
Oracle8 i

Integration Server Overview

Release 3 (8.1.7)

September 2000

Part No. A83729-01

Oracle8i Integration Server Release 3 (8.1.7)

Part No. A83729-01

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Authors: Thomas Kurian, Chitra Sharma

Contributing Authors: Anna Sears, Jon WIlkinson

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

For EMEA countries only (includes U.K.): Reverse engineering, disassembly, or decompilation of the
Programs, except to the extent required to obtain interoperability with other independently created
software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and is a registered trademark of Oracle Corporation. All other company
or production names mentioned are used for identification purposes only and may be trademarks of
their respective owners

Contents

Send Us Your Comments ... xiii

Preface .. i

Objectives of the Oracle Integration Server .. ii
Scope... ii
Intended Audience .. iii
Structure of the Document ... iii
Related Documents.. iv
Conventions... v

Conventions in Text .. v
Conventions in Code Examples ... vi

Part I Overview of E-Business and Integration

1 Overview of E-Business Integration

Introduction to E-Business Integration .. 1-2
Mergers and Acquisitions ... 1-3
Packaged Applications .. 1-4
Business Process Re-engineering ... 1-4
Virtual, Dynamic Supply Chains ... 1-4
Customer Relationship Management .. 1-5
Corporate Self-Service.. 1-5
Business-to-Business Commerce .. 1-6
Application Service Providers and Hosting ... 1-6

Reasons for E-Business Integration .. 1-6
Synchronizing Data Between Information Systems .. 1-7
iii

iv

Isolating Applications and Businesses .. 1-8
Streamlining Multistep Business Processes .. 1-9

E-Business Integration Technologies and Approaches ... 1-11
Data Consistency and Synchronization Technologies .. 1-11
Component-Oriented Development Technologies.. 1-13
Message-Oriented Middleware Technologies.. 1-14

2 Methodology and Solutions

Selecting the Appropriate E-Business Integration Methodology ... 2-2
Synchronizing Data Among Systems .. 2-2
Isolating Applications and Businesses from Each Other .. 2-3
Automating Multi-step Business Processes .. 2-4

Application Integration: The Solution Spectrum ... 2-7
Data Integration .. 2-8

Scenario:... 2-8
Problem:... 2-8
Solution: ... 2-8

Application Integration.. 2-8
Synchronous Communication with Functional Interfaces .. 2-8

Scenario:... 2-8
Problem:... 2-8
Solution: ... 2-8

Asynchronous Communication with Message-Based Interfaces 2-9
Scenario:... 2-9
Problem:... 2-9
Solution: ... 2-9

Business Process Modeling and Execution ... 2-10
Scenario:... 2-10
Problem:... 2-10
Solution: ... 2-10

Business Process Intelligence .. 2-10
Scenario:... 2-10
Problem:... 2-10
Solution: ... 2-10

Business-to-Business Integration .. 2-11

3 Overview of Oracle Integration Server

Introduction to OIS .. 3-2
Data Integration .. 3-3
Replication ... 3-3
Application Integration ... 3-3
Business Process Intelligence .. 3-5
Data Transformation .. 3-7
Application Adapters... 3-8

Functionality: .. 3-8
Deployment:.. 3-9
Adapter SDK:.. 3-9

Business Process Modeling and Execution... 3-10
Execution Engine:... 3-12

Systems Management .. 3-13
Oracle Integration Server Design Objectives ... 3-13

Strategic Infrastructure, Not Tactical Point Solution .. 3-13
Choose And Use As You Go ... 3-14
Mission-Critical, Enterprise-Wide Integration... 3-14
Leveraging Your Investment .. 3-15

Functions of OIS ... 3-15
Key Objectives for OIS.. 3-17

Security... 3-17
Product Development Life-Cycles ... 3-17
Extensibility ... 3-18
Encapsulation.. 3-18
Component-Based Architectures ... 3-19
New Messaging Technologies .. 3-19

Auditing and Tracking ... 3-19
Business Process Coordination.. 3-20
Business Intelligence ... 3-20

4 Key Integration Concepts

Asynchronous Message-Based Integration ... 4-2
 An Example of the Use of Messaging for B2B Integration .. 4-2

Communication Between the Supplier and Exchange .. 4-3
v

Message and Data Transformation ... 4-3
Business Process Management and Workflow ... 4-4

Exchange Integration Scenario: Supplier Perspective ... 4-4
Exchange Integration Scenario: Exchange Perspective ... 4-6

Messaging Technology and Architecture ... 4-7
Messaging Technology - An Overview ... 4-8

Synchronous and Asynchronous Communication... 4-8
Session-Based and Sessionless Communication ... 4-9
Stateless (“Without State”) and Stateful (“With State”) Communication..................... 4-9
Two-Way and One-Way Communication ... 4-10

Message-Based Integration Architectures... 4-10
Point-to-Point Integration .. 4-10
Hub-and-Spoke Integration ... 4-11
Benefits and Trade-offs ... 4-12

Messaging Technology... 4-13
Message Storage and Management.. 4-13
Message Propagation and Routing .. 4-15
Message Notification Models.. 4-17

Event Notification.. 4-17
Service Requests... 4-18

Message and Data Transformation Requirements... 4-19
Datatype Transformation ... 4-19
Semantic Transformation ... 4-20

Message and Data Transformation Issues .. 4-20
Transformation Location .. 4-20
Transformation Mechanism... 4-20
Transformation Event Frequency.. 4-21
Message System Interoperability .. 4-22
Java Messaging Service (JMS).. 4-22
The Oracle Implementation of JMS... 4-24
XML ... 4-25

Part II Products
vi

5 Synchronous Application Integration

Facilities Provided by the Oracle8i Java VM... 5-2
Core Facilities Provided by Java VM... 5-3
Core Runtime Facilities Provided by Java VM... 5-4
Integration Between Java VM and the Database ... 5-5

Developing Java Applications with the Oracle Database .. 5-7
CORBA Facilities in Oracle8i .. 5-8
Enterprise JavaBeans, an Overview... 5-9

Supporting JABs on the Oracle8i Java VM: an Architectural Overview 5-11
Session Management Facilities... 5-11
Enterprise JavaBeans Services .. 5-12

6 Data Replication and Gateways

Oracle Replication, an Overview... 6-2
Advantages of Replication .. 6-2
Uses of Replication ... 6-3
Types of Replication... 6-4

Multimaster Replication ... 6-4
Snapshot Replication .. 6-4
Hybrid Configurations ... 6-4

Data Access Gateways ... 6-5
Oracle Transparent Gateways .. 6-5
Oracle Procedural Gateways... 6-6
Oracle Procedural Gateway for APPC .. 6-6
Oracle Access Managers .. 6-7

Uses of Oracle Replication and Gateways ... 6-7
 Interoperability .. 6-8

7 Oracle Advanced Queuing and JMS

 A Brief Review of the Products... 7-2
Advanced Queuing .. 7-2
Components of Advanced Queueing .. 7-2

Message .. 7-3
Queue.. 7-3
vii

Queue Table ... 7-3
Agent ... 7-3
Recipient ... 7-4
Recipient and Subscription Lists ... 7-4
Rule .. 7-5
Rule-Based Subscriber .. 7-5
Queue Monitor... 7-5

General Features of Advanced Queueing ... 7-5
SQL Access ... 7-5
Integrated Database Level Operational Support .. 7-6
Structured Payload.. 7-6
Retention and Message History... 7-6
Tracking and Event Journals.. 7-6
Integrated Transactions .. 7-7
Queue- Level Access Control... 7-7
Non-Persistent Queues ... 7-7
Publish-Subscribe Support ... 7-7

Two Contexts for Developing Queueing Operations.. 7-7
Oracle Java Messaging Service (OJMS) ... 7-8

Agents.. 7-8
Additional Message Control Properties... 7-8
Additional Message Type... 7-9
Transactional Session .. 7-9
Administration... 7-9
Restrictions ... 7-10

Oracle Procedural Gateway for IBM MQSeries ... 7-10
TIB Adapter for Oracle... 7-10

Applying the Products in an Integration Solution... 7-11
Advanced Queuing .. 7-11

Business Event Integration... 7-11
Data integration ... 7-13

OJMS... 7-13
Procedural Gateway for MQSeries... 7-14
Interoperability.. 7-14

MQSeries Example .. 7-15
viii

Business Intelligence and Message Warehousing.. 7-15
Persistent Queues ... 7-15
 Volatile Queues.. 7-17
Basic Principles of Message Storage .. 7-17

Business Intelligence Tools... 7-18
Reports ... 7-18
Discoverer .. 7-18
Express ... 7-19

8 Oracle Message Broker and JMS

Overview .. 8-2
Oracle Message Broker Core... 8-2
Drivers.. 8-3
Administrative Components and the LDAP Directory .. 8-3
Client Programming Interface .. 8-3
Adapter Developers Toolkit.. 8-4

Uses of OJMS and OMB.. 8-4
AQ API Compatibility ... 8-5
Interoperability with Other Messaging Technologies... 8-6
MQSeries Example ... 8-7
Workflow Example... 8-8

Enabling Tools ... 8-13
Programming Languages .. 8-13
Transformation Engines .. 8-14
Message Transformers ... 8-14

9 Directory Services (LDAP)

Java and Directory Service Integration... 9-2
 Directory Services - An Introduction.. 9-2

The Problem ... 9-2
The Solution ... 9-3

Directory Services and LDAP, a Technical Overview... 9-3
LDAP Information Model .. 9-5
LDAP Naming Model... 9-6
LDAP Functional Model .. 9-7
ix

Separable Naming Contexts: .. 9-8
Hierarchical Information:.. 9-8
Security Enforcement:.. 9-8

Oracle Internet Directory... 9-9

10 Workflow

Overview... 10-2
Key Workflow Components .. 10-2

Oracle Workflow Builder... 10-2
Workflow Engine.. 10-2
Workflow Definitions Loader ... 10-3
Workflow Monitor.. 10-3

Key Workflow Features .. 10-3
Complete Programmatic Extensibility... 10-4
Electronic Notifications.. 10-4
Electronic Mail Integration.. 10-4
Internet-Enabled Workflow .. 10-4
Monitoring and Administration ... 10-5
Business Event System... 10-5
Workflow Monitor.. 10-5
Uses... 10-5
AQ API ... 10-6

Queue APIs... 10-7
Developer APIs for the Inbound Queue .. 10-8
Payload Structure .. 10-9

PL/SQL Callout Functionality.. 10-9
Instantiating Business Process Instances Using PL/SQL and Java................................... 10-10
Interoperability.. 10-10

Part III Reference

A Mercator Enterprise Broker and OIS

Introduction ... A-2
System Editor .. A-2
x

Type Tree Editor ... A-3
Database Editor... A-3
Mapping Editor... A-3

Input Cards... A-4
Output Cards ... A-4
Maps .. A-4

Enterprise Broker Engine .. A-5
Uses of Enterprise Broker in the Oracle Integration Server ... A-5

Hints and Tips ... A-5

B Front-End and Back-End Integration

Front-End Integration .. B-2
Advantages... B-3
Drawbacks .. B-3

Back-End Integration ... B-3
Advantages... B-5
Drawbacks .. B-5

C Autonomous and Pointer Payloads

Pointer Payload ... C-2
Example 1: Video Film.. C-2
Example 2: Changes to a Name and Address Database.. C-2

Autonomous Payload ... C-2
Example 1: Share Trading .. C-3
Example 2: Stock Control ... C-3

Hybrid Payload ... C-3
Example: Marketing.. C-4

D Business Events and System Events

Business Events ... D-1
System Events.. D-2

Example: Raising an Order .. D-2
Distinctions between Business and System Events... D-2

Example: Emphasizing System Events .. D-3
xi

Example: Emphasizing Business Events ... D-3

Index
xii

Send Us Your Comments

Oracle8 i Integration Server Overview, Release 3 (8.1.7)

Part No. A83729-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ E-mail - infodev@us.oracle.com

■ FAX - (650) 506-7228. Attn: Information Development

■ Postal service:

Oracle Corporation

Server Technologies Documentation Manager

500 Oracle Parkway, 4OP12

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xiii

xiv

Preface

This document describes the Oracle Integration Server and its applications to your

integration solution.

This preface contains:

■ Objectives of the Oracle Integration Server

■ Scope

■ Intended Audience

■ Structure of the Document

■ Related Documents

■ Conventions
i

Objectives of the Oracle Integration Server
Enterprise or e-business integration means streamlining business processes by

enabling applications to communicate with each other. Enterprise integration is

driven by the need to synchronize data between different systems, to automate a

business process, or to isolate packaged applications from each other. e-Business

and particularly B2B commerce is both accelerating the demand for traditional

enterprise integration and creating demand for fundamentally new kinds of

integration.

Oracle Integration Server facilitates the integration of technologies within

e-businesses. It works both within Oracle products and with third-party products.

The OIS enables to:

■ Synchronize data among systems using advanced replication and gateways

■ Enable applications to communicate with each other synchronously and

asynchronously using:

■ Message storage and management

■ Message routing and propagation

■ Data and message transformation services

■ Business process and workflow services

Scope
This book provides an overview of the technological requirements for enterprise

integration and discusses various components within Oracle Integrations Server

that meet these requirements.

Part III describes several advanced topics in integration such as interoperability

between OIS and various third-party integration solutions.

Note that the objective of this document is to introduce you to various conceptual

elements of integrations and to discuss how Oracle Integration Server can meet

these requirements. It also illustrates the specific components of OIS you should use

with a particular integration scenario. However, it does not describe the specific

details of each component, but links you to the product-specific documentation on

how to use the product, how to develop applications using it, and how to deploy

and manage it.
ii

Intended Audience
The primary audience for this document are the architects and designers who

define, develop, and implement message-based integration solutions with OIS.

Database administrators who manage OIS installations and developers who build

predefined components of the integrations solution will also find this document

useful.

We assume that you have a basic understanding of the complexities and issues of

application integration. Knowledge of transaction processing and Oracle8i concepts

will prove useful.

Structure of the Document
This document is structured in three parts, each introducing you to a specific aspect

of e-business integration and the Oracle integration offering.

Part I provides an overview of e-business integration and discusses the business

drivers for integration, specific technical challenges that must be addressed, and the

key integration concepts of Oracle Integration Server.

■ Chapter 1, "Overview of E-Business Integration"

■ Chapter 2, "Methodology and Solutions"

■ Chapter 3, "Overview of Oracle Integration Server"

■ Chapter 4, "Key Integration Concepts"

Part II provides a brief overview of each of the product components of OIS and

links you to the product-specific documentation for more information.

■ Chapter 5, "Synchronous Application Integration"

■ Chapter 6, "Data Replication and Gateways"

■ Chapter 7, "Oracle Advanced Queuing and JMS"

■ Chapter 8, "Oracle Message Broker and JMS"

■ Chapter 9, "Directory Services (LDAP)"

■ Chapter 10, "Workflow"

Part III describes several advanced topics in integration such as interoperability

between OIS and various third-party integration solutions.
iii

Related Documents
The following documents have more information about the components within OIS.

Oracle8 i Server Documentation
■ Oracle8i Application Developer’s Guide - Advanced Queuing

■ Oracle8i CORBA Developer’s Guide and Reference

■ Oracle8i Replication

■ Oracle8i Distributed Database Systems

■ Oracle Internet Directory Application Developer’s Guide

■ Oracle Enterprise Manager Administrator’s Guide

Component Product Documentation
■ Oracle8i Workflow User Guide Release 2.5.2

■ Oracle8i Message Broker Administrator’s Guide 2.0.1.0

■ Oracle8i Supplied PL/SQL Packages Reference

■ Oracle8i Supplied Java Packages Reference

■ Oracle8i Online Help for Oracle Objects for OLE Release 3 (8.1.7)

■ Oracle8i XML Reference

■ Oracle8i Applications InterConnect 3.1.3
iv

Conventions
This section describes the conventions used in the text and code examples of the

Oracle8i documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

... the C datatypes such as ub4, sword, or
OCINumber ...

When you specify this clause, you create an
index-organized table ...

Italics Italic typeface indicates book titles, syntax
clauses, or placeholders.

Oracle8i Concepts

You can specify the parallel_clause ...

Run Uold_release.SQL where old_release refers
to the release you installed prior to upgrading.

UPPERCASE
monospace
(fixed-width font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include executables, parameters,
privileges, datatypes, SQL keywords,
SQL*Plus or utility commands, packages and
methods, as well as system-supplied column
names, database objects and structures, user
names, and roles.

You can specify this clause only for a NUMBER
column.

You can change this value in an ALTER TABLE
statement.

 ... grouped by the DEPTNO column ...

Specify the ROLLBACK_SEGMENTS parameter
...

 ... the DBMS_STATS.GENERATE_STATS
procedure ...

lowercase
monospace
(fixed-width font)

Lowercase monospace typeface indicates
sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied database
objects and structures, column names,
packages and classes, user names and roles,
program units, and parameter values.

The deptno , dname, and loc columns are in
the scott.dept table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true if ...

Connect to the sales@sf.acme.com
database.

Connect as oe user.
v

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a fixed-width font and separated from normal

text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional items.
Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two or
more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the code
that are not directly related to the
example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , col n FROM
emp;

 .

 .

 .

Vertical ellipsis points indicate that we have
omitted several lines of code not directly
related to the example.

Other
punctuation

You must enter punctuation other than
brackets, braces, vertical bars, and ellipsis
points as it is shown.

Italics Italicized text indicates variables for which
you must supply particular values.

STARTUP PFILE=init sid .ora

In this example, the entire string
init sid .ora is a placeholder for a
parameter file that must contain your
particular instance ID or SID.
vi

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. However,
because these terms are not case sensitive,
you can enter them in lowercase.

SELECT ename, empno FROM emp;

SQLPLUS username/password

INTO TABLENAME ’table’

lowercase Lowercase typeface indicates programmatic
elements that you supply. For example,
lowercase indicates names of tables,
columns, or files.

SELECT ename, empno FROM emp;

SQLPLUS scott/tiger

Convention Meaning Example
vii

viii

Part I

 Overview of E-Business and Integration

Part 1 introduces business concepts that drive e-businesses towards finding

integration solutions and discusses specific technical challenges that must be

addressed. It outlines the key concepts of the Oracle Integration Server.

■ Chapter 1, "Overview of E-Business Integration"

■ Chapter 2, "Methodology and Solutions"

■ Chapter 3, "Overview of Oracle Integration Server"

■ Chapter 4, "Key Integration Concepts"

Overview of E-Business Integ
1

Overview of E-Business Integration

This chapter provides an overview of the development of an e-business integration

solutions and contains these sections:

■ Introduction to E-Business Integration

■ Reasons for E-Business Integration

■ E-Business Integration Technologies and Approaches
ration 1-1

Introduction to E-Business Integration
Introduction to E-Business Integration
The Internet revolution has advanced to the stage at which every enterprise must

become an e-business. This is an imperative and not a choice. Hence, it is necessary

to determine when and how an enterprise becomes an e-business.

What is e-business? It is a fundamental change to the way an organization conducts

business. An e-business uses Internet technology to:

■ Attract, satisfy, and retain the customers who buy its products and services

■ Streamline supply chain, manufacturing, and procurement systems to

efficiently deliver the right products and services to the customers

■ Automate corporate business processes to reduce cost and improve efficiency

through self-service

■ Capture, analyze, and share business intelligence about customers and

company operations. This enables management to make better business

decisions and to continually refine business strategy.

An e-business requires a variety of Internet-enabled applications including

e-commerce Web sites, portals, supply-chain management, procurement

management, online marketplaces, customer relationship management, and

enterprise resource planning. All these applications must be integrated with one

another to make an enterprise an e-business.

Figure 1–1 Integration, the Key to E-Business Drivers of E-Business Integration

Integration

ERP
Applications

Business
Intelligence

Systems

Electronic
Storefront

Suppliers &
Partners

Portal
(Sell-Side

Marketplace)

Suppliers &
Partners

Customer
Service

Sales Force

Service
Providers
1-2 Oracle8i Integration Server Overview

Introduction to E-Business Integration
The necessity for businesses to become “zero latency organizations” drives

enterprise-wide integration of information systems and applications. For instance,

in a smoothly running e-business:

■ An order received at an electronic storefront is automatically visible to a

customer service representative who must answer customer inquiries about its

status.

■ The order is automatically propagated to a supply chain application to start a

planning and execution operation.

■ The order information is exchanged over the Internet with a supplier or partner

who provides fulfillment and delivery.

These developments drive the need for e-business integration:

■ "Mergers and Acquisitions"

■ "Packaged Applications"

■ Business Process Re-engineering

■ Virtual, Dynamic Supply Chains

■ Customer Relationship Management

■ Corporate Self-Service

■ Business-to-Business Commerce

■ Application Service Providers and Hosting

Mergers and Acquisitions
When two or more companies merge, or when one company acquires another, they

must automate a company-wide business process for the new entity. To do so, they

connect their information systems together to synchronize and share information.

For instance, as telecommunications companies increasingly consolidate globally

through mergers and acquisitions, they require a common view of their

consolidated customer base. As a result, they must share and synchronize customer

information among their front-end databases, their billing systems, and other

front-end applications.
Overview of E-Business Integration 1-3

Introduction to E-Business Integration
Packaged Applications
As businesses buy packaged applications to streamline parts of their business, they

must integrate these applications with other packaged applications and with legacy

systems within the enterprise. Enterprise integration technologies enable

applications to communicate with each other in order to automate business

processes.

Business Process Re-engineering
Business process reengineering drives the requirement for enterprise integration. As

organizations redesign and streamline their business processes, the underlying

applications infrastructure that facilitates these business processes must

communicate with different systems in new ways. Companies undergoing business

process reengineering deploy integration middleware to connect different systems

together.

Although these three developments provide the primary incentives for enterprise

integration within companies, companies undergoing a transition to e-business face

additional integration needs. With e-business, customers and suppliers have

transparent and direct access to the internal business processes of an organization.

As a result, the e-business itself creates a demand for enterprise integration within

companies and between businesses. These factors include:

■ Virtual, Dynamic Supply Chains

■ Customer Relationship Management

■ Corporate Self-Service

■ Business-to-Business Commerce

■ Application Service Providers and Hosting

Virtual, Dynamic Supply Chains
Many e-businesses outsource critical parts of their supply chain execution process

to partners. These include manufacturing specialists who build specialized

components, fulfillment specialists who provide logistics and fulfillment, and

warehouse management specialists who manage a supplier’s inventory in the

warehouse.

For instance, many personal computer manufacturers assemble the computers

themselves but outsource the manufacturing of the PC boards and use a third-party

logistics provider to ship the PCs directly to consumers. In such a case, the
1-4 Oracle8i Integration Server Overview

Introduction to E-Business Integration
company’s supply chain applications and business processes must be tightly linked

with the supply chain systems of the suppliers. This ensures global visibility of

inventory levels and demand patterns to all participants. Business-to-business

integration software links these systems together.

Customer Relationship Management
In an e-business, customers reach the company through a variety of facilities. They

can:

■ Access a company’s product information through its Web site

■ Order products through the company’s Web store

■ Call a company’s customer service operation to check the status of an order

■ Follow up with a company’s partners in order to get the product serviced

All front-end applications of the business must be integrated so that customers have

a unified view of the company no matter what channel they use to reach it. Ideally

all front-end applications are designed to be integrated. In cases where applications

are not integrated with each other, the business must use integration middleware to

stitch the systems together.

Corporate Self-Service
As companies move toward e-business, they convert customer-, supplier-, and

employee-facing business processes to self-service. Customers enter their own

orders for products by going to a company’s Web store; suppliers enter their own

purchase orders and complete the requisitioning process through their own secure

Web sites; employees file their own expense reports, create their own purchase

orders, purchase office supplies, and buy all of their own travel tickets online.

To facilitate self-service, business processes must be streamlined to conduct Straight

Through Processing. For instance, when an employee files an expense report, a

workflow process notifies the employee’s manager and debits the appropriate

dollar amount from the company’s financial systems, while crediting the employee

in the company’s payroll systems. E-Business integration middleware integrates all

these discrete systems together to facilitate the business process.
Overview of E-Business Integration 1-5

Reasons for E-Business Integration
Business-to-Business Commerce
As companies increasingly conduct business-to-business commerce through online

marketplaces or exchanges, suppliers and customers who connect with these

exchanges must automate their interactions in order to:

■ Reconcile their product catalogs and prices with the exchanges

■ Respond to requests and bids from customers

■ Participate in auctions and reverse auctions

Suppliers and customers are beginning to use e-business integration middleware to

tie their enterprise resource planning applications with online marketplaces to

streamline business-to-business processes.

Oracle Corporation, for instance, offers a version of its own e-business integration

middleware that links suppliers to the exchanges the company is building. This is

known as the Oracle Integration Server.

Application Service Providers and Hosting
Companies increasingly focus on their core competencies and outsource their

enterprise applications to application service providers (ASPs) or to hosting

companies. This creates a fundamental need to connect their own legacy

information systems with those of the ASP and to connect the applications of one

ASP to those of another. As a result, migrating a company’s back-office systems

from a corporate data center to that of an ASP creates demand for e-business

integration middleware to tie these different systems together.

Reasons for E-Business Integration
The business drivers of e-business integration translate into specific requirements

within an integration infrastructure. To understand what kinds of integration

middleware are required, we identify three fundamental reasons for e-business

integration:

■ Synchronizing Data Between Information Systems

■ Isolating Applications and Businesses

■ Streamlining Multistep Business Processes
1-6 Oracle8i Integration Server Overview

Reasons for E-Business Integration
Synchronizing Data Between Information Systems
The first reason is the need to synchronize data between information systems.

e-businesses require a consistent, global, enterprise-level view of their business

objects or information. For instance, they require:

■ A single, integrated view of each customer across various lines of business

■ A consistent view of their supply chain inventory and of demand patterns with

their suppliers and partners

■ A consistent view of their finances across all of their disparate financial tracking

systems

The fundamental integration need in all of these cases is for a consistent global view

of information across the different systems that synchronizes data between the

different information systems.

Synchronizing data between systems can be done either periodically by batch

transfer or continually by repeated transactions.

Batch-Style Data Synchronization
For instance, synchronizing data between an online transaction processing system

and a data warehouse is typically done by synchronization batch transfer. A batch

job extracts new information from the transactional system, transforms it into the

appropriate format, and loads or populates the data warehouse.

Transactional Data Synchronization
Other scenarios, however, require transactional data synchronization. For instance,

when a banking customer makes an account transfer on a self-service Web site, the

site must immediately reflect changes to his account. Account information stored in

the bank’s back-office systems must be synchronized through a transaction with the

database backing the Web site. In some cases, the bank does not maintain two

copies of a customer’s account information: one in the database backing the Web

site and another in the bank’s back-office systems. Instead, the bank simply

maintains customer information in one system and provides multiple applications

with access to that system. This method has benefits and trade-offs associated with

performance, scalability, and security that we discuss in the next section.
Overview of E-Business Integration 1-7

Reasons for E-Business Integration
Isolating Applications and Businesses
A second reason for intraenterprise or business-to-business integration is to

separate one company’s business processes and applications from those of its

trading partners.

Isolating Applications from Each Other
The growing complexity of software and the associated difficulty in upgrading to

new software versions makes it necessary to isolate applications. As software grows

more complicated, developers increasingly break big problems into multiple

smaller problems that can be solved separately.

Developers create modules with well-defined interfaces between them that they

combine together to develop the complete application. They focus on solving small

problems within each module. By limiting communication between application

modules through well-defined, standardized interfaces and by not sharing data

between modules, developers can modify or upgrade one application module

without affecting the other application modules. Program-to-program

communication simplifies the application replacement process and minimizes the

impact of a decision to change an application, relocate a data center, or even

outsource the application completely.

Isolating Businesses from Each Other
Software complexity also affects the way one business communicates with another

for business-to-business commerce. Each company looks to its trading partner as a

provider of a service with well-defined standard interfaces. Developers standardize

program-to-program communication by using application component models that

define standardized interfaces for each module and a standardized protocol to

communicate between modules.

In the same way, communication between companies is now being standardized

with the definition of standard interfaces through which they communicate

(captured as XML-based business object documents) and standard network

protocols such as RosettaNet and OAGIS. Isolating one company’s internal business

processes from those of another enables each company to modify its internal

processes without affecting its trading partners.

For instance, a company can change its own internal purchase order approval

process. Because suppliers send the company purchase orders in a standard format

over a standard Internet protocol, they are isolated from the company’s purchase

order approval process. This separation is a fundamental requirement for

business-to-business commerce.
1-8 Oracle8i Integration Server Overview

Reasons for E-Business Integration
Streamlining Multistep Business Processes
Business process automation, frequently called in the industry straight through

processing, defines the process through which a multistep business process is

streamlined. Automation eliminates human intervention by enabling one

application to communicate directly with another.

For instance, most small electronic storefronts and companies conducting

commerce online transfer new orders accepted by their front-end Web store

database to their back-office financial and supply-chain systems by using a manual

process such as file transfer protocol (FTP). Such manual intervention causes three

problems: it introduces the possibility of human error, it reduces the speed and

efficiency of order processing, and it raises the total cost of operating the storefront

as the volume of orders grows.

Larger Web sites use a number of enterprise integration technologies to automate

and streamline this multistep business process. These enable the storefront database

to automatically propagate the order first to the financial system where the

customer’s credit history is validated and then to the supply-chain system to start

the manufacturing and delivery process. Business process automation helps

companies reduce costs, improve customer satisfaction, speed up business

processes, and respond more rapidly to competition.

From an integration point of view, multistep business processes can be streamlined

in two ways:

Synchronous Communication: Request and Reply
Certain applications that form part of a multistep business process can be linked

together using a request and reply structure. For instance, a company that has set

up a Web storefront can check a customer’s credit rating and purchase history with

the company before permitting the customer to proceed to checkout. In this case,

the two steps of the business process, the Web storefront event and the credit rating

application, are linked in a request and reply structure; the storefront sends a

request to the credit rating application and requires a reply before it can proceed.

These two steps in the business process are logically part of a larger composite

application and must communicate with each other synchronously.

Interactive composite applications represent the most closely knit integration

process. They always work in real time. Composite applications are rapidly

growing in popularity as enterprises seek to provide more front-end marketing and

service. A composite application generally appears to the end user to be a single

Web application, but, behind the scenes, it invokes one or more mainframe

transactions or calls to packaged applications or to NT applications.
Overview of E-Business Integration 1-9

Reasons for E-Business Integration
Asynchronous Communication
Most applications that form part of a multistep business process are not linked in

such a request and reply structure and can, instead, be linked together

asynchronously.

A multistep process is the most common form of integration because it addresses so

many business needs. In a multistep process, the applications are logically

independent because each step results from the work of another system earlier in

the process. For example, when an order is accepted at the Web store, it is sent to

the financial application where it can be tracked and to the supply-chain application

where it starts the supply chain planning process. The Web store needs to know

only that the message has been delivered to the back-office applications to

guarantee once-only delivery of the purchase in the order received in the purchase

queue.

The communication between the different applications that makes up the different

steps of the business process is performed asynchronously by using messaging

middleware. Asynchronous communication has a number of benefits: it couples the

two applications together, it isolates the applications from a network or system

failure, and it isolates each application from a software failure in the other.

Asynchronous communication is increasingly used to streamline business processes

within a company. Though useful internally, it is fundamental to linking together

business processes between companies for business-to-business commerce.

To summarize: Enterprise application portfolios are becoming an expanding

patchwork of independently designed systems. It is impractical to implement all

enterprise-wide business functions using a monolithically designed set of systems.

User requirements are inherently too complex and dynamic for any one design

team to provide the entire solution. A typical enterprise must deal with applications

written in-house many years ago, multiple newer independent software vendor’s

application packages, end-user client/server applications, and a growing number of

Internet and intranet applications. However, unintegrated applications are no

longer acceptable: business managers demand an increasing level of integration

between their systems. The task of integrating these heterogeneous systems is a

central function of the IT organization today. As a result, enterprises must employ a

blend of data consistency, application isolation, and multistep business process

automation techniques to address their integration needs.
1-10 Oracle8i Integration Server Overview

E-Business Integration Technologies and Approaches
E-Business Integration Technologies and Approaches
In this section, we examine the various technological alternatives available for

integration and the integration approaches that these alternatives enable. We have

shown that e-business integration consists of three basic kinds of relationships: data

consistency and synchronization, application isolation, and multistep business

process automation. Now we consider the three primary technological alternatives

for e-business integration:

■ Data consistency and synchronization technologies that use data replication

and database gateways

■ Component-oriented development facilities, object request brokers, and

synchronous integration methodologies

■ Message-oriented middleware and asynchronous integration facilities

Each of these integration technologies is suited to a specific kind of integration

problem. No single integration methodology is suited to all integration problems.

We first examine the three different kinds of integration technologies and then

discuss how each is suited to solving a specific integration problem. This section

includes:

■ Data Consistency and Synchronization Technologies

■ Component-Oriented Development Technologies

■ Message-Oriented Middleware Technologies

Data Consistency and Synchronization Technologies
Data consistency patterns aim to obtain facts from redundant data that is stored in

multiple systems. A number of different mechanisms are used to synchronize data

between systems, but they can be broadly classified into two categories:

Data Movement Technologies
One way to synchronize data between different systems is to move data between

the systems themselves. In fact, batch data transfer is the default approach to

synchronizing data. Traditionally, many companies also use manual processes such

as FTP to move data between systems. Database replication technology also

synchronizes data stored in databases. Manual processes effectively synchronize

data in a batch transfer or in pre-scheduled transactions.
Overview of E-Business Integration 1-11

E-Business Integration Technologies and Approaches
However, as e-business drives the necessity to keep information consistent between

systems, frequent real-time intervention is required. As a result, e-business requires

that data movement use automated technologies such as database replication.

