-4

<ejb-client-jar> element, 2-26, A-33

<ejb-jar> element, 2-23, A-3

<ejb-link> element, A-10, A-11

<ejb-mapping> element, A-10, A-11, A-24

<ejb-name> element, 2-23, 2-24, A-4, A-10

<ejb-ref> element, A-10, A-11

<ejb-ref-name> element, 4-36, A-10, A-11, A-12

<ejb-ref-type> element, A-11

<enterprise-beans> section, 2-23, A-3, A-4

<entity> element, A-4

<env-entry> element, A-9

<env-entry-name> element, A-9

<env-entry-type> element, A-9

<env-entry-value> element, A-9

<field-name> element, A-30

<home> element, A-4, A-11

<jndi-name> element, 2-26, A-10, A-11, A-13, A-24

<mapping> element, A-10, A-13

<mappings> element, A-23

<method> element, 2-25, A-21, A-27

defined, A-17

<method-intf> element

defined, A-18

<method-name> element, A-21, A-27

<method-permission> element, 2-24, A-15

<mode> element, 2-25, A-27

<oracle-descriptor> element, A-24

<persistence-deployer> element, A-28

<persistence-name> element, A-28, A-29

<persistence-provider> element, A-28

<persistence-type> element, A-6

<prim-key-class> element, 4-12, 4-31, A-6

<primkey-field> element, 4-31, A-6

<PSI-RI> element, A-30

<reentrant> element, A-14

<remote> element, A-4, A-11

<res-auth> element, 4-37, A-13

<resource-ref> element, 4-37

<resource-ref-mapping> element, A-13, A-24

<res-ref-name> element, 4-37, A-13, A-24

<res-type> element, 4-37, A-13

<role-link> element, A-15

<role-name> element, A-15, A-25, A-27

<run-as> element, 2-25, 4-24, A-2, A-26, A-27

<schema> element, A-30

<security-role> element, 2-24, A-15, A-25, A-27

<security-role-mapping> element, A-25

<security-role-ref> element, A-14, A-15

<serialize-mapping> element, A-31

<session> element, 2-23, A-4

<table> element, A-30

<transaction-manager> element, 7-30

defining 2pc engine, A-21

<transaction-type> element, A-14, A-19

<trans-attribute> element, A-20

A
ACID properties, 7-2
Index-1

acronyms, C-1

activation, 2-8, 4-22

ADDRESS parameter, 3-11, 3-16

afterBegin method, 7-40

afterCompletion method, 7-41

applet

invoking server objects from, 5-29

sandbox security restrictions, 5-29

APPLET_CLASS property, 5-29

aurora_client.jar file, 6-10

AuroraCertificateManager class, 6-23, 6-25

setCertificateChain method, 6-24

setEncryptedPrivateKey method, 6-24

AuroraCurrentManager class, 6-20

aurora.zip, 5-28

authenticate method, 5-20, 6-11

authentication

defined, 6-5

logout, 5-19, 6-11

server-side, 6-20

using SSL, 6-3

B
bean

accessing remotely, 2-2

creating, 2-3, 4-9

deployment, 2-20

entity, 4-3

environment, 2-10

interface, 2-2

naming conventions, 2-4

removing, 2-5

retrieving reference, 2-17

session, 2-10, 4-2

testing equality, 2-5

bean-managed persistence, 4-9, 4-19

beforeCompletion method

SessionSynchronization interface, 7-40

begin method, 7-16, 7-22

bindds command, 7-22, 7-38

bindut command, 7-17, 7-30

C
callback

client-side authentication, 6-25

server-side authentication, 6-22

using SSL, 6-21

callout

using SSL, 6-21

