
Oracle8 i Parallel Server

Concepts

Release 2 (8.1.6)

December 1999

Part No.  A76968-01



Oracle8i Parallel Server Concepts, Release 2 (8.1.6)

Part No.  A76968-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Mark Bauer.

Primary Contributors: Wilson Chan, Sohan Demel, Merrill Holt, and Michael Zoll.

Contributors: Christina Anonuevo, Lance Ashdown, David Austin, Bill Bridge, Sandra Cheever, Carol
Colrain, Mark Coyle, Connie Dialeris, Karl Dias, Anurag Gupta, Deepak Gupta, Mike Hartstein, Andrew
Holdsworth, Ken Jacobs, Ashok Joshi, Jonathan Klein, Jan Klokkers, Boris Klots,  Anjo Kolk, Tirthankar
Lahiri, Bill Lee, Lefty Leverenz, Juan Loaiza, Sajjad Masud, Neil Macnaughton, Ravi Mirchandaney, Rita
Moran, Kant Patel, Erik Peterson, Mark Porter, Darryl Presley, Brian Quigley, Ann Rhee, Pat Ritto, Roger
Sanders, Hari Sankar, Ekrem Soylemez, Vinay Srihari, Bob Thome, Alex Tsukerman, Tak Wang, Graham
Wood, and Betty Wu.

Graphic Designer: Valarie Moore.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle, SQL*Loader, Secure Network Services, and SQL*Plus are registered trademarks of Oracle
Corporation, Redwood Shores, California. Oracle Call Interface, Oracle8i, Oracle8, Oracle Parallel Server,
Oracle Forms, Oracle TRACE, Oracle Expert, Oracle Enterprise Manager, Oracle Server Manager, Net8,
PL/SQL, and Pro*C are trademarks of Oracle Corporation, Redwood Shores, California.



iii

Contents

Send Us Your Comments ................................................................................................................... xi

Preface .......................................................................................................................................................... xiii

Part I  Parallel Processing Fundamentals

1 Introduction to Oracle Parallel Server

What Is Oracle Parallel Server?........................................................................................................ 1-2
Benefits of Oracle Parallel Server .................................................................................................... 1-2

Scalability....................................................................................................................................... 1-3
High Availability .......................................................................................................................... 1-3
Transparency................................................................................................................................. 1-3

2 Parallel Hardware Architecture

Overview of Cluster Hardware Components................................................................................ 2-2
What is a Node? ............................................................................................................................ 2-2

Memory Access.................................................................................................................................... 2-2
Uniform Memory Access............................................................................................................. 2-3
Non-Uniform Memory Access.................................................................................................... 2-3

The High Speed Interconnect........................................................................................................... 2-4
Clusters - Nodes and the Interconnect............................................................................................ 2-5
Storage Access in Clustered Systems.............................................................................................. 2-5

Uniform Disk Access.................................................................................................................... 2-5
Non-Uniform Disk Access........................................................................................................... 2-6

Oracle Parallel Server Runs on a Wide Variety of Clusters........................................................ 2-8

3 Oracle Parallel Server Architecture

Oracle Parallel Server Components for Clustered Systems ....................................................... 3-2
Overview of Components for Clustered Systems ................................................................... 3-2



iv

The Cluster Manager.................................................................................................................... 3-3
Distributed Lock Manager........................................................................................................... 3-4
The Cluster Interconnect and Inter-Process Communication (Node-to-Node) .................. 3-6
Disk Subsystems ........................................................................................................................... 3-7

Part II  Oracle Parallel Server Lock Processing

4 Inter-instance Coordination

Synchronization .................................................................................................................................. 4-2
Local Locks ........................................................................................................................................... 4-3
Global Locks ........................................................................................................................................ 4-4
Non-Parallel Cache Management Coordination........................................................................... 4-5

Non-Parallel Cache Management Locks ................................................................................... 4-5
Non-PCM Global Locks ............................................................................................................... 4-5
Overview of Non-Parallel Cache Management Locks ............................................................ 4-6

Parallel Cache Management Coordination .................................................................................... 4-8
Example of Parallel Cache Management Processing............................................................. 4-10
Block Level Locking ................................................................................................................... 4-13

5 Parallel Cache Management

Parallel Cache Management and Lock Implementation ............................................................. 5-2
The Role of Cache Fusion in Resolving Cache Coherency Conflicts .................................... 5-2

Lock Duration and Granularity........................................................................................................ 5-4
Two Types of Lock Duration ...................................................................................................... 5-4
Two Forms of Lock Granularity ................................................................................................. 5-5
The Cost of Locks.......................................................................................................................... 5-6

Coordination of Locking Mechanisms by the Distributed Lock Manager ............................. 5-7
Lock Modes As Resource Access Rights ................................................................................... 5-8
Instances Map Database Resources to Distributed Lock Manager Resources................... 5-10
The Distributed Lock Manager Records Lock Information.................................................. 5-10

How Distributed Lock Manager Locks and Global Locks Relate........................................... 5-11
One Lock Per Instance on a Resource ...................................................................................... 5-13

Lock Elements and Parallel Cache Management Locks ............................................................ 5-14
Lock Elements for Fixed Parallel Cache Management Locks............................................... 5-14



v

Lock Elements for Releasable Parallel Cache Management Locks...................................... 5-15
Lock Elements for 1:1 Parallel Cache Management Locks ................................................... 5-15

How Parallel Cache Management Locks Operate ...................................................................... 5-16
Parallel Cache Management Locks Are Owned by Instance LCK Processes .................... 5-17
Multiple Instances Can Own the Same Locks ........................................................................ 5-17
How 1:1 Locking Works ............................................................................................................ 5-18

Number of Blocks Per Parallel Cache Management Lock ........................................................ 5-20
Example of Locks Covering Multiple Blocks ......................................................................... 5-21
Periodicity of Fixed Parallel Cache Management Locks....................................................... 5-22
Pinging: Signaling the Need to Update................................................................................... 5-22
Lock Mode and Buffer State...................................................................................................... 5-24

How The DLM Grants and Coordinates Resource Lock Requests......................................... 5-26
Specifying the Allocation and Duration of Locks...................................................................... 5-31

Number of Blocks Per Parallel Cache Management Lock .................................................... 5-31
Selecting Lock Granularity........................................................................................................ 5-32
Simultaneously Using Fixed and Releasable Locking .......................................................... 5-33

Group-Owned Locks........................................................................................................................ 5-33
Distributed Lock Manager Support for Multi-threaded Server and XA............................ 5-33

Memory Requirements for the Distributed Lock Manager ..................................................... 5-34

Part III  Implementing Oracle Parallel Server

6 Oracle Parallel Server Components

Instance and Database Components for Oracle Parallel Server................................................ 6-2
Parallel Server-Specific Processes............................................................................................... 6-2
Overview of Oracle Parallel Server Processes.......................................................................... 6-4

Cache Fusion Processing and the Block Server Process.............................................................. 6-5
System Change Number Processing ............................................................................................... 6-6

How Lamport SCN Generation Works ..................................................................................... 6-6

7 Oracle Parallel Server Storage Considerations

Oracle Parallel Server-Specific Storage Issues .............................................................................. 7-2
Data Files........................................................................................................................................ 7-2
Redo Log Files............................................................................................................................... 7-3



vi

Rollback Segments........................................................................................................................ 7-6
Space Management and Free List Groups.................................................................................... 7-10
How Oracle Handles Free Space .................................................................................................... 7-10

Segments, Extents, and The High Water Mark ...................................................................... 7-10
Free Lists and Free List Groups...................................................................................................... 7-12
Free List Groups ................................................................................................................................ 7-13

Avoiding Contention for The Segment Header and Free LIst ............................................. 7-14
Free List Group Examples ......................................................................................................... 7-16
Partitioning Data with Free List Groups ................................................................................. 7-19
How Oracle Partitions Free List Groups ................................................................................. 7-19

Associating Instances, Users, and Locks with Free List Groups ............................................. 7-20
Associating Instances with Free Lists ...................................................................................... 7-20
Associating User Processes with Free Lists ............................................................................ 7-21
Associating PCM Locks with Free Lists .................................................................................. 7-21

SQL Options for Managing Free Space ........................................................................................ 7-24
Controlling Extent Allocation......................................................................................................... 7-25

Automatic Allocation of New Extents ..................................................................................... 7-25
Pre-allocation of New Extents................................................................................................... 7-25
Moving the High Water Mark of a Segment........................................................................... 7-26

8 Scalability and Oracle Parallel Server

Scalability Features of Oracle Parallel Server ............................................................................... 8-2
Enhanced Throughput: Scale-up ................................................................................................ 8-2
Speed-Up and Scale-up: the Goals of Parallel Processing ...................................................... 8-3

When Is Parallel Processing Advantageous?................................................................................. 8-5
Decision Support Systems ........................................................................................................... 8-5
Applications Updating Different Data Blocks.......................................................................... 8-6
Application Profiles...................................................................................................................... 8-7

Multi-Node Parallel Execution......................................................................................................... 8-8
Overview of Client-to-server Connectivity.................................................................................... 8-8

Enhanced Scalability Using the Multi-threaded Server .......................................................... 8-9
Connect-Time Failover for Multiple Listeners ....................................................................... 8-10
Client Load Balancing for Multiple Listeners......................................................................... 8-10

The Four Levels of Scalability ........................................................................................................ 8-10
Scalability of Hardware and Network..................................................................................... 8-11



vii

Scalability of Operating System ............................................................................................... 8-12
Scalability of Database Management System......................................................................... 8-12
Scalability of Application .......................................................................................................... 8-12
The Sequence Generator ............................................................................................................ 8-13
Oracle Parallel Execution on Oracle Parallel Server ............................................................. 8-16

9 High Availability and Oracle Parallel Server

What is High Availability?................................................................................................................ 9-2
Measuring Availability ................................................................................................................ 9-2
The Metrics of High Availability................................................................................................ 9-2
Causes of Outages ........................................................................................................................ 9-3

Planning for High Availability ........................................................................................................ 9-4
System Level Planning................................................................................................................. 9-4

Oracle Parallel Server and High Availability................................................................................ 9-5
Cluster Components and High Availability............................................................................. 9-5
Disaster Planning.......................................................................................................................... 9-7

Failure Protection Validation............................................................................................................ 9-7
Failover and Oracle Parallel Server Systems................................................................................. 9-8
The Basics of Failover ........................................................................................................................ 9-8

The Duration of Failover ............................................................................................................. 9-9
Client Failover ..................................................................................................................................... 9-9

Uses of Transparent Application Failover .............................................................................. 9-10
Server Failover................................................................................................................................... 9-12

Host-Based Failover ................................................................................................................... 9-12
Oracle Parallel Server Failover ................................................................................................. 9-13
How Does Oracle Parallel Server Failover Work?................................................................. 9-13

Oracle Parallel Server High Availability Configurations ......................................................... 9-17
Default N-node Parallel Server Configuration....................................................................... 9-17
Basic High Availability Configuration .................................................................................... 9-18
Shared High Availability Node Configuration...................................................................... 9-24

Toward Deploying High Availability ........................................................................................... 9-25



viii

Part IV  Reference

A Differences Between Releases

Differences Between 8.1 and 8.1.6.................................................................................................... A-2
New Features................................................................................................................................. A-2
Obsolete Parameters..................................................................................................................... A-2
Obsolete Statistics ......................................................................................................................... A-2
New Statistics ................................................................................................................................ A-2
Changes in Default Parameter Settings ..................................................................................... A-2

Differences Between 8.0.4 and 8.1.................................................................................................... A-3
Cache Fusion Architecture Changes .......................................................................................... A-3
New Views..................................................................................................................................... A-3
Removal of GMS ........................................................................................................................... A-4
Parallel Transaction Recovery is now "Fast-Start Parallel Rollback" .................................... A-4
Changes to Instance Registration ............................................................................................... A-4
Listener Load Balancing .............................................................................................................. A-5
Diagnostic Enhancements ........................................................................................................... A-5
Oracle Parallel Server Management (OPSM)............................................................................ A-5
Parallel Server Installation and Database Configuration........................................................ A-5
Instance Affinity for Jobs ............................................................................................................. A-6
Obsolete Parameters..................................................................................................................... A-6

Differences Between Release 8.0.3 and Release 8.0.4................................................................... A-7
New Initialization Parameters .................................................................................................... A-7
Obsolete Initialization Parameters ............................................................................................. A-7
Obsolete Startup Parameters....................................................................................................... A-7
Dynamic Performance Views...................................................................................................... A-7
Group Membership Services....................................................................................................... A-7

Differences Between Release 7.3 and Release 8.0.3...................................................................... A-8
New Initialization Parameters .................................................................................................... A-8
Obsolete GC_* Parameters .......................................................................................................... A-8
Changed GC_* Parameters.......................................................................................................... A-8
Dynamic Performance Views...................................................................................................... A-9
Global Dynamic Performance Views......................................................................................... A-9
Integrated Distributed Lock Manager ....................................................................................... A-9
Instance Groups ......................................................................................................................... A-10



ix

Group Membership Services..................................................................................................... A-10
Fine Grain Locking ..................................................................................................................... A-10



x



xi

Send Us Your Comments

Oracle8i Parallel Server Concepts , Release 2 (8.1.6)

Part No.  A76968-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail: infodev@us.oracle.com

■ FAX: (650) 506-7228   Attn: Oracle Server Documentation

■ Postal service:

Oracle Corporation

Server Documentation Manager

500 Oracle Parkway, 4OP12

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.



xii



xiii

Preface

This manual prepares you to successfully implement parallel processing by

presenting Oracle Parallel Server concepts. Information in this manual applies to

Oracle Parallel Server as it runs on all operating systems.

You should read this manual before reading the Oracle8i Parallel Server Setup and
Configuration Guide and Oracle8i Parallel Server Administration, Deployment, and
Performance. For general information about Oracle and administering the Oracle

Server, refer to Oracle8i Concepts. and the Oracle8i Administrator’s Guide.

What’s New in Oracle8 i?
This book has been re-written for Oracle8i. Oracle8i introduces Cache Fusion, a

feature that reduces the overhead of resolving read/write conflicts caused by

inter-instance contention. This greatly enhances performance as well as Oracle

Parallel Server scalability.

Release 8.1.5
Release 8.1.5 introduced the first phase of Cache Fusion.

Release 8.1.6
Release 8.1.6 introduces further enhancements to Cache Fusion as well as the

Primary/Secondary Instance feature. There are also several new performance

statistics.

See Also: You can also use the Oracle8i Parallel Server
Documentation Online Roadmap to help you use the online Oracle

Parallel Server Documentation set.

See Also: Appendix A, "Differences Between Releases" for

information on feature changes from one release of Oracle Parallel
Server to another.



xiv

Intended Audience
This manual is written for database administrators and application developers who

work with Oracle Parallel Server.

How this Book is Organized
This book presents Oracle Parallel Server concepts in four parts. It begins by

describing parallel processing fundamentals for Oracle Parallel Server. The book

then covers synchronization processing among instances and explains the

fundamentals of how Oracle Parallel Server is implemented. It ends with reference

material that includes an appendix describing the differences between versions, and

an appendix describing the implementation restrictions of Oracle Parallel Server.

Structure
This book has been reorganized for 8.1.6 into the following four parts:

Part I, "Parallel Processing Fundamentals"

Chapter 1, "Introduction to Oracle Parallel

Server"

This chapter introduces parallel processing and

parallel database technologies that offer

advantages for online transaction processing and

decision support applications.

Chapter 2, "Parallel Hardware Architecture" This chapter describes the hardware components

and high-level architectural models that typify

cluster environments.

Chapter 3, "Oracle Parallel Server Architecture" This chapter describes the architectural

components that Oracle provides for Parallel

Server processing that are in addition to the

single-instance components.



xv

Part II, "Oracle Parallel Server Lock Processing"

Part III, "Implementing Oracle Parallel Server"

Part IV, "Reference"

Chapter 4, "Inter-Instance Coordination" This chapter provides a detailed discussion of the

inter-instance coordination activities involved in a

cluster.

Chapter 5, "Parallel Cache Management" This chapter provides detail on Parallel Cache

Management locking.

Chapter 6, "Oracle Parallel Server Components" This chapter describes the implementation

components for Oracle Parallel Server

applications.

Chapter 7, "Oracle Parallel Server Storage

Considerations"

This chapter describes the storage considerations

for Oracle Parallel Server applications.

Chapter 8, "Scalability and Oracle Parallel

Server"

This chapter describes the scalability features of

Oracle Parallel Server.

Chapter 9, "High Availability and Oracle

Parallel Server"

This chapter describes the concepts and some of

the "best practices" methodologies for using

Oracle Parallel Server to implement high

availability.

Appendix A, "Differences Between Releases" This appendix describes the differences between this

release and previous releases of Oracle that pertain to

Oracle Parallel Server.

Appendix B, "Restrictions" This appendix lists restrictions for Oracle Parallel

Server.



xvi

Related Documents
After reading this manual, read Oracle8i Parallel Server Setup and Configuration Guide
and the Oracle8i Parallel Server Administration, Deployment, and Performance.

Read the following manuals for more information:

Installation Guides
■ Oracle8i Installation Guide for Sun Solaris, HP 9000 and AIX-based systems

■ Oracle8i Installation Guide for Windows NT

■ Oracle Diagnostics Pack Installation

Operating System-Specific Administrative Guides
■ Oracle8i Administrator’s Reference for Sun Solaris, HP 9000 or AIX-based systems

■ Oracle Parallel Server Administrator’s Guide for Windows NT

■ Oracle8i Administrator’s Guide for Windows NT

Oracle Parallel Server Management
■ Oracle Enterprise Manager Administrator’s Guide

■ Getting Started with the Oracle Diagnostics Pack

Oracle Server Documentation
■ Getting to Know Oracle8i

■ Oracle8i Concepts

■ Oracle8i Administrator’s Guide

■ Oracle8i Reference

■ Net8 Administrator’s Guide

Conventions
This section explains the conventions used in this manual including the following:

■ Text

■ Syntax diagrams and notation

■ Code examples



xvii

Text
This section explains the conventions used within the text:

UPPERCASE Characters
Uppercase text is used to call attention to command keywords, object names,

parameters, filenames, and so on.

For example, "If you create a private rollback segment, the name must be included

in the ROLLBACK_SEGMENTS parameter of the parameter file."

Italicized  Characters
Italicized words within text are book titles or emphasized words.

Syntax Diagrams and Notation
The syntax diagrams and notation in this manual show the syntax for SQL

commands, functions, hints, and other elements. This section tells you how to read

syntax diagrams and examples and write SQL statements based on them.

Keywords
Keywords are words that have special meanings in the SQL language. In the syntax

diagrams in this manual, keywords appear in uppercase. You must use keywords

in your SQL statements exactly as they appear in the syntax diagram, except that

they can be either uppercase or lowercase. For example, you must use the CREATE

keyword to begin your CREATE TABLE statements just as it appears in the

CREATE TABLE syntax diagram.

Parameters
Parameters act as place holders in syntax diagrams. They appear in lowercase.

Parameters are usually names of database objects, Oracle datatype names, or

expressions. When you see a parameter in a syntax diagram, substitute an object or

expression of the appropriate type in your SQL statement. For example, to write a

CREATE TABLE statement, use the name of the table you want to create, such as

EMP, in place of the table parameter in the syntax diagram. (Note that parameter

names appear in italics in the text.)

This list shows parameters that appear in the syntax diagrams in this manual and

examples of the values you might substitute for them in your statements:



xviii

Code Examples
SQL and SQL*Plus commands and statements appear separated from the text of

paragraphs in a monospaced font. For example:

   INSERT INTO emp (empno, ename) VALUES (1000, ’SMITH’);
   ALTER TABLESPACE users ADD DATAFILE ’users2.ora’ SIZE 50K;

Example statements may include punctuation, such as commas or quotation marks.

All punctuation in example statements is required. All example statements

terminate with a semicolon (;). Depending on the application, a semicolon or other

terminator may or may not be required to end a statement.

Uppercase words in example statements indicate the keywords within Oracle SQL.

When you issue statements, however, keywords are not case sensitive.

Parameter Description Examples

table The substitution value must be the
name of an object of the type
specified by the parameter.

emp

’text’ The substitution value must be a
character literal in single quotes.

’Employee Records’

condition The substitution value must be a
condition that evaluates to TRUE or
FALSE.

ename > ’A’

date

d

The substitution value must be a
date constant or an expression of
DATE datatype.

TO_DATE (

’01-Jan-1996’,

DD-MON-YYYY’)

expr The substitution value can be an
expression of any datatype.

sal + 1000

integer The substitution value must be an
integer.

72

subquery The substitution value must be a
SELECT statement contained in
another SQL statement.

SELECT ename

 FROM emp

statement_name

block_name

The substitution value must be an
identifier for a SQL statement or
PL/SQL block.

s1

b1



xix

Lowercase words in example statements indicate words supplied only for the

context of the example. For example, lowercase words may indicate the name of a

table, column, or file.



xx



Part I
 Parallel Processing Fundamentals

Part I describes the fundamentals of Oracle Parallel Server processing. The chapters

in this part are:

■ Chapter 1, "Introduction to Oracle Parallel Server"

■ Chapter 2, "Parallel Hardware Architecture"

■ Chapter 3, "Oracle Parallel Server Architecture"





Introduction to Oracle Parallel Server 1-1

1
Introduction to Oracle Parallel Server

This chapter introduces parallel processing and the parallel database technology

features of Oracle Parallel Server. Oracle Parallel Server offers significant

advantages for Online Transaction Processing (OLTP), Electronic Commerce,

Decision Support Systems (DSS), and hybrid system types. With the functionality of

Oracle Parallel Server, such systems can effectively exploit the redundancy of

parallel environments.

You can also use Oracle Parallel Server to deliver high performance, throughput,

and high availability. Whatever your goal, your challenge is to successfully deploy

these technologies to take full advantage of their multiprocessing powers. To do

this, you must understand how Oracle Parallel Server works, what resources it

requires, and how to effectively use it.

This chapter includes the following topics:

■ What Is Oracle Parallel Server?

■ Benefits of Oracle Parallel Server

Note: Oracle Parallel Server is not the same as the parallel

execution feature. Oracle Parallel Server refers to multiple

computers accessing a shared database while parallel execution

refers to multiple processes executing an operation in parallel.

Parallel execution is available on both single-instance and Oracle

Parallel Server installations.

See Also: Oracle8i Concepts for additional information on Oracle
Parallel Server.



What Is Oracle Parallel Server?

1-2 Oracle8i Parallel Server Concepts

What Is Oracle Parallel Server?
Oracle Parallel Server is a robust computing environment that harnesses the

processing power of multiple, interconnected computers. Oracle Parallel Server

software and a collection of hardware known as a "cluster", unites the processing

power of each component to become a single, robust computing environment. A

cluster generally comprises two or more computers, or "nodes".

In Oracle Parallel Server environments, all nodes concurrently execute transactions

against the same database. Oracle Parallel Server coordinates each node’s access to

the shared data to provide consistency and integrity.

Harnessing the power of multiple nodes offers obvious advantages. If you divide a

large task into sub-tasks and distribute the sub-tasks among multiple nodes, you

can complete the task faster than if only one node did the work. This type of parallel

processing is clearly more efficient than sequential processing. It also provides

increased performance to process larger workloads and accommodate growing user

populations.

If you establish high node-to-data affinity with accurate partitioning, you can

effectively scale your applications to meet increasing data processing demands. As

you add resources, Oracle Parallel Server can exploit them and extend their

processing powers beyond the limits of the individual components.

You can use Oracle Parallel Server for many system types. For example, data

warehousing applications accessing read-only data are prime candidates for Oracle

Parallel Server. In addition, Oracle Parallel Server successfully manages increasing

numbers of online transaction processing systems as well as hybrid systems that

combine the characteristics of both read-only and read/write applications.

Oracle Parallel Server also serves as an important component of robust High

Availability solutions. A properly configured Oracle Parallel Server environment

can tolerate failures with minimal or no downtime.

Benefits of Oracle Parallel Server
Some of the most important benefits beyond the obvious advantages of parallel

processing are described in the following sections. These benefits include improved

throughput and scalability over single-instance systems and improved response

time. An Oracle Parallel Server also provides an ideal High Availability solution by

resolving node failure in a clustered environment.



Benefits of Oracle Parallel Server

Introduction to Oracle Parallel Server 1-3

Oracle Parallel Server environments are functionally transparent when compared to

single-instance environments because they are functionally identical to

single-instance environments.

Scalability
Scalability is the ability to add additional nodes to properly deployed Oracle

Parallel Server applications and achieve markedly improved performance. Oracle

Parallel Server can take advantage of additional equipment and harness the

processing power of multiple systems.

High Availability
High availability refers to systems with redundant components that provide

consistent, uninterrupted service, even in the event of hardware or software

failures. In most high availability configurations, nodes are isolated from each other

so a failure at one node does not affect the entire system. In such a case, surviving

nodes recover the failed node and the system continues to provide data access to

users. This means data is consistently available, more so than it would be with a

single node upon node failure. High availability also implies increased database

availability.

Transparency
Transparency is the functional equivalent of single-instance exclusive Oracle and

shared configurations that use Oracle Parallel Server. Applications that run on

single instance Oracle execute with the same results using Oracle Parallel Server.

An Oracle database can be configured to execute in three different modes:

■ Single instance exclusive

■ Shared with a single instance

■ Shared with two or more instances

Installation of the Oracle Parallel Server option is required if you want to execute

transactions from multiple nodes in shared mode. Oracle Parallel Server offers

many performance features beyond those available in a single instance

environment.



Benefits of Oracle Parallel Server

1-4 Oracle8i Parallel Server Concepts

High Performance Features of Oracle Parallel Server
Oracle Parallel Server takes advantage of the parallel processing in a computer

cluster without sacrificing Oracle’s inherent transaction processing features. The

following sections discuss certain features in Oracle, both in exclusive and shared

modes, that result in improved application performance when these applications

run using Oracle Parallel Server.

Buffer Cache Management Within a single instance, Oracle stores resources, such as

data block and lock information, in a buffer cache that resides in memory. Storing

this information locally reduces the amount of disk I/O necessary for database

operations. Since each node in the Parallel Server has its own memory that is not

shared with other nodes, Oracle Parallel Server must coordinate the buffer caches of

different nodes while minimizing additional disk I/O that could reduce

performance. The Oracle parallel cache management technology maintains the

high-performance features of Oracle while coordinating multiple buffer caches.

Fast Commits, Group Commits, and Deferred Writes Fast commits, group commits, and

deferred writes operate on a per-instance basis in Oracle and work the same

whether in exclusive or shared mode.

Oracle only reads data blocks from disk if they are not already in the buffer cache of

the instance requesting the data. Because data block writes are deferred, they often

contain modifications from multiple transactions.

Optimally, Oracle writes modified data blocks to disk only when necessary:

■ When the blocks have not been used recently and new data requires buffer

cache space (in shared or exclusive mode)

■ During checkpoints (shared or exclusive mode)

■ When another instance needs the blocks (only in shared mode)

Row Locking and Multiversion Read Consistency Oracle’s row locking feature allows

multiple transactions from separate nodes to lock and update different rows of the

same data block. This is done without any of the transactions waiting for the others

to commit. If a row has been modified but not yet committed, the original row

values are available to all instances for read access. This is called multiversion read

consistency.

See Also: Oracle8i Concepts for detailed information about the

buffer cache.



Benefits of Oracle Parallel Server

Introduction to Oracle Parallel Server 1-5

Online Backup and Archiving Oracle Parallel Server supports all Oracle backup

features that are available in exclusive mode, including both online and offline

backups of either an entire database or individual tablespaces.

If you operate Oracle in ARCHIVELOG mode, online redo log files are archived

before they are overwritten. In Oracle Parallel Server, each instance can

automatically archive its own redo log files or one or more instances can manually

archive the redo log files for all instances.

In ARCHIVELOG mode, you can make both online and offline backups. If you

operate Oracle in NOARCHIVELOG mode, you can only make offline backups. If

you cannot afford any data loss, Oracle strongly recommends that you operate your

production databases in ARCHIVELOG mode.



Benefits of Oracle Parallel Server

1-6 Oracle8i Parallel Server Concepts



Parallel Hardware Architecture 2-1

2
Parallel Hardware Architecture

This chapter describes the hardware components and various high-level

architectural models that typify cluster environments. The model you select to

deploy your Oracle Parallel Server application depends on your processing goals.

Oracle Parallel Server environments are typically deployed with several nodes

interconnected to form a cluster. This chapter explains the basic hardware for nodes

as well as the hardware that is used to make the nodes into a cluster.

Topics in this chapter include:

■ Overview of Cluster Hardware Components

■ Memory Access

■ The High Speed Interconnect

■ Clusters - Nodes and the Interconnect

■ Storage Access in Clustered Systems

■ Oracle Parallel Server Runs on A Wide Variety of Clusters



Overview of Cluster Hardware Components

2-2 Oracle8i Parallel Server Concepts

Overview of Cluster Hardware Components
A cluster comprises two or more nodes that are linked by an interconnect. The

interconnect serves as the communication path between the nodes in the cluster.

The nodes use the interconnect for communication required to synchronize each

instance’s manipulation of the shared data. The shared data that the nodes access

resides in storage devices. A cluster is also known as a "loosely coupled computer

system".

The following sections describe these components in more detail.

What is a Node?
A node has four main components:

■ CPU – The main processing component of a computer that reads from and

writes to the computer’s main memory.

■ Memory – The component used for programmatic execution and the buffering

of data.

■ Storage – A device that stores data. Usually a persistent storage that must be

accessed by read/write transactions to alter its contents.

■ Interconnect – This is the communication link between the nodes.

You can purchase these components in a number of different configurations. Their

arrangement determines how each node in a cluster accesses memory and storage.

All clusters use CPUs in more or less the same manner. However, the remaining

components, memory, storage, and the interconnect, can be configured in different

ways for different purposes. The remaining sections of this chapter explain how

clusters use these components by describing:

■ Memory Access

■ The High Speed Interconnect

■ Clusters - Nodes and the Interconnect

■ Storage Access in Clustered Systems

Memory Access
Multiple CPUs are typically configured to share main memory. This allows you to

create a single computer system that delivers scalable performance. This type of



Memory Access

Parallel Hardware Architecture 2-3

system is also less expensive to build than a single CPU with equivalent processing

power. A computer with a single CPU is known as a "uniprocessor".

There are two configurations of shared memory systems:

■ Uniform Memory Access

■ Non-Uniform Memory Access

Shared memory systems are also known as "tightly coupled computer systems".

Uniform Memory Access
In uniform memory access configurations, or UMA, all processors can access main

memory at the same speed. In this configuration, memory access is uniform. This

configuration is also known as a Symmetric Multi-Processing system or "SMP".

Non-Uniform Memory Access
Non-uniform memory access, or NUMA, means that all processors have access to

all memory structures. However, the memory accesses are not equal. In other

words, the access cost varies depending on what parts of memory each processor

accesses. In NUMA configurations, the cost of accessing a specific location in main

memory is different for some of the CPUs relative to others.

Performance in both UMA/SMP and NUMA systems is limited by memory bus

bandwidth. This means that as you add CPUs to the system beyond a certain point,

performance will not increase linearly. The point at which adding CPUs results in

minimal performance improvement varies by application type and by system

architecture. Typically SMP configurations do not scale well beyond 24 to 64

processors.



The High Speed Interconnect

2-4 Oracle8i Parallel Server Concepts

Figure 2–1 Tightly Coupled Shared Memory System or SMP/UMA

Advantages of Shared Memory
The parallel processing advantages of shared memory systems are:

■ Memory access is less expensive than access in a loosely coupled system

■ Shared memory systems are easier to administer than a cluster

A disadvantage of shared memory systems for parallel processing is that scalability

is limited by the bandwidth and latency of the bus and by available memory.

The High Speed Interconnect
This is a high bandwidth, low latency communication facility that connects each

node to the other nodes in the cluster. The high speed interconnect routes messages

and other parallel processing-specific traffic among the nodes to coordinate each

node’s access to the data and to the data-dependent resources.

Oracle Parallel Server also makes use of user-mode interprocess communication

(IPC) and "memory-mapped IPC". These substantially reduce CPU consumption

and reduce IPC latency.

Disks

SMP 

CPU CPU CPU

Shared Memory 



Storage Access in Clustered Systems

Parallel Hardware Architecture 2-5

You can use Ethernet, FDDI (Fiber Distributed Data Interface), or some other

proprietary hardware for your interconnect. You should also have a backup

interconnect available in case your primary interconnect fails. The back-up

interconnect enhances high availability and reduces the likelihood of the

interconnect becoming a single point-of-failure.

Clusters - Nodes and the Interconnect
As described previously, you must use either a uniprocessor, SMP, or NUMA

memory configuration. When configured with an interconnect, two or more of these

types of processors make up a cluster. The performance of a clustered system can be

limited by a number of factors. These include various system components such as

the memory bandwidth, CPU-to-CPU communication bandwidth, the memory

available on the system, the I/O bandwidth, and the interconnect bandwidth.

Storage Access in Clustered Systems
Clustered systems use several architectural models. Each architecture uses a

particular resource sharing scheme that is best used for a particular purpose.

This section describes the following architectures:

■ Uniform Disk Access

■ Non-Uniform Disk Access

This type of storage access is independent of the type of memory access. For

example, a cluster of SMP nodes may be configured with either uniform or

non-uniform disk subsystems.

Uniform Disk Access
In uniform disk access systems, or shared disk systems, as shown in Figure 2–2, the

cost of disk access is the same for all nodes.



Storage Access in Clustered Systems

2-6 Oracle8i Parallel Server Concepts

Figure 2–2 Uniform Access Shared Disk System

The cluster in Figure 2–2 is composed of multiple SMP nodes. Shared disk

subsystems like this are most often implemented using shared SCSI or Fibre

Channel connections to a disk farm.

The advantages of using parallel processing on shared disk systems are:

■ Shared disk systems permit high availability; all data is accessible even if one

node fails

■ Shared disk systems provide incremental growth

Non-Uniform Disk Access
In some systems, the disk storage is attached to only one node. For that node, the

access is local. For all other nodes, a request for disk access as well as the data must

be forward by a software virtual disk layer over the interconnect to the node where

the disk is locally attached. This means that the cost of a disk read or write varies

significantly depending on whether the access is local or remote. The costs

associated with reading or writing the blocks from the remote disks, including the

Shared
Disks

Node 1 

CPU CPU CPU

Shared Memory

Node 2 

CPU CPU CPU

Shared Memory 

Node 3 

CPU CPU CPU

Shared Memory 

Node 4 

CPU CPU CPU

Shared Memory 

Node 5 

CPU CPU CPU

Shared Memory 

Interconnect



Storage Access in Clustered Systems

Parallel Hardware Architecture 2-7

interconnect latency and the IPC overhead, all contribute to the increased cost of

this type of operation versus the cost of the same type of operation using a uniform

disk access configurations.