Rather than relying on infrequent data batch runs, you must synchronize data using

near-real-time transfer of individual updates as soon as you recognize them.

Heterogeneous Data Access Technologies
An alternative to moving data between systems is to keep data in one place and

access it from multiple heterogeneous applications. This eliminates the necessity to

constantly synchronize data by moving it between systems, something that is

further complicated as systems multiply. To simplify, all data that must be accessed

by different systems are stored in one central place to which all applications

requiring subsets of the data have access.

Although this method eliminates the need for continual data movement, you must

consider three fundamental concerns to determine whether you can solve the data

synchronization problem by using a single database:

■ The overall performance and scalability requirements for data access: how

many different applications need to access the data and how frequently

■ Whether the deployment of the applications is centralized or decentralized

For example, if applications are distributed across a low bandwidth wide area

network (WAN), data does not move smoothly or efficiently across a WAN.

Thus, in this case, you might have to move data between the systems by batch

or manual transfer. Heterogeneous data-access technologies are primarily

gateways to enable access to heterogeneous data stores such as mainframe

databases, hierarchical data stores, flat file stores, and others.

■ Whether the transactions performed involve multistep business processes

For example, an order may create a series of logically related transactions over a

period of many days involving order entry, sales management, manufacturing,

and supply chain planning and execution systems. In some cases, batch data

transfer technologies are used to automate multistep business processes.

 For critical business processes, workflow is automated through workload

management tools such as workflow systems. Less critical and less well managed

critical processes are often controlled through batch data transfer involving human

intervention. As the need for faster end-to-end processing grows, batch transfers

can become a bottleneck. Strategies such as end-to-end business process automation

usually require messaging facilities to send individual events immediately to other

systems. Data movement and data access technologies are best suited to
1-12 Oracle8i Integration Server Overview

E-Business Integration Technologies and Approaches
synchronize information between different systems to provide a consistent global

view of the information.

Component-Oriented Development Technologies
In order to isolate applications from each other, limited communication between

applications occurs through a small set of well-defined interfaces that remain stable

even as the applications change. In the modular development paradigm,

components interact through program-to-program communication using

well-defined standardized interfaces. Applications do not share data. By isolating

program-to-program interaction to a small set of public interfaces, components are

able to encapsulate business logic. An important added benefit of modularity is the

ability to reuse components: if components are designed correctly, applications can

be built by assembling these components in a plug and play fashion.

Three primary component models are used in the industry today:

■ The most widely accepted is the Java2 Enterprise Edition (J2EE) or Enterprise

JavaBeans (EJB) component model supported by major software vendors

including Sun, Oracle, and IBM.

■ The Common Object Request Broker Architecture (CORBA) standards

committee within the Object Management Group (OMG) is also putting

forward a CORBA component model.

■ Microsoft has its own COM+ object model.

As applications are increasingly developed using component-based techniques, a

fundamental integration issue is the manner in which components communicate

with each other. They can do so in two ways:

Synchronous Communication
Each of the three common component models provides its own hosting

environment for application components (called a container), which provides a set

of services that enable components to operate. These include transaction services,

naming and directory services, and brokering and trading services. For EJBs, these

services are provided by a container called an Enterprise JavaBean Transaction

Server; for CORBA, it is called an Object Request Broker or ORB; and for COM+,

these services are provided by the Windows NT operating system itself.

These containers manage communications between components using a

synchronous remote procedure call (RPC) mechanism. Synchronous

communication is ideal when applications need to be isolated but are related to

each other in a request and response structure. Component middleware such as an
Overview of E-Business Integration 1-13

E-Business Integration Technologies and Approaches
ORB is well-suited for such types of integration because it documents

program-to-program interface definitions and manages the communications.

Asynchronous, Message-Oriented Middleware
It is technically possible, although rare, to implement a one-way asynchronous

event notification between heterogeneous applications using traditional ORB calls.

The center of a standard ORB is designed for two-way, request-reply interactions; it

lacks the sophisticated messaging facilities required to loosely couple applications,

particularly those that facilitate a multistep business process. Message-oriented

middleware solutions, particularly the new generation of integration brokers, are

much better suited to carry out such integrations.

Message-Oriented Middleware Technologies
As automation of business processes within companies and business-to-business

commerce increases, a new generation of middleware technology is emerging. It is

based on asynchronous communication that loosely couples these applications and

businesses together. The fundamental principle of messaging is to isolate

information providers from information consumers so that an application can be

added, dropped, or changed without affecting any other system.

Message-oriented middleware enables applications and business processes to

communicate by sending a message from one application to the other. Since the

applications are mission-critical, the middleware provides features such as

guaranteed once-only delivery of the message, store queuing, and forward queuing.

Additionally, these messaging platforms add sophisticated message routing and

distribution facilities. These include:

■ Content-based routing in which the message is sent to a different location based

on its content

■ Topic-based or subject-based routing in which the message is sent to a different

location based on its subject

■ Publish-subscribe routing in which a sender simply publishes a message to a

queue to which subscribers who are interested in the message subscribe. The

publisher does not know who will receive the message.

Most component models such as Enterprise JavaBeans are now adding

asynchronous communication interfaces to enable them to communicate with each

other in a loosely coupled fashion. You can use basic message-oriented middleware

both within a distributed application and to integrate one application to another

because it is inherently connectionless. Asynchronous messaging facilities are best
1-14 Oracle8i Integration Server Overview

E-Business Integration Technologies and Approaches
suited to applications that must be loosely coupled together such as when they

form part of a multistep business process (and are not related in a request-response

fashion).

Messaging middleware connects dissimilar applications in a fundamentally

different way than do direct server-to-application gateways. Direct gateways are

best at tactical, request-reply interactions especially when extending one or two

back-end applications with a Web front end.

Message-based solutions are best suited for asynchronous applications that require

either data consistency or multistep process applications and for systematic

composite applications that have multiple heterogeneous participants. Messaging

introduces an incremental layer of communication semantics and administration.

This complexity is not necessary for some projects. However, messaging provides a

rich, comprehensive infrastructure that handles consistency and multistep and

composite patterns in one solution. Components dominate intra-application

architecture and often are used to connect into message-based integration

infrastructures.

Ultimately, message-centric integration connects all applications to each other

through a general purpose enterprise hub. All applications publish information to

this integration hub without needing to know where to send it, who will receive it,

or what format the receiver prefers. The whole application portfolio remains flexible

because connection logic and delivery instructions reside in the infrastructure rather

than in the applications themselves.

Messaging enables a program to act as a producer by placing a message in a queue

and then proceeding with its work. The queuing system reliably delivers the

message to the appropriate recipient. The recipient, acting as a consumer, retrieves

requests from the queue and acts on them. By isolating requests for service from the

supply of services, messaging increases efficiency and provides the infrastructure to

schedule complex tasks. With messaging, programs do not communicate with each

other directly. They are disconnected from each other and communicate through the

messaging system that serves as a communication hub among different application

programs. Messaging, therefore, provides a useful paradigm for getting many

programs to communicate with each other.

Three specific application design issues frequently motivate the use of a messaging

service for interapplication communication.
Overview of E-Business Integration 1-15

E-Business Integration Technologies and Approaches
No Request-Response Requirements
Messaging is ideally suited for applications in which a program can proceed with

its own work after sending a message to another program: the first program does

not need to wait for a response from the second program to proceed. It is also suited

for applications that can continue their work until a message must be retrieved.

If the first program requires a response to proceed, messaging is an inappropriate

communication mechanism. A synchronous communication mechanism such as

Net8 or CORBA RPC is preferable. In a synchronous mechanism, the first program

sends a request to the second and then waits until the second sends a reply. The first

uses this response to carry out further processing.

Messaging, in contrast, is suited to applications that do not require such a

relationship; the first simply places a message on a queue and continues with its

work without waiting for a response from the second.

Note that you can use these two models, synchronous communication and

messaging, together in the same application. For instance in a shipping application,

the order entry program communicates with another customer management

program to check the validity of a customer before accepting his or her order. This

requires synchronous communication, since the order entry program requires the

reply from the customer management program before continuing to process the

order.

However, when the order is complete, the order entry application notifies the

shipping program that an order must be sent to the customer. This communication

is best done using messaging since the order entry application does not need to wait

for the response from the shipping program to further process the order.

Isolated Processing
The second factor that could influence you to use a messaging system for

inter-program communication is the deployment architecture of the application. For

synchronous communication to work, all programs must be running and available

at the same time. The network that connects the programs must be available, the

systems that run the programs must be up, and all the programs must be available

simultaneously. If any nodes of the deployment environment are unreliable, then

messaging provides a more robust solution. Messaging removes the

time-dependent relationship between programs. As a result, applications are less

vulnerable to program failure. For deferred execution to work correctly in the event

of network, system, and application failures, messages that constitute requests for

service must be stored persistently and processed exactly once. Being able to

preserve messages is fundamental in an enterprise messaging infrastructure for four

reasons:
1-16 Oracle8i Integration Server Overview

E-Business Integration Technologies and Approaches
■ Inability to process messages as they arrive: Applications must deal with

many unprocessed messages arriving simultaneously from clients. They might

not have the resources to process all the requests immediately. A messaging

system must be able to store the message in a persistent queue and deliver it

later when the recipient can process it.

■ Message scheduling: Messaging systems also require message persistence so

that they can deal with priorities: messages arriving later may be of higher

priority than messages arriving earlier; messages arriving earlier may have to

wait for messages arriving later before actions can be executed. Such message

priorities may also change over time; messages in a particular queue can

become more important than messages in other queues during certain time

windows, for instance. Message persistence enables messages in high priority

queues to be processed first, while low priority messages can be stored and

processed later without interfering with high priority messages.

■ Message auditing: Message persistence is also critical because the control

component of the message can be as important as the payload information

itself. For instance, the time that a message is received and dispatched can be a

critical part of a message. In an e-commerce environment, message persistence

stores information on orders from various customers and can be queried to

identify periods of peak demand or to determine the status of an order. The

message, therefore, can remain important even after it has been executed. A

persistent messaging store is critical to ensure that information can be

warehoused and queried or audited.

■ Failures: The communication links between messaging clients might not be

available all the time or might be reserved for some other purpose. If the system

cannot process messages immediately because of either a lack of processing

resources or a failure, the messaging system must be able to store the message

persistently and deliver it when the resource is available. Such guaranteed

message delivery of each message to each recipient exactly once is critical when

integrating enterprise applications.
Overview of E-Business Integration 1-17

E-Business Integration Technologies and Approaches
1-18 Oracle8i Integration Server Overview

Methodology and Solu
2

Methodology and Solutions

This chapter introduces you to the methodology of e-business integration and offers

examples of ways in which Oracle Integration Server meets integration challenges.

The topics in this chapter are:

■ Selecting the Appropriate E-Business Integration Methodology

■ Application Integration: The Solution Spectrum

■ Business-to-Business Integration
tions 2-1

Selecting the Appropriate E-Business Integration Methodology
Selecting the Appropriate E-Business Integration Methodology
We have examined the three primary integration technologies available: data

synchronization technologies, component-oriented development technologies, and

message-oriented middleware. Now we consider how these technologies optimally

map to the three fundamental integration problems: synchronizing data between

systems, isolating applications from each other, and automating multistep business

processes within companies and between companies.

Although the choice of methodology usually requires a close study of the specific

environment in which integration is implemented, you can use certain broad

architectural principles to guide integration decisions.

This section includes:

■ Synchronizing Data Among Systems

■ Isolating Applications and Businesses from Each Other

■ Automating Multi-step Business Processes

Synchronizing Data Among Systems
The fundamental architectural choice in determining how to synchronize data

among systems is whether you need to move data between different systems or

whether you need to provide data access to a variety of system from a central

location. If you must provide data access, then the ideal choice of integration

technology is to use gateways to access the databases and legacy systems in which

the data resides.

If you must move data between systems, you can use two different mechanisms:

database replication and asynchronous messaging. Three factors influence your

choice of technology:

■ Firstly, if data can be synchronized in a relatively simple fashion such as when

extending one or two back-end applications to a Web front end, simple database

replication of information is sufficient. Similarly, if distributing information

from a central database to a number of smaller workgroup databases, database

replication is sufficient. In these cases, message-based solutions introduce an

additional level of complexity (for instance, the need to deploy specialized

middleware) and are better suited for more complex applications.

■ Secondly, in most cases in which replication can be used, the sender and the

recipient of information must be homogeneous databases, for example, both

Oracle databases. The databases must have a similar schema representation. If
2-2 Oracle8i Integration Server Overview

Selecting the Appropriate E-Business Integration Methodology
data needs to go through a complex transformation as part of data movement,

then asynchronous messaging technology is probably more appropriate.

■ Thirdly, in order to use database replication, the receiving application must

provide the sending application direct access to its schema. Two issues are

involved with providing such direct access to the schema: because the two

applications do not communicate through a clearly defined set of interfaces,

direct schema access violates encapsulation and component-based

development. Further, direct schema access can circumvent application-level

security policies.

Despite these concerns, in a number of cases where simple data synchronization

between two data sources is the only integration requirement, using database

replication simplifies how you build and deploy the applications and is probably

the most appropriate choice.

Isolating Applications and Businesses from Each Other
If the integration scenario is primarily focused on isolating applications and

businesses from each other, data synchronization technologies such as database

replication and database gateways are not appropriate. To isolate applications from

each other, communication between the applications must be limited to a standard

set of well-defined public interfaces. Data synchronization technologies, by

definition, violate encapsulation and as a result are not suited for application

isolation.

When you need to isolate applications from each other while facilitating

communication between them, the primary choice is between a synchronous or an

asynchronous communication facility. Three factors determine which

communication mechanism to use:

■ Firstly, if the two application components are part of a larger composite

application and work together in a request-reply structure, then a synchronous

component-oriented middleware facility such as an Object Request Broker

(ORB) and a communication protocol such as CORBA IIOP is the best choice. In

this case, both applications should be wrapped as CORBA services with

well-defined public interfaces defined in the CORBA Interface Definition

Language (IDL) and they should communicate through a middleware hub

known as an ORB. The ORB provides services to the two applications

including:

■ Registering them as services
Methodology and Solutions 2-3

Selecting the Appropriate E-Business Integration Methodology
■ Making the public interfaces of each application accessible to the other

applications

■ Routing each protocol request from one application to the other

■ Discovering the object by looking up its location on the network

■ Activating the object when the request is received

■ Secondly, if the two application components are not related in a request-reply

structure but rather form steps within a multistep business process, then an

asynchronous message-oriented middleware solution is the most appropriate

choice. The primary choices in such a situation depend on the complexity of the

messaging environment that needs to be deployed and on the messaging

architecture. These choices are similar to those that need to be made in

automating multistep business processes and will be discussed in the next

section.

■ Thirdly, if the integration requirement is to connect the business processes of

two companies using the Internet, then synchronous integration is not feasible

and loosely coupled message-based integration is the only solution.

Automating Multi-step Business Processes
Automating a multi-step business process requires applications to communicate

with each other in a loosely coupled structure. The only appropriate choice of

integration technology in this case is asynchronous message-oriented middleware.

In choosing to deploy a middleware solution, the primary architectural decisions

that you make depend on the complexity of the integration problem. There are four

key issues that you must consider:

■ Integration Topology

■ Messaging Architecture

■ Data Transformation

■ Business Process Management and Workflow

Integration Topology
When deploying messaging middleware, you must determine whether to use a

point-to-point interface to link applications or to use a hub-and-spoke architecture

to link applications. Although point-to-point connectivity is simple when

connecting two applications, it quickly becomes unmanageable if more than two

applications need to connect.
2-4 Oracle8i Integration Server Overview

Selecting the Appropriate E-Business Integration Methodology
In such cases, use a hub-and-spoke architecture. In this architecture, applications

are not connected directly with each other. Instead, each application is connected to

a hub that provides connectivity between all the applications. A change or upgrade

to any one application changes only its relationship with the hub and does not

affect all the other applications with which it must be integrated.

Messaging Architecture
Next, you must determine the messaging architecture to use based on three

questions:

Must messages be stored persistently? If messages are business critical and must

be audited and tracked, for example, to resolve disputes between companies or to

track information flows, the message header and contents must be stored

persistently in a database.These messages can be warehoused and analyzed using

standard decision support tools. If the messages are not business critical, then the

message brokering facility can provide volatile queuing facilities.

Must messages be propagated with guaranteed delivery? If messages are business

critical or if the messaging system connects two mission critical applications, then

the messages need to propagated with guaranteed once-only, in-order delivery;

otherwise messages can simply be propagated impermanently.

How must messages be routed? Messages can be routed between applications and

business processes based on their subject or topic, their content or payload

information, or by using the publish-subscribe method.

In most e-business integration scenarios, messages are routed based on their

content: in most cases, invoking a specific workflow to process the message in a

specific way before sending it to an appropriate destination.

Data Transformation
Applications that form part of a business process usually store and manage data in

different data formats. For instance, the Oracle E-Business Suite of packaged

applications stores and manages data in SQL format. SAP applications operate on

data in iDOCs format, which is a derivative of ASCII.

Four data transformation issues must be addressed when connecting one

application to another:

■ Datatype transformation means converting data from the format of the

originating application to that of the target application. For instance, when

connecting an Oracle customer relationship application to an SAP application,
Methodology and Solutions 2-5

Selecting the Appropriate E-Business Integration Methodology
Oracle data types must be converted from SQL format to an ASCII format

appropriate for iDOCs.

■ Semantic transformation means converting a customer name from an Oracle

format into an SAP format. For instance, Oracle represents the customer’s name

in three fields: a first name, a last name, and middle initial. SAP represents the

customer’s name in a single field: a last name followed by a comma followed by

the first name. A semantic transformation must be applied to concatenate the

last name followed by the first name.

■ Functional transformation means mapping the business events in the sending

application to the business events and interfaces in the receiving application.

For instance, when a purchase order is sent from an Oracle application to an

SAP application, a specific set of business events must start and a specific set of

public interfaces must be invoked. Such functional transformation information

must be captured in order to propagate a message from one application to

another.

There are two commonly used approaches to data transformation: The first

converts the data directly from the format of the originating application to the

format of the target application. The second converts the data first into a

canonical, intermediate format before converting it into the format of the target

application. Although direct conversion is faster, converting to an intermediate

format isolates one application from changes in other applications. For instance,

when you connect an Oracle CRM application with a Baan, SAP, or PeopleSoft

application, mapping information to an intermediate representation isolates the

Oracle CRM application from an upgrade to the Baan application. The only

change necessary is to modify the mapping between the intermediate

representation and the Baan application.

■ Locational transformation means determining the location where data

transformation is conducted. In some cases, data transformation is done close to

the application at the spoke. The hub simply sends the transformed message

from one application to another. In most cases, however, data transformation

must be conducted in the hub:

■ A message that must be audited is stored in its pretransformed form.

■ A message that must be sent to many different target applications is

transformed within the originating application into an intermediate form

that is sent to the hub. The hub then applies various transformations to

convert the information into the format of each target application.

■ A message that must be routed to different locations based on its content is

routed by the hub after it is transformed in the hub. However, this depends
2-6 Oracle8i Integration Server Overview

Application Integration: The Solution Spectrum
on the capability of the hub itself and on the kinds of services it provides to

the applications that require connection.

Business Process Management and Workflow
Finally, you must decide whether messages can simply be sent from one application

to another or whether they require processing before they are propagated. For

instance, when a company sends a purchase order from its supply chain application

to the procurement system of another company, the purchase order can require the

approval of a purchasing manager at the originating company. If so, the messaging

middleware must invoke a workflow application before forwarding the message to

the trading partner. In this case, the messaging platform requires a facility for

business process management of workflow.

Application Integration: The Solution Spectrum
Remember that all integration scenarios involve three fundamental integration

problems: synchronizing data between systems, isolating applications and business

from each other, and automating multistep business processes. Integration requires

a range of different technologies, each of which is appropriate to a particular type of

integration problem.

Oracle Corporation recognizes that integration is not a single, narrowly defined

problem that can be solved by any single technology. A complete solution to this

complex problem requires a variety of technologies, all of which must be seamlessly

integrated. This section clarifies your choices by illustrating some typical

integration scenarios. These should help you gain an appreciation of the different

types of integration technology that constitute a comprehensive solution.

This section includes:

■ Data Integration

■ Application Integration

■ Business Process Modeling and Execution

■ Business Process Intelligence
Methodology and Solutions 2-7

Application Integration: The Solution Spectrum
Data Integration

Scenario: Your enterprise has a number of applications, each with its own

databases. The applications change the information in their databases frequently

and independently of each other.

Problem: How does an application get the most current information residing in the

database of another application? For example the order entry application needs to

access the same customer data as the accounts receivable application in order to use

the address.

Solution: Data Access Gateways and Replication: Gateways enable applications to

easily and directly access other databases to get the information they need.

Replication automatically synchronizes the information in multiple databases so

that each database has the most current information. Changes in any database are

immediately reflected in other databases.

Application Integration
A business process involving multiple applications requires integration of

application logic and application functionality. To facilitate this integration,

applications must communicate to exchange important business information. The

two different communication models are synchronous and asynchronous

communication.

Synchronous Communication with Functional Interfaces

Scenario: You want to create a front-end e-commerce Web application that accepts

orders. Before accepting the order, the application requires credit card

authorization, customer credit rating, inventory levels, delivery schedules, and

pricing. If any of these services is not available, the order application cannot

complete the transaction. This might mean asking the customer to try again later.

Problem: The services required for order entry are provided by other dedicated

applications. So, how does the e-commerce application access these services? How

can these applications be integrated to implement and automate the business

process?

Solution: Synchronous, request-reply protocol based on functional interfaces:
Each application offers services by defining a set of specific functions as public

interfaces. To request these services, applications invoke the corresponding
2-8 Oracle8i Integration Server Overview

Application Integration: The Solution Spectrum
interfaces. Examples of request-reply protocols based on functional interfaces

include Remote Procedure Calls (RPC), Common Object Request Broker (CORBA),

COM, and Java Remote Method Invocation (RMI). Standards for semantically richer

interfaces, specifically aimed at distributed enterprise transactional applications, are

emerging with component models such as Enterprise JavaBeans and COM+.

Asynchronous Communication with Message-Based Interfaces

Scenario: You want to implement an end-to-end order-fulfillment process that

involves a number of applications such as order entry, manufacturing, inventory

management, distribution, and billing. The order fulfillment process originates with

the order-entry application with which a customer places an order. After that,

business objects and events must flow between the applications.

Problem: These applications are distributed across a wide area network, are owned

by different organizations, and have heterogeneous internal architecture. They were

designed as single-function, standalone applications, with no plans for integration.

The network that connects the applications might be unreliable. The organizations

that own the application might change, relocate, or replace the applications at will,

without informing the organizations owning the other applications. Furthermore,

one application does not require a response from another in order to proceed.

Hence, synchronous communication integration is not a viable option.

Solution: Asynchronous communication with message queuing: Applications

communicate with each other by exchanging information as messages through

queues. Each application defines a set of messages that it accepts as input and a set

of messages that it publishes as output for other applications. The messages

represent business objects like customer records or business events like a new

shipment requests. Asynchronous communication with message queuing enables

loose coupling, so that individual applications are completely isolated from

application, network, and system failures.

An example of a message queuing interface is the industry-standard Java

Messaging Service (JMS).
Methodology and Solutions 2-9

Application Integration: The Solution Spectrum
Business Process Modeling and Execution

Scenario: Consider the order-fulfillment scenario described in the previous section.

Assume that the applications are integrated and that the entire business process is

automated.

Problem: Business managers decide that the business process must be modified. For

instance, the order-fulfillment process moves from a clerk-oriented system to a

Web-based self-service system that requires a different approval process. The flow

of the process must be changed and new applications must be added to the process.

How quickly can the business decision be translated into reality? How do you

minimize the time that elapses between decision making and implementation?

Solution: Business process modeling and execution: Firstly, a business analyst

models the entire business process using a graphical modeling tool. Then, a

technical analyst fills in the details and maps the model to the underlying

integration infrastructure. Next, the model is validated and generated in a

repository. Finally, it is executed by a business process coordinator. To change the

process at any time, only the high-level model requires change. You can quickly

implement the entire cycle, from identifying the change to executing the new

model.

Business Process Intelligence

Scenario: Same as in the previous section.

Problem : The end-to-end business process is not performing to expectation, even

though each of the individual applications is finely tuned. A holistic view of the

business process is not available. Standard system management and monitoring

tools provide performance metrics only about individual components, not about the

entire process. To complicate matters further, performance varies daily and

seasonally with market variations, thus making it hard to pinpoint the exact cause

of the problem. So, how do you identify the inefficiencies and bottlenecks to help

you to deploy your resources intelligently?

Solution: This solution utilizes Business Process Intelligence as its strategy. The

only way to get a holistic view of the entire business process is to track each

transaction end-to-end. This implies tracking all the information (data, messages,

and business events) in order to reconstruct the transaction later. Further, you must

collect this information over an extended period of time, and it must be warehoused
2-10 Oracle8i Integration Server Overview

Business-to-Business Integration
and analyzed to gather intelligence about the business process. The accumulated

information can be mined to discover patterns and to provide insight into how

resources can be optimally deployed.

Business-to-Business Integration
The previous section discussed the range of technologies required for a complete

application integration solution. The focus of most integration projects in

enterprises to date has been on integration of applications within the enterprise.

The few projects that involved integration beyond the enterprise with partners and

suppliers were limited in their scope and used simple mechanisms like FTP and

e-mail. The real mission-critical, inter-enterprise transactions are conducted over

private value-added networks (VANs) using proprietary protocols like EDI, HL-7,

and SWIFT.

e-Business integration requires extensive, flexible, and dynamic cooperation and

collaboration with customers, suppliers, and partners. Some examples of new

business models that require this type of integration include:

■ Corporate Web-based self-service applications that requires users to have a

unified and up-to-date view of business processes

■ Virtual, extended supply chains

■ Procurement through online marketplaces or business-to-business commerce

exchanges

■ Dynamic order fulfillment

■ Hosting applications by Application Service Providers

The integration must take place over the low-cost and ubiquitous Internet, so that

an enterprise can choose from a worldwide selection of partners, suppliers, and

vendors. This necessity places additional requirements on a solution. These

requirements include:

■ End-to-end security: Business partners must have complete confidence that a

transaction they conduct over the Internet is completely secure throughout its

entire life cycle. Information must be secure while it resides in databases, is

transmitted over networks, and is processed by applications.

■ Auditing and tracking: Traditionally, private network vendors have provided

value-added services such as auditing and tracking of all business transactions

between partners. The Internet provides a cheaper and ubiquitous alternative to
Methodology and Solutions 2-11

Business-to-Business Integration
private networks. However, an integration solution that exploits this

inexpensive transport must provide auditing and tracking services.

■ High availability: When conducting business online and globally, enterprises

must be open for business all the time, with no downtime. Therefore, the

integration software linking these companies and their applications is

mission-critical and needs to be highly reliable, scalable, and always available.

The integration software is at least as mission-critical as the applications it links.

■ Complex business processes: In terms of duration, number of organizations

involved, and number of applications involved, e-business integration must

deal with complex business processes. The highly autonomous, heterogeneous,

and distributed nature of these applications places additional requirements on

all aspects of an integration solution.

■ Internet standards: By their very nature, business-to-business transactions must

take place within agreed-upon standards. Protocols specific to one enterprise or

to one integration vendor do not necessarily scale across a broader set of

partners, each of which might have its own integration solution. General

purpose software must support all the standard Internet protocols such as

■ HTTP as the wire or transport protocol

■ XML for message formats with standard definitions for common business

objects such as those proposed by the Open Applications Group

■ Business process protocols such as Open Buying on the Internet (OBI) and

RosettaNet
2-12 Oracle8i Integration Server Overview

Overview of Oracle Integration S
3

Overview of Oracle Integration Server

This chapter provides an overview of Oracle Integration Server (OIS). OIS is a

complete suite of software that addresses the e-business requirements for

integrating different components. It has the breadth of functionality, the robustness,

and the tools to address the most demanding and complex integration scenarios.

This chapter includes the following topics:

■ Introduction to OIS

■ Oracle Integration Server Design Objectives

■ Functions of OIS

■ Key Objectives for OIS

■ Product Development Life-Cycles
erver 3-1

Introduction to OIS
Introduction to OIS
OIS addresses a wide range of integration problems ranging from simple

front-office to back-office integration within a company, to creation of a strategic IT

integration infrastructure within a company, and finally to business-to-business

integration. The functionality provided by the Oracle Integration Server includes:

■ Data Integration

■ Replication

■ Application Integration

■ Business Process Intelligence

■ Data Transformation

■ Application Adapters

■ Business Process Modeling and Execution

■ Systems Management

Figure 3–1 Oracle Integration Server facilities

Application

A
da

pt
er

Application

A
da

pt
er

Internet Standards XML, HTTP,
B2B Protocols
Process Flow Coordination
with Workflow
Data Transformation

Data Synchronization with
Replication

Communication
• Acynchronous with Message
 queuing
• Syncronous with ORBs
3-2 Oracle8i Integration Server Overview

Introduction to OIS
Data Integration
Oracle Data Access Gateways enable applications to access and manage data from

heterogeneous data sources

■ Procedural Gateways provide procedural access to non-Oracle transactional

systems such as CICS, IMS/TM, IDMS-DC, and so on.

■ Transparent Gateways provide SQL access to over thirty non-Oracle databases

such as Sybase, Informix, SQL Server, and DB2.

Replication
The Oracle Integration Server includes Advanced Replication, which provides

powerful and flexible replication capabilities for synchronization of data across

multiple distributed databases. The key features include:

■ Replication of tables and related objects for each application as a single group

■ Full and subset table replication

■ Automatic conflict detection and resolution, with user-selected conflict

resolution rules

■ Synchronous and asynchronous replication, with user-definable replication

intervals at replication group level

■ Automatic parallel data propagation for improved performance

Advanced Replication is centrally managed, configured, and maintained with the

Oracle Replication Manager.

Application Integration

Synchronous Communication
The Oracle Integration Server supports synchronous-communication-based

integration with a built-in Java-based CORBA 2.0 compliant Object Request Broker

(ORB) and an Enterprise JavaBeans (EJB) server.

Additional CORBA facilities in the Oracle Integration Server include:

■ Transactions: Provides a Java Transaction Service (JTS) and CORBA Object

Transaction Service (OTS) for development of transactional CORBA

applications.
Overview of Oracle Integration Server 3-3

Introduction to OIS
■ Directory naming: Provides standard Java Naming Directory Interfaces (JNDI)

and COSNaming interface to the Lightweight Directory Access Protocol

(LDAP), the industry-standard directory service

■ Object Adapter: Implements an Object Adapter for persistent CORBA objects,

which provides two important functions. Firstly, it serves as a directory of

CORBA Objects. Secondly, it helps to locate and load CORBA objects upon

initial activation by CORBA clients.

■ Java and CORBA services: Provides a number of features that make it easy for

Java programmers to develop CORBA services. Caffeine is a direct Java-to-IIOP

mapping tool that eliminates the need for IDL. Other tools such as java2iiop ,

idl2java , and java2idl simplify application development.

■ Security: Features include encryption through Secure Sockets Layer (SSL) over

IIOP, authentication using a username and password, and access control using

roles and privileges.

The Oracle JDeveloper is the development tool used for developing EJB

components. Caffeine is the Java-to-IDL compiler. Oracle Integration Server can

interoperate with the Microsoft Com+ component model through third party

bridges.

Asynchronous Communication
Oracle Integration Server provides support for asynchronous integration of

application through its Advanced Queuing feature. Advanced Queuing is a

full-service messaging queuing system. Some of the key features include:

■ Guaranteed, exactly once delivery: Advanced Queuing guarantees that each

message is delivered to its destination exactly once within the specified time

interval, despite possible network, system, and application failures.

■ Subject-based and content-based publish and subscribe:
Publish-and-subscribe is a communication model that enables loose coupling of

applications. The two well-known publish-and-subscribe models are subject-

based and content-based. Advanced Queuing supports both.

■ Propagation: Applications can enqueue messages to a local queue and specify

the remote queue destination for the message. The Advanced Queuing

propagator transparently moves messages between local queues and remote

queues, enabling communication between distributed applications.

■ Java Messaging Service: Advanced Queuing is one of the first message

queuing systems to implement the industry-standard Java Messaging Service
3-4 Oracle8i Integration Server Overview

Introduction to OIS
(JMS). Along with JMS, you can access Advanced Queuing functionality

through PL/SQL, C, C++, and Visual Basic.

■ Message Management: This unique feature of Advanced Queuing, derived

from its fundamental ability to retain messages, is discussed in the next section

in the context of Business Process Intelligence.

Business Process Intelligence
The Oracle Integration Server, along with related tools, provides enterprises with

the ability to analyze and gather intelligence about their business processes.

The Advanced Queuing feature of the Oracle Integration Server automatically

retains and tracks every message that flows through its queues. It tracks all relevant

details of the message: enqueue times, dequeue times, destinations visited,

identification of transactions that processed the message, and the relationship

between the message and exception conditions. It retains this information in

queryable queues that are accessible through standard query and reporting tools.

You can exploit this information to improve business processes in two ways:

■ Analysis of live or in-process transactions: You can determine the complete

history and current state of any transaction from information retained in the

queue. For example, you learn how it arrived at a particular state and

determine the next processing step. In exception situations or stalled processes,

the administrator can ascertain the exact cause of the problem and obtain hints

on rectifying it and restarting the process. This information can be combined

with statistics provided by Advanced Queuing to improve performance of the

business process in real time.