certificates, 6-20, 6-21, 6-24

manager, 6-23, 6-24

ClassLoader property, 5-30

client

access existing bean, 5-23

CLIENT_IDENTITY property, 2-25, A-26

client-side authentication, 6-5

Collection, 4-11, 4-18

commit method, 7-16, 7-17, 7-22

configuring, 3-1 to 3-19

direct to dispatcher, 3-16

IIOP clients, 3-1 to 3-19

SSL over TCP/IP, 3-17

container-managed persistence, 4-28

defining data fields, 4-34

deploying, A-6, A-28

managing primary key, 4-33

Context

JNDI object, 5-9

context

session, 2-10

transaction, 2-10

Context object

JNDI context, 2-16

JNDI object, 2-16

CosNaming service, 2-15, 5-2

create method, 2-12, 2-18, 4-10, 4-11

EJBHome interface, 2-2, 2-3, 2-6

CreateException, 2-6

D
data integrity, 6-3

Database Configuration Assistant, 3-8

DataSource object, A-13

binding in namespace, 7-22

create dynamically, 7-38
Index-2

getConnection method, 7-8, 7-26

DebugAgent class, 2-29

restart method, 2-29

stop method, 2-29

debugging techniques, 2-28

deployejb tool, 2-19, 2-21, 2-26

deployment descriptor, 1-6, 2-3, 2-19, 4-10, A-1

bean identity, 2-25

bean names, A-4, A-23

bean type, A-4

EJB reference, A-9

entity bean, 4-24

environment variables, A-8

JDBC DataSource, A-12, A-24

mapping logical names, A-23

Oracle-specific elements, A-22

persistence, A-5

reentrancy, A-14

run-as identity, A-26

security, 2-24, A-14, A-15, A-25

transactions, 2-24, A-14, A-19

XML, 2-20

DESCRIPTION parameter, 3-10

dispatchers

configuration, 3-11

connecting directly, 3-11

overview, 3-11

DriverManager class

getConnection method, 7-7, 7-26

DTD file, 2-21, 2-22, A-3, A-22

E
EJB

application developer role, 1-3

basic concepts, 1-2, 1-7

container vendor role, 1-3

creating beans, 2-3, 4-9

deployment, 1-2, 2-19, 2-20

deployment descriptor, 1-2, A-1

developer role, 1-2

difference between session and entity, 4-5

parameter passing, 2-13

programming restrictions, 2-28

remote interface, 2-4

security, 1-2

server vendor role, 1-3

URL for retrieving, 2-17

ejbActivate method, 2-8, 4-7, 4-22

EJBContext interface, 2-9

ejbCreate method, 2-3, 2-6, 4-6, 4-7, 4-10, 4-11, 4-17,

4-28

initializing primary key, 4-14

EJBException, 2-6

ejbFindByPrimaryKey method, 4-10, 4-14, 4-29

EJBHome interface, 2-3, 2-4, 2-6, 4-10

create method, 4-10, 4-11

findByPrimaryKey method, 4-10, 4-11

ejb-jar file, 2-3, 4-10

ejbLoad method, 4-7, 4-9, 4-19, 4-29

EJBMetaData interface, 2-6

EJBObject interface, 2-3, 2-4, 4-9, 4-12

ejbPassivate method, 2-8, 4-7, 4-22

ejbPostCreate method, 4-6, 4-10, 4-17, 4-28

ejbRemove method, 2-8, 4-6, 4-9, 4-21, 4-29

ejbStore method, 4-7, 4-9, 4-19, 4-29

endpoint, 3-13

IIOP registration, 3-15

endSession method, 5-19

Enterprise JavaBeans, see EJB

entity bean

activation and passivation, 4-22

bean-managed persistence, 4-19

class implementation, 4-15, 4-17

context information, 4-8, 4-22

creating, 4-7, 4-9, 4-10, 4-25

deploy, 4-24

destroying, 4-21

finder methods, 4-10, 4-11, 4-14, 4-29

home interface, 4-10, 4-26