Non-uniform disk access configurations are commonly used on systems known as

"shared nothing systems" or "Massively Parallel Processing (MPP) systems". For

high availability, if a node fails, its local disks can usually be reconfigured to be local

to another node. For these non-uniform disk access systems, Oracle Parallel Server

requires that the virtual disk layer be provided at the system level. In some cases it

is much more efficient to move work to the node where the disk or other I/O device

is locally attached rather than using remote requests. This ability to collocate

processing with storage is known as "disk affinity" and is used by Oracle in a

variety of areas including parallel execution and backup.

The advantages of using parallel processing on MPP or non-uniform disk access

systems are:

■ The number of nodes is not limited by the physical disk connection hardware

■ The total disk storage can be quite large due to the ability to add nodes

Figure 2–3 illustrates a shared nothing system:

Figure 2–3 Non-uniform Disk Access

CPU

Memory

CPU

Memory 

CPU

Memory 

CPU

Memory 

CPU

Memory 

DiskDisk Disk DiskDisk



Oracle Parallel Server Runs on A Wide Variety of Clusters

2-8 Oracle8i Parallel Server Concepts

Oracle Parallel Server Runs on A Wide Variety of Clusters
Oracle Parallel Server is supported on a wide range of clustered systems from a

number of different vendors. Architecturally, the number of nodes in a cluster that

Oracle Parallel Server can support is significantly greater than any known

implementation. For a small system configured primarily for high availability, there

may only be two nodes in the cluster. A large configuration, however, may have 40

to 50 nodes in the cluster. In general, the cost of managing a cluster is related to the

number of nodes in the system. The trend has been toward using a smaller number

of nodes with each node configured with a large SMP system using shared disks.



Oracle Parallel Server Architecture 3-1

3
Oracle Parallel Server Architecture

This chapter describes the architectural components that Oracle provides for Oracle

Parallel Server processing. These are the components that are in addition to the

components for single-instances; they are thus unique to Oracle Parallel Server.

Some of these components are supplied with the Oracle software and others are

vendor-specific.

Topics in this chapter include:

■ Oracle Parallel Server Components for Clustered Systems

■ The Cluster Manager

■ Distributed Lock Manager

■ The Cluster Interconnect and Inter-Process Communication (Node-to-Node)

■ Disk Subsystems

See Also: Oracle8i Concepts for more information about Oracle’s

single-instance architectural components.



Oracle Parallel Server Components for Clustered Systems

3-2 Oracle8i Parallel Server Concepts

Oracle Parallel Server Components for Clustered Systems
Based on the architectural models described in Chapter 2, the following explains the

software required for implementing Oracle Parallel Server.

Each hardware vendor implements parallel processing using operating system

dependent layers. These layers serve as communication links between the operating

system and the Oracle Parallel Server software described in this chapter.

Overview of Components for Clustered Systems
A high-level view of these components appears in Figure 3–1.

Figure 3–1 Cluster Components for Parallel Processing

The Cluster Manager software oversees internode messaging that travels over the

interconnect to coordinate internode operations. The Distributed Lock Manager

oversees the operation of Parallel Cache Management functions. The following

describes the following in more detail:

■ The Cluster Manager

■ Distributed Lock Manager

■ The Cluster Interconnect and Inter-Process Communication (Node-to-Node)

■ Disk Subsystems

Shared
disk

subsystem

Cluster Manager

Distributed Lock Manager

O/S Shared Disk Driver

IPC Cluster Manager

Distributed Lock Manager

O/S Shared Disk Driver

IPC

Cluster
interconnect

Instance A Instance B



Oracle Parallel Server Components for Clustered Systems

Oracle Parallel Server Architecture 3-3

The Cluster Manager
The Cluster Manager provides a global view of the cluster and all nodes in it. It also

controls cluster membership. Typically, the Cluster Manager is a vendor-supplied

component. However, Oracle supplies the Cluster Manager for Windows NT

environments.

Oracle Parallel Server also cooperates with the Cluster Manager to achieve high

availability. The Cluster Manager automatically starts and stops when the instance

starts and stops.

Failure Detection
A Cluster Manager disconnect can occur for any of three reasons: the client

disconnects voluntarily, the client’s process terminates, or the client’s node shuts

down or fails. This is true even if one or more nodes fail. If the Cluster Manager

determines that a node is inactive or not functioning properly, the Cluster Manager

terminates all processes on that node or instance.

If there is a failure, recovery is transparent to user applications. The Cluster

Manager automatically reconfigures the system to isolate the failed node and then

notifies the Distributed Lock Manager of the status. Oracle Parallel Server then

recovers the database to a valid state.

The Node Monitor
The Cluster Manager has a subset of functionality known as the "Node Monitor".

The Node Monitor polls the status of various resources in a cluster including nodes,

interconnect hardware and software, shared disks, and Oracle instances. The means

by which the Cluster Manager and its Node Monitor performs these operations is

based on Oracle’s implementation of the operating system dependent layer.

The Cluster Manager informs clients and the Oracle server when the status of

resources within a cluster change. For example, the Oracle server must know when

another database instance registers with the Cluster Manager or when an instance

disconnects from it.



Oracle Parallel Server Components for Clustered Systems

3-4 Oracle8i Parallel Server Concepts

As mentioned, the Cluster Manager monitors the status of various cluster resources,

including nodes, networks and instances. The Node Monitor also serves the Cluster

Manager by:

■ Providing the basic node management interface modules needed by Oracle

Parallel Server in a cluster environment

■ Discovering and tracking the membership state of nodes by providing a

common view of cluster membership across the cluster

■ Running on all nodes and monitoring the topology of the cluster by querying

all nodes for their current membership

■ Detecting changes in the state of active nodes signaling those events,

diagnosing the changes, and coordinating a new common and consistent state

among all nodes

■ Notifying Oracle Parallel Server of the cluster membership changes

Distributed Lock Manager
The Distributed Lock Manager is an integrated component of Parallel Server that

coordinates simultaneous access to the shared database and to shared resources

within the database. It does this to maintain consistency and data integrity. This

section describes the following features of the Distributed Lock Manager:

■ Transparency

■ Distributed Architecture

■ Fault Tolerance

■ Resource Mastering

■ Deadlock Detection

■ Persistent Resources

Transparency
The coordination of access to resources that is performed by the Distributed Lock

Manager is transparent to applications. Applications continue to use the same

locking mechanisms as are used by the single instance environment.

See Also: For more information on High Availability, please refer

to Chapter 9.



Oracle Parallel Server Components for Clustered Systems

Oracle Parallel Server Architecture 3-5

Distributed Architecture
The Distributed Lock Manager maintains a lock database to record information

about resources and locks held on these resources. This lock database resides in

memory and is distributed throughout the cluster to all nodes. In this distributed

architecture, each node participates in global lock management and manages a

portion of the global lock database. This distributed lock management scheme

provides fault tolerance and enhanced runtime performance.

Fault Tolerance
The Distributed Lock Manager is fault tolerant in that it provides continual service

and maintains the integrity of the lock database even if multiple nodes fail. The

shared database is accessible as long as at least one instance is active on that

database after recovery completes.

Fault tolerance also enables instances within an Oracle Parallel Server to be started

and stopped at any time, in any order. However, instance reconfiguration may

cause a brief delay.

Resource Mastering
The Distributed Lock Manager maintains information about locks on all nodes that

need access to a particular resource. The Distributed Lock Manager usually

nominates one node to manage all information about a resource and its locks.

Oracle Parallel Server uses a static hashing lock mastering scheme. This mastering

process hashes the resource name to one of the Parallel Server instances that acts as

the master for the resource. This results in an even, arbitrary distribution of

resources among all available nodes. Every resource is associated with a master

node.

The Distributed Lock Manager optimizes the method of lock mastering used in each

situation. The method of lock mastering affects system performance during normal

runtime activity as well as during instance startup. Performance is optimized when

a resource is mastered locally.

Deadlock Detection
The Distributed Lock Manager performs deadlock detection to all deadlock

sensitive locks and resources. It does not control access to tables or objects in the

database itself. Oracle Parallel Server uses the Distributed Lock Manager to

coordinate concurrent access across multiple instances to resources such as data

blocks and rollback segments.



Oracle Parallel Server Components for Clustered Systems

3-6 Oracle8i Parallel Server Concepts

Persistent Resources
The Distributed Lock Manager provides persistent resources. Resources maintain

their state even if all processes or groups holding a lock on it have died abnormally.

Example of DLM Processing
Assume that a node in a cluster needs to modify block number n in the database. At

the same time, another node needs to update the same block to complete a

transaction.

Without the Distributed Lock Manager, both nodes would simultaneously update

the same block. With the Distributed Lock Manager, only one node can update the

block; the other node must wait. The Distributed Lock Manager ensures that only

one instance has the right to update a block at any one time. This provides data

integrity by ensuring that all changes made are saved in a consistent manner.

Interaction with the Cluster Manager
The Distributed Lock Manager operates independently of the Cluster Manager. The

Distributed Lock Manager relies on the Cluster Manager for timely and correct

information about the status of other nodes. If the Distributed Lock Manager cannot

get the information it needs from a particular instance in the cluster, it shuts down

the instance. This ensures the integrity of Oracle Parallel Server databases, as each

instance must be aware of all other instances to coordinate disk access.

The Cluster Interconnect and Inter-Process Communication (Node-to-Node)
Oracle Parallel Server derives most of its functional benefits from its ability to run

on multiple interconnected machines. Oracle Parallel Server relies heavily on the

underlying Inter-Process Communication (IPC) component to facilitate this.

The IPC defines the protocols and interfaces required for the Oracle Parallel Server

environment to transfer messages between instances. Messages are the fundamental

units of communication in this interface. The core IPC functionality is built around

an asynchronous, queued messaging model. IPC is designed to send and receive

discrete messages as fast as the hardware allows. With an optimized

communication layer, various services can be implemented above it. This is how the

Distributed Lock Manager performs its communication duties.



Oracle Parallel Server Components for Clustered Systems

Oracle Parallel Server Architecture 3-7

Disk Subsystems
In addition to the operating system dependent layers, Oracle Parallel Server also

requires that all nodes must have simultaneous access to the disks. This gives

multiple instances concurrent access to the same database.



Oracle Parallel Server Components for Clustered Systems

3-8 Oracle8i Parallel Server Concepts



Part II
 Oracle Parallel Server Lock Processing

Part II describes the lock processing that Oracle Parallel Server performs to

synchronize data access and ensure data integrity. The chapters in this part are:

■ Chapter 4, "Inter-Instance Coordination"

■ Chapter 5, "Parallel Cache Management"





Inter-Instance Coordination 4-1

4
Inter-Instance Coordination

This chapter provides a detailed discussion of the inter-instance coordination

activities that take place in a cluster. As mentioned in Chapter 3, Oracle uses locks

within a cluster to coordinate lock resources, data, and inter-instance data requests.

This chapter describes the details about how Oracle coordinates these resources.

Topics in this chapter include:

■ Synchronization

■ Local Locks

■ Global Locks

■ Non-Parallel Cache Management Coordination

■ Parallel Cache Management Coordination



Synchronization

4-2 Oracle8i Parallel Server Concepts

Synchronization
Coordination of concurrent tasks within a cluster is called synchronization.

Resources such as data blocks and locks must be synchronized as nodes within a

cluster acquire and release ownership of them. The synchronization provided by

Oracle Parallel Server maintains cluster-wide concurrency of the resources and in

turn ensures the integrity of the shared data.

The key to successful parallel processing is to divide the tasks that require resources

among the nodes so that very little synchronization is necessary. The less

synchronization that is necessary, the better your system’s speedup and scaleup.

The overhead of synchronization can be very expensive if excessive inter-node

communication is necessary.

The synchronization effort to achieve parallel processing among nodes ideally uses

a high-speed interconnect linking the parallel processors. For parallel processing

within a node, messaging is not necessary; shared memory is used instead. As

mentioned in the previous chapter, messaging and locking between nodes is

handled by the Distributed Lock Manager.

The amount of synchronization depends on the amount of resources and the

number of users and tasks working on the resources. Little synchronization may be

needed to coordinate a small number of concurrent tasks, but many concurrent

tasks can require significant synchronization.

Each instance of Oracle Parallel Server has a dictionary cache, or row cache,

containing data dictionary information in its System Global Area. The data

dictionary structure is the same for Oracle instances in Oracle Parallel Server as for

instances in exclusive mode. Parallel Server uses global locks to coordinate data

dictionary activity among multiple instances.

Parallel Cache Management uses several types of locks to control access to data and

resources within a cluster. The way you configure the locks and the degree of

granularity you use affect the performance of applications running on Oracle

Parallel Server. The degree of granularity refers to the number of locks per instance.

You can most positively influence each type of locking by properly designing your

applications. Second, setting initialization parameters and properly administering

your cluster can also positively affect your system’s overhead. On the other hand,

improper lock use can cause your system to spend so much time synchronizing

shared resources that you cannot achieve any speedup or scaleup.



Local Locks

Inter-Instance Coordination 4-3

Oracle Parallel Server uses two primary groups of locks as described in the

following section:

■ Local Locks

■ Global Locks

Local Locks
There are two types of local locks, latches and enqueues. Latches are not Parallel

Server-specific and are synchronized only within each instance. Latches thus do not

have an effect on the global operations of clustered environments. Enqueues,

however, can be both local to an instance and global to a cluster.

The following provides a brief description of these two types of locks:

■ Latches

■ Enqueues

Latches
Latches are simple, low level serialization mechanisms that protect in-memory data

structures in the System Global Area. Latches do not protect data files, are

automatic, and are held for a very short time in exclusive mode. As mentioned,

because latches are synchronized within a node, they do not facilitate internode

synchronization.

Enqueues
Enqueues are shared memory structures that serialize access to database resources.

Enqueues are local to one instance if you do not enable Parallel Server. Or when

you enable Parallel Server, enqueues can be global to a database. Enqueues are

associated with a session or transaction and Oracle can use them in any of the

following modes:

■ Shared or "protected read"

■ Exclusive

■ Protected write

■ Concurrent read

■ Concurrent write

■ Null



Global Locks

4-4 Oracle8i Parallel Server Concepts

Enqueues are held longer than latches, have more granularity and more modes than

latches, and protect more database resources. For example, if you request a table

lock, or a DML lock, your request is assigned an "enqueue" lock. Enqueues are

managed by the Distributed Lock Manager. When Parallel Server is enabled, most

local enqueues become global enqueues.

Global Locks
Oracle Parallel Server synchronizes global locks among all active instances in a

cluster. Global locks include two main types:

■ Locks used by the Distributed Lock Manager for Parallel Cache Management

■ Global locks, such as global enqueues, that Oracle synchronizes within a cluster

to coordinate non-Parallel Cache Management resources

The Distributed Lock Manager tracks the status of all Oracle locking mechanisms.

Oracle only creates global locks if you start an Oracle instance with Parallel Server

enabled. The exception to this is the mount lock. The Distributed Lock Manager

synchronizes global locks by communicating the status of a lock resource to all

instances within an Oracle Parallel Server cluster.

Global locks are held by background processes within instances rather than by

transactions. An instance owns a global lock that protects a resource, such as a data

block or data dictionary entry, when the resource enters the instance’s System

Global Area. The Distributed Lock Manager manages locking only for resources

accessed by more than one instance.

The following sections in this chapter are:

■ Parallel Cache Management Coordination

■ Non-Parallel Cache Management Coordination



Non-Parallel Cache Management Coordination

Inter-Instance Coordination 4-5

Non-Parallel Cache Management Coordination
Non-parallel Cache Management includes coordination for resources other than

data blocks. The Parallel Cache Management features of Oracle Parallel Server are

described later in this chapter.

Non-Parallel Cache Management Locks
There are many different types of non-Parallel Cache Management locks. These

control access to data files and control files. They also control library and dictionary

caches, and perform various types of communication between instances. These

locks do not protect data file blocks. Examples of these are Data Modification

Language enqueues (table locks), transaction enqueues, and Data Definition

Language locks or dictionary locks. The System Change Number (SCN), and the

mount lock are global locks, not enqueues.

Non-PCM Global Locks
This section describes some of the most common non-PCM global locks. It covers

the following information:

■ Overview of Non-Parallel Cache Management Locks

■ Transaction Locks

■ Table Locks

■ Library Cache Locks

■ Dictionary Cache Locks

■ Database Mount Lock

Note: The context of Oracle Parallel Server causes most local

enqueues to become global; they can still be seen in the fixed tables

and views that show enqueues, such as V$LOCK. The V$LOCK

table does not, however, show global locks, such as SCN locks,

mount locks, and Parallel Cache Management locks.

See Also: Oracle8i Parallel Server Administration, Deployment, and
Performance for details on calculating the number of non-PCM

resources and locks to configure in the Distributed Lock Manager.



Non-Parallel Cache Management Coordination

4-6 Oracle8i Parallel Server Concepts

Overview of Non-Parallel Cache Management Locks
This section explains how Oracle uses non-PCM locks to manage locks for

transactions, tables, and other entities within an Oracle environment. Figure 4–1

highlights non-PCM locks in relation to other locks used in Oracle.

Figure 4–1  Oracle Locking Mechanisms: Non-PCM Locks

Whereas PCM locks are static (you allocate them when you design your

application), non-PCM locks are very dynamic. Their number and corresponding

space requirements will change as your system’s initialization parameter values

change.

See Also: Oracle8i Reference for descriptions of all non-PCM locks.

Local Enqueues 

Local Latches

Instance Locks 

Local Locks

 

Global Enqueues

TX

DML/Table locks

SCN

Mount lock 

Global 

PCM Locks 



Non-Parallel Cache Management Coordination

Inter-Instance Coordination 4-7

Transaction Locks
Row locks are locks that protect selected rows. A transaction acquires a global

enqueue and an exclusive lock for each individual row modified by one of the

following statements:

■ INSERT

■ UPDATE

■ DELETE

■ SELECT with the FOR UPDATE clause

These locks are stored in the block, and each lock refers to the global transaction

enqueue.

A transaction lock is acquired in exclusive mode when a transaction initiates its first

change. It is held until the transaction does a COMMIT or ROLLBACK. SMON also

acquires it in exclusive mode when recovering (undoing) a transaction. Transaction

locks are used as a queuing mechanism for processes awaiting the release of an

object locked by a transaction in progress.

Table Locks
Table locks are DML locks that protect entire tables. A transaction acquires a table

lock when a table is modified by one of the following statements: INSERT,

UPDATE, DELETE, SELECT with the FOR UPDATE clause, and LOCK TABLE. A

table lock can be held in any of several modes: null (N), row share (RS), row

exclusive (RX), share lock (S), share row exclusive (SRX), and exclusive (X).

Library Cache Locks
When a database object (table, view, procedure, function, package, package body,

trigger, index, cluster, synonym) is referenced during parsing or compiling of a SQL

(DML/DDL), PL/SQL, or Java statement, the process parsing or compiling the

statement acquires the library cache lock in the correct mode. In Oracle8 the lock is

held only until the parse or compilation completes (for the duration of the parse

call).

Dictionary Cache Locks
The data dictionary cache contains information from the data dictionary, the

meta-data store. This cache provides efficient access to the data dictionary.

Creating a new table, for example, causes the meta-data of that table to be cached in

the data dictionary. If a table is dropped, the meta-data needs to be removed from



Parallel Cache Management Coordination

4-8 Oracle8i Parallel Server Concepts

the data dictionary cache. To synchronize access to the data dictionary cache, latches

are used in exclusive mode and in single shared mode. Global locks are used in

multiple shared (parallel) mode.

In Oracle Parallel Server, the data dictionary cache on all nodes may contain the

meta-data of a table that gets dropped on one instance. The meta-data for this table

needs to be flushed from the data dictionary cache of every instance. This is

performed and synchronized by global locks.

Database Mount Lock
The mount lock shows whether an instance has mounted a particular database. This

lock is only used with Oracle Parallel Server. It is the only multi-instance lock used

by Parallel Server in exclusive mode, where it prevents another instance from

mounting the database in shared mode.

In Oracle Parallel Server single shared mode, this lock is held in shared mode.

Another instance can successfully mount the same database in shared mode. In

Parallel Server exclusive mode, however, another instance will not able to obtain the

lock.

Parallel Cache Management Coordination
Understanding how Oracle Parallel Server synchronizes caches across instances can

help you understand the overhead affecting system performance. Consider a

five-node parallel server where a user drops a table on one of the nodes. Since each

of the five dictionary caches has a copy of the definition of the dropped table, the

node dropping the table from its cache must also cause the other four dictionary

caches to drop their copies of the dropped table. Oracle Parallel Server handles this

automatically through the Distributed Lock Manager. Users on the other nodes are

notified of the change in lock status.

There are significant advantages to having each node store library and table

information. Occasionally, the DROP TABLE statement forces other caches to be

flushed, but the brief effect this has on performance does not necessarily diminish

the advantage of having multiple caches.

The processing within Oracle that requires synchronization includes:

■ Block Level Locking

■ Row Level Locking

■ Space Management



Parallel Cache Management Coordination

Inter-Instance Coordination 4-9

■ System Change Number

In Oracle Parallel Server exclusive mode, all synchronization is done within the

instance. In shared mode, synchronization is accomplished with the help of the

Distributed Lock Manager component that maintains the status of the global locks.

The most often required database resources are data blocks. Parallel Cache

Management provides global locks to cover one or more types of data blocks. The

types covered are:

■ Data blocks

■ Index blocks

■ Undo blocks

■ Segment headers

Parallel Cache Management locks ensure cache coherency by requiring that

instances acquire a lock before modifying or reading a database block. Thus,

Parallel Cache Management locks allow only one instance at a time to modify a

block.

Parallel Cache Management of the buffer caches located on separate nodes provides

Parallel Server cache coherency. The set of global constant (GC_*) initialization

parameters associated with Parallel Cache Management buffer cache locks are not

the same locks as those used with the dictionary cache, library cache, and so on.

Parallel Cache Management ensures that a master copy data block, also known as

the "consistent read block" (the version of the block holding all the changes) is held

in at least one of the System Global Areas in the cluster if it is to be changed. If an

instance needs to read it, the current version of the block may reside in many buffer

caches under shared locks. Thus, the most recent copy of the block in all System

Global Areas contains all changes made to that block by all instances, regardless of

whether any transactions on those instances have committed.

If a data block is modified in one buffer cache, then copies in other buffer caches are

no longer current. New copies can be obtained after the modification operation

completes.

Oracle only performs Parallel Cache Management lock operations for cache

coherency when the current version of a data block is in one instance’s buffer cache

and another instance requests that block for update.

Multiple transactions running on a single Oracle Parallel Server instance can share

access to a set of data blocks for reading without additional global lock operations.



Parallel Cache Management Coordination

4-10 Oracle8i Parallel Server Concepts

In this case, there is no contention or conflict. This remains true as long as the blocks

are not needed for writing by transactions running on other instances.

Instances use global locks to indicate ownership of a resource master copy. When

an instance becomes a database resource master or "owner", it also becomes owner

of the global lock covering the resource with fixed locking. However, releasable

locks are, of course, released.

A master copy indicates it is an updatable copy of the resource. The instance only

downgrades the global lock when another instance requests the resource for

update. Once another instance owns the master copy of the resource, it becomes the

owner of the global lock.

Example of Parallel Cache Management Processing
Consider the following example and the illustrations in Figure 4–2. This example

assumes one Parallel Cache Management lock covers one block, although many

blocks could be covered.

1. At "Time 0", Instance X becomes the owner of a Parallel Cache Management

lock covering data block n containing row 1 and updates the row

2. Instance Y requests the block to update row 4

3. At "Time 1", Instance X writes the data block to disk and releases the Parallel

Cache Management lock

4. Instance Y becomes the owner of the block and the Parallel Cache Management

lock and then updates row 4

5. At "Time 2", Instance X requests the block to update row 7

6. Instance Y writes the data block to disk and releases the block and the Parallel

Cache Management lock

7. Instance X becomes the owner of the block and Parallel Cache Management

lock and updates row 7

8. Instance X commits its transaction and still owns the Parallel Cache

Management lock and the master copy of the block until another instance

requests the block



Parallel Cache Management Coordination

Inter-Instance Coordination 4-11

Figure 4–2 Multiple Instances Updating the Same Data Block

Instance X
SGA Buffer Cache

Node 1

PCM
Lock

Instance Y
SGA Buffer Cache

Node 2

Time 0

Data Block n Data Block n

Instance X
SGA Buffer Cache

Node 1

Instance Y
SGA Buffer Cache

Node 2

Time 1

Data Block n Data Block n

Instance X
SGA Buffer Cache

Node 1

PCM
Lock

Instance Y
SGA Buffer Cache

Node 2

Time 2

Data Block n Data Block n Data Block n

PCM
Lock



Parallel Cache Management Coordination

4-12 Oracle8i Parallel Server Concepts

Parallel Cache Management Lock and Row Lock Independence
Parallel Cache Management locks and row locks operate independently. An

instance can disown a Parallel Cache Management lock without affecting row locks

held in the set of blocks covered by the Parallel Cache Management lock. A row

lock is acquired during a transaction. A database resource such as a data block

acquires a Parallel Cache Management lock when it is read for update by an

instance. During a transaction, a Parallel Cache Management lock can therefore be

disowned and owned many times if the blocks are needed by other instances.

In contrast, transactions do not release row locks until changes to the rows are

either committed or rolled back. Oracle uses internal mechanisms for concurrency

control to isolate transactions so modifications to data made by one transaction are

not visible to other transactions until the transaction modifying the data commits.

The row lock concurrency control mechanisms are independent of parallel cache

management: concurrency control does not require Parallel Cache Management

locks, and Parallel Cache Management lock operations do not depend on individual

transactions committing or rolling back.

Global Lock Modes
An instance can acquire the global lock that covers a set of data blocks in either

shared or exclusive mode, depending on the access type required.

■ Exclusive lock mode allows the instance to update a set of blocks.

If one instance needs to update a data block and a second instance already

owns the global lock covering the block, the first instance uses the Distributed

Lock Manager to request that the second instance disown the global lock,

writing the block(s) to disk if necessary.

■ Read lock mode only allows the instance to read blocks.

Multiple instances can own a global lock in shared mode as long as they only

intend to read, not modify, blocks covered by that global lock. Thus, all

instances can be sure that their memory-resident copies of the block are current,

or that they can read a current copy from disk without any global lock

operations to request the block from another instance. This means instances do

not have to disown global locks for the portion of a database accessed for

read-only use, which may be a substantial portion of the time in many

applications.

■ Null lock mode allows instances to keep a lock without any permissions on the

block(s).



Parallel Cache Management Coordination

Inter-Instance Coordination 4-13

This mode is used so that locks need not be continually obtained and released.

Locks are simply converted from one mode to another.

Block Level Locking
Block access between instances is done on a per-block level. When an instance locks

a block in exclusive mode, other instances cannot access the block. Every time

Oracle tries to read a block from the database it must obtain a global lock.

Ownership of the lock is thus assigned to the instance.

Since Oracle Parallel Server runs in environments with multiple memories, there

can be multiple copies of the same data block in each instance’s memory. Internode

synchronization using the Distributed Lock Manager ensures the validity of all

copies of the block: these block-level locks are the buffer cache locks.

Block level locking occurs only when Parallel Server is enabled. It is transparent to

the user and to the application. Row level locking operates whether Parallel Server

is enabled or disabled.

Comparing Parallel and Non-Parallel Cache Management Locks
Parallel Cache Management locks are typically more numerous than non-Parallel

Cache Management locks. However, there are still enough non-Parallel Cache

Management locks for which you must carefully plan adequate Distributed Lock

Manager capacity. Typically 5% to 10% of locks are non-Parallel Cache

Management. Non-Parallel Cache Management locks do not grow in volume the

way Parallel Cache Management locks do.

You can control Parallel Cache Management locks in detail by setting initialization

parameters to allocate the number desired. However, you have almost no control

over non-Parallel Cache Management locks. You can attempt to eliminate the need

for table locks by setting DML_LOCKS = 0 or by using the ALTER TABLE

ENABLE/DISABLE TABLE LOCK command, but other non-Parallel Cache

Management locks will still persist.

See Also: Oracle8i Parallel Server Administration, Deployment, and
Performance for information about allocating resources for

Distributed Lock Manager locks.



Parallel Cache Management Coordination

4-14 Oracle8i Parallel Server Concepts



Parallel Cache Management 5-1

5
Parallel Cache Management

This chapter explains how the Distributed Lock Manager in Oracle Parallel Server

controls access to data. The Distributed Lock Manager also performs other

synchronization tasks as described in Chapter 4. The overall process of managing

data access and inter-instance coordination is known as "Parallel Cache

Management." Topics in this chapter include:

■ Parallel Cache Management and Lock Implementation

■ Lock Duration and Granularity

■ Coordination of Locking Mechanisms by the Distributed Lock Manager

■ How Distributed Lock Manager Locks and Global Locks Relate

■ Lock Elements and Parallel Cache Management Locks

■ How Parallel Cache Management Locks Operate

■ Number of Blocks Per Parallel Cache Management Lock

■ How the DLM Grants and Coordinates Resource Lock Requests

■ Specifying the Allocation and Duration of Locks



Parallel Cache Management and Lock Implementation

5-2 Oracle8i Parallel Server Concepts

Parallel Cache Management and Lock Implementation
Oracle’s Parallel Cache Management facility uses locks to coordinate shared data

access by multiple instances. These locks are known as "Parallel Cache Management

locks". Oracle Parallel Server also uses non-Parallel Cache Management locks to

control access to data files and control files as explained in Chapter 4.

Parallel Cache Management locks are more numerous than non-Parallel Cache

Management locks. They can also have a more volatile effect on performance

because they control access to data blocks upon which the nodes in a cluster

operate. For these reasons, it is critical that you accurately allocate Parallel Cache

Management locks to ensure optimal performance.

Parallel Cache Management locks can cover one or more blocks of any class: data

blocks, index blocks, undo blocks, segment headers, and so on. However, a given

Parallel Cache Management lock can cover only one block class.

Parallel Cache Management ensures cache coherency by forcing requesting

instances to acquire locks from instances that hold locks on data blocks before

modifying or reading the blocks. Parallel Cache Management also allows only one

instance at a time to modify a block. If a block is modified by an instance, the block

must first be written to disk before another instance can acquire the Parallel Cache

Management lock and modify it.

Parallel Cache Management locks use a minimum amount of communication to

ensure cache coherency. The amount of cross-instance activity—and the

corresponding performance of Oracle Parallel Server—is evaluated in terms of

pings. A ping is when one instance requests a block that is held by another instance.

To resolve this type of request, Oracle writes or "pings" the block to disk so the

requesting instance can read it in its most current state.

Heavily loaded applications can experience significant locking activity, but they do

not necessarily have excessive pinging. If data is well partitioned, the locking is

local to each node—therefore pinging does not occur.

The Role of Cache Fusion in Resolving Cache Coherency Conflicts
Inter-instance references to data blocks and the resulting cache coherency issues are

the main performance problems of Oracle Parallel Server. In most cases, proper

partitioning resolves most contention problems.

In reality, however, most applications are not effectively partitioned, or are

partitioned only to a limited extent. There are three types of cross-instance

concurrent access:



Parallel Cache Management and Lock Implementation

Parallel Cache Management 5-3

■ Reader/reader

■ Reader/writer

■ Writer/writer

Reader/reader concurrency occurs when two instances need to read the same data

block. Oracle Parallel Server easily resolves this type of contention because multiple

instances can share the same blocks for read access without cache coherency

conflicts. The other types of contention, however, are more complex from a cache

coherency point-of-view.

Reader/writer contention is in many cases the predominant form of concurrency in

OLTP and hybrid applications. The ability to combine Decision Support System

(DSS) and Online Transaction Processing (OLTP) in a typical application depends

on Oracle Parallel Server’s efficiency in resolving such conflicts.

In Oracle8i, concurrent write access to cached data blocks by multiple instances is

managed by a disk-based "ping" protocol, in which current changes to a cached data

block must be written to disk before another instance can read it and make changes

to the block. The disk write must occur before exclusive access to a block is granted

by the global locking mechanism.

In Oracle8i, Cache Fusion optimizes read/write concurrency by using the

interconnect to directly transfer data blocks among instances. This eliminates I/O

and reduces delays for block reads to the speed of the interprocess communication

(IPC) and the interconnecting network. This also relaxes the strict requirements of

data partitioning so that you can more efficiently deploy applications with mostly

OLTP and mostly reporting modules.



Lock Duration and Granularity

5-4 Oracle8i Parallel Server Concepts

Lock Duration and Granularity
Lock duration refers to the length of time for which a lock is associated with a

resource. Lock granularity refers to the ratio of locks per data block.

Two Types of Lock Duration
Oracle Parallel Cache Management implements locks with two durations:

■ Fixed Locks

■ Releasable Locks

Fixed Locks
Fixed Parallel Cache Management locks are initially acquired in null mode. All

specified fixed locks are allocated at instance startup, and de-allocated at instance

shutdown. Because of this, fixed locks incur more overhead and longer startup

times than releasable locks. The advantage of fixed Parallel Cache Management

locks, however, is that they do not need to be continually acquired and released.

Fixed locks are pre-allocated and statically hashed to blocks at startup time. The

first instance that starts up creates a Distributed Lock Manager resource and a

Distributed Lock Manager lock, in null mode, on the resource for each fixed Parallel

Cache Management lock. The instance then converts the mode of these locks to

other modes as required. Each subsequent instance acquires a null mode lock at

startup and then performs lock conversions as needed.

By default, fixed Parallel Cache Management locks are never released; each lock

remains in the mode in which it was last requested. If the lock is required by

another instance, it is converted to null mode. These locks are de-allocated only at

instance shutdown.

Releasable Locks
Releasable locks are acquired and released as needed. This allows the instance to

start up much faster than with fixed locks. A Distributed Lock Manager resource is

created and an Distributed Lock Manager lock is obtained only when a user

actually requests a block. Once a releasable lock has been created, it can be

converted to various modes as required.