■ Message warehousing and analysis: The tracking information can be retained

and accumulated over an extended period of time to create a message

warehouse from which you can query messages using standard SQL. The

information can be extracted, transformed, and loaded into an Oracle data

warehouse for analysis and mining. Since all the information required to

completely reconstruct every business process is available, you can determine

exactly how the system performs under a variety of changing conditions.
Overview of Oracle Integration Server 3-5

Introduction to OIS
Figure 3–2 Business Process Intelligence to Improve Process Efficiency

The warehouse can answer such questions as:

■ What time elapsed between the placing of a customer order through the Web

site and the delivery of the product to the customer?

■ How did this elapsed time vary over each of the last twelve months?

■ How did this elapsed time vary over the course of a day?

■ Over the last six months, on the average, which step in the process took the

longest to execute?

■ Where is the best place to deploy additional resources?

■ Rated by response time, who is your best supplier?

■ How does this supplier rate on a per-component basis?

Oracle can create extremely large message warehouses and perform complex

analytical queries on them with fast response times. Oracle tools to help you in

information analysis include Oracle Report, Oracle Express and Oracle Discoverer.

Integration Server

ApplicationApplication Application

Shipping

Customer
Service

Billing

Order
Entry Warehouse

Oracle Designer

Identify Bottlenecks
Allocate Resources
Intelligently Improve
Process Efficiency
Discover Process Patterns

Automatically Audit, Track &
Correlate Every message

Operational Analysis Of In-Flight
Processes

Message Warehouse

Feedback
Loop

Extract, Transform,
Load
3-6 Oracle8i Integration Server Overview

Introduction to OIS
Business process analysis provides business managers with the information they

need to make intelligent decisions about their business, streamline processes,

deploy resources more effectively, and increase overall efficiency.

Data Transformation
Oracle Integration Server connects heterogeneous applications and smooths the

flow of data, messages, business objects, and business events between applications.

Each application has its own definitions of business objects, schema, and message

formats. To enable applications to communicate, the Oracle Integration Server

provides transformation services that convert the output format of one application

into the input format of another.

Figure 3–3 Encapsulation of Messages from Source to Destination

OIS offers a design-time visual tool for definition of datatypes and transformation

between different types of data. Transformations that can be defined using the

visual tool include string operations, mathematical operations, date formatting, and

shape changes. You can provide your own transformation routines through call-out

mechanisms. The tool can import type definitions from the repositories of Oracle

Transformation
Rules

Transformation
Engine

Graphical
Mapping Tool

Application
Expert

Source
Application
Message

Destination
Application
Message

Inbound
Queue

Outbound
Queue
Overview of Oracle Integration Server 3-7

Introduction to OIS
and SAP applications. It also can import XML Document Type Definition (DTD) for

transformation of XML messages. Future releases of the Integration Server will also

support XSL-T-based transformation of XML messages.

The data types and the transformation between types are design-time activities. The

results are stored in the server repository. The runtime transformation engine in the

Oracle Integration Server uses this information to transform data as it flows

between applications. The Oracle Integration Server defines an open API that

enables you to use any other compatible transformation instead.

Application Adapters
Oracle Integration Server is a non-intrusive integration solution. This implies that it

requires no reengineering of existing applications, or only minimal reengineering.

Because most applications were not designed to be integrated, they have no simple

way of communicating with the Oracle Integration Server. Thus, adapters are

required to bridge between applications and the Integration Server.

Functionality: Adapters interface with applications to do the following:

■ Submit and extract well-defined business objects to and from the application,

using the native interface of the application

■ Detect business events occurring in the applications (such as creation of a new

purchase order) and publish this information for other applications
3-8 Oracle8i Integration Server Overview

Introduction to OIS
Figure 3–4 Overview of the Architecture of an Adapter

■ Optionally translate the business objects and events into an XML-formatted

message

■ Perform validation and error checking as required

■ Transmit the information to the Integration Server using one of the standard

interfaces such as JMS

Deployment : The architecture of adapters varies depending on the application with

which they interface. Typically they run on a computer in close proximity to the

application. In some cases, they run in the execution environment of the application

itself, such as in the Oracle Application/Database Server. They can also be deployed

in the execution environment of the database, especially if they are implemented in

Java or PL/SQL. In all cases, the goal of Oracle Corporation is to provide a centrally

managed environment for hosting and executing adapters.

Adapter SDK: Oracle will partner with a number of vendors to provide adapters to

packaged and industry-specific applications. Oracle will also provide an Adapter

SDK to simplify the development of adapters for custom and legacy applications.

The Adapter SDK will provide libraries to deploy triggers, parse XML messages,

and use JMS.

Adapter

Application Application
External
Interface

Database

Application
Interface

JMS Interface

To
Integration

Server

Translation
To / From XML

Messages

Bi-Directional
Interface to
Application

Data & Events
Overview of Oracle Integration Server 3-9

Introduction to OIS
Business Process Modeling and Execution
Oracle Integration Server includes a graphical, visual process modeling tool. You

can use the tool in scenarios like these:

■ A business analyst describes the business process graphically using the

industry-standard Universal Modeling Language (UML) activity diagrams. At

this stage, the applications involved in the process are identified and the flow of

the process is detailed. The model is generated persistently into the server

repository.

■ A technical analyst maps the high-level model to the underlying integration

infrastructure. The details of the application interfaces, business events,

transformations, and messages are filled in. The completed model is again

stored in the repository.

■ The model is validated and made ready for execution by the runtime execution

engine.

■ Either the business analyst or the technical analyst can modify the runtime

process using the tool. The Business Process Coordinator supports multiple

models simultaneously.

■ The tool provides a holistic view of the business process by enabling you to

visualize and understand the overall functionality.
3-10 Oracle8i Integration Server Overview

Introduction to OIS
Figure 3–5 Modeling Steps

Process Model
Repository

Business
Analyst

Technical
Analyst

Workflow

Integration Server

Shipping

Customer
Service

Billing

Order
Entry Warehouse

Model

Shipping

Customer
Service

Billing

Order
Entry Warehouse

Configure
Overview of Oracle Integration Server 3-11

Introduction to OIS
Figure 3–6 Workflow and its interaction with other components

Execution Engine: The validation model is executed by a runtime engine called the

Business Process Coordinator. The Oracle Business Process Coordinator maintains

the transition state information for all the processes it is executing. It uses all the

other functional components to complete its task. The Oracle Business Process

Coordinator is unique in that it can automate processes that require human

intervention (traditional workflow) as well as those that do not (system-to-system

processes).

Message
Services

Configure
Global
Data

LDAP

Transformation
Engine

Transformation
Rules

Rules
Engine

Subscription
Rules

Process
Model
State
Storage

Workflow

Adapter Adapter

Message
Queue

Message
Queue
3-12 Oracle8i Integration Server Overview

Oracle Integration Server Design Objectives
Systems Management
The Oracle Integration Server is managed and monitored by the Oracle Enterprise

Manager (OEM). The OEM is a systems management tool that can also monitor

Oracle applications and instances of the Oracle Databases/Application Servers. It

enables an administrator to manage a distributed environment from a single,

central console. It has been enhanced to manage all the moving pieces of an

integrated environment. Enterprise Manager manages system objects at three levels

of granularity:

■ Queues, messages, queue propagation: start, stop, schedule propagation, view

statistics

■ Individual business processes: start, stop, resume, query

■ System processes: Integration Server, Message Broker, adapters, applications

and databases

Oracle Integration Server Design Objectives
The previous sections provided a high-level functional overview of the Oracle

Integration Server. This section describes the design objectives of the Integration

Server to help you better use and benefit from it. This section contains:

■ Strategic Infrastructure, Not Tactical Point Solution

■ Choose And Use As You Go

■ Mission-Critical, Enterprise-Wide Integration

■ Leveraging Your Investment

Strategic Infrastructure , Not Tactical Point Solution
Most integration products on the market are aimed at solving a specific integration

problem, for instance, connecting a particular front-office application to a particular

back-office ERP application. Their value is the quick integration of two applications

to solve an immediate business problem. Some products are even more limited:

they just specialize in integrating a specific transaction between two applications.

Although the Oracle Integration Server can solve specific problems, it is designed to

go beyond point solutions and to encourage enterprises to view integration as a

strategic component of the IT infrastructure.

Oracle Corporation believes that enterprises should begin with an integration

architecture designed independently of any specific application. They should
Overview of Oracle Integration Server 3-13

Oracle Integration Server Design Objectives
choose a product that meets both their current and their future needs. The Oracle

Integration Server is designed to be the integration backbone for the entire

enterprise. It has all the characteristics expected of enterprise-quality software:

robustness, scalability, open architecture, adherence to industry standards, and

management and development tools.

Choose And Use As You Go
The Oracle Integration Server is a comprehensive solution that offers a number of

technologies to help you solve different integration problems. The Server offers

great breadth of functionality within each of these technologies.

Oracle Corporation does not restrict you to the use of any particular technology:

you can choose the technology that exactly solves your problem. All the

technologies are seamlessly integrated. However, you can use Oracle technologies

independently of each other, thus avoiding useless complexity when you choose a

particular technology. For example, you can use the Advanced Queuing feature for

asynchronous communication without knowing anything about the synchronous

ORB-based communication infrastructure or about Advanced Replication.

This is possible because the Oracle Integration Server has been designed from the

ground up to offer you a full spectrum of technologies. Most integration solutions

on the market originated in niche technologies such as message-oriented

middleware, publish-subscribe engines, data transformation, and workflow. The

functionality of these products outside of each one’s core competency tends to be

weak. These products compensate for their weakness by loosely integrating with

partner products. The result is a product that forces you to address every type of

problem by using the same technology.

Mission-Critical, Enterprise-Wide Integration
The Oracle Integration Server is designed for mission-critical enterprise-wide

business implementations. Towards this end, it offers two major features:

■ High reliability, availability, scalability (RAS)

■ Enterprise-wide management.

RAS Capabilities
The Oracle Integration Server is based on the proven process architecture and

runtime environment of the Oracle8i platform and transparently inherits all the

RAS characteristics from it. Oracle8i is proven in large-scale online transaction

processing applications (OLTP) that support thousands of concurrent users and
3-14 Oracle8i Integration Server Overview

Functions of OIS
extremely high transaction volumes. It scales linearly in a both symmetric multi

processor (SMP) architecture as well as in clustered architectures. Oracle8i has a

number of high reliability solutions including hot stand-by servers, transparent

application failover, and fast recovery from failures.

Management
Oracle Corporation recommends a distributed hub-and-spoke deployment model to

simplify integration management. We believes that, as with database servers, it is

preferable to consolidate all integration logic into a few large servers, rather than to

distribute it over many small servers. The Oracle Integration Server supports such

an architecture with the high RAS capabilities described in the previous section.

Many products try to compensate for their limited RAS capabilities by

recommending a highly distributed bus architecture. It has been repeatedly proven

that such an architecture leads to extreme complexity in management and is

therefore not suitable for mission-critical environments. However, note that the

architecture of the Oracle Integration Server does not preclude deployment in a

distributed bus topology.

Leveraging Your Investment
Most enterprises have invested in developing skills and expertise in Oracle

database technology. Oracle Integration Server leverages and protects your

investment in these skills. It uses tools with which you are already familiar: Oracle

Enterprise Manager, Oracle Designer, Oracle JDeveloper, Oracle Report, and Oracle

Discoverer. You can access Integration Server functionality through standard

languages like Java, C, C++, as well as PL/SQL. You can use existing database

administration skills to manage and administer the Oracle Integration Server.

Functions of OIS
Oracle Integration Server (OIS) comprises a number of products used together to

enable applications to communicate. OIS is designed to handle complex integration

scenarios.

Oracle Integration Server provides these functions:

■ Message queuing that enables asynchronous communication between

applications

■ Tools to transform business objects as they move among multiple applications

■ Modeling, generation, and automatic execution of complex business processes
Overview of Oracle Integration Server 3-15

Functions of OIS
■ Data integration through data access gateways

■ Data synchronization through replication

■ Standard request and reply protocols that enable synchronous communication

between applications

■ Business intelligence tools to refine, improve, and implement business

processes

■ System management that enables you to manage and monitor the entire

environment from a single console

Oracle Integration Server uses the Oracle8i database:

■ For data storage and message storage through Advanced Queuing

■ For transactional integrity by using the commit model

■ As a repository for business processing and transformation rules

Oracle Integration Server includes:

■ Oracle Workflow for business process control

■ Oracle Message Broker (OMB) for interoperability with other messaging

technologies

■ Workflow Builder with graphical tools for the definition of automated process

flows

These products support messaging and e-business standards such as Java

Messaging Services (JMS) and eXtensible Markup Language (XML).
3-16 Oracle8i Integration Server Overview

Key Objectives for OIS
Key Objectives for OIS

Security
Oracle Integration Server takes full responsibility for the secure transit of

communications from the point of creation to the point or points of receipt. It

ensures the integrity of the communication between the points.

OIS stores a secure copy of the communication on a persistent medium to protect

against loss in the event of a system failure and to provide an audit trail of the

communication. It ensures that a communication exists only as part of a transaction

so that it does not get lost in transit or recorded incorrectly. It maintains an accurate

record of the receipt of the communication.

This section contains:

■ Security

■ Extensibility

■ Encapsulation

■ Component-Based Architectures

■ New Messaging Technologies

Product Development Life-Cycles
OIS supports the integration of Internet applications, transport layers, protocols,

and the languages of legacy applications. It provides versioning capabilities and an

interface for performing configuration, development, and management, in both

development and production environments.
Overview of Oracle Integration Server 3-17

Key Objectives for OIS
Figure 3–7 Product Development Life-cycles

Extensibility
You can develop and extend OIS over time without the necessity for extensive

modification of the original components. This feature is called extensibility and it

makes it easier for you to:

■ Add new applications to the solution

■ Extend the interfaces of existing applications

■ Add new integration components

■ Manage integration component upgrades

■ Speed exploitation of new channels to market

■ Support new standards for protocols and messages

■ Support new regulatory controls

Encapsulation
Encapsulation makes the object self-contained by limiting communication with that

object to a defined interface. All the products that make up OIS can be

encapsulated.

Encapsulation enables you to replace an component without making an impact on

any of the components with which it communicates. The new component can be

successfully encapsulated if it communicates through the same defined interface or

if it provides the equivalent or better integration services.

E-Business
Integration

Traditional Application Integration

• Intra-Enterprise
• Batch, FTP
• Packaged, Legacy, Custom
• Proprietary Protocols

Internet Application Integration

• Intra-Enterprise
• Messaging
• Internet-Applications
• Internet Standards
3-18 Oracle8i Integration Server Overview

Key Objectives for OIS
Encapsulation simplifies your analysis of the impact of replacing a component, it

minimizes redesign of the interface of the component, and it minimize the impact

on the code and interface of other components.

Component-Based Architectures
Component-based architecture follows logically from the concepts of extensibility

and encapsulation. Its objective is to design the architecture as a set of parts, each of

which provides a logically grouped set of services and functionality. The removal or

replacement of any of the individual parts has only a limited impact on

functionality. The basic architecture remains valid and appropriate.

Even if the requirement for a particular component changes significantly, the impact

of changes on the other components is minimized. To achieve this, the components

must be loosely coupled with one another and must communicate using standard

protocol and communication transport.

To loosely couple the software and hardware, the software must be easily portable

and able to communicate across different hardware platforms.

New Messaging Technologies
Oracle Corporation has developed messaging technologies that incorporate new

features important to the development of an asynchronous messaging

infrastructure for enterprise-wide application integration. The most significant of

these include:

■ Auditing and Tracking

■ Business Process Coordination

■ Business Intelligence

Auditing and Tracking
Electronic business must incorporate the same rigorous accounting practices that

are required of traditional business. It must be possible to capture and reproduce an

audit trail of business-event-driven electronic interactions. By incorporating

persistent storage of messages in the database and ability to retain messages even

after they have been processed, Oracle Advanced Queuing provides a strong audit

trail.

Persistent storage also enables you to track business events while they are in

progress, so that you can quickly see evaluate the current state of business

transactions.
Overview of Oracle Integration Server 3-19

Key Objectives for OIS
Business Process Coordination
Business process coordination is essential to the effective management of an

integration environment. Business process coordination software is a logical

extension of the concept governing workflow engines. Workflow engines manage

the flow of documents in business processes that include manual steps performed

by users.

The principle is the same for business process coordination except that it manages

an automated rather than a manual business process. Business process coordination

manages the flow of messages between automated processes and also manages the

state of the message flows. It lets you manage the state of long-running business

transactions independently of the technology used to manage the transaction.

We have extended the Oracle Workflow product to interface with Advanced

Queuing in order to provide business process coordination.

Business Intelligence
The Oracle Advanced Queuing technology creates close coupling between the

database and the messaging function. This close coupling enables you to use Oracle

Business Intelligence software to analyze business events and to identify trends and

patterns. You can also monitor the service levels and response times that are

provided by process steps called from within the Integration Server.
3-20 Oracle8i Integration Server Overview

Key Integration Con
4

Key Integration Concepts

You have seen how the Oracle Integration Server supports a wide variety of

e-business integration architectures and learned about the primary drivers of

e-business integration and the specific components of Oracle Integration Server that

meet these requirements. Next, we examine in greater detail the use of

asynchronous messaging for enterprise integration. This chapter includes:

■ Asynchronous Message-Based Integration

■ Messaging Technology and Architecture

■ Messaging Technology
cepts 4-1

Asynchronous Message-Based Integration
Asynchronous Message-Based Integration
Asynchronous message-based integration is rapidly emerging as the primary

technology required for enterprise integration. To help you understand how to use

it most effectively, we next:

■ Evaluate an end-to-end enterprise integration scenario and discuss how to use

messaging to facilitate integration

■ Compare two different conceptual message-based architectures that you can

use for integration, point-to-point integration and hub-and-spoke integration,

and discuss the relative benefits and trade-offs of the two architectures

■ Summarize the key technological components involved in using messaging for

enterprise integration, discussing message storage and management, message

routing and propagation, and message transformation, as well as message

interoperability and the use of standards

In order to understand how messaging can best be used for e-business integration,

we now consider in detail the technical architecture associated with connecting a

supplier’s supply chain application to a business-to-business trading marketplace

or exchange. This section includes:

■ An Example of the Use of Messaging for B2B Integration

■ Exchange Integration Scenario: Supplier Perspective

■ Exchange Integration Scenario: Exchange Perspective

 An Example of the Use of Messaging for B2B Integration
For example, a supplier must automate the way it interacts with a B2B exchange so

that it can automatically

■ Post up-to-date pricing and inventory information to the exchange

■ Respond rapidly to auctions and requests for information (RFIs) from the

exchange

Let us consider how the integration works from both the supplier standpoint and

from the exchange standpoint. From an integration point of view, three primary

technological requirements enable such communication. These include:
4-2 Oracle8i Integration Server Overview

Asynchronous Message-Based Integration
Communication Between the Supplier and Exchange
To send a message from its supply chain system to the exchange, the supplier must

use a solution that receives a message payload and propagates it to the exchange.

The message propagation facility must provide a number of services:

■ Asynchronous communication: The supplier’s systems and the exchange must

be connected using asynchronous messaging for three reasons:

■ Supplier and exchange are not tightly coupled in a request-response model

because both can continue to process business activities without requiring a

response.

■ Communication between supplier and exchange must be resistant to

application, system, and network outages.

■ Neither the supplier nor the exchange enables another trading partner to

carry out the two-phased commit operation across its systems that is

required for a synchronous interaction.

■ Guaranteed delivery: Because messages exchanged between supplier and

exchange are business-critical, the messaging facility must guarantee exactly

once, in-order delivery of messages.

■ Message storage and management: In order to resolve potential disputes

between the supplier and its trading partners, the messaging facility must store

messages sent by and received from the exchange so that you can audit and

track them.

Message and Data Transformation
In propagating the message from its supply chain system to the exchange, the

supplier must address two message or data transformation issues:

■ Message propagation protocol: Since communication between the supplier and

the exchange and other trading partners occurs over the Internet, the message

must be propagated over the standard HTTP-S protocol. Prefer SSL over HTTP

for security reasons.

■ Message propagation format: Although the message is propagated over

HTTP-S, the message payload must be sent in a format that both the exchange

itself and the other trading partners can understand. Most businesses send the

message payload in an XML format agreed to by all the trading partners and

the exchange.

■ Message and data transformation: Because the supplier’s supply chain

application is likely to store data in a proprietary format, you require a message
Key Integration Concepts 4-3

Asynchronous Message-Based Integration
transformation facility to accept the data from the supply chain application and

translate it into the appropriate XML format.

Business Process Management and Workflow
Before sending the message to the exchange, the supplier may need to get approval

for the price list from an appropriate executive. Similarly, in responding to a

purchase request from the exchange, the supplier may need to send the message to

the company’s Financial Application and to update the inventory status in the

Supply Chain Application. To manage this multi-step business process, the supplier

must maintain a business process management or workflow facility that coordinates

messages between the different applications and the exchange with this:

Before sending the message to the exchange, a local workflow process may need to

be invoked in order to determine whether there is sufficient inventory associated

with each of the items on the new price list. In this case, a business process

management facility will be required at the supplier end. The business process

management or workflow facility will need to route the new price list from the

backoffice application to the company’s inventory application to compare inventory

status for items on the price list. To manage this multi-step business process, the

supplier must maintain a business process management or workflow facility that

coordinates messages between the different applications and the exchange. Further,

since a single business process may involve coordinating business events between

the company’s enterprise applications and with an exchanging or an external

trading partner, a single business process management or workflow facility should

be used for both intra-enterprise and business-to-business interactions.

Now that we understand the primary requirements for this integration scenario, let

us examine in greater technical detail the specifics of the integration from the

perspective of both the supplier and the exchange.

Exchange Integration Scenario: Supplier Perspective
Various steps and integration components link the supplier’s supply chain

application with the business-to-business exchange. In this scenario this is an Oracle

exchange. The steps and components involved in establishing such connectivity are

illustrated in Figure 1.
4-4 Oracle8i Integration Server Overview

Asynchronous Message-Based Integration
Figure 4–1 Integrating with a B2B Exchange: Supplier Perspective

These steps and components include:

■ Adapter technology: For the application to connect to the exchange, the supply

chain application must first use an adapter to post a message to the exchange

integration facility. The adapter waits for new inventory status information to

be posted on a specific message queue. The adapter receives the message in the

specific data format of the application, so the adapter then converts the data

into XML.

■ Message propagation infrastructure: The application adapter first enqueues the

message into a message propagation infrastructure through a standard

messaging interface. The messaging infrastructure can then provide three

additional services:

■ It can route the message to the exchange either statically or based on its

subject or content.

8.1.5
(recoverable

state)

Internet

JDK 1.2

JDK 1.2

LDAP Routing

JMSJMS OMBAdapterSupplier
ERP

System

Shipping

Customer
Service

Billing

Order
Entry Warehouse

BPC

XML Payload
over http-sXML
Key Integration Concepts 4-5

Asynchronous Message-Based Integration
■ It can consult an LDAP directory service to determine where to send the

message.

■ It can optionally store the message in a persistent store so that the message

can be audited or tracked.

■ Local Workflow Processing: If local processing is necessary, the local business

process management facility can dequeue the message from the message

propagation infrastructure, process it locally, and, when this is completed, place

the message back in the message propagation infrastructure in order to send the

message to the exchange.

Exchange Integration Scenario: Exchange Perspective
The integration architecture of the Oracle exchange resembles the architecture

described in the previous section.

Figure 4–2 Integrating with a B2B Exchange: Exchange Perspective

An XML payload is received over the wire on the HTTP-S protocol and goes

through the following stages:

XML
Payload

Internet

JDK 1.2

OMB XML
Parser

AQ
Driver

XML
Payload

JDK 1.2

SMTP / IMAP4

Oracle ERP Components

Dequeue OMB

Process Model
State Storage

Oracle
Workflow

AQ
(Oracle8)
Payload
4-6 Oracle8i Integration Server Overview

Messaging Technology and Architecture
■ Message receipt and propagation: The message management facility receives

the message as an XML payload over HTTP-S.

■ Data transformation and parsing services: When the facility receives the

message, it frequently places the message in a persistent store so that it can be

audited and tracked for conflict resolution. The message header and payload

may often need to be parsed using an XML parser for two purposes:

■ To determine where to route information based on either the subject or

topic of the message or the content of the payload. For instance, the

message may need to be sent through a specific approval cycle if the

supplier is posting inventory levels that are below the threshold for the

exchange.

■ To parse the message into a structured format to enable it to be placed in a

business process management or workflow facility for processing

■ Business Process Management: The workflow system dequeues the message

from the message propagation infrastructure and carries out an entire workflow

process to update the various applications that form part of the exchange. The

workflow facility can also:

■ For example, send an e-mail message to notify a small supplier by directly

calling its own SMTP/IMAP4 interface

■ Send an XML message outbound: If the workflow system needs to send an

XML message outbound to another supplier over HTTP-S, it can serialize

the message into the XML payload format appropriate to the target,

determine how to route the message by consulting an LDAP directory, and

then enqueue the message into the message propagation infrastructure.

Messaging Technology and Architecture
We have now explained the concepts of the integration of applications and business

processes using an asynchronous messaging infrastructure. In this section, we

discuss in greater detail the specific technical aspects of the use of asynchronous

messaging for e-business integration: This section contains:

■ Messaging Technology - An Overview

■ Message-Based Integration Architectures

■ Message Storage and Management

■ Message Propagation and Routing
Key Integration Concepts 4-7

Messaging Technology and Architecture
Messaging Technology - An Overview
Highly interdependent processes, often described as closely coupled or tightly

coupled processes, are more difficult to maintain, more failure prone, and more

difficult to recover than processes that operate independently of each other. For this

reason, developers are increasingly designing modular applications with as much

independence between processes as possible.

To limit the dependency between two processes, developers use

■ Messaging: formalized communications between processes

■ Decoupling: a technique for minimizing the number and complexity of

interactions between processes

■ Middleware: an intermediary between two processes

Middleware comprises a storage medium for messages called a queue, a generic

message-passing process called a message broker, or both a queue and a message

broker. Communicating through this intermediary enables each process to operate

independently of the availability, performance, physical location, or implementation

style of another process.

Aspects of the messaging system that is required for e-business integration

including:

■ Synchronous and asynchronous processing

■ Session-based and sessionless communication

■ Stateless and stateful communication

■ Two-way and one-way communication

Synchronous and Asynchronous Communication
Two processes can communicate through a message either synchronously or

asynchronously.

In synchronous processing, the sending process passes control to the receiving

process and suspends processing until it receives a reply from the receiving process

to confirm that it has received and processed the message.

In asynchronous processing, the middleware queue separates the sending process

from the receiving process. The sending process continues processing as soon as the

middleware receives the message. Note that a multithreaded program, one of

whose threads waits for a message to be processed, is operating synchronously,
4-8 Oracle8i Integration Server Overview

Messaging Technology and Architecture
even though the program continues to process other threads while that thread

awaits a reply.

Session-Based and Sessionless Communication
A message can be created or processed either in encapsulation or in the context of a

session. A session is a period of time during which a user or a process establishes a

recognized and predefined connection to another process. Messages are either

durable or non-durable. Durable messages can be sent independently of a currently

running session. Non-durable messages cannot, and they require session-based

communication.

Session-based communication between processes takes place within the context of a

session. The rules that govern the session affect the way the message is created and

processed. Session rules also affect the way the middleware manages the message:

how it is routed and stored and retained, whether a reply is sent to the sender, and

so on.

Sessionless communication takes place outside of the context of the currently

running session. The durable message is processed through a previously

established connection to the database, the middleware, or the application. A

sessionless message can be managed and processed without the requirement for

additional information provided by the currently running session.

Stateless (“Without State”) and Stateful (“With State”) Communication
The transactional state of a communication is either “with state” or “without state.”

The transactional state is the state of the communication. It has nothing to do with

stages in the life cycle of the message itself: created, ready for processing, processed,

and so on.

“With state” communication occurs when messages are created, managed, and

processed within the context of a single transaction. The position of the message

within the transaction affects the way the message is processed. The process that

creates the message, the middleware, and the process that acts on the message all

independently maintain the “with state” condition so that the message is processed

in the context of the transaction.

“Without state” communication occurs when messages are processed without

reference to their position within a single transaction or when the message crosses

transactional boundaries.
Key Integration Concepts 4-9

Messaging Technology and Architecture
Two-Way and One-Way Communication
Synchronous communication is two-way communication because the sender of the

message waits until it receives a reply indicating that the message has been

successfully processed. In general, communication that is “with state” or

session-based is two-way communication. A message sent in the context of a

session or transaction is almost always associated with a reply sent by the receiving

process.

The data contained in a message is its payload. A message sent from one discrete

process or application to another independently of a session or transaction contains

sufficient information to enable processing. Because further communication with

the sender is not required to process the message, it is said to have an autonomous

payload.

An asynchronous, “without state,” sessionless message with an autonomous

payload is a one-way communication. The management and processing of the

message have no impact on the sender process, which continues immediately after

the message is sent. One-way communication adds another degree of separation

between the sender and the receiver of the message.

Message-Based Integration Architectures
Now that you understand the broad technical aspects of messaging, we examine the

two primary architectural alternatives in the use of messaging for e-business

integration. Depending on your data processing and messaging requirements, you

can use one of two possible architectures to organize your solution.

Two alternative message-based integration architectures and their relative benefits

and trade-offs

■ Point-to-point integration

■ Hub-and-spoke integration

Point-to-Point Integration
A point-to-point integration architecture integrates each application directly with

each of the other applications with which it needs to communicate. The applications

communicate with one another directly on a one-to-one basis. This architecture has

historically been used to provide file-based integration between applications.

It requires relatively little architectural infrastructure. In a phased implementation,

it speeds implementation of the early phases. However, it has recognized

limitations, particularly in terms of ongoing maintenance costs (which can be
4-10 Oracle8i Integration Server Overview

Messaging Technology and Architecture
exponentially higher than those of hub-and-spoke architecture), and in lack of

flexibility and manageability.

Hub-and-Spoke Integration
In contrast to point-to-point integration, most modern integration scenarios are best

served by hub-and-spoke architecture. A hub-and-spoke architecture provides a

central intermediary (called a hub) through which applications communicate with

each other. In this architecture, each application (which represents a spoke)

communicates with the intermediary (the hub), which in turn manages

communication with the other applications. Applications do not communicate

directly with each other.

In the context of a hub-and-spoke integration architecture, the hub provides a

central point for a variety of services:

■ Message propagation and communication: The hub provides a central facility

that manages the routing and propagation of messages among the different

applications. If the message, based on its content or topic, must be routed to

more than one application, a hub-and-spoke architecture provides greater

flexibility than a point-to-point architecture.

■ Message management, tracking, and auditing: The hub stores, audits, and

tracks messages flowing between the different applications, thus providing a

central facility in which all interactions between applications are managed. In a

point-to-point integration architecture, information required for auditing is

stored within each application, thus complicating analysis of information flows.

■ Message and data transformation: The hub provides message and data

transformation to convert data from the format of the sending application to the

format of the receiving application. In a hub-and-spoke architecture, each

application simply transforms the data into a common view from which the

data can be converted into the format of the receiving application. When the

sending application sends a message to a new application, the hub needs only

to apply a new transformation from the common view to the format of the new

application. This eliminates the requirement for a new point-to-point map.

■ Business process management: The hub provides business process management

or workflow services to manage multistep interactions between applications.

For instance, one application sends a message to another application, then

receives a response from that application, and then sends the information to a

third application. By centralizing business process management in the hub,

hub-and-spoke architecture simplifies management of workflow among

different applications.
Key Integration Concepts 4-11

Messaging Technology and Architecture
Note that because integration architecture is defined at many different levels, the

hub-and-spoke structure may not exist at all levels. For instance, the hub and the

spoke might all be deployed on the same hardware or potentially on different

systems. In general, the hub provides a focus for application interfaces and

integration requirements because each spoke communicates only with the hub. This

isolates the resource requirement for integration services.

Some people think that the hub-and-spoke approach simplifies the interface to an

application by reducing the number of integration points into an application.

Actually, the API is as complex as in a point-to-point architecture, but the

hub-and-spoke approach focuses the integration points for an application into one

place, thus making applications easier to design, develop, and manage.

Benefits and Trade-offs
Consider two primary differences between hub-and-spoke and point-to-point

architectures:

■ Complexity of Applications: Point-to-point integration architecture is best

suited for a relatively simple integration scenario in which a small number of

applications are integrated; the applications are rarely replaced, upgraded, or

modified significantly; the applications use much the same technology. A

hub-and-spoke architecture, though it introduces the complexity of an

integration hub, is suited for integrating many different applications and

systems. It is more extensible than a point-to-point architecture because new

applications need only to be integrated with the hub and not with all of the

other applications.

■ Complexity of integration requirements: Point-to-point integration architecture

is best suited for a scenario that has relatively simple integration requirements:

■ Data is transformed simply between applications.

■ Messages are routed to only a few destinations using simple routing

schemes.

■ You do not require a central business process coordination facility.

■ You do not require a common view of all business events.

In a hub-and-spoke architecture, the hub provides these services to all the

applications and thus simplifies how the integration occurs.

■ Business-critical nature of integration: A hub-and-spoke architecture is also well

suited for integration scenarios that are business-critical:
4-12 Oracle8i Integration Server Overview

Messaging Technology
■ Information communicated between applications and business processes is

highly sensitive.

■ Cost of an integration outage or lost communication is significant.

■ Fundamental need exists to retain, audit, and track business event

information.

