
Oracle8 i Parallel Server

Administration, Deployment, and Performance

Release 2 (8.1.6)

December 1999

Part No.  A76970-01



Oracle8i Parallel Server Administration, Deployment, and Performance, Release 2 (8.1.6)

Part No.  A76970-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Mark Bauer.

Contributing Author: Cathy Baird.

Primary Contributors: David Austin, Wilson Chan, and Michael Zoll.

Contributors: Christina Anonuevo, Lance Ashdown, Bill Bridge, Sandra Cheever, Annie Chen, Carol Col-
rain, Mark Coyle, Sohan Demel, Connie Dialeris, Karl Dias, Anurag Gupta, Deepak Gupta, Mike Hart-
stein, Andrew Holdsworth, Merrill Holt, Ken Jacobs, Ashok Joshi, Jonathan Klein, Jan Klokkers, Boris
Klots, Anjo Kolk, Tirthankar Lahiri, Bill Lee, Lefty Leverenz, Juan Loaiza, Sajjad Masud, Neil Macnaugh-
ton, Ravi Mirchandaney, Rita Moran, Kotaro Ono, Kant Patel, Erik Peterson, Mark Porter, Darryl Presley,
Brian Quigley, Ann Rhee, Pat Ritto, Roger Sanders, Hari Sankar, Ekrem Soylemez, Vinay Srihari, Bob
Thome, Alex Tsukerman, Tak Wang, Graham Wood, and Betty Wu.

Graphic Designer: Valarie Moore.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice  Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle, SQL*Loader, Secure Network Services, and SQL*Plus are registered trademarks of Oracle
Corporation, Redwood Shores, California. Oracle Call Interface, Oracle8i, Oracle8, Oracle Parallel Server,
Oracle Forms, Oracle TRACE, Oracle Expert, Oracle Enterprise Manager, Oracle Server Manager, Net8,
PL/SQL, and Pro*C are trademarks of Oracle Corporation, Redwood Shores, California.



iii

Contents

Send Us Your Comments .................................................................................................................. xv

Preface ......................................................................................................................................................... xvii

Part I  Administering Oracle Parallel Server Parameter Files

1 Parameter Files and Oracle Parallel Server-Specific Parameters

Managing Parameter Files for Oracle Parallel Server ................................................................. 1-2
Parameter File Naming Conventions ........................................................................................ 1-2
One Common Parameter File ..................................................................................................... 1-2
Instance-Specific Parameter Files ............................................................................................... 1-3

Conditions Under Which You Must Use Instance-Specific Files ................................... 1-3
Placement and Use of IFILE Parameters within Instance-Specific Files ....................... 1-3
Using Multiple IFILEs........................................................................................................... 1-3

Non-Default Parameter Files For Particular Sessions ............................................................. 1-4
Location of Initialization Files .................................................................................................... 1-4
The Startup Process and Parameters in Parallel Server Environments ................................ 1-5

Starting Two Instances on Remote Nodes......................................................................... 1-5
Instance Numbers and Startup Sequence ................................................................................. 1-6

Startup Order Determines Instance Number by Default ................................................ 1-6
Setting Initialization Parameters for Multiple Instances ........................................................... 1-7

Parameters That Must Be Identical Across All Instances ....................................................... 1-8
Parameters That Must Be Unique Across All Instances ......................................................... 1-8
Parameters for Common Parameter Files ................................................................................. 1-9



iv

DB_NAME Parameter .......................................................................................................... 1-9
GC_* Global Cache Parameters........................................................................................... 1-9
Multiple Instance Issues for Initialization Parameters .................................................. 1-10
The MTS_DISPATCHER Parameter and Oracle Parallel Server.................................. 1-13

LM_* Initialization Parameters................................................................................................. 1-14

Part II  Oracle Parallel Server Administration

2 Parallel Execution in Oracle Parallel Server Environments

Parallel Execution in Oracle Parallel Server.................................................................................. 2-2
Setting the Degree of Parallelism ............................................................................................... 2-2

Parameters for Parallel Execution on Oracle Parallel Server ..................................................... 2-2
Allocating Resources with Instance Groups............................................................................. 2-2

Specifying Instance Groups ................................................................................................. 2-3
Defining Parallel Instance Groups...................................................................................... 2-4
Instance Group Example ...................................................................................................... 2-4
Listing Members of Instance Groups ................................................................................. 2-5

Other Resource Management Features of Parallel Execution .................................................... 2-5
Parallel Execution Load Balancing............................................................................................. 2-5
Parallel Execution Adaptive Multi-User ................................................................................... 2-6
Avoiding Disk Contention in Parallel Processing ................................................................... 2-6

Dynamic Performance Views ........................................................................................................... 2-6
Disk Affinity and Parallel Execution .............................................................................................. 2-7

3 Oracle Parallel Server Database Creation Issues

Creating a Database for Multi-Instance Environments .............................................................. 3-2
Setting Initialization Parameters for Database Creation ............................................................ 3-2

Using ARCHIVELOG Mode ....................................................................................................... 3-2
Setting CREATE DATABASE Options ........................................................................................... 3-2

Setting MAXINSTANCES ........................................................................................................... 3-3
Setting MAXLOGFILES and MAXLOGMEMBERS ................................................................ 3-3
Setting MAXLOGHISTORY........................................................................................................ 3-3
Setting MAXDATAFILES............................................................................................................ 3-3

Database Objects to Support Multiple Instances......................................................................... 3-4



v

Creating Additional Rollback Segments ................................................................................... 3-4
Using Private Rollback Segments ....................................................................................... 3-4
Using Public Rollback Segments......................................................................................... 3-5
Monitoring Rollback Segments ........................................................................................... 3-5

Configuring the Online Redo Log for Oracle Parallel Server ................................................ 3-7
Creating Threads ................................................................................................................... 3-7
Disabling Threads ................................................................................................................. 3-8
Setting the Log’s Mode ......................................................................................................... 3-8
Changing the Redo Log........................................................................................................ 3-8

Providing Locks for Added Data Files ...................................................................................... 3-9
Changing The Values for CREATE DATABASE Options........................................................... 3-9

4 Administering Instances

Starting Up and Shutting Down Instances.................................................................................... 4-2
Starting Instances................................................................................................................................ 4-2

Enabling Oracle Parallel Server and Starting Instances.......................................................... 4-2
Starting an Instance Using SQL*Plus ................................................................................. 4-2
Using RETRY to Mount a Database in Shared Mode....................................................... 4-3

Setting and Connecting to Instances.......................................................................................... 4-3
The SET INSTANCE and SHOW INSTANCE Commands ............................................ 4-4
The CONNECT Command.................................................................................................. 4-5

Shutting Down Instances .................................................................................................................. 4-5
How Instances Are Affected by SQL*Plus and SQL ................................................................... 4-6

How SQL*Plus Commands Apply to Instances....................................................................... 4-6
How SQL Statements Apply to Instances ................................................................................. 4-7



vi

Part III  Oracle Parallel Server Design and Deployment

5 Application Analysis and Partitioning

Overview of Development Techniques.......................................................................................... 5-2
Before You Begin, Determine Your Application’s Suitability................................................ 5-2
How Detailed Must Your Analysis Be?..................................................................................... 5-3

Application Transactions and Table Access Patterns................................................................... 5-3
Read-Only Tables ......................................................................................................................... 5-3
Random SELECT and UPDATE Tables .................................................................................... 5-4
INSERT, UPDATE, or DELETE Tables...................................................................................... 5-4
Creating Reverse Key Indexes .................................................................................................... 5-5

Selecting A Partitioning Method ..................................................................................................... 5-6
Partitioning Based on Data, Not Function ................................................................................ 5-6

Application Partitioning Techniques.............................................................................................. 5-7
Methodology for Application Partitioning............................................................................... 5-8

Step 1: Define the Major Functional Areas of the System ............................................... 5-8
Step 2: Identify Table Access Requirements and Define Overlaps ................................ 5-9
Step 3: Define the Access Type for Each Overlap........................................................... 5-10
Step 4: Identify Transaction Volumes............................................................................... 5-10
Step 5: Classify Overlaps.................................................................................................... 5-11

Departmental and User Partitioning............................................................................................. 5-13
Physical Table Partitioning ............................................................................................................. 5-15
Transaction Partitioning .................................................................................................................. 5-15
Scaling Up and Partitioning ........................................................................................................... 5-16
Adding Instances .............................................................................................................................. 5-16
Design-Related Batch Processing Issues...................................................................................... 5-17