An instance can relinquish references to releasable lock resources during normal

operations. The lock is released when it is required for reuse for a different block.

This means that sometimes no instance holds a lock on a given resource.



Lock Duration and Granularity

Parallel Cache Management 5-5

Comparing Fixed and Releasable Locking With fixed duration locking, an instance never

disowns a Parallel Cache Management lock unless another instance requests the

lock. This minimizes the overhead of global lock operations in systems with

relatively low contention for resources. With releasable locks, once the block is

released, the lock on it is available for re-use. Non-Parallel Cache Management

locks are disowned.

Releasable Parallel Cache Management locking is more dynamic than fixed locking.

Releasable locks are allocated only as needed by the Distributed Lock Manager. At

startup Oracle allocates lock elements that are obtained directly in the requested

mode; this is normally shared or exclusive mode.

Two Forms of Lock Granularity
Oracle Parallel Cache Management implements two types of lock granularity:

■ 1:1 Locks

■ 1:n Locks

1:1 Locks
A 1:1 lock means one lock per block. This is the smallest granularity of locks and it

is the default. 1:1 locks are useful when a database object is updated frequently by

several instances. The advantages are:

■ Conflicts occur only when the same block is needed by the two instances

■ Only the required block is written to disk by the instance currently owning the

Parallel Cache Management lock in exclusive mode

A disadvantage of 1:1 locking is that overhead is incurred for each block read, and

performance is affected accordingly.

1:n Locks
1:n locks implies that a lock covers two or more data blocks as defined by the value

for n. With 1:n locks, a few locks can cover many blocks and thus reduce lock

operations. For read-only data, 1:n locks can perform faster than 1:1 locks during

certain operations such as parallel execution.

If you partition data according to the nodes that are most likely to modify it, you

can implement disjoint lock sets; each set belonging to a specific node. This can

significantly reduce lock operations. 1:n locks are also beneficial if you have a large

amount of data that a relatively small number of instances modify. If a lock is



Lock Duration and Granularity

5-6 Oracle8i Parallel Server Concepts

already held by the instance that modifies the data, no lock activity is required for

the operation.

The Cost of Locks
To effectively implement locks, carefully evaluate their relative costs. As a

rule-of-thumb:

■ Latches are inexpensive

■ Local enqueues are more expensive

■ Global locks and global enqueues are quite expensive

In general, global locks and global enqueues have an equivalent effect on

performance. When Oracle Parallel Server is disabled, all enqueues are local. When

Parallel Server is enabled, most enqueues are global. The length of time required to

process these can vary by many milliseconds.

Microseconds, milliseconds, and tenths of seconds may seem negligible. However,

imagine the cost of locks using grossly exaggerated values such as shown in the

"Relative Time Required" column of Table 5–1.

Table 5–1 only shows relative examples to underscore the need to carefully calibrate

lock use. In general, it especially critical to avoid unregulated global lock use.

See Also: Oracle8i Parallel Server Administration, Deployment, and
Performance for detailed information about configuring Parallel

Cache Management locks.

Table 5–1 Comparing the Relative Cost of Locks

Class of Lock Actual Time Required Relative Time Required

Latches 1 microsecond 1 minute

Local Enqueues 1 millisecond 1000 minutes (16 hours)

Global locks
(or Global Enqueues)

1/10 second 100,000 minutes (69 days)

See Also: Oracle8i Parallel Server Administration, Deployment, and
Performance for procedures to analyze the number of Parallel Cache

Management locks applications use.



Coordination of Locking Mechanisms by the Distributed Lock Manager

Parallel Cache Management 5-7

Coordination of Locking Mechanisms by the Distributed Lock Manager
The Distributed Lock Manager is a resource manager that is internal to the Oracle

Parallel Server. This section explains how the Distributed Lock Manager

coordinates locking mechanisms by covering the following topics:

■ The Distributed Lock Manager Records Lock Information

■ Lock Modes As Resource Access Rights

■ Instances Map Database Resources to Distributed Lock Manager Resources

■ How Distributed Lock Manager Locks and Global Locks Relate

■ One Lock Per Instance on a Resource



Coordination of Locking Mechanisms by the Distributed Lock Manager

5-8 Oracle8i Parallel Server Concepts

Lock Modes As Resource Access Rights
Oracle may initially create a lock on a resource without granting access rights. If the

instance later receives a request, Oracle converts the lock mode to obtain access

rights. Figure 5–1 illustrates the levels of access rights or "lock modes" available

through the Distributed Lock Manager. Table 5–2 lists and describes these lock

modes.

Figure 5–1 Distributed Lock Manager Lock Modes: Levels of Access

Highest level

Lowest level

X

SSX

SX S

SS

NULL



Coordination of Locking Mechanisms by the Distributed Lock Manager

Parallel Cache Management 5-9

Table 5–2 Lock Mode Names

Lock
Mode Summary Description

NULL Null mode. No lock is on
the resource.

Holding a lock at this level conveys no access rights. Typically, a lock
is held at this level to indicate that a process is interested in a
resource. Or it is used as a place holder.

Once created, null locks ensure the requestor always has a lock on
the resource; there is no need for the Distributed Lock Manager to
constantly create and destroy locks when ongoing access is needed.

SS Sub-shared mode
(concurrent read). Read;
there may be writers and
other readers.

When a lock is held at this level, the associated resource can be read
in an unprotected fashion: other processes can read and write the
associated resource.

SX Shared exclusive mode
(concurrent write). Write;
there may be other
readers and writers.

When a lock is held at this level, the associated resource can be read
or written in an unprotected fashion: other processes can both read
and write the resource.

S Shared mode (protected
read).

Read; no writers are
allowed.

When a lock is held at this level, a process cannot write the
associated resource. Multiple processes can read the resource. This is
the traditional shared lock.

In shared mode, any number of users can have simultaneous read
access to the resource. Shared access is appropriate for read
operations.

SSX Sub-shared exclusive
mode (protected write).
One writer only; there
may be readers

Only one process can hold a lock at this level. This allows a process
to modify a resource without allowing other processes to
simultaneously modify the resource at the same time. Other
processes can perform unprotected reads. The traditional update
lock.

X Exclusive mode.

Write; no other access is
allowed

When a lock is held at this level, it grants the holding process
exclusive access to the resource. Other processes cannot read or write
the resource. This is the traditional exclusive lock.



Coordination of Locking Mechanisms by the Distributed Lock Manager

5-10 Oracle8i Parallel Server Concepts

Instances Map Database Resources to Distributed Lock Manager Resources
Each instance maps Oracle database resources to Distributed Lock Manager

resources. For example, a 1:n lock on an Oracle database block with a given data

block address, such as file 2 block 10, is translated as a "BL resource" with the class

of the block and the lock element number, such as BL 9 1. The data block address is

translated from the Oracle resource level to the Distributed Lock Manager resource

level; the hashing function used is dependent on your GC_* parameter settings.

Figure 5–2 Resource Names and Distributed Lock Manager Resource Names

The Distributed Lock Manager Records Lock Information
The Distributed Lock Manager maintains an inventory of Oracle global locks and

global enqueues held against system resources. It also acts as a negotiator when

conflicting lock requests arise. In performing this function, the Distributed Lock

Manager does not distinguish between Parallel Cache Management and

non-Parallel Cache Management locks.

Note: For 1:1 locking, the database address is used as the second

identifier, rather than the lock element number.

fileid,blockno

BL 1xy

LE class BLInstance
translates

Database Resource Name LM Resource Name



How Distributed Lock Manager Locks and Global Locks Relate

Parallel Cache Management 5-11

Sample Lock Manager Lock Mode and Resource Inventory
Figure 5–3 represents the Distributed Lock Manager as an inventory sheet that

shows lock resources and the current status of the locks on those resources in an

example Oracle Parallel Server environment.

Figure 5–3 Sample Distributed Lock Manager Resource and Lock Inventory

This inventory example includes all instances in this cluster. For example, resource

BL 1, 101 is held by three instances with shared locks and three instances with null

locks. Since Figure 5–3 shows up to six locks on one resource, at least six instances

are running on this system.

How Distributed Lock Manager Locks and Global Locks Relate
Figure 5–4 illustrates how Distributed Lock Manager locks and Parallel Cache

Management locks relate. To allow instance B to read the value of data at data block

address x, instance B must first check for locks on that address. The instance

translates the block’s database resource name to the Distributed Lock Manager

resource name, and asks the Distributed Lock Manager for a shared lock to read the

data.

As illustrated in Figure 5–4, the Distributed Lock Manager checks outstanding locks

on the granted queue and determines there are already two shared locks on

resource 441,BL1. Since shared locks are compatible with read-only requests, the

Distributed Lock Manager grants a shared lock to instance B. The instance then

BL 100, 1

BL 101, 1

BL 3000, 4

BL 3001, 4

BL 100, 6

BL 101, 6

BL 3000, 8

BL 3001, 8

BL 4000, 9

S

SSSNNN

X

SSS

NNN

X

X

N

N

Integrated DLM

LocksResource



How Distributed Lock Manager Locks and Global Locks Relate

5-12 Oracle8i Parallel Server Concepts

proceeds to query the database to read the data at data block address x. The

database returns the data.

Figure 5–4  The Distributed Lock Manager Monitors the Status of Locks

If the required block already had an exclusive lock on it from another instance, then

instance B would have to wait for this to be released. The Distributed Lock Manager

would place the shared lock request from instance B on the convert queue. The

Distributed Lock Manager would then notify the instance when the exclusive lock

was removed and grant its request for a shared lock.

Note: The global lock space is cooperatively managed in a

distributed fashion by the LMD processes of all instances.

Instances

A

B

C

D
DBAx

Global Lock Space

BL 106, 1 S

BL 532, 1 X

BL 441, 1 S, S

BL 302, 1 N

Database

Check status of locks

Shared lock granted

Read request

Data

1

2

3

4



How Distributed Lock Manager Locks and Global Locks Relate

Parallel Cache Management 5-13

One Lock Per Instance on a Resource
Oracle uses only one lock per instance on any one Parallel Cache Management

resource.The LCK0 process manages the assignment of this lock to the resource. As

illustrated in Figure 5–5, if you have a four-instance system and require a buffer

lock on a single resource, you actually need four locks—one per instance.

Figure 5–5  Resources Have One Lock Per Instance

The number of locks on a non-Parallel Cache Management resource may depend on

the type of resource, the application’s behavior, and the configuration.

See Also: Chapter 4 for more information on non-Parallel Cache

Managements locks.

Instance Instance Instance
2 3 4

Instance

Resource

N S S N

1



Lock Elements and Parallel Cache Management Locks

5-14 Oracle8i Parallel Server Concepts

Lock Elements and Parallel Cache Management Locks
Figure 5–6 illustrates the correspondence of lock elements to blocks in fixed and

releasable locking. A lock element (LE) is an Oracle-specific data structure

representing a Parallel Cache Management lock. There is a one-to-one

correspondence between a lock element and a Parallel Cache Management lock in

the Distributed Lock Manager.

Figure 5–6  1:n Locking and 1:1 Locking

Lock Elements for Fixed Parallel Cache Management Locks
For both fixed Parallel Cache Management locks and releasable locks, you can

specify more than 1 block per lock element. The difference is that by default, fixed

Parallel Cache Management locks are not releasable: the lock element name is

"fixed".

When the lock element is pinged due to a remote request, other modified blocks

owned by that lock element are written along with the requested one. For example,

in Figure 5–6, if LE is pinged when block DBA2 (Data Block Address 2) is needed,

blocks DBA1, DBA3, DBA4, and DBA5 are all written to disk as well—if they have

been modified.

LE

DBA1 DBA2 DBA3

LE1,1 LE2, 1 LE3,1

DBA1 DBA2 DBA3

DBA4 DBA5

LE4,1 LE5,1

DBA4 DBA5

1:1 locking with exactly one block per lock

1:n locking with > 1 block per lock



Lock Elements and Parallel Cache Management Locks

Parallel Cache Management 5-15

Lock Elements for Releasable Parallel Cache Management Locks
With 1:1 locking, the name of the lock element is the name of the resource inside the

Distributed Lock Manager. Although a fixed number of lock elements cover

potentially millions of blocks, the lock element names change over and over as they

are re-associated with blocks that are requested. The lock element name, for

example, LE7,1, contains the database block address 7 and class 1 of the block it

covers. Before a lock element can be reused, the lock must be released. You can then

rename and reuse the lock element, creating a new resource in the Distributed Lock

Manager if necessary.

When using 1:1 locking, you can configure your system with many more potential

lock names, since they do not need to be held concurrently. However, the number of

blocks mapped to each lock is configurable in the same way as 1:n locking.

Lock Elements for 1:1 Parallel Cache Management Locks
In 1:1 locking you can set a one-to-one relationship between lock elements and

blocks. Such an arrangement, illustrated in Figure 5–6, is called Data Block Address

Locking. Thus if LE2,1 is pinged, only block DBA2 is written to disk.



How Parallel Cache Management Locks Operate

5-16 Oracle8i Parallel Server Concepts

How Parallel Cache Management Locks Operate
Figure 5–7 illustrates how Parallel Cache Management locks work. When instance A

reads the black block for modification, it obtains the Parallel Cache Management

lock for block. The same scenario occurs with the shaded block and Instance B. If

instance B requires the black block, the block must be written to disk because

instance A has modified it. The Oracle process communicates with the LMD

processes to obtain the global lock from the Distributed Lock Manager.

Figure 5–7  How Parallel Cache Management Locks Work

IDLM

IDLM

Instance A 

SGA

Buffer
Cache

LMD0

LMD0

Instance B 

SGA

Buffer
Cache

ORACLE

ORACLE



How Parallel Cache Management Locks Operate

Parallel Cache Management 5-17

Parallel Cache Management Locks Are Owned by Instance LCK Processes
Each instance has at least one LCK background process. If multiple LCK processes

exist within the same instance, the Parallel Cache Management locks are divided

among the LCK processes. This means that each LCK process is only responsible for

a subset of the Parallel Cache Management locks.

Multiple Instances Can Own the Same Locks
A Parallel Cache Management lock owned in shared mode is not disowned by an

instance if another instance also requests the Parallel Cache Management lock in

shared mode. Thus, two instances may have the same data block in their buffer

caches because the copies are shared (no writes occur). Different data blocks

covered by the same Parallel Cache Management lock can be contained in the buffer

caches of separate instances. This can occur if all the different instances request the

Parallel Cache Management lock in shared mode.



How Parallel Cache Management Locks Operate

5-18 Oracle8i Parallel Server Concepts

How 1:1 Locking Works
Figure 5–8 shows how 1:1 locking operates.

Figure 5–8  Lock Elements Coordinate Blocks (by 1:1 Locking)

The foreground process checks in the System Global Area to determine if the

instance owns a lock on the block.

■ If the lock is not owned or does not exist, the foreground process creates one, as

either fixed or releasable, by releasing another lock

■ If the instance owns the lock, but owns it in the incorrect mode, the foreground

process converts the lock, for example, from shared to exclusive mode.

Buffer Cache

LELELELE

Lock Manager

Instance 1

Buffer Cache

LM Locks LM Locks

 

c g

Resource LMD0. . .

SGA SGA LELELELE

Lock Manager

Instance 2

LMD0



How Parallel Cache Management Locks Operate

Parallel Cache Management 5-19

■ Fixed locks, whether 1:n or 1:1, create lock element names in fixed mode, which

is always valid. This mode is static so lock elements stay the same once they are

allocated.

■ Releasable locks, whether 1:n or 1:1, create a lock element in releasable mode;

these lock element names can change, and the block or blocks covered can

change. Lock elements in non-fixed mode can be valid, old, or free. If the valid

bit is set then a lock is owned on the resource in the Distributed Lock Manager.

If not set, there is no lock. If it is free, then there is a lock but we have unlinked

the buffer from the lock element, so it is on the least recently used list of free

lock elements.

Note: Valid lock elements have a lock in the Distributed Lock

Manager; invalid lock elements do not. A free lock element

indicates that a lock exists in the Distributed Lock Manager which

is not currently linked to this buffer; it is waiting on the Least

Recently Used list. If a lock element is old, then there is a valid lock

handle for the old name. It must be given a new name before

Oracle can use it.



Number of Blocks Per Parallel Cache Management Lock

5-20 Oracle8i Parallel Server Concepts

Number of Blocks Per Parallel Cache Management Lock
The number of Parallel Cache Management locks assigned to data files and the

number of data blocks in those data files determines the number of data blocks

covered by a single Parallel Cache Management lock.

■ If GC_FILES_TO_LOCKS is not set for a file, then releasable 1:1 locks are used

with one lock for each block.

■ If GC_FILES_TO_LOCKS is set for a file, then the number of blocks per Parallel

Cache Management lock can be expressed as follows on a per file level. This

example assumes values of GC_FILES_TO_LOCKS = 1:300,2:200,3-5:100.

If the size of each file, in blocks, is a multiple of the number of Parallel Cache

Management locks assigned to it, then each 1:n Parallel Cache Management lock

covers exactly the number of data blocks given by the equation.

If the file size is not a multiple of the number of Parallel Cache Management locks,

then the number of data blocks per 1:n Parallel Cache Management lock can vary by

one for that data file. For example, if you assign 400 Parallel Cache Management

locks to a data file which contains 2,500 data blocks, then 100 Parallel Cache

Management locks cover 7 data blocks each and 300 Parallel Cache Management

locks cover 6 blocks. Any data files not specified in the GC_FILES_TO_LOCKS

initialization parameter use the remaining Parallel Cache Management locks.

If n files share the same 1:n Parallel Cache Management locks, then the number of

blocks per lock can vary by as much as n. If you assign locks to individual files,

either with separate clauses of GC_FILES_TO_LOCKS or by using the keyword

EACH, then the number of blocks per lock does not vary by more than one.

File 1:
file1 blocks

300 locks

File 2:
file2 blocks

200 locks

File 3:
sum (file3, file4, file5 blocks)

100 locks



Number of Blocks Per Parallel Cache Management Lock

Parallel Cache Management 5-21

If you assign 1:n Parallel Cache Management locks to a set of data files collectively,

then each lock usually covers one or more blocks in each file. Exceptions can occur

when you specify contiguous blocks (using the "!blocks" option) or when a file

contains fewer blocks than the number of locks assigned to the set of files.

Example of Locks Covering Multiple Blocks
The following illustrates how 1:n Parallel Cache Management locks can cover

multiple blocks in different files. Figure 5–9 assumes 44 Parallel Cache Management

locks assigned to 2 files which have a total of 44 blocks. GC_FILES_TO_LOCKS is

set to A,B:44

Block 1 of a file does not necessarily begin with lock 1; a hashing function

determines which lock a file begins with. In file A, which has 24 blocks, block 1

hashes to lock 32. In file B, which has 20 blocks, block 1 hashes to lock 28.

Figure 5–9 Fixed Parallel Cache Management Locks Covering Blocks in Multiple Files

In Figure 5–9, locks 32 through 44 and 1 through 3 are used to cover 2 blocks each.

Locks 4 through 11 and 28 through 31 cover 1 block each; and locks 12 through 27

cover no blocks at all!

In a worst case scenario, if two files hash to the same lock as a starting point, then

all the common locks will cover two blocks each. If your files are large and have

multiple blocks per lock (on the order of 100 blocks per lock), then this is not an

important issue.

32 33 34 35

36 37 38 39

40 41 42 43

44 1 2 3

32 33 34 35

36 37 38 39

40 41 42 43

44 1 2 3

File A File B 

Y

1 block per lock 

2 blocks per lock 

4 5

8 9 10 11

6 7

28 29 30 31

X



Number of Blocks Per Parallel Cache Management Lock

5-22 Oracle8i Parallel Server Concepts

Periodicity of Fixed Parallel Cache Management Locks
You should also consider the periodicity of Parallel Cache Management locks.

Figure 5–10 shows a file of 30 blocks which is covered by 6 Parallel Cache

Management locks. This file has 1:n locks set to begin with lock number 5. As

suggested by the shaded blocks covered by Parallel Cache Management lock

number 4, use of each lock forms a pattern over the blocks of the file.

Figure 5–10 Periodicity of Fixed Parallel Cache Management Locks

Pinging: Signaling the Need to Update
In Parallel Server, a particular data block can only be modified by one instance at a

time. If one instance modifies a data block that another instance needs, whether

pinging is required depends on the type of request submitted for the block.

If the requesting instance wants the block for modification, then the holding

instance’s locks on the data block must be converted accordingly. The first instance

must write the block to disk before the requesting instance can read it. This is

known as pinging a block.

The BSP (Block Server Process) uses the Distributed Lock Manager facility to signal

a need between the two instances. If the requesting instance only wants the block in

CR mode, the BSP of the holding instance transmits a CR version of the block to the

requesting instance by way of the interconnect. In this scenario, pinging is much

faster.

Data blocks are only pinged when a block held in exclusive current (XCUR) state in

the buffer cache of one instance is needed by a different instance for modification.

In some cases, therefore, the number of Parallel Cache Management locks covering

data blocks may have little effect on whether a block gets pinged.

5 6 1 2

4 5 6 1

3 4 5 6

2 3 4 5

1 2 3 4

6 1 2 3

3

2

1

6

5

4



Number of Blocks Per Parallel Cache Management Lock

Parallel Cache Management 5-23

An instance can relinquish an exclusive lock on a block and still have a row lock on

rows in it: pinging is independent of whether a commit has occurred. You can

modify a block, but whether it is pinged is independent of whether you have made

the commit.

Partitioning to Avoid Pinging
If you have partitioned data across instances and are doing updates, your

application can have, for example, a million blocks on each instance. Each block is

covered by one Parallel Cache Management lock yet there are no forced reads or

forced writes.

As shown in Figure 5–11, assume a single Parallel Cache Management lock covers

one million data blocks in a table and the blocks in that table are read from or

written into the System Global Area of instance X. Assume another single Parallel

Cache Management lock covers another million data blocks in the table that are

read or written into the System Global Area of instance Y. Regardless of the number

of updates, there will be no forced reads or writes on data blocks between instance

X and instance Y.

Figure 5–11 Partitioning Data to Avoid Pinging

1 million
data blocks

1 million
data blocks

PCM Lock 1

PCM Lock 2

read/write

read/write

Instance Y

Instance X



Number of Blocks Per Parallel Cache Management Lock

5-24 Oracle8i Parallel Server Concepts

With read-only data, both instance X and instance Y can hold the Parallel Cache

Management lock in shared mode without causing pinging. This scenario is

illustrated in Figure 5–12.

Figure 5–12  No Pinging of Read-Only Data

Lock Mode and Buffer State
The state of a block in the buffer cache relates directly to the mode of the lock held

upon it. For example, if a buffer is in exclusive current (XCUR) state, you know that

an instance owns the Parallel Cache Management lock in exclusive mode. There can

be only one XCUR version of a block in the database, but there can be multiple

SCUR versions. To perform a modification, a process must get the block in XCUR

mode.

Finding the State of a Buffer
To see a buffer’s state, check the STATUS column of the V$BH dynamic

performance table. This table provides information about each buffer header.

See Also: Oracle8i Parallel Server Administration, Deployment, and
Performance for more information about partitioning applications to

avoid pinging.

read only

read only

Instance Y

Instance X

PCM Lock 1
2 million

data blocks 



Number of Blocks Per Parallel Cache Management Lock

Parallel Cache Management 5-25

How Buffer States and Lock Modes Change
Figure 5–13 shows how buffer state and lock mode change as instances perform

various operations on a given buffer. Lock mode is shown in parentheses.

Figure 5–13  How Buffer States and Lock Modes Change

In Figure 5–13, the three instances start out with blocks in shared current mode, and

shared locks. When Instance 1 performs an update on the block, its lock mode on

the block changes to exclusive mode (X). The shared locks owned by Instance 2 and

Instance 3 convert to null mode (N). Meanwhile, the block state in Instance 1

becomes XCUR, and in Instance 2 and Instance 3 it becomes CR. These lock modes

are compatible.

Table 5–3 Parallel Cache Management Lock Modes and Buffer States

Parallel Cache
Management
Lock Mode Buffer State Name Description

X XCUR Instance has an EXCLUSIVE lock for this buffer.

S SCUR Instance has a SHARED lock for this buffer.

N CR Instance has a NULL lock for this buffer.

Instance 1 Instance 2

SCUR (S) SCUR (S)

XCUR (X) CR (N) 

XCUR (X) CR (N)

UPDATE

SELECT



How the DLM Grants and Coordinates Resource Lock Requests

5-26 Oracle8i Parallel Server Concepts

Lock Modes May Be Compatible or Incompatible
When one process owns a lock in a given mode, another process requesting a lock

in any particular mode succeeds or fails as shown in Table 5–4.

How the DLM Grants and Coordinates Resource Lock Requests
This section explains how the Distributed Lock Manager coordinates resource lock

requests by explaining the following topics:

■ Lock Requests Are Queued

■ Asynchronous Traps (ASTs) Communicate Lock Request Status

■ Lock Requests Are Converted and Granted

The Distributed Lock Manager tracks all lock requests, granting requests for

resources whenever permissible. Requests for resources that are not currently

available are also tracked, and access rights are granted when these resources later

become available. The Distributed Lock Manager inventories lock requests and

communicates their statuses to users and to the internal processes involved in

Parallel Cache Management.

Table 5–4 Lock Mode Compatibility

Lock
Requested:

Lock Owned

Null SS SX S SSX X

NULL SUCCEED SUCCEED SUCCEED SUCCEED SUCCEED SUCCEED

SS SUCCEED SUCCEED SUCCEED SUCCEED SUCCEED FAIL

SX SUCCEED SUCCEED SUCCEED FAIL FAIL FAIL

S SUCCEED SUCCEED FAIL SUCCEED FAIL FAIL

SSX SUCCEED SUCCEED FAIL FAIL FAIL FAIL

X SUCCEED FAIL FAIL FAIL FAIL FAIL



How the DLM Grants and Coordinates Resource Lock Requests

Parallel Cache Management 5-27

Lock Requests Are Queued
The Distributed Lock Manager maintains two queues for lock requests:

Asynchronous Traps (ASTs) Communicate Lock Request Status
To communicate the status of lock requests, the Distributed Lock Manager uses two

types of asynchronous traps (ASTs) or interrupts:

Convert queue If the Distributed Lock Manager cannot immediately grant a

lock request, it is placed in the convert queue where waiting

lock requests are tracked.

Granted queue The Distributed Lock Manager tracks lock requests that have

been granted in the granted queue.

Acquisition AST When the lock is obtained in the requested mode, an

acquisition AST (a "wake up call") is sent to tell the requestor

that the lock is granted.

Blocking AST When a process requests a certain mode of lock on a

resource, the Distributed Lock Manager sends a blocking

AST to notify processes currently owning locks on that

resource in incompatible modes. (Shared and exclusive

modes, for example, are incompatible.) Upon notification,

owners of locks can relinquish them to permit access by the

requestor.



How the DLM Grants and Coordinates Resource Lock Requests

5-28 Oracle8i Parallel Server Concepts

Lock Requests Are Converted and Granted
The following figures show how the Distributed Lock Manager handles lock

requests. In Figure 5–14, shared lock request 1 has been granted on the resource to

process 1, and shared lock request 2 has been granted to process 2. As mentioned,

the Distributed Lock Manager tracks the locks in the granted queue. When a request

for an exclusive lock is made by process 2, it must wait in the convert queue.

Figure 5–14 The Distributed Lock Manager Granted and Convert Queues

DLM

Resource

Granted queue Convert queue

Lock1

Lock2

Shared, process 1

Shared, process 2



How the DLM Grants and Coordinates Resource Lock Requests

Parallel Cache Management 5-29

In Figure 5–15, the Distributed Lock Manager sends a blocking AST to Process 1, the

owner of the shared lock, notifying it that a request for an exclusive lock is waiting.

When the shared lock is relinquished by Process 1, it is converted to a null mode

lock or released.

Figure 5–15  Blocking AST

DLM

Process
1

Process
2

Resource

Granted queue Convert queue

Lock2Lock1

Shared Null Shared Exclusive

BAST



How the DLM Grants and Coordinates Resource Lock Requests

5-30 Oracle8i Parallel Server Concepts

An acquisition AST is then sent to alert Process 2, the requestor of the exclusive

lock. The Distributed Lock Manager grants the exclusive lock and converts it to the

granted queue. This is illustrated in Figure 5–16.

Figure 5–16  Acquisition AST

Process
1

Process
2

Resource

Granted queue Convert queue

DLM

Lock2 

Lock1

Exclusive, process 2

Null, process 1

AAST



Specifying the Allocation and Duration of Locks

Parallel Cache Management 5-31

Specifying the Allocation and Duration of Locks
You allocate Parallel Cache Management locks to data files by specifying values for

initialization parameters in parameter files that Oracle reads when starting up a

database. For example, use the initialization parameter GC_FILES_TO_LOCKS to

specify the number of Parallel Cache Management locks that cover the data blocks

in a data file or set of data files.

Number of Blocks Per Parallel Cache Management Lock
This section explains the ways in which 1:n and 1:1 locks can differ in lock

granularity.

1:N Locks for Multiple Blocks
You can specify lock-to-block ratios that protect a range of contiguous blocks within

a file. Table 5–5 summarizes the situations in which 1:n locks are useful:

:

Using 1:n locks may cause extra cross-instance lock activity since conflicts may

occur between instances that modify different database blocks. Resolution of false

pinging may require writing several blocks from the cache of the instance that

currently owns the lock. You can minimize or eliminate false pinging by correctly

setting the GC_FILES_TO_LOCKS parameter.

Table 5–5 When to Use 1:N Parallel Cache Management Locks

Situation Reason

When the data is mostly read-only. A few 1:n locks can cover many blocks without requiring
frequent lock operations. These locks are released only when
another instance needs to modify the data. 1:n locking can
perform faster than 1:1 locking on read-only data with the
Parallel Query Option.
If the data is strictly read-only, consider designating the
tablespace itself as read-only. The tablespace will not then require
any Parallel Cache Management locks.

When the data can be partitioned according
to the instance which is likely to modify it.

1:n locks which are defined to match this partitioning allow
instances to hold disjoint Distributed Lock Manager lock sets,
reducing the need for Distributed Lock Manager operations.

When a large amount of data is modified by
a relatively small set of instances.

1:n locks permit access to a new database block to proceed
without Distributed Lock Manager activity, if the lock is already
held by the requesting instance.



Specifying the Allocation and Duration of Locks

5-32 Oracle8i Parallel Server Concepts

1:1 Locking: Locks for One Block
If you create a one-to-one correspondence between Parallel Cache Management

locks and data blocks, contention will occur only when instances need data from the

same block. This level of 1:1 locking is also sometimes referred to as "DBA locking"

where a "DBA" is the data block address of the data block. If you assign more than

one block per lock, contention occurs as in 1:n locking.

On most systems, an instance could not possibly hold a lock for each block of a

database since System Global Area memory or the Distributed Lock Manager

capabilities would be exceeded. Therefore, instances acquire and release 1:1 locks as

needed. Since 1:1 locks, lock elements, and resources are renamed in the Distributed

Lock Manager and reused, a system can function properly with fewer of them. The

value you set for the DB_BLOCK_BUFFERS parameter is the recommended

minimum number of releasable locks you should allocate.

Selecting Lock Granularity
Use the information in Table 5–6 to best determine when to use either 1:n or 1:1

locks:

Table 5–6 When to To Use 1:n and 1:1 Locks

When to use 1:n locks... When to use 1:1 locks...

■ Data is mostly read-only ■ Small amount of data is updated by
many instances

■ Data can be partitioned ■ There is not enough memory for the
configuration of 1:n locking

■ Large set of data is modified by a
relatively small set of instances



Group-Owned Locks

Parallel Cache Management 5-33

Simultaneously Using Fixed and Releasable Locking
Table 5–7 compares using both fixed and releasable locking at the same time.

Group-Owned Locks
Group-based locking provides dynamic ownership: a single lock can be shared by

two or more processes belonging to the same group. Processes in the same group

can share and/or touch the lock without opening or converting a new and different

lock. This is particularly important for the Multi-Threaded Server and XA.

Distributed Lock Manager Support for Multi-Threaded Server and XA
Oracle Parallel Server uses two forms of lock ownership:

Group-based locking is an important Distributed Lock Manager feature for Oracle

Multi-Threaded Server (MTS) and XA library functionality.

Table 5–7 Using Fixed and Releasable Cache Management Locking

Fixed Parallel Cache Management Locks Releasable Parallel Cache Management Locks

■ Allocated at instance startup, resulting in a slower
startup

■ Allocated when user requests a block, resulting
in faster instance startup

■ Released only at instance shutdown ■ Dynamically re-used by other blocks, requiring
less memory

■ Statically allocated to blocks at startup time,
requiring more memory

Per-process ownership Locks are commonly process-owned: that is, if one

process owns a lock, then no other process can touch

the lock.

Group-based ownership With group-based locking, ownership becomes

dynamic: a single lock can be used by two or more

processes belonging to the same group. Processes in

the same group can exchange and/or touch the lock

without going to the Distributed Lock Manager grant

and convert queues.



Memory Requirements for the Distributed Lock Manager

5-34 Oracle8i Parallel Server Concepts

Memory Requirements for the Distributed Lock Manager
The user-level Distributed Lock Manager can normally allocate as many resources

as you request; your process size, however, will increase accordingly. This is

because you are mapping the shared memory where locks and resources reside into

your address space. Thus, the process address space can become very large.

Make sure that the Distributed Lock Manager is configured to support all resources

your application requires.

MTS Group-based locking is used for Oracle MTS

configurations. Without it, sessions could not migrate

between shared server processes. In addition, load

balancing may be affected, especially with long

running transactions.

XA libraries With Oracle XA libraries, multiple sessions or

processes can work on the transaction; they therefore

need to exchange the same locks, even in exclusive

mode. With group-based lock ownership, processes

can exchange access to an exclusive resource.



Part III
 Implementing Oracle Parallel Server

Part III describes several topics specific to Oracle Parallel Server implementation.