■ Manageability of integration environment: Although hub-and-spoke

architecture introduces the additional complexity of a coordinating hub, it

offers a central point where integration-specific functionality is focused to

provide centralized management, maintenance, backup and recovery, tracking,

routing, transformation, and so on. Hub-and-spoke architecture provides

lightweight spokes where the integration and interface requirements of each

application are defined, designed, delivered, and maintained. This simplifies

maintenance, impact analysis, upgrade cycles, and the retirement of legacy

systems.

Messaging Technology
Now that you understand how you can use asynchronous messaging for e-business

integration, we examine some of the key aspects of messaging technology

specifically discussing in this section:

■ Message Propagation and Routing

■ Message Notification Models

■ Message and Data Transformation Requirements

■ Message and Data Transformation Issues

Message Storage and Management
A fundamental requirement for an asynchronous messaging infrastructure that

furnishes a platform for e-business integration is that the infrastructure provide

persistent storage and management of messages. As described earlier, the ability to

store and manage messages is critical for four reasons:

■ Inability to process messages as they arrive: Applications may have to deal with

many unprocessed messages arriving simultaneously from clients when they

may not have the resources to process all the requests immediately. A

messaging system must store the message in a persistent queue and deliver it

later when the recipient can process it.
Key Integration Concepts 4-13

Messaging Technology
■ Message scheduling: Messaging systems also require message persistence so

that they can deal with priorities:

■ Messages arriving later may be of higher priority than messages arriving

earlier.

■ Messages arriving earlier may have to wait for messages arriving later

before you can act on them.

Such message priorities may also change over time: for instance, messages in a

particular queue may become more important than messages in other queues

during certain time windows. Message persistence enables messages in high

priority queues to be processed first. Low priority messages can be stored and

processed later without interfering with high priority messages.

■ Message auditing: Message persistence is critical because the control

component of the message can be as important as the payload information

itself. For instance, the time that a message is received and dispatched can be a

critical part of a message. In an e-commerce environment, message persistence

stores information on orders from various customers that you can query to

understand periods of peak demand or to determine the status of an order. The

message, therefore, may remain important even after it has been executed. A

persistent messaging store is critical so that such information can be

warehoused and queried or audited.

■ Communication Failures: The communication links between messaging clients

may not be available all the time or may be reserved for some other purpose. If

the system cannot process messages immediately, the messaging system must

store the message persistently and deliver it when processing resources are

available. Such guaranteed message delivery of each message to each recipient

exactly once is critical to integration of enterprise applications.

Note that the need for message persistence is enhanced in a business-to-business

commerce scenario in which the likelihood of communication failures and the need

for auditing and tracking are far more significant than within a single enterprise.

Although most messages in an integration scenario must be stored persistently, in

some cases volatile messages are sufficient. For instance, if an e-mail is sent to an

application to notify it that a message has been sent or received, the e-mail message

need not be stored for auditing.

Most messaging systems do not provide automatic message persistence. They

simply store the messages in RAW format in a file system. As a result, the message

headers and payloads are not queryable. If the message does need to be stored

persistently, the messaging system requires a two-phase commit operation between

itself and a database system.
4-14 Oracle8i Integration Server Overview

Messaging Technology
In contrast with such complexity, Oracle Corporation integrates a messaging

infrastructure directly with its enterprise database: associating queues with

database tables and ensuring that messages placed in these queues automatically

persist in the database. You can then archive the messages and execute queries

against both message headers and payloads using standard SQL.

Message Propagation and Routing
Because messages must be propagated from one application or business process to

another, the messaging infrastructure offers a mechanism to route the message from

the sender to the receiver. Message propagation and routing can be performed in

one of two ways:

■ In point-to-point routing, the sending application knows the destination to

which it is sending the message (the receiving application). Point-to-point

message routing provides relatively tight coupling between the sending

application or business process and the receiving application or process.

Figure 4–3 Point to Point Model

■ In publish-subscribe routing, the sending application does not know the

destination to which it is sending the message, but instead assigns the

responsibility for managing who receives the message to the middleware. The

middleware defines a list of topics on which the message creator publishes

messages.

Oracle

Advanced
queues

Application Application
Dequeue

Enqueue

Dequeue

Enqueue
Key Integration Concepts 4-15

Messaging Technology
Figure 4–4 Publish-Subscribe Model

A process identifies itself to the middleware as a subscriber and defines the

topics on which it receives messages. The middleware sends the subscriber any

future messages on that topic until the subscriber informs the middleware that

it no longer wants messages on that topic or ceases to subscribe. This design

technique provides an additional level of separation between the processes. The

sender publishes message to middleware without regard to the receiver of the

message, the delivery location, or the processing of the message. The

middleware is responsible for:

■ Registering subscribers and enforcing conditional subscription rules

■ Determining recipients for individual messages

■ Tracking both message creation by publishers and collection of messages by

subscribers

The subscriber registers an interest in receiving messages on particular topics

and subscribes without regard to the sender or publisher of the message and

where the message is created.

Point-to-point and publish-subscribe based message routing are the two broad

categories of message routing. In reality, each of these schemes can be more

complex. For instance, in both a point-to-point and a publish-subscribe

environment, messages can be routed in three ways: subject-based, topic-based, and

rule-based. We now consider each of these and discuss, with examples, how each

applies to publish-subscribe routing.

■ Subject or topic based: This is the simplest form of publish-subscribe. A process

publishes messages related to an appropriately named topic or subject. For

example, the subject might be PLACE AN ORDER. Subscribers that have

registered with the middleware stating an interest in receiving messages on that

topic receive all messages on that topic until they unsubscribe from that topic:

“Send me all messages on the topic PLACE AN ORDER.”

Oracle

Advanced
queues

Application

Application

Application

Application

Publish

Publish

Subscribe

Subscribe

Publish
4-16 Oracle8i Integration Server Overview

Messaging Technology
■ Content Based: This is an enhanced version of topic-based publish-subscribe.

The subscriber asks to be sent only a subset of the messages received on a

particular topic, depending on the values contained within the message. For

instance, “Send me all messages on the topic PLACE AN ORDER in which the

message contains UK in the country code field of the message data.”

■ Rule Based: Rule-based publish-subscribe offers a further enhancement of the

content-based mechanism. The subscriber specifies rules that govern conditions

that might or might not relate to the values of the message data. For instance,

“Send me all messages on the topic PLACE AN ORDER in which the message

contains UK in the country code field of the message and the current time is

between 9 am and 5 pm and I have the spare capacity to fulfill the order.”

Message Notification Models
Businesses commonly use two messaging models to facilitate internal

communication. A complete communication solution typically requires use of both

models:

Event Notification
The event notification model addresses the need to communicate business events

throughout the business. A business event is a logical occurrence in a business

scenario. It may be simple, as when a customer places an order, or it may be more

complex, as when a customer exceeds his credit limit while placing an order. A

system event, on the other hand, is a physical point in the execution of a program at

which an identifiable computing task takes place, for instance, writing to a file. A

single business event is usually associated with a number of system events.

The event notification model defines the communication points between

applications and the content of the communication. It uses asynchronous messaging

and publish-subscribe routing to deliver messages that represent instances of a

business event. Each business event is defined to the middleware as a separate

publish-subscribe topic. The application or applications that process the business

event also publish a message each time an instance of a business event occurs. An

application that must know about the business event subscribes to the topic

relevant to that event. The middleware manages delivery of the message to the

subscriber and collection of the message by the subscriber.

Typically, each message announcing a business event is autonomous and requires

no communication between the applications other than delivery of the message.

Usually the subscriber need not respond to the publisher. Once it has acted on the
Key Integration Concepts 4-17

Messaging Technology
information received in the message, the subscriber can raise an instance of another

business event and can publish messages about this business event as another topic.

Service Requests
The second of the two most commonly used messaging models, the service request

model, offers an alternative modeling style to event notification. It is based on the

premise that one application can avail itself of the services of another application.

For instance, application A requests a service from application B by creating a

service request in the form of a message.

The service request model has many more variations than the event notification

model. The variant selected depends on the requirements of the individual solution.

For instance, the service request model is implemented using asynchronous

messaging when no confirmation of service delivery is required. This variant may

use publish-subscribe routing. If a confirmation is required, whether it is positive or

negative, the service request model is implemented either by using asynchronous

messaging or by synchronously using a call-and-reply messaging technology.

In a service request model, the application requiring a service that it cannot itself

provide creates a service request message for a named application that provides the

service. The middleware routes the message to the named application. The

application providing the service has a defined means of invoking the services of

queues and of a callable API. Three of the possible variations of the service request

model are shown here:

■ Non-Publish-Subscribe Service Request Model: In this configuration, the

application requiring a service sends a request for service to a named

application through the middleware.

■ Publish-Subscribe Service Request Model: In this configuration, the application

that provides the service registers with the middleware as a service provider.

The application requiring the service publishes its request to the middleware,

which routes the message to the registered service provider.

■ Publish-Subscribe Service Request Model with Positive Confirmation: In this

configuration, the application providing the service successfully delivers the

service and then returns a message confirming service delivery. The

middleware routes the confirmation to the application that originated the

request.
4-18 Oracle8i Integration Server Overview

Messaging Technology
Message and Data Transformation Requirements
If you use asynchronous messages to integrate applications or business processes, a

fundamental requirement is to transform the message payload sent by the

originating application to a different format that can be accepted by the receiving

application. To understand the transformation process, consider an Oracle

Customer Relationship Management (CRM) application that is attempting to send a

purchase order received in its Web store module to an SAP financial application.

There are two specific transformation requirements:

Datatype Transformation
The Oracle CRM application stores all its data in SQL format and the SAP

application stores and accesses its data in iDOCS, which is a flat file format. SQL

datatypes must be converted into the iDOCS datatype at the byte representation

level; this is called datatype or data level transformation. When considering data

transformation itself, a number of different kinds of transformations can apply:

■ Value: Change the data value from 123 to ABC.

■ Name: Change the data name from CUSTNUM to customer_id.

■ Type: Change the datatype number to alphabetic.

■ Payload Definition Mapping: Concatenate BranchId , CustomerNo ,

AccountType and CheckDigit to give AccountNumber.

■ Payload Format: Change the actual structure of the message payload, for

instance HTML to XML, XML to fixed file format, XML to comma separated

values (CSV), name-value pairs to XML, and so on. Do not confuse structural

transformation with programmatic transformation.

■ Programmatic: Change the message payload format between that supported by

a programming language and that supported by a messaging technology, for

instance C Struct to XML string, Java Class to stringified object, COBOL picture

to ADT (also known as Pro*COBOL).

■ Messaging API: Some standard messaging services are implemented differently

in different technologies and you may need to transform messages between the

formats of the underlying structures, for instance, OMB JMS to OJMS or OJMS

to MQSeries JMS.

■ Header: Some mapping may also be required in the message properties

recorded in the header as you move from one messaging technology to another,

for instance, AQ to MQSeries or AQ to TIBrv.
Key Integration Concepts 4-19

Messaging Technology
Semantic Transformation
The Oracle CRM application stores a customer name in four fields: Mr./Mrs./Miss,

First Name, Last Name, Middle Initial. In contrast, the SAP application stores the

same customer name in two fields: the first field specifying Mr./Mrs./Miss and the

second field concatenating the First Name and Last Name with a blank in between.

In this case, you must concatenate the fields in the customer name of the Oracle

application before sending it to the SAP application. Such a transformation is called

semantic transformation.

Message and Data Transformation Issues
In addition to understanding these two different kinds of transformation

requirements, you must consider four additional issues when thinking about how

messages need to be transformed for a particular integration scenario.

Transformation Location
In a point-to-point integration architecture, the sending application transforms the

message into the format of the receiving application and then places the

transformed message on the message propagation infrastructure, which then passes

it to the receiving application.

If transforming data from a sending application to a receiving application in a

hub-and-spoke architecture, you must decide whether to transform the message at

the spoke or at the hub. For instance, the sending application might behave in the

same way as in a point-to-point environment and simply use the hub as a message

propagation and routing infrastructure. In contrast, if a single application sends

information to multiple receiving applications, it can simply send an untransformed

payload to the hub, which then applies the transformation appropriate to the target

application receiving the message.

Transformation Mechanism
Additionally, in a hub-and-spoke architecture, the hub can directly transform the

payload of each sending application into the format of the receiving application.

Alternatively, each application can transform its data from an application-specific

view into a common view and then send it to the hub, which converts it from the

common view to the target application-specific view. The primary benefit of using a

common view for transformation is that when a new application is added or an

existing application is upgraded, the integrator needs only to change the mapping

from the common view to the application specific view. It need not change the

mapping from every single application that communicates with this application. As
4-20 Oracle8i Integration Server Overview

Messaging Technology
a result, using a common view for transformation is more extensible than direct

transformation.

Using a common view for data transformation affects the way the data itself gets

converted. In typical scenarios, the common view of data is increasingly

represented using XML (or in certain cases Java classes). An adapter associated with

the sending application converts the data from the application-specific format into

the common view representation, places it in an XML document, and then sends it

to the messaging infrastructure of the hub. The hub then applies an XSL-T

transformation to the XML document based on the necessary semantic information,

converts it to an outgoing XML representation, and places it on the message

propagation infrastructure. An adapter of the receiving application then receives

the XML payload, parses the XML payload, and converts it into the data format of

the receiving application.

Note two important benefits of transforming data into XML:

■ XML message payloads can be sent over HTTP-S and, as a result, a common

infrastructure can integrate applications within a company and between

companies using the Internet for message propagation.

■ XML is a completely extensible data description language and, as a result, can

represent any kind of data; it is ideally suited to describe different kinds of data

for transformation purposes.

There are, however, two potential drawbacks to using XML:

■ Since it is string-oriented or text-based, the need to parse the data for

transformation can introduce overhead.

■ Most XML parsers on the market today cannot handle message payloads

beyond 10 MB in size through their DOM APIs; the DOM parse trees that are

created when the document is parsed are too large. Although you can use the

SAX API, it too is frequently inefficient.

Transformation Event Frequency
Finally, consider the frequency of transformation and the business events that

necessitate a transformation. There are three kinds of such transformation events:

■ Specific: The transformation is specific to a particular business event coming

from or going to a particular application.

■ Defined: The transformation is defined as a set of maps between standard

message definitions, for instance XML to SWIFT, and needs always to be
Key Integration Concepts 4-21

Messaging Technology
applied whenever a message of one type is sent to an application or business

process that communicates in the other format.

■ Generic: The change applies to all messages in a particular adapter, for instance,

MQSeries messages to AQ messages.

Message System Interoperability
When considering an e-business integration scenario, the final aspect of messaging

that you need to understand is interoperability between different message queuing

systems and different types of integration middleware:

■ Message System Interoperability: Firstly, how do you get two messaging

systems to communicate with each other at the programming interface level

and send messages to each other? A related question is: How can an application

communicate with multiple messaging systems through a single standard

programming interface?

■ Message Payload Interoperability: Secondly, how do you get different

messaging systems to communicate through a common message payload

format or to interpret message payloads of the other system?

In order to ensure interoperability between messaging systems at both the payload

and the system level, messaging middleware vendors have adopted two standards:

■ Java Messaging Service (JMS) API to ensure message system interoperability

■ XML (and a variety of derivatives such as OAG, XML, and OBI) for message

payload interoperability

In the next section, we provide a brief overview of these two standards.

Java Messaging Service (JMS)
Java Messaging Services (JMS) is the Java industry standard for asynchronous

messaging, developed jointly by Sun and other enterprise messaging vendors

including Oracle. It complements the synchronous communication model specified

by Java Remote Method Invocation (RMI).

The most commonly held misconception about JMS is that it is an application or

component that provides messaging services. JMS itself is simply a definition of a

standard. Vendors of messaging technologies (such as Oracle) develop and sell

software (such as Advanced Queuing) to provide messaging services that conform

See Also: Oracle8i Applications InterConnect 3.1.3
4-22 Oracle8i Integration Server Overview

Messaging Technology
to the JMS standard and that can be accessed through a Java API that conforms to

the JMS standard.

These JMS compliant services are made available through a published interface that

complies with the JMS standard for the programmatic interface (API). The API

provides a framework that enables you to develop portable, message-based

applications in the Java programming language.

Figure 4–5 Java Messaging Services

The JMS standard defines four important components:

■ Clients: Those programs or processes create and consume messages (for

instance, a Java Application Program).

■ Providers: Those programs or processes provide the JMS service (for instance,

AQ).

JMS
Subscribing

Client

JMS
Subscribing

Client

JMS
Subscribing

Client
Message
Collector

JMS
Clients

JMS
Clients

JMS API
(Oraclei AQ OJMS API)

JMS Provider

JMS Administered Objects

Pub-Sub Message

Point-to Point Message
JMS Publishing
Client (bespoke
Java program)

Point to
Point
Message

Point to
Point
Message

Point to
Point
Message

Point to
Point
Message

JMS
Topics

JMS
Queues

Pub-Sub
Message Pub-Sub

Message
Pub-Sub
Message Pub-Sub

Message

Point-Point
Message
Key Integration Concepts 4-23

Messaging Technology
■ Administered objects: Objects are used by the providers to manage and route

the messages (for instance, JMS Topics and JMS Queues).

■ Messages: These are the messages themselves.

The JMS standard defines two types of message routing:

■ JMS Topics that provide a definition for publish-subscribe routing

■ JMS Queues that provide a definition for point-to-point routing of a message

from one point to another

The JMS standard defines various characteristics about messages including some

properties relating to the message itself (stored in the message header) and a

number of different styles of payload for the message content. It also defines how

content-based publish-subscribe is implemented using filtering conditions on the

message header and its properties. The five styles are:

■ TextMessage

■ BytesMessage

■ MapMessage

■ StreamMessage

■ ObjectMessage

The Oracle Implementation of JMS
Each vendor who offers a JMS implementation develops a set of services that

conform to the standard. The vendors are free to extend their implementation to

offer services beyond those defined in the JMS standard.

Oracle8i Advanced Queuing offers just such an extended JMS interface, which is

called Oracle Java Messaging Services (OJMS). Oracle provides JMS Queues using

Advanced Queuing single-consumer queue functionality. Each JMS queue is

mapped one-to-one to a single-consumer queue. JMS topics are supported using

Advanced Queuing multi-consumer queues. Each JMS topic maps to a

multi-consumer queue. Each JMS message type maps to an Oracle Object Type. The

JMS connection encapsulates a JDBC connection. This enables the client to combine

JMS messaging and other JDBC operations in the same database transaction. JMS

Clients executing outside the database JVM can access the JMS API using the “thin”

or “OCI” JDBC driver. JMS Clients executing inside the database JVM (JServer) can

access the JMS API using the Oracle Server driver. The standard JMS interfaces are

available in the javax.jms package.
4-24 Oracle8i Integration Server Overview

Messaging Technology
The Oracle extensions to the JMS implementation can be found in the oracle.jms
package.

XML
XML (eXtensible Markup Language) is a markup language for documents

containing structured information. It provides a mechanism for applying structure

to an information set, such as a message or a document, by enabling the data in the

set to be labeled, assigned attributes, qualities, or default values and enabling you

to verify or validate the information set. It is becoming the standard message format

for e-business and is the preferred standard for most major IT vendors.

The main advantage of XML lies in its flexibility and its simplicity. Each message

contains within it the information required for the structure of the message to be

understood. This is often called a self-describing message. Consequently, any

program that knows the rules of XML can understand any message formatted as an

XML message without having to store and overlay metadata about the structure of

each message.

XML was derived as a subset of the SGML (Standard Generalized Markup

Language), which has been the standard, vendor-independent way to maintain

repositories of structured documentation for more than a decade. SGML is very

powerful but complex to use for e-commerce, so XML was developed as a

simplified version of SGML.

The content of a message or document can be thought of as a logical set of

information, and that information often needs to be structured so that pieces of the

information can be identified, accessed, and manipulated as subsets of the message

or document. These subsets are known as elements. Each element can be made up

of any number of other elements, and elements can repeat in a group.

XML has syntactic semantics that enable you to define labels known as tags that

define where an element starts and where it ends. It is possible to define attributes

that describe the characteristics of the element as a whole. These attributes apply to

all the sub-elements and to the data contained within the element.

XML also enables you to define a validation template called a Document Type

Definition or DTD, which can be used to provide two levels of validation:

■ Well formed: To check that the message or document has been formed correctly.

If it passes, the message or document is described as well-formed.

See Also: Oracle8i Application Developer’s Guide - Advanced Queuing
Key Integration Concepts 4-25

Messaging Technology
■ Valid: To check that the message or document is valid against a set of rules

defined in the DTD. The validation is performed by a service known as an XML

parser, and most vendors including Oracle have software that provides such a

service.

See Also: Oracle8i XML Reference
4-26 Oracle8i Integration Server Overview

Part II

 Products

Part II discusses each of the product components of OIS in the context of integration

alone. For complete information on the individual products themselves, you should

read product-specific documentation. A link to appropriate product-specific

documentation is provided where applicable.

■ Chapter 5, "Synchronous Application Integration"

■ Chapter 6, "Data Replication and Gateways"

■ Chapter 7, "Oracle Advanced Queuing and JMS"

■ Chapter 8, "Oracle Message Broker and JMS"

■ Chapter 9, "Directory Services (LDAP)"

■ Chapter 10, "Workflow"

Synchronous Application Integ
5

Synchronous Application Integration

The Oracle8i Java Virtual Machine (JVM) provides a highly scalable and available

environment in which to run and execute server-oriented Java applications.

This chapter contains:

■ Facilities Provided by the Oracle8i Java VM

■ Developing Java Applications with the Oracle Database

■ Supporting JABs on the Oracle8i Java VM: an Architectural Overview
ration 5-1

Facilities Provided by the Oracle8i Java VM
Facilities Provided by the Oracle8 i Java VM
The Oracle8i JVM has several key architectural components. This section contains:

■ Core Facilities Provided by Java VM

■ Core Runtime Facilities Provided by Java VM

■ Integration Between Java VM and the Database

The Java VM is a 100% complete Java execution environment, complying with the

Java Language Specification and the Java VM specified in the JavaSoft JDK 1.1.6

standard. It is tightly integrated with the database and has a number of

components: a bytecode compiler, a garbage collector, an integrated Java class

loader, and a Java-through-C compiler, all of which have been designed for optimal

performance and scalability within the database environment.

It runs in the same process space and address space as the database kernel itself,

sharing a number of the memory heaps and having direct access to the buffer cache

of the database to avoid copying memory for optimal performance. The Java VM

provides a runtime environment for Java objects. It includes the representation of all

Java data structures and supports Java method dispatch. It supports all of the

standard Java bytecode operations, including the Java non-recoverable exception

model and Java Language-level threads. The VM's dispatch and execution model

are also designed to support hybrid interpreted or compiled systems, enabling

users to access Java-through-C translation for better performance.
5-2 Oracle8i Integration Server Overview

Facilities Provided by the Oracle8i Java VM
Figure 5–1 Oracle Java VM Architecture

Core Facilities Provided by Java VM
The Java VM provides the following core functions:

■ Object Memory Management: The Oracle8i Java VM allocates and frees

memory in standard chunks called object memories, which can be specialized

in various ways, depending on how they are to be used. Object memories

provide users with four important benefits:

■ They are location transparent and can be efficiently relocated across thread,

process, host, or temporal boundaries without the inherent costs of object

serialization and deserialization, while maintaining the uniform reference

semantics of Java. This means the Oracle VM provides sophisticated load

Java exec

run

object memories

aei

moss

miscellaneous RDBMS libraries

Java applications (EJBs, stored procedures, etc.)

standard class libraries (and bcomp)

8i built-in libraries (ORB, EJB, JDBC, SQLJ, translator*, tools, etc.)

mman

interpreter

class loader

ncomp

session static libunitnew old stack

Java APIs

"Java VM"

"Shared" memory

"Session" memory

"Call" memory
Synchronous Application Integration 5-3

Facilities Provided by the Oracle8i Java VM
balancing and failover while isolating users from the need to use low-level,

error-prone Java threads for scalability.

■ Object memories can be specialized for optimizations in the way they are

garbage collected: whether they are preinitialized in state or transactional in

nature, whether they require rollback and atomic commit semantics.

■ Persistent and shared object memories can be archived efficiently to disk.

■ Object memories isolate the rest of the Java VM and Java applications from

how they are themselves implemented.

■ Memory Manager and Garbage Collector: The Java VM provides a garbage

collector that has been optimized to provide excellent performance and

scalability for the Oracle database environment. The garbage collector is

responsible for automatically managing the Java memory heaps of the VM and

for efficiently allocating and collecting object memories.

■ Java Library Manager: The Library Manager is the component of the Java VM

that provides facilities to load, store, and manage Java programs in the

database. Users can interchange (both import and export) Java in three forms:

source, binaries and resources, and archives. Java programs are stored as

database library units (the equivalent of OS files).

■ Java Class Loader: The class loader takes requests at runtime from the Java VM

and locates, loads, and initializes local DBMS-stored Java classes (in Java binary,

or native compiled form).

Core Runtime Facilities Provided by Java VM
The Java VM provides the following core runtime functionality:

■ Bytecode Compiler: The Java VM embeds the standard Java bytecode compiler

from JavaSoft, which translates standard Java source programs into standard

Java.class binary representation.

■ Interpretation Runtime: The Oracle8i Java VM provides a bytecode interpreter

and associated Java runtime that executes standard Java binaries. The

interpreter is a 100% implementation of standard Java (currently release 1.1.6)

including advanced features such as Java threads and exceptions. Additionally,

the runtime provides support for call-in and call-out from the host

environment, native methods, and natively compiled Java modules.

■ Standard Libraries: The Oracle8i Java VM supports all of the standard JDK

1.1.6 libraries except for the GUI-related component, Abstract Windowing

Toolkit (AWT).
5-4 Oracle8i Integration Server Overview

Facilities Provided by the Oracle8i Java VM
■ Native Compilation: The Oracle8i Java VM provides a native code compiler to

increase the execution performance of Java programs to near compiled

C-language levels. The native compiler translates standard Java binaries to C

executables, which are stored persistently in the database as library units and

can be loaded as DLLs or .sos by the Java VM.

■ Java Native Interface: The Java VM supports the Java Native Interface, which

provides access to native methods.

.

However, the Java VM does provide facilities to call out from the database to C

and C++ programs.

Integration Between Java VM and the Database
The Java VM interfaces with the rest of the Oracle8i database through four different

mechanisms:

■ JDBC Driver and Embedded SQL in Java Translator: Persistent data is stored

in the Oracle database either as relational tables or as object relational tables

defined using SQL. Java programs in the database access SQL and PL/SQL in

the database through SQL or JDBC. For static SQL queries, you can write SQLJ

applications that are simpler than JDBC. To write dynamic SQL, call JDBC.

■ JDBC Driver: The VM incorporates a specialized implementation of the Oracle

JDBC Driver. It corresponds to the JDBC 1.2.2 specification and to virtually all

of the JDBC 2.0 specification, including support for object-relational types,

collections, and LOBs. It ports the same programming APIs as the Oracle

client-side JDBC/Oracle Call Interface, and Thin JDBC Drivers. This enables

application developers to move Java applications onto the database without

modifying application code. The only difference between the client-side JDBC

drivers and the server-side driver is that Java objects in the server always

execute in the context of the database connection under which they were called;

as a result, the driver does not permit you to explicitly open connections.

■ Embedded SQL in Java Translator: The Java VM in the server provides an

embedded SQL in Java translator. You can write stored procedures and

functions to the higher-level, more productive SQLJ interface. The embedded

Note: Oracle Corporation does not externalize JNI to general

purpose application developers, in order to prevent you from

linking unsafe C libraries into the address space of the database.
Synchronous Application Integration 5-5

Facilities Provided by the Oracle8i Java VM
SQL in Java translator is transparently invoked by the Java VM in the server,

which converts application code with embedded SQL statements into standard

Java code with embedded JDBC calls. The resulting code can then be compiled

by the embedded bytecode compiler of the Java VM and executed on its

runtime facilities. At runtime, calls to JDBC are routed to the SQLJ runtime

embedded within the database.

■ Inter-Language Method Services (ILMS): ILMS is a common component

within the database that manages all cross-language method dispatch between

SQL, PL/SQL, Java, and with external procedures in C. SQL and PL/SQL call

Java stored programs in the database through ILMS, the same mechanism that

SQL uses to call PL/SQL in the database.

■ CORBA Object Request Broker: The Oracle8i database integrates a Java-based

CORBA 2.0 compliant Object Request Broker (ORB), Visibroker (Visigenics Java

ORB), that enables you to call into and out of the database using the CORBA

IIOP protocol. Java stored programs and Enterprise JavaBeans in Oracle8i can

be invoked using IIOP. The database then behaves as a CORBA server.

Similarly, IIOP callouts from Oracle8i enable the database to serve as a standard

CORBA client. The ORB is used efficiently in Oracle8i; the Visigenics ORB

components are used purely for IIOP protocol interpretation and object

activation, and the Multithreaded Server kernel of the database is used for

scalability. The database supports a variety of CORBA clients, including direct

support for browsers such as Netscape 4.0 and middletier ORBs. Further, the

CORBA facilities in the database are Java-friendly with a number of automated

tools such as the automated Caffeine Java-to-IDL compiler.

■ Development Tool Support: The Oracle8i Java VM provides a number of

command line tools that simplify the use of the Java facilities in the database.

Some of the facilities include tools to:

■ Load Java into the database and drop Java stored programs into the

database

■ Automate the deployment and registration of CORBA servers in the

database

■ Automate the packaging and deployment of Enterprise JavaBeans on

Oracle8i

These tools have themselves been integrated within the Oracle JDeveloper 2.0

tool.
5-6 Oracle8i Integration Server Overview

Developing Java Applications with the Oracle Database
Figure 5–2 Oracle Java VM Runtime Components

The Oracle8i Java Virtual Machine can be programmed in three specific ways:

■ Java Stored Procedures

■ CORBA Services Defined in Java

■ Enterprise JavaBeans

Developing Java Applications with the Oracle Database
The Java VM in Oracle8i can be used to develop three types of Java applications:

■ Database Stored Procedures, Triggers, and Methods: These support traditional

database programmers and SQL-oriented clients of the database.

■ Enterprise JavaBeans: The Java VM provides a transaction server platform for

distributed Java components called Enterprise JavaBeans.

■ CORBA Servers in Java: Oracle8i also enables distributed systems developers

to implement CORBA servers in Java on the Java VM of the database.

The support for CORBA provided by the Oracle8i Java Virtual Machine creates an

ideal platform for applications to communicate with each other in a synchronous,

request-response manner. The Oracle8i JVM provides standard CORBA services

including:

SQL Calls and IIOP Calls

CREATE JAVA

Natively
Compiled Code

Class Loader

Byte Code Interpreter
and Run-time

RDBMS
Library Manager

RDBMS
Memory Manager

Object
Memory

and
Garbage Collector
Synchronous Application Integration 5-7

Developing Java Applications with the Oracle Database
■ A fully CORBA 2.0 compliant ORB

■ Standard CORBA tools to develop CORBA applications in Java including an

IDL compiler

This section contains:

■ CORBA Facilities in Oracle8i

■ Enterprise JavaBeans, an Overview

CORBA Facilities in Oracle8 i
In addition to the IIOP and ORB facilities described earlier in this document, several

additional CORBA facilities are integrated with the database:

■ Transactions: The Oracle8i Java VM provides a CORBA Object Transaction

Service (OTS) API through the embedded JDBC driver, which has been

extended to support OTS-visible transactions. The OTS provides transactional

properties to CORBA Servers implemented on the Java VM.

■ Directory/Naming: The Java VM offers a standard COSNaming interface to the

industry standard directory service: LDAP (the Lightweight Directory Access

Protocol). You can then access EJB components in the server registered with the

CORBA ORB of the database through this standards-based directory service. It

also integrates a CosNaming/LDAP compliant name service, which makes it

easy to register and locate distributed components.

■ Object Adapter: Oracle8i provides an Object Adapter for persistent CORBA

Objects. It provides two important functions: Firstly, it serves as a directory of

CORBA Objects published in the database; Secondly, it helps locate and load

CORBA Objects upon initial activation by CORBA clients. It is implemented as

a standard database table with three pieces of information: the name of the

published CORBA Object, the schema name of the publisher, and the name of

the Java class implementing the CORBA Object. Since it is a database table, it is

hash indexed for scalability and fast access. It can also be split across multiple

database partitions to support large numbers of CORBA Objects and Enterprise

JavaBeans.

■ Java CORBA Services: The Oracle8i database provides a number of features

that make it easy for Java programmers to develop CORBA services. Firstly, it

supports Caffeine, a direct Java to IIOP mapping that eliminates the need for

IDL. Secondly, it supports standard objects by value and extensible structs,

which is enormously useful for Java programmers. Finally, it provides a
5-8 Oracle8i Integration Server Overview

Developing Java Applications with the Oracle Database
number of other tools, including java2iiop , idl2java , and java2idl ,

which make application development simple.

■ Security: CORBA services in the database execute in the same highly secure

environment in which Enterprise JavaBeans execute, using the same three

overlying layers of security: encryption through SSL over IIOP, authentication

using traditional database username and password, and access control using

roles and privileges.

The Oracle8i Java Virtual Machine also supports the Enterprise JavaBeans

component model and a number of standard EJB servers.