overview, 1-9, 4-2, 4-3, 4-5

persistent data, 4-2, 4-9

primary key, 4-10

remote interface, 4-12, 4-16

removing, 4-9

retrieving reference, 4-26

EntityBean interface, 2-3, 2-8, 4-2, 4-6, 4-10, 4-28

ejbActivate method, 4-7, 4-22

ejbCreate method, 4-6, 4-7, 4-11, 4-28

ejbFindByPrimaryKey method, 4-10, 4-29
Index-3

ejbLoad method, 4-7, 4-9, 4-19, 4-29

ejbPassivate method, 4-7, 4-22

ejbPostCreate method, 4-6

ejbRemove method, 4-6, 4-9, 4-21, 4-29

ejbStore method, 4-7, 4-9, 4-19, 4-29

implementation, 4-17

setEntityContext method, 4-7, 4-8, 4-22, 4-29

unsetEntityContext method, 4-7

Enumeration, 4-11

environment

defining EJB references, 4-36

locating DataSource, 4-37

retrieve, 2-10

exceptions

creating, 2-7

F
findByPrimaryKey method, 4-10

finder methods, 4-14, 4-29

ejbFindByPrimaryKey method, 4-18

entity bean, 4-11

findByPrimaryKey method, 4-11

where clause finder method, 4-29

G
General Inter-Orb Protocol, see GIOP

getEJBHome method, 2-5, 2-10, 2-13

getEnvironment method, 2-10

getHandle method, 2-5

getPrimaryKey method, 2-5

getRollbackOnly method, 2-10

getUserTransaction method, 2-10

GIOP

dispatcher configuration, 3-11

oracle.aurora.server.SGiopServer, 3-9

presentation, 3-2

H
hand off, 3-14

handle

retrieving, 2-5

home interface

creating, 2-3, 4-9

example, 2-7

getEJBHome method, 2-13

lookup, 2-12

overview, 1-6

requirements, 2-4

retrieving, 2-5

I
iAS

deploying EJBs, 2-20

IIOP, 1-4, 3-2, 5-15

clients

connecting to dispatchers, 3-11

session-based, 3-9

MTS_DISPATCHER, 3-3

profile, 5-13

SSL support, 3-17

IIOP clients

configuring, 3-1 to 3-19

InitialContext object, 2-16, 5-12

in-session activation, 5-24

Internet Inter-Orb Protocol, see IIOP

isIdentical method, 2-5

J
JAR file, 2-3, 2-20, 4-10

Java Naming and Directory Interface, see JNDI

javax-ssl-1_1.jar, 5-11, 6-4

javax-ssl-1_2.jar, 5-11, 6-4

JDeveloper

debugging, 2-28

JNDI, 2-12

Context object, 5-9

EJB lookup, 4-25

initial context, 5-2

InitialContext constructor, 5-12

lookup method, 5-7, 5-12

overview, 2-15

retrieving JDBC DataSource, 4-37

retrieving references, 2-15

storing EJB references, 4-36

URL syntax, 4-25
Index-4

jssl-1_1.jar, 5-11, 6-4

jssl-1_2.jar, 5-11, 6-4

JTA

bean-managed, 7-14

client-side demarcation, 7-16

container-managed, 7-13

enlisting resources, 7-7, 7-25

limitations, 7-13

nested transactions, 7-13

overview, 7-2

specification web site, 7-1

timeout, 7-39

two-phase commit, 7-8, 7-29

L
LDAP, 2-15

listener, 3-11

dynamic registration of endpoints, 3-15

endpoint, 3-13

hand off, 3-14

overview, 3-11

redirection, 3-12, 3-13

login

non-JNDI login, 5-19, 6-11

Login class, 5-5, 6-11

LoginServer class, 6-11

authenticate method, 5-20, 6-11

logout method, 5-19, 6-11

LogoutServer class, 5-19, 6-11

lookup method, 2-17, 5-11, 5-12

M
Mandatory transaction attribute, 7-6, A-20

metadata, 2-6

MTS_DISPATCHERS parameter

ADDRESS attribute, 3-16

overview, 3-3

PRESENTATION attribute, 3-9, 3-10, 3-17