Using the DBMS_JOB Package to Manage Batch Job and Instance Affinity ..................... 5-17

6 Database Design Techniques

Principles of Database Design for Oracle Parallel Server .......................................................... 6-2
Database Operations, Block Types, and Access Control............................................................. 6-3

Block Accesses During INSERTS ............................................................................................... 6-4
Static and Dynamic Extent Allocation....................................................................................... 6-6
Block Accesses During UPDATES ............................................................................................. 6-7



vii

Block Accesses During DELETES .............................................................................................. 6-9
Block Accesses During SELECTS ............................................................................................... 6-9

Global Cache Coherence Work and Block Classes ...................................................................... 6-9
General Recommendations for Database Object Parameters .................................................. 6-10
Index Issues........................................................................................................................................ 6-10

Minimizing Leaf/Branch Block Contention ........................................................................... 6-11
Locking Policy For Indexes ....................................................................................................... 6-13

Using Sequence Numbers............................................................................................................... 6-13
Calculating Sequence Number Cache Size ............................................................................. 6-13
External Sequence Generators .................................................................................................. 6-14
Detecting Global Conflicts On Sequences............................................................................... 6-14

Logical And Physical Database Layout ........................................................................................ 6-15
General Suggestions for Physical Layouts.............................................................................. 6-15
Tablespace Design ...................................................................................................................... 6-16

Global Cache Lock Allocation........................................................................................................ 6-16
Conclusions And Guidelines ......................................................................................................... 6-17

7 Planning the Use of PCM and Non-PCM Instance Locks

Planning the Use and Maintenance of PCM Locks...................................................................... 7-2
Planning and Maintaining Instance Locks................................................................................ 7-2
The Key to Allocating PCM Locks ............................................................................................. 7-2
Examining Data Files and Data Blocks...................................................................................... 7-3

Determining File ID, Tablespace Name, and Number of Blocks ................................... 7-3
Determining the Number of Locks You Need .................................................................. 7-3

How Oracle Assigns Locks to Blocks.............................................................................................. 7-4
File-to-Lock Mapping................................................................................................................... 7-4
Number of Locks Per Block Class .............................................................................................. 7-5
Lock Element Number................................................................................................................. 7-6

Examples of Mapping Blocks to PCM Locks ................................................................................ 7-7
Setting GC_FILES_ TO_LOCKS ................................................................................................. 7-7
Sample Settings for Fixed Locks with GC_FILES_TO_LOCKS ........................................... 7-10
Sample Releasable Setting of GC_FILES_TO_LOCKS .......................................................... 7-12
Using Worksheets to Analyze PCM Lock Needs................................................................... 7-12
Mapping Fixed PCM Locks to Data Blocks ............................................................................ 7-14
Partitioning PCM Locks Among Instances............................................................................. 7-14



viii

Non-PCM Instance Locks................................................................................................................ 7-15
Overview of Non-PCM Instance Locks................................................................................... 7-16
Transaction Locks (TX) .............................................................................................................. 7-17
Table Locks (TM) ........................................................................................................................ 7-17
System Change Number (SCN)................................................................................................ 7-18
Library Cache Locks (L[A-Z]), (N[A-Z]) ................................................................................. 7-19
Dictionary Cache Locks (Q[A-Z])............................................................................................. 7-19
Database Mount Lock (DM)...................................................................................................... 7-19

8 Using Free List Groups to Partition Data

Overview of Free List Implementation Procedures ..................................................................... 8-2
Deciding How to Partition Free Space for Database Objects .................................................... 8-2

Database Object Characteristics ................................................................................................. 8-2
Objects Read-Only Tables .................................................................................................... 8-2
Objects in Partitioned Applications.................................................................................... 8-2
Objects Relating to Partitioned Data .................................................................................. 8-3
Objects in Tables with Random Inserts.............................................................................. 8-3

Free Space Worksheet .................................................................................................................. 8-3
Using the CREATE Statement FREELISTS and FREELIST GROUPS Parameters................ 8-4

FREELISTS Parameter.................................................................................................................. 8-4
FREELIST GROUPS Parameter .................................................................................................. 8-4
Creating Free Lists for Clustered Tables ................................................................................... 8-5
Creating Free Lists for Indexes ................................................................................................... 8-6

Associating Instances, Users, and Locks with Free List Groups ............................................... 8-8
Associating Instances with Free List Groups ........................................................................... 8-8
Associating User Processes with Free List Groups.................................................................. 8-8
Associating PCM Locks with Free List Groups ....................................................................... 8-9

Pre-Allocating Extents........................................................................................................................ 8-9
The ALLOCATE EXTENT Clause.............................................................................................. 8-9
Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parameters.................................... 8-11
Setting the INSTANCE_NUMBER Parameter ....................................................................... 8-11
Examples of Extent Pre-Allocation .......................................................................................... 8-12

Dynamically Allocating Extents .................................................................................................... 8-13
Translation of Data Block Address to Lock Name ................................................................ 8-13
!blocks with ALLOCATE EXTENT Syntax .............................................................................. 8-13



ix

Identifying and Deallocating Unused Space .............................................................................. 8-14
Identifying Unused Space ......................................................................................................... 8-14
Deallocating Unused Space....................................................................................................... 8-14
Space Freed by Deletions or Updates ...................................................................................... 8-14

9  Setting Instance Locks

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Data File .............................................. 9-2
GC_FILES_TO_LOCKS Syntax................................................................................................... 9-2
Fixed Lock Examples ................................................................................................................... 9-4
Releasable Lock Examples........................................................................................................... 9-4
Guidelines for Setting GC_FILES_TO_LOCKS........................................................................ 9-5

Tips for Setting GC_FILES_TO_LOCKS ....................................................................................... 9-6
Providing Room for Growth....................................................................................................... 9-6
Checking for Valid Number of Locks........................................................................................ 9-6
Checking for Valid Lock Assignments ...................................................................................... 9-7
Setting Tablespaces to Read-Only.............................................................................................. 9-7
Checking File Validity ................................................................................................................. 9-7
Adding Data Files Without Changing Parameter Values ...................................................... 9-8

Setting Other GC_* Parameters ....................................................................................................... 9-8
Setting GC_RELEASABLE_ LOCKS.......................................................................................... 9-8
Setting GC_ROLLBACK_ LOCKS ............................................................................................. 9-8

Tuning PCM Locks ........................................................................................................................... 9-10
Detecting False Pinging ............................................................................................................. 9-10
Determining How Much Time PCM Lock Conversions Require........................................ 9-12
Identifying Sessions That Are Waiting for PCM Lock Conversions to Complete ............ 9-12

PCM and Non-PCM Lock Names and Formats .......................................................................... 9-13
Lock Names and Lock Name Formats .................................................................................... 9-13
PCM Lock Names ....................................................................................................................... 9-14
Non-PCM Lock Names.............................................................................................................. 9-14

10 Ensuring DLM Capacity for Locks and Resources

Overview of Planning Distributed Lock Manager Capacity ................................................... 10-2
Planning Distributed Lock Manager Capacity ........................................................................... 10-2

Avoiding Dynamic Allocation of Resources and Locks ....................................................... 10-2
Recommended SHARED_POOL_SIZE Settings............................................................. 10-3



x

Adjusting Oracle Initialization Parameters................................................................................. 10-3
Minimizing Table Locks to Optimize Performance................................................................... 10-3

Disabling Table Locks ................................................................................................................ 10-4
Setting DML_LOCKS to Zero ................................................................................................... 10-4

Using SQL*Loader............................................................................................................................ 10-5

Part IV         Oracle Parallel Server Performance Monitoring and Tuning

11  General Tuning Recommendations

Overview of Tuning Oracle Parallel Server................................................................................. 11-2
Statistics for Monitoring Oracle Parallel Server Performance................................................. 11-2

Contents of V$SYSSTAT and V$SYSTEM_EVENT ............................................................... 11-3
Statistics in V$SYSSTAT ..................................................................................................... 11-3
Statistics in V$SYSTEM_EVENT....................................................................................... 11-4
Other Parallel Server-Specific Views................................................................................ 11-5

Recording Statistics for Tuning ................................................................................................ 11-5
Performance and Efficiency of Oracle Parallel Server Workloads............................... 11-6

Determining the Costs of Synchronization ................................................................................. 11-7
Calculating CPU Service Time Required ................................................................................ 11-8
Estimating I/O Synchronization Costs ................................................................................... 11-8
Measuring Global Cache Coherence and Contention........................................................... 11-9