Enterprise JavaBeans, an Overview
Enterprise JavaBeans (EJB) is a relatively coarse-grained set of Java application logic

defined as a component with clearly specified interfaces that can be efficiently

executed on a host system infrastructure provided by an EJB transaction server. EJB

are not arbitrary Java classes, but must obey a set of constraints imposed by the

hosting server. The EJB component model provides Java application programmers a

convenient and highly productive component model for server-side business logic,

facilitating application code reuse and multi-tier application development in the

following important ways:

No Foreign Interface Definition Language (IDL): EJB defines a high-level

infrastructure and programming interface, enabling application developers to

specify their component model entirely in Java, without forcing the developer to

learn a foreign IDL such as CORBA or D/COM.

No Systems-Level Programming: EJB is designed around the concept of a

transaction server that is responsible for providing the system-level infrastructure

and services such as scalability, load balancing, connection pooling, failover, and

transactions. This frees the application programmer from low-level systems

software concerns. The Transaction Server takes care of transaction and state

management; as a result, programmers can declaratively specify the transactional

behavior of EJB components.

Variety of Execution Environments: The EJB spec has been designed to allow EJB

components to be deployed and executed in many different host environments that

serve as EJB Transaction Servers, including TP Monitors, Application Servers, and

databases. Oracle provides a consistent model for EJB components on the Java VM

See Also: Oracle8i CORBA Developer’s Guide and Reference
Synchronous Application Integration 5-9

Developing Java Applications with the Oracle Database
integrated with Oracle8i and Oracle Application Server and sharing a common set

of services between the two environments.

Variety of Communication Infrastructures: EJBs were also designed to isolate Java

developers from the specific communications infrastructure that is used between

the client, middletier, and database. Specifically, it enables Java developers to design

and implement applications as EJB components, which are then portable to a

variety of communications infrastructures including CORBA/IIOP, DCOM, and

Java’s own Remote Method Invocation (RMI) protocol. EJB applications are

I-directionally compatible with any underlying infrastructure. Oracle has chosen to

support CORBA/IIOP as its communication infrastructure.

Productivity: EJBs provide a way to declaratively rather than programmatically

specify transactional and security properties on a server-side Java component. Java

tools, including JDeveloper, are designed to enable Java developers to directly

support EJB-specified interfaces, providing an extremely productive environment

for users to combine thin clients with server-side EJB components capturing their

business logic.

Open Systems Alternative: In contrast with Visual Basic components executed

within the Microsoft Transaction Server, the Enterprise JavaBean facilities of

Oracle8i provide two important benefits: an integrated server that provides both

unparalleled data management capabilities with support for Java-based business

object logic and an open, portable application solution that does not lock customers

into a proprietary, vendor-specific solution.
5-10 Oracle8i Integration Server Overview

Supporting JABs on the Oracle8i Java VM: an Architectural Overview
Supporting JABs on the Oracle8 i Java VM: an Architectural Overview
The Oracle8i database provides a number of facilities to make it a highly productive

and scalable EJB Transaction Server. Architecturally, it integrates several different

components that have been illustrated in the figure.

Figure 5–3 Oracle8i Distributed Object Architecture

This section contains:

■ Session Management Facilities

■ Enterprise JavaBeans Services

Session Management Facilities
The session management facilities in the server provide support for the low-level

registration of IIOP invocations, provide data-dependent routing of IIOP requests to

sessions, and free related resources. These facilities are provided by several different

components of the multithreaded server platform of the database including:

■ IIOP Listener: The listener is a component within the Oracle8i database that

accesses and translates the messages received by the database across the wire.

Based on the messages decoded, it invokes the dispatcher of the database as

IIOP

HTTP

IIOP

HTTP

Net8

User-defined
protocols

Java
Applet

Thin
JDBC

Application
Server

Netscape 4
Browser

Security

EJB TS

Java VM

JTS LDAP JIDL

ORB

Listener

RDBMS
Dispatcher

SQL
PL/SQL
Synchronous Application Integration 5-11

Supporting JABs on the Oracle8i Java VM: an Architectural Overview
needed. The Oracle8i Listener has been extended to support the standard

CORBA/IIOP binding protocol, enabling you to call into and out of the

database using IIOP.

■ IIOP Dispatcher: The dispatcher is a database component that schedules tasks

and sessions within the database. With Oracle8i, the dispatcher has been

extended to support IIOP-based method invocations. The Dispatcher in turn

sends these messages to the CORBA 2.0 ORB for processing and dispatch.

■ CORBA 2.0 ORB Integration: After the dispatcher invokes the ORB, the ORB

marshals the IIOP method invoked, identifies the appropriate EJB component

(which had been registered with the ORB) on which the invocation is to be

executed, and then dispatches the message to the Java VM. The infrastructure of

the ORB can also be used by EJB components in the database to call out to other

distributed components, either CORBA components or EJBs on other EJB

servers.

■ Multithreaded Server Platform: The Oracle8i Java VM leverages the

unmatched set of facilities that the Multithreaded Server provides, including

load balancing, failover, data dependent routing, connection pooling, and

shared memory management to make it a scalable EJB Server.

■ Java VM Execution Platform: The Oracle8i Java VM provides the necessary

execution environment for EJB components. Because they are standard Java

application programs, they can leverage all the performance and scalability

optimizations of the VM that were described earlier in this chapter.

■ Persistent State Access: An EJB component in the data server accesses its

persistent state: the state that persists across transaction boundaries through the

JDBC driver or SQLJ translator integrated in the server. Its persistent state can

be stored either as relational tables or as object relational tables.

Enterprise JavaBeans Services
In order to allow seamless interoperability across a multi-tier environment,

Enterprise JavaBeans leverages a common set of Network Computing Services. The

most important services include:

■ Transactions: The Oracle8i Java VM provides a Java Transaction Service (JTS)

API via the embedded JDBC driver that has been extended to support

JTS-visible transactions. The JTS provides transactional properties to EJB

components on the Java VM.

■ Directory Naming: The Oracle8i Java VM offers a JNDI (Java Naming and

Directory Interface) interface to any industry standard LDAP-enabled directory
5-12 Oracle8i Integration Server Overview

Supporting JABs on the Oracle8i Java VM: an Architectural Overview
service. EJB components in the server can be placed in the directory service,

from which they can be accessed through JNDI.

■ Security: The Oracle8i database accepts a variety of security mechanisms

including Secure IIOP and Secure Sockets Layer (SSL) credentials which is used

today by the Netscape 4.0 Browser and is the default standard in the Intranet

and Internet environments.

■ Net8 Connection Manager: The connection manager has been extended to

multiplex IIOP connections in addition to Net8 connections.

See Also: Oracle8i CORBA Developer’s Guide and Reference
Synchronous Application Integration 5-13

Supporting JABs on the Oracle8i Java VM: an Architectural Overview
5-14 Oracle8i Integration Server Overview

Data Replication and Gate
6

Data Replication and Gateways

In a distributed database system, Oracle replication is a process that maintains

multiple copies of the same data in separate Oracle databases. Replication captures

and stores changes made to the data at one location before forwarding and applying

them at each remote location. Users at each location see the same consistent view of

the data. They need not access data remotely, as they would in a standard

distributed database system. This chapter contains:

■ Oracle Replication, an Overview

■ Data Access Gateways

■ Uses of Oracle Replication and Gateways
ways 6-1

Oracle Replication, an Overview
Oracle Replication, an Overview
Replication copies and maintains database objects, such as tables, in the multiple

databases that make up a distributed database system. Oracle replication is a fully

integrated feature of the Oracle database server; it is not a separate server.

Replication uses distributed database technology to share data between multiple

sites, but a replicated database and a distributed database are not the same. In a

distributed database, data is available at many locations, but a particular table

resides at only one location.

For example, the emp table resides only at the DB1 database in a distributed

database system that also includes the DB2 and DB3 databases. Replication means

that the same data is available at multiple locations. For example, the emp table is

available at DB1, DB2, and DB3.

This section contains:

■ Advantages of Replication

■ Uses of Replication

■ Types of Replication

Advantages of Replication
Some common reasons for using replication are:

■ Availability: Replication improves the availability of applications because it

provides them with alternative data access options. If one site becomes

unavailable, users can continue to query or even update the remaining

locations. In other words, replication provides excellent failover protection.

■ Performance: Replication provides fast, local access to shared data because it

balances activity over multiple sites. Some users can access one server while

other users access other servers, reducing the load at all servers. Also, users can

access data from the replication site that has the lowest access cost, which is

typically the site that is geographically closest to them.

■ Disconnected Computing: A snapshot is a complete or partial copy (replica) of

a target master table from a single point in time. Snapshots enable users to work

on a subset of a database while they are disconnected from the central database

server. Later, when a connection is established, users can synchronize (refresh)

snapshots on demand. When users refresh snapshots, they update the central

database with all of their changes, and they receive any changes that may have

happened while they were disconnected.
6-2 Oracle8i Integration Server Overview

Oracle Replication, an Overview
■ Network Load Reduction: Replication can be used to distribute data over

multiple regional locations. Applications access various regional servers instead

of accessing one central server. This configuration dramatically reduces

network load.

■ Mass Deployment: Increasingly, organizations must deploy many applications

that require the ability to use and manipulate data. With Oracle replication,

deployment templates enable you to create multiple snapshot environments

quickly. You can use variables to customize each snapshot environment for its

individual needs. For example, use deployment templates for sales force

automation; the template contains variables for various sales regions and

salespersons.

Replication is ideally suited to synchronize data between systems in different

locations so that each has a consistent view of the data without the necessity of

accessing the data remotely.

Uses of Replication
Replication enables you to replicate tables and other supporting objects such as

views, database triggers, packages, indexes, and synonyms by organizing logically

related objects into replication groups. A replication object is a database object

existing on multiple servers in a distributed database system. In a replication

environment, any updates made to a replication object at one site are applied to the

copies at all other sites. Use replication to:

■ Replicate changes to data and schema from one master group to a number of

snapshot groups

■ Replicate changes to data and schema between two or more master groups

■ Replicate changes to data from a snapshot group back to the master group

■ Create read-only materialized views of data on another database

■ Automatically resolve conflicting updates between master groups using

pre-built methods

■ Replicate and synchronize the running of replica procedures to update copies of

datasets

You can ensure transactional integrity by choosing particular replication features

and setting up the replication to occur synchronously. (Asynchronous replication is

the norm.) Replication has its own set of data dictionary tables and views called the

replication catalog. A replication management API consists of PL/SQL packages

that can be used to administer the replication objects.
Data Replication and Gateways 6-3

Oracle Replication, an Overview
Types of Replication
The Oracle database supports three types of replication:

■ Multimaster

■ Snapshot

■ Hybrid Configurations

Multimaster Replication
Multimaster replication (also called peer-to-peer or n-way replication) enables

multiple sites, acting as equal peers, to manage groups of replicated database

objects. Each site in a multimaster replication environment is a master site.

Applications can update any replicated table at any site in a multimaster

configuration. Oracle database servers operating as master sites in a multimaster

environment automatically converge the data of all table replicas and ensure global

transaction consistency and data integrity.

Snapshot Replication
A snapshot contains a complete or partial copy of a target master table from a single

point in time. A snapshot may be read-only or updatable. All snapshots:

■ Enable local access, which improves response times and availability

■ Offload queries from the master site, because you can query the local snapshot

instead

■ Increase data security by enabling you to replicate only a selected subset of the

data set of the target master table

Hybrid Configurations
Multimaster replication and snapshots can be combined in hybrid or mixed

configurations to meet different application requirements. Mixed configurations
can have any number of master sites and multiple snapshot sites for each master.

For example, multimaster (or n-way) replication between two masters can support

full-table replication between the databases that support two geographic regions.
6-4 Oracle8i Integration Server Overview

Data Access Gateways
Snapshots can be defined on the masters to replicate full tables or table subsets to

sites within each region.

Data Access Gateways
Oracle Corporation offers a number of products that you can use to facilitate

communication with non-Oracle products and technologies. These are grouped

under Data Access Gateways and fall into three broad categories: Oracle

Transparent Gateways, Oracle Procedural Gateways, and Oracle Access Managers.

Both the Transparent Gateways and the Procedural Gateways enable you to access

non-Oracle technology from an Oracle environment. The Oracle Access Managers

enable you to access Oracle technology from a non-Oracle environment.

This section contains:

■ Oracle Transparent Gateways

■ Oracle Procedural Gateways

■ Oracle Procedural Gateway for APPC

■ Oracle Access Managers

■ Interoperability

Oracle Transparent Gateways
Oracle Transparent Gateways gives applications access through transactional SQL

to non-Oracle data stores such as DB2, IMS, and DB2/400.

Oracle Transparent Gateways provides:

■ Access to data as if it resided in a single, local, relational database

■ Dynamic SQL access to the data

■ The ability to join tables from different sources with a single SQL statement

OTG provides two major IBM-oriented transparent gateways for DRDA and

EDA/SQL, a transparent gateway for ODBC, and transparent gateways for Sybase,

Infomix, Ingres, Microsoft SQL Server, HP IMAGESQL, Digital RMS, and Rdb.

The Oracle Transparent Gateway for IBM DRDA is the Oracle implementation of

the IBM DRDA architecture. It provides Oracle applications with read and write

See Also: Oracle8i Concepts
Data Replication and Gateways 6-5

Data Access Gateways
access to DRDA server databases, including DB2 OS/390, SQL/DS, DB2/400, and

DB2/UDB.

With the Transparent Gateway for EDA/SQL running on OS/390, you can access

the majority of non-Oracle databases and file systems, including VSAM, IMS,

ISAM, Teradata, ADABAS and DB2.

Oracle Procedural Gateways
The Procedural Gateways offer programmatic access to non-Oracle transactions

from within the context of an Oracle transaction. They are IBM-oriented and fall

into two types: Procedural Gateway for APPC and Procedural Gateway for

MQSeries.

Because the Procedural Gateway for MQSeries is message-oriented, we cover it in

Chapter #, "Advanced Queueing" (hotlink).

Oracle Procedural Gateway for APPC
The Oracle Procedural Gateway for APPC uses native IBM APPC / LU6.2

mechanisms to execute mainframe transactions through a transaction monitor such

as IBM CICS, IBM IMS/TM, or CA–IDMS/DC.

These transactions access a variety of databases and file systems, including:

■ IMS

■ DB2

■ VSAM

■ CA–IDMS/DB

■ ADABAS

■ Model 204

Procedural Gateway for APPC enables:

■ Sharing of transactions between Oracle and non–Oracle applications

■ Support for multiple transaction monitors and multiple operating systems from

a single UNIX–based technology:

■ MVS: CICS, IMS/TM, CA–IDMS/DC, and APPC/MVS

■ CICS/VM

■ DOS/VSE: CICS
6-6 Oracle8i Integration Server Overview

Uses of Oracle Replication and Gateways
■ AS/400: CICS/400

Oracle Access Managers
Used in combination with the Transparent Gateways, Access Managers enable

mainframe applications to access virtually any data store. The Access Managers let

you use existing OS/390 and AS/400 applications by providing them with access

through SQL to data in the Oracle Server. The Access Manager for AS/400 enables

AS/400 applications written in RPG, COBOL, and C to access data stored in Oracle.

The Oracle Access Managers for CICS and IMS/TM are part of the Oracle for MVS

Client Solution, which enables you to access data in Oracle from TSO, batch, CICS,

and IMS/TM programs:

■ You can start a TSO session and have direct interactive access to any Oracle

database server anywhere in the enterprise.

■ Batch processes update remote Oracle servers directly, eliminating the need to

set up complicated file-transfer mechanisms.

■ CICS and IMS/TM transactions update Oracle databases and other recoverable

resources. The transaction is protected by a two-phase commit using

SYNCPOINT processing.

Uses of Oracle Replication and Gateways
An original method of integrating applications was to use data level integration to
maintain multiple copies of the data in the different applications and to periodically

synchronize the copies. If the requirements for integration are relatively basic, then

data level integration provides a simple, cost-effective, and manageable solution.

Solutions that successfully employ data level integration have most or all of the

following characteristics:

■ All applications and data are owned and controlled by a single organization.

■ There are a relatively small number of application instances (less than 20).

■ Applications are mostly based on relational technology.

■ Applications are predominantly based on the Oracle database.

■ Data Structures (customer /account /transaction tables) are broadly

similar in all applications.

■ Each data item is created and changed by only one application.
Data Replication and Gateways 6-7

Uses of Oracle Replication and Gateways
■ Ratio of Read Access to Data Change Access is relatively high.

■ Extensive real-time or near-real-time synchronization of data is not required.

■ The architecture and applications to be integrated are not continually changing.

Classic solutions that use this style of integration include:

■ Mobile applications that can be synchronized infrequently with back-end

systems

■ Web-based applications requiring read-only data to be cached in the middle tier

■ Centrally-managed List-of-Values reference data that must be distributed to

OLTP applications

The Oracle products best suited to providing this level of integration are Oracle

Replication and Oracle Data Access Gateways.

Oracle Replication enables asynchronous synchronization of data across distributed

Oracle databases using journal logs to capture both changes made to the master

copy of table structures and row-level data changes. The logs then apply the

changes to the snapshot copies of the tables.

Oracle Replication is a mature product that contains numerous advanced features

that extend this basic functionality to:

■ Manage and synchronize multiple master copies

■ Resolve conflicting data changes

■ Provide real-time replication of data changes as part of the instigating

transaction

■ Synchronize the running of replicated stored procedures

In a data-level integration solution, Oracle Replication is the mainstay of integration

between applications based on the Oracle database.

 Interoperability
Oracle Corporation provides a number of transparent gateways that enable

seamless integration to other databases in Oracle-controlled transactions. For

transactions that are not controlled by the Oracle transaction manager, use the

Access Managers to enable data in Oracle databases to be accessed by

non-Oracle-controlled transactions.
6-8 Oracle8i Integration Server Overview

Oracle Advanced Queuing and
7

Oracle Advanced Queuing and JMS

This chapter contains:

■ A Brief Review of the Products

■ Applying the Products in an Integration Solution

■ Business Intelligence and Message Warehousing

■ Business Intelligence Tools
 JMS 7-1

A Brief Review of the Products
 A Brief Review of the Products
This section examines several Oracle products that are involved in Oracle

Integration Server. It contains:

■ Advanced Queuing

■ Components of Advanced Queueing

■ General Features of Advanced Queueing

■ Two Contexts for Developing Queueing Operations

■ Oracle Java Messaging Service (OJMS)

■ Oracle Procedural Gateway for IBM MQSeries

■ TIB Adapter for Oracle

Advanced Queuing
Advanced Queuing (AQ) is a database-integrated message queuing component of

the Oracle8i Enterprise Edition database management system. It provides an

infrastructure that simplifies the task of passing messages within an application or

between applications.

Its functional strong points include:

■ Store and forward capability

■ Simple message management

■ Recovery to point-of-failure

■ Transactional integrity

■ Guaranteed message delivery between databases

■ Message mining

■ Message tracking

■ A choice of programming interfaces (APIs) to place messages in and remove

them from queues

Components of Advanced Queueing
Advanced Queuing has several key components:
7-2 Oracle8i Integration Server Overview

A Brief Review of the Products
Message
A message is the smallest unit of information inserted into and retrieved from a

queue. A message consists of:

■ Control information (metadata)

■ Payload (data)

The control information represents message properties used by AQ to manage

messages. The payload data is the information stored in the queue and is

transparent to Oracle AQ. A message can reside in only one queue. A message is

created by the enqueue call and consumed by the dequeue call.

Queue
A queue is a repository for messages. There are two types of queues: user queues,

also known as normal queues, and exception queues. The user queue is for normal

message processing. Messages are transferred to an exception queue if they cannot

be retrieved and processed. Queues can be created, altered, started, stopped, and

dropped by using the Oracle AQ administrative interfaces.

Queue Table
Queues are stored in queue tables. Each queue table is a database table and

contains one or more queues. Each queuetable contains a default exception

queue.

Agent
An agent is a queue user. This could be an end user or an application.There are two

types of agents:

■ Producers who place messages in a queue (enqueuing)

■ Consumers who retrieve messages (dequeuing)

Any number of producers and consumers may be accessing the queue at a given

time. Agents insert messages into a queue and retrieve messages from the queue by

using the Oracle AQ operational interfaces.

An agent is identified by its name, address and protocol .

■ The name of the agent may be the name of the application or a name assigned

by the application. A queue can itself be an agent, enqueuing or dequeuing

from another queue.
Oracle Advanced Queuing and JMS 7-3

A Brief Review of the Products
■ The address field is a character field of up to 1024 bytes that is interpreted in

the context of the protocol. For instance, the default value for the protocol is 0,

signifying a database link address. In this case, the address for this protocol is of

the form

 queue_name@dblink

where queue_name is of the form [schema.]queue and dblink can be either a

fully qualified database link name or the database link name without the domain

name.

Recipient
The recipient of a message may be specified by its name only, in which case the

recipient must dequeue the message from the queue in which the message was

enqueued. The recipient may be specified by name and an address with a protocol

value of 0. The address should be the name of another queue in the same database

or another Oracle8i database (identified by the database link) in which case the

message is propagated to the specified queue and can be dequeued by a consumer

with the specified name. If the recipient's name is NULL, the message is propagated

to the specified queue in the address and can be dequeued by the subscribers of

the queue specified in the address . If the protocol field is nonzero , the name and

address field are not interpreted by the system and the message can be dequeued

by a special consumer.

Recipient and Subscription Lists
A single message can be designed for consumption by multiple consumers. There

are two ways to do this:

■ The enqueuer can explicitly specify the consumers who may retrieve the

message as recipients of the message. A recipient is an agent identified by a

name, address and protocol .

■ A queue administrator can specify a default list of recipients who can retrieve

messages from a queue. The recipients specified in the default list are known as

subscribers. If a message is enqueued without specifying the recipients, the

message is implicitly sent to all the subscribers.

Different queues can have different subscribers, and the same recipient can be a

subscriber to more than one queue. Further, specific messages in a queue can be

directed toward specific recipients who may or may not be subscribers to the

queue, thereby overriding the subscriber list.
7-4 Oracle8i Integration Server Overview

A Brief Review of the Products
Rule
A rule is used to define the interest of one or more subscribers in subscribing to

messages that conform to that rule. The messages that meet this criterion are then

delivered to the interested subscribers. Put another way: a rule filters for messages

in a queue on a topic in which a subscriber is interested.

A rule is specified as a Boolean expression (one that evaluates to true or false) using

syntax similar to the WHERE clause of a SQL query. This Boolean expression can

include conditions on the following:

■ Message properties (currently priority and correlation identifier)

■ User data properties (object payloads only)

■ Functions (as specified in the where clause of a SQL query)

Rule-Based Subscriber
A rule-based subscriber has rule associated with it in the default recipient list. A

rule-based subscriber is sent a message that has no explicit recipients specified if the

associated rule evaluates to TRUE for the message.

Queue Monitor
The queue monitor (QMNn) is a background process that monitors the messages in

the queues. It provides the mechanism for message delay, expiration, and retry

delay. The QMNnalso performs garbage collection for the queue table and its indexes

and index-organized tables.

It is possible to start a maximum of 10 multiple queue monitors at the same time.

You start the desired number of queue monitors by setting the dynamic init.ora
parameter to aq_tm_processes . The queue monitor wakes up every minute, or

whenever there is work to be done, for instance, if a message is to be marked as

expired or as ready to be processed.

General Features of Advanced Queueing
AQ uses the strength of the Oracle8i database management system (DBMS) to

provide these general features:

SQL Access
Messages are placed in normal rows in a database table, and so can be queried

using standard SQL. This means that you can use SQL to access the message
Oracle Advanced Queuing and JMS 7-5

A Brief Review of the Products
properties, the message history, and the payload. All available SQL technology, such

as indexes, can be used to optimize the access to messages.

Integrated Database Level Operational Support
Standard database features such as recovery, restart, and enterprise manager are

supported. Oracle AQ queues are implemented in database tables, hence all the

operational benefits of high availability, scalability, and reliability are applicable to

queue data. In addition, database development and management tools can be used

with queues. For instance, queue tables can be imported and exported.

Structured Payload
Users can use object types to structure and manage message payloads. RDBMSs in

general have had a far richer typing system than messaging systems. Since Oracle8i
is an object-relational DBMS, it supports both traditional relational types as well as

user-defined types. Many powerful features are enabled as a result of having

strongly typed content, such as content whose format is defined by an external type

system. These include:

■ Content-based routing: An external agent can examine the content and route

the message to another queue based on the content.

■ Content-based subscription: A publish and subscribe system built on top of a

messaging system which can offer content based on subscription.

■ Querying: The ability to execute queries on the content of the message enables

message warehousing.

Retention and Message History
Users of AQ can specify that messages be retained after consumption. The systems

administrator can specify the duration for which messages will be retained. Oracle

AQ stores information about the history of each message, preserving the queue and

message properties of delay, expiration, and retention for messages destined for

local or remote recipients. The information contains the ENQUEUE/DEQUEUE time

and the identification of the transaction that executed each request. This enables

users to keep a history of relevant messages. The history can be used for tracking,

data warehouse and data mining operations.

Tracking and Event Journals
If messages are retained, they can be related to each other. For example, if a message

m2 is produced as a result of the consumption of message m1, m1 is related to m2.
This allows users to track sequences of related messages. These sequences represent
7-6 Oracle8i Integration Server Overview

A Brief Review of the Products
event journals, which are often constructed by applications. Oracle AQ is designed

to let applications create event journals automatically.

Integrated Transactions
The integration of control information with content (data payload) simplifies

application development and management.

Queue- Level Access Control
With Oracle8i, an owner of an 8.1 style queue can grant or revoke queue- level

privileges on the queue. DBAs can grant or revoke new AQ system level privileges

to any database user. DBAs can also make any database user an AQ administrator.

Non-Persistent Queues
AQ can deliver non-persistent messages asynchronously to subscribers. These

messages can be event-driven and do not persist beyond the failure of the system

(or instance). AQ supports persistent and non-persistent messages with a common

API.

Publish-Subscribe Support
A combination of features enable a publish-subscribe style of messaging between

applications. These features include rule-based subscribers, message propagation,

the listen feature, and notification capabilities.

Two Contexts for Developing Queueing Operations
Oracle AQ offers two development contexts:

■ Native AQ, which you can access by means of three different programmatic

environments:

■ From PL/SQL using the DBMS_AQ/AQADMPL/SQL Packages

■ Visual Basic using Oracle Objects for OLE (OO4O)

■ Java using the oracle.AQ Java Package

■ Java Messenging Service (JMS)

Java using the oracle.jms Java Package. This implementation of a public

standard extends the defined W3C interfaces so that developers operating in

the JMS context have the same means as those working within native AQ.
Oracle Advanced Queuing and JMS 7-7

A Brief Review of the Products
A comprehensive graphical interface supports the administration of Advanced

Queuing objects through the Enterprise Manager DBA Studio (Schema

Management), part of the DBA Management pack, which is in the 8.1.7. database

release.

Oracle Java Messaging Service (OJMS)

Oracle Corporation has extended the JMS API to leverage those Oracle Advanced

Queuing features that cannot be accessed through a standard JMS API. We are

working with the standards body to include these extensions in the JMS standard.

We have extended the standard JMS API in the following areas:

Agents
The standard JMS definition expects each message to be delivered to a single

recipient. Because AQ can record, manage, and track the delivery of a message to

more than one recipient without having to copy the message, the OJMS API

supports the use of agents.

An agent is associated with the message for each recipient of the message. The

agent is an object that has a name, a transport protocol, and an address that is

specific to the transport protocol.

The agent model is particularly important for the publish-subscribe capability of

AQ and for the interoperability of AQ with other messaging technologies.

Additional Message Control Properties
To use standard AQ features that are not supported by the standard JMS message

properties definition, OJMS has extended the message control property set to

include:

See Also:

■ Oracle8i Application Developer’s Guide - Advanced Queuing for a

full definition of the features of Advanced Queueing and

examples of how to use many of them

■ Oracle8i Supplied PL/SQL Packages Reference

■ Oracle8i Supplied Java Packages Reference

■ Online Help for Oracle Objects for OLE
7-8 Oracle8i Integration Server Overview

A Brief Review of the Products
■ Delay interval: The creator of the message can specify that the message is not to

be made available until a specified period of time (the delay) has elapsed. When

you use this with the standard JMS expiration feature, you can define a window

during which the message must be consumed (successfully collected by all the

recipients). This is particularly useful for events that must be recorded.

■ Exception handling: AQ automatically moves messages that expire or that

cannot be consumed within a specified number of attempts into an exception

queue. The exception handling property enables you to specify the exception

queue, which extends the standard JMS expiration feature.

Additional Message Type
AQ is unique among messaging technologies in supporting strongly typed message

payloads that you can access using standard SQL while they are in the queues and

that support content-based routing. AQ uses Oracle Object Types (also known as

ADTs) to do this. To support this feature, OJMS has an additional message type

called an ADTMessage.

Transactional Session
AQ messages can be created within the context of an Oracle database COMMIT
transaction. The same transaction can include SQL operations such as table inserts

and SAVEPOINTs without requiring a two-phase or XA-compliant commit.

We extended the JMS Transacted Session feature to support this unique Oracle

feature, which is useful in developing adapters to interface to Oracle-based

applications.

Administration
The JMS standard includes a concept of administered objects. Chapter 4, "Key

Integration Concepts", describes Oracle JMS implementation in depth. The Oracle

JMS implementation has an API for creating and managing these objects.

The Session interface now supports administrative functions such as the creation of

Queue Tables and Queues and Topics and the modification of their properties.

The Destination interface now supports administration of Queues and Topics and

AQ propagation of messages between destinations. This has significance to a hub

and spoke architecture that is used for the hardware configuration, security model,

or persistence schema.
Oracle Advanced Queuing and JMS 7-9

A Brief Review of the Products
Restrictions
The first release of the OJMS interface (with release 8.1.6 of the database) has a small

number of standard JMS features that are not supported or are supported in a

non-standard manner:

■ Temporary queues

■ Non-durable subscribers

■ Message filtering on JMS Queues (AQ single-consumer queues). However,

OJMS support for filtering with durable subscribers is actually richer than the

standard JMS definition.

■ Access to administered objects through JNDI. The OJMS extensions to the

administration interface provides this functionality.

Oracle Procedural Gateway for IBM MQSeries
Oracle Procedural Gateway for IBM MQSeries enables Oracle applications to create

MQSeries messages directly or to convert AQ messages into MQSeries messages

and vice-versa. It has a graphical interface called Visual Workbench that you can

use to define the mapping of Oracle object types to MQSeries structures and to

import Oracle Object Types and COBOL Copybook definitions.

You then complete the configuration by generating PL/SQL packages that provide

a seamless transactional API to the MQSeries queue that you can access from

SQL*Plus, PL/SQL packages, Pro*Series languages, and so on.

TIB Adapter for Oracle
TIBCo sells an adapter that you can use to transform AQ messages into TIB

Rendezvous messages and vice-versa. The product was developed in collaboration

with Oracle and provides a code-free transformation solution between Oracle

Advanced Queuing and TIB Rendezvous (TIBrv).

The software is designed to convert messages from AQ to TIBrv, to transport them

across the TIB bus, and to convert them back into AQ without losing any of the AQ

message properties. Messages are converted transactionally using a version of the

TIB Rendezvous Certified Messaging and the Oracle commit model.
7-10 Oracle8i Integration Server Overview

Applying the Products in an Integration Solution
Applying the Products in an Integration Solution
This section examines the ways in which these products interface in an integration

solution. It contains:

■ Advanced Queuing

■ OJMS

■ Procedural Gateway for MQSeries

■ Interoperability

Advanced Queuing

Business Event Integration
Within an integration solution based on business events, the AQ message queuing

functionality provides the backbone for the solution and supports business event

requirements not previously expected of messaging technologies such as:

■ Tracking the recipients’ consumption of messages by keeping a history

■ Recording messages and their history persistently so that they can be recovered

in the event of a system failure

■ Retaining messages and history after consumption to form a provable audit

trail

■ Providing simple query access to messages for message mining

■ Delivering an architecture that performs consistently even when messages are

retained

■ Enabling you to define and apply sophisticated routing rules

Advanced Queuing supports business events by using the Oracle8i database to

provide a repository for messages, transactional support, and recovery. Most of the

other products in the Oracle Integration Server can be accessed directly through a

delivered AQ interface. This reinforces the position of AQ as the backbone of the

solution.

AQ keeps a history by determining and recording the recipients of the message

when the message is created. Each time a recipient attempts to collect the message,

the attempt is recorded automatically. This guarantees that a message is collected

only once by each recipient and that you always know when a message has been

collected.
Oracle Advanced Queuing and JMS 7-11

Applying the Products in an Integration Solution
AQ messages have three main components: a header, a payload, and a history. All

three are stored in queue tables that consist of a set of regular database objects in the

database. Provided that the database is protected by a suitable backup and recovery

routine, messages can be recovered to a consistent state in the event of a system

failure.

AQ messages are accessed through an API that prevents the message header,

payload, or history from being changed directly by the user accessing the message.

This design feature, when combined with the retention of messages after they have

been consumed, enables you to construct an audit trail.

Although AQ uses a sophisticated set of database objects to implement this rich

functionality, it also includes a set of views for each queue table so that you can

easily interrogate the header, payload, and history of the messages using SQL.

If the payload structure is defined as a simple object type, SQL can access the

attributes directly. However, if a generic object type containing a CLOB is used to

store the payload in, for example, XML format, then the character string must be

translated into a more strongly typed structure before it can be interrogated easily.

As already mentioned, AQ uses a set of regular database objects to implement the

logical construct of a queue table. We have engineered this set of objects to ensure

that retaining consumed messages does not adversely affect the creation or

collection of other messages.

The ability to determine the recipients of messages according to predefined rules is

comprehensively supported by Advanced Queuing.