The chapters in this part are:

■ Chapter 6, "Oracle Parallel Server Components"

■ Chapter 7, "Oracle Parallel Server Storage Considerations"

■ Chapter 8, "Scalability and Oracle Parallel Server"

■ Chapter 9, "High Availability and Oracle Parallel Server"





Oracle Parallel Server Components 6-1

6
Oracle Parallel Server Components

This chapter describes components for implementing Oracle Parallel Server. The

topics in this chapter are:

■ Instance and Database Components for Oracle Parallel Server

■ Cache Fusion Processing and the Block Server Process

■ System Change Number Processing



Instance and Database Components for Oracle Parallel Server

6-2 Oracle8i Parallel Server Concepts

Instance and Database Components for Oracle Parallel Server
This chapter discusses the Oracle Parallel Server-specific concepts of

implementation from a process and component point-of-view. Each Oracle Parallel

Server instance has its own System Global Area and background processes common

to single-instances. Each instance also has its own set of control files, data files, and

redo logs. Instances within a cluster also share or have access to all System Global

Areas, control and data files, and redo logs throughout the cluster.

Other Parallel Server-specific components described in the following sections. These

components enable parallel processing and facilitate internode communication.

Parallel Server-Specific Processes
In addition to the processes common to single-instances, such as PMON, SMON,

DBWR, and so on. Oracle Parallel Server instances have additional processes to

facilitate resource sharing among nodes in a cluster.

Four Parallel Server-specific processes facilitate resource sharing. The first three

processes work with the Distributed Lock Manager component to manage global

locks and resources:

■ LMON – The "Lock Monitor Process" monitors the entire cluster to manage

global locks and resources. LMON manages instance and process deaths and

the associated recovery for the Distributed Lock Manager. In particular, LMON

handles the part of recovery associated with global locks.

■ LMD – The "Lock Manager Daemon" is the lock agent process that manages

lock manager service requests for Parallel Cache Management locks to control

access to global locks and resources. The LMDN process also handles deadlock

detection and remote lock requests. Remote lock requests are requests

originating from another instance.

■ LCK – The "Lock Process" manages non-Parallel Cache Management locking to

coordinate shared resources and remote requests for those resources.

■ BSP – The "Block Server Process" rolls back uncommitted transactions for blocks

requested by cross-instance read/write requests and sends the consistent read

block to the requestor.

See Also: Oracle8i Concepts for more information on Oracle

processes.



Instance and Database Components for Oracle Parallel Server

Oracle Parallel Server Components 6-3

When an instance starts, the LMON and LMDN processes start and the Distributed

Lock Manager registers with the Cluster Manager. The Distributed Lock Manager

de-registers with the Cluster Manager when you shut down the database.

When an instance fails while in shared mode, another instance’s SMON detects the

failure and recovers the failed instance. The LMON process of the instance

performing recovery re-masters outstanding PCM locks for the failed instance.

Foreground Processes and Foreground Lock Acquisition
Foreground processes are the processes associated with user sessions. One instance

communicates lock requests directly to remote LMD processes in other instances.

Foreground processes send request information such as the resource name it is

requesting a lock for and the mode in which it needs the lock. The Distributed Lock

Manager processes the request asynchronously, so the foreground process waits for

the request to complete before closing the request.



Instance and Database Components for Oracle Parallel Server

6-4 Oracle8i Parallel Server Concepts

Overview of Oracle Parallel Server Processes
The Oracle Parallel Server-specific processes and some of the processes that Oracle

also uses in single-instance environments appear in Figure 6–1.

Figure 6–1 Basic Elements of Oracle Parallel Server

Instance X Instance Y

Interprocess Communication (IPC)

Redo
Log

Buffer

Instance Z

Redo
Log
Files

Redo
Log
Files

Redo
Log
Files

LCK

BSP BSP BSP

LMD

Data
Files

Redo
Log

Buffer

Redo
Log

Buffer

DBWRLGWRLMON LCKLMD DBWRLGWRLMON LCKLMD DBWRLGWRLMON

Variable
Part of
SGA

Data
Files &
Control

Files

Variable
Part of
SGA

Variable
Part of
SGA

Database
Buffer
Cache

Database
Buffer
Cache

Database
Buffer
Cache



Cache Fusion Processing and the Block Server Process

Oracle Parallel Server Components 6-5

Cache Fusion Processing and the Block Server Process
Cache Fusion resolves cache coherency conflicts when one instance requests a block

held in exclusive mode by another instance. In such cases, Oracle transfers a

consistent-read version of the block directly from the memory cache of the holding

instance to the requesting instance. Oracle does this without writing the block to

disk.

As mentioned, Cache Fusion uses the Block Server Process to roll back

uncommitted transactions. BSP then sends the consistent read block directly to the

requestor. The state of the block is consistent as of the point in time at which the

request was made by the requesting instance. Figure 6–2 illustrates this process.

Cache Fusion does this only for consistent read, reader/writer requests. This greatly

reduces the number of lock downgrades and the volume of inter-instance

communication. It also increases the scalability of certain applications that

previously were not likely Oracle Parallel Server candidates, such as OLTP and

hybrid applications.

Figure 6–2 Step-by-step Cache Fusion Processing

9. The requestor’s FG (foreground) process sends a lock request message to the

master node. The requesting node, the holding node, or an entirely separate

node can serve as the master node.

DLM

Instance A 

LMD

DLM

Instance B 

Requesting Instance Holding Instance

DLM

Master

LMD

LMD

BSPFG

1 2

4

3



System Change Number Processing

6-6 Oracle8i Parallel Server Concepts

10. The LMD process of the master node forwards the lock request to the LMD

process of the holding node that has an exclusive lock on the requested block.

11. The holding node’s LMD process handles the in-coming message and requests

the holding instance’s BSP to prepare a consistent read copy of the requested

block.

12. BSP prepares and sends the requested block to the requestor’s FG process.

System Change Number Processing
The System Change Number (SCN) is a logical timestamp that Oracle uses to order

events within a single instance and across all instances. For example, Oracle assigns

an SCN to each transaction. Conceptually, there is a global serial point that

generates SCNs. In practice, however, SCNs can be read and generated in parallel.

One of the SCN generation schemes is called the Lamport SCN generation scheme.

In single-instance Oracle, the System Global Area maintains and increments SCNs

from an instance that has mounted the database in exclusive mode. In Oracle

Parallel Server shared mode, the SCN must be maintained globally. Its

implementation may vary from platform to platform. The SCN may be handled by

the Distributed Lock Manager, by the Lamport SCN scheme, or by using a

hardware clock or dedicated SCN server.

How Lamport SCN Generation Works
The Lamport SCN generation scheme is fast and scalable because it generates SCNs

in parallel on all instances. In this scheme, all messages across instances, including

lock messages, piggyback SCNs. Piggybacked SCNs propagate causalities within

Oracle. As long as causalities are respected in this way, multiple instances can

generate SCNs in parallel, with no need for extra communication among these

instances.

On most platforms, Oracle uses the Lamport SCN generation scheme when the

MAX_COMMIT_PROPAGATION_DELAY is larger than a platform-specific

threshold. This is generally the default. This value is typically set to seven seconds.

You can examine the alert log after instance startup to see whether the Lamport

SCN generation scheme is in use. If this value is smaller than seven, Oracle uses the

lock SCN generation scheme?



Oracle Parallel Server Storage Considerations 7-1

7
Oracle Parallel Server Storage

Considerations

This chapter describes storage considerations for Oracle Parallel Server

applications. Topics in this chapter include:

■ Oracle Parallel Server-Specific Storage Issues

■ Space Management and Free List Groups

■ Controlling Extent Allocation



Oracle Parallel Server-Specific Storage Issues

7-2 Oracle8i Parallel Server Concepts

Oracle Parallel Server-Specific Storage Issues
This section describes storage issues specific to Oracle Parallel Server. This section

discusses:

■ Data Files

■ Redo Log Files

■ Rollback Segments

Data Files
All Oracle Parallel Server instances access the same data files. The composition of

database files is the same for Oracle in parallel mode and in exclusive mode. You do

not have to alter the data files to start Oracle in parallel mode.

To improve performance, you can control the physical placement of data so that the

instances use separate sets of data blocks. Free lists, for example, enable you to

allocate space for inserts to particular instances.

Whenever an instance starts up, it verifies access to all online data files. The first

Oracle Parallel Server instance to start must verify access to all online files so it can

determine if media recovery is required. Additional instances can operate without

access to all of the online data files, but any attempt to use an unverified file fails

and a message is generated.

When an instance adds a data file or brings a data file online, all instances verify

access to the file. If an instance adds a new data file on a disk that other instances

cannot access, verification fails, but the instances continue running. Verification can

also fail if instances access different copies of the same data file.

If verification fails for any instance, diagnose and fix the problem, then use the

ALTER SYSTEM CHECK DATAFILES statement to verify access. This statement has

a GLOBAL option, which is the default, that makes all instances verify access to

online data files. It also has a LOCAL option that makes the current instance verify

access.

ALTER SYSTEM CHECK DATAFILES makes online data files available to the

instance or instances for which access is verified.

Note : Oracle Parallel Server requires special naming conventions

for data files as specified in Oracle8i Parallel Server Setup and
Configuration Guide.



Oracle Parallel Server-Specific Storage Issues

Oracle Parallel Server Storage Considerations 7-3

Oracle cannot recover from instance failure or media failure unless the instance that

performs recovery can verify access to all required online data files.

Oracle automatically maps absolute file numbers to relative file numbers. Use of

Oracle Parallel Server does not affect these values. Query the V$DATAFILE view to

see both numbers for your data files.

Redo Log Files
In Oracle Parallel Server, each instance writes to its own set of online redo log files.

The redo written by a single instance is called a "thread of redo". Each online redo

log file is associated with a particular thread number. When an online redo log is

archived, Oracle records its thread number to identify it during recovery.

A "private thread" is a redo log created using the ALTER DATABASE ADD

LOGFILE command with the THREAD clause. A "public thread" is a redo log

created using the ALTER DATABASE ADD LOGFILE but without specifying a

THREAD clause.

If the THREAD initialization parameter is specified, the instance starting up

acquires the thread identified by that value as a private thread. If THREAD has the

default of zero, the instance acquires a public thread. Once acquired, the acquiring

instance uses the redo thread exclusively.

Online redo log files can be multiplexed, or "mirrored". A multiplexed redo log

consists of two or more groups of files and all members of a group are written to

concurrently when that group is active. Figure 7–1 shows the threads of redo for

three instances of Oracle Parallel Server.



Oracle Parallel Server-Specific Storage Issues

7-4 Oracle8i Parallel Server Concepts

Figure 7–1  Threads of Redo

■ Instance X uses thread 1, which contains three groups of online redo log files,

groups 1, 2, and 3. Thread 1 is multiplexed, that is, each group has two copies,

or members, of the redo log file.

■ Instance Y uses thread 2, which contains two groups of online redo log files,

groups 4 and 5. Thread 2 is multiplexed, with three members per group.

■ Instance Z uses thread 3, which contains three groups of online redo log files,

groups 6, 7, and 8, that are not multiplexed.

Group
1

Group
6

Group
7

Group
8

Group
2

Group
3

Thread 1 Thread 2 Thread 3

Instance X Instance Y Instance Z

Group
4

Group
5

not mirroredmirrored
3 members per group

mirrored
2 members per group



Oracle Parallel Server-Specific Storage Issues

Oracle Parallel Server Storage Considerations 7-5

Group numbers must be unique within the database, therefore they are unique

within a thread. However, the order of assigning groups to threads, and threads to

instances, is arbitrary.

For example, although in Figure 7–1 thread 1 contains groups 1, 2, and 3 while

thread 2 contains groups 4 and 5, you could instead assign groups 2, 4, and 5 to

thread 1 while assigning groups 1 and 3 to thread 2. The V$LOGFILE view displays

the group number associated with each redo log file.

Although it is possible to have different numbers of groups and members per

thread, we recommend that all threads be configured to a common standard to

facilitate administration.

Different instances of Oracle Parallel Server can have different degrees of mirroring,

or different numbers of members per group. The different instances can also have

different numbers of groups. For example, one instance could have three groups

with two members per group, a second instance could have four non-multiplexed

log files, and a third instance could have two groups with four members per group.

While such a configuration may be inconvenient to administer, it may be necessary

to achieve the full potential of the system.

Each instance must have at least two groups of online redo log files. When the

current group fills, an instance begins writing to the next log file group. At a log

switch, information is written to the control file that can be used to identify the

filled group and its thread number after it has been archived.

The number of redo log files about which the control file can keep information is

limited by the value of the MAXLOGHISTORY option of the CREATE DATABASE

statement. Only one member per group is needed. In Oracle Parallel Server, set the

value of MAXLOGHISTORY higher than you normally would in single instance

Oracle. This is because in Oracle Parallel Server, the history of multiple redo log

files must be tracked.

Note: The Database Configuration Assistant creates two log files
for each group and one group per instance.

Note: MAXLOGHISTORY is useful for sites with very demanding

availability requirements. This option can help you administer

recovery, especially when there are many instances and many log

files.



Oracle Parallel Server-Specific Storage Issues

7-6 Oracle8i Parallel Server Concepts

Rollback Segments
This section describes rollback segments as they relate to Oracle Parallel Server.

■ Rollback Segments in Oracle Parallel Server

■ Parameters Controlling Rollback Segments

■ Public and Private Rollback Segments

■ How Instances Acquire Rollback Segments

Rollback Segments in Oracle Parallel Server
Rollback segments contain information that Oracle requires to maintain read

consistency and to be able to undo changes made by transactions that roll back or

abort. Each instance in Oracle Parallel Server shares use of the SYSTEM rollback

segment and requires at least one dedicated rollback segment per instance.

Both private and public rollback segments can be acquired at instance startup and

used exclusively by the acquiring instance until taken offline or when the acquiring

instance is shut down as specified in the rollback segment parameter. Private

rollback segments are unique to a particular instance; other instances cannot use

them. A public rollback segment is offline and not used by any instance until an

instance that needs an extra rollback segment starts up, acquires it, and brings it

online. Once online, the acquiring instance uses the public rollback segment

exclusively.

Only one instance writes to a given rollback segment (except for the SYSTEM

rollback segment). However, other instances can read from it to create

read-consistent snapshots or to perform instance recovery.

Oracle Parallel Server needs at least as many rollback segments as the maximum

number of concurrent instances plus one; the extra one is for the SYSTEM rollback

segment. An instance cannot start up shared without exclusive access to at least one

rollback segment, whether it is public or private.

You can create new rollback segments in any tablespace. To reduce contention

between rollback data and table data, partition your rollback segments in a separate

tablespace. This also facilitates taking tablespaces offline because a tablespace

cannot be taken offline if it contains active rollback segments.

See Also: Oracle8i Concepts for a full description of multiplexed

redo log files.



Oracle Parallel Server-Specific Storage Issues

Oracle Parallel Server Storage Considerations 7-7

In general, make all rollback segment extents the same size by specifying identical

values for the storage parameters INITIAL and NEXT.

The data dictionary view DBA_ROLLBACK_SEGS shows each rollback segment’s

name, segment ID number, and owner (PUBLIC or other).

Parameters Controlling Rollback Segments
These initialization parameters control rollback segment use:

Public and Private Rollback Segments
Public and private rollback segments do not have performance differences.

However, private rollback segments provide more control over the matching of

instances with rollback segments. This allows you to locate the rollback segments

for different instances on different disks to improve performance. Therefore, use

private rollback segments to reduce disk contention in high-performance systems.

Public rollback segments form a pool of rollback segments that can be acquired by

any instance needing an additional rollback segment. Using public rollback

segments can be disadvantageous, however, when instances are shut down and

started up at the same time. For example, instance X shuts down and releases public

rollback segments. Instance Y starts up and acquires the released rollback segments.

Finally, instance X starts up and cannot acquire its original rollback segments.

Acquiring a public rollback segment can also be made at startup if

TRANSACTIONS and TRANSACTIONS_PER_ROLLBACK_SEGMENTS are not

properly set.

You can use public rollback segments to improve space utilization. If you create

only one large public rollback segment for long-running transactions that run on

See Also: Oracle8i Administrator’s Guide for information about

contention for a rollback segment and for information on the

performance implications of adding rollback segments.

ROLLBACK_SEGMENTS specifies the names of rollback segments that the instance
acquires at startup.

GC_ROLLBACK_LOCKS reserves instance locks to reduce contention for blocks
containing rollback entries. In particular, it reserves
instance locks for deferred rollback segments, that contain
rollback entries for transactions in tablespaces that were
taken offline.

See Also: Oracle8i Concepts for more information about data

blocks, extents, and segments.



Oracle Parallel Server-Specific Storage Issues

7-8 Oracle8i Parallel Server Concepts

different instances each month, the rollback segment can be taken offline and

brought back online or "moved" from one instance to another to better serve

instances with the heavier workloads.

By default a rollback segment is private and is used by the instance specifying it in

the parameter file. Specify private rollback segments using the parameter

ROLLBACK_SEGMENTS.

Once a public rollback segment is acquired by an instance, it is then used

exclusively by that instance.

Once created, both public and private rollback segments can be brought online

using the ALTER ROLLBACK SEGMENT command.

How Instances Acquire Rollback Segments
When an instance starts, it uses the TRANSACTIONS and

TRANSACTIONS_PER_ROLLBACK_SEGMENT initialization parameters to

determine how many rollback segments to acquire as shown in the following

equation:

The value for total_rollback_segments_required is rounded up.

At startup, an instance attempts to acquire rollback segments by executing the

following steps:

■ The instance first acquires any private rollback segments specified by the

ROLLBACK_SEGMENTS initialization parameter. If the

total_private_rollback_segments number is more than the

total_rollback_segments_required, then no further action is taken to acquire

rollback segments.

■ If the initialization file does not specify private rollback segments, the instance

attempts to acquire public rollback segments.

Note: An instance needs at least one rollback segment or it will

not be able to start.

TRANSACTIONS
TRANSACTIONS_PER_ROLLBACK_SEGMENT

=  total_rollback_segments_required



Oracle Parallel Server-Specific Storage Issues

Oracle Parallel Server Storage Considerations 7-9

■ If the total_private_rollback_segments falls short of the

total_rollback_segments_required, then the instance attempts to make up the

difference by acquiring public rollback segments.

■ If only one private rollback segment is specified and acquired, or one public

rollback segment is acquired, the instance starts up, even if one rollback

segment is below the total_rollback_segments_ required. In this case, Oracle

generates a message.

■ If a private rollback segment cannot be brought online at instance startup, the

startup fails and Oracle generates a message.



Space Management and Free List Groups

7-10 Oracle8i Parallel Server Concepts

Space Management and Free List Groups
This section explains space management and free list group concepts by covering

the following topics:

■ How Oracle Handles Free Space

■ Free Lists and Free List Groups

■ Partitioning Data with Free List Groups

■ Associating Instances, Users, and Locks with Free List Groups

■ SQL Options for Managing Free Space

How Oracle Handles Free Space
Oracle Parallel Server enables transactions running on separate instances to insert

and update data in the same table concurrently. This occurs without contention to

locate free space for new records. However, to take advantage of this capability, you

must accurately manage free space in your database using several structures that

are described in this section.

Oracle keeps track of blocks with space available for transactions that may cause

rows to exceed the space available in their original block. Oracle does this for each

database object, such as a table, cluster, or index. A transaction requiring free space

can examine the free list of blocks. If the free list does not contain a block with

enough space to accommodate it, Oracle allocates a new extent.

When Oracle allocates new extents to a table, Oracle adds their blocks to the master

free list. This can eventually result in contention for free space among multiple

instances on Oracle Parallel Server because the free space contained in newly

allocated extents cannot be reallocated to any group of free lists. You can have more

control over free space if you specifically allocate extents to instances; in this way

you minimize free space contention.

Segments, Extents, and the High Water Mark
A segment is a unit of logical database storage. Oracle allocates space for segments

in smaller units called extents. An extent is a specific number of contiguous data

blocks allocated for storing a specific type of information. A segment thus

comprises a set of extents allocated for a specific type of data structure. For

example, each table’s data is stored in its own data segment, while each index’s data

is stored in its own index segment.



How Oracle Handles Free Space

Oracle Parallel Server Storage Considerations 7-11

A segment’s extents are stored in the same tablespace. However, they may or may

not be contiguous on disk. The segments can span files, but individual extents

cannot.

Although you can allocate additional extents, the blocks themselves are allocated

separately. If you allocate an extent to a specific instance, the blocks are immediately

allocated to the free list. However, if the extent is not allocated to a specific instance,

then the blocks themselves are allocated only when the high water mark moves.

The high water mark is the boundary between used and unused space in a segment.

As requests for new free blocks that cannot be satisfied by existing free lists are

received, the block to which the high water mark points becomes a used block, and

the high water mark is advanced to the next block. In other words, the segment

space to the left of the high water mark is used, and the space to the right of it is

unused.

Figure 7–2 shows a segment consisting of three extents containing 10K, 20K, and

30K of space, respectively. The high water mark is in the middle of the second

extent. Thus, the segment contains 20K of used space to the left of the high water

mark, and 40K of unused space to the right of the high water mark.

Figure 7–2  High Water Mark

See Also: Oracle8i Concepts for more information about segments

and extents.

Extent 1 Extent 3 

10K 30K

UNUSED SPACE = 40K

High
Water
Mark

Segment

20K

Extent 2 



Free Lists and Free List Groups

7-12 Oracle8i Parallel Server Concepts

Free Lists and Free List Groups
Single-instance Oracle uses multiple free lists to reduce block contention. Every

tablespace has a free list that identifies data blocks with free space. Oracle uses

blocks with free space when inserts or updates are made to a database object such

as a table or a cluster.

Blocks in free lists contain free space greater than PCTFREE. This is the percentage

of a block to be reserved for updates to existing rows. In general, blocks included in

process free lists for a database object must satisfy the PCTFREE and PCTUSED

constraints.

You can specify the number of free lists by setting the FREELISTS parameter when

you create a table, index or cluster. The maximum value of the FREELISTS

parameter depends on the Oracle block size on your system. In addition, for each

free list you need to store a certain number of bytes in a block to accommodate

overhead.

Within free list groups there are two subsets of free lists:

■ Master free lists–a list of blocks containing available space drawn from any

extent in a table

■ Transaction free lists–a list of blocks freed by uncommitted transactions

Because Parallel Server has multiple instances, free lists alone cannot solve

contention problems. Free list groups, however, effectively reduce pinging between

instances.

Note: The reserved area and the number of bytes required per

free list depend upon your platform. For more information, see

your Oracle system-specific documentation.



Free List Groups

Oracle Parallel Server Storage Considerations 7-13

Free List Groups
A free list group is a set of free lists for use by one or more instances. Each free list

group provides free data blocks to accommodate inserts or updates on tables and

clusters, and is associated with instance(s) at startup. By default, only one free list

group is available. This means all free lists for an object reside in the segment

header block. Free list groups are supported on all database objects.

If multiple free lists reside in a single block in an Oracle Parallel Server

environment, the block with the free lists could thus experience pinging, or forced

reads/writes among all the instances. Avoid this by grouping the free lists into

separate groups and assigning each group to an instance. Each instance then has its

own block containing free lists. Since each instance uses its own free lists, there is no

contention among instances to access the same block containing free lists.

Inter-instance contention occurs when different instances’ transactions insert data

into the same table. This occurs because all free lists are held in the segment header

if you do not define free list groups. The free list may be from a common pool of

blocks, or you can partition multiple free lists so specific extents in files are allocated

to objects.

Note: In Oracle Parallel Server, always use free list groups and

free lists.



Free List Groups

7-14 Oracle8i Parallel Server Concepts

Avoiding Contention for Segment Header and Free Lists
A highly concurrent environment has potential contention for the segment header,

that contains the free list.

■ If free list groups exist, then the segment header only points to the central free

list. In addition, every free list group block contains pointers to its own free list.

■ If free list groups do not exist, then the segment header contains pointers to the

free list.

In multi-instance environments, as illustrated in Figure 7–3, free lists provide free

data blocks from available extents to different instances. You can partition multiple

free lists so that extents are allocated to specific database instances. Each instance

hashes to one or more free list groups, and each group’s header block points to free

lists. Without free list groups, every instance must read the segment header block to

access the free lists.

Figure 7–3  Contention for the Segment Header

Instance InstanceX Y

O/S
Header

Oracle File 
Header

0 1 2 3 4 5 6
DataDataDataData

Data Segment 

Segment
Header

Free
List
1

Free
List
2



Free List Groups

Oracle Parallel Server Storage Considerations 7-15

Figure 7–4 shows the blocks of a file in which the master free list is stored in the

segment header block. Three instances are forced to read this block to obtain free

space. Because there is only one free list, there is only one insertion point. Free list

groups help reduce contention by spreading this insertion point over multiple

blocks, each of which will be accessed less frequently.

Figure 7–4  Contention for the Master Free List

Locally Managed Tablespaces
Locally managed tablespaces are also useful because they help avoid dictionary

contention. This can occur if Oracle Parallel Server performs a lot of space

management for sorting segments in tablespaces, creating or dropping tables, and

so on. Locally managed tablespaces eliminate this contention and the benefits of

Oracle Parallel Server in this case easily outweigh the benefits of single instance

Oracle.

Instance Instance InstanceX Y Z

O/S
Header

Oracle File 
Header

Segment
Header

(Master
Free List) 

0 1 2 3 4 5 6 7
DataDataDataDataData

Data Segment 



Free List Groups

7-16 Oracle8i Parallel Server Concepts

Free List Group Examples
This section describes two free list group examples:

■ Basic Free List Group Example

■ Complex Free List Group Example

Basic Free List Group Example
Figure 7–5 illustrates the division of free space for a table into a master free list and

two free list groups, each of which contains three free lists. This example involves a

well-partitioned application in which deletes occur. The master free list pictured is

the master free list for this particular free list group.

The table was created with one initial extent, after which extents 2 and 5 were

allocated to instance X, extents 3 and 4 were allocated to instance Y, and extent 6

was allocated automatically, but not to a particular instance. Notice the following:

■ The dark shaded blocks in the initial allocation in extents 1 and extent 6

represent the master free list of free blocks.

■ The light gray blocks in extents 2 and 5 represent available free space in free list

group X.

■ The medium gray blocks in extents 3 and 4 represent the available free space in

free list group Y.

■ Extent 5 is newly allocated, thus all of its blocks are in free list group X.

■ The black blocks represent blocks freed by deletions, which return to free list

groups X and Y.

■ Unshaded blocks do not contain enough free space for inserts.

Each user process running on instance X uses one of the free lists in group X, and

each user process on instance Y uses one of the free lists in group Y. If more

instances start up, their user processes share free lists with instance X or Y.



Free List Groups

Oracle Parallel Server Storage Considerations 7-17

Complex Free List Group Example
The simple case in Figure 7–5 becomes more complicated when you consider that

extents are not permanently allocated to instances, and that space allocated to one

instance cannot be used by another instance. Each free list group has its own master

free list. After allocation, some blocks go onto the master free list for the group,

some go to a process free list, and some do not belong to a free list at all. If the

application is totally partitioned, then once blocks are allocated to a given instance,

they stay with that instance. However, blocks can move from one instance to

another if the application is not totally partitioned.

Consider a situation where instance Y fills a block, takes it off the free list, and then

instance X frees the block. The block then goes to the free list of instance X, the

instance that freed it. If instance Y needs space, it cannot reclaim this block. Instance

Y can only obtain free space from its own free list group.



Free List Groups

7-18 Oracle8i Parallel Server Concepts

Figure 7–5  Groups of Free Lists for a Table

Free List Group YFree List Group X

New space

Freed space

Initial
Allocation

Allocated
to instance X

Allocated
to instance Y

Allocated
to instance X

Allocated
Automatically

Allocated
to instance Y

Extent 1 Extent 2 Extent 3 Extent 4 Extent 5 Extent 6

Instance Y
User Processes

Free
List 1

Free
List 2

Free
List 3

Free
List 1

Free
List 2

Free
List 3

Common pool of free space from:

Initial allocation (MINEXTENTS)
automatic allocations

.

.

Instance X
User processes

Instance Y
User processes



Free List Groups

Oracle Parallel Server Storage Considerations 7-19

Partitioning Data with Free List Groups
In general, all tables should have the same number of free list groups, but the

number of free lists within a group may vary, depending on the type and amount of

activity of each table.

Partitioning free space can particularly improve the performance of applications

that have a high volume of concurrent inserts, or updates requiring new space,

from multiple instances. Performance improvements also depend, of course, on

your operating system, hardware, data block size, and so on.

In a multi-instance environment, information about multiple free lists and free list

groups is not preserved upon import. If you use Export and Import to back up and

restore your data, it will be difficult to import the data so that it is partitioned again.

How Oracle Partitions Free List Groups
The actual free list group block is determined by hashing the Oracle process ID by

the number of free list groups. For example, if there are 3 instances and 35 free list

groups, then instance 1 handles the first twelve free list groups, instance 2 the next

twelve, and instance 3 the remaining eleven.



Associating Instances, Users, and Locks with Free List Groups

7-20 Oracle8i Parallel Server Concepts

Associating Instances, Users, and Locks with Free List Groups
This section describes:

■ Associating Instances with Free Lists

■ Associating User Processes with Free Lists

■ Associating PCM Locks with Free Lists

Associating Instances with Free Lists
Data partitioning can reduce contention for data blocks. The PCM locks that often

cover blocks in one free list group tend to be held primarily by the instance using

that free list group. This is because an instance that modifies data is usually more

likely to reuse that data than other instances. However, if multiple instances take

free space from the same extent, they are more likely to contend for blocks in that

extent if they subsequently modify the data that they inserted.

Assignment of New Instances to Existing Free List Groups
If MAXINSTANCES is greater than the number of free list groups in the table or

cluster, then an instance number maps to the free list group associated with:

instance_number modulo number_of_free_list_groups

"Modulo" (or "rem" for "remainder") is a formula for determining which free list

group should be used by calculating a remainder value. In the following example

there are 2 free list groups and 10 instances. To determine which free list group

instance 6 will use, the formula would read 6 modulo 2 = 0. Six divided by 2 is 3

with zero remainder, so instance 6 will use free list group 0. Similarly, instance 5

would use free list group 1 because 5 modulo 2 = 1. Five is divisible by 2 with a

remainder of 1.

If there are more free list groups than MAXINSTANCES, then a different hashing

mechanism is used. If multiple instances share one free list group, they share access

to every extent specifically allocated to any instance sharing that free list group.



Associating Instances, Users, and Locks with Free List Groups

Oracle Parallel Server Storage Considerations 7-21

FREELIST GROUPS and MAXINSTANCES
In a system with relatively few nodes, the FREELIST GROUPS option for a table

should generally have the same value as the MAXINSTANCES option of CREATE

DATABASE, which limits the number of instances that can access a database

concurrently. In a Massively Parallel Processing system, however,

MAXINSTANCES could be many times larger than FREELIST GROUPS so that

many instances share one group of free lists.

Associating User Processes with Free Lists
User processes associate with process free lists based on their Oracle process IDs.

Each user process has access to only one free list in the free list group for the

instance on which it is running. Every user process also has access to the master free

list of free blocks.

If a table has multiple free lists but does not have multiple free list groups, or has

fewer free list groups than the number of instances, then each free list is shared by

user processes from different instances.

Associating PCM Locks with Free Lists
If each extent in a table is in a separate data file, you can use the

GC_FILES_TO_LOCKS parameter to allocate specific ranges of PCM locks to each

extent, so that each set of PCM locks is associated with only one group of free lists.

Figure 7–6 shows multiple extents in separate files. The GC_FILES_TO_LOCKS

parameter allocates 10 locks to files 8 and 10, and 10 locks to files 9 and 11. Extents

A and C are in the same free list group, and extents B and D are in another free list

group. One set of PCM locks is associated with files 8 and 10, and a different set of

PCM locks is associated with files 9 and 11. You do not need separate locks for files

that are in the same free list group, such as files 8 and 10, or files 9 and 11.

See Also: Oracle8i Parallel Server Administration, Deployment, and
Performance for more information on associating instances, users,

and locks with freelist groups.



Associating Instances, Users, and Locks with Free List Groups

7-22 Oracle8i Parallel Server Concepts

Figure 7–6  Extents and Free List Groups

This example assumes total partitioning for reads as well as writes. If more than one

instance is to update blocks, then it would still be desirable to have more than one

lock per file to minimize forced reads and writes. This is because even with a shared

lock, all blocks held by a lock are subject to forced reads when another instance tries

to read even one of the locked blocks.

������
������������������������
������������������

File 8, Extent A

File 9, Extent B 

File 10, Extent C 

File 11, Extent D

Free List Group 1 

Free List Group 2 

GC_FILES_TO_LOCKS = 8, 10:10; 9, 11:10



Associating Instances, Users, and Locks with Free List Groups

Oracle Parallel Server Storage Considerations 7-23

How Oracle Assigns Free Lists and Free List Groups to Instances
Figure 7–7 illustrates how free lists and free list groups are assigned to instances.

Figure 7–7  How Free Lists and Free List Groups Are Assigned

Using the statement ALTER SESSION INSTANCE_NUMBER, you can increase the

instance number value beyond the value of MAXINSTANCES. Figure 7–7 shows

how this is taken into account: for the purposes of the internal calculation whereby

free list groups are assigned, the instance number is brought back within the

boundaries of MAXINSTANCES.

Yes No

Is INSTANCE_NUMBER 

Yes No

Free lists are partitioned

INSTANCE_NUMBER =
(INSTANCE_NUMBER modulo MAXINSTANCES) 

MAXINSTANCES?

INSTANCE_NUMBER-1
PARALLEL_SERVER=TRUE? 

MAXINSTANCES = FREELIST_GROUPS?

(INSTANCE_NUMBER modulo FREELIST_GROUPS)+1

(oracle_pid Modulo FREELIST_GROUPS)+1

No

Yes

over the instances* 

>

 > =



SQL Options for Managing Free Space

7-24 Oracle8i Parallel Server Concepts

SQL Options for Managing Free Space
Several SQL options enable you to allocate free lists and free list groups for tables,

clusters, and indexes. You can explicitly specify that new space for an object be

taken from a specific data file. You can also associate free space with particular free

list groups that you can then associate with particular instances.

The SQL statements include:

   CREATE [TABLE | CLUSTER | INDEX]
     STORAGE
     FREELISTS
     FREELIST GROUPS
   ALTER [TABLE | CLUSTER | INDEX]
     ALLOCATE EXTENT
     SIZE
     DATAFILE
     INSTANCE

You can use these SQL options with the initialization parameter

INSTANCE_NUMBER to associate data blocks with instances.

See Also: Oracle8i SQL Reference for complete syntax of these

statements.