Measuring Global and Local Work Ratios................................................................................. 11-11
Calculating the Cost of Global Cache Synchronization Due to Lock Contention............. 11-13

Contention for the Same Data Blocks .................................................................................... 11-13
Using V$CACHE, V$PING, and V$BH to Identify Contended Objects ................... 11-13
Using V$FILE_PING to Identify Files with Excessive Pinging .................................. 11-14

Contention for Segment Headers and Free List Blocks ...................................................... 11-14
Contention for Resources Other Than Database Blocks ..................................................... 11-15
A Shortage of Locks.................................................................................................................. 11-16

Resolving Problems in Oracle Parallel Server-Based Applications ..................................... 11-16
Query Tuning Tips ................................................................................................................... 11-16

Large Block Size................................................................................................................. 11-16
Increase Value for DB_FILE_MULTIBLOCK_READ_COUNT.................................. 11-17

Application Tuning Tips ......................................................................................................... 11-17
Diagnosing Performance Problems ....................................................................................... 11-18



xi

DLM Statistics for Monitoring Contention and CPU Usage....................................... 11-18
Contention Problems Specific to Parallel Server Environments........................................ 11-19

Using Sequence Number Multipliers ............................................................................. 11-19
Using Oracle Sequences ................................................................................................... 11-19

12  Tuning Oracle Parallel Server and Inter-Instance Performance

How Cache Fusion Produces Consistent Read Blocks .............................................................. 12-2
Partitioning Data to Improve Write/Write Conflict Resolution ......................................... 12-4
Improved Scalability with Cache Fusion ................................................................................ 12-4
Consistent-Read Block Transfers By Way of High Speed Interconnects............................ 12-5
Reduced I/O for Block Pinging and Reduced X to S Lock Conversions ........................... 12-5

The Interconnect and Interconnect Protocols for Oracle Parallel Server............................... 12-5
Influencing Interconnect Processing........................................................................................ 12-6
Supported Interconnect Software............................................................................................. 12-6

Performance Expectations ............................................................................................................... 12-6
Monitoring Cache Fusion and Inter-Instance Performance ..................................................... 12-7
Cache Fusion and Oracle Parallel Server Performance Monitoring Goals ........................... 12-7
Statistics for Monitoring Oracle Parallel Server and Cache Fusion ....................................... 12-8

Creating Oracle Parallel Server Data Dictionary Views with CATPARR.SQL ................. 12-9
Global Dynamic Performance Views....................................................................................... 12-9
Analyzing Global Cache and Cache Fusion Statistics......................................................... 12-11

Procedures for Monitoring Global Cache Statistics...................................................... 12-11
Other Useful Cache Fusion Statistics.............................................................................. 12-14

Analyzing Global Lock Statistics............................................................................................ 12-15
Procedures for Analyzing Global Lock Statistics ......................................................... 12-15

Analyzing DLM Resource, Lock, Message, and Memory Resource Statistics................. 12-17
How DLM Workloads Affect Performance................................................................... 12-18
Procedures for Analyzing DLM Resource and Lock Statistics ................................... 12-18

DLM Message Statistics ........................................................................................................... 12-20
Procedures for Analyzing DLM Message Statistics ..................................................... 12-22

Analyzing Oracle Parallel Server I/O Statistics................................................................... 12-23
Analyzing Oracle Parallel Server I/O Statistics in the V$SYSSTAT View ............... 12-24

Analyzing Lock Conversions by Type .................................................................................. 12-26
Using the V$LOCK_ACTIVITY View to Analyze Lock Conversions ....................... 12-26
Using the V$CLASS_PING View to Identify Pinging by Block Class....................... 12-26



xii

Using the V$PING View to Identify Hot Objects ......................................................... 12-27
Analyzing Latch, Oracle Parallel Server, and DLM Statistics............................................ 12-28

Procedures for Analyzing Latch, Parallel Server, and DLM Statistics ...................... 12-28
Using the V$SYSTEM_EVENTS View to Identify Performance Problems ........................ 12-31

Parallel Server Events in V$SYSTEM_EVENTS................................................................... 12-32
Events Related to Non-PCM Resources ......................................................................... 12-32

General Observations............................................................................................................... 12-32

Part V         Oracle Parallel Server Maintenance

13 Backing Up Your Database

Choosing a Backup Method............................................................................................................ 13-2
Archiving the Redo Log Files ......................................................................................................... 13-2

Archiving Mode.......................................................................................................................... 13-3
Changing the Archiving Mode................................................................................................. 13-3
Automatic or Manual Archiving.............................................................................................. 13-4

Automatic Archiving .......................................................................................................... 13-4
Manual Archiving ............................................................................................................... 13-4
ALTER SYSTEM ARCHIVE LOG Clauses for Manual Archiving............................... 13-5
Monitoring the Archiving Process .................................................................................... 13-6

Archive File Format and Destination ...................................................................................... 13-6
Redo Log History in the Control File ...................................................................................... 13-7
Backing Up the Archive Logs ................................................................................................... 13-8
Backing Up Archive Logs with RMAN................................................................................... 13-8
Restoring Archive Logs with RMAN .................................................................................... 13-11

Checkpoints and Log Switches .................................................................................................... 13-14
Checkpoints ............................................................................................................................... 13-14
Forcing a Checkpoint ............................................................................................................... 13-14
Forcing a Log Switch................................................................................................................ 13-15
Forcing a Log Switch on a Closed Thread ............................................................................ 13-15

Backing Up the Database .............................................................................................................. 13-16
Open and Closed Database Backups ..................................................................................... 13-16

Online Backups and Oracle Parallel Server .............................................................................. 13-17
RMAN Backup Issues .............................................................................................................. 13-17

Preparing for Snapshot Control Files in RMAN........................................................... 13-17



xiii

Performing an Open Backup Using RMAN.................................................................. 13-18
Node Affinity Awareness ................................................................................................ 13-19

Operating System Backup Issues ........................................................................................... 13-20
Beginning and Ending an Open Backup Using Operating System Utilities ............ 13-20
Performing an Open Backup Using Operating System Utilities ................................ 13-21

14 Recovering the Database

Three Types of Recovery ................................................................................................................. 14-2
Recovery from Instance Failure ..................................................................................................... 14-2

Single-Node Failure.................................................................................................................... 14-2
Multiple-Node Failure ............................................................................................................... 14-3
Fast-Start Checkpointing ........................................................................................................... 14-3
Fast-Start Rollback...................................................................................................................... 14-4
Access to Data Files for Instance Recovery............................................................................. 14-4
Steps of Oracle Instance Recovery ........................................................................................... 14-5

Recovery from Media Failure ......................................................................................................... 14-6
Complete Media Recovery ........................................................................................................ 14-7

Complete Media Recovery Using Operating System Utilities ..................................... 14-7
Incomplete Media Recovery ..................................................................................................... 14-8
Restoring and Recovering Redo Log Files .............................................................................. 14-8

Recovery Using RMAN...................................................................................................... 14-8
Recovery Using Operating System Utilities .................................................................... 14-9

Disaster Recovery ..................................................................................................................... 14-10
Disaster Recovery Using RMAN..................................................................................... 14-10
Disaster Recovery Using Operating System Utilities................................................... 14-13

Parallel Recovery ............................................................................................................................ 14-13
Parallel Recovery Using RMAN............................................................................................. 14-14

Parallel Instance Recovery ............................................................................................................ 14-15
Media Recovery ........................................................................................................................ 14-15
Parallel Recovery Using Operating System Utilities........................................................... 14-15

Setting the RECOVERY_ PARALLELISM Parameter.................................................. 14-15
Specifying RECOVER Statement Options ..................................................................... 14-16

Fast-Start Parallel Rollback in Oracle Parallel Server.......................................................... 14-16
Disaster Protection Strategies....................................................................................................... 14-17



xiv

Part VI         Oracle Parallel Server Reference

A A Case Study in Parallel Server Database Design

Case Study Overview......................................................................................................................... A-2
Case Study: From Initial Database Design to Oracle Parallel Server....................................... A-2

"Eddie Bean" Catalog Sales ......................................................................................................... A-3
Tables.............................................................................................................................................. A-3
Users ............................................................................................................................................... A-4
Application Profile ....................................................................................................................... A-4

Analyzing Access to Tables............................................................................................................... A-5
Table Access Analysis Worksheet.............................................................................................. A-5

Estimating Volume of Operations ...................................................................................... A-5
Calculating I/Os per Operation .......................................................................................... A-6
I/Os per Operation for Sample Tables............................................................................... A-8

Case Study: Table Access Analysis ............................................................................................ A-9
Analyzing Transaction Volume by Users ..................................................................................... A-10

Transaction Volume Analysis Worksheet............................................................................... A-10
Case Study: Transaction Volume Analysis............................................................................. A-11

ORDER_HEADER Table .................................................................................................... A-11
ORDER_ITEMS Table ......................................................................................................... A-12
ACCOUNTS_PAYABLE Table.......................................................................................... A-13

Case Study: Initial Partitioning Plan ............................................................................................ A-14
Case Study: Further Partitioning Plans ................................................................................... A-15

Design Option 1 ................................................................................................................... A-15
Design Option 2 ................................................................................................................... A-16

Partitioning Indexes ......................................................................................................................... A-17
Implementing High or Low Granularity Locking...................................................................... A-17
Implementing and Tune Your Design .......................................................................................... A-18

Index



xv

Send Us Your Comments

Oracle8i Parallel Server Administration, Deployment, and Performance , Release 2 (8.1.6)

Part No.  A76970-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information?  If so, where?