Multiconsumer queues provide publish-subscribe routing for durable subscribers:

■ Subject-based routing (Chapter 4, "Key Integration Concepts") is provided by

defining a queue for each subject and a subscription list of recipients for the

queue.

■ Content-based routing (Chapter 4, "Key Integration Concepts") is provided for

queues with object type payloads through the use of subscription rules in the

subscription lists. The subscription rule can include references to the payload

by prefixing attribute names with the constant value tab.user_data.

■ Rule-based routing (Chapter 4, "Key Integration Concepts") can be achieved by

specifying a subquery in the rule.

You can also use propagation to route messages to groups of recipients within a

publish-subscribe context as shown in the following scenario:

See Also: Chapter 4, "Key Integration Concepts"
7-12 Oracle8i Integration Server Overview

Applying the Products in an Integration Solution
1. Recipients receive messages about red cars by subscribing to Queue Red Cars .

2. Queue Red Cars subscribes to Queue Sports Cars with a rule of

tab.user_data.color = RED .

3. Publisher creates a message in Queue Sports Cars .

4. If a car has the attribute color set to RED, Queue Red Cars is recorded as a

recipient of the message.

5. AQ propagates the message to the Queue Red Cars and records all the

recipients on the subscription list as recipients of the propagated message.

Advanced Queuing is the most appropriate mechanism for routing if the

subscribers are durable but change frequently (daily or more often).

If the subscription is static and the rules for routing are complex, Workflow

(Chapter 10, "Workflow") provides a better alternative to develop your solution.

Data integration
If Oracle Replication does not provide the required functionality, use Advanced

Queuing technology to develop a predefined replication environment.

You can do this in two ways:

■ Define database triggers to create AQ messages when changes are made to rows

in database tables or to the propagation used to transfer the messages to the

destination databases. When they are located in queues in the destination

databases, you can remove the messages and apply them to copies of the table.

■ Use non-persistent queues to capture the DML and DDL changes as database

events. The messages must then be processed using OCI.

Developing your own replication software using AQ requires a special

understanding of replication issues and a commitment to maintain and upgrade

predefined software.

OJMS
If you use Java as the development language for the programmable aspects of the

solution and if you employ JMS as a standard for communicating with messaging

technologies, then OJMS offers an effective API to Advanced Queuing.

In a B2B-oriented solution, you can use AQ features additional to those included in

the JMS standard, such as object type payloads, transacted sessions, and the agent

model. The OJMS extensions to the JMS standard make it possible to use these extra
Oracle Advanced Queuing and JMS 7-13

Applying the Products in an Integration Solution
AQ features. If you use these features, OJMS offers an excellent alternative to the

JMS implementation of Oracle Message Broker.

Procedural Gateway for MQSeries
The Procedural Gateway for MQSeries is the only gateway to another messaging

technology offered by Oracle.

Use it to transform messages between MQSeries and Advanced Queuing. In its

current form, this requires you to develop a simple PL/SQL bridging procedure to

call the MQSeries dequeue package or the AQ enqueue API. It supports only the

conversion of simple payloads and does not support collections or LOBs.

The message throughput across a single queue bridge varies depending on system

specification and message size. Do not choose Procedural Gateway for MQSeries if

you anticipate hundreds of messages per second.

Interoperability
The products that make up the Oracle Integration Server interface smoothly with

Advanced Queuing to provide asynchronous services comparable to those

provided by many third-party application integration tools.

However, some applications require interaction with other messaging technologies,

such as MQSeries and Rendezvous from TIBCo, because of a decoupling

requirement, an application platform, an existing interface, or a previous choice of

strategic technology.

If the application has an interface that extracts messages to a messaging technology

other than AQ, you must decide whether to integrate the messaging technology to

AQ, OMB, or Workflow directly by using a programming language or through

specialized software.

Alternative methods for integrating to Advanced Queuing are:

Programmatic 1: If both message queuing products have an API for a particular

language, write a program that collects the message from one product, transforms

the message properties, and creates the message in another product.

Programmatic 2: Choose two languages that can communicate with each other and

that have APIs to message queuing products.

Software: Choose a specialized product that enables conversion between the two

messaging products.
7-14 Oracle8i Integration Server Overview

Business Intelligence and Message Warehousing
MQSeries Example
The example given here is used solely to illustrate the process and should not be

taken as a recommendation of any one solution over any other.

Scenario

One of the applications included in a hub-and-spoke integration solution has a

ready-made message-based interface that places messages in a set of MQSeries

queues and that expects business events in the form of MQSeries messages. The

application interface is written in C and creates and consumes messages using the

native MQSeries API.

The objective is to transport messages from MQSeries to AQ and from AQ to

MQSeries.

The solution depends upon the architectural principles, the language or languages

used in the integration solution, the approach to modularization, the standards

used, and so on.

If the second message queuing product is TIB Rendezvous from TIBCo rather than

MQSeries, then the scenarios are similar except that TIBCo and not Oracle is the

software provider and the software is called The TIB Adapter for Oracle.

Business Intelligence and Message Warehousing
As discussed earlier in this chapter, Advanced Queuing can manage two types of

queues: persistent queues and nonpersistent or volatile queues.

This section contains:

■ Persistent Queues

■ Volatile Queues

■ Basic Principles of Message Storage

■ Reports

■ Discoverer

■ Express

Persistent Queues
Persistent queues are ideally suited to manage messages that flow between

applications (when integrating applications with an enterprise) or between two
Oracle Advanced Queuing and JMS 7-15

Business Intelligence and Message Warehousing
business processes (when integrating businesses for B2B commerce). There are two

reasons why such messages must be stored persistently:

■ Auditing and tracking: Messages that are sent from one application or business

to another must be stored so that they can be audited and tracked for dispute

resolution. Typically, three kinds of queues are run for message auditing:

■ Queues against the message destinations to determine what information

flows where

■ Queues against the message headers (also called subjects or topics) to

determine the type of information sent

■ Queues against the message payloads or contents to determine the actual

information sent

Particularly for B2B commerce, auditing and tracking of messages is a critical

requirement.

■ Guaranteed once-only, in-order delivery of messages: A critical requirement

for B2B and EAI messaging is that the message infrastructure guarantee

delivery of messages in order and only once.

The message payload of AQ can also be an unstructured data type such as RAW or

BLOB for flat-file-oriented data such as SAP TDOCs and XML-based business object

documents. Consider three issues when warehousing message payloads:

■ Storing message headers: You can store message headers from AQ payloads in

relational or object relational tables. If a message is received in XML format, you

can selectively parse it and convert its header information to SQL format and

store it in a table. In determining whether to parse and store and how to do so,

keep two trade-offs in mind:

■ Converting message headers to SQL format expedites frequent querying of

messages for analysis.

■ Storing untransformed headers and payloads expedites frequent auditing.

■ Storing message payloads: You can store structured message payloads either as

relational tables or as object relational tables and query them using standard

SQL. You can store unstructured payloads in either RAW or BLOB format. If you

receive B2B messages as XML payloads, you must decide how completely to

parse the payload. If you must perform analytical operations frequently, you

must parse the payload. If the payload is large, construct a DOM parse tree; if

the payload is small, use a SAX API. (Typically a payload that is greater than

100 MB is considered large.) If only a small set of fields within the XML

document require analysis, then you extract only those fields from the parse
7-16 Oracle8i Integration Server Overview

Business Intelligence and Message Warehousing
tree and store them in tables in SQL format. Retain the rest of the payload in

RAW or BLOB format.

For more information on the Oracle XML facility, read the Oracle8i XML

Reference Guide Release 3 (8.1.7)

■ Use of partitioning and rolling windows: Because a message warehouse looks

similar to a data warehouse, features applicable to data warehousing are also

applicable to message warehousing. Most importantly, in a B2B commerce

environment, you can store and manage messages received each day in a

separate database partition. Two benefits of such partitioning include:

■ You can create and execute analytical calculations such as aggregates and

moving averages, as well as indexes, at the partition level. For instance to

analyze total volume of B2B messages on a daily basis, simply run SORT
and SUM operations on the data in the partition for that day.

■ Partitioning messages on a daily basis enables you to move individual

messages online and offline. You maintain a rolling window in which you

add new partitions and take existing partitions offline.

The messaging infrastructure must maintain a persistent message store to guarantee

message delivery even when message propagation or transport fails.

 Volatile Queues
In contrast to a persistent messaging environment, volatile queues are ideal for

best-effort delivery of messages. For instance, a message sent to confirm that a B2B

message has been received does not need to be stored persistently.

Basic Principles of Message Storage
As previously described, each message passed through AQ is stored in a queue. You

can store the contents of single or multiple queues in a queue table. Four basic

principles govern the storage of messages for business analysis and intelligence:

■ Message payload structure

■ Message logging facility

■ Message warehousing architecture

■ Query, analysis, and reporting facilities
Oracle Advanced Queuing and JMS 7-17

Business Intelligence Tools
Business Intelligence Tools
The Oracle Business Intelligence Tools are a set of three Oracle products that

provide simple, intuitive access to business information in Oracle databases. Use

them to analyze business intelligence stored in message warehouses.

Oracle Reports, Oracle Discoverer, and Oracle Express have graphical interfaces

that can be accessed from anywhere through a standard Internet browser. They

deliver decision support information to business users (usually from a data

warehouse or data mart). Recently, we’ve enhanced them to enable operational

monitoring for throughput analysis and service level monitoring in an

asynchronous messaging integration solution.

The tools can be used to generate and view dynamically created reports, to perform

dynamic queries against virtual and materialized data structures, and to analyze

and forecast trends.

Reports
Oracle Reports is a graphical tool for developers of sophisticated, high-quality

reports. Its rich functionality enables reports with complex hierarchic structures and

matrices to be defined quickly and easily, using the full power of SQL.

Users can then view these dynamically generated reports through a standard web

browser.

Discoverer
Oracle Discoverer is an easy-to-use browser-based tool, primarily aimed at business

users, that can be used to perform dynamic queries, to provide reports and charts,

and to enable Web publishing.

It employs the End User Layer, an abstraction layer over database objects, to

simplify queries and enable predefinition of queries. It provides drag-and-drop

functionality that removes the need for the user to be versed in the grammatical

constructs of SQL.

Powerful, integrated charting illustrates trends and exceptions and enables users to

drill down through charts to view specific data more closely.

Some of its more sophisticated features include:

■ Advanced Query Prediction: Users are informed of the likely execution time of

submitted queries.
7-18 Oracle8i Integration Server Overview

Business Intelligence Tools
■ Intelligent Summary Redirection: The tool automatically optimizes queries to

make use of any pre-built summary tables that can be used to reduce the

execution time.

■ Designer Generation: The End User Layer can be maintained and

version-controlled using the Oracle Designer.

Express
Oracle Express is a decision-support tool with an online analytical processing

(OLAP) engine. It employs a multidimensional data model that expands rows and

columns into multiple categories of data called dimensions.

This type of data model is optimized for decision support, uses array arithmetic to

provide quick access to the data for “slice and dice” type queries, and offers built-in

functions for analysis, forecasting, modeling, and what-if scenario playing.

The data model can be interrogated using intuitive tools that are accessible through

a standard Web browser. The OLAP engine can use a data cache to store

dimensional data as an aid to query performance.
Oracle Advanced Queuing and JMS 7-19

Business Intelligence Tools
7-20 Oracle8i Integration Server Overview

Oracle Message Broker and
8

Oracle Message Broker and JMS

This chapter introduces the Oracle Message Broker and contains these sections:

■ Overview

■ Uses of OJMS and OMB

■ Enabling Tools
 JMS 8-1

Overview
Overview
Oracle Message Broker is a Java-based message management subsystem that

provides a message brokering facility to major message queuing systems including

AQ, the IBM MQSeries, and the TIBCo Rendezvous. Its drivers provide a consistent,

open, JMS-compliant API for these message queuing systems.

OMB provides its own proprietary volatile queuing and propagation. You can store

its administrative metadata in a local or a remote LDAP server so that it operates

independently of an Oracle database instance. OMB supports the JMS standard

publish-subscribe, topic-based routing and supports both durable and non-durable

subscribers. You can apply filters to the message control properties. OMB supports

JMS transacted sessions.

The Oracle Message Broker consists of these components:

■ Oracle Message Broker Core

■ Drivers

■ Administrative Components and the LDAP Directory

■ Client Programming Interface

■ Adapter Developers Toolkit

Oracle Message Broker Core
The Oracle Message Broker Core acts as a JMS provider. See Chapter 4, "Key
Integration Concepts" as defined in the JMS standard.

Oracle Message Brokers in different locations communicate with one another and

coordinate message transmission between brokers.

The Oracle Message Broker Core provides:

■ Support for pushing messages to JMS Clients. See Chapter 4, "Key Integration
Concepts".

■ Polling of message queuing systems that do not support message notification

■ Core-based administrative tasks

■ Multiplexing of JMS Client connections onto the underlying message queuing

systems

■ Standard drivers that provide a JMS-based abstraction layer over the message

queuing systems APIs
8-2 Oracle8i Integration Server Overview

Overview
Drivers
Oracle Message Broker provides five drivers that provide a JMS API to underlying

message queuing systems. It uses the message queuing systems to provide

persistence and message management.

The drivers also coordinate the translation of the messages into the native storage

formats required for the message queuing systems to store the messages.

The drivers are:

■ Oracle Advanced Queuing Driver, an alternative to the OJMS API into

Oracle8i Advanced Queuing

■ Oracle Volatile Driver, fast delivery of JMS messages using lightweight,

in-memory, communication facilities. The Volatile Driver is useful for high

throughput of messages if the messaging system does not require persistent

message storage.

■ MQSeries Driver, support for most of the features of this widely used

commercial messaging system

■ Oracle Multicast Driver, fast delivery of JMS messages using lightweight,

multicast communication facilities. The Multicast Driver uses the Oracle

Application Server Multicast Communication libraries.

■ TIBCO Driver, fast delivery of transient messages based on lightweight

multicast communication facilities. The TIB Rendezvous (TIBCO) Driver is

written to work with TIB Rendezvous release 5.x, or TIB/Rendezvous Pro

release 5.x.

Administrative Components and the LDAP Directory
The Oracle Message Broker uses an LDAP directory for storing and accessing

administrative information. It includes a command line tool and a graphic tool for

the administration and monitoring utilities. It also has a performance monitoring

tool based on the ORB Dynamic Monitoring Service (DMS) of the Oracle Object

Request Broker.

Client Programming Interface
The client programming interface is the set of services offered by the Oracle

Message Broker to Java client programs and is often referred to as the JMS API. A

set of C++ class libraries offers a similar programmatic interface for C++

programmers.
Oracle Message Broker and JMS 8-3

Uses of OJMS and OMB
Adapter Developers Toolkit
Oracle Corporation provides a Java-based developers toolkit as part of Oracle

Message Broker version 2 that you can use to develop adapters. The kit provides a

framework that lets you develop programs of a standard construction and that

supports three types of access to applications:

■ Through the application API

■ Through SQL

■ By collection from interface files

The toolkit enables you to link the application and queuing technology through JMS

Queues/Topics , providing transaction management and basic exception

management. The developer extends the framework by adding application API-

specific calls, file-based access, or a JDBC connection, depending on the type of

access to the application that is required.

The framework for SQL access converts XML-formatted messages dequeued from a

JMS Queue/Topic to Business Components for Java (BC4J). SQL that is defined

within the BC4J object applies changes to the application over a JDBC connection.

Uses of OJMS and OMB
Oracle Corporation offers Java Messaging Services (JMS) through two products:

Oracle Java Messaging Services and Oracle Message Broker. You must understand

the differences between the two products to ensure that you make the best use of

the products in the context of the specific requirement.

This section contains:

■ AQ API Compatibility

■ Interoperability with Other Messaging Technologies

■ MQSeries Example

■ Workflow Example

OJMS offers an AQ-only implementation of JMS with AQ extensions, and

consequently it is inherently closely coupled with the database.

OMB offers non-extended Java Messaging Services over all the major messaging

technologies including AQ and the OMB proprietary queuing mechanism. OMB is

designed to use minimal space and to use LDAP services for its metadata. Its
8-4 Oracle8i Integration Server Overview

Uses of OJMS and OMB
proprietary queuing mechanism (called volatile queues) enables it to offer

non-durable subscription to JMS Topics.

The AQ driver that enables OMB to use AQ as a message store includes no

extensions that enable you to use AQ features that do not appear in the JMS

standard. However, OMB offers publish-subscribe routing using JMS Topics and

applies message filtering at the point of message collection. The OJMS driver does

not offer message filtering.

Consider using Oracle Message Broker if these factors are functionally or

architecturally important:

■ JMS services are deployed on a computer that is does not have an Oracle 8.1.6

Enterprise Edition database installed.

■ Non-durable subscribers subscribe to JMS Topics.

■ You use another messaging technology, such as MQSeries, as the underlying

message store on a particular platform.

■ You do not require AQ extensions to JMS.

■ An adapter toolkit is beneficial.

AQ API Compatibility
If you use either OMB, OJMS, or both in an integration solution, look carefully at

these compatibility considerations:

■ If, in a mixed programming environment (for instance, PL/SQL, C, and Java),

you use AQ as an interchange between the languages, then using the native AQ

APIs is probably a better alternative than using a JMS API.

■ The compatibility of the native AQ APIs means that messages can be inserted

using one native AQ API and removed using another without necessitating any

transformation. For instance, you can enqueue a message to Queue1 using

PL/SQL AQ API and dequeue the message from queue1 using the OCI AQ API

for one recipient and the Java AQ API for another recipient, as shown below.
Oracle Message Broker and JMS 8-5

Uses of OJMS and OMB
Figure 8–1 AQ API Compatibility

Unfortunately, the different JMS implementations are incompatible, both with each

other and with the native APIs, because they use different attributes in the AQ

repository to record the JMS message properties and payload. Consequently,

messages created using one JMS API (for instance, the OMB JMS AQ Driver) must

be transformed before they can be collected by another JMS API (for instance, the

OJMS API). You must dequeue the message using one of the native AQ APIs,

manipulate the message properties and JMS properties, and sometimes separate the

JMS properties from the payload before enqueuing the message in the new format

to a compatible queue.

Interoperability with Other Messaging Technologies
OMB has a number of drivers that enable the Oracle AQ, the TIBCo Rendezvous,

and the IBM MQSeries to act as JMS message servers in a Java programming

environment. You can use these message servers to create OMB-specific,

JMS-format messages in AQ, MQSeries, and Rendezvous, and ordinary messages in

MQSeries and Rendezvous.

By defining propagation between queues that use these different message formats

and message servers, you can use OMB as a message translation service between

the queues, transforming the message, for example, from a native MQSeries

message to an OMB-specific, JMS-format AQ message.

Some restrictions apply to the types of messages supported. Read "Drivers" on

page 8-3, Oracle8i Message Broker Administration Guide 2.0.1.0 for details.

In OMB, you can define client-side callouts in Java, C, and C++. These can be used

to connect to Mercator Enterprise Broker.

You can connect directly from OMB to the Workflow, Java APIs, or, through

PL/SQL calls, to the PL/SQL API only through predefined programming in Java.

PL/SQL
Program

PL/SQL AQ
API AQ

Queue

C
Program

OCI AQ
API

Java
Program

Java AQ
API
8-6 Oracle8i Integration Server Overview

Uses of OJMS and OMB
MQSeries Example
We can use the same MQSeries example that we used in the AQ chapter to

demonstrate some of the scenarios for integrating to OMB.

The example given below is used solely to illustrate the process and should not be

taken as a recommendation of any one solution over any other.

Scenario

One of the applications included in a hub-and-spoke integration solution has a

ready-made message-based interface that places messages in a set of MQSeries

queues and that expects business events in the form of MQSeries messages. The

application interface is written in C and creates and consumes messages using the

native MQSeries API. The objective is to transport messages from MQSeries to AQ

and from AQ to MQSeries.

Our objective is simply to get the messages in MQSeries into OMB and vice-versa.

The solution depends upon the types of messages we send or receive from

MQSeries, the architectural principles, the language or languages used in the

integration solution, the approach to modularization, the standards used, and so on.

Figure 8–2 MQ queue-MQ driver-OMB

See Also:

■ This solution is simple, but is subject to the constraints and

limitations described in the Chapter 7, "Oracle Advanced

Queuing and JMS".

■ The same is true for communicating to Rendezvous. It is a

simple solution. However, see the Chapter 7, "Oracle Advanced

Queuing and JMS"

Native
MQSeries

queue

OMB's IBM
MQSeries

Driver

Oracle
Message

Broker
Oracle Message Broker and JMS 8-7

Uses of OJMS and OMB
Programmatic

Figure 8–3 MQSeries-C program-OMB

Developing a predefined Java, C, or C++ program that communicates with OMB

through the standard client-side OMB APIs is an alternative means of indirectly

connecting OMB queues to other messaging technologies.

Workflow Example
In certain application integration scenarios, it may be desirable to have applications

interact with other messaging technologies such as MQSeries and TIBCo

Rendezvous because of a decoupling requirement, application platform, existing

interface, or previous strategic technology choices. It is important to understand

how these messaging technologies can interact effectively with the Oracle

Integration Server products.

If you have an interface to the application that extracts messages to a messaging

technology other than AQ, your first task is to identify your objectives and to

establish the routes by which you can get from the messaging technology to these

objectives. The most common mistake at this point is to assume that the most direct

route from A to B is the fastest, the simplest, the easiest, or the most effective.

The process is most easily shown by example. The scenario that follows is used

solely to illustrate the process and should not be taken as a recommendation of any

one solution over the other.

Scenario

One of the applications included in a hub-and-spoke integration solution has a

ready-made message-based interface that places messages in a set of MQSeries

queues and that expects business events in the form of MQSeries messages. The

application interface is written in C and creates and consumes messages using the

native MQSeries API. One of the objectives is to get a message in MQSeries that

represents a business event to instantiate an Oracle Workflow business process.

The solution depends upon the architectural principles, the language or languages

used in the integration solution, the approach to modularization standards used,

and so on.

MQSeries C program
Oracle

Message
Broker

MQSeries
C API

OMB
C/C++

API
8-8 Oracle8i Integration Server Overview

Uses of OJMS and OMB
Figure 8–4 MQSeries - Workflow

It is not possible to cover all the possible alternative scenarios and permutations of

solution, but a few examples based on variations of the scenario illustrate the point.

Variant 1

You take a code-based adapter development approach, using the Java programming

language, and have not adopted the JMS standard. The designer prefers a

coarse-grained approach to modularization (that is, a smaller number of bigger

program units).

There are no requirements to:

■ Retain the message in an audit trail

■ View unconsumed messages using SQL

■ Receive the message from other non-MQSeries enabled publishers

In this variant, you write a simple, predefined Java program that gets the message

through the MQSeries native Java API and transforms the message payload into the

required parameter format before invoking the Java Workflow method that

instantiates the business process.

Figure 8–5 Variant 1

MQSeries Workflow

MQSeries
Native Driver

MQSeries

Workflow
Java API

Workflow

Bespoke Java Program
Oracle Message Broker and JMS 8-9

Uses of OJMS and OMB
Variant 2

You take a code-based adapter development approach using the Java programming

language. You adopt the JMS standard for all message interfaces and the designer

prefers a coarse-grained approach to modularization (that is, a smaller number of

bigger program units).

The MQSeries queue and the Workflow instance reside on different computers and

the Oracle database is not installed on the application computer. You may need in

the future to receive the same business event from publishers using TIBCo

Rendezvous messages and AQ messages.

There are no requirements to:

■ Retain the message in an audit trail

■ View unconsumed messages using SQL

In this variant, you write a simple predefined Java program that gets the message

through Oracle Message Broker and transforms the message payload into the

required parameter format before invoking the Java Workflow method that

instantiates the business process.

Figure 8–6 Variant 2

Variant 3

The variant is the same as for Variant 2, but this time you asynchronously inform

the MQSeries-enabled application of a business event that has occurred during a

step or activity in an Oracle Workflow business process.

There are no requirements to:

■ Retain the message in an audit trail

■ View unconsumed messages using SQL

MQSeries
Native Driver JMS API

MQSeries

Workflow
Java API

Workflow

Bespoke Java ProgramOMB
8-10 Oracle8i Integration Server Overview

Uses of OJMS and OMB
In this variant, you develop an adapter that uses the Workflow AQ API to record

the asynchronous message. You develop a simple, predefined Java program that

gets the message through the native Java AQ API, sets the relevant JMS properties,

and passes the message to Oracle Message Broker, which records the message in the

MQSeries queue.

Figure 8–7 Variant 3

Variant 4

Take a graphical approach to developing adapters and connectors, thus minimizing

the coding effort. No specific language is mandated and XML is the preferred

format for external interfaces. The MQSeries queue and the Workflow instance

reside on different computers and the Oracle database is not installed on the

application system.

Messages must be retained as an audit trail. In the future, it may be necessary to

receive the same business event from publishers using TIBCo Rendezvous messages

and AQ messages.

The business event is the same as for Variant 3; you are asynchronously informing

the MQSeries-enabled application of a business event that has occurred during a

step or activity in an Oracle Workflow business process.

This time, the coding effort is reduced but more components are involved. The

Workflow step performs an asynchronous callout by writing to the WF_OUTBOUND
queue.

Mercator subscribes to the WF_OUTBOUND queue, transforms the message into an

OMB-style JMS format, and places it in an OMB-style AQ queue. OMB propagates

the message between the AQ queue and the MQSeries queue.

MQSeries
Native Driver JMS API

Navtive
Java
API

Bespoke
Java Program

MQSeries

Workflow
AQ API

Workflow

Advanced QueuingOMB
Oracle Message Broker and JMS 8-11

Uses of OJMS and OMB
The increased number of transformation steps may cause the end-to-end delivery

time of an individual message to be slightly increased, but message throughput

should not be adversely affected.

Figure 8–8 Variant 4

Variant 5

For this variant, you take a code-based adapter development approach, but with no

specific language mandated. The applications are predominantly Oracle-based and

the application using MQSeries is one of the few running on a computer without an

Oracle database.

Messages must be retained as an audit trail. In the future, it may be necessary to

receive the same business event from publishers using TIBCo Rendezvous messages

and AQ messages.

The business event is the same as for Variants 3 and 4; you are asynchronously

informing the MQSeries-enabled application of a business event that has occurred

during a step or activity in an Oracle Workflow business process.

The MQSeries messages are simple and the expected message volumes are expected

to be approximately 200 messages per minute.

MQSeries
Native Driver

AQ JDBC
Driver

MQSeries

Workflow
AQ API

Mercator

Workflow

OMB

OMB-style
AQ

Queue

WF_OUT
BOUND
8-12 Oracle8i Integration Server Overview

Enabling Tools
Figure 8–9 Variant 5

The Workflow step performs an asynchronous callout by writing to the WF_
OUTBOUND queue.

The predefined PL/SQL program subscribes to the WF_OUTBOUNDqueue,

transforms the message data into the format required by the application, and calls

the Procedural Gateway package that puts the message on MQSeries. You then use

MQSeries to propagate the message to the application computer where the

application can collect it.

Enabling Tools
This section introduces several tools including:

■ Programming Languages

■ Transformation Engines

■ Message Transformers

Programming Languages
You can write predefined programs to connect any messaging technologies to any

of the Oracle Integration Server products, provided both the messaging technology

and the OIS product have an API for that language.

The amount of programming required depends on the extent of the differences in

message format between the two products, the standard on which the API is based,

and the extent to which the API supports the standard. Remember that, to remain

simple, predefined programs are designed to connect only one topic to one service

call or topic. You must also maintain the code.

Procedural
Gateway for
MQSeries

Bespoke
PL/SQL
Program

Navtive
PL/SQL

API

MQSeries

Workflow
AQ API

Workflow

Advanced Queuing
Oracle Message Broker and JMS 8-13

Enabling Tools
Programs that facilitate generic communication between any queue in a messaging

product and any aspect of the API of another product are time-consuming to

develop, difficult to test thoroughly, tend not to be robust, and rarely scale linearly.

Effective programs are normally developed by the product vendors as a

collaborative effort, consume fairly large R&D budgets, and use complex

multithreaded programming to enable an acceptable level of scalability.

Transformation Engines
Transformation tools such as Mercator Enterprise Broker can transform messages

between one messaging technology and another. The requirement to migrate

messages between messaging technologies is rarely sufficient justification in itself to

warrant the purchase and implementation of such specialized products. Often these

products take up a lot of storage space and some are transactionally weak or offer

no commit model when moving between technologies.

Message Transformers
A number of products available from Oracle and other vendors simplify the

programming effort required to transform messages from one technology to

another.

The three most significant message transformation tools are:

■ Procedural Gateway for MQSeries: An Oracle product that enables PL/SQL

and AQ connection to MQSeries

■ Oracle Message Broker: An Oracle product that provides drivers that enable

the Oracle AQ, TIBCo Rendezvous, and the IBM MQSeries to act as JMS

message servers in a Java programming environment. Some restrictions apply.

Read Oracle8i Message Broker Administration Guide 2.0.1.0 for more

information.

■ TIB Adapter for Oracle: This TIBCo product was developed in collaboration

with Oracle Corporation and provides a code-free transformation solution

between Oracle Advanced Queuing and TIB Rendezvous (TIBrv). The design

enables messages to be converted from AQ to TIBrv, transported across the TIB

bus, and converted back into AQ, without losing any of the AQ message

properties. Messages are converted using the Oracle commit model.
8-14 Oracle8i Integration Server Overview

Directory Services (L
9

Directory Services (LDAP)

Oracle Message Broker (OMB) determines message routing information for

point-to-point messaging by looking up the destination address in a Lightweight

Data Access Protocol (LDAP) directory. OMB accesses the LDAP directory through

a standard Java Naming and Directory Interface (JNDI) driver.

By storing message routing information in an LDAP, OMB provides two important

benefits:

■ Centralizing the administration of message routing information

■ Enabling dynamic modifications to message routing simply by changing entries

in the LDAP directory

This chapter tells you all about directory services provided through the Oracle

LDAP directory, Oracle Internet Directory (OID). It contains:

■ Java and Directory Service Integration

■ Oracle Internet Directory
DAP) 9-1

Java and Directory Service Integration
Java and Directory Service Integration
This section contains:

■ Directory Services - An Introduction

■ Directory Services and LDAP, a Technical Overview

 Directory Services - An Introduction
A directory service is a centralized, network-based repository that stores and

provides access to information that must either be shared between applications or is

highly distributed. Directory services play a vital role in developing intranet and

Internet applications by helping you share information about users, systems,

networks, services, and applications throughout the network.

Directory services have been used in a variety of forms for a number of years. For

instance, e-mail systems include directories to store user information and to route

messages between senders and receivers. Large corporations also use directories of

various forms as repositories of employee information: centrally storing names,

departments, managers, social security numbers, and other organizational

information.

Although the evolution of directory services has been piecemeal in most companies,

the value of directory services has increased sharply with the growth of Internet

computing. Internet applications are by nature highly distributed and need an

efficient mechanism to share information across a network.

The Problem
For instance, consider an expense-reporting application that migrates from a

client-server application to an Internet application. A few human resource

professionals enter the expense reports for an entire company to an Internet

self-service application on which each employee also enters his expense reports.

The volume of users accessing the self-service Internet application is far greater

than the volume who accessed the client-server system. As a result, the cost of

managing Internet users becomes a much greater part of the total cost of

administering the application.

Similarly, modern Internet applications are developed as modular Enterprise

JavaBean or CORBA components, each of which is accessed by a particular name

that identifies its location and its public interfaces. Each time a component is moved

from one node in the network to another, it must provide a new name that all of its

clients must be able to find. With many different components distributed across an
9-2 Oracle8i Integration Server Overview

Java and Directory Service Integration
intranet, the cost of administering these components becomes a significant part of

the total cost of ownership of the system.

Finally, using an Internet architecture to develop applications simplifies how

applications are deployed: they are no longer deployed on many client computers

but are deployed on a few centralized, professionally managed servers. However, a

number of new infrastructure components are required for Internet applications:

ORBs, Web servers, Java Virtual Machines, databases, and application servers, to

name just a few. The cost of administering these infrastructure components also

must be managed.

The Solution
All Internet applications have a common problem: how to centralize information in

a single repository from which it can be efficiently accessed and shared by users or

applications. The solution is Directory Services. You can use directory services to

store and share a variety of different kinds of information.

For instance, a directory service can administer Internet, intranet, or extranet users

who access OLTP applications and databases. Users are represented by their

security certificates and their access control privileges, which can be stored centrally

in a directory. An administrator then changes the user’s information and privileges

in a single location rather than making such changes in each of the applications and

databases that the user accesses. Additionally, the directory service serves as a

central repository to manage distributed network resources such as Net8 and IIOP

listeners, dispatchers, and connection managers in an intranet environment.

Further, you can also use a directory service to store the names of CORBA and

Enterprise JavaBean application components in a similar manner to storing Net8

names in a TNSNames file.

Directory services are, therefore, now recognized as a critical component of the

management infrastructure required to lower the total cost of ownership of Internet

applications. Directory services do this in two ways:

■ By centralizing the administration of distributed information in a single place

■ By letting information stored in the directory be easily shared across users and

applications within a corporate intranet and across extranets

Directory Services and LDAP, a Technical Overview
A directory service requires a robust, fast, and highly scalable data store for the

information stored in it. As a result, these services are typically built on an

enterprise database. A directory service is, therefore, essentially a specialized
Directory Services (LDAP) 9-3

Java and Directory Service Integration
database with a hierarchical schema that can be easily extended to store a variety of

different kinds of information.