Controlling Extent Allocation

Oracle Parallel Server Storage Considerations 7-25

Controlling Extent Allocation
This section covers the following topics:

■ Automatic Allocation of New Extents

■ Pre-allocation of New Extents

■ Dynamic Allocation of Blocks on Lock Boundaries

When a row is inserted into a table and new extents need to be allocated, a certain

number of contiguous blocks, as specified by !blocks in the GC_FILES_TO_LOCKS

parameter, is allocated to the free list group associated with an instance. Extents

allocated when the table or cluster is first created and new extents that are

automatically allocated, add their blocks to the master free list or to the space above

the high water mark.

Automatic Allocation of New Extents
When you explicitly allocate an extent without specifying an instance, or when an

extent is automatically allocated to a segment because the system is running out of

space (the high water mark cannot be advanced any more), the new extent becomes

part of the unused space. It is placed at the end of the extent map, which means that

the current high water mark is now in an extent "to the left" of the new one. The

new extent is thus added "above" the high water mark.

Pre-allocation of New Extents
You have two options for controlling the allocation of new extents.

■ Pre-allocating Extents to Free List Groups

■ Dynamic Allocation of Blocks on Lock Boundaries

Pre-allocating Extents to Free List Groups
Pre-allocating extents is a static approach to the problem of preventing automatic

allocation of extents by Oracle. You can pre-allocate extents to tables that have free

list groups. This means that all free blocks are formatted into free lists, which will

reside in the free list group of the instance to which you are pre-allocating the

extent. This approach is useful if you need to partition data so as to greatly reduce

all pinging on insert, or if you need to accommodate objects that you expect will

grow in size.



Controlling Extent Allocation

7-26 Oracle8i Parallel Server Concepts

Dynamic Allocation of Blocks on Lock Boundaries
To accommodate growth, the strategy of dynamically allocating blocks to free list

groups is more effective than pre-allocating of extents. You can use the !blocks option

of GC_FILES_TO_LOCKS to dynamically allocate blocks to a free list from the high

water mark within a lock boundary. This method does not eliminate all pinging on

the segment header. Instead, this method allocates blocks as needed so you do not

have to pre-allocate extents.

Because locks are owned by instances, blocks are allocated on a per-instance

basis–and that is why they are allocated to free list groups. Within an instance,

blocks can be allocated to different free lists.

Using this method, you can either explicitly allocate the !blocks value, or leave the

balance of new blocks still covered by the existing PCM lock. If you choose the

latter, remember there still may be contention for the existing PCM lock by

allocation to other instances. If the PCM lock covers multiple groups of blocks, there

may still be unnecessary forced reads and writes of all the blocks covered by the

lock.

Moving the High Water Mark of a Segment
A segment’s high water mark is the current limit to the number of blocks that have

been allocated within the segment. If you are allocating extents dynamically, the

high water mark is also the lock boundary. The lock boundary and the number of

blocks that will be allocated at one time within an extent must coincide. This value

must be the same for all instances.

Consider the following example with 4 blocks per lock (!4). Locks have been

allocated before the block content has been entered. If we have filled data block D2,

held by Lock 2, and then allocated another range of 4 blocks, only the number of

blocks fitting within the lock boundary are allocated. In this case, this includes

blocks 7 and 8. Both of these are protected by the current lock. With the high water

mark at 8, when instance 2 allocates a range of blocks, all four blocks 9 to 12 are

allocated, covered by lock 3. The next time instance 1 allocates blocks it will get

blocks 13 to 16, covered by lock 4.

Note: You cannot completely eliminate false pinging.



Controlling Extent Allocation

Oracle Parallel Server Storage Considerations 7-27

Figure 7–8  A File with a High Water Mark That Moves as Blocks Are Allocated

Example This example assumes that GC_FILES_TO_LOCKS has the following

setting for both instances:

GC_FILES_TO_LOCKS = "1000!5"

With the EACH option specified, each file in file_list is allocated #locks number of

PCM locks. Within each file, !blocks specifies the number of contiguous data blocks

to be covered by each lock.

Figure 7–9 shows the incremental process by which the segment grows:

■ Stage 1 shows an extent in which instance 1 allocates 5 data blocks, which are

protected by Lock 2.

■ Stage 2 shows instance 2 allocating 5 more data blocks, protected by Lock 3.

■ Stage 3 shows instance 1 once more allocating 5 data blocks, protected by

Lock 4.

In this way, if user A on Instance 1 is working on block 10, no one else from either

instance can work on any block in the range of blocks covered by Lock 2. This

includes blocks 6 through 10.

File
Header

Segment
Header

Free
List

1 2 3 4 5 6 7 8
DataDataDataDataFree

Lock 1 Lock 2 

Group
1

List
Group
2

9 10 11 12
DataDataDataData

Lock 3

Shifted high
water mark 

Initial high
water mark



Controlling Extent Allocation

7-28 Oracle8i Parallel Server Concepts

Figure 7–9  Allocating Blocks within an Extent

Instance 1 Instance  2Segment A 

Instance 1 Instance 2 

Freelist
Freelist

Allocation B: 

Segment  A

High water 

Instance 1 Instance  2Segment  A

Freelist

2

1

3

group 2 

5 Blocks 

Allocation C: 
5 Blocks 

group 1 

group 1 

Mark 2 

High water 
Mark 3 

High 
Mark 2 

Allocation A: 
5 Blocks 

Freelist
group 1 

Freelist
group 2 

Freelist
group 2 

PCM
Lock 1 

PCM
Lock 2 



Scalability and Oracle Parallel Server 8-1

8
Scalability and Oracle Parallel Server

This chapter describes the scalability features of Oracle Parallel Server. Topics in

this chapter include:

■ Scalability Features of Oracle Parallel Server

■ When Is Parallel Processing Advantageous?

■ Multi-Node Parallel Execution

■ Overview of Client-to-Server Connectivity

■ The Four Levels of Scalability



Scalability Features of Oracle Parallel Server

8-2 Oracle8i Parallel Server Concepts

Scalability Features of Oracle Parallel Server
You can implement Oracle Parallel Server using several features that enhance

application performance and maintain high availability levels. These features:

■ Provide persistent connections between clients and your Oracle Parallel Server

database despite failures

■ Balance workloads among the nodes by controlling multiple server connections

during heavy use periods

■ Offer several customizable client connection options to provide seamless

failover of application-to-database connections in the event of common types of

service disruptions

This section discusses these features in four parts:

■ Overview of Client-to-Server Connectivity

■ Enhanced Scalability Using the Multi-Threaded Server

■ The Four Levels of Scalability

The Oracle Database Configuration Assistant automatically configures most of

these features for you. To manually configure these features, refer to the Net8

Administrator’s Guide where noted in the following discussions.

Enhanced Throughput: Scale-Up
If tasks can run independently of one another, Oracle Parallel Server can distribute

them to different nodes. This permits you to achieve scaleup: more processes run

through the database in the same amount of time. The number of nodes used,

however, depends upon the purpose of the system.

If processes can run faster, then the system accomplishes more work. The parallel

execution feature, for example, permits scaleup: a system might maintain the same

response time if the data queried increases tenfold, or if more users can be served.

Oracle Parallel Server without the parallel execution feature also provides scaleup,

but by running the same query sequentially on different nodes.

With a mixed workload of DSS, OLTP, and reporting applications, you can achieve

scaleup by running multiple programs on different nodes. You can also achieve

speed-up by rewriting the batch programs and separating them into a number of

parallel streams to take advantage of the multiple CPUs.

Oracle Parallel Server also offers improved flexibility by overcoming memory

limitations so you can use it to accommodate thousand of users. You can allocate or



Scalability Features of Oracle Parallel Server

Scalability and Oracle Parallel Server 8-3

deallocate instances as necessary. For example, as database demand increases, you

can temporarily allocate more instances. Then you can deallocate the instances and

use them for other purposes once they are no longer required. This feature is useful

in internet-based computing environments.

Speed-Up and Scale-up: The Goals of Parallel Processing
You can measure the performance goals of parallel processing in two ways:

■ Scale-Up

■ Speed-Up

Scale-Up
Scale-up is the factor that expresses how much more work can be done in the same

time period by a larger system. With added hardware, a formula for scaleup holds

the time constant, and measures the increased size of the job which can be done.

Figure 8–1  Scale-Up

If transaction volumes grow and you have good scale-up, you can keep response

time constant by adding hardware resources such as CPUs.

100% Task 
Time

Original System: 

Parallel System:

Hardware

200% Task 
Time

Hardware

Time
Hardware



Scalability Features of Oracle Parallel Server

8-4 Oracle8i Parallel Server Concepts

You can measure scaleup using this formula:

Where:

For example, if the original system processes 100 transactions in a given amount of

time and the parallel system processes 200 transactions in this amount of time, then

the value of scaleup would be equal to 2. A value of 2 indicates the ideal of linear

scaleup: when twice as much hardware can process twice the data volume in the

same amount of time.

Speed-Up
Speed-up is the extent to which more hardware can perform the same task in less

time than the original system. With added hardware, speed-up holds the task

constant and measures time savings. Figure 8–2 shows how each parallel hardware

system performs half of the original task in half the time required to perform it on a

single system.

Volume_Original is the transaction volume processed in a given amount of

time on a small system.

Volume_Parallel is the transaction volume processed in a given amount of

time on a parallel system.

Scaleup  =
Volume_Parallel

Volume_Original



When Is Parallel Processing Advantageous?

Scalability and Oracle Parallel Server 8-5

Figure 8–2  Speed-Up

However, you may not experience direct, linear speed-up. Instead, speed-up may

be more logarithmic. That is, assume the system can perform a task of size "x" in a

time duration of "n". But for a task of size 2x, the system may require a time

duration of 3n.

When Is Parallel Processing Advantageous?
This section describes applications that commonly benefit from a parallel server.

■ Decision Support Systems

■ Applications that Update Different Data Blocks

■ Departmentalized Applications

Decision Support Systems
Data warehousing applications that infrequently update, insert, or delete data are

often appropriate for Oracle Parallel Server. Query-intensive applications and other

applications with low update activity can access the database through different

instances with little additional overhead.

Note: For most OLTP applications, no speed-up can be expected;

only scale-up. The overhead due to synchronization can in fact,

cause slow-down.

100% Task 
Time

Time

Original System: 

Parallel System: 

Time

50% Task 

50% Task 

Hardware

Hardware

Hardware



When Is Parallel Processing Advantageous?

8-6 Oracle8i Parallel Server Concepts

If the data blocks are not modified, multiple nodes can read the same block into

their buffer caches and perform queries on the block without additional I/O or lock

operations.

Decision support applications are good candidates for Oracle Parallel Server

because they only occasionally modify data, as in a database of financial

transactions that is mostly accessed by queries during the day and is updated

during off-peak hours.

Applications that Update Different Data Blocks
Applications that either update different data blocks or update the same data blocks

at different times are also well suited to the parallel server. An example is a

time-sharing environment where users each own and use one set of tables.

An instance that needs to update blocks held in its buffer cache must hold one or

more instance locks in exclusive mode while modifying those buffers. Tune parallel

server and the applications that run on it to reduce this type of contention for

instance locks. Do this by planning how each instance and application uses data

and partition your tables accordingly.

OLTP with Partitioned Data
Online transaction processing applications that modify different sets of data benefit

the most from parallel server. One example is a branch banking system where each

branch (node) accesses its own accounts and only occasionally accesses accounts

from other branches.

OLTP with Random Access to a Large Database
Applications that access a database in a mostly random pattern also benefit from

parallel server. This is true only if the database is significantly larger than any

node’s buffer cache. One example is a motor vehicle department’s system where

individual records are unlikely to be accessed by different nodes at the same time.

Another example is an archived tax record or research data system. In cases like

these, most access results in I/O even if the instance had exclusive access to the

database. Oracle features such as 1:1 locking further improve performance of such

applications.

Departmentalized Applications
Departmentalized applications are applications that you have effectively

partitioned based on business or departmental processes. Such applications are also

suitable for Oracle Parallel Server because they primarily modify different tables in



When Is Parallel Processing Advantageous?

Scalability and Oracle Parallel Server 8-7

the same database. An example is a system where one node is dedicated to

inventory processing, another is dedicated to personnel processing, and a third is

dedicated to sales processing. In this case there is only one database to administer,

not three.

Application Profiles
Online transaction processing (OLTP) applications tend to perform best on

symmetric multiprocessors; they perform well on clusters and MPP systems if they

can be well partitioned. Decision support (DSS) applications tend to perform well

on SMPs, clusters, and massively parallel systems. Select the implementation

providing the power you need for the application(s) you require.

Figure 8–3 illustrates the relative scalability of different application types. Data

warehousing applications, depicted by the left-most bubble, typically scale well

since updates are less common and the degree of partitioning is higher than other

application types. OLTP and departmentalized applications with partitioning and

increasing rates of change also scale well.

OLTP applications that make random changes to large databases were historically

not considered good parallel server candidates. Such applications, however, are

becoming more scalable because they use advanced inter-node communication

channels such as an interconnect. This is particularly true if, for example, a table is

modified on one instance and then another instance reads the table. Such

configurations are now much more scalable than in previous releases.



Multi-Node Parallel Execution

8-8 Oracle8i Parallel Server Concepts

Figure 8–3 Scalability of Applications

Multi-Node Parallel Execution
You can execute operations in parallel using multi-node parallel execution. This can

significantly reduce the duration of complex queries and DML statements.

Overview of Client-to-Server Connectivity
In Oracle Parallel Server, client-to-server connections are established using several

subcomponents. A client submits a connection request to a listener process that

resides on the destination node in the cluster. A "listener" process is a process that

manages in-coming connection requests. The listener grants a client-to-server

connection by way of a particular node based on several factors depending on how

you configure the connection options.

Enhanced Scalability Using the Multi-Threaded Server
The Multi-Threaded Server allows enhanced scalability in that for a given amount

of memory it allows you to support a larger number of users than when using

dedicated servers. The incremental costs of memory as you add a user is less than

Low

High

No Change Heavy Change 

Operations

D
eg

re
e 

o
f 

P
ar

ti
ti

o
n

in
g

 o
f 

D
at

a 

May
Not
Scale

Data
Warehousing

Departmentalized
Applications

OLTP with Partitioning

 

OLTP: Random Changes
to Large Database 

Scale
Well



Overview of Client-to-Server Connectivity

Scalability and Oracle Parallel Server 8-9

when using a dedicated server. In addition to improving the scalability of the

number of users, Multi-Threaded Server offers additional benefits.

An increasing number of Oracle8i features require the Multi-Threaded Server. You

need the Multi-Threaded Server if you use certain database features such as:

■ Oracle8i JServer

■ Connection Pooling

■ Connection Concentration Feature

Service Registration and the Multi-Threaded Server Functionality
An important feature of the Multi-Threaded Server is "Service Registration". This

feature provides the listener with the service names, instance names and network

addresses of the database, as well as the current state and load of all instances and

MTS dispatchers. With this information, the listener can forward client connection

requests to the appropriate dispatchers and dedicated servers.

Because this information is registered with the listener, you do not need to configure

the listener.ora  file with this static information about a database service.

Service registration also extends benefits to connection load balancing which is a

feature of the Multi-Threaded Server.

Connection Load Balancing
The connection load balancing feature provides exceptional benefits in Oracle

Parallel Server environments where there are multiple instances and dispatchers.

Connection load balancing improves performance by balancing the number of

active connections among various instances and MTS dispatchers for the same

service.

Because of service registration’s ability to register with remote listeners, a listener is

always aware of all instances and dispatchers regardless of their location. This way,

a listener can send an incoming client request for a specific service to the least

loaded instance and least loaded dispatcher.

Service Registration also facilitates connect-time failover and client load balancing

which you can use with or without MTS.

See Also: Net8 Administrator’s Guide for Multi-Threaded Server

configuration information for Oracle Parallel Server environments.



The Four Levels of Scalability

8-10 Oracle8i Parallel Server Concepts

Connect-Time Failover for Multiple Listeners
Service registration enables listeners to know whether an instance is up at all times.

This allows you to use connect-time failover when multiple listeners support a

service. Do this by configuring a client to failover client requests to a different

listener if the first listener fails. The reconnection attempts continue until the client

successfully connects to a listener. If an instance is down, a listener returns a

network error.

Client Load Balancing for Multiple Listeners
When more than one listener supports a service, a client can randomly send

connection requests to the various listeners. The random nature of the connection

requests distributes the load to avoid overburdening a single listener.

In addition to load balancing, clients can also specify that their connection request

automatically fail over to a different listener if a connection cannot be made with

the listener chosen at random. A connection could fail either because the specified

listener is not up or because the instance is not up and the listener therefore cannot

accept the connection.

The Four Levels of Scalability
Successful implementation of parallel processing and parallel database requires

optimal scalability on four levels:

■ Scalability of Hardware and Network

■ Scalability of Operating System

■ Scalability of Database Management System

■ Scalability of Application

See Also: For configuration information on the features described

in this section, please refer to the Net8 Administrator’s Guide.

Note: Inappropriately designed applications may not fully use the

potential scalability of the system. Likewise, no matter how well

your applications scale, you will not get the desired performance if

you try to run them on hardware that does not scale.



The Four Levels of Scalability

Scalability and Oracle Parallel Server 8-11

Scalability of Hardware and Network
Interconnects are key to hardware scalability. That is, every system must have some

means of connecting the CPUs, whether this is a high speed bus or a low speed

Ethernet connection. Bandwidth and latency of the interconnect then determine the

scalability of the hardware.

Bandwidth and Latency
Most interconnects have sufficient bandwidth. A high bandwidth may, in fact,

disguise high latency.

Hardware scalability depends heavily on very low latency. Lock coordination traffic

communication is characterized by a large number of very small messages among

the LMD processes.

Consider the example of a highway and the difference between conveying a

hundred passengers on a single bus, compared to one hundred individual cars. In

the latter case, efficiency depends largely upon the ability of cars to quickly enter

and exit the highway. Even if the highway has 5 lanes so multiple cars can pass, if

there is only a one-lane entrance ramp, there can be a bottleneck getting onto the

"fast" highway.

Other operations between nodes, such as parallel execution, rely on high

bandwidth.

Disk Input and Output
Local I/Os are faster than remote I/Os (those which occur between nodes). If a

great deal of remote I/O is needed, the system loses scalability. In this case you can

partition data so that the data is local.

Scalability of Operating System
The ultimate scalability of your system also depends upon the scalability of the

operating system. This section explains how to analyze this factor.

Software scalability can be an important issue if one node is a shared memory

system (that is, a system where multiple CPUs connect to a symmetric

Note: Various clustering implementations are available from

different hardware vendors. On shared disk clusters with dual

ported controllers, the latency is the same from all nodes. However,

with MPP (shared nothing) systems, this may not me true.



The Four Levels of Scalability

8-12 Oracle8i Parallel Server Concepts

multiprocessor single memory). Methods of synchronization in the operating

system can determine the scalability of the system. In asymmetrical

multiprocessing, for example, only a single CPU can handle I/O interrupts.

Consider a system where multiple user processes request resources from the

operating system:

Scalability of Database Management System
An important distinction in parallel server architectures is internal versus external

parallelism; this has a strong effect on scalability. The key difference is whether the

object-relational database management system (ORDBMS) parallelizes the query, or

an external process parallelizes the query.

Disk affinity can improve performance by ensuring that nodes mainly access local,

rather than remote, devices. An efficient synchronization mechanism enables better

speed-up and scaleup.

Scalability of Application
Application design is key to taking advantage of the scalability of the other

elements of the system.

No matter how scalable the hardware, software, and database may be, a table with

only one row which every node is updating will synchronize on one data block.

Consider the process of generating a unique sequence number:

UPDATE ORDER_NUM
SET NEXT_ORDER_NUM = NEXT_ORDER_NUM + 1;
COMMIT;

Every node needing to update this sequence number must wait to access the same

row of this table: the situation is inherently unscalable. A better approach is to use

sequences to improve scalability:

See Also:

■ Oracle8i Parallel Server Administration, Deployment, and
Performance

■ Oracle8i Designing and Tuning for Performance

Note: Applications must be specifically designed to be scalable!



The Four Levels of Scalability

Scalability and Oracle Parallel Server 8-13

INSERT INTO ORDERS VALUES
   (order_sequence.nextval, ... )

In this example, you can preallocate and cache sequence numbers to improve

scalability. However you may not be able to scale some applications due to business

rules. In such cases, you must determine the cost of the rule.

The Sequence Generator
Oracle Parallel Server allows users on multiple instances to generate unique

sequence numbers with minimal synchronization.

The sequence number generator allows multiple instances to access and increment a

sequence without contention among instances for sequence numbers and without

waiting for transactions to commit. Each instance can have its own sequence cache

for faster access to sequence numbers. Distributed Lock Manager locks coordinate

sequences across instances in Oracle Parallel Server.

This section describes the CREATE SEQUENCE statement and its options.

■ The CREATE SEQUENCE Statement

■ The CACHE Option

■ The ORDER Option

The CREATE SEQUENCE Statement
The SQL statement CREATE SEQUENCE establishes a database object from which

multiple users can generate unique integers without waiting for other users to

commit transactions to access the same sequence number generator.

Oracle Parallel Server allows users on multiple instances to generate unique

sequence numbers with minimal cooperation or contention among instances.

Instance locks coordinate sequences across instances in Oracle Parallel Server.

Note: Clients must be connected to server machines in a scalable

manner: this means your network must also be scalable!

See Also: Oracle8i Parallel Server Administration, Deployment, and
Performance for information on designing databases and application

analysis.



The Four Levels of Scalability

8-14 Oracle8i Parallel Server Concepts

Sequence numbers are always unique, unless you use the CYCLE option. However,

you can assign sequence numbers out of order if you use the CACHE option

without the ORDER option, as described in the following section.

The CACHE Option
The CACHE option of CREATE SEQUENCE pre-allocates sequence numbers and

retains them in an instance’s System Global Area for faster access. You can specify

the number of sequence numbers cached as an argument to the CACHE option. The

default value is 20.

Caching sequence numbers significantly improves performance but can cause the

loss of some numbers in the sequence. Losing sequence numbers is unimportant in

some applications, such as when sequences are used to generate unique numbers

for primary keys.

A cache for a given sequence is populated at the first request for a number from that

sequence. After the last number in that cached set of numbers is assigned, the cache

is repopulated with another set of numbers.

Each instance keeps its own cache of sequence numbers in memory. When an

instance shuts down, cached sequence values that have not been used in committed

DML statements can be lost. The potential number of lost values can be as great as

the value of the CACHE option multiplied by the number of instances shutting

down. Cached sequence numbers can be lost even when an instance shuts down

normally.

The ORDER Option
The ORDER option of CREATE SEQUENCE guarantees that sequence numbers are

generated in the order of the requests. You can use the ORDER option for time-

stamp numbers and other sequences that must indicate the request order across

multiple processes and instances.

If you do not need Oracle to issue sequence numbers in order, the NOORDER

option of CREATE SEQUENCE can significantly reduce overhead in an Oracle

Parallel Server environment.

See Also: Oracle8i SQL Reference for more information about the

CREATE SEQUENCE and CYCLE options.



The Four Levels of Scalability

Scalability and Oracle Parallel Server 8-15

Note: Oracle Parallel Server does not support the CACHE option

with the ORDER option of CREATE SEQUENCE when the

database is mounted in parallel mode. Oracle cannot guarantee an

order if each instance has some sequence values cached. Therefore,

if you should create sequences with both the CACHE and ORDER

options, they will be ordered but not cached.



The Four Levels of Scalability

8-16 Oracle8i Parallel Server Concepts

Oracle Parallel Execution on Oracle Parallel Server
Oracle Parallel Server provides the framework for parallel execution to operate

between nodes. Parallel execution behaves the same way with or without the Oracle

Parallel Server Option. The only difference is that Oracle Parallel Server enables

parallel execution to distribute portions of statements among nodes so that the

nodes execute on behalf of a single query. The server sub-divides the statement into

smaller operations that run against a common database residing on shared disks.

Because parallel execution is performed by the server, this parallelism can occur at a

low level of server operation, rather than at an external SQL level.

If Oracle does not process a statement in parallel, Oracle reads disks serially with

one I/O. In this case, a single CPU scans all rows in a table. With the statement

parallelized, disks are read in parallel with multiple I/Os.

Several CPUs can each scan a part of the table in parallel, and aggregate the results.

Parallel execution benefits not only from multiple CPUs but also from greater I/O

bandwidth availability.

Oracle parallel execution can run with or without the Oracle Parallel Server.

Without the Oracle Parallel Server option, parallel execution cannot perform

multi-node parallelism. Oracle Parallel Server optimizes the Oracle8i Enterprise

Edition running on clustered hardware using a parallel cache architecture to avoid

shared memory bottlenecks in OLTP and DSS applications.



High Availability and Oracle Parallel Server 9-1

9
High Availability and Oracle Parallel Server

This chapter describes the concepts and some of the "best practices" methodologies

for using Oracle Parallel Server to implement high availability. This chapter

includes the following topics:

■ What is High Availability?

■ Planning for High Availability

■ Oracle Parallel Server and High Availability

■ Failure Protection Validation

■ Failover and Oracle Parallel Server Systems

■ Oracle Parallel Server High Availability Configurations

■ Toward Deploying High Availability



What is High Availability?

9-2 Oracle8i Parallel Server Concepts

What is High Availability?
Computing environments that are configured to provide nearly full-time

availability are known as "high availability" systems. Such systems typically have

redundant hardware and software that makes the system available despite failures.

Well-designed high availability systems avoid having single points-of-failure. Any

hardware or software component that can fail has a redundant component of the

same type.

When failures occur, a process known as "failover" moves processing performed by

the failed component to the backup component. The failover process re-masters

system-wide resources, recovers partial or failed transactions, and restores the

system to normal, preferably within a matter of mircroseconds. The more

transparent that failover is to the users, the higher the availability of the system.

Oracle Parallel Servers are inherently high availability systems. The clusters that are

typical of Oracle Parallel Server environments, as described in Chapter 2, can

provide continuous service for both planned and unplanned outages.

Measuring Availability
You can classify systems and evaluate their expected availability by system type.

Mission- and business-critical applications such as mail and internet servers

probably require a significantly greater availability than do less popular

applications. As well, some systems may have a "24 x 7" uptime requirement, while

others such as a stock market tracking system will have near 100% uptime

requirements for specific timeframes, such as when the stock market is open.

The Metrics of High Availability
The software industry generally measures availability using two types of metrics:

■ Mean time to recover (MTTR)

■ Mean time between failures (MTBF)

For most failure scenarios, the industry focuses on MTTR issues and investigates

how to optimally design systems to reduce these. MTBF is generally more

applicable for hardware availability metrics; this chapter does not go into detail

about MTBF. However, given that you can design Oracle Parallel Server clusters to

avoid single points-of-failure, component failures may not necessarily result in

application unavailability. Hence, Oracle Parallel Server can greatly reduce the

MTBF from an application availability standpoint.



What is High Availability?

High Availability and Oracle Parallel Server 9-3

Another metric that is generally used is "number of nines". For example, 526

minutes of system unavailability per year results in 99.9% or "3-nines availability",

and 5 minutes of system unavailability per year results in a 99.999% or "5-nines

availability".

It is difficult to consider "several nines of availability" without also describing the

ground rules and strict processes for managing application environments, testing

methodologies, and change management procedures. For these reasons, we focus

on how Oracle Parallel Server can significantly reduce MTTR during failures. This

inevitably contributes toward a more favorable "nines availability" for an entire

system.

Causes of Outages
Downtime can be classified into two categories:

■ Planned Downtime

■ Unplanned Downtime

Planned Downtime
Scheduled maintenance, product upgrades, and application modifications are

typically performed during these timeframes. End users generally do not have

system access during these periods. Oracle Parallel Server provides many features

to minimize the need for planned downtime to perform routine maintenance. These

include failover to another node for system maintenance, online reorganization,

online backups, and partitioned operations.

Unplanned Downtime
Unplanned downtime results when component and/or system failures result in a

"down system". User error can also contribute to unplanned downtime. Such

failures can be due to either hardware or software problems and can involve CPU,

memory, operating system, the database, or the network.

As mentioned, a well designed Oracle Parallel Server system has redundant

components that protect against most failures and that provide an environment

without single points-of-failure. Working with your hardware vendor is key to

building fully redundant cluster environments for Oracle Parallel Server.



Planning for High Availability

9-4 Oracle8i Parallel Server Concepts

Planning for High Availability
High availability is the result of thorough planning and careful system design. You

can conduct high availability planning at two levels:

■ The system level with a broad perspective

■ The failure protection level to ensure against a long list of potential causes of

failures

System Level Planning
System level planning involves:

■ Capacity Planning

■ Redundancy Planning

Capacity Planning
High availability requires the timely processing of transactions in order for a system

to be deemed completely "available". While this chapter does not provide extended

capacity planning discussions, adequate system resources for managing application

growth are important for maintaining availability.

If an application runs on a single symmetric multi-processing (SMP) machine with

single instance Oracle, a natural growth path is to migrate this database to a larger

SMP machine. However, depending on your hardware vendor's product line, this

may not be an option.

Oracle Parallel Server allows you to add nodes to your system to increase capacity

and handle application growth. You can do this online without stopping the

database, and with minimal interference to existing client transactions.

Redundancy Planning
Redundancy planning means duplicating system components such that no single

component failure reduces system unavailability. Redundant components are often

used in high-end SMP machines to protect against failures. For example, redundant

power supplies and redundant cooling fans are not uncommon in high-end SMP

server systems. A clustered Oracle Parallel Server environment can extend this

redundant architecture to a higher level by creating complete redundancy such that

there is no single point-of-failure.



Oracle Parallel Server and High Availability

High Availability and Oracle Parallel Server 9-5

Oracle Parallel Server and High Availability
Oracle Parallel Server builds higher levels of availability on top of the standard

Oracle features. All single instance high availability features such as Fast-start

Recovery and Online Re-organizations apply with Oracle Parallel Server as well.

Fast-start Recovery can greatly reduce MTTR with minimal effects on online

application performance. On-line Re-organizations reduce the durations of planned

downtimes. Operations that used to be performed off-line during maintenance

periods can now be performed on-line while users update the underlying objects.

Oracle Parallel Server preserves all these standard Oracle features.

In addition to all the regular Oracle features, Oracle Parallel Server exploits the

redundancy provided by clustering to deliver availability with N-1 node failures in

an N-node cluster. In other words, all users have access to all data as long as there is

one available node in the cluster.

To configure Oracle Parallel Server for high availability, you must carefully consider

the hardware and software component issues of your cluster as described under the

following heading.

Cluster Components and High Availability
This section describes the high availability issues for the following cluster

components:

■ Cluster Nodes

■ Cluster Interconnects

■ Storage Devices

■ Operating System Software and Cluster Managers

■ Database Software

Note: When installing a high availability system, ensure the

hardware and software are certified as a unit.

See Also : Chapter 2 for more information about these

components.



Oracle Parallel Server and High Availability

9-6 Oracle8i Parallel Server Concepts

Cluster Nodes
As mentioned, Oracle Parallel Server environments are fully redundant because all

nodes access all the disks comprising the database. The failure of one node does not

affect another node's ability to process transactions. As long as the cluster has one

surviving node, all database clients can process all transactions, subject of course to

increased response times due to capacity constraints on the one node.

Cluster Interconnects
Interconnect redundancy is often overlooked in clustered systems. This is because

the Mean Time To Fail (MTTF) is generally several years and therefore cluster

interconnect redundancy may not be a high priority. Also, depending on the system

and sophistication level, a redundant cluster interconnect could be cost prohibitive

and have insufficient business justification.

However, a redundant cluster interconnect is an important aspect of a fully

redundant cluster. Without this, a system is not truly void of single points-of-failure.

Cluster interconnects can fail for a variety of reason and not all of them are

accounted for. Nor can we account for them when manufacturer MTTF metrics are

provided. Interconnects can fail due to device malfunctions, such as an oscillator

failure in a switch interconnect, or because of human error.

Storage Devices
Oracle Parallel Server operates on a single image of the data; all nodes in the cluster

access the same set of data files. Database administrators are encouraged to use

hardware based mirroring to maintain redundant media. In this regard, Oracle

Parallel Server is no different from single instance Oracle. Disk redundancy

depends on the underlying hardware and software mirroring in use, such as RAID.

Operating System Software and Cluster Managers
It was already mentioned that Oracle Parallel Server environments have full node

redundancy. Each node runs its own operating system copy. Hence, the same

considerations about node redundancy also apply to the operating system. The

cluster manager is an extension of the operating system. Since the Cluster Manager

software is also installed on all the nodes of the cluster, full redundancy is assured.

Database Software
In Oracle Parallel Server, the database binaries are installed on the local disks of

each node and an instance runs on each node of the cluster. All instances have equal



Failure Protection Validation

High Availability and Oracle Parallel Server 9-7

access to all data and can process any transactions. In this way, Oracle Parallel

Server ensures full database software redundancy.

Disaster Planning
Oracle Parallel Server is primarily a single site, high availability solution. This

means the nodes in the cluster generally exist within the same building, if not the

same room. Thus, disaster planning can be critical. Disaster planning covers

planning for fires, floods, hurricanes, earthquakes, terrorism, and so on. Depending

on the mission criticality of your system and the propensity of your system’s

location for such disasters, disaster planning may be an important high availability

component.

Oracle offers other solutions such as standby database and replication to facilitate

more comprehensive disaster recovery planning. You can use these solutions with

Oracle Parallel Server where one cluster hosts the primary database and another

remote system or cluster hosts the disaster recovery database. Oracle Parallel Server

is not required on either site.

Failure Protection Validation
Once you have carefully considered the system level issues, validate that the Oracle

Parallel Server environment protects against potential failures. The following is

comprehensive but non-exhaustive list of causes of failures you can use for this

process:

■ Cluster Component

■ CPU

■ Memory

■ Interconnect Software

■ Operating System

■ Cluster Manager

■ Oracle Database Instance Media

■ Corrupt/Lost Control File

■ Corrupt/Lost Log File

■ Corrupt/Lost Data File Human Error

■ Dropped/Deleted a Database Object



Failover and Oracle Parallel Server Systems

9-8 Oracle8i Parallel Server Concepts

As discussed under "System Level Planning", Oracle Parallel Server environments

protect against cluster component failures and software failures. However, media

failures and human error may still cause system "downtime". Oracle Parallel Server,

as with single instance Oracle, operates on one set of files. For this reason, you

should adopt best practices to avoid media failures.