■ Are the examples correct?  Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail: infodev@us.oracle.com

■ FAX: (650) 506-7228   Attn: ST/Oracle8i Documentation Manager

■ Postal service:

Oracle Corporation

ST/ORacle8i Documentation Manager

500 Oracle Parkway, 4OP12

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.



xvi



xvii

Preface

This manual describes the administrative and deployment tasks for the Oracle

Parallel Server. You should read this book after you have completed the procedures

in the Oracle8i Parallel Server Setup and Configuration Guide. You should also have

read Oracle8i Parallel Server Concepts.

This manual prepares you to implement parallel processing by describing the

administrative procedures to follow after installing Oracle Parallel Server. It also

advises you how to develop and deploy applications, as well as how to tune them.

Information in this manual applies to Oracle Parallel Server as it runs on all

operating systems. Where necessary, this manual refers to platform-specific

documentation.

What’s New in Oracle8 i?
This book is new for Oracle8i. Oracle8i introduces Cache Fusion, a feature that

reduces the overhead of resolving read/write conflicts caused by inter-instance

contention. This greatly enhances performance as well as Oracle Parallel Server

scalability.

Release 8.1.5
Release 8.1.5 introduced the first phase of cache fusion.

Release 8.1.6
Release 2 (8.1.6) introduces further enhancements to cache fusion as well as the

Primary/Secondary instance feature. There are also several new performance

statistics.

See Also: You can also use the Oracle8i Parallel Server
Documentation Online Roadmap to help you use the online Oracle

Parallel Server Documentation set.

See Also: Oracle8i Parallel Server Concepts for information on

feature changes from one release of Oracle Parallel Server to
another.



xviii

Intended Audience
This manual is written for database administrators and application developers who

work with Oracle Parallel Server.

How this Book is Organized
This book presents Oracle Parallel Server administration, deployment, and

performance in five parts. It begins with the fundamental administration of Oracle

Parallel Server and then presents application and database design and deployment

for Parallel Server. The last parts of the book present performance tuning as well as

maintenance topics, such as backup and recovery.

Structure
The following describes the five parts of this book.

Part I, "Administering Oracle Parallel Server Parameter Files"

Part II, "Oracle Parallel Server Administration"

Chapter 1, "Parameter Files and Oracle Parallel

Server-Specific Parameters"

This chapter describes the parameter files

and Oracle Parallel Server-specific

parameters.

Chapter 2, "Parallel Execution in Oracle Parallel Server

Environments"

This chapter describes parallel execution

as used within Oracle Parallel Server

environments.

Chapter 3, "Oracle Parallel Server Database Creation

Issues"

This chapter describes Oracle Parallel

Server database creation issues. The

information in this chapter is

supplemental to the information in the

Oracle8i Parallel Server Setup and
Configuration Guide.

Chapter 4, "Administering Instances" This chapter describes the basic

administrative procedures for instance

management.



xix

Part III, "Oracle Parallel Server Design and Deployment"

Part IV, "Oracle Parallel Server Performance Monitoring and Tuning"

Part V, "Oracle Parallel Server Maintenance"

Chapter 5, "Application Analysis and Partitioning" This chapter describes analysis and

partitioning for Oracle Parallel Server

environments.

Chapter 6, "Database Design Techniques" This chapter describes Oracle Parallel

Server database design issues such as

block and extent operations, contention

reduction, and locking strategies.

Chapter 7, "Planning the Use of PCM and Non-PCM

Instance Locks"

This chapter explains how to use and

maintain both PCM and non-PCM locking

resources.

Chapter 8, "Using Free List Groups to Partition Data" This chapter explains how to improve

performance by using free list groups to

partition data.

Chapter 9, "Setting Instance Locks" This chapter describes how to set instance

locks within Oracle Parallel Server

environments.

Chapter 10, "Ensuring DLM Capacity for Locks and

Resources"

This chapter explains how to plan and

manage the use of locks and resources to

optimize performance.

Chapter 11, "General Tuning Recommendations" This chapter presents general tuning

recommendations.

Chapter 12, "Tuning Oracle Parallel Server and

Inter-Instance Performance"

This chapter describes how to monitor and tune

inter-instance performance issues.

Chapter 13, "Backing Up Your Database" This chapter describes the procedures for

backing up Oracle Parallel Server databases.

Chapter 14, "Recovering the Database" This chapter describes the procedures for

recovering Oracle Parallel Server databases.



xx

Related Documents
Before reading this manual, you should read Oracle8i Parallel Server Concepts and the

Oracle8i Parallel Server Setup and Configuration Guide.

You can also read the following manuals for more information:

Installation Guides
■ Oracle8i Installation Guide for Sun Solaris, HP 9000 and AIX-based systems

■ Oracle8i Installation Guide for Windows NT

■ Oracle Diagnostics Pack Installation

Operating System-Specific Administrative Guides
■ Oracle8i Administrator’s Reference for Sun Solaris, HP 9000 or AIX-based systems

■ Oracle Parallel Server Administrator’s Guide for Windows NT

■ Oracle8i Administrator’s Guide for Windows NT

Oracle Parallel Server Management
■ Oracle Enterprise Manager Administrator’s Guide

■ Getting Started with the Oracle Diagnostics Pack

Oracle Server Documentation
■ Getting to Know Oracle8i

■ Oracle8i Concepts

■ Oracle8i Administrator’s Guide./

■ Oracle8i Reference

■ Net8 Administrator’s Guide

Conventions
This section explains the conventions used in this manual including the following:

■ Text

■ Syntax diagrams and notation

■ Code examples



xxi

Text
This section explains the conventions used within the text:

UPPERCASE Characters
Uppercase text is used to call attention to command keywords, object names,

parameters, filenames, and so on.

For example, "If you create a private rollback segment, the name must be included

in the ROLLBACK_SEGMENTS parameter of the parameter file."

Italicized  Characters
Italicized words within text are book titles or emphasized words.

Syntax Diagrams and Notation
The syntax diagrams and notation in this manual show the syntax for SQL

commands, functions, hints, and other elements. This section tells you how to read

syntax diagrams and examples and write SQL statements based on them.

Keywords
Keywords are words that have special meanings in the SQL language. In the syntax

diagrams in this manual, keywords appear in uppercase. You must use keywords

in your SQL statements exactly as they appear in the syntax diagram, except that

they can be either uppercase or lowercase. For example, you must use the CREATE

keyword to begin your CREATE TABLE statements just as it appears in the

CREATE TABLE syntax diagram.

Parameters
Parameters act as place holders in syntax diagrams. They appear in lowercase.

Parameters are usually names of database objects, Oracle datatype names, or

expressions. When you see a parameter in a syntax diagram, substitute an object or

expression of the appropriate type in your SQL statement. For example, to write a

CREATE TABLE statement, use the name of the table you want to create, such as

EMP, in place of the table parameter in the syntax diagram. (Note that parameter

names appear in italics in the text.)

This list shows parameters that appear in the syntax diagrams in this manual and

examples of the values you might substitute for them in your statements:



xxii

Code Examples
SQL and SQL*Plus commands and statements appear separated from the text of

paragraphs in a monospaced font. For example:

   INSERT INTO emp (empno, ename) VALUES (1000, ’SMITH’);
   ALTER TABLESPACE users ADD DATAFILE ’users2.ora’ SIZE 50K;

Example statements may include punctuation, such as commas or quotation marks.