PROTOCOL attribute, 3-9

N
namespace, 5-3

Net8 Assistant

configuring for IIOP clients, 3-6, 3-10

Never transaction attribute, 7-7, A-20

NON_SSL_LOGIN value, 2-16, 5-2, 5-10

NotSupported transaction attribute, 7-6, A-20

O
object activation, 5-28

in-session, 5-24, 5-29

oracle.aurora.server.SGiopServer, 3-9

OracleDriver class

defaultConnection method, 7-7, 7-26

OracleJTADataSource class, 7-39

ORB

initialization, 6-24

ORBClass property, 5-31

ORBdisableLocator property, 5-31

ORBSingletonClass property, 5-31

OSS.SOURCE.MY_WALLET parameter, 3-19

P
parameters

passing conventions, 2-13

pass by reference, 2-13

pass by value, 2-13

passivation, 2-8, 4-22

persistence

bean-managed, 4-9

container-managed, 4-28, 4-34

container-managed vs. bean-managed, 4-27

create database tables, 4-23

data initialization, 4-17

data management, 4-7

deployment descriptor, 4-34, A-2, A-6

managing, 4-10, 4-28

overview, 4-2

PSI-RI, 4-28

persistence provider, 4-34

Persistence Service Interface Reference

Implementation, see PSI-RI

presentation

GIOP, 3-2, 3-9

oracle.aurora.server.SGiopServer, 3-9
Index-5

PRESENTATION attribute, 3-9, 3-10, 3-11, 3-17

primary key, 4-10

complex, 4-32

creating, 4-14

entity bean, 4-31

finder method, 4-18

identify entity bean, 4-10

intializing, 4-33

management, 4-7

overview, 4-2, 4-12

restriction, A-6

PROTOCOL attribute, 3-9

PROTOCOL_STACK parameter, 3-11

PSI-RI, 4-28, A-28

published object

permissions, 5-4

R
RAW session layer, 3-11

redirection, 3-12, 3-13, 3-16

regep tool, 3-15, 3-16

remote interface, 2-12, 4-16

creating, 2-3, 2-4, 4-9

example, 2-5

overview, 1-6, 2-2

requirements, 2-4

Remote Method Invocation

see RMI
remote object

access, 1-2

definition, 4-3

RemoteException, 2-6

remove method, 2-12

EJBHome interface, 2-3, 2-5

Required transaction attribute, 7-6, A-20

RequiresNew transaction attribute, 7-6, A-20

restart method, 2-29

restrictions, 2-28

RMI, 2-4

rollback method, 7-16, 7-17, 7-22

S
Secure Socket Layer, see SSL

SECURITY_AUTHENTICATION property, 2-16,

5-10

SECURITY_CREDENTIALS property, 2-16, 5-10

SECURITY_PRINCIPAL property, 2-16, 5-10

SECURITY_ROLE property, 2-16, 5-10

Serializable interface, 2-14

server-side authentication, 6-5

service name, 5-6, 5-11

session

logout, 5-19, 6-11

routing, 5-14

synchronization, 7-40

terminating from server-side, 5-19

SESSION attribute, 3-11

session bean

class implementation, 2-8

context, 2-9

creating, 2-7, 2-18

deploying, 2-19, 2-20

example, 2-10, 4-15

home interface, 2-7

IIOP, 3-9

overview, 1-9, 4-2

removing, 2-8

SessionBean interface, 2-8

EJB, 2-3, 2-8

ejbActivate method, 2-8, 4-7

ejbPassivate method, 2-8, 4-7

ejbRemove method, 2-8, 4-6

setSessionContext method, 2-9, 4-7

SessionContext

interface, 2-9

SessionSynchronization interface, 7-40

afterBegin method, 7-40

afterCompletion method, 7-41

beforeCompletion method, 7-40

setCertificateChain method, 6-24