RAID-based redundancy practices avoid file loss but may not prevent rare cases of

file corruptions. Also, if you mistakenly drop a database object in an Oracle Parallel

Server environment, you can recover that object the same way you would in a

single instance database. These are the primary limitations in an otherwise very

robust and highly available Oracle Parallel Server system.

Once you deploy your system, the key issue is the transparency of failover and its

duration. The next section describes failover in more detail.

Failover and Oracle Parallel Server Systems
The following section describes the basics of failover and the various features

Oracle Parallel Server offers to implement it in high availability systems. Topics in

this section include:

■ The Basics of Failover

■ Client Failover

■ Server Failover

The Basics of Failover
Failover requires that highly available systems have accurate instance monitoring or

heartbeat mechanisms. In addition to having this functionality for normal

operations, the system must be able to quickly and accurately synchronize

resources during failover.

The process of synchronizing, or "re-mastering", requires the graceful shutdown of

the failing system as well as an accurate assumption of control of the resources that

were mastered on that system. Accurate re-mastering also requires that the system

have adequate information about resources across the cluster. This means your

system must record resource information to remote nodes as well as local. This

makes the information needed for failover and recovery available to the recovering

instances.



Client Failover

High Availability and Oracle Parallel Server 9-9

The Duration of Failover
The duration of failover includes the time a system requires to remaster

system-wide resources and recover from failures. The duration of the failover

process can be a relatively short interval on certified platforms. For existing users,

failover entails both server and client failover actions. For new users, failover only

entails the server failover time.

Client Failover
It is important is to hide system failures from database client connections. Such

connections can include application users in client server environments or mid-tier

database clients in multi-tiered application environments. When database failures

occur, clients should not notice a loss of connection. Properly configured failover

mechanisms transparently reroute client sessions to an available node in the cluster.

This capability in the Oracle database is referred to as "Transparent Application

Failover".

What Is Transparent Application Failover?
Transparent Application Failover (TAF) enables an application user to automatically

reconnect to a database if the connection breaks. Active transactions roll back, but

the new database connection, made by way of a different node, is identical to the

original. This is true regardless of how the connection was lost.

How Does Transparent Application Failover Work in Oracle Parallel Server?
With Transparent Application Failover, a client sees no loss of connection as long as

there is one instance left serving the application. The DBA controls which

applications run on which instances and also creates a failover order for each

application.

Elements of Active Database Connections Affected by TAF
During normal client-server database operations, the client maintains a connection

to the database so the client and server can communicate. If the server fails, so does

the connection. The next time the client tries to use the connection the client issues

an error. At this point, the user must log in to the database again.

With Transparent Application Failover, however, Oracle automatically obtains a

new connection to the database. This allows the user to continue working as if the

original connection had never failed.



Client Failover

9-10 Oracle8i Parallel Server Concepts

There several elements associated with active database connections. These include:

■ Client-Server Database Connections

■ Users’ Database Sessions n Executing Commands

■ Open Cursors Used for Fetching

■ Active Transactions

■ Server-Side Program Variables

Transparent Application Failover automatically restores some of these elements.

Other elements, however, may need to be embedded in the application code to

enable transparent application failover to recover the connection.

Uses of Transparent Application Failover
While failing over client sessions during system failures is a strong benefit of

Transparent Application Failover, there are other useful scenarios in which

Transparent Application Failover improves system availability. These are:

■ Transactional Shutdown

■ Load Balancing

Transactional Shutdown
It is sometimes necessary to take nodes out of service for maintenance and/or

repair. For example, you may want to apply patch releases without interrupting

service to application clients. By using the TRANSACTIONAL clause of the

SHUTDOWN statement, a node may be taken out of service such that the

shutdown event is deferred until all existing transactions complete. In this way

client sessions may be migrated to another node of the cluster at transaction

boundaries.

Also, after performing a transactional shutdown, new transactions that are

submitted get routed to an alternate node in the cluster. A SHUTDOWN

IMMEDIATE is performed on the node when all existing transactions complete.

Load Balancing
A database is available when it processes transactions in a timely manner. When the

load exceeds a node’s capacity, the client transaction response times are adversely

See Also: Net8 Administrator’s Guide for more information about

configuring TAF.



Client Failover

High Availability and Oracle Parallel Server 9-11

affected and the database availability is compromised. It then becomes important to

be able to manually migrate a group of client sessions to a less heavily loaded node

to maintain response times for application availability.

Transparent Application Failover Restrictions
When a connection is lost, you will see the following effects:

■ All PL/SQL package states on the server are lost at failover

■ ALTER SESSION statements are lost

■ If failover occurs when a transaction is in process, then each subsequent call

causes an error message until the user issues an OCITransRollback call. Then

Oracle issues an OCI success message. Be sure to check this message to see if

you must perform additional operations.

■ Continuing work on failed-over cursors may cause an error message

■ If the first command after failover is not a SQL SELECT or OCIStmtFetch

statement, an error message results

■ Failover only takes effect if the application is programmed using OCI Release

8.0 or greater

Database Client Experience During Failover
The important issue during failover operations is the extent to which the failure is

masked from existing client connections.

Query Clients At failover, in-progress queries are re-issued and processed from the

beginning. This may extend the duration of the next query if the original query took

a long time. With transparent application failover, the failure is masked for query

clients with an increased response time being the only client observation. If the

client query can be satisfied with data in the buffer cache of the surviving node that

the client reconnected to, the increased response is minimal. Using the

PRECONNECT method in transparent application failover further minimizes

response time by saving the time to reconnect to a surviving Instance.

If the client query cannot be satisfied with data in the buffer cache of the reconnect

node, disk I/O is necessary to process the client query. However, server-side

recovery needs to complete before access to the data files is allowed. The client

transaction experiences a system pause until server-side recovery completes

providing server-side recovery has not already completed.



Server Failover

9-12 Oracle8i Parallel Server Concepts

You can also use a callback function to notify clients of the failover so that the

clients do not misinterpret the delay for a failure. This prevents the clients from

manually attempting to re-establish their connections.

DML Clients For DML database clients that perform INSERT, UPDATE, and DELETE

operations providing the application coded fully exploits the Oracle Call Interface

(OCI) libraries, in-flight DML transactions on the failed instance may be restarted

on a surviving instance without client knowledge. This achieves application

failover, without manual reconnects, but requires application level coding. The

coding necessary essentially handles certain Oracle error codes and performs a

reconnect when those error codes are returned.

If the application coding is not in place, INSERT, UPDATE, and DELETE operations

on the failed instance return an unhandled Oracle error code and the transaction

must be resubmitted for execution. Upon re-submission, Oracle routes the client

connections to a surviving instance. The client transaction then experiences a

system pause until server-side recovery completes.

Server Failover
Server-side failover in Oracle Parallel Server is different from regular, host-based

failover solutions that are available on many server platforms.

Host-Based Failover
Many operating system vendors and other cluster software vendors offer high

availability application failover products. These failover solutions monitor

application service(s) on a given primary cluster node. They then fail over such

services to a secondary cluster node as needed. Host-based failover solutions

generally have one active instance performing useful work for a given database

application. The secondary node monitors the application service on the primary

node and initiates failover when primary node service is unavailable.

Failover in host-based systems usually includes the following steps.

1. Detecting failure by monitoring the heartbeat

2. Re-organizing cluster membership in the Cluster Manager

3. Transferring of disk ownership from the primary node to a secondary node



Server Failover

High Availability and Oracle Parallel Server 9-13

4. Re-starting application and database binaries

5. Performing application and database recovery

6. Re-establishing client connections to the failover node

Oracle Parallel Server Failover
Oracle Parallel Server provides very fast server-side failover. This is accomplished

by Oracle Parallel Server's concurrent, active-active architecture, in other words,

multiple Oracle instances are concurrently active on multiple nodes and

synchronize access to the same database. All nodes have concurrent ownership and

access to all disks. When one node fails, all other nodes in the cluster maintain

access to all the disks; there is no disk ownership to transfer, and database

application binaries are already loaded into memory.

Depending on the size of the database, the duration of failover can vary. The larger

the database, or the greater the size of its data files, the greater the failover delta

benefit to using Oracle Parallel Server. This is because transfer of disk ownership

from the primary to the secondary instance in host-based failover environments is

proportional to the number and size of files that need to be failed over. The

additional cost of restarting the application/database binaries, in host-based

failover environments, is a fixed cost and is proportional to the size of the

application and database binaries and to the extent of the application initialization

actions.

The previously discussed client failover section analyzes client failover behavior in

the midst of failure scenarios. New client connections get routed to available nodes

in the cluster and certain existing client connections on the failed node can be

configured to transparently fail over. However, in order for database clients to begin

processing transactions on the available nodes, Oracle Parallel Server needs to

complete its server-side recovery actions.

How Does Oracle Parallel Server Failover Work?
The recovery actions necessary during a failed node in Oracle Parallel Server

include the following:

■ Detecting failure

■ Re-organizing cluster membership

■ Performing database recovery



Server Failover

9-14 Oracle8i Parallel Server Concepts

Detecting Failure
Oracle Parallel Sever depends on the Cluster Manager software for failure detection

because the Cluster Manager maintains the heartbeat functions. The time it takes for

the Cluster Manager to detect that a node is no longer in operation is a function of a

configurable heartbeat timeout parameter. You can configure this value on most

systems; the default and is typically one minute in duration. This value is inversely

related to the number of false alarms or false failure detections as the cluster might

incorrectly determine that a node is failing due to transient failures if the timeout is

set too low. When failure is detected, cluster re-organization occurs.

Re-organizing Cluster Membership
When a node fails, Oracle must alter its cluster membership status. This is known as

a "cluster re-organization" and it usually happens quickly; its duration is

proportional to the number of surviving nodes in the cluster. Oracle Parallel Server

is dependent on the Cluster Manager software for this information.

Oracle Parallel Server’s Distributed Lock Manager provides the Cluster Manager

interfaces to the software and exposes the cluster membership map to the Oracle

instances when nodes are added/deleted from the cluster. The Distributed Lock

Manager’s LMON process on each cluster node communicates with the Cluster

Manager on the respective nodes and exposes that information to the respective

Oracle instances.

LMON also provides another useful function: when a node is no longer a member

of the cluster, the surviving nodes do not see evidence of that node in the cluster,

such as messages or writes to shared disk. These LMON-provided services are also

referred to as Cluster Group Services (CGS). When a failure causes a change in a

node’s membership status within the cluster, LMON initiates the recovery actions

that include re-mastering of PCM locks and Instance recovery.

At this stage, the Oracle Parallel Server environment is in a state of system pause,

and most client transactions suspend until the necessary recovery actions are

complete.

Performing Database Recovery
The database recovery steps necessary in Oracle Parallel Server include:

■ Re-mastering the PCM lock resources of the failed instance

■ Instance recovery includes cache recovery and transaction recovery



Server Failover

High Availability and Oracle Parallel Server 9-15

When an instance fails, PCM lock resources on the failed instance need to be

re-mastered on the surviving cluster nodes. This is also referred to as Distributed

Lock Manager database rebuild.

Re-mastering PCM Lock Resources of The Failed Instance
The time required for re-mastering of locks is a function of the number of PCM

locks in the lock database. This number in turn depends upon the size of the buffer

caches. Each distinct database block in a buffer cache requires one PCM lock if you

use 1:1 releasable locking. However, in the case of releasable locks, the lock

resources may have already been released and may not need to be re-mastered.

When you use 1:N fixed locks, the number of locks is determined by the

initialization parameters as each lock covers multiple blocks.

During this phase, all lock information is discarded and each surviving instance

re-acquires all the locks it held at the time of the failure The lock space is now

distributed uniformly across the remaining n instances. For any lock request, there

is a 1/n chance that the request will be satisfied locally and a (N-1)/n chance that

the lock request will involve remote operations. In the case of one surviving

instance all lock operations will be satisfied locally.

Once re-mastering of the failed Instance PCM locks are complete, the in-flight

transactions of the failed Instance needs to be cleaned up. This is known as instance

recovery.

Instance Recovery
Instance recovery requires that an active Oracle Parallel Server instance detects

failure and performs the necessary recovery actions on behalf of the failed Oracle

Parallel Server Instance. The first Oracle Parallel Server instance that detects the

failure, by way of its LMON process, assumes control of recovering the failed

instance by taking over the failed instance’s redo log files and performs instance

recovery actions. This is why the redo log files need to be on a shared device such as

a shared raw logical volume or cluster file system.

Instance recovery is said to be complete when cache recovery - in other words,

on-line redo log files of the failed Instance have been replayed - and transaction

recovery -in other words, all uncommitted transactions of the failed Instance are

rolled back - are completed. Since transaction recovery may be performed in a

deferred fashion, client transactions can start processing when cache recovery is

complete.



Server Failover

9-16 Oracle8i Parallel Server Concepts

Cache Recovery
Cache recovery requires Oracle to replay the online redo logs of the failed instance.

Oracle performs cache recovery in parallel, in other words, parallel threads of work

are set in motion to replay the redo logs of the failed Oracle instance. It may be

important that you keep the length of the time interval for redo log replay to a

predictable duration. The Fast-start Recovery feature in Oracle8 provides this

capability.

Fast-start recovery uses a parameter called FAST_START_IO_TARGET to provide

fine-grained control over the amount of redo log replay necessary for instance

recovery. Redo log replay is performed by continuous checkpointing mechanisms

that maintain redo log tails of consistent sizes. Database clients are not necessarily

aware of the server side recovery actions since the only client experience is a brief

system pause. Setting FAST_START_IO_TARGET to a particular value is important

in keeping the system pause interval within acceptable bounds during system

failures.

Oracle provides non-blocking rollback capabilities, so full database access can start

as soon as online log files are replayed. After cache recovery is complete, Oracle

begins transaction recovery.

Transaction Recovery
Transaction recovery comprises rolling back all uncommitted transactions of the

failed Instance. These are "in-progress" transactions that did not commit and that

Oracle needs to roll back.

Oracle8 Fast-start Rollback performs rollback in the background as a deferred

process. Oracle uses a multi-version read consistency technology to provide

on-demand rollback of only the row blocked by dead transactions, so new

transactions can progress with minimal delay. Since new transactions do not have to

wait for the entire dead transaction to be rolled back, long-running transactions no

longer affect database recovery time.

Oracle8 Fast-start Rollback rolls back dead transactions in parallel using a recovery

coordinator to spawn many recovery processes. Single instance Oracle rolls back

dead transactions using the CPU of one node.

Oracle Parallel Server provides cluster-aware Fast-start Rollback capabilities that

use all the CPU nodes of the cluster to perform parallel rollback operations. Each

cluster node spawns a recovery coordinator and recovery processes to assist with

parallel rollback operations. The Fast-start Rollback feature is thus "cluster aware"

because the database is aware of and utilizes all cluster resources for parallel

rollback operations.



Oracle Parallel Server High Availability Configurations

High Availability and Oracle Parallel Server 9-17

While the default behavior is to defer transaction recovery, you may choose to

configure your system so transaction recovery completes before allowing client

transactions to progress. In this scenario, Oracle Parallel Server's ability to

parallelize transaction recovery across multiple nodes is a more visible user benefit.

Oracle Parallel Server High Availability Configurations
The following section discusses the following three high availability configurations

provided by Oracle Parallel Server:

■ Default N-node Parallel Server Configuration

■ Basic High Availability Configuration

■ Shared High Availability Node Configuration

Default N-node Parallel Server Configuration
The default N-node Oracle Parallel Server configuration is the default Oracle

Parallel Server environment. Client transactions are processed on all nodes of the

cluster and client sessions may be load balanced at connect time. Response time is

optimized for available cluster resources, such as CPU and memory, by distributing

the load across cluster nodes to create a highly available environment.

Benefits of N-Node Oracle Parallel Server Configurations
In the event of a node failure, an Oracle Parallel Server Instance on another node

will perform the necessary recovery actions as previously discussed. The database

clients on the failed Instance may be load balanced across the (N-1) surviving

Instances of the cluster. The increased load on each of the surviving Instances may

be kept to a minimum and availability increased by keeping maintaining response

times within acceptable bounds. In this configuration, the database application

workload may be distributed across all nodes and therefore provides high

utilization of cluster machine resources.



Oracle Parallel Server High Availability Configurations

9-18 Oracle8i Parallel Server Concepts

Basic High Availability Configuration
You can easily configure Oracle Parallel Server into a basic high availability

configuration; the primary instance on one node accepts user connections while the

secondary instance on the other node only accepts connections when the primary

node fails. While you can configure this manually by controlling the routing of

transactions to specific instances, Oracle Parallel Server provides the

Primary/Secondary Instance feature to accomplish this.

You configure the Primary/Secondary Instance feature by setting the

init sid .ora  parameter ACTIVE_INSTANCE_COUNT to 1. The instance that

first mounts the database assumes the role of primary instance. The other instance

assumes the role of secondary instance. If the primary instance fails, the secondary

instance assumes the primary role. When the failed instance returns to active status,

it assumes the secondary instance role.

The secondary instance becomes the primary instance only after the Cluster

Manager informs it about the failure of the primary instance but before Distributed

Lock Manager reconfiguration and cache and transaction recovery begin. The

redirection to the surviving instance happens transparently; application

programming is not required. Only minor configuration changes to the client

connect strings are required.

In the Primary/Secondary Instance configuration, both instances run concurrently,

like in any N-node Oracle Parallel Server environment. However, database

application users only connect to the designated primary instance. The primary

node masters all Distributed Lock Manager locks. This minimizes communication

between the nodes and provides performance levels that are almost comparable to a

regular, single node database.

The secondary instance may be utilized by specially configured clients, known as

remote clients, for batch query reporting operations or database administration

tasks. This enables some level of utilization of the second node. It may also help

off-load CPU capacity from the primary instance and justify the investment in

redundant nodes.

The Primary/Secondary Instance feature works in both dedicated server and

Multi-Threaded Server environments. However, it functions differently in each as

described under the following headings.

See Also : Oracle8i Parallel Server Setup and Configuration Guide for

information on configuring client connect strings.



Oracle Parallel Server High Availability Configurations

High Availability and Oracle Parallel Server 9-19

Primary/Secondary Instance in Dedicated Server Environments
As shown in Figure 9–1, dedicated server environments do not have cross-instance

listener registration. Therefore, a connection request made to a specific instance’s

listener can only be connected to that instance’s service. This behavior is similar to

default N-node Oracle Parallel Server clusters in dedicated server environments.

Figure 9–1 Primary/Secondary Instance Feature in Dedicated Server Environments

primary instance

secondary instance

LISTENER

LISTENER

SALES1

SALES1 comes up first, 
making it the primary 
instance

SALES2

SALES2 cannot register
with its LISTENER 
because SALES1 is 
the primary instance. 

1

3

2

Client



Oracle Parallel Server High Availability Configurations

9-20 Oracle8i Parallel Server Concepts

When the primary instance fails, the re-connection request from the client is rejected

by the failed instance’s listener. The secondary instance performs recovery and

becomes the primary instance. Upon resubmitting the client request, the client

re-establishes the connection using the new primary instance’s listener that then

connects the client to the new primary instance.

Figure 9–2 Node Failure in Dedicated Server Environments

secondary instance

primary instance

LISTENER

LISTENER

SALES1

SALES1 goes down

SALES21

4

2

3

Client



Oracle Parallel Server High Availability Configurations

High Availability and Oracle Parallel Server 9-21

Primary/Secondary Instance and the Multi-Threaded Server
Oracle Parallel Server provides re-connection performance benefits when running

in Multi-Threaded Server mode. This is accomplished by the cross-registration of all

the dispatchers and listeners in the cluster.

In Primary/Secondary configurations, only the primary instance’s dispatcher is

aware of all listeners within the cluster, as shown in Figure , Step 1. A client may

connect to either listener, Step 2–only the connection to the primary node listener is

illustrated. The relevant listener then connects the client to the dispatcher as shown

in Step 3–only the listener/dispatcher connection on the primary node is illustrated.

Figure 9–3 Primary/Secondary Instance Feature in Multi-Threaded Server
Environments

3

1

primary instance

secondary instance

LISTENER

LISTENER

SALES1

2

Client
Dispatcher

Dispatcher

SALES2

SALES1 comes up first, 
making it the primary 
instance.

SALES2  cannot register 
with its LISTENER 
because SALES1 is the 
primary instance.

1



Oracle Parallel Server High Availability Configurations

9-22 Oracle8i Parallel Server Concepts

Specially configured clients can use the secondary instance for batch operations. For

example, batch reporting tasks, index create operations can be performed on the

secondary instance.

In Figure 9–4, if the primary node fails, the dispatcher in the secondary instance

register with the listener as shown in Step 1. When the client requests a

reconnection to the database through either of the listeners, the listener directs the

request to the secondary instance’s dispatcher.

Figure 9–4 Node Failure in Multi-Threaded Server Environments

See Also : Oracle8i Parallel Server Setup and Configuration Guide for

instructions on how to connect to secondary instances.

3

secondary instance

primary instance

LISTENER

LISTENER

SALES1

SALES1 goes down. 
Clients are directed to the 
new primary instance, 
SALES2.

2

Client
Dispatcher

Dispatcher

SALES2

1

1



Oracle Parallel Server High Availability Configurations

High Availability and Oracle Parallel Server 9-23

Benefits of Basic High Availability Configurations
There are a couple of different reasons for using this scenario instead of a default

2-node configuration. The Primary/Secondary Instance feature provides:

■ A transition path for getting to an N-node configuration

■ A highly available solution for applications that do not scale beyond one node

Transition Path to N-node Configurations
Using the Primary/Secondary configuration is a gradual way to migrate your

application environment to an Oracle Parallel Server environment. Since all the

client transactions are being performed on only one node at any given time, the

Oracle Parallel Server tuning issues are minimized. Troubleshooting system

problems is also simplified because you tune only one node at a time as opposed to

simultaneously tuning two or more nodes.

Since availability is also dependent on the Database Administrator's ability to

manage, tune, and troubleshoot the environment, the Oracle Parallel Server

Primary/Secondary configuration provides a gradual way to ease the Database

Administration staff into using Oracle Parallel Server.

Availability Solution for Applications That Do Not Scale
Applications may not scale beyond a single instance for a several reasons. The most

common reason is application level serialization points. When the application

design causes it to bottleneck on a single application resource, the application

cannot scale beyond the capacity of that resource.

There may be other reasons why an application cannot scale. Update intensive and

non-partitioned applications, for example, may not scale very well because of

Oracle Parallel Server's disk-based synchronization mechanisms. In such cases, the

cost of synchronization or block pinging can be excessive. However, the extensions

to the Oracle8i Cache Fusion technology will make this issue one of diminishing

importance to consider.

User environments that fit into one of the above two categories may favor the

Oracle Parallel Server Primary/Secondary Configuration.



Oracle Parallel Server High Availability Configurations

9-24 Oracle8i Parallel Server Concepts

Shared High Availability Node Configuration
Running Oracle Parallel Server in an N-node configuration most optimally utilizes

the cluster resources. However, as discussed previously, this is not always possible

or advisable. On the other hand, the financial investment required to have an idle

node for failover is often prohibitive. These situations may be instead best suited for

a shared high availability node configuration.

This type of configuration would typically have several nodes with each running a

separate application module or service where all application services share one

Oracle Parallel Server database. You can set up a separate, designated node, as a

failover node. While an Oracle Parallel Server instance is running on that node, no

users are being directed to it during normal operation. In the event that any one of

the application nodes fails, the workload can be directed to the high availability

node.

While this configuration is a useful one to consider for applications that need to run

on separate nodes, it works best if a middle tier application or Transaction

Processing Monitor can direct the appropriate application users to the appropriate

nodes. Unlike, the Primary/Secondary configuration, there is no database setup

that automates the workload transition to the high availability node. The

application, or mid-tier software, would need to be responsible for directing the

users of the failed application node to the designated high availability node. The

application would also need to control failing back the users once the failed node is

operational. Failing back would free the failover node for processing user work

from subsequent node failures.

Benefits of Shared High Availability Node Configurations
In this configuration, application performance is maintained in the event of a

failover. In the N-node cluster configuration, application performance may degrade

by 1/N due to the same workload being redistributed over a smaller set of cluster

nodes.



Toward Deploying High Availability

High Availability and Oracle Parallel Server 9-25

Toward Deploying High Availability
Oracle Parallel Server on clustered systems provides a fully redundant environment

that is extremely fault resilient. Central to this high availability model is the Oracle

Parallel Server architecture; all cluster nodes have an active instance that has equal

access to all the data. If any node fails, all users have access to all data by way of

surviving instances on the other cluster nodes. In-flight transactions on the failed

node will be recovered by the first node that detects the failure. In this way, there is

minimal interruption to end-user application availability with Oracle Parallel

Server.



Toward Deploying High Availability

9-26 Oracle8i Parallel Server Concepts



PartIV
 Reference

Part IV includes the following reference information:

■ Appendix A, "Differences Between Releases"

■ Appendix B, "Restrictions"





Differences Between Releases A-1

A
Differences Between Releases

This appendix describes differences in Oracle Parallel Server from release to release.

■ Differences Between 8.1 and 8.1.6

■ Differences Between Release 8.0.3 and Release 8.0.4

■ Differences Between Release 7.3 and Release 8.0.3

■ Differences Between Release 7.2 and Release 7.3

■ Differences Between Release 7.1 and Release 7.2

■ Differences Between Release 7.0 and Release 7.1

■ Differences Between Version 6 and Release 7.0

See Also: Oracle8i Migration for instructions on upgrading your

database.



Differences Between 8.1 and 8.1.6

A-2 Oracle8i Parallel Server Concepts

Differences Between 8.1 and 8.1.6

New Features
■ Primary/Secondary Instance – You can implement a basic high availability

configuration using the Primary/Secondary Instance feature. This feature

serves two-node Oracle Parallel Server environments. The primary instance on

one node accepts user connections while the secondary instance on the other

node only accepts connections when the primary node fails.

Obsolete Parameters
The LM_PROCS parameter is obsolete.

Obsolete Statistics
The following statistics are obsolete:

■ global cache consistent read from disk

■ global cache fairness down converts

New Statistics
The following statistics are new:

■ "global cache cr block send time" - total time to send the block.

■ "global cache cr block log flushes" - number of log flushes.

■ "global cache cr block log flush time" - total time log flushes took.

■ "global cache prepare failures" - number of prepares which failed.

Changes in Default Parameter Settings
The default setting for GC_ROLLBACK_LOCKS is "0-128=32!8REACH" This

protects rollback segments 0 through 129 with locks.

LM_LOCKS and LM_RESS Automatically Set by Oracle
Oracle automatically sets values for LM_LOCKS and LM_RESS based on settings in

your initialization parameter files.



Differences Between 8.0.4 and 8.1

Differences Between Releases A-3

Differences Between 8.0.4 and 8.1

Cache Fusion Architecture Changes
When one instance requests a consistent-read (CR) on a block held by another

instance, Cache Fusion processing sends a CR copy of the requested block directly

to the requesting instance by way of the interconnect. This greatly reduces cache

coherency contention among instances during read/write conflicts.

Implementation of Cache Fusion requires that some background and foreground

processes, namely LMON and LCK, now communicate directly from one instance

to another over the interconnect. A new process, the Block Server Process (BSP),

rolls back uncommitted transactions and copies CR server blocks for transmission

to requesting instances. This reduces the pinging required to maintain cache

coherency, thereby greatly improving performance.

Cache Fusion makes deployment of Oracle Parallel Server on OLTP and hybrid

applications more feasible. Historically, databases that experienced random changes

were not considered good parallel server candidates. With the advent of Cache

Fusion and advanced cross-instance interconnect technology, OLTP and hybrid

applications are becoming more scalable. This is particularly true if, for example, a

table is modified on one instance and then another instance reads the table.

New Views
The following views are new:

■ V$DLM_ALL_LOCKS view is new and shows statistics on locks whether they

are blocking or blocked locks as well as all other lock types.

■ V$DLM_RESS view is new and shows all resources associated with a lock

according to lock type.

■ V$DLM_CONVERT_LOCAL view is new and shows lock conversion statistics

for locks opened on the local node.

■ V$DLM_CONVERT_REMOTE view is new and shows lock conversion

statistics for locks opened on remote nodes.

■ V$DLM_MISC view is new and shows DLM message information.



Differences Between 8.0.4 and 8.1

A-4 Oracle8i Parallel Server Concepts

Removal of GMS
For 8.1, the functionality of the GMS (Group Membership Services) has been moved

from the GMS module to the vendor-specific Cluster Managers (CM) and the Oracle

database kernel. In 8.1, a discrete GMS module is no longer visible to the Oracle

user.

This change greatly improves vendor hardware compatibility with Oracle. From the

user point-of-view, it also simplifies CM use and maintenance. The CM now starts

automatically upon instance startup; you no longer need to manually startup and

shut down member services.

Parallel Transaction Recovery is now "Fast-Start Parallel Rollback"
The name of the feature "Parallel Transaction Recovery" is now called "Fast-Start

Parallel Rollback." In addition to the name change, in 8.0, SMON serially processed

rollback segment recovery. This lead to extended rollback recovery periods. In 8.1,

Fast-start parallel rollback reduces recovery time thus making the database

available sooner. Parallel rollback uses multiple processes to recover rollback

segments when the value for the parameter FAST_START_PARALLEL_

ROLLBACK, previously known as PARALLEL_TRANSACTION_RECOVERY, is

greater than one.

The default for this parameter is LOW, implying that parallel recovery will use no

more than 2 time the CPU_COUNT number of processes, in addition to SMON, to

do parallel recovery.

To determine a more accurate setting, examine the contents of two new tables,

V$FAST_START_SERVERS and V$FAST_START_TRANSACTIONS. Also consider

the average time required to recover a transaction and your desired recovery period

duration. When you set FAST_START_PARALLEL_ROLLBACK to a value greater

than one, SMON starts multiple recovery processes to accommodate the amount of

unrecovered rollback segments in the rollback file. The quantity of processes SMON

starts is limited by the value for FAST_START_PARALLEL_ROLLBACK.

Changes to Instance Registration
The single name previously used to identify a service (SID) is replaced by three

levels of addressing. The new parameters for instance registration are:

SERVICE_NAME Name of highest level view of the service, specified in

TNSNAMES.ORA. May span instances or nodes.



Differences Between 8.0.4 and 8.1

Differences Between Releases A-5

Clients can connect to the service without specification of which handler or instance

they require, thus allowing automatic load balancing to select the optimal handler

in the optimal instance. Load balancing is discussed under the following heading.

Listener Load Balancing
The TNS listener now performs load balancing over distributed services spanning

multiple nodes. The service, instance, and handler names are used to determine the

load balancing behavior.

1. A client program specifies the name of the service it wants to connect to.

2. The listener finds the least loaded instance in the service.

3. The listener finds the least loaded handler in the instance.

4. The listener redirects the client to the optimal handler.

Diagnostic Enhancements
Oradebug is a utility used by consulting and support personnel to diagnose and

troubleshoot problematic systems at runtime. Oradebug functionality is extended

for the Oracle Parallel Server.

Oracle Parallel Server Management (OPSM)
OPSM is an option that simplifies parallel server administration. OPSM’s 8.1

enhancements provide a single generic interface for administering parallel servers

on any platform.

For more information about OPSM, see the Oracle Parallel Server Management Users
Guide.

Parallel Server Installation and Database Configuration
The Oracle Universal Installer and Oracle Database Configuration Assistant are

both cluster aware. In release 8.1, only a single installer session is required to install

Oracle Parallel Server. The installer collects node information from the user,

SERVICE_NAMES Instance name of the service that can span several nodes.

This parameter is specified in INIT.ORA

INSTANCE_NAME Name of mid-level tier of the service. Corresponds to the

ORACLE_SID of an instance.



Differences Between 8.0.4 and 8.1

A-6 Oracle8i Parallel Server Concepts

distributes the required Oracle products to the specified nodes, and invokes the

Oracle Parallel Server Assistant to set up the instances and create the database.

When Oracle Parallel Server Assistant is done with this process, the parallel server

is available on all nodes and the parallel server configuration information is saved

so that OPSM can use it to manage the new parallel server.

Instance Affinity for Jobs
Instance affinity for jobs is the association of jobs to an instance. Using the new

DBMS_JOB package, you can indicate whether a particular instance, or any

instance, can execute a user submitted job in the Oracle Parallel Server

environment.

Use this release 8.1 feature to improve load balancing and limit block pinging. For

instance, using Oracle Parallel Server and replication at the same time may result in

block pinging problems on the deferred transactions queue if all instances in a

clustered environment decide to propagate transactions from the deferred

transaction queue. By limiting activity against tables to only one instance within a

parallel server cluster, you can limit pinging. For more information, also see the

Oracle8i Supplied PL/SQL Packages Reference.

Obsolete Parameters
The following parameters are obsolete as of release 8.1:

■ GC_LCK_PROCS

■ GC_LATCHES

■ PARALLEL_DEFAULT_MAX_INSTANCES

■ LOG_FILES

■ OPS_ADMIN_GROUP

■ CACHE_SIZE_THRESHOLD

■ OGMS_HOME

■ ALLOW_PARTIAL_SN_RESULTS

■ SEQUENCE_CACHE_ENTRIES



Differences Between Release 8.0.3 and Release 8.0.4

Differences Between Releases A-7

Differences Between Release 8.0.3 and Release 8.0.4

New Initialization Parameters
The following initialization parameters were added for Oracle Parallel Server:

■ OGMS_HOME

■ GC_LATCHES

■ PARALLEL_SERVER

Obsolete Initialization Parameters
The following initialization parameters are obsolete:

■ MTS_LISTENER_ADDRESS

■ MTS_MULTIPLE_LISTENERS

Obsolete Startup Parameters
■ PARALLEL

■ EXCLUSIVE

Dynamic Performance Views
The following view has changed:

■ V$DLM_LOCKS

Group Membership Services
A new option has been added for the OGMSCTL command.