All punctuation in example statements is required. All example statements

terminate with a semicolon (;). Depending on the application, a semicolon or other

terminator may or may not be required to end a statement.

Uppercase words in example statements indicate the keywords within Oracle SQL.

When you issue statements, however, keywords are not case sensitive.

Parameter Description Examples

table The substitution value must be the
name of an object of the type
specified by the parameter.

emp

’text’ The substitution value must be a
character literal in single quotes.

’Employee Records’

condition The substitution value must be a
condition that evaluates to TRUE or
FALSE.

ename > ’A’

date

d

The substitution value must be a
date constant or an expression of
DATE datatype.

TO_DATE (

’01-Jan-1996’,

DD-MON-YYYY’)

expr The substitution value can be an
expression of any datatype.

sal + 1000

integer The substitution value must be an
integer.

72

subquery The substitution value must be a
SELECT statement contained in
another SQL statement.

SELECT ename

 FROM emp

statement_name

block_name

The substitution value must be an
identifier for a SQL statement or
PL/SQL block.

s1

b1



xxiii

Lowercase words in example statements indicate words supplied only for the

context of the example. For example, lowercase words may indicate the name of a

table, column, or file.



xxiv



Part I
 Administering Oracle Parallel Server

Parameter Files

Part One explains the administrative issues regarding initialization parameter files.

This part also describes Oracle Parallel Server-specific parameter issues that you

must consider after configuring your Oracle Parallel Server environment. This part

includes the following chapter:

■ Chapter 1, "Parameter Files and Oracle Parallel Server-Specific Parameters"





Parameter Files and Oracle Parallel Server-Specific Parameters 1-1

1
Parameter Files and Oracle Parallel

Server-Specific Parameters

This chapter describes the initialization parameter files and Oracle Parallel

Server-specific parameters. It includes the following sections:

■ Managing Parameter Files for Oracle Parallel Server

■ Setting Initialization Parameters for Multiple Instances

Chapter 2 discusses additional parameters for parallel execution in Oracle Parallel

Server environments.



Managing Parameter Files for Oracle Parallel Server

1-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Managing Parameter Files for Oracle Parallel Server
In addition to the parameters used in single instance environments, there are

several Oracle Parallel Server-specific parameters. Some of these parameters must

have identical values across all instances.

You can specify settings for these parameters using one or more parameter files that

you edit with any text editor. Oracle reads these settings from the parameter files

and writes the values to the control files.

You can implement parameter files in Oracle Parallel Server in several ways using:

■ One Common Parameter File

■ Instance-Specific Parameter Files

■ Non-Default Parameter Files For Particular Sessions

Parameter File Naming Conventions
Oracle recommends using these naming conventions for parameter files:

■ Name the common parameter file init_ dbname.ora where DBNAME is the

name of the Oracle Parallel Server database.

■ Name any instance-specific parameter files init_ sid .ora , where SID is the

instance name or number.

■ Name any non-default parameter files.

Using these naming conventions simplifies Oracle Parallel Server administration.

One Common Parameter File
If you use all the default parameter settings with Oracle Parallel Server, place one

common parameter file on the shared disk. This simplifies administration because

you use one file to globally manage parameter settings. If your clustering system

does not share files, copy the common file onto each node.

See Also: Oracle8i Parallel Server Setup and Configuration Guide for

details about init_ dbname.ora  initialization parameter file

entries.



Managing Parameter Files for Oracle Parallel Server

Parameter Files and Oracle Parallel Server-Specific Parameters 1-3

Instance-Specific Parameter Files
For some configurations, you may want to use instance-specific parameter settings

to improve performance. For example, you can create System Global Areas (SGAs)

of different sizes for each instance. If you do this on a shared file system, also use

the common parameter file for parameters that must have identical settings across

all instances. Oracle recommends that you identify the common file from within the

instance-specific parameter file by setting the IFILE (include file) parameter.

Conditions Under Which You Must Use Instance-Specific Files
You must use instance-specific parameter files when you create instances that:

■ Specify INSTANCE_NUMBER

■ Specify THREAD

■ Use private rollback segments

Instances that use only public rollback segments can share a common parameter

file.

Placement and Use of IFILE Parameters within Instance-Specific Files
If you duplicate parameter entries in a parameter file, the last value specified in the

file for the parameter overrides earlier values. To ensure Oracle uses the correct

common parameter values, place the IFILE parameter at the end of any

instance-specific parameter files. Conversely, you can override common parameter

values by placing the IFILE parameter before the instance-specific parameter

setting.

Using Multiple IFILEs
You can specify IFILE more than once in a parameter file to include multiple

common parameter files. If you do not reset a parameter value in each subsequent

common parameter file designated with your multiple IFILE entries, then each

Note: The Database Configuration Assistant does this by default.

See Also: "Parameters for Common Parameter Files" on page 1-9.

Note: The Database Configuration Assistant places the IFILE

parameter at the top of the parameter file.



Managing Parameter Files for Oracle Parallel Server

1-4 Oracle8i Parallel Server Administration, Deployment, and Performance

IFILE does not override previous values. For example, an instance-specific

parameter file might include an init_ dbname.ora  file and separate parameter

files for the LOG_* and GC_* parameters as in this example:

   IFILE=INIT_OPS.ORA
   IFILE=INIT_LOG.ORA
   IFILE=INIT_GC.ORA
   LOG_ARCHIVE_START=FALSE
   THREAD=3
   ROLLBACK_SEGMENTS=(RB_C1,RB_C2,RB_C3)

In this example, the value of LOG_ARCHIVE_START overrides any value specified

in init_ log .ora  for this parameter because the IFILE parameter appears before

the LOG_ARCHIVE_START parameter.

Non-Default Parameter Files For Particular Sessions
Specify a non-default parameter file for a particular session by using the PFILE

option of the STARTUP command. Do this, for example, to use special parameter

settings to optimize parallel execution for off-peak, batch operations.

The parameter file you specify with PFILE must be on a disk accessible to the local

node, even if you specify a parameter file for an instance on a remote node. You can

have multiple non-default parameter files and use them on demand.

Location of Initialization Files
The database for which the instance is started must have access to the initialization

parameter files. Oracle Parallel Server uses the database initialization files located

in:

■ ORACLE_HOME\admin\ db_name\pfile  on Windows NT

■ $ORACLE_HOME/admin/ db_name/pfile  on UNIX

See Also:

■ "Parameters That Must Be Identical Across All Instances" on

page 1-8.

■ "Shutting Down Instances" on page 4-5.



Managing Parameter Files for Oracle Parallel Server

Parameter Files and Oracle Parallel Server-Specific Parameters 1-5

The Startup Process and Parameters in Parallel Server Environments
As mentioned, Oracle writes the parameter values from all parameter files to the

control files when the first instance in your environment starts up. The alert log of

the first instance identifies that instance as the first one to start and mounts the

database. The startup process is described in more detail in Chapter 4.

If the parameter file for a subsequent instance contains a parameter that must be the

same for all instances and its value does not match the value already set for that

parameter in the control file, the instance cannot mount the database.

Starting Two Instances on Remote Nodes
You can start multiple nodes from a SQL*Plus session on one node. For example,

you can use a SQL*Plus session on a local node to start two instances on remote

nodes using individual parameter files named init_ ops1 .ora  and

init_ ops2 .ora :

Before connecting to the database, in SQL*Plus direct your commands to the first

instance by entering:

   SET INSTANCE OPS1;

Connect to the first instance, start it, and disconnect from it by entering:

   CONNECT INTERNAL;
   STARTUP PFILE=INIT_OPS1.ORA;
   DISCONNECT;

Redirect commands to the second instance:

   SET INSTANCE OPS2;

Connect to and start the second instance by entering:

   CONNECT INTERNAL;
   STARTUP PFILE=INIT_OPS2.ORA;

Here, OPS1 and OPS2 are Net8 net service names for the two instances. These net

service names are defined in TNSNAMES.ORA.

Note: To locate your alert log file, use the search string

alert*.log .



Managing Parameter Files for Oracle Parallel Server

1-6 Oracle8i Parallel Server Administration, Deployment, and Performance

Both individual parameter files can use the IFILE parameter to include parameter

values from the init_ dbname.ora  file.

Instance Numbers and Startup Sequence
You can explicitly specify an instance number by using the initialization parameter

INSTANCE_NUMBER when you start it with Oracle Parallel Server enabled or

disabled. You should set INSTANCE_NUMBER equal to the value of THREAD_ID.