Most directory services are accessed through the Lightweight Directory Access

Protocol (LDAP), which defines an open, vendor-neutral, industry standard

network protocol and set of access methods to a directory. LDAP has become the

standard access method for directory information, much as the Domain Name

System (DNS) is used for IP address look-up on almost any system on an intranet

and on the Internet. LDAP is currently supported in most network operating

systems, groupware, and even shrink-wrapped Internet applications.

LDAP evolved from the X.500 OSI directory service standard. X.500 incorporated

many useful ideas, but was too heavyweight and complex to be useful for Internet

applications. LDAP was designed to provide 90% of the functionality of the full

X.500 specification at 10% of the cost. It radically simplifies the format in which

messages are transported across the wire, representing data elements as simple

strings, and leaving out many of the little-used but redundant operations in X.500.

The efficiency of the LDAP on the wire and its aptness for Internet applications

have catapulted it into the forefront of Internet directory services.
9-4 Oracle8i Integration Server Overview

Java and Directory Service Integration
Figure 9–1 LDAP Directory Service

LDAP defines four basic information models that fully describe its operations, what

type of information can be stored in LDAP directories, and what can be done with

the information. These four models are:

■ Information Model: The LDAP Information Model defines what kinds of

information can be stored in an LDAP Directory.

■ Naming Model: The LDAP Naming Model defines how information in an

LDAP directory can be organized and referenced.

■ Functional Model: It defines what you can do with the information in an LDAP

directory and how it can be accessed and updated.

■ Security Model: It defines how you can secure information in an LDAP

directory and what kinds of privileges users and applications require to access

the directory.

Let us look at each of these in greater detail to understand how you use them in

developing Internet applications.

LDAP Information Model
The LDAP Information Model is centered around the concept of an entry. Entries

are created in the directory to hold information about some object or concept in the

SSL Certificates

Configuration

Users /
Groups

Hierarchial Information
Repository
Directory Services (LDAP) 9-5

Java and Directory Service Integration
real world (for example, a person, an organization, or a printer). Entries are

composed of attributes that contain the information to be recorded about the object.

Each attribute has a type and one or more values.

The type of an attribute has an associated syntax that defines what kind of

information can be stored in the values of the attribute and how those values

behave during searches and other directory operations. For example, the attribute

cn (short for common name) has syntax called caseIgnoreString that implies

three things:

■ Attributes are sorted by lexicographic ordering.

■ Case is ignored during comparisons.

■ Values must be character strings.

Attribute types can also have various constraints associated with them, both

limiting the number of values that can be stored in the attribute to one or many and

limiting the size of those values. For example, an attribute to hold a person’s

identification number might be single-valued. An attribute to hold a photograph

might be constrained to a size of no more than 10 KB to prevent unreasonable uses

of storage space. The attributes required and permitted in an entry are controlled by

content rules defined on a per-server basis, or by a special attribute in every entry

called an objectclass . The values of this objectclass attribute identify the

type of entry (person, organization, and so on) and determine which attributes are

required and which are optional.

For example, the objectclass person requires the sn (for surname) and cn (for

common name) attributes. This is the LDAP equivalent of the rules associated with

a schema.

LDAP release 3 adds the ability to do away with schema enforcement altogether

and add any attribute you choose to an entry. This is useful in environments where

the overhead of adding new schema entries and making all the clients and servers

aware of the new elements is prohibitive. To facilitate this, the LDAP release 3

protocol adds a special objectclass called extensibleObject . If the

objectclass attribute of an entry contains the value extensibleObject , any

other attribute is permitted in the entry regardless of the schema rules in place.

LDAP Naming Model
Though it is not a protocol requirement, LDAP directory entries are usually

arranged in a hierarchical tree structure, for instance, following a geographical and

organizational distribution. Entries are named according to their position in the

hierarchy by a distinguished name (DN). Each component of the DN is called a
9-6 Oracle8i Integration Server Overview

Java and Directory Service Integration
relative distinguished name (RDN) and is composed of one or more attributes from

the entry. To anyone familiar with a UNIX or a Windows file system, this concept is

analogous to pathnames and filenames : the RDN is analogous to the name of a

file and the DN to the absolute path name to the file. As with a file system, sibling

entries (entries with the same parent) must have different RDNs. However, LDAP

has two important differences from a file system:

■ Sort Order: Unlike filenames, LDAP components start with the least

significant component (that component that names the entry itself) and proceed

to the most significant (that component just below the root). In contrast,

filenames usually start at the root and proceed down to a file or a directory.

This difference is only syntactic and not semantic.

■ Name separators: LDAP entries are named using a format called a

distinguished name. A distinguished name is a sequence of RDN components,

separated by commas or semi-colons. Note that in contrast to filenames, LDAP

name components are separated by commas and not by forward or backward

slashes. For instance, a filename has the structure

/usr/local/ldap/include/ldap.h

but an LDAP entry has the structure

cn = Steve Harris, o=Software Industry, c=India

As shown, alias entries that point to other entries are permitted to circumvent the

tree-like hierarchy. Further, note that a hierarchy is supported but is not required by

LDAP. In many applications, the ability to organize and search information

hierarchically is useful, however, in other cases, it may be inconvenient. The LDAP

model can handle both cases because, in non-hierarchical case, you can use a

one-level hierarchy as a flat namespace.

LDAP Functional Model
After you place information in an LDAP directory, LDAP defines nine different

operations to authenticate clients so that they can access the directory, search the

directory and retrieve information from it, and update information in the directory.

The search operation selects information from a defined area of an LDAP tree based

on selection criteria. For each matching entry, a requested set of attributes (with or

without values) can be returned. The searched entries can span a single entry, the

immediate children of an entry, or the entire sub-tree of an entry. Alias entries can

be followed automatically during a search and clients can specify the size and time

limits of the search. LDAP release 3 directories also retrieve the results from a query
Directory Services (LDAP) 9-7

Java and Directory Service Integration
in the form of a scrollable result set. That is, search results can be retrieved a page at

a time, and clients can scroll up and scroll down to view the results they require.

LDAP Summary

LDAP provides three important facilities that makes it an ideal way to access

Directory Services.

Separable Naming Contexts: First, it provides a namespace that can be partitioned into

a number of different naming contexts into which information in the directory can

be organized. Each of these naming contexts can be hosted on a separate physical

server node in order to provide clients with the perception of a single logical

directory. This enables a directory service administrator to speed performance by

placing frequently accessed information on a high performance server computer.

For instance, in managing many different suppliers accessing a set of e-commerce

applications, you may partition them into a set of namespaces based on the priority

of the supplier: placing top priority suppliers in one namespace , next tier suppliers

in a different namespace , and so on.

Additionally, since LDAP namespaces are physically separable, administrators can

eliminate the risk of single points of failure by placing directory information in a

mirrored CPU configuration.

Hierarchical Information: Secondly, LDAP-based directory services organize

information in a hierarchical pattern. This makes a directory service a natural way

to represent hierarchical information, such as inventory lists for supply chain

applications and price lists and catalogs for e-commerce applications. In the

inventory example, for instance, each product is represented as a single product

entry in the directory with child entries that represent the inventory levels for each

subcomponent of the product itself.

Information in the directory service can itself be queried dynamically to find the

root node of a naming context. You can access the child entries by sequentially

navigating the hierarchy of the directory.

Security Enforcement: Finally, an LDAP directory service provides a number of

stringent security mechanisms to protect the information stored in it. For instance,

directory users must first authenticate themselves to the directory using either a

username and password or an SSL/X.509 release 3 certificate (through a bind

operation). Once the user has been authenticated, the information he can access is

still further constrained by using an access control list.

Access control lists specify the users who can read information within the directory.

Since entries in the directory are stored hierarchically, you can easily apply access
9-8 Oracle8i Integration Server Overview

Oracle Internet Directory
controls to both individual entries and entry attributes, as well as to subtrees of

entries. Further, access control applied to the product entry is automatically

inherited by all the children. As a result, directory services enable you to control

access to information in the directory in a detailed manner. This makes directory

services ideal mechanisms to share information.

Oracle Corporation recommends that you use a directory service as a centralized

administration facility to manage any information or facility that is distributed

across the intranet, extranet, or the Internet. This includes users, application

components, security, and business processes or workflow. We also recommend the

use of a directory to manage information that is shared between applications within

a corporate intranet and across an extranet.

Oracle Internet Directory
Oracle Internet Directory is an application running on the Oracle8i database server

that implements directory services. It is LDAP release 3 compliant.

Because it is based on the Oracle8i server, Oracle Internet Directory leverages the

standard features of the database to offer unparalleled scalability in terms of size,

performance, reliability, availability, and management by using:

■ Database backup and recovery features

■ Multithreaded model of the Multi-Threaded Server

■ Connection pooling feature

■ Advanced symmetric replications to enable the implementation of

geographically disturbed LDAP servers

Access to the LDAP server can be provided securely through the support of OID for

Secure Socket Layers (SSL) release 3.

See Also: Oracle Internet Directory Administrator’s Guide for more

information on Oracle Internet Directory and its capabilities
Directory Services (LDAP) 9-9

Oracle Internet Directory
9-10 Oracle8i Integration Server Overview

W

10

Workflow

This chapter introduces Oracle Workflow and contains these sections:

■ Overview

■ Key Workflow Components

■ Key Workflow Features
orkflow 10-1

Overview
Overview
Oracle Workflow was originally developed as a traditional workflow tool to

manage complex user-focused workflows within Oracle Applications. As Oracle

Corporation recognized Oracle Workflow as a powerful tool for managing complex

user-based business processes, we made subsequent releases available as a

stand-alone product.

The latest releases include functionality that enhances the ability of the product to

provide fully automated business processing by enabling synchronous and

asynchronous callouts through Advanced Queuing.

Oracle Workflow is made up of these components:

■ Oracle Workflow Builder

■ Workflow Engine

■ Workflow Definitions Loader

■ Workflow Monitor

Key Workflow Components

Oracle Workflow Builder
Oracle Workflow Builder lets you create, view, or modify a business process with

simple drag-and-drop operations. Using the Workflow Builder, you can create and

modify all workflow objects, including activities, item types, and messages.

At any time, you can add, remove, or change workflow activities, or set up new

prerequisite relationships among activities. You can easily work with a

summary-level model of your workflow, expanding activities to greater levels of

detail within the workflow as needed. And, you can operate Oracle Workflow

Builder from a desktop PC or from a disconnected laptop PC.

Workflow Engine
The Workflow Engine embedded in the Oracle8i database server monitors

workflow states and coordinates the routing of activities for a process. A change in

workflow state, such as the completion of workflow activities, is signaled to the

engine through a PL/SQL API or a Java API. Based on flexibly defined workflow

rules, the Engine determines the activities that are eligible to run, and then runs
10-2 Oracle8i Integration Server Overview

Key Workflow Features
them. The Workflow Engine supports sophisticated workflow rules, including

looping, branching, parallel flows, and subflows.

Workflow Definitions Loader
The Workflow Definitions Loader is a utility program that moves workflow

definitions between database and corresponding flat file representations. You can

use it to move workflow definitions from a development to a production database

or to apply upgrades to existing definitions. In addition to being a standalone server

program, the Workflow Definitions Loader is integrated into Oracle Workflow

Builder, enabling you to open and save workflow definitions in both a database and

a file.

Workflow Monitor
Oracle Workflow queue APIs can be called by an application program or by a

workflow function in the runtime phase to handle workflow Advanced Queue

processing. In Oracle Workflow, an outbound and an inbound queue are

established. A package of data on the queue is referred to as an event or a message.

A message in this context is different from the messages associated with notification

activities.

Events are enqueued in the outbound queue for agents to consume and process.

These agents may be any application that is external to the database. Similarly an

agent may enqueue a message to the inbound queue for the Workflow Engine to

consume and process. The outbound and inbound queues facilitate the integration

of external activities into the workflow processes.

Key Workflow Features
This section contains:

■ Complete Programmatic Extensibility

■ Electronic Notifications

■ Electronic Mail Integration

■ Internet-Enabled Workflow

Note: Background engines use a separate or deferred queue.
Workflow 10-3

Key Workflow Features
■ Monitoring and Administration

■ Business Event System

■ Uses

■ AQ API

■ PL/SQL Callout Functionality

■ Instantiating Business Process Instances Using PL/SQL and Java

■ Interoperability

Complete Programmatic Extensibility
Oracle Workflow lets you include your own PL/SQL procedures or external

functions as activities in your workflow. Without modifying your application code,

you can have your own program run whenever the Workflow Engine detects that

the prerequisites of the program are satisfied.

Electronic Notifications
Oracle Workflow lets you include users in your workflow to handle activities that

cannot be automated, such as approvals for requisitions or sales orders. Electronic

notifications are routed to a role, which can be an individual user or a group of

users. Any user associated with that role can act on the notification.

Each notification includes a message that contains all the information a user needs

to make a decision. The information may be embedded in the message body or

attached as a separate document. Oracle Workflow interprets each notification

activity response to decide how to move on to the next workflow activity.

Electronic Mail Integration
Electronic mail (e-mail) users can receive notifications of outstanding work items

and can respond to those notifications using their choice of e-mail applications. An

e-mail notification can include an attachment that provides another means of

responding to the notification.

Internet-Enabled Workflow
Any user with access to a standard Web browser can be included in a workflow.

Web users can access a Notification Web Page to see their outstanding work items,

then navigate to additional pages to see more details or to respond.
10-4 Oracle8i Integration Server Overview

Key Workflow Features
Monitoring and Administration
Workflow administrators and users view the progress of a work item in a workflow

process by connecting to the Workflow Monitor using a standard Web browser that

supports Java. The Workflow Monitor displays an annotated view of the process

diagram for a particular instance of a workflow process, so that users can view a

graphical depiction of their work item status. The Workflow Monitor also displays a

separate status summary for the work item, the process, and for each activity in the

process.

Business Event System
The Business Event System is an application service that uses the Oracle Advanced

Queuing (AQ) infrastructure to communicate business events between systems. The

Business Event System consists of the Event Manager, which lets you register

subscriptions on events that are significant to your systems, and Event Activities,

which let you model business events within workflow processes.

When an event occurs, the subscribing code is executed in the same transaction as

the code that raised the event. Subscription processing can include sending event

information to other queues or systems, executing custom code on the event

information, and sending event information to a workflow process.

Workflow Monitor
The Workflow Monitor represents graphically the current state of a particular

instance of a workflow as it is executed. This is particularly useful for manually

tracking long-running message flows as they move through the integration

solution. The Monitor is a Java-based applet that you can access through a browser.

Uses
You can use Oracle Workflow Standalone Edition release 2.5.2 and later as an

integration flow manager to coordinate business event communication between

applications by instantiating, controlling, and synchronizing the flow of instances of

business events.

Use the Workflow Builder graphical interface to define the order and conditions

under which the business process steps execute. Implement automated business

process steps using the PL/SQL API and the AQ API to request instantiations of an

integration flow by the Workflow Engine. The Engine requests execution of

externally defined process steps (for instance, to perform payload transformations).
Workflow 10-5

Key Workflow Features
Oracle Workflow strongly supports manual intervention by users. You can define

flows to detect abnormal, suspicious, or problematic instances of business events

and to route these events to e-mail, Lotus Notes, MS Exchange, UNIX SendMail,

Worklist User Interface, and other products for user approval, correction, or

rejection.

This restrictive approach prevents you from trying to enable the workflow of

applications through the integration solution. This ensures that you can upgrade

the integration solution independently of the applications that it integrates.

Asynchronous communication between Oracle Workflow and Advanced Queuing

is possible both through the Workflow AQ API and through the PL/SQL callout

functionality.

AQ API
The Workflow AQ API provided with Standalone Workflow release 2.5.2 is simple

and includes three queues, all of which:

■ Have the same Object Type payload (wf_payload_t)

■ Do not permit message retention

■ Employ single consumer queues

The object type for the payload has a number of attributes required by Workflow

that enable it to associate the queued message with a particular flow. The object

type also has a text attribute that you can format to contain parameters in a

name/value pairs format proprietary to Oracle Workflow.

Because the queues are single-consumer, the routing cannot use the AQ agent to

determine the recipients of outbound messages. Use a combination of itemtype
and correlation to identify the business process or a range of business processes.

The three queues have these purposes:

■ WF_OUTBOUND: The Workflow Engine places a message in this queue when the

flow reaches a step defined as an external callout. External processes collect the

Caution: Oracle Corporation strongly recommends that the

instance of Oracle Workflow employed within the integration

solution be dedicated only to integration flow management.
10-6 Oracle8i Integration Server Overview

Key Workflow Features
message from the queue using a PL/SQL package called WF_
Queue.DequeueOutbound or WF_Queue.DequeueEventDetail .

■ WF_INBOUND: After placing the message in the outbound queue, the Engine

waits for any reply from the inbound queue. When the message is processed by

the external process, you place results in the inbound queue using the PL/SQL

package WF_Queue.EnqueueInbound . The Workflow Engine then associates

the results with the appropriate flow.

■ WF_DEFERRED: This queue is used by the foreground Workflow Engine to

defer processing of flows to a background Workflow Engine.

All Oracle Workflow queue APIs are defined in a PL/SQL package called WF_
QUEUE. You must execute these queue APIs from the same Oracle Workflow

account because the APIs are account dependent.

Queue APIs
■ EnqueueInbound

■ DequeueOutbound

■ DequeueEventDetail

■ PurgeEvent

■ PurgeItemtype

■ ProcessInboundQueue

■ GetMessageHandle

■ Deferred_queue

■ Inbound_queue

■ Outbound_queue

Note: In using these APIs, we assume that you have prior

knowledge of Oracle8i Advanced Queues concepts and

terminology.

See Also: Oracle8i Application Developer’s Guide - Advanced
Queuing for more information on Advanced Queue APIs
Workflow 10-7

Key Workflow Features
Developer APIs for the Inbound Queue
The following APIs enable developers to write to the inbound queue by creating

messages in the internal stack rather than using WF_QUEUE.EnqueueInbound() .

The internal stack is purely a storage area and you must eventually write each

message that you create on the stack to the inbound queue.

For efficient performance, you should periodically write to the inbound queue to

prevent the stack from growing too large.

■ ClearMsgStack

■ CreateMsg

■ WriteMsg

■ SetMsgAttr

■ SetMsgResult
10-8 Oracle8i Integration Server Overview

Key Workflow Features
Payload Structure
All Oracle Workflow queues use the data type system.wf_payload_t to define

the payload for any given message. The payload contains all the information that is

required about the event. A description of system.wf_payload_t follows:

PL/SQL Callout Functionality
It is possible to define a process step as a PL/SQL callout. When the step is reached,

the PL/SQL procedure named in the step is called and parameters specified in the

step are passed to the called procedure. When the procedure completes, it passes

back a result to indicate success or failure.

You can use the PL/SQL procedure to create a message in an AQ queue or to collect

messages from an AQ queue. In doing so, consider:

Table 10–1

Column Name Type Description

ITEMTYPE Varchar2(8) The item type of the event

ITEMKEY Varchar2(240) The item key of the event

ACTID Number The function activity instance ID

FUNCTION_NAME Varchar2(200) The name of the function to execute

PARAM_LIST Varchar2(4000) A list of value_name=value pairs. In the

inbound scenario, the pairs are passed as item

attributes and item attribute values. In the

outbound scenario, the pairs are passed as all

theattributesandattributevaluesofthe

function (activity attributes).

RESULT Varchar2(30) An optional activity completion result.

Possible values are determined by the Result

Type of the function activity or

can be an engine-standard result.

See Also: Oracle8i Application Developer’s Guide - Fundamentals and

Standard API for an Oracle Workflow 2.5.2
Workflow 10-9

Key Workflow Features
■ Procedures must conform to the standards defined in Workflow Builder Help.
(cross-reference to "Standard API for PL/SQL Procedures Called by Function

Activities"

■ The transactional implications. Workflow uses save points to separate flow

steps from each other. You can create or collect AQ messages as part of the

savepoints transaction. However, the creation or collection is not visible until

the commit is issued.

■ To dequeue a JMS message from an AQ queue using the PL/SQL AQ API and

translating the JMS properties and payload in PL/SQL, you must understand

how OMB/OJMS formats its messages in AQ. (Oracle8i Message Broker

Administration Guide 2.0.1.0)

Instantiating Business Process Instances Using PL/SQL and Java
A PL/SQL package called WF_ENGINE contains two procedures that you can use to

create a business process (wf_engine.CreateProcess) and to start that process

(wf_engine.StartProcess).

To ensure that the process is executed asynchronously, the cost associated with the

first step in the flow must be greater than the threshold of the Workflow Engine.

The Oracle Workflow Java interface offers the WF_ENGINE and WF_NOTIFICATION
packages as Java methods that can be called by any Java program to communicate

with Oracle Workflow. The Java methods directly reference the WF_ENGINE and

WF_NOTIFICATION PL/SQL package procedures and views and communicate

with the Oracle Workflow database through JDBC.

Interoperability
Previously, we have used an MQSeries integration scenario to demonstrate the

types of solution that you can use to integrate an application that uses non-Oracle

messaging technology to the Integration Server products.

The scenario can be examined again here to good effect.

If an interface to an application extracts messages to a messaging technology other

than AQ, you must decide whether to integrate the messaging technology to

Workflow directly using a programming language or indirectly through specialized

software.

The alternative methods for integrating to Workflow are:
10-10 Oracle8i Integration Server Overview

Key Workflow Features
■ Programmatic 1: If both the message queuing product and Workflow have an

API for a particular language, you can write programs that collect the message

from the messaging technology and pass the parameters to Workflow. Or you

can write programs that instantiate a new workflow OR callout from Workflow

to create messages in the messaging technology.

■ Programmatic 2: Choose two languages that can communicate with each other,

one of which has an API to the messaging technology and the other of which

has an API to Workflow.

■ Mixed Programmatic and Software: Use software such as Procedural Gateways

for MQSeries that provide an API in a language to which Workflow has an API.
Workflow 10-11

Key Workflow Features
10-12 Oracle8i Integration Server Overview

Part III

 Reference

Part III describes several interoperability solutions between OIS and various

third-party products.

This part contains the following chapters:

■ Appendix A, "Mercator Enterprise Broker and OIS"

■ Appendix B, "Front-End and Back-End Integration"

■ Appendix C, "Autonomous and Pointer Payloads"

■ Appendix D, "Business Events and System Events"

Mercator Enterprise Broker and
A

Mercator Enterprise Broker and OIS

Mercator Software is a vendor of a set of enterprise application integration tools

including the Enterprise Broker. The Enterprise Broker provides a rich set of data

transformation services that you can use with the Oracle Integration Server,

particularly for non-XML data transformations in a legacy systems environment.

This appendix provides an overview of how to use Mercator Enterprise Broker with

Oracle Integration Server. This appendix contains:

■ Introduction

■ Enterprise Broker Engine

■ Hints and Tips
OIS A-1

Introduction
Introduction
The Enterprise Broker performs application-to-application integration and is

particularly useful for transforming data and messages. The software is designed

around a transformation flow in which an object is transformed from one form or

state to another by one or more transformation steps.

Each transformation step has these properties:

■ A trigger or triggering event

■ An input object or objects

■ Transformation rules

■ An output object or objects

The Enterprise Broker itself is made up of the Engine and four graphically based

editors:

■ System Editor

■ Type Tree Editor

■ Database Editor

■ Mapping Editor

System Editor
The System Editor defines transformation flows. It links together a number of

transformation steps to model the multistep transformation of a message from one

form or state to another.

You can use the System Editor to define a trigger or a triggering system event that

precipitates a transformation. Typical triggers include:

■ Arrival of a message in a queue

■ Creation of a file in a directory

■ Insertion of a row in a table

■ Changing of a last-modified timestamp of a file
A-2 Oracle8i Integration Server Overview

Introduction
Type Tree Editor
Mercator Software products use a construct called a Type Tree to internally

represent the data structures of external objects. A Type Tree takes one of three

forms:

■ Predefined: Mercator provides a set of predefined Type Trees that represent

common standard message formats (such as EDI and HL7) and the public

interface objects of common ERP packages (such as SAP/R3).

■ Imported: You can generate Type Trees to represent database objects in most

relational databases using the Database Editor.

■ Definable: You can define Type Trees manually by using the Type Tree Editor.

Type Trees must be defined for each source that provides input to the

transformation, and for each target that receives output from the transformation.

Database Editor
Use the Database Editor to generate Type Trees for given database objects in a

relational database. The Editor must connect to the database as a database user. The

Editor thus assumes the privileges, permissions, and view of the objects defined for

that user.

In Oracle, Type Trees can be generated for:

■ Tables: Columns become fields in the Tree Type.

■ Procedures: IN , OUT and IN/OUT parameters become fields.

■ Queues: If the payload of the queue is defined as an object type, then each

attribute becomes a field in the Type Tree. If the payload is of RAWtype, then the

Type Tree is represented by a single binary string (BLOB).

Mapping Editor
Use the Mapping Editor to configure individual transformation steps by defining

input cards, output cards, and maps.

A transformation step is analogous to a phase in a manufacturing process:

■ Input cards define suppliers and the specification of raw materials.

■ Maps define the manufacturing process.

■ Output cards define the product specification and the delivery addresses of

customers.
Mercator Enterprise Broker and OIS A-3

Introduction
Input Cards
Input cards define:

■ Rules for collection, such as the type of connection to the source, transactional

behavior, number of rows per fetch, and retry rules

■ Format for the incoming messages by specification of all or part of a Type Tree

You can define multiple input cards in a single step, and multiple iterations of an

input card are possible. For example, you define an input card for order and an

input card for order lines . For each ORDER, there are multiple iterations of

order lines .

Output Cards
Output cards define:

■ Rules for delivery, such as the type of connection to the destination,

transactional behavior, number of rows per push, and retry rules

■ Data format for the outgoing messages by specification of all or part of a Type

Tree

You can define multiple iterations of multiple output cards within a step.

Maps
Maps are the mechanisms that tie the input and output cards together. They define

the rules for transforming data from one form or state to another. Maps defined to

perform a particular function on a defined subset of data are called functional maps
and can nest within other maps.

The basic objective of the map is to transform the data from the input cards to the

output cards. Maps achieve this in a number of ways:

■ Dragging and dropping a field from the input card to another field on the

output card

■ Defining a static value for a field on the output card

■ Defining the field in the output card as null

■ Setting the field on the output card to a system value, such as a date/time

stamp

■ Providing input card fields to procedural logic, functions, or SQL lookups and

then applying the result to the output card
A-4 Oracle8i Integration Server Overview

Hints and Tips
Enterprise Broker Engine
After you configure the transformation processes using the editors, use the Engine

to execute the transformation steps. These steps can be instantiated from the

command line, from the System Editor, or from within programs written in C or

Java (through the Mercator C and Java APIs).

The Engine provides logging and tracing facilities that capture information about

each transformation step. This helps you debug errors, but it incurs a performance

overhead.

The Engine has a number of performance-enhancing features that improve its

scalability:

■ It treats large messages as a data stream. This enables the Engine to start

processing a message without waiting for the whole message to arrive.

■ It reuses maps and database connections.

■ It switches off logging and tracing.

Uses of Enterprise Broker in the Oracle Integration Server
Oracle Corporation recommends that you use the Mercator Enterprise Broker as the

transformation engine for particularly complex transformations. It is especially

useful when you require an "XML to anything" or an "anything to XML"

transformation.

The AQ adapter implementation eases transformation between AQ queues in the

same database if the input and output cards use the same connection string. This

implementation enables the Oracle commit model to deliver the

dequeue-transform-enqueue process as a single transaction, thereby guaranteeing

that messages are retained.

Defining the data transformation as a distinct step in the process is consistent with

the component-based approach we recommend.

Hints and Tips
■ You can use Mercator Enterprise Broker to transform messages between AQ

and MQSeries. However, you must track transactions to ensure that messages

are not lost.
Mercator Enterprise Broker and OIS A-5

Hints and Tips
■ The AQ adapter supports CLOBs and regular Oracle data types, but you must

use care in mapping to BLOBs/RAW AQ queues because you must determine

the length of the binary string before constructing the message.

Note: Release 2.1 of the Enterprise Broker includes no

functionality to assist you with interpretation of JMS messages. You

must understand the interrelationship of the OJMS and OMB AQ

drivers before you attempt this, and must define the Type Trees for

the JMS messages with care.
A-6 Oracle8i Integration Server Overview

Front-End and Back-End Integra
B

Front-End and Back-End Integration

The requirements for front-office and back-office integration are fundamentally

different and, as a result, they require fundamentally different integration

approaches. This appendix contains:

■ Front-End Integration

■ Back-End Integration
tion B-1

Front-End Integration
Front-End Integration
In this implementation, middleware or a similar integration solution intercepts

interactions between applications. The middleware acts as a middle tier application

server: transparently marshaling, managing, and directing interapplication requests

and responses. Typically, the requesting application waits while the middleware

requests services of another application.

Figure B–1 Front-End Integration

Front-end integration solutions generally display some, or all, of these

characteristics:

■ Interaction between the integration layer and the applications is:

■ Synchronous, or simulates synchronous processing

■ Two-way communication based on a service request model

■ Transactions processed are of short duration.

Application C

Application D

Application B

Application A

Middleware/
Integration
Software

Portal
or

Console

Portal
or

Console

Portal
or

Console

Type 1

Type 2

Type 3
B-2 Oracle8i Integration Server Overview

Back-End Integration
■ The application (user) is not aware of using the services of multiple disparate

applications.

■ Middleware behaves like a midtier application server: marshaling, managing,

and directing requests and responses and managing transactional and recovery

issues.

Front-end integration has both advantages and disadvantages.

Advantages
■ You can develop a number of presentation layers for different user, customer,

and supply channels.

■ All presentation layers share the same services, thus ensuring consistent

interactions regardless of channel.

■ Each presentation layer requires only one signon to access all required

functionality.

Drawbacks
Applications must meet these criteria to participate in the interactions:

■ All functionality must be offered through a service-based API.

■ All business and data logic must be separate from the presentation layer.

■ The transaction/commit model must act as a resource manager in the chosen

multiphase commit processing.

■ Few legacy and currently available ERP/CRM packages meet these criteria, so

you probably must develop a custom application.

■ The presentation layer of packaged applications is unlikely to be usable. This

may lead to difficulties in providing support, lengthy implementation time, and

so on.

■ It is difficult to manage a development and testing environment because of the

need for a complex architecture, the lack of suitable strong tools, and the

dependence on program-oriented delivery.

Back-End Integration
In this implementation, users interact with only one application at a time in a

manner determined by their user roles.The application notifies other applications as

necessary of the significant aspects of the user interaction.
Front-End and Back-End Integration B-3

Back-End Integration
Application-to-application interactions can be based on further sequential

notifications.

Figure B–2 Back-end integration

Back-end integration solutions display some or all of these characteristics:

■ Interaction between the integration layer and the applications is:

■ Predominantly asynchronous

■ One-way communication

■ Service-request and event-notification models are both used.

■ Business process definitions closely mirror the business, and consequently

transactions take a long time.

■ The user interacts with a single application or with a small number of

applications.

Portal
or

Console

Portal
or

Console

Portal
or

Console

Portal
or

Console

Application C

Application D

Application B

Application A

Middleware/
Integration
Software
B-4 Oracle8i Integration Server Overview

Back-End Integration
■ The integration solution acts transparently as a sophisticated distribution and

synchronizing agent.

Advantages
■ The presentation layer interface to the applications need not employ the same

architecture as the applications.

■ You can use the prebuilt presentation layer delivered with packaged

applications.

■ The business and data logic in an application need not be separate from the

delivered presentation layer.

■ It is easy to manage the development and testing environments because

asynchronous breakpoints provide natural testing points.

■ Graphical tools are provided to ease development.

Drawbacks
■ Each application has a different look and feel and a different signon, which

makes applications appear to be only loosely integrated.

■ The user interface is narrowly constrained, thus restricting users who act in

multiple and diverse roles.
Front-End and Back-End Integration B-5

Back-End Integration
B-6 Oracle8i Integration Server Overview

Autonomous and Pointer Paylo
C

Autonomous and Pointer Payloads

The amount of information in the payload of the message is an important aspect of

message design. In this appendix, we consider two alternative strategies for

handing payload size, as well as a compromise implementation.

If you count the compromise implementation as a strategy, you can choose from

three payload strategies:

■ Pointer Payload

■ Autonomous Payload

■ Hybrid Payload
ads C-1

Pointer Payload
Pointer Payload
Payloads based on this strategy contain only sufficient information to enable other

applications to request further information about the event from the publisher of

the message. Use this style of payload if it is important to limit the message size

because shipping large volumes of data is impractical.

Some characteristics that suggest that this payload style might be appropriate

include:

■ The payload does not need to be recorded immediately because a copy exists in

some other persistent, secure form.

■ Information can be sent to the consumer on an as-needed basis.

■ A persistent copy of the data is not required after the consumer has processed

it.

■ The information is not required for routing, tracking, or business intelligence, or

is available elsewhere.

Example 1: Video Film
In video-on-demand, there is little point in recording all the data in memory or to

disk because the data is a pure, binary, digital, data stream. Little is gained by

interpreting the data before it reaches its final destination.

Similarly, if there is a strong possibility that only the initial part of the data stream is

actually required by the consumer, there is no need to deliver all the data.

Example 2: Changes to a Name and Address Database
Name and address changes are normally recorded in operational systems during

the day when network traffic is high and disk I-O is intense.

A notification to a non-operational system, such as a marketing database, that a

change has occurred enables that database to mark affected data as obsolete in real

time. At a later time, when network and disk usage is lower, data can be updated

with the details of the change.