setEncryptedPrivateKey method, 6-24

setEntityContext method, 4-7, 4-8, 4-22, 4-29

setRollbackOnly method, 2-10

setSessionContext method, 2-9, 4-7, 4-8

setTransactionTimeout method, 7-40

SID, 2-17, 5-6

SPECIFIED_IDENTITY property, 2-25, A-27

SSL, 6-20
Index-6

configuring, 3-17

connection security, 1-3

defined, 6-3

JAR files, 5-11, 6-4

protocol version numbers, 6-4

SSL_CLIENT_ AUTHENTICATION

parameter, 3-19

SSL_CLIENT_AUTH value, 2-16, 5-10

SSL_CREDENTIAL value, 2-16, 5-10

SSL_LOGIN value, 2-16, 5-10

SSL_VERSION parameter, 3-19

SSL_VERSION property, 2-17, 3-19

start method, 2-29

stop method, 2-29

Supports transaction attribute, 7-6, A-20

system identifier, see SID

SYSTEM_IDENTITY property, 2-25, A-27

T
trace files, 2-28

transaction

bean-managed, 7-4, 7-14

client-side demarcation, 7-16

commit, 2-10

container-managed, 7-4, 7-6, 7-13

context propagation, 2-10, 7-5

demarcation, 7-3

deployment descriptor, A-20

enlisting resources, 7-7, 7-25

global, 7-3

limitations, 7-13

overview, 1-2, 7-2

retrieve status, 2-10

rollback, 2-10

timeout, 7-39

two-phase commit, 7-8, 7-29

Transaction class, 7-3

TransactionManager class, 7-3

TTC, 5-13

two-phase commit, 7-29

two-task common, see TTC

U
unsetEntityContext method, 4-7, 4-29

URL

syntax for, 5-5

used as JNDI parameter, 2-17

URL_PKG_PREFIXES property, 2-16, 5-9

USE_SERVICE_NAME property, 5-11

UserTransaction object

begin method, 7-16, 7-22

commit method, 7-16, 7-17, 7-22

retrieving, 7-14

rollback method, 7-16, 7-17, 7-22

setTransactionTimeout method, 7-40

useServiceName flag, 5-6

deployejb option, 5-11

W
wallet, 6-20

X
XML, 2-21

deployment descriptor, 4-10

deployment descriptors, A-1

version number, 2-22, A-3, A-22
Index-7

Index-8

	PDF Directory
	Send Us Your Comments
	Preface
	1 Overview
	About Enterprise JavaBeans
	EJB Development Roles
	Oracle8i EJB Implementation Features
	RMI over IIOP
	IIOP Transport Protocol
	JNDI
	Stateful and Stateless Session Beans

	Implementing an EJB
	Basic Concepts
	Types of EJBs
	Persistence
	Session Beans
	Stateful Session Beans

	Entity Beans

	2 Enterprise JavaBeans
	Invoking Enterprise JavaBeans
	Creating Enterprise JavaBeans
	Requirements for Remote and Home Interface Implementation
	Creating the Remote Interface
	Example

	Creating the Home Interface
	Example

	Creating the Exception Class

	Implementing the Bean
	Interface Implemented
	Using setSessionContext

	Bean Implementation Example

	Developing Your Client Application
	Using the getEJBHome Method
	Parameter Passing
	A Parameter Object
	The Client Code
	Locating Remote Objects
	About JNDI
	Getting the Initial Context
	Getting the Home Interface Object
	Invoking EJB Methods

	Deploying an EJB
	Deployment Steps
	Write the Deployment Descriptor
	Create the Oracle Deployment Map File
	Create a JAR File
	Publish the Home Interface
	Dropping an EJB
	Run the Example

	Programming Restrictions
	Debugging Techniques
	Using a Debug Agent for Debugging Server Applications