If you do not specify an instance number, the instance automatically acquires the

lowest available number.

Always use the INSTANCE_NUMBER parameter if you need consistent allocation

of extents to instances for inserts and updates. This allows you to maintain data

partitioning among instances. You must specify unique instance numbers for each

instance when using the INSTANCE_NUMBER parameter.

When an instance starts up, it acquires an instance number that maps the instance

to one group of free lists for each table created with the FREELIST GROUPS storage

option.

Startup Order Determines Instance Number by Default
The startup order determines the instance number if you have not specified a value

for INSTANCE_NUMBER. Note that default startup numbers are difficult to control

if instances start up in parallel. Moreover, instance numbers can change after you

shut down and restart instances. The SQL*Plus command:

SHOW PARAMETER INSTANCE_NUMBER

Shows the current number for each instance. This command displays a null value if

Oracle assigned an instance number based on startup order.

After you shut down an instance, its instance number is available for re-use. If a

second instance starts up before the first instance restarts, the second instance can

acquire the instance number previously used by the first instance.

Instance numbers based on startup order are independent of instance numbers

specified with the INSTANCE_NUMBER parameter. After an instance acquires an

instance number by one of these methods, either with or without

INSTANCE_NUMBER, another instance cannot acquire the same number by

another method. All instance numbers must be unique, regardless of the method by

which they are acquired.

An instance starting with Oracle Parallel Server disabled can specify an instance

number with the INSTANCE_NUMBER parameter. This is only necessary if the



Setting Initialization Parameters for Multiple Instances

Parameter Files and Oracle Parallel Server-Specific Parameters 1-7

instance performs inserts and updates and if the tables in your database use the

FREELIST GROUPS storage option to allocate free space to instances.

If you start an instance merely to perform administrative operations with Oracle

Parallel Server disabled, you can omit the INSTANCE_NUMBER parameter from

the parameter file.

An instance starting with Oracle Parallel Server disabled can also specify a thread

other than 1 to use the online redo log files associated with that thread.

Setting Initialization Parameters for Multiple Instances
This section discusses Oracle Parallel Server initialization parameters for multiple

instances and covers the following topics:

■ Parameters That Must Be Identical Across All Instances

■ Parameters That Must Be Unique Across All Instances

■ Parameters for Common Parameter Files

■ GC_* Global Cache Parameters

■ Parameter Notes for Multiple Instances

See Also:

■ "Creating Additional Rollback Segments" on page 3-4.

■ Chapter 8 for information about allocating free space for inserts

and updates.

■ Oracle8i Administrator’s Guide for more information on starting

up Oracle databases.

See Also: Oracle8i Reference for details about other Oracle

initialization parameters.



Setting Initialization Parameters for Multiple Instances

1-8 Oracle8i Parallel Server Administration, Deployment, and Performance

Parameters That Must Be Identical Across All Instances
Certain initialization parameters that are critical at database creation or that affect

certain database operations must have the same value for every instance in Oracle

Parallel Server. Specify these parameter values in the common parameter file, or

within each init_ dbname.ora file on each instance. Table 1–1 lists the parameters

that must be identical on every instance.

Parameters That Must Be Unique Across All Instances
If you use the parameters INSTANCE_NUMBER, THREAD, or

ROLLBACK_SEGMENTS, Oracle recommends setting unique values for them

using instance-specific parameter files.

■ Oracle uses the INSTANCE_NUMBER parameter to distinguish among

instances at startup. Oracle also uses INSTANCE_NUMBER to assign free space

to instances using the INSTANCE option of the ALLOCATE EXTENT clause in

the ALTER TABLE or ALTER CLUSTER statements. If you assign one instance a

value for INSTANCE_NUMBER, you must do so for all instances and use

unique values for each instance.

■ Specify the THREAD parameter so instances avoid the overhead of acquiring

different thread numbers during startup and shutdown. Oracle uses the

THREAD number to assign redo log file groups to specific instances. To

simplify administration and avoid confusion, use the same number for the

THREAD parameter that you used for the INSTANCE_NUMBER parameter.

■ Private rollback segments can improve performance on some systems because

they create less write contention than public rollback segments. Oracle acquires

Table 1–1 Parameters That Must Be Identical on All Instances

CONTROL_FILES LM_LOCKS and LM_RESS (automatically calculated by
Oracle, but identical values recommended)

DB_BLOCK_SIZE LOG_ARCHIVE_DEST (optional)

DB_FILES MAX_COMMIT_PROPAGATION_DELAY

DB_NAME SERVICE_NAMES

DB_DOMAIN ACTIVE_INSTANCE_COUNT

DML_LOCKS ROW_LOCKING

GC_FILES_TO_LOCKS GC_ROLLBACK_LOCKS

PARALLEL_SERVER_INSTANCES DML_LOCKS (only if set to zero)



Setting Initialization Parameters for Multiple Instances

Parameter Files and Oracle Parallel Server-Specific Parameters 1-9

private rollback segments upon instance startup based on the files you identify

with the ROLLBACK_SEGMENTS initialization parameter. If you do not

declare a rollback segment filename with this parameter for an instance, Oracle

acquires public rollback segments for the instance.

Parameters for Common Parameter Files
This section on common parameter files includes the following topics:

■ DB_NAME Parameter

■ GC_* Global Cache Parameters

■ Multiple Instance Issues for Initialization Parameters

■ LM_* Initialization Parameters

DB_NAME Parameter
Make sure you include the DB_NAME parameter in the common parameter file. If

you do not set a value for DB_NAME in the common file, you must set a value for

this parameter in the instance or non-default parameter files. The value you set for

this parameter must be identical for all instances.

If you specify parameters with identical values in a common parameter file referred

to by IFILE, you can omit parameters for which you are using the default values.

GC_* Global Cache Parameters
Initialization parameters with the prefix GC (Global Cache) are relevant only to

Oracle Parallel Server. The settings of these parameters determine the size of the

collection of global locks that protect the database buffers on all instances. The

settings you choose also affect the use of certain operating system resources. Specify

these parameters in the init_ dbname.ora  file.

The first instance to start up in shared mode determines the values of the global

cache parameters for all instances. The control file records the values of the GC_*
parameters when the first instance starts up.

When another instance attempts to start up in shared mode, Oracle compares the

values of the global cache parameters in its parameter file with those already in use

and issues a message if any values are incompatible. The instance cannot mount the

database unless it has the correct values for its global cache parameters.



Setting Initialization Parameters for Multiple Instances

1-10 Oracle8i Parallel Server Administration, Deployment, and Performance

The global cache parameters for Oracle Parallel Server are:

Multiple Instance Issues for Initialization Parameters
Table 1–2 summarizes multi-instance issues concerning initialization parameters.

Parameter: Description:

GC_FILES_TO_LOCKS Controls the ratio of data block locks to data blocks.
(must be set identically on all instances).

GC_ROLLBACK_LOCKS Controls the number of undo block locks. (must be
set identically on all instances).

GC_RELEASABLE_LOCKS Controls the number of releasable locks.

GC_DEFER_TIME Specifies the amount of time in hundredths of
seconds that Oracle waits before responding to
forced-write requests from other instances for hot
blocks.

See Also: Part Three of this book, "Oracle Parallel Server Design

and Deployment" for a thorough discussion of setting global cache

parameters.

Table 1–2 Initialization Parameter Notes for Multiple Instances

Parameter Description and Comments

DML_LOCKS Must be identical on all instances only if set to zero. The value should equal the
total of locks on tables currently referenced by all users. For example, if three
users are modifying data in one table, then three entries would be required. If
three users are modifying data in two tables, then six entries would be required.

The default value assumes an average of four tables referenced per transaction.
For some systems, this value may not be enough. If you set the value of
DML_LOCKS to 0, enqueues are disabled and performance is slightly
increased. However, you cannot use DROP TABLE, CREATE INDEX, or explicit
lock statements such as LOCK TABLE IN EXCLUSIVE MODE. Oracle holds
more locks during parallel DML than during serial execution. Therefore, if your
database supports a lot of parallel DML, you may need to increase the value of
this parameter.

INSTANCE_NUMBER If specified, this parameter must have unique values on all instances. In Oracle
Parallel Server environments, multiple instances can be associated with a single
database service. Clients can override connection load balancing by specifying
a particular instance by which to connect to the database. INSTANCE_NAME
specifies the unique name of this instance. In a single-instance database system,
the instance name is usually the same as the database name.