Differences Between Release 7.3 and Release 8.0.3

A-8 Oracle8i Parallel Server Concepts

Differences Between Release 7.3 and Release 8.0.3

New Initialization Parameters
The following parameters were added specifically for Oracle Parallel Server:

■ FREEZE_DB_FOR_FAST_INSTANCE_RECOVERY

■ LM_LOCKS

■ LM_PROCS

■ LM_RESS

■ INSTANCE_GROUPS

■ PARALLEL_INSTANCE_GROUP

■ OPS_ADMIN_GROUP

■ ALLOW_PARTIAL_SN_RESULTS

Obsolete GC_* Parameters
The following global cache lock initialization parameters are obsolete:

■ GC_DB_LOCKS parameter

■ GC_FREELIST_GROUPS parameter

■ GC_ROLLBACK_SEGMENTS parameter

■ GC_SAVE_ROLLBACK_LOCKS parameter

■ GC_SEGMENTS parameter

■ GC_TABLESPACES parameter

Changed GC_* Parameters
The values set by the GC_* parameters are not adjusted to prime numbers, but

rather are left exactly as entered.

The following parameters have changed:

■ GC_FILES_TO_LOCKS

■ GC_ROLLBACK_LOCKS

■ GC_RELEASABLE_LOCKS



Differences Between Release 7.3 and Release 8.0.3

Differences Between Releases A-9

Dynamic Performance Views
The following views are new:

■ V$RESOURCE_LIMIT

■ V$DLM_CONVERT_LOCAL

■ V$DLM_CONVERT_REMOTE

■ V$DLM_LATCH

■ V$DLM_MISC

■ V$FILE_PING

■ V$CLASS_PING

The following views changed:

■ V$BH

■ V$SESSIONS

■ V$SYSSTAT

Global Dynamic Performance Views
Global dynamic performance views (GV$ fixed views) were added, corresponding

to each of the V$ views except for V$ROLLNAME.

Distributed Lock Manager
Oracle Parallel Server release 8.0 is not dependent on an external Distributed Lock

Manager. The lock management facility is now internal to Oracle. The Integrated

Distributed Lock Manager is dependent on an external node monitor.

LMON and LMDn processes have been added.



Differences Between Release 7.3 and Release 8.0.3

A-10 Oracle8i Parallel Server Concepts

Instance Groups
The ability to logically group instances together and perform operations upon all of

the associated instances was added.

Group Membership Services
Group Membership Services (GMS) is used by the Lock Manager (LM) and other

Oracle components for inter-instance initialization and coordination.

Fine Grain Locking
In Oracle Parallel Server release 8.0, fine grain locking is available on all platforms.

It is enabled by default.

Client-Side Application Failover
Oracle8 supports the ability of the application to automatically reconnect if the

connection to the database is broken.

Recovery Manager
Recovery Manager (RMAN) is now the preferred method of recovery from media

failure.



Differences Between Release 7.2 and Release 7.3

Differences Between Releases A-11

Differences Between Release 7.2 and Release 7.3

Initialization Parameters
The following initialization parameters were added specifically for the Parallel

Server Option:

■ CLEANUP_ROLLBACK_ENTRIES

■ DELAYED_LOGGING_BLOCK_CLEANOUTS

■ GC_FREELIST_GROUPS

■ GC_RELEASABLE_LOCKS

Data Dictionary Views
The following view was added specifically for the Parallel Server Option:

■ FILE_LOCK

Dynamic Performance Views
The following view changed:

■ V$BH

The following views were added:

■ V$SORT_SEGMENT

■ V$ACTIVE_INSTANCES

Free List Groups
You can now set free list groups for indexes, as well as for tables and clusters.

Fine Grain Locking
In Oracle Parallel Server release 7.3, PCM locks have additional options for

configuration using fine grain locking. The changes affect the interpretation of the

various parameters that determine the locks used to protect the database blocks in

the distributed parallel server cache.

Fine grain locking is a more efficient method for providing locking in a multinode

configuration. It provides a reduced rate of lock collision, and reduced space



Differences Between Release 7.2 and Release 7.3

A-12 Oracle8i Parallel Server Concepts

requirements for managing locks, particularly in MPP systems. This feature relies

on facilities provided by the hardware and operating system platform, and may not

be available on all platforms.

Instance Registration
This feature enables each instance to register itself and certain of its attributes, and

to establish contact with any other instance. Instance registration is transparent to

the user, except in the case of parallel execution failure on remote instances of a

parallel server. If a parallel query dies due to an error on a remote instance, the

failed instance is now identified in the error message.

Sort Improvements
This release offers a more efficient way of allocating sort temporary space, which

reduces serialization and cross-instance pinging. If you set up this capability

correctly, it can particularly benefit Oracle Parallel Server performance in parallel

mode.

For best results, try to establish stable sort space. Remember that sort space is

cached in the instance. One instance does not release the space unless another

instance runs out of space and issues a call to the first one to do so. This is an

expensive, serialized process which hurts performance. If your system permanently

deviates from stable sort space, it is better to over-allocate space, or simply not to

use temporary tablespaces.

To determine the stability of your sort space, you can check the V$SORT_

SEGMENT view. This new view shows every instance’s history of sorting. If the

FREED_EXTENTS and ADDED_EXTENTS columns show excessive

allocation/deallocation activity, you should consider adding more space to the

corresponding tablespace. Check also the FREE_REQUESTS value to determine if

there is inter-instance conflict over sort space.

Another reason for excessive allocation and deallocation may be that some sorts are

just too large. It may be worthwhile to assign a different temporary tablespace for

the operations which require huge sorts. The MAX_SORT_SIZE value may help you

to determine whether these large sorts have indeed occurred.

See Also: Oracle8i Designing and Tuning for Performance for more

information on sort enhancements.



Differences Between Release 7.2 and Release 7.3

Differences Between Releases A-13

XA Performance Improvements
Various scalability and throughput improvements have been made that affect XA

transactions. These changes have no visible impact, other than improved

performance.

The following three latches perform much better, and so enhance scalability:

■ Global transaction mapping table latch

■ Enqueues latch

■ Session switching latch

Transaction throughput is enhanced because most of the common XA calls have

reduced code path and reduced round-trips to the database.

XA Recovery Enhancements
Recovery of distributed transactions submitted through a TP monitor using the XA

interface is now fully supported in Oracle Parallel Server.

The XA_RECOVER call has been enhanced, ensuring correct and complete recovery

of one instance from transactions that have failed in another instance.

An option has been added to make the XA_RECOVER call wait for instance

recovery. This feature enables one Oracle instance to do recovery on behalf of a

failed Oracle instance, when both are part of the same Oracle Parallel Server cluster.

The XA_INFO string has a new clause called OPS_FAILOVER. If this is set to true

for a given XA resource manager connection, any XA_RECOVER call issued from

that connection will wait for any needed instance recovery to complete. The syntax

is as follows:

OPS_FAILOVER=T

Upper- or lowercase (T or t) can be used. The default value of OPS_FAILOVER is

false (F or f).

Previously, there was no guarantee that an XA_RECOVER call would return the list

of in-doubt transactions from the failed instance. Setting OPS_FAILOVER=T

ensures that this will happen.

When OPS_FAILOVER is set to true, the XA_RECOVER call will wait until SMON

has finished cache recovery, has identified the in-doubt transactions, and added

them to the PENDING_TRANS$ table that has a list of in-doubt transactions.



Differences Between Release 7.2 and Release 7.3

A-14 Oracle8i Parallel Server Concepts

Deferred Transaction Recovery
Transaction recovery behavior has changed to allow:

■ Greater database availability during startup

■ Transactions to be recovered in parallel, if needed

■ Recovery of long transactions without interfering with recovery of short

transactions

Fast Warmstart
In previous releases, the database could not be opened until complete transaction

recovery was performed after a failure. As of release 7.3, the database is opened for

connections as soon as cache recovery is completed. (This only applies when

opening the database, as opposed to doing failover in an Oracle Parallel Server

environment.) In case of an instance failure, the database is available for

connections through other running instances.

This means that active transactions as of the time of the failure are not yet rolled

back; they appear active (holding row locks) to users of the system. Furthermore, all

transactions system-wide that were active as of the time of failure are marked

DEAD and the rollback segments containing these transactions are marked

PARTIALLY AVAILABLE. These transactions are recovered as part of SMON

recovery in the background, or by foreground processes that may encounter them,

as described in the next section. The rollback segment is available for onlining.

Transaction Recovery
Given fast warmstart capability, the time needed to recover all transactions does not

limit the general availability of the database. All data except the part locked by

unrecovered transactions is now available to users. Given an OLTP workload,

however, all the requests that were active when the database or instance went down

will probably be resubmitted immediately. They will very likely encounter the locks

held by the unrecovered transactions. The time needed to recover these transactions

is thus still critical for access to the locked data. To alleviate this problem,

transactions can now be recovered in parallel, if needed. Recovery can be done by

the following operations.

Recovery by Foreground Processes. Rows may be locked by a transaction that has

not yet been recovered. Any foreground process that encounters such a row can

itself recover the transaction. The current recovery by SMON will still happen--so

the entire transaction recovery will complete eventually. But if any foreground

process runs into a row lock, it can quickly recover the transaction holding the lock,



Differences Between Release 7.2 and Release 7.3

Differences Between Releases A-15

and continue. In this way recovery operations are parallelized on a need basis: dead

transactions will not hold up active transactions. Previously, active transactions had

to wait for SMON to recover the dead transactions.

Recovery is done on a per-rollback segment basis. This prevents multiple

foreground processes in different instances from recovering transactions in the

same rollback segment, which would cause pinging. The foreground process fully

recovers the transaction that it would otherwise have waited for. In addition, it

makes a pass over the entire rollback segment and partially recovers all

unrecovered transactions. It applies a configurable number of changes (undo

records) to each transaction. This allows short transactions to be recovered quickly;

without waiting for long transactions to be recovered. The initialization parameter

CLEANUP_ROLLBACK_ENTRIES specifies the number of changes to apply.

Recovery by SMON. SMON transaction recovery operations are mostly

unchanged. SMON is responsible for recovering transactions marked DEAD within

its instance, transaction recovery during startup, and instance recovery. The only

change is that it will make multiple passes over all the transactions that need

recovery and apply only the specified number of undo records per transaction per

pass. This prevents short transactions from waiting for recovery of a long

transaction.

Recovery by Onlining Rollback Segment. Onlining a rollback segment now causes

complete recovery of all transactions it contains. Previously, the onlining process

posted SMON to do the recovery. Note that implicit onlining of rollback segments

as part of warmstart or instance startup does not recover all transactions but instead

marks them DEAD.

Load Balancing at Connect
In standard Oracle, load balancing now allows multiple listeners and multiple

instances to be balanced at SQL*Net connect time. Multiple listeners can now listen

on one Oracle instance, and the Oracle dispatcher will register with multiple

listeners. The SQL*Net client layer will randomize multiple listeners via the

DESCRIPTION_LIST feature.

For more information about load balancing at connect, please see the SQL*Net

documentation for Oracle7 Server release 7.3.

Bypassing Cache for Sort Operations
The default value for the SORT_DIRECT_WRITES initialization parameter is now

AUTO; it will turn itself on if your sort area is a certain size or greater. This will



Differences Between Release 7.2 and Release 7.3

A-16 Oracle8i Parallel Server Concepts

improve performance. For more information, see the Oracle8i Designing and Tuning
for Performance.

Delayed-Logging Block Cleanout
In Oracle7 Server release 7.3, the performance of delayed block cleanout is

improved and related pinging is reduced. These enhancements are particularly

beneficial for the Oracle Parallel Server.

Oracle7 Server release 7.3 provides a new initialization parameter, DELAYED_

LOGGING_BLOCK_CLEANOUTS, which is TRUE by default.

When Oracle commits a transaction, each block that the transaction changed is not

immediately marked with the commit time. This is done later, upon demand--when

the block is read or updated. This is called block cleanout. When block cleanout is

done during an update to a current block, the cleanout changes and the redo

records of the update are piggybacked with those of the update. In previous

releases, when block cleanout was needed during a read to a current block, extra

cleanout redo records were generated and the block was dirtied. This has been

changed.

As of release 7.3, when a transaction commits, all blocks in the cache changed by the

transaction are cleaned out immediately. This cleanout performed at commit time is

a "fast version" which does not generate redo log records and does not repin the

block. Most blocks will be cleaned out in this way, with the exception of blocks

changed by long running transactions.

During queries, therefore, the data block’s transaction information is normally

up-to-date and the frequency with which block cleanout is needed is much reduced.

Regular block cleanouts are still needed when querying a block where the

transactions are still truly active, or when querying a block which was not cleaned

out during commit.

During changes (INSERT, DELETE, UPDATE), the cleanout redo log records are

generated and piggyback with the redo of the changes.



Differences Between Release 7.1 and Release 7.2

Differences Between Releases A-17

Parallel Execution Processor Affinity
Oracle7 Server release 7.3 provides improved defaults in the method by which

servers are allocated among instances for the parallel execution option. As a result,

users can now specify parallelism without giving any hints.

Parallel execution slaves are now assigned based on disk transfer rates and CPU

processing rates for user queries. Work is assigned to query slaves that have

preferred access to local disks versus remote disks, which is more costly. In this way

data locality will improve parallel execution performance.

For best results, you should evenly divide data among the parallel server instances

and nodes--particularly for moderate to large size tables that substantially dominate

the processing. Data should be fairly evenly distributed on various disks, or across

all the nodes. For very small tables, this is not necessary.

For example, if you have two nodes, a table should not be divided in an unbalanced

way such that 90% resides on one node and 10% on the other node. Similarly, if you

have four disks, one should not contain 90% of the data and the others contain only

10%. Rather, data should be spread evenly across available nodes and disks. This

happens automatically if you use disk striping. If you do not use disk striping, you

must manually ensure that this happens, if you desire optimum performance.

Differences Between Release 7.1 and Release 7.2

Pre-Allocating Space Unnecessary
For most parallel server configurations it is no longer necessary to pre-allocate data

blocks to retain partitioning of data across free list groups. When a row is inserted, a

group of data blocks is allocated to the appropriate free list group for an instance.

Data Dictionary Views
The following views were added specifically for the Parallel Server Option:

■ FILE_LOCK

■ FILE_PING



Differences Between Release 7.1 and Release 7.2

A-18 Oracle8i Parallel Server Concepts

Dynamic Performance Views
The following views changed:

■ V$BH

■ V$CACHE

■ V$PING

■ V$LOCK_ACTIVITY

The following views were added:

■ V$FALSE_PING

■ V$LOCKS_WITH_COLLISIONS

■ V$LOCK_ELEMENT

Free List Groups
It is now possible to specify a particular instance, and hence the free list group, from

a session, using the command:

ALTER SESSION SET INSTANCE = instance_number

Table Locks
It is now possible to disable the ability for a user to lock a table using the command:

ALTER TABLE table_name  DISABLE TABLE LOCK

Re-enabling table locks is accomplished using the following command:

ALTER TABLE table_name  ENABLE TABLE LOCK

Lock Processes
The PCM locks held by a failing instance are now recovered by the lock processes of

the instance recovering for the failed instance.



Differences Between Version 6 and Release 7.0

Differences Between Releases A-19

Differences Between Release 7.0 and Release 7.1

Initialization Parameters
■ CACHE_SIZE_THRESHOLD was added.

Dynamic Performance Views
The following views changed:

■ V$BH

■ V$CACHE

■ V$PING

■ V$LOCK_ACTIVITY

Differences Between Version 6 and Release 7.0
This section describes differences between Oracle Version 6 and Oracle7 Release 7.0.

Version Compatibility
The Parallel Server Option for Version 6 is upwardly compatible with Oracle7 with

one exception. In Version 6 all instances share the same set of redo log files, whereas

in Oracle7 each instance has its own set of redo log files. Oracle8i Migration gives full

details of migrating to Oracle7. After a database is upgraded to work with Oracle7

it cannot be started using a Oracle Version 6 server. Applications that run on

Oracle7 may not run on Oracle Version 6.

File Operations
While the database is mounted in parallel mode, Oracle7 supports the following file

operations that Oracle Version 6 only supported in exclusive mode:

■ Adding, renaming, or dropping a data file

■ Taking a data file offline or online

■ Creating, altering, or dropping a tablespace

■ Taking a tablespace offline or online



Differences Between Version 6 and Release 7.0

A-20 Oracle8i Parallel Server Concepts

The instance that executes these operations may have the database open, as well as

mounted.

Table A–1 shows the file operations and corresponding SQL statements that cannot

be performed in Oracle Version 6 with the database mounted in parallel mode.

Oracle7 allows all of the file operations listed above while the database is mounted

in shared mode.

A redo log file cannot be dropped when it is active, or when dropping it would

reduce the number of groups for that thread below two. When taking a data file

online or offline in Oracle7, the instance can have the database either open or closed

and mounted. If any other instance has the database open, the instance taking the

file online or offline must also have the database open.

Table A–1 SQL Statements Now Supported in Oracle7

Operation SQL statement

Creating a tablespace CREATE TABLESPACE tablespace_name

Dropping a tablespace DROP TABLESPACE tablespace_name

Taking a tablespace offline or
online

ALTER TABLESPACE tablespace OFFLINE

ALTER TABLESPACE tablespace ONLINE

Adding a data file ALTER TABLESPACE tablespace

ADD DATAFILE

Renaming a data file ALTER TABLESPACE tablespace

RENAME DATAFILE

Renaming a data file log file ALTER TABLESPACE tablespace RENAME FILE

Adding a redo log file ALTER DATABASE dbname ADD LOGFILE

Dropping a redo log file ALTER DATABASE dbname DROP LOGFILE

Taking a data file offline or
online

ALTER DATABASE dbname DATAFILE OFFLINE
ALTER DATABASE dbname DATAFILE ONLINE

Note: Whenever you add a data file, create a tablespace, or drop a

tablespace and its data files, you should adjust the values of GC_

FILES_TO_LOCKS and GC_DB_LOCKS, if necessary, before

restarting Oracle in parallel mode. Failure to do so may result in an

insufficient number of locks to cover the new file.



Differences Between Version 6 and Release 7.0

Differences Between Releases A-21

Deferred Rollback Segments
The global constant parameter GC_SAVE_ROLLBACK_LOCKS reserves distributed

locks for deferred rollback segments, which contain rollback entries for transactions

in tablespaces that were taken offline.

Version 6 does not support taking tablespaces offline in parallel mode, so the

initialization parameter GC_SAVE_ROLLBACK_LOCKS is not necessary in Oracle

Version 6. In Oracle7, this parameter is required for deferred rollback segments.

Redo Logs
In Oracle Version 6, all instances share the same set of online redo log files and each

instance writes to the space allocated to it within the current redo log file.

In Oracle7, each instance has its own set of redo log files. A set of redo log files is

called a thread of redo. Thread numbers are associated with redo log files when the

files are added to the database, and each instance acquires a thread number when it

starts up.

Log switches are performed on a per-instance basis in Oracle7; log switches in

Oracle Version 6 apply to all instances, because the instances share redo log files.

Oracle7 introduces mirroring of online redo log files. The degree of mirroring is

determined on a per-instance basis. This allows you to specify mirroring according

to the requirements of the applications that run on each instance.

ALTER SYSTEM SWITCH LOGFILE
In Oracle Version 6, all instances shared one set of online redo log files. Therefore,

the ALTER SYSTEM SWITCH LOGFILE statement forced all instances to do a log

switch to the new redo log file.

There is no global option for this SQL statement in Oracle7, but you can force all

instances to switch log files (and archive all online log files up to the switch) by

using the ALTER SYSTEM ARCHIVE LOG CURRENT statement.

Initialization Parameters
The LOG_ALLOCATION parameter of Oracle Version 6 is obsolete in Oracle7.

Oracle7 includes the new initialization parameter THREAD, which associates a set

of redo log files with a particular instance at startup.



Differences Between Version 6 and Release 7.0

A-22 Oracle8i Parallel Server Concepts

Free Space Lists
This section describes changes concerning free space lists.

Space Freed by Deletions and Updates
In Oracle Version 6, blocks freed by deletions or by updates that shrank rows are

added to the common pool of free space. In Oracle7, blocks will go to the free list

and free list group of the process that deletes them.

Free Lists for Clusters
In Oracle Version 6, the FREELISTS and FREELIST GROUPS storage options are not

available for the CREATE CLUSTER statement, and the ALLOCATE EXTENT

clause is not available for the ALTER CLUSTER statement.

In Oracle7, clusters (except for most hash clusters) can use multiple free lists by

specifying the FREELISTS and FREELIST GROUPS storage options of CREATE

CLUSTER and by assigning extents to instances with the statement ALTER

CLUSTER ALLOCATE EXTENT (INSTANCE n).

Hash clusters in Oracle7 can have free lists and free list groups if they are created

with a user-defined key for the hashing function and the key is partitioned by

instance.

Initialization Parameters
The FREELISTS and FREELIST GROUPS storage options replace the initialization

parameters FREE_LIST_INST and FREE_LIST_PROC of Oracle Version 6.

Import/Export
In Oracle Version 6, Export did not export free list information. In Oracle7, Export

and Import can handle FREELISTS and FREELIST GROUPS.

SQL*DBA
STARTUP and SHUTDOWN must be done while disconnected in Version 6. In

Oracle7, Release 7.0, STARTUP and SHUTDOWN must be issued while connected

as INTERNAL, or as SYSDBA or SYSOPER.

In Oracle7, operations can be performed using either commands or the SQL*DBA

menu interface, as described in Oracle8i Utilities.



Differences Between Version 6 and Release 7.0

Differences Between Releases A-23

Initialization Parameters
This section lists new parameters and obsolete parameters.

New Parameters
The new initialization parameter THREAD associates a set of redo log files with a

particular instance at startup.

For a complete list of new parameters, refer to the Oracle8i Reference.

Obsolete Parameters
The following initialization parameters used in earlier versions of the Parallel

Server Option are now obsolete in Oracle7.

■ ENQUEUE_DEBUG_MULTI_INSTANCE

■ FREE_LIST_INST

■ FREE_LIST_PROC

■ GC_SORT_LOCKS

■ INSTANCES

■ LANGUAGE

■ LOG_ALLOCATION

■ LOG_DEBUG_MULTI_INSTANCE

■ MI_BG_PROCS (renamed to GC_LCK_PROCS)

■ ROW_CACHE_ENQUEUE

■ ROW_CACHE_MULTI_INSTANCE

For a complete list of obsolete parameters, refer to Oracle8i Migration.

Archiving
In Oracle Version 6, each instance archives the online redo log files for the entire

parallel server because all instances share the same redo log files. You can therefore

have the instance with easiest access to the storage medium use automatic

archiving, while other instances archive manually.

In Oracle7, each instance has its own set of online redo log files so that automatic

archiving only archives for the current instance. Oracle7 can also archive closed



Differences Between Version 6 and Release 7.0

A-24 Oracle8i Parallel Server Concepts

threads. Manual archiving allows you to archive online redo log files for all

instances. You can use the THREAD option of the ALTER SYSTEM ARCHIVE LOG

statement to archive redo log files for any specific instance.

In Oracle7, the filenames of archived redo log files can include the thread number

and log sequence number.

A new initialization parameter, LOG_ARCHIVE_FORMAT, specifies the format for

the archived filename. A new database parameter, MAXLOGHISTORY, in the

CREATE DATABASE statement can be specified to keep an archive history in the

control file.

Media Recovery
Online recovery from media failure is supported in Oracle7 while the database is

mounted in either parallel or exclusive mode.

In either mode, the database or object being recovered cannot be in use during

recovery:

■ To recover an entire database, it must be mounted but not open.

■ To recover a tablespace, the database must be open and the tablespace must be

offline.

■ To recover data files (other than files in the SYSTEM tablespace), the database

must be closed or open with the data files offline.



Restrictions B-1

B
Restrictions

This appendix documents Oracle Parallel Server compatibility issues and

restrictions. Topics in this appendix include:

■ Compatibility Between Shared and Exclusive Mode

■ Restrictions



Compatibility Between Shared and Exclusive Mode

B-2 Oracle8i Parallel Server Concepts

Compatibility Between Shared and Exclusive Mode
The following sections describe aspects of compatibility between shared and

exclusive modes on a parallel server:

■ The Export and Import Utilities

■ Compatibility Between Shared and Exclusive Modes

The Export and Import Utilities
The Export utility writes data from an Oracle database into operating system files,

and the Import utility reads data from those files back into an Oracle database. This

feature of Oracle is the same in shared or exclusive mode.

Compatibility Between Shared and Exclusive Modes
Oracle Parallel Server runs with any Oracle database created in exclusive mode.

Each instance must have its own set of redo logs.

Oracle in exclusive mode can access a database created or modified by Oracle

Parallel Server.

If Oracle Parallel Server allocates free space to a specific instance, that space may

not be available for inserts for a different instance in exclusive mode. Of course, all

data in the allocated extents is always available.

Restrictions
The following sections describe restrictions:

■ Maximum Number of Blocks Allocated at a Time

■ Restrictions in Shared Mode

Maximum Number of Blocks Allocated at a Time
The !blocks option of the GC_FILES_TO_LOCKS parameter enables you to control

the number of blocks available for use within a free list group. You can use !blocks to

specify the rate at which blocks are allocated within an extent, up to 255 blocks at a

time.

See Also: Oracle8i Utilities for more information about Import and

Export.



Restrictions

Restrictions B-3

Restrictions in Shared Mode
Oracle running multiple instances in shared mode supports all the functionality of

Oracle in exclusive mode, except as noted under the following headings:

Restricted SQL Statements
In shared mode, the following operations are not supported:

■ Creating a database (CREATE DATABASE)

■ Creating a control file (CREATE CONTROLFILE)

■ Switching the database’s archiving mode (the ARCHIVELOG and

NOARCHIVELOG options of ALTER DATABASE)

To perform these operations, shut down all instances and start up one instance in

exclusive mode.

Maximum Number of Data Files
The number of data files supported by Oracle is operating system specific. Within

this limit, the maximum number allowed depends on the values used in the

CREATE DATABASE command, which in turn is limited by the physical size of the

control file. This limit is the same in shared mode as in exclusive mode, but the

additional instances of Oracle Parallel Server restrict the maximum number of files

more than a single-instance system. For more details, see Oracle8 SQL Reference, and

your Oracle operating system specific documentation.

Sequence Number Generators
Oracle Parallel Server does not support CACHE ORDER combination of options for

sequence number generators in shared mode. Sequences created with both of these

options are ordered but not cached when running in a parallel server.

Free Lists with Import and Export Utilities
The Export utility does not preserve information about multiple free lists and free

list groups. When you export data from multiple instances and then, from a single

node, import it into a file, the data may not end up distributed across extents in

exactly the same way it was initially. The meta-data of the table into which it is

imported contains the free list and free list group information that is henceforth

associated with the data blocks.

Therefore, if you use Export and Import to back up and restore your data, it will be

difficult to import the data so that it is partitioned again.



Restrictions

B-4 Oracle8i Parallel Server Concepts



Index-1

Index
Numerics
1

1 locks, 5-15

1 to 1 locks, 5-18, 5-20, 5-32

fixed, 5-5

releasable, 5-5

when to use, 5-32

1 to n locks, 5-5

fixed, 5-5

releasable, 5-5

A
absolute file number, 7-3

acquiring rollback segments

initialization parameters, 7-7

acquisition AST, 5-27, 5-30

ACTIVE_INSTANCE_COUNT, 9-18

ADD LOGFILE clause

THREAD clause, 7-3

ADDED_EXTENTS, A-12

adding a file, A-20

affinity

parallel processor, A-17

ALERT file, 7-2

ALLOCATE EXTENT option

DATAFILE option, 7-24

instance number, 7-20

INSTANCE option, 7-24

not available, A-22

SIZE option, 7-24

allocation

automatic, 7-25

free space, 7-24

PCM locks, 5-20, 7-21

sequence numbers, 8-14

ALLOW_PARTIAL_SN_RESULTS parameter

obsolete for 8.1, A-6

ALTER CLUSTER statement, A-22

ALTER DATABASE statement

ADD LOGFILE, 7-3

adding or dropping log file, A-20

DATAFILE OFFLINE and ONLINE

options, A-20

renaming a file, A-20

setting the log mode, B-3

ALTER ROLLBACK SEGMENT command, 7-8

ALTER SESSION statement

SET INSTANCE option, 7-24

ALTER SYSTEM ARCHIVE LOG statement

CURRENT option, A-21

ALTER SYSTEM CHECK DATAFILES

statement, 7-2

ALTER SYSTEM SWITCH LOGFILE

statement, A-21

DBA privilege, A-21

ALTER TABLE statement

DISABLE TABLE LOCK option, 4-13

ENABLE TABLE LOCK option, 4-13

ALTER TABLESPACE statement

ADD DATAFILE option, A-20

OFFLINE and ONLINE options, A-20

renaming a data file, A-20

applications

departmentalized, 8-7

disjoint data, 8-6

DSS, 8-6



Index-2

insert-intensive, 7-19

OLTP, 8-6

performance, 7-19

profiles, 8-7

query-intensive, 8-6

random access, 8-6

scalability, 8-11, 8-12

that do not scale, 9-23

tuning performance, 7-19

architecture

components of Oracle Parallel Server, 3-1

for parallel processing, 2-1

ARCHIVE LOG clause

CURRENT option, A-21

ARCHIVELOG mode

automatic archiving, 1-5

changing mode, B-3

online and offline backups, 1-5

archiving redo log files

identified in control file, 7-5

online archiving, 1-5

AST

definition of, 5-27

asymmetrical multiprocessing, 8-12

asynchronous trap, 5-29

asynchronous traps, 5-27, 5-30

availability

and interconnect, 2-5

benefit of parallel databases, 1-3

capacity planning, 9-4

data files, 7-2

measuring, 9-2

shared disk systems, 2-6

B
background processes

holding instance locks, 4-4

backup

export, B-2

offline, 1-5

online, 1-5

bandwidth, 2-4, 2-5, 8-11

block

cleanout, A-16

deferred rollback, A-21

multiple copies, 1-4

when written to disk, 1-4

block level locking, 4-13

Block Server Process

definition, 6-5

blocking AST, 5-29

blocks

associated with instance, 7-24

contention, 7-7, 7-21

deferred rollback, 7-7

multiple copies, 4-9

when written to disk, 5-22

BSP process, 6-2

definition, 6-5

buffer cache

coherency, 4-9

distributed locks, 8-6

minimizing I/O, 1-4, 4-9

written to disk, 1-4

buffer cache management, 1-4

buffer state, 5-24, 5-25

C
cache

buffer cache, 1-4

coherency, 4-9, 5-2

dictionary cache, 4-2

flushing dictionary, 4-8

row cache, 4-2

sequence cache, 8-13, 8-14

Cache Fusion

architecture, 6-5

change summary for 8.1, A-3

definition, 6-5

CACHE option, CREATE SEQUENCE, 8-14

cache recovery, 9-16

CACHE_SIZE_THRESHOLD parameter, A-19

obsolete for 8.1, A-6

CHECK DATAFILES clause, 7-2

CLEANUP_ROLLBACK_ENTRIES

parameter, A-11, A-15

client

load balancing, 8-10



Index-3

randomization, 8-10

client load balancing, 8-10

clients

failover, 9-9

cluster

hash cluster, A-22

implementations, 8-11

performance, 8-7

Cluster Manager, 9-6

node monitoring, 3-3

purpose, 3-3

Cluster Manager software

purpose, 3-3

cluster re-organization, 9-14

clusters

components of, 2-2

definition of, 1-2

storage access in, 2-5

CM

interacting with DLM, 3-6

committed data

sequence numbers, 8-14

compatibility

shared and exclusive modes, 7-2

components

for Oracle Parallel Server, 6-1

concurrency

maximum number of instances, 7-21

sequences, 8-14

configurations

for high availability, 9-17

connect-time failover, 8-10

consistency

multiversion read, 1-4

rollback information, 7-6

contention

block, 7-7, 7-21

disk, 7-2, 7-7

rollback segment, 7-6, 7-7

sequence number, 8-13, 8-14

table data, 7-2, 7-6

control files

MAXLOGHISTORY, 7-5

convert queue, 5-28

CPUs

adding, 2-3

single, uniprocessor, 2-3

CR Server

change summary for 8.1, A-3

CREATE CLUSTER statement, A-22

CREATE CONTROLFILE statement

exclusive mode, B-3

CREATE DATABASE statement

exclusive mode, B-3

MAXINSTANCES, 7-21

MAXLOGHISTORY, 7-5

CREATE SEQUENCE statement, 8-15

CACHE option, 8-14, 8-15

CYCLE option, 8-14

description, 8-14

ORDER option, 8-14

CREATE TABLE statement

FREELIST GROUPS option, 7-24

FREELISTS option, 7-24

CREATE TABLESPACE statement, A-20

creating a tablespace, A-20

cross-registration, 9-21

CURRENT option

new in Oracle7, A-21

CYCLE option, CREATE SEQUENCE, 8-14

D
data dictionary

objects, 4-2

row cache, 4-2

sequence cache, 8-14

data files

access in high availability, 9-6

data warehousing, 8-5

database

backup, 1-5

export and import, B-2

number of archived log files, 7-5

number of instances, 7-21

scalability, 8-12

Database Configuration Assistant

and log files, 7-5

database instance registration

client load balancing, 8-10



Index-4

connect-time failover, 8-10

datafile

adding, A-20

dropping, A-20

maximum number, B-3

recovery, A-24

renaming, A-20

tablespace, A-20

taking offline or online, A-20

DATAFILE option

tablespace, A-20

datafiles

disk contention, 7-2

instance recovery, 7-3

mapping locks to blocks, 5-20

multiple files per table, 7-21

shared, 7-2

unspecified for PCM locks, 5-20

DB_BLOCK_BUFFERS parameter, 5-32

DBA_ROLLBACK_SEGS view, 7-7

deadlock detection, 3-5

ded, iv

dedicated server

and Primary/Secondary Instance, 9-18

deferred rollback segment, A-21

DELAYED_LOGGING_BLOCK_CLEANOUTS

parameter, A-11, A-16

departmentalized applications, 8-7

DESCRIPTION_LIST feature, A-15

dictionary cache, 4-2

locks, 4-7

dictionary cache locks, 4-7

disjoint data

applications with, 8-6

data files, 7-2

disk

contention, 7-7

reading blocks, 1-4

rollback segments, 7-7

writing blocks, 1-4

disk subsystems, 3-7

disks

contention, 7-2

writing blocks, 5-22

distributed lock

sequence, 8-14

Distributed Lock Manager, A-9

distributed architecture, 3-5

fault tolerant, 3-5

features, 3-4

group-based locking, 5-33

handling lock requests, 5-28

LCKn process, 5-22

LMON, 9-14

minimizing use, 4-9

non-PCM lock capacity, 4-13

queues, 5-27

resource sharing, 5-22

Distributed Lock Manager (DLM)