	3 Configuring IIOP Applications
	Overview
	Oracle8i Typical or Minimal Installation
	Oracle8i Custom Installation
	Net8 Assistant

	Manual Install and Configuration
	Configuring Through Tools
	Configuring Through Editing Initialization Files
	1. Configure the IIOP Connection in the Database Initialization File
	2. Configure a Listener for the Incoming Connection

	Advanced Configuration Options
	Database Listeners and Dispatchers
	Handling Incoming Requests

	Dynamic Listener Endpoint Registration
	Direct Dispatcher Connection
	Configuring SSL for EJB and CORBA
	Enable the MTS_DISPATCHERS for SSL
	Configure the Wallet Location through Net8 Assistant
	Configure an SSL-Enabled Listener through Net8 Assistant

	4 Entity Beans
	Definition of an Entity Bean
	Managing Persistent Data
	Uniquely Identified by a Primary Key
	Performing Complex Logic Involving Dependent Objects

	Difference Between Session and Entity Beans
	Implementing Callback Methods
	Using ejbCreate and ejbPostCreate
	Using setEntityContext
	Using ejbRemove
	Using ejbStore and ejbLoad

	Creating Entity Beans
	Home Interface
	Remote Interface
	Primary Key
	Defining Primary Key as Well-known Type
	Defining the Primary Key in a Class
	Manage the Primary Key

	Entity Bean Class
	1. Declaring Variables
	2. Implementing Remote Interface Methods
	3. Implementing EntityBean Interface Methods
	4. LineItem Class

	Create Database Table and Columns for Entity Data
	Deploying the Entity Bean
	Client Accessing Deployed Entity Bean
	Create a New Entity Bean
	Access an Existing Entity Bean

	Difference Between Bean-Managed and Container-Managed Beans
	Container-Managed Persistence
	Modify Bean Class Callback Methods
	Define Your Primary Key
	Declare Persistence Fields
	Declare Persistence Provider
	Map Container-Managed Persistence Fields

	Accessing EJB References and JDBC DataSources
	EJB References
	JDBC DataSources

	5 JNDI Connections and Session IIOP Service
	JNDI Connection Basics
	The Name Space
	Execution Rights to Database Objects
	URL Syntax
	URL Components and Classes
	CosNaming Restriction for JNDI Name

	Using JNDI to Access Bound Objects
	Importing JNDI Support Classes
	Retrieving the JNDI InitialContext
	URL_PKG_PREFIXES
	SECURITY_PRINCIPAL
	SECURITY_CREDENTIALS
	SECURITY_ROLE
	SECURITY_AUTHENTICATION
	USE_SERVICE_NAME
	The JNDI InitialContext Methods
	Constructor
	lookup

	Session IIOP Service
	Session IIOP Service Overview
	Client Requirements
	Session Routing
	JServer Tools

	Session Management
	Service Context Class
	Variables
	Methods

	Session Context Class
	Methods

	Session Management Scenarios
	Setting Session Timeout
	Set the Session Timeout from the Client
	Set the Session Timeout from a Server Object

	Retrieving JServer Version Number
	Activating In-Session EJB Objects From Non-IIOP Presentations
	Invoking EJB Objects From Applets
	Using Signed JAR Files to Conform to Sandbox Security
	Performing Object Lookup in Applets
	Modifying HTML for Applets that Access EJB Objects

	6 IIOP Security
	Overview
	Data Integrity
	Using the Secure Socket Layer
	SSL Version Negotiation

	Authentication
	Client-side Authentication
	Using JNDI for Authentication
	Providing Username and Password for Client-Side Authentication
	Username Sent by Setting JNDI Properties for the Login Protocol
	Username Sent Implicitly by using Credentials
	Username Sent by Explicitly Activating a Login Object

	Using Certificates for Client Authentication
	Specifying Certificates in a File
	Specifying Certificates in Individual JNDI Properties
	Specifying Certificates using AuroraCertificateManager