Setting Initialization Parameters for Multiple Instances

Parameter Files and Oracle Parallel Server-Specific Parameters 1-11

LOG_ARCHIVE_FORMAT This parameter is applicable only if you are using the redo log in
ARCHIVELOG mode. Use a text string and variables to specify the default
filename format when archiving redo log files. The string generated from this
format is appended to the string specified in the LOG_ARCHIVE_DEST
parameter. You must include the thread number.

The following variables can be used in the format:

■ %s: log sequence number

■ %S: log sequence number, zero filled

■ %t: thread number

■ %T: thread number, zero filled

Using uppercase letters for the variables (for example, %S) causes the value to
be fixed length and padded to the left with zeros. An example of specifying the
archive redo log filename format is:

■ LOG_ARCHIVE_FORMAT = "LOG%s_%t.ARC"

MAX_COMMIT_
PROPAGATION_ DELAY

This is an Oracle Parallel Server-specific parameter. However, you should not
change it except under a limited set of circumstances specific to the Oracle
Parallel Server.

This parameter specifies the maximum amount of time allowed before the
system change number (SCN) held in the SGA of an instance is refreshed by the
log writer process (LGWR). It determines whether the local SCN should be
refreshed from the lock value when getting the snapshot SCN for a query. Units
are in hundredths of seconds. Under unusual circumstances involving rapid
updates and queries of the same data from different instances, the SCN might
not be refreshed in a timely manner. Setting the parameter to zero causes the
SCN to be refreshed immediately after a commit. The default value (700
hundredths of a second, or seven seconds) is an upper bound that allows the
preferred existing high performance mechanism to remain in place.

If you want commits to be seen immediately on remote instances, you may
need to change the value of this parameter.

NLS_* parameters There are several NLS parameters as described in Oracle8i Reference . You can
set different values for different instances.

PARALLEL_SERVER To enable a database to be started in Oracle Parallel Server mode, set this
parameter to TRUE in the instance initialization file (init_ sid .ora ).

Table 1–2 Initialization Parameter Notes for Multiple Instances

Parameter Description and Comments



Setting Initialization Parameters for Multiple Instances

1-12 Oracle8i Parallel Server Administration, Deployment, and Performance

PARALLEL_SERVER_
INSTANCES

Set this parameter equal to the number of instances in your Oracle Parallel
Server environment. Oracle uses the value of this parameter to size memory
structures to optimize performance. PARALLEL_SERVER_INSTANCES is an
Oracle Parallel Server parameter that specifies the number of instances
currently configured. You must set this parameter for every instance.

Normally you should set this parameter to the number of instances in your
Oracle Parallel Server environment. Oracle uses the value of this parameter to
compute the default value of the LARGE_POOL_SIZE parameter when the
PARALLEL_AUTOMATIC_TUNING parameter is set to TRUE. A proper
setting for this parameter can improve memory use.

PROCESSES This parameter must have a value large enough to accommodate all
background and user processes. Some operating systems can have additional
DBWR processes. Defaults for the SESSIONS and TRANSACTIONS parameters
are derived directly or indirectly from the value of the PROCESSES parameter.
PROCESSES specifies the maximum number of operating system user
processes that can simultaneously connect to Oracle.

Its value should allow for all background processes such as locks, job queue
processes, and parallel execution processes. The default values of the SESSIONS
and TRANSACTIONS parameters are derived from this parameter. Therefore,
if you change the value of PROCESSES, you should evaluate whether to adjust
the values of those derived parameters. If you do not use defaults, you may
want to increase the values for some of the above parameters to allow for
additional LCKn and other optional background processes.

For the eight parameters just described in this table, if you do not use defaults, you may want to increase the
values for some of these parameters. This allows Oracle to create additional LCKn processes and other
background processes to improve performance.

RECOVERY_PARALLELISM To speed up the roll forward or cache recovery phase, you may want to set this
parameter to specify the number of processes to participate in instance or crash
recovery. A value of zero or one indicates that recovery is to be performed
serially by one process.

Table 1–2 Initialization Parameter Notes for Multiple Instances

Parameter Description and Comments



Setting Initialization Parameters for Multiple Instances

Parameter Files and Oracle Parallel Server-Specific Parameters 1-13

The MTS_DISPATCHER Parameter and Oracle Parallel Server
To enable a Multi-Threaded Server configuration, set the MTS_DISPATCHERS

parameter in the common file. The MTS_DISPATCHERS parameter may contain

many attributes.

Oracle recommends that you configure at least the PROTOCOL and LISTENER

attributes. PROTOCOL specifies the network protocol for which the dispatcher

generates a listening end point. LISTENER specifies an alias name for the listeners

ROLLBACK_SEGMENTS Use this to specify the private rollback segments for each instance by allocating
one or more rollback segments by name to an instance. If you set this
parameter, the instance acquires all of the rollback segments named in this
parameter, even if the number of rollback segments exceeds the minimum
number required by the instance, calculated from the ratio of:

TRANSACTIONS / TRANSACTIONS_PER_ROLLBACK_SEGMENT.

You cannot change the value of this parameter dynamically, but you can change
its value and then restart the instance. Although this parameter usually
specifies private rollback segments, it can also specify public rollback segments
if they are not already in use. To find the name, segment ID number, and status
of each rollback segment in the database, query the data dictionary view
DBA_ROLLBACK_SEGS.

THREAD If specified, this parameter must have unique values on all instances. THREAD
is an Oracle Parallel Server parameter that specifies the number of the redo
thread to be used by this instance. When you create a database, Oracle creates
and enables thread 1 as a public thread (one that can be used by any instance).
You must create and enable subsequent threads using the ADD LOGFILE
THREAD clause and ENABLE THREAD clause of the ALTER DATABASE
statement.

The number of threads you create is limited by the MAXINSTANCES
parameter specified in the CREATE DATABASE statement. In exclusive mode,
thread 1 is the default thread. However, you can specify THREAD for an
instance running in exclusive mode if you want to use the redo log files in a
thread other than thread 1. In parallel mode, you can specify any available redo
thread number, as long as that thread number is enabled and is not in use by
another instance.

A value of zero specifies that this instance can use any available, enabled public
thread.

SESSIONS_PER_USER Each instance maintains its own SESSIONS_PER_USER count. If
SESSIONS_PER_USER is set to 1 for a user, the user can log on to the database
more than once as long as each connection is from a different instance.

Table 1–2 Initialization Parameter Notes for Multiple Instances

Parameter Description and Comments



Setting Initialization Parameters for Multiple Instances

1-14 Oracle8i Parallel Server Administration, Deployment, and Performance

with which the PMON process will register dispatcher information. The alias

should be set to a name that is resolved through a naming method such as a

tnsnames.ora  file.

LM_* Initialization Parameters
Distributed Lock Manager capacity is determined by the values Oracle sets for the

LM_RESS and LM_LOCKS parameters. Table 1–3 describes these parameters. The

Distributed Lock Manager automatically calculates values for LM_RESS and

LM_LOCKS.

If your shared pool runs out of space, or if the maximum utilization shown in the

V$RESOURCE_LIMIT view is greater than the values Oracle sets for these

parameters, adjust LM_RESS and LM_LOCKS as described in Chapter 10.

Otherwise, you do not need to set these parameters. If you adjust the settings,

Oracle recommends that you set the values for them identically across all instances

to simplify administration.

Use increased values for LM_RESS and LM_LOCKS if you plan to use parallel DML

or DML performed on partitioned objects.

See Also: Oracle8i Parallel Server Setup and Configuration Guide and

the Net8 Administrator’s Guide for complete information about

configuring the MTS_DISPATCHER parameter and its attributes

and for configuring the Multi-Threaded Server.

Table 1–3 LM_* Initialization Parameters

Parameter Description

LM_RESS This parameter controls the number of resources that can be
locked by the Distributed Lock Manager (DLM). This
parameter includes non-PCM resources such as the number of
lock resources allocated for DML, DDL, data dictionary cache
locks, and file and log management locks.

LM_LOCKS This parameter controls the number of locks. Where N is the
total number of nodes:

LM_LOCKS = LM_RESS + (LM_RESS * (N - 1))/N



Part II
 Oracle Parallel Server Administration

Part Two describes the general administrative tasks that you must consider for an

Oracle Parallel Server environment. This part contains the following chapters:

■ Chapter 2, "Parallel Execution in Oracle Parallel Server Environments"

■ Chapter 3, "Oracle Parallel Server Database Creation Issues"

■ Chapter 4, "Administering Instances"





Parallel Execution in Oracle Parallel Server Environments 2-1

2
Parallel Execution in Oracle Parallel Server

Environments

This chapter discusses parallel execution and its use in Oracle Parallel Server

environments. This chapter includes the following sections:

■ Parallel Execution in Oracle Parallel Server

■ Parameters for Parallel Execution on Oracle Parallel Server

■ Other Resource Management Features of Parallel Execution

■ Disk Affinity and Parallel Execution

Note: You must set parallel execution parameters before instance

startup.