Autonomous Payload
The payload strategy includes sufficient information that the message can be

processed without reference to the originator of the message. Autonomous

payloads reduce the interdependence of applications. This strategy is essential if

you need to deploy publish-subscribe routing.
C-2 Oracle8i Integration Server Overview

Hybrid Payload
Including all the pertinent information relating to a business event facilitates:

■ Content-based routing

■ A complete audit trail

■ Business intelligence use

■ Message tracking

In an asynchronous, one-way messaging environment, if the payload is relatively

small (less than 2 MB) and the message is processed in near real-time, using the

autonomous payload strategy is your obvious choice.

Example 1: Share Trading
Banks responsible for managing stock portfolios for customers must ensure that

details of sale or purchase requests are captured in an audit trail. The information

about the trade, while relatively small, must be placed on the market within

seconds and must be routed to different markets based on information contained in

the payload.

Example 2: Stock Control
 A warehouse stock control application subscribes to an order application during

the day and uses the captured events to determine reorder levels during the night.

The messages are relatively small. The stock control application must operate

independently of the order application, which is operational only during normal

business hours.

Hybrid Payload
This strategy is similar to pointer payload in that the payload must contain

sufficient information to enable other applications to request further information

about the event from the publisher of the message. The message must also include

information sufficient for the subscriber to determine whether or not the event

requires processing.

A hybrid payload is useful if the message is large, and if subscribers filter the

messages after receiving them. Parts of the message payload enable integration

functionality. For instance, they indicate whether or not content-based routing is

required.
Autonomous and Pointer Payloads C-3

Hybrid Payload
Example: Marketing
A e-mail broadcast distribution must contain enough information (sale price, sale

dates) to interest a customer in downloading a product pack containing video clips,

digital pictures, and full details of the product being offered.

If the take-up rate on the mailing is expected to be low, sending the full pack with

the initial broadcast is inefficient. However, sending customers only a pointer to a

Web site is insufficient to pique their interest in the product.
C-4 Oracle8i Integration Server Overview

Business Events and System Eve
D

Business Events and System Events

Business Events
A business event is a definable occurrence in a business scenario. It can be a

common high-level occurrence, such as a customer placing an order. Alternatively,

it can be a more specialized event, such as a customer exceeding a credit limit while

placing an order. Some events can be triggered by changes in values, such as the

share price for a particular stock exceeding a given value.

Business events define significant happenings that different parts of the business

must register and act upon by using different applications. Oracle Integration

Server integrates all applications that register and act upon a business event.

This appendix contains:

■ Business Events

■ System Events

■ Distinctions between Business and System Events
nts D-1

System Events
System Events
A system event is a point in the execution of a program at which an identifiable

computing task takes place. Examples of system events include: writing to a file,

inserting data into a database table, calling a subroutine, and instantiating a

program thread.

A program that implements a particular business process usually includes many

system events, and more than one of these system events can provide a suitable

trigger to capture a particular business event.

Example: Raising an Order
Many integration applications contain the business event, Raise an Order . Several

applications must subscribe to such an event because they must know that an order

has been placed. A program in another application that captures orders contains

program steps to perform these system events:

■ Get Accounting Date

■ Get Customer Address

■ Calculate Order Total

■ Insert into Order Header

Each of these system events occurs once per order. Any one of them can provide a

suitable point at which to trigger the ‘Raise an Order ’ business event.

Distinctions between Business and System Events
There are three important distinctions between a business event and a system event:

■ The business event is a logical occurrence in a business scenario; the system

event is the mechanism you use to recognize that the business event has

occurred.

■ The business event is not influenced by the manner in which it is implemented

in an application; the system event is a part of that implementation.

■ Messages that represent the business event must be constructed to provide

information about the business event, not information about the system event

that triggers it.

To emphasize business events in the integration solution, use a message-based

strategy. To emphasize system events, use a strategy that implements data

replication using messaging technologies.
D-2 Oracle8i Integration Server Overview

Distinctions between Business and System Events
Example: Emphasizing System Events
To integrate order processing, identify a business event called PlaceanOrder . If

you have a system event named CallCreateOrderHeade r, you can instantiate

message creation immediately prior to or immediately after the call.

The message created contains all the information about the order, including order

lines, customer details if necessary, the order total, and some or all of the

information in the order header, which is created as part of the

CreateOrderHeader subprogram.

The message is then published to the middleware as an instance of the Place an
Order subject or topic. The middleware takes responsibility for routing the

messages to those subscribing to the PlaceanOrder business event.

Example: Emphasizing Business Events
You identify a set of business events that relate to customer interactions, including

one called RegistrationofaNew Customer .

Identify a system event that always occurs when you register a new customer. The

system event is the insertion of a row into the customer table of the customer

relationship management application.

The system event can raise the business event by creating a database trigger that

starts when a row is inserted into the customer table. The database trigger calls a

PL/SQL procedure or Java function that constructs a message to represent the

registration of the new customer, by gathering information from other relational

tables such as the address table and by calling other functions such as a credit

rating calculation.
Business Events and System Events D-3

Distinctions between Business and System Events
D-4 Oracle8i Integration Server Overview

Index

A
abstraction layer, 7-18

acquisitions, 1-3

Adapter Developers Toolkit, 8-4

adapter SDK

of Oracle Integration Server, 3-9

address

agent, 7-3

address field, 7-4

administered objects, 7-9

administrative tasks, 8-2

Advanced Queueing Features, 7-5

Advanced Queuing, 3-4, 7-2

Advanced Queuing Driver, 8-3

advanced replication

as included in the Oracle Integration Server, 3-3

agent

definition, 7-3

API Compatibility, AQ, 8-5

APIs, 7-2, 8-13

application adapters, 3-8

application integration, 2-8, 3-3

application service providers, 1-6

applications

packaged, 1-4

AQ API, 10-6

AQ Workflow, 8-8

Architectural overview

JABs on Oracle8i Java VM, 5-11

ASP

see "Application Service Providers", 1-6

asynchronous

message-oriented middleware, 1-14

asynchronous communication, 1-10, 1-14, 3-4

with message-based Interfaces, 2-9

asynchronous message-oriented middleware, 2-4

asynchronous messages

B2B, 4-2

audience

as intended for this book, iii

auditing and tracking, 3-19

autonomous and pointer payloads, C-1

Autonomous payloads, C-1

autonomous payloads, C-2

B
back-end integration, B-3

BC4J, 8-4

BLOB, 7-16

Business Event Integration, 7-11

business event system, 10-5

business events, D-1

business intelligence, 3-20

Business Intelligence Tools, 7-18

business process coordination, 3-20

Business Process Coordinator

runtime engine of the validation model, 3-12

business process instances, 10-10

business process intelligence, 3-5

business process management

and orkflow, 2-7

business process reengineering, 1-4

business processes

automating multi-step, 2-4

streamlining, 1-9

business-to-business commerce, 1-6
Beta Draft Index-1

C
Caffeine, 3-4

Certificate, Security, 9-8

classes

object, 9-6

Client Programming Interface, 8-3

client-side callouts, 8-6

CLOB, 7-12

COM+ object model, 1-13

Common Object Request Broker Architecture, 1-13

communication

asynchronous, with message-based

interfaces, 2-9

synchronous, 2-8

component-based architecture, 3-19

component-oriented development

technologies, 1-13

consumed

definition, 7-9

Consumers, 7-3

contacting Oracle, xiii

content-based routing, 7-6

content-based subscription, 7-6

Control information, 7-3

conventions

code examples, vi

text, v

used in this book, v

CORBA, 1-13, 3-3

RPC, 1-16

CORBA component, 9-2

CRM

see "Customer Relationship Management", 1-5

Customer Relationship Management, 1-5

D
data, 7-3

synchronizing among systems, 2-2

data integration, 2-8, 3-3

data movement technologies, 1-11

data synchronization technologies, 2-3

data transformation, 2-5, 3-7

database gateways, 2-3

database replication, 2-3

datatype transformation, 2-5

DBA Studio, 7-8

DBMS, 7-5

DDL, 7-13

delay interval, 7-9

dequeue call, 7-3

dequeuing, 7-3

design objectives

of the Oracle Integration Server, 3-13

design-time visual tool

of Oracle Integration Server, 3-7

Developing Java applications, 5-7

directory naming, 3-4

Directory Services, 9-1

Discoverer, 7-18

Distinguished name (DN), 9-6

DML, 7-13

DMS, 8-3

DN, 9-6

DNS, 9-4

document

structure of, iii

Domain Name System (DNS), 9-4

Drivers, OMB, 8-3

Dynamic Monitoring Service (DMS), 8-3

E
e-business integration, 1-2

technologies and approaches, 1-11

EJB, 1-13, 3-3, 3-4

electronic mail integration, 10-4

electronic notifications, 10-4

e-mail integration, 10-4

encapsulation, 3-18

End User Layer, 7-18

Engines, Transformation, 8-14

Enterprise Broker

database editor, A-3

mapping editor, A-3

system editor, A-2

Enterprise Broker Engine, A-5

Enterprise JavaBeans, 1-13, 1-14, 3-3

Event Journals, 7-6

Events

business and system, D-2

example AQ Workflow, 8-8

exception handling, 7-9
Index-2 Beta Draft

Express, 7-19

extensibility, 3-18

extensibleObject class, 9-6

F
Facilities

Oracle8i Java VM, 5-2

failures, 1-17

features of Advanced Queueing, 7-5

front-end integration, B-2

Functional Model, LDAP, 9-5, 9-7

functional transformation, 2-6

functions, 7-5

H
heterogeneous data access technologies, 1-12

hierarchical Information, 9-8

hierarchy

naming, 9-7

hub-and-spoke architecture, 2-4

hybrid payload, C-3

I
IBM MQSeries, 8-14

IIOP listeners, 9-3

Information Model, LDAP, 9-5

integration

back-end, B-3

front-end, B-2

front-end and back-end, B-1

fundamental problems of, 2-7

integration methodology

selecting, 2-2

integration topology, 2-4

internet directory, 9-9

internet-enabled workflow, 10-4

interoperability, 10-10

introduction

e-business integration, 1-2

isolated processing, 1-16

isolating applications, 1-8

isolating applications and businesses, 2-3

isolating businesses, 1-8

J
J2EE, 1-13

Java, 10-10

Java and CORBA services, 3-4

Java applications

developing, 5-7

Java Messaging Service, 3-4

Java Messenging Service (JMS), 7-7

Java Naming and Directory Interface, 9-1

Java Transaction Service, 3-3

Java2 Enterprise Edition, 1-13

JMS Queue/Topic to Business Components for

Java, 8-4

JNDI driver, 9-1

JTS, 3-3

L
LDAP, 9-1, 9-4

LDAP Functional Model, 9-7

LDAP Naming Model, 9-6

lexicographic ordering, 9-6

Lightweight Directory Access Protocol

(LDAP), 9-4

locational transformation, 2-6

M
Mercator Enterprise Broker, 8-6, A-1

mergers, 1-3

message

definition, 7-3

message auditing, 1-17

Message Broker Core, 8-2

Message Consumers, 7-3

message headers

storing, 7-16

message history and retention, 7-6

Message management, 7-2

message mining, 7-2

message payloads

storing, 7-16

Message Produceers, 7-3

message properties, 7-5

Message Recipent, 7-4

message scheduling, 1-17
 Beta Draft Index-3

message storage

principals, 7-17

message tracking, 7-2

message-centric integration, 1-15

message-oriented middleware, 1-14

messaging architecture

identifying, 2-5

messaging technologies, 3-19

metadata, 7-3

Microsoft Com+, 3-4

mixed programming environments, 8-5

MQSeries Driver, 8-3

MQSeries Procedural Gateway, 7-14

Multicast Driver, 8-3

multiconsumer queues, 7-12

multi-step business processes

automating, 2-4

N
name

agent, 7-3

name separators, 9-7

Naming Contexts, Seperable, 9-8

naming hierarchy, 9-7

Naming Model, LDAP, 9-5, 9-6

native AQ, 7-7

Net8, 1-16

no request-response requirements, 1-16

Non-Persistent Queues, 7-7

notifications, 10-4

NULL, 7-4

O
object adapter, 3-4

object classes, 9-6

Object Management Group, 1-13

Object Request Broker, 3-3

Object Transaction Service, 3-3

objective

key for Oracle Integration Server, 3-17

of the Oracle Integration Server, ii

OEM, 3-13

OIS, A-1

OJMS, 7-13

OMB, 8-2

OMG, 1-13

OO4O, 7-7

Oracle

contacting, xiii

Oracle Data Access Gateways, 3-3

Oracle Discoverer, 7-18

Oracle Enterprise Manager (OEM), 3-13

Oracle Express, 7-19

Oracle Integration Server

functions of, 3-15

objectives of, ii

Oracle Internet Directory (OID), 9-1

Oracle JDeveloper, 3-4

Oracle Message Broker, 8-2, 8-14

Oracle Message Broker Drivers, 8-3

Oracle Object Types, 7-9

Oracle Objects for OLE, 7-7

Oracle Procedural Gateway, 7-10

Oracle Reports, 7-18

Oracle Workflow, 10-1

Oracle8i Java VM

facilities, 5-2

ORB, 3-3

OTS, 3-3

OUTBOUND queue, 8-13

overview

e-business integration, 1-1

Oracle Integration Server, 3-1

P
packaged applications, 1-4

Payload, 7-3

payload

autonomous, C-2

hybrid, C-3

pointer, C-2

persistent storage, 3-19

PL/SQL, 10-10

PL/SQL callout functionality, 10-9

pointer payloads, C-1, C-2

point-to-point interface, 2-4

point-to-point messaging, 9-1
Index-4 Beta Draft

Procedural Gateway for MQSeries, 7-14, 8-14

procedural gateways, 3-3

producers, 7-3

product development life-cycles, 3-17

programmatic extensibility, 10-4

Programming Languages, 8-13

propagation

message, 7-4

protocol

agent, 7-3

publish and subscribe, 3-4

publish-subscribe support, 7-7

Q
QMNn, 7-5

querying, 7-6

queue

definition, 7-3

Queue Monitor, definition, 7-5

queue table

definition, 7-3

queue tables, 7-9

R
RAS capabilities, 3-14

RAW datatype, 7-16

RDN, 9-7

recipient

message, 7-4

Recipient and Subscription Lists, 7-4

Recovery, 7-2

reengineering

business process, 1-4

related documents, iv

Rendezvous, 8-6, 8-14

reports, 7-18

Restrictions, 7-10

Retention and Message History, 7-6

rule

definition, 7-5

Rule-Based Subscriber, definition, 7-5

S
SAVEPOINTs, 7-9

Scenario, Workflow, 8-8

Schema Management, 7-8

scope

of this book, ii

Secure Socket Layers (SSL), 9-9

security, 3-4

Security Enforcement, 9-8

Security Model, LDAP, 9-5

semantic transformation, 2-6

Separable Naming Contexts, 9-8

Sort Order, 9-7

SSL/X.509 release 3 certificate, 9-8

store and forward capability, 7-2

Storing Message Headers, 7-16

storing message payloads, 7-16

strategic infrastructure

of Oracle Integration Server, 3-13

structure

of this document, iii

structured payload, 7-6

subscriber

definition, 7-4

Subscription Lists, 7-4

supply chains

virtual and dynamic, 1-4

Supporting JABs on Oracle8i Java VM, 5-11

synchronizing

data between systems, 1-7

synchronizing data

among systems, 2-2

synchronous communication, 1-13

request and reply, 1-9

with functional interfaces, 2-8

system events, D-2

T
The, iv

TIB Adapter, 7-10

TIB Adapter for Oracle, 8-14

TIBCO Driver, 8-3

TNSNames file, 9-3

Tools, Transformation, 8-14
 Beta Draft Index-5

topics, 7-9

Tracking and Event Journals, 7-6

Tracking, Message, 7-2

transactional data synchronization, 1-7

Transactional Session, 7-9

Transformation Engines, 8-14

transformers

message, 8-14

transparent gateways, 3-3

U
user data properties, 7-5

V
Visual Workbench, 7-10

Volatile Driver, 8-3

Volatile Queues, 7-17

W
W3C interfaces, 7-7

WF_OUTBOUND queue, 8-13

Workflow, 10-1

overview, 10-2

workflow

and business process management, 2-7

Workflow Builder, 10-2

Workflow Definitions Loader, 10-3

Workflow Engine, 10-2

Workflow Monitor, 10-3

Workflow monitor, 10-5
Index-6 Beta Draft

 Beta Draft Index-7

Index-8 Beta Draft

	PDF Directory
	Contents
	Conventions in Text v
	Conventions in Code Examples vi
	Part I� Overview of E-Business and Integration
	1�Overview of E-Business Integration
	Introduction to E-Business Integration 1-2
	Mergers and Acquisitions 1-3
	Packaged Applications 1-4
	Business Process Re-engineering 1-4
	Virtual, Dynamic Supply Chains 1-4
	Customer Relationship Management 1-5
	Corporate Self-Service 1-5
	Business-to-Business Commerce 1-6
	Application Service Providers and Hosting 1-6

	Reasons for E-Business Integration 1-6
	Synchronizing Data Between Information Systems 1-7
	Isolating Applications and Businesses 1-8
	Streamlining Multistep Business Processes 1-9

	E-Business Integration Technologies and Approaches 1-11
	Data Consistency and Synchronization Technologies 1-11
	Component-Oriented Development Technologies 1-13
	Message-Oriented Middleware Technologies 1-14

	2� Methodology and Solutions
	Selecting the Appropriate E-Business Integration Methodology 2-2
	Synchronizing Data Among Systems 2-2
	Isolating Applications and Businesses from Each Other 2-3
	Automating Multi-step Business Processes 2-4

	Application Integration: The Solution Spectrum 2-7
	Data Integration 2-8
	Application Integration 2-8
	Synchronous Communication with Functional Interfaces 2-8
	Asynchronous Communication with Message-Based Interfaces 2-9

	Business Process Modeling and Execution 2-10
	Business Process Intelligence 2-10

	Business-to-Business Integration 2-11

	3�Overview of Oracle Integration Server
	Introduction to OIS 3-2
	Data Integration 3-3
	Replication 3-3
	Application Integration 3-3
	Business Process Intelligence 3-5
	Data Transformation 3-7
	Application Adapters 3-8
	Business Process Modeling and Execution 3-10
	Systems Management 3-13

	Oracle Integration Server Design Objectives 3-13
	Strategic Infrastructure, Not Tactical Point Solution 3-13
	Choose And Use As You Go 3-14
	Mission-Critical, Enterprise-Wide Integration 3-14
	Leveraging Your Investment 3-15

	Functions of OIS 3-15
	Key Objectives for OIS 3-17
	Security 3-17
	Product Development Life-Cycles 3-17
	Extensibility 3-18
	Encapsulation 3-18
	Component-Based Architectures 3-19
	New Messaging Technologies 3-19
	Auditing and Tracking 3-19
	Business Process Coordination 3-20
	Business Intelligence 3-20

	4� Key Integration Concepts
	Asynchronous Message-Based Integration 4-2
	An Example of the Use of Messaging for B2B Integration 4-2
	Communication Between the Supplier and Exchange 4-3
	Message and Data Transformation 4-3
	Business Process Management and Workflow 4-4

	Exchange Integration Scenario: Supplier Perspective 4-4
	Exchange Integration Scenario: Exchange Perspective 4-6

	Messaging Technology and Architecture 4-7
	Messaging Technology - An Overview 4-8
	Synchronous and Asynchronous Communication 4-8
	Session-Based and Sessionless Communication 4-9
	Stateless (“Without State”) and Stateful (“With State”) Communication 4-9
	Two-Way and One-Way Communication 4-10

	Message-Based Integration Architectures 4-10
	Point-to-Point Integration 4-10
	Hub-and-Spoke Integration 4-11
	Benefits and Trade-offs 4-12

	Messaging Technology 4-13
	Message Storage and Management 4-13
	Message Propagation and Routing 4-15
	Message Notification Models 4-17
	Event Notification 4-17
	Service Requests 4-18

	Message and Data Transformation Requirements 4-19
	Datatype Transformation 4-19
	Semantic Transformation 4-20

	Message and Data Transformation Issues 4-20
	Transformation Location 4-20
	Transformation Mechanism 4-20
	Transformation Event Frequency 4-21
	Message System Interoperability 4-22
	Java Messaging Service (JMS) 4-22
	The Oracle Implementation of JMS 4-24
	XML 4-25

	Part II� Products
	5� Synchronous Application Integration
	Facilities Provided by the Oracle8i Java VM 5-2
	Core Facilities Provided by Java VM 5-3
	Core Runtime Facilities Provided by Java VM 5-4
	Integration Between Java VM and the Database 5-5

	Developing Java Applications with the Oracle Database 5-7
	CORBA Facilities in Oracle8i 5-8
	Enterprise JavaBeans, an Overview 5-9

	Supporting JABs on the Oracle8i Java VM: an Architectural Overview 5-11
	Session Management Facilities 5-11
	Enterprise JavaBeans Services 5-12

	6�Data Replication and Gateways
	Oracle Replication, an Overview 6-2
	Advantages of Replication 6-2
	Uses of Replication 6-3
	Types of Replication 6-4
	Multimaster Replication 6-4
	Snapshot Replication 6-4
	Hybrid Configurations 6-4

	Data Access Gateways 6-5
	Oracle Transparent Gateways 6-5
	Oracle Procedural Gateways 6-6
	Oracle Procedural Gateway for APPC 6-6
	Oracle Access Managers 6-7

	Uses of Oracle Replication and Gateways 6-7
	Interoperability 6-8

	7�Oracle Advanced Queuing and JMS
	A Brief Review of the Products 7-2
	Advanced Queuing 7-2
	Components of Advanced Queueing 7-2
	Message 7-3
	Queue 7-3
	Queue Table 7-3
	Agent 7-3
	Recipient 7-4
	Recipient and Subscription Lists 7-4
	Rule 7-5
	Rule-Based Subscriber 7-5
	Queue Monitor 7-5

	General Features of Advanced Queueing 7-5
	SQL Access 7-5
	Integrated Database Level Operational Support 7-6
	Structured Payload 7-6
	Retention and Message History 7-6
	Tracking and Event Journals 7-6
	Integrated Transactions 7-7
	Queue- Level Access Control 7-7
	Non-Persistent Queues 7-7
	Publish-Subscribe Support 7-7

	Two Contexts for Developing Queueing Operations 7-7
	Oracle Java Messaging Service (OJMS) 7-8
	Agents 7-8
	Additional Message Control Properties 7-8
	Additional Message Type 7-9
	Transactional Session 7-9
	Administration 7-9
	Restrictions 7-10

	Oracle Procedural Gateway for IBM MQSeries 7-10
	TIB Adapter for Oracle 7-10

	Applying the Products in an Integration Solution 7-11
	Advanced Queuing 7-11
	Business Event Integration 7-11
	Data integration 7-13

	OJMS 7-13
	Procedural Gateway for MQSeries 7-14
	Interoperability 7-14
	MQSeries Example 7-15

	Business Intelligence and Message Warehousing 7-15
	Persistent Queues 7-15
	Volatile Queues 7-17
	Basic Principles of Message Storage 7-17

	Business Intelligence Tools 7-18
	Reports 7-18
	Discoverer 7-18
	Express 7-19

	8�Oracle Message Broker and JMS
	Overview 8-2
	Oracle Message Broker Core 8-2
	Drivers 8-3
	Administrative Components and the LDAP Directory 8-3
	Client Programming Interface 8-3
	Adapter Developers Toolkit 8-4

	Uses of OJMS and OMB 8-4
	AQ API Compatibility 8-5
	Interoperability with Other Messaging Technologies 8-6
	MQSeries Example 8-7
	Workflow Example 8-8

	Enabling Tools 8-13
	Programming Languages 8-13
	Transformation Engines 8-14
	Message Transformers 8-14

	9� Directory Services (LDAP)
	Java and Directory Service Integration 9-2
	Directory Services - An Introduction 9-2
	The Problem 9-2
	The Solution 9-3

	Directory Services and LDAP, a Technical Overview 9-3
	LDAP Information Model 9-5
	LDAP Naming Model 9-6
	LDAP Functional Model 9-7

	Oracle Internet Directory 9-9

	10�Workflow
	Overview 10-2
	Key Workflow Components 10-2
	Oracle Workflow Builder 10-2
	Workflow Engine 10-2
	Workflow Definitions Loader 10-3
	Workflow Monitor 10-3

	Key Workflow Features 10-3
	Complete Programmatic Extensibility 10-4
	Electronic Notifications 10-4
	Electronic Mail Integration 10-4
	Internet-Enabled Workflow 10-4
	Monitoring and Administration 10-5
	Business Event System 10-5
	Workflow Monitor 10-5
	Uses 10-5
	AQ API 10-6
	Queue APIs 10-7
	Developer APIs for the Inbound Queue 10-8
	Payload Structure 10-9

	PL/SQL Callout Functionality 10-9
	Instantiating Business Process Instances Using PL/SQL and Java 10-10
	Interoperability 10-10

	Part III� Reference
	A� Mercator Enterprise Broker and OIS
	Introduction A-2
	System Editor A-2
	Type Tree Editor A-3
	Database Editor A-3
	Mapping Editor A-3
	Input Cards A-4
	Output Cards A-4
	Maps A-4

	Enterprise Broker Engine A-5
	Uses of Enterprise Broker in the Oracle Integration Server A-5

	Hints and Tips A-5

	B� Front-End and Back-End Integration
	Front-End Integration B-2
	Advantages B-3
	Drawbacks B-3

	Back-End Integration B-3
	Advantages B-5
	Drawbacks B-5

	C� Autonomous and Pointer Payloads
	Pointer Payload C-2
	Example 1: Video Film C-2
	Example 2: Changes to a Name and Address Database C-2

	Autonomous Payload C-2
	Example 1: Share Trading C-3
	Example 2: Stock Control C-3

	Hybrid Payload C-3
	Example: Marketing C-4

	D� Business Events and System Events
	Business Events D-1
	System Events D-2
	Example: Raising an Order D-2

	Distinctions between Business and System Events D-2
	Example: Emphasizing System Events D-3
	Example: Emphasizing Business Events D-3

	1 Overview of E-Business Integration
	Introduction to E-Business Integration
	Mergers and Acquisitions
	Packaged Applications
	Business Process Re-engineering
	Virtual, Dynamic Supply Chains
	Customer Relationship Management
	Corporate Self-Service
	Business-to-Business Commerce
	Application Service Providers and Hosting

	Reasons for E-Business Integration
	Synchronizing Data Between Information Systems
	Isolating Applications and Businesses
	Streamlining Multistep Business Processes

	E-Business Integration Technologies and Approaches
	Data Consistency and Synchronization Technologies
	Component-Oriented Development Technologies
	Message-Oriented Middleware Technologies

	2 Methodology and Solutions
	Selecting the Appropriate E-Business Integration Methodology
	Synchronizing Data Among Systems
	Isolating Applications and Businesses from Each Other
	Automating Multi-step Business Processes

	Application Integration: The Solution Spectrum
	Data Integration
	Scenario:
	Problem:
	Solution:

	Application Integration
	Synchronous Communication with Functional Interfaces
	Scenario:
	Problem:
	Solution:

	Asynchronous Communication with Message-Based Interfaces
	Scenario:
	Problem:
	Solution:

	Business Process Modeling and Execution
	Scenario:
	Problem:
	Solution:

	Business Process Intelligence
	Scenario:
	Problem:
	Solution:

	Business-to-Business Integration

	3 Overview of Oracle Integration Server
	Introduction to OIS
	Data Integration
	Replication
	Application Integration
	Business Process Intelligence
	Data Transformation
	Application Adapters
	Functionality:
	Deployment:
	Adapter SDK:

	Business Process Modeling and Execution
	Execution Engine:

	Systems Management

	Oracle Integration Server Design Objectives
	Strategic Infrastructure, Not Tactical Point Solution
	Choose And Use As You Go
	Mission-Critical, Enterprise-Wide Integration
	Leveraging Your Investment

	Functions of OIS
	Key Objectives for OIS
	Security
	Product Development Life-Cycles
	Extensibility
	Encapsulation
	Component-Based Architectures
	New Messaging Technologies
	Auditing and Tracking
	Business Process Coordination
	Business Intelligence

	4 Key Integration Concepts
	Asynchronous Message-Based Integration
	An Example of the Use of Messaging for B2B Integration
	Communication Between the Supplier and Exchange
	Message and Data Transformation
	Business Process Management and Workflow

	Exchange Integration Scenario: Supplier Perspective
	Exchange Integration Scenario: Exchange Perspective

	Messaging Technology and Architecture
	Messaging Technology - An Overview
	Synchronous and Asynchronous Communication
	Session-Based and Sessionless Communication
	Stateless (“Without State”) and Stateful (“With State”) Communication
	Two-Way and One-Way Communication

	Message-Based Integration Architectures
	Point-to-Point Integration
	Hub-and-Spoke Integration
	Benefits and Trade-offs

	Messaging Technology
	Message Storage and Management
	Message Propagation and Routing
	Message Notification Models
	Event Notification
	Service Requests

	Message and Data Transformation Requirements
	Datatype Transformation
	Semantic Transformation

	Message and Data Transformation Issues
	Transformation Location
	Transformation Mechanism
	Transformation Event Frequency
	Message System Interoperability
	Java Messaging Service (JMS)
	The Oracle Implementation of JMS
	XML

	5 Synchronous Application Integration
	Facilities Provided by the Oracle8i Java VM
	Core Facilities Provided by Java VM
	Core Runtime Facilities Provided by Java VM
	Integration Between Java VM and the Database

	Developing Java Applications with the Oracle Database
	CORBA Facilities in Oracle8i
	Enterprise JavaBeans, an Overview

	Supporting JABs on the Oracle8i Java VM: an Architectural Overview
	Session Management Facilities
	Enterprise JavaBeans Services

	6 Data Replication and Gateways
	Oracle Replication, an Overview
	Advantages of Replication
	Uses of Replication
	Types of Replication
	Multimaster Replication
	Snapshot Replication
	Hybrid Configurations

	Data Access Gateways
	Oracle Transparent Gateways
	Oracle Procedural Gateways
	Oracle Procedural Gateway for APPC
	Oracle Access Managers

	Uses of Oracle Replication and Gateways
	Interoperability

	7 Oracle Advanced Queuing and JMS
	A Brief Review of the Products
	Advanced Queuing
	Components of Advanced Queueing
	Message
	Queue
	Queue Table
	Agent
	Recipient
	Recipient and Subscription Lists
	Rule
	Rule-Based Subscriber
	Queue Monitor

	General Features of Advanced Queueing
	SQL Access
	Integrated Database Level Operational Support
	Structured Payload
	Retention and Message History
	Tracking and Event Journals
	Integrated Transactions
	Queue- Level Access Control
	Non-Persistent Queues
	Publish-Subscribe Support

	Two Contexts for Developing Queueing Operations
	Oracle Java Messaging Service (OJMS)
	Agents
	Additional Message Control Properties
	Additional Message Type
	Transactional Session
	Administration
	Restrictions

	Oracle Procedural Gateway for IBM MQSeries
	TIB Adapter for Oracle

	Applying the Products in an Integration Solution
	Advanced Queuing
	Business Event Integration
	Data integration

	OJMS
	Procedural Gateway for MQSeries
	Interoperability
	MQSeries Example

	Business Intelligence and Message Warehousing
	Persistent Queues
	Volatile Queues
	Basic Principles of Message Storage

	Business Intelligence Tools
	Reports
	Discoverer
	Express

	8 Oracle Message Broker and JMS
	Overview
	Oracle Message Broker Core
	Drivers
	Administrative Components and the LDAP Directory
	Client Programming Interface
	Adapter Developers Toolkit

	Uses of OJMS and OMB
	AQ API Compatibility
	Interoperability with Other Messaging Technologies
	MQSeries Example
	Workflow Example

	Enabling Tools
	Programming Languages
	Transformation Engines
	Message Transformers

	9 Directory Services (LDAP)
	Java and Directory Service Integration
	Directory Services - An Introduction
	The Problem
	The Solution

	Directory Services and LDAP, a Technical Overview
	LDAP Information Model
	LDAP Naming Model
	LDAP Functional Model
	Separable Naming Contexts:
	Hierarchical Information:
	Security Enforcement:

	Oracle Internet Directory

	10 Workflow
	Overview
	Key Workflow Components
	Oracle Workflow Builder
	Workflow Engine
	Workflow Definitions Loader
	Workflow Monitor

	Key Workflow Features
	Complete Programmatic Extensibility
	Electronic Notifications
	Electronic Mail Integration
	Internet-Enabled Workflow
	Monitoring and Administration
	Business Event System
	Workflow Monitor
	Uses
	AQ API
	Queue APIs
	Developer APIs for the Inbound Queue
	Payload Structure

	PL/SQL Callout Functionality
	Instantiating Business Process Instances Using PL/SQL and Java
	Interoperability

	A Mercator Enterprise Broker and OIS
	Introduction
	System Editor
	Type Tree Editor
	Database Editor
	Mapping Editor
	Input Cards
	Output Cards
	Maps

	Enterprise Broker Engine
	Uses of Enterprise Broker in the Oracle Integration Server

	Hints and Tips

	B Front-End and Back-End Integration
	Front-End Integration
	Advantages
	Drawbacks

	Back-End Integration
	Advantages
	Drawbacks

	C Autonomous and Pointer Payloads
	Pointer Payload
	Example 1: Video Film
	Example 2: Changes to a Name and Address Database

	Autonomous Payload
	Example 1: Share Trading
	Example 2: Stock Control

	Hybrid Payload
	Example: Marketing

	D Business Events and System Events
	Business Events
	System Events
	Example: Raising an Order

	Distinctions between Business and System Events
	Example: Emphasizing System Events
	Example: Emphasizing Business Events

	Index