	AuroraCertificateManager Class
	addTrustedCertificate
	requestClientCertificate
	setCertificateChain
	setEncryptedPrivateKey
	setProtocolVersion

	Server-Side Authentication
	Typical Client/Server
	Callouts using Security
	Callbacks using Security

	Authorization
	Setting up Trust Points
	Parsing through the Server’s Certificate Chain
	AuroraCurrent Class
	getNegotiatedCipherSuite
	getPeerDERCertificateChain
	getNegotiatedProtocolVersion

	7 Transaction Handling
	Transaction Overview
	Global and Local Transactions
	Demarcating Transactions
	Container or Bean Managed Transactions
	Container-Managed Transactional
	Bean-Managed Transactional

	Transaction Context Propagation
	Propagating the Transactional Context to Container-Managed Transactional Beans

	Enlisting Resources
	Enlisting the Local Database
	Enlisting a Remote Database

	Two-Phase Commit
	JTA Summary
	JTA Limitations
	Nested Transactions
	Interoperability

	JTA Server-Side Demarcation
	Container-Managed Transactions
	Bean-Managed Transactions
	SessionContext getUserTransaction method
	JNDI lookup

	JTA Client-Side Demarcation
	Bind UserTransaction Object in the Namespace
	Developing the Client Application
	JTA Client-Side Demarcation Including Databases
	Bind DataSource Object in the Namespace
	Developing the Client Application
	Enlisting Resources on the Server-side
	Local Database Enlistment
	Remote Oracle8i Database Enlistment

	Configuring Two-Phase Commit Engine
	Creating DataSource Objects Dynamically
	Setting the Transaction Timeout
	Using the Session Synchronization Interface
	afterBegin
	beforeCompletion
	afterCompletion

	JDBC Restrictions

	A XML Deployment Descriptors
	Enterprise JavaBean Deployment Descriptor
	Header
	JAR file
	Enterprise JavaBeans Descriptor
	Type of Bean
	Bean Names
	Entity Bean Elements
	Environment Elements
	Bean Services

	Application Assembler Section
	Defining Security
	Defining Transactions

	Oracle-Specific Deployment Descriptor
	Header
	Defining Mappings
	Bean Name
	EJB Reference
	JDBC DataSource
	Security Role

	Defining Two Phase Commit Engine for Transactions
	Defining Run-As Identity
	Defining Container-Managed Persistence
	EJB Client JAR Section

	DTD for Oracle-Specific Deployment Descriptor

	B Example Code: EJB
	Basic Example
	README
	Client
	Home Interface for Hello
	Remote Interface for Hello
	Bean Implementation for Hello

	SQLJ Example
	README
	Client
	Home Interface
	Remote Interface
	Bean Implementation
	EmployeeBean.sqlj
	EmpRecord.java

	Bean Inheritance Example
	README
	Client
	Home Interface
	BarHome.java
	FooHome.java

	Remote Interface
	Bar.java
	Foo.java

	Bean Implementation
	BarBean.java
	FooBean.java

	Entity Bean Examples
	Bean-Managed Entity Bean Example
	Client
	Home Interface
	Remote Interface
	Bean Implementation
	PurchaseOrderBean.sqlj
	LineItem.java

	Deployment Descriptor

	Container-Managed Entity Bean Example
	Client
	Home Interface
	Remote Interface
	Bean Implementation
	XML Deployment Descriptor
	Oracle-Specific Deployment Descriptor
	Database Table Updates

	Session Example
	README
	Client
	Home Interface
	Remote Interface
	Bean Implementation

	SSL Examples
	Client-Side Authentication Example
	README
	Client
	Home Interface
	Remote Interface
	Bean Implementation

	Server-Side Authentication Example
	README
	Client
	Home Interface
	Remote Interface
	Bean Implementation

	C Abbreviations and Acronyms
	Index