described, 3-4

distributed locks

rollback segment, 7-7

row cache, 4-2

total number, 4-2

DLM, 5-1

interacting with CM, 3-6

DM, Database Mount, 4-8

DML locks, 4-4, 4-5

DML_LOCKS parameter, 4-13

downtime

planned, 9-3

unplanned, 9-3

DROP TABLE statement, 4-8

DROP TABLESPACE statement, A-20

dropping a database object

tablespace, A-20

dropping a redo log file, A-20

DSS applications, 8-6, 8-7

dual ported controllers, 8-11

dynamically allocating blocks, 7-25

E
ENQUEUE_DEBUG_MULTI_INSTANCE

parameter (Oracle Version 6), A-23

enqueues, 4-3

global, 4-4

local, 4-4

OPS context, 4-5

Ethernet



Index-5

as used in Oracle Parallel Server, 2-5

exclusive mode, 5-9

compatibility, B-2

required for file operations, A-19

taking tablespace offline, A-20

EXCLUSIVE parameter

obsolete for 8.0.4, A-7

exclusive PCM locks, 4-12

Export utility

and free lists, 7-19, A-22, B-3

backing up data, B-2

compatibility, B-2

extents

allocating PCM locks, 7-21

not allocated to instance, 7-25

rollback segment, 7-7

size, 7-7

F
failover, A-13

basics of, 9-8

connect-time, 8-10

definition of, 9-2

duration of, 9-9

host-based, 9-12

server-side, 9-12

transparent application failover, 8-10

failure

ALERT file, 7-2

media, A-24

failure detection

by the Cluster Manager, 9-14

failure protection validation, 9-7

false pings, 5-31

FAST_START_PARALLEL_ROLLBACK, A-4

Fast-start Recovery, 9-5

Fast-start recovery, 9-16

Fast-start Rollback, 9-16, A-4

fault tolerance, 3-5

FDDI

as used in Oracle Parallel Server, 2-5

features

new, iii

features, new

Primary/Secondary Instance, A-2

Fibre Channel

as used in Oracle Parallel Server, 2-6

file

adding, A-20

archiving redo log, 1-5

dropping, A-20

exported, B-2

maximum number, B-3

redo log, 1-5, A-20

renaming, A-20

restricted operations, A-19

FILE_LOCK view, A-11

files

ALERT, 7-2

control file, 7-5

number, absolute, 7-3

number, relative, 7-3

redo log, 7-3

size, 5-20

fine grain locking, 8-6, A-11

fine grain locks

DBA lock, 5-15

one lock element to one block, 5-15

fixed locks

comparing with releasable, 5-5

fixed mode, lock element, 5-19

free list

and Export utility, B-3

cluster, A-22

exclusive mode, B-2

free list group

enhanced for release 7.3, A-11

free list groups

assigned to instance, 7-20, 7-23

definition, 7-13

free lists, 7-21

and Export utility, 7-19

assigned to instance, 7-23

PCM locks, 7-21

FREE_LIST_INST parameter (Oracle Version

6), A-22, A-23

FREE_LIST_PROC parameter (Oracle Version

6), A-22, A-23

FREED_EXTENTS, A-12



Index-6

FREELIST GROUPS storage option

clustered tables, A-22

instance number, 7-20

FREELISTS

parameter, 7-12

FREELISTS storage option

clustered tables, A-22

FREEZE_DB_FOR_FAST_INSTANCE_RECOVERY

parameter, A-8

G
GC_DB_LOCKS parameter, A-8

adjusting after file operations, A-20

GC_FILES_TO_LOCKS parameter, 5-20, 5-31

adjusting after file operations, A-20

associating PCM locks with extents, 7-21

GC_FREELIST_GROUPS parameter, A-8, A-11

GC_LATCHES parameter, A-7

obsolete for 8.1, A-6

GC_LCK_PROCS parameter

obsolete for 8.1, A-6

GC_RELEASABLE_LOCKS parameter, A-11

GC_ROLLBACK_LOCKS parameter, 7-7

GC_ROLLBACK_SEGMENTS parameter, A-8

number of distributed locks, 7-7

GC_SAVE_ROLLBACK_LOCKS parameter, 7-7,

A-8, A-21

GC_SEGMENTS parameter, A-8

GC_SORT_LOCKS parameter, A-23

GC_TABLESPACES parameter, A-8

global constant parameters

and non-PCM locks, 4-9

rollback segments, 7-7

global dynamic performance view, A-9

global locks, 4-4

modes, 4-12

GLOBAL option

verifying access to files, 7-2

GMS

removed for 8.1, A-4

granted queue, 5-28, 5-30

Group Membership Services, A-10

removed for 8.1, A-4

group-based locking, 5-33

groups

redo log files, 7-4

unique numbers, 7-5

V$LOGFILE, 7-5

GV$ view, A-9

H
hardware

for parallel processing, 2-1

requirements, 3-2

scalability, 8-11

hash cluster

free lists, A-22

hashed locks

when to use, 5-32

hashed PCM locks, 5-4

hashing

static, lock mastering scheme, 3-5

high availability

and the Cluster Manager, 3-3

benefit of parallel databases, 1-3

configurations for, 9-17

definition of, 1-3, 9-2

high water mark, 7-25

definition, 7-11, 7-26

moving, 7-26, 7-27

host, DLM, 5-22

host-based failover, 9-12

I
Import utility

Compatibility, B-2

free lists, A-22

restoring data, B-2

improving network performance

by randomizing client requests, 8-10

INITIAL storage parameter

rollback segments, 7-7

initialization parameter

obsolete, A-23

inserts

performance, 7-19

instance



Index-7

affinity, for jobs, A-6

instance number, 7-23

instance recovery

access to files, 7-3

rollback segments, 7-6

instance registration, A-12

INSTANCE_NUMBER parameter

and SQL options, 7-24

assigning free lists to instances, 7-23

instances

associated with data block, 7-24

instance number, 7-20

maximum number, 7-6, 7-21

ownership of PCM locks, 5-17

recovery, 9-15

rollback segment required, 7-6

thread number, 7-3

INSTANCES parameter (Oracle Version 6), A-23

Integrated Distributed Lock Manager

internalized, A-9

interconnect

and scalability, 8-11

as a cluster component, 2-2

definition of, 2-4

high-speed, 4-2

latency, 2-6

redundancy of, 9-6

inter-node communication, 4-2

Inter-Process Communication (IPC)

described, 6-5

introduction

to Oracle Parallel Server, 1-1

I/O

disk contention, 1-4

interrupts, 8-12

minimizing, 1-4, 4-9

L
Lamport SCN generation, 6-6

LANGUAGE parameter (Oracle Version 6), A-23

latches, 4-3, 4-8

latency, 2-4, 8-11

of the interconnect, 2-6

LCKn process, 5-17

library cache locks, 4-7

listener

connect-time failover, 8-10

load balancing, A-5

transparent application failover, 8-10

LM_LOCKS parameter, A-8

LM_PROCS parameter, A-8

LM_RESS parameter, A-8

LMDn process, A-9

LMON

and cluster reorganization, 9-14

LMON process, A-9

load balancing, A-15

client load balancing, 8-10

local I/O, 8-11

local locks, 4-3

LOCAL option

verifying access to files, 7-2

lock elements

correspondence to locks, 5-14

free, 5-19

LRU list, 5-19

name, 5-15

non-fixed mode, 5-19

valid bit, 5-19

locking, 1-4

locks

boundary, 7-26

conversion, 5-30

cost of, 5-6

dictionary cache, 4-7

DML, 4-4, 4-7

enqueue, 4-3

global, 4-4

group-based, 5-33

latch, 4-3

library cache, 4-7

local, 4-3

mode compatibility, 5-26

mode, and buffer state, 5-24

mount locks, 4-8

non-PCM, 4-4, 4-5

ownership by DLM, 5-33

PCM lock, 7-21

process-owned, 5-33



Index-8

re-mastering, 9-15

request, handling by DLM, 5-28

rollback segment, 7-7

row, 4-7, 4-12

row cache, 4-2

row lock independence, 4-12

table, 4-4, 4-5, 4-7

tables, 4-13

transaction, 4-7

log switch

forcing, A-21

log switches, 7-5

LOG_ALLOCATION parameter (Oracle Version

6), A-21, A-23

LOG_DEBUG_MULTI_INSTANCE parameter

(Oracle Version 6), A-23

LOG_FILES parameter

obsolete for 8.1, A-6

LRU list

lock elements, 5-19

M
Massively Parallel Processing System, 7-21

Massively Parallel Processing Systems, 2-7

massively parallel system

application profile, 8-7

MAX_COMMIT_PROPAGATION_DELAY

parameter, 6-6

MAX_SORT_SIZE, A-12

MAXEXTENTS storage parameter

automatic allocations, 7-25

MAXINSTANCES option, 7-21

MAXINSTANCES parameter, 7-23

assigning free lists to instances, 7-20, 7-23

MAXLOGHISTORY option, 7-5

mean time between failures

definition of, 9-2

mean time to recover

definition of, 9-2

media failure, A-24

access to files, 7-2

recovery, A-24

memory

cache, 1-4

cached data, 1-4

DLM requirements, 5-34

SGA, 8-14

memory access, 2-2

memory-mapped IPCs

how used in Oracle Parallel Server, 2-4

message

ALERT file, 7-2

distributed lock manager, 5-22

messages

access to files, 7-2

migration

data migration, B-2

MINEXTENTS storage parameter

automatic allocations, 7-25

mode

archiving, 1-5

modes

incompatible, 5-27

lock compatibility, 5-26

PCM lock, 4-12

PCM locks, 4-12

modulo, 7-20, 7-23

mount locks, 4-8

MTBF

definition of, 9-2

MTS_LISTENER_ADDRESS parameter

obsolete for 8.0.4, A-7

MTS_MULTIPLE_LISTENERS parameter

obsolete for 8.0.4, A-7

MTTR, 9-5

definition of, 9-2

multiple shared mode, 4-8

multiplexed redo log files, 7-3

example, 7-4

Multi-threaded Server, 5-33

and Primary/Secondary Instance, 9-18

multi-tiered application environments, 9-9

multiversion read consistency, 1-4

N
new features, iii

new, features

Primary/Secondary Instance, A-2



Index-9

NEXT storage parameter, 7-7

N-node

Oracle Parallel Server configuration, 9-17

NOARCHIVELOG mode

changing mode, B-3

offline backups, 1-5

node

failure, 1-3

node monitoring, 3-3

nodes

cache coherency, 4-9

definition of, 2-2

hardware for, 2-1

high availability, 9-6

non-fixed mode, lock elements, 5-19

non-PCM locks

dictionary cache lock, 4-7

DML lock, 4-7

enqueue, 4-4

IDLM capacity, 4-13

library cache lock, 4-7

mount locks, 4-8

overview, 4-6

relative number, 4-13

table lock, 4-7

transaction lock, 4-7

types, 4-5

user control, 4-13

non-uniform disk access, 2-6

non-uniform memory access

definition of, 2-3

NOORDER option, CREATE SEQUENCE, 8-15

null lock mode, 4-12

NUMA

definition of, 2-3

number generator, 8-14

number of nines

metric for measuring availability, 9-3

O
obsolete parameters, A-22, A-23

offline backup, 1-5

offline datafile, A-20

offline tablespace

deferred rollback segments, A-21

restrictions, A-20

offline tablespaces

restrictions, 7-6

OGMS_HOME parameter, A-7

obsolete for 8.1, A-6

OLTP, 8-16

OLTP applications, 8-5, 8-6, 8-7, A-3

online archiving, 1-5

online backup, 1-5

online datafile

supported operations, A-20

online recovery, 7-3, A-24

online redo log files

thread of redo, 7-3

operating system

Distributed Lock Manager, 5-22

exported files, B-2

scalability, 8-12

Operating System Dependent layer

Inter-Process Communication (IP

C), 6-5

OPS_ADMIN_GROUP parameter, A-8

obsolete for 8.1, A-6

OPS_FAILOVER clause, A-13

Oracle

backing up, 1-5

compatibility, B-3

data dictionary, 4-2

datafile compatibility, 7-2

migration, A-19

obsolete parameters, A-23

performance features, 1-4

restrictions, 8-15, A-19, A-21

Oracle Parallel Execution

described, 8-16

Oracle Parallel Server

applicable system types, 1-2

benefits, 1-2

connect-time failover, 8-10

definition of, 1-2

introduction, 1-1

Oracle Parallel Execution, 8-16

Oracle Parallel Server failover

how it works, 9-13



Index-10

Oracle Parallel Server Management (OPSM), A-5

oracle_pid, 7-23

Oradebug, A-5

ORDER option, 8-14

outages

causes of, 9-3

P
Parallel Cache Management

examples of, 4-10

parallel cache management, 4-8

parallel cache management lock

sequence, 8-13

parallel cache management locks

acquiring, 4-12

disowning, 4-12

exclusive, 4-12

how they work, 5-31

null, 4-12

owned by instance LCK processes, 5-17

owned by multiple instances, 5-17

periodicity, 5-22

read, 4-12

relative number, 4-13

releasing, 4-12

user control, 4-13

parallel database

availability, 1-3

parallel execution

execution processing, 8-12

processor affinity, A-17

parallel mode

file operation restrictions, A-19, A-21, B-3

recovery restrictions, A-24

sequence restrictions, 8-15, B-3

PARALLEL parameter

obsolete for 8.0.4, A-7

parallel processing

definition of, 1-2

hardware for, 2-1

when advantageous, 8-5

parallel processor affinity, A-17

parallel server, A-5

database configuration, A-5

installation, A-5

instance affinity for jobs, A-6

listener load balancing, A-5

Oradebug, A-5

parallel transaction recovery

changes for 8.1, A-4

PARALLEL_DEFAULT_MAX_INSTANCES

parameter

obsolete for 8.1, A-6

PARALLEL_SERVER parameter

new for 8.0., A-7

PARALLEL_TRANSACTION_RECOVERY

parameter

changes for 8.1, A-4

parameter

obsolete, A-23

parameters

database creation, 7-21

storage, 7-7

partitioning data

data files, 7-2

free lists, 7-10, 7-21

PCM locks, 7-21

rollback segments, 7-6, 7-7

table data, 7-21

PCM

1 to 1 lock usage, 5-32

1 to 1 locks, 5-5

1 to n locks, 5-5

hashed lock usage, 5-32

PCM locks

contention, 7-21

fixed 1

n, 5-4

mapping blocks to, 5-20, 7-21

releasable, 5-4

set of files, 5-21

PCTFREE, 7-12

PCTUSED, 7-12

performance

and lock mastering, 3-5

application, 7-19

caching sequences, 8-14

inserts and updates, 7-19

Oracle8 features, 1-4



Index-11

rollback segments, 7-7

sequence numbers, 8-15

persistent resource, 3-6

pinging, 5-22, 5-24

definition, 5-2

false, 5-31

planned downtime, 9-3

planning

capacity, 9-4

redundancy, 9-4

pre-allocating extents, 7-25

Primary/Secondary Instance

definition of, 9-18

prime number, A-8

private rollback segments

acquisition, 7-6

specifying, 7-8

process free lists

pinging of segment header, 7-14

processes

for Oracle Parallel Server, 6-2

processor affinity

parallel execution, A-17

protected write mode, 5-9

R
RAID, 9-8

random access, 8-6

randomizing requests among listeners, 8-10

read consistency

multiversion, 1-4

rollback information, 7-6

read lock modes, 4-12

read-only access, 1-4, 4-12

applications, 8-6

read PCM locks, 4-12

recovery

access to files, 7-2, 7-3

cache, 9-16

deferred transaction, A-14

media failure, 7-2, A-24

of instances, 9-15

restrictions, A-24

rolling back, 7-6

redo log file

adding, A-20

archiving, 1-5

dropping, A-20

overwriting, 1-5

renaming, A-20

redo log files

identified in control file, 7-5

thread of redo, 7-3

redundancy planning, 9-4

relative file number, 7-3

releasable locks

comparing with fixed, 5-5

creation, 5-4

re-mastering

during failover, 9-8

locks, 9-15

remote I/O, 8-11

renaming a file

redo log file, A-20

RENAME FILE option, A-20

resource

persistent, 3-6

resource mastering, 3-5

resources

database, 4-9

restrictions

cached sequence, 8-15

deferred rollback segments, A-21

file operations, A-19, A-21, B-3

offline tablespace, 7-6, A-20

recovery, A-24

rollback segment

deferred, A-21

onlining, A-15

rollback segments

contention, 7-6, 7-7

deferred, 7-7

description, 7-6

distributed locks, 7-7

global constant parameters, 7-7

multiple, 7-6

online, 7-6

public vs. private, 7-7

SYSTEM, 7-6



Index-12

tablespace, 7-6

ROLLBACK_SEGMENTS parameter, 7-7, 7-8

rolling back

rollback segments, 7-6

row locks, 4-12

row cache, 4-2

row level locking

DML locks, 4-7

independent of PCM locks, 4-12

resource sharing system, 1-4

ROW_CACHE_MULTI_INSTANCE parameter

(Oracle Version 6), A-23

S
scalability, 1-3

application, 8-12

applications, 8-11

database, 8-12

definition, 8-3

enhancement for release 7.3, A-13

four levels of, 8-10

hardware, 8-11

network, 8-13

operating system, 8-12

potential, 8-2

relative, 8-7

shared memory system, 8-12

scale

partitions, 1-2

SCN, 6-6

SCSI

as used in Oracle Parallel Server, 2-6

segments

header contention, 7-14

header, contention, 7-14

rollback segment, 7-6

sequence

data dictionary cache, 8-13, 8-14

not cached, 8-15, B-3

timestamp, 8-14

sequence number generator

application scalability, 8-12

distributed locks, 8-14

LM locks, 8-13

on parallel server, 8-14

restriction, 8-15, B-3

skipping sequence numbers, 8-14

SEQUENCE_CACHE_ENTRIES parameter

obsolete for 8.1, A-6

server-side failover, 9-12

shared disk system

advantages, 2-6

shared exclusive mode, 5-9

shared high availability node configuration, 9-24

shared memory access

advantages, disadvantages of, 2-4

shared memory system

scalability, 8-12

shared mode

datafiles, 7-2

file operation restrictions, A-20

shared nothing systems, 2-7

shutting down an instance

lost sequence numbers, 8-14

single points-of-failure

avoiding with high availability, 9-2

single shared mode, 4-8

slow-down, 8-5

SMON process, 6-3

transaction recovery, A-15

SMP

scaling limitations of, 2-3

sort enhancements, A-12

sort space, A-12

SORT_DIRECT_WRITES parameter, A-15

space

free blocks, 7-10, 7-25

free list, 7-10

speedup

definition, 8-4

SQL statement

restrictions, B-3

starting up

after file operations, A-20

global constant parameters, 7-7

rollback segments, 7-6

shared mode, A-20

verifying access to files, 7-2

static hashing



Index-13

lock mastering scheme, 3-5

storage access in clustered systems, 2-5

storage options

clustered tables, A-22

extent size, 7-7

rollback segment, 7-7

sub-shared exclusive mode, 5-9

sub-shared mode, 5-9

switch archiving mode, B-3

symmetric multiprocessor, 8-7, 8-12

synchronization, 4-2

System Change Number (SCN)

incrementation, 6-6

system change number (SCN)

Lamport, 6-6

non-PCM lock, 4-5

System Global Area (SGA)

row cache, 4-2

sequence cache, 8-14

system level planning

planning

system level, 9-4

SYSTEM rollback segment, 7-6

system-specific Oracle documentation

datafiles, maximum number, B-3

free list overhead, 7-12

T
table locks, 4-7

tables

allocating extents, 7-24

contention, 7-6

initial storage, 7-25

lock, 4-4

locks, 4-13

PCM locks, 7-21

tablespace, 7-6

tablespace

backup, 1-5

creating, A-20

data files, A-20

dropping, A-20

recovery, A-24

taking offline, A-20, A-21

tablespaces

active rollback segments, 7-6

offline, 7-6

rollback segment, 7-6

tables, 7-6

taking offline, 7-6

THREAD option

creating private thread, 7-3

creating public thread, 7-3

THREAD parameter

instance acquiring thread, 7-3

threads

example, 7-3

number of groups, 7-4

TM, DML Enqueue, 4-7

TP monitor, A-13

transaction

committed data, 1-4

concurrent, 1-4

offline tablespace, A-21

recovery, A-14

rollback segments, A-21

row locking, 1-4

sequence numbers, 8-14

updates, 1-4

transaction recovery, 9-16

transactions

aborted, 7-6

concurrent, 4-9, 4-10

inserts, 7-10

isolation, 4-12

locks, 4-5, 4-7

offline tablespace, 7-7

rollback segments, 7-7

rolling back, 7-6

row locking, 4-12

updates, 7-10

TRANSACTIONS parameter, 7-8

TRANSACTIONS_PER_ROLLBACK

parameter, 7-8

transparency

definition of, 1-3

Transparent Application Failover

definition of, 9-9

uses of, 9-10



Index-14

TX, Transaction, 4-7

U
UMA

definition of, 2-3

uniform disk access, 2-5

uniform memory access

definition of, 2-3

uniprocessor

definition of, 2-3

unplanned downtime, 9-3

updates

at different times, 8-6

concurrent, 1-4

instance lock, 5-22

PCM locks, 4-12

performance, 7-19

user process

free list, 7-10

user processes

free lists, 7-21

user-level DLM, 5-34

user-mode interprocess communication

how used in Oracle Parallel Server, 2-4

utilities, Oracle

Export, Import, B-2

V
V$ACTIVE_INSTANCES view, A-11

V$BH view, 5-24, A-9, A-11, A-19

V$CACHE view, A-19

V$CLASS_PING view, A-9

V$DATAFILE view, 7-3

V$DLM_ALL_LOCKS

new view for 8.1, A-3

V$DLM_CONVERT_LOCAL view, A-9

V$DLM_CONVERT_REMOTE view, A-9

V$DLM_LATCH view, A-9

V$DLM_LOCKS view

changed for 8.0.4, A-7

V$DLM_MISC view, A-9

V$DLM_RESS

new view, A-3

V$FAST_START_SERVERS

view, A-4

V$FAST_START_TRANSACTIONS

view, A-4

V$FILE_PING view, A-9

V$LOCK_ACTIVITY view, A-19

V$LOCKS_WITH_COLLISIONS view, A-18

V$LOGFILE view, 7-5

V$PING view, A-19

V$RESOURCE_LIMIT view, A-9

V$SORT_SEGMENT view, A-11, A-12

V$SYSSTAT view, A-9

valid bit, lock element, 5-19

versions, Oracle

compatibility, A-19

upgrading, A-1

W
workloads

and scaleup, 8-2

X
XA interface

library, 5-33

performance enhancement, A-13

recovery enhancement, A-13

XA_RECOVER call, A-13


	PDF Directory
	Send Us Your Comments
	Preface
	1 Introduction to Oracle Parallel Server
	What Is Oracle Parallel Server?
	Benefits of Oracle Parallel Server
	Scalability
	High Availability
	Transparency
	High Performance Features of Oracle Parallel Server



	2 Parallel Hardware Architecture
	Overview of Cluster Hardware Components
	What is a Node?

	Memory Access
	Uniform Memory Access
	Non-Uniform Memory Access
	Advantages of Shared Memory


	The High Speed Interconnect
	Clusters - Nodes and the Interconnect
	Storage Access in Clustered Systems
	Uniform Disk Access
	Non-Uniform Disk Access

	Oracle Parallel Server Runs on A Wide Variety of Clusters

	3 Oracle Parallel Server Architecture
	Oracle Parallel Server Components for Clustered Systems
	Overview of Components for Clustered Systems
	The Cluster Manager
	Failure Detection
	The Node Monitor

	Distributed Lock Manager
	Transparency
	Distributed Architecture
	Fault Tolerance
	Resource Mastering
	Deadlock Detection
	Persistent Resources
	Example of DLM Processing
	Interaction with the Cluster Manager

	The Cluster Interconnect and Inter-Process Communication (Node-to-Node)
	Disk Subsystems


	4 Inter-Instance Coordination
	Synchronization
	Local Locks
	Latches
	Enqueues

	Global Locks
	Non-Parallel Cache Management Coordination
	Non-Parallel Cache Management Locks
	Non-PCM Global Locks
	Overview of Non-Parallel Cache Management Locks
	Transaction Locks
	Table Locks
	Library Cache Locks
	Dictionary Cache Locks
	Database Mount Lock


	Parallel Cache Management Coordination
	Example of Parallel Cache Management Processing
	Parallel Cache Management Lock and Row Lock Independence
	Global Lock Modes

	Block Level Locking
	Comparing Parallel and Non-Parallel Cache Management Locks



	5 Parallel Cache Management
	Parallel Cache Management and Lock Implementation
	The Role of Cache Fusion in Resolving Cache Coherency Conflicts

	Lock Duration and Granularity
	Two Types of Lock Duration
	Fixed Locks
	Releasable Locks

	Two Forms of Lock Granularity
	1:1 Locks
	1:n Locks

	The Cost of Locks

	Coordination of Locking Mechanisms by the Distributed Lock Manager
	Lock Modes As Resource Access Rights
	Instances Map Database Resources to Distributed Lock Manager Resources
	The Distributed Lock Manager Records Lock Information
	Sample Lock Manager Lock Mode and Resource Inventory


	How Distributed Lock Manager Locks and Global Locks Relate
	One Lock Per Instance on a Resource

	Lock Elements and Parallel Cache Management Locks
	Lock Elements for Fixed Parallel Cache Management Locks
	Lock Elements for Releasable Parallel Cache Management Locks
	Lock Elements for 1:1 Parallel Cache Management Locks

	How Parallel Cache Management Locks Operate
	Parallel Cache Management Locks Are Owned by Instance LCK Processes
	Multiple Instances Can Own the Same Locks
	How 1:1 Locking Works

	Number of Blocks Per Parallel Cache Management Lock
	Example of Locks Covering Multiple Blocks
	Periodicity of Fixed Parallel Cache Management Locks
	Pinging: Signaling the Need to Update
	Partitioning to Avoid Pinging

	Lock Mode and Buffer State
	Finding the State of a Buffer
	How Buffer States and Lock Modes Change
	Lock Modes May Be Compatible or Incompatible


	How the DLM Grants and Coordinates Resource Lock Requests
	Lock Requests Are Queued
	Asynchronous Traps (ASTs) Communicate Lock Request Status
	Lock Requests Are Converted and Granted

	Specifying the Allocation and Duration of Locks
	Number of Blocks Per Parallel Cache Management Lock
	1:N Locks for Multiple Blocks
	1:1 Locking: Locks for One Block

	Selecting Lock Granularity
	Simultaneously Using Fixed and Releasable Locking

	Group-Owned Locks
	Distributed Lock Manager Support for Multi-Threaded Server and XA

	Memory Requirements for the Distributed Lock Manager

	6 Oracle Parallel Server Components
	Instance and Database Components for Oracle Parallel Server
	Parallel Server-Specific Processes
	Foreground Processes and Foreground Lock Acquisition

	Overview of Oracle Parallel Server Processes

	Cache Fusion Processing and the Block Server Process
	System Change Number Processing
	How Lamport SCN Generation Works


	7 Oracle Parallel Server Storage Considerations
	Oracle Parallel Server-Specific Storage Issues
	Data Files
	Redo Log Files
	Rollback Segments
	Rollback Segments in Oracle Parallel Server
	Parameters Controlling Rollback Segments
	Public and Private Rollback Segments
	How Instances Acquire Rollback Segments


	Space Management and Free List Groups
	How Oracle Handles Free Space
	Segments, Extents, and the High Water Mark

	Free Lists and Free List Groups
	Free List Groups
	Avoiding Contention for Segment Header and Free Lists
	Locally Managed Tablespaces

	Free List Group Examples
	Basic Free List Group Example
	Complex Free List Group Example

	Partitioning Data with Free List Groups
	How Oracle Partitions Free List Groups

	Associating Instances, Users, and Locks with Free List Groups
	Associating Instances with Free Lists
	Assignment of New Instances to Existing Free List Groups
	FREELIST GROUPS and MAXINSTANCES

	Associating User Processes with Free Lists
	Associating PCM Locks with Free Lists
	How Oracle Assigns Free Lists and Free List Groups to Instances


	SQL Options for Managing Free Space
	Controlling Extent Allocation
	Automatic Allocation of New Extents
	Pre-allocation of New Extents
	Pre-allocating Extents to Free List Groups
	Dynamic Allocation of Blocks on Lock Boundaries

	Moving the High Water Mark of a Segment


	8 Scalability and Oracle Parallel Server
	Scalability Features of Oracle Parallel Server
	Enhanced Throughput: Scale-Up
	Speed-Up and Scale-up: The Goals of Parallel Processing
	Scale-Up
	Speed-Up


	When Is Parallel Processing Advantageous?
	Decision Support Systems
	Applications that Update Different Data Blocks
	OLTP with Partitioned Data
	OLTP with Random Access to a Large Database
	Departmentalized Applications

	Application Profiles

	Multi-Node Parallel Execution
	Overview of Client-to-Server Connectivity
	Enhanced Scalability Using the Multi-Threaded Server
	Service Registration and the Multi-Threaded Server Functionality
	Connection Load Balancing

	Connect-Time Failover for Multiple Listeners
	Client Load Balancing for Multiple Listeners

	The Four Levels of Scalability
	Scalability of Hardware and Network
	Bandwidth and Latency
	Disk Input and Output

	Scalability of Operating System
	Scalability of Database Management System
	Scalability of Application
	The Sequence Generator
	The CREATE SEQUENCE Statement
	The CACHE Option
	The ORDER Option

	Oracle Parallel Execution on Oracle Parallel Server


	9 High Availability and Oracle Parallel Server
	What is High Availability?
	Measuring Availability
	The Metrics of High Availability
	Causes of Outages
	Planned Downtime
	Unplanned Downtime


	Planning for High Availability
	System Level Planning
	Capacity Planning
	Redundancy Planning


	Oracle Parallel Server and High Availability
	Cluster Components and High Availability
	Cluster Nodes
	Cluster Interconnects
	Storage Devices
	Operating System Software and Cluster Managers
	Database Software

	Disaster Planning

	Failure Protection Validation
	Failover and Oracle Parallel Server Systems
	The Basics of Failover
	The Duration of Failover

	Client Failover
	What Is Transparent Application Failover?
	How Does Transparent Application Failover Work in Oracle Parallel Server?
	Elements of Active Database Connections Affected by TAF
	Uses of Transparent Application Failover
	Transactional Shutdown
	Load Balancing
	Transparent Application Failover Restrictions
	Database Client Experience During Failover


	Server Failover
	Host-Based Failover
	Oracle Parallel Server Failover
	How Does Oracle Parallel Server Failover Work?
	Detecting Failure
	Re-organizing Cluster Membership
	Performing Database Recovery
	Re-mastering PCM Lock Resources of The Failed Instance
	Instance Recovery
	Cache Recovery
	Transaction Recovery


	Oracle Parallel Server High Availability Configurations
	Default N-node Parallel Server Configuration
	Benefits of N-Node Oracle Parallel Server Configurations

	Basic High Availability Configuration
	Primary/Secondary Instance in Dedicated Server Environments
	Primary/Secondary Instance and the Multi-Threaded Server
	Benefits of Basic High Availability Configurations
	Transition Path to N-node Configurations
	Availability Solution for Applications That Do Not Scale

	Shared High Availability Node Configuration
	Benefits of Shared High Availability Node Configurations


	Toward Deploying High Availability

	A Differences Between Releases
	Differences Between 8.1 and 8.1.6
	New Features
	Obsolete Parameters
	Obsolete Statistics
	New Statistics
	Changes in Default Parameter Settings
	LM_LOCKS and LM_RESS Automatically Set by Oracle


	Differences Between 8.0.4 and 8.1
	Cache Fusion Architecture Changes
	New Views
	Removal of GMS
	Parallel Transaction Recovery is now "Fast-Start Parallel Rollback"
	Changes to Instance Registration
	Listener Load Balancing
	Diagnostic Enhancements
	Oracle Parallel Server Management (OPSM)
	Parallel Server Installation and Database Configuration
	Instance Affinity for Jobs
	Obsolete Parameters

	Differences Between Release 8.0.3 and Release 8.0.4
	New Initialization Parameters
	Obsolete Initialization Parameters
	Obsolete Startup Parameters
	Dynamic Performance Views
	Group Membership Services

	Differences Between Release 7.3 and Release 8.0.3
	New Initialization Parameters
	Obsolete GC_* Parameters
	Changed GC_* Parameters
	Dynamic Performance Views
	Global Dynamic Performance Views
	Distributed Lock Manager
	Instance Groups
	Group Membership Services
	Fine Grain Locking
	Client-Side Application Failover
	Recovery Manager

	Differences Between Release 7.2 and Release 7.3
	Initialization Parameters
	Data Dictionary Views
	Dynamic Performance Views
	Free List Groups
	Fine Grain Locking
	Instance Registration
	Sort Improvements
	XA Performance Improvements
	XA Recovery Enhancements
	Deferred Transaction Recovery
	Fast Warmstart
	Transaction Recovery

	Load Balancing at Connect
	Bypassing Cache for Sort Operations
	Delayed-Logging Block Cleanout
	Parallel Execution Processor Affinity

	Differences Between Release 7.1 and Release 7.2
	Pre-Allocating Space Unnecessary
	Data Dictionary Views
	Dynamic Performance Views
	Free List Groups
	Table Locks
	Lock Processes

	Differences Between Release 7.0 and Release 7.1
	Initialization Parameters
	Dynamic Performance Views

	Differences Between Version 6 and Release 7.0
	Version Compatibility
	File Operations
	Deferred Rollback Segments
	Redo Logs
	ALTER SYSTEM SWITCH LOGFILE
	Initialization Parameters

	Free Space Lists
	Space Freed by Deletions and Updates
	Free Lists for Clusters
	Initialization Parameters
	Import/Export

	SQL*DBA
	Initialization Parameters
	New Parameters
	Obsolete Parameters

	Archiving
	Media Recovery


	B Restrictions
	Compatibility Between Shared and Exclusive Mode
	The Export and Import Utilities
	Compatibility Between Shared and Exclusive Modes

	Restrictions
	Maximum Number of Blocks Allocated at a Time
	Restrictions in Shared Mode
	Restricted SQL Statements
	Maximum Number of Data Files
	Sequence Number Generators
	Free Lists with Import and Export Utilities



	Index