Parallel Execution in Oracle Parallel Server

2-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Parallel Execution in Oracle Parallel Server
Although parallel execution does not require Oracle Parallel Server, some aspects of

parallel execution described in this chapter apply only to Oracle Parallel Server

environments.

Setting the Degree of Parallelism
When you set the degree of parallelism, consider all of the available CPUs in your

cluster. If you use the parallel automatic tuning feature, Oracle sets the other

parallel execution-related parameters for you.

Parameters for Parallel Execution on Oracle Parallel Server
Two parameters affect parallel execution in Oracle Parallel Server environments:

■ INSTANCE_GROUPS

■ PARALLEL_INSTANCE_GROUP

Use these parameters together to control how parallel execution uses resources in

Oracle Parallel Server environments.

Allocating Resources with Instance Groups
Instance groups simplify administration and allow you to more effectively control

which instances participate in parallel execution. Instance groups are sets of

instances that you designate for specific purposes, such as parallel execution, OLTP,

or data warehousing operations.

For example, you could create instance groups such that between 9 a.m. and 5 p.m.

users can access instance group B, but after 5 p.m. they use group D. You could also

See Also:

■ Oracle8i Parallel Server Concepts for more information about

parallel execution on Oracle Parallel Server.

■ Oracle8i Data Warehousing Guide for more information about

using parallel execution.

See Also: Oracle8i Data Warehousing Guide for more information

about Parallel Automatic Tuning and setting the degree of

parallelism.



Parameters for Parallel Execution on Oracle Parallel Server

Parallel Execution in Oracle Parallel Server Environments 2-3

have users access group C for normal OLTP inserts and updates but have users

access group D for large parallel tasks to avoid interfering with OLTP performance.

You must define all instance groups before starting up your database. You cannot

dynamically add or delete instances from groups. Because instance groups do not

incur significant overhead, you can define an unlimited number of groups. You are

also not required to use the instance groups once you define them. An instance can

belong to more than one group and groups can overlap one another.

For parallel execution, if you do not use instance groups, Oracle determines which

instances participate in parallel execution. Oracle does this based on disk affinity

and the number of running instances. The instance from which you initiate a

parallelized SQL statement need not be a member of the instance group processing

the statement. However, the parallel coordinator runs on the instance from which

you submit the SQL statement.

Specifying Instance Groups
To specify the instance group or groups to which an instance belongs, set the

INSTANCE_GROUPS initialization parameter. Do this by listing the names of the

instance groups after the parameter and include these entries within the parameter

files of each instance you wish to associate to the group or groups. Thus, the

INSTANCE_GROUPS parameter simultaneously defines a group and adds the

current instance to it.

For example, to define that instance 1 is a member of groups A and B, place the

following entry in your database initialization file for instance 1:

   INSTANCE_GROUPS = GROUPA, GROUPB

To define that instance 2 is a member of groups A and C, place the following entry

in your database initialization file for instance 2:

   INSTANCE_GROUPS = GROUPA, GROUPC

As a result, instances 1 and 2 both belong to instance group A, but they also belong

to other groups.

Note: INSTANCE_GROUPS is a static parameter; you cannot alter

it during a session.



Parameters for Parallel Execution on Oracle Parallel Server

2-4 Oracle8i Parallel Server Administration, Deployment, and Performance

Defining Parallel Instance Groups
Use the PARALLEL_INSTANCE_GROUP parameter to define which instance

groups participate in parallel operations. As with the INSTANCE_GROUPS

parameter, the default for PARALLEL_INSTANCE_GROUP is a group comprised of

all running instances.

To use a particular instance group for a given parallel operation, specify the

following in the common parameter file:

   PARALLEL_INSTANCE_GROUP = GROUPNAME

where GROUPNAME is the name of the instance group you designate for parallel

operations.

All parallel operations initiated from the instance with this entry in its parameter

file spawn processes only within the group defined by GROUPNAME. Unlike

settings for INSTANCE_GROUPS, you can change the value for

PARALLEL_INSTANCE_GROUP using an ALTER SESSION or ALTER SYSTEM

statement. However, you can only use PARALLEL_INSTANCE_GROUP to refer to

one instance group. The instance upon which you are running need not be a part of

the instance group you are going to use for a particular operation.

Instance Group Example
In this example, instance 1 has the following settings in its parameter file:

   INSTANCE_GROUPS = GROUPA, GROUPB
   PARALLEL_INSTANCE_GROUP  GROUPB

Instance 2 has the following settings in its parameter file:

   INSTANCE_GROUPS = GROUPB, GROUPC
   PARALLEL_INSTANCE_GROUP = GROUPC

If you enter the following statements on instance 1, Oracle uses the instances in

group GROUPB for parallel execution. Because both instances 1 and 2 are members

of group GROUPB, Oracle spawns two server processes on instance 1 and two

server processes on instance 2.

   ALTER TABLE TABLE PARALLEL (DEGREE 2);
   SELECT COUNT(*) FROM TABLE;

However, if you enter the following statements on instance 1, Oracle uses group

GROUPC for parallel execution by spawning two server processes on instance 2

only.



Other Resource Management Features of Parallel Execution

Parallel Execution in Oracle Parallel Server Environments 2-5

   ALTER SESSION SET PARALLEL_INSTANCE_GROUP = ’GROUPC’;
   SELECT COUNT (*) FROM TABLE;

This is because instance 1 is not a member of parallel instance group GROUPC.

To make all instances participate in parallel operations, use a blank within single

quotes when declaring the parallel instance group. For example, if you enter the

following statements on instance 1, Oracle uses the default instance group, or all

currently running instances, for parallel processing. Two server processes spawn on

instance 1, and two server processes spawn on instance 2.

   ALTER SESSION SET PARALLEL_INSTANCE_GROUP = ’’;
   SELECT COUNT(*) FROM TABLE;

Listing Members of Instance Groups
To see the members of instance groups, query the GV$PARAMETER view and

examine entries for the INSTANCE_GROUPS parameter.

Other Resource Management Features of Parallel Execution
The other features of parallel execution that optimize resource use are:

■ Parallel Execution Load Balancing

■ Parallel Execution Adaptive Multi-User

Parallel Execution Load Balancing
Parallel execution load balancing spreads server processes across instances to

balance loads. This improves load balancing for parallel execution and parallel

DML operations on multiple instances.

Although you cannot tune this particular aspect of the automated degree of

parallelism, you can adjust the database scheduler values to influence the load

balancing algorithm of automated parallel execution.

Affinity nodes have loads that are about 10 to 15 percent higher than non-affinity

nodes. The load balancing feature uses your vendor-specific cluster manager

software to communicate among instances. On Massively Parallel Processing

systems, Oracle first populates affinity nodes before populating non-affinity nodes.

See Also: Oracle8i Reference for complete information about

initialization parameters and views.



Dynamic Performance Views

2-6 Oracle8i Parallel Server Administration, Deployment, and Performance

Parallel Execution Adaptive Multi-User
As workloads on Oracle Parallel Server systems change, the adaptive multi-user

feature alters the degree of parallelism for in coming SQL statements based on the

perceived workload across the entire cluster. Oracle adjusts the degree of

parallelism based on the number of instances and the current workloads of each

instance. To enable this feature, set the PARALLEL_ADAPTIVE_MULTIUSER

parameter to TRUE.

If the degree of parallelism for an incoming SQL statement is small enough and if

other instances are too busy to accommodate part of the SQL statement, Oracle

attempts to place the workload onto one instance instead of dividing it among

several. This is because when several instances cooperate to process a SQL

statement, they can incur prohibitive intra-node communication costs because

instances participating parallel execution must use resources to communicate with

each other.

Oracle recommends using the parallel adaptive multi-user feature when users

process simultaneous parallel execution operations. If you enable parallel automatic

tuning, Oracle automatically sets PARALLEL_ADAPTIVE_MULTI_USER to TRUE.

Avoiding Disk Contention in Parallel Processing
To avoid disk contention during parallel table scans, stripe the tables across the

instances. Do this using either operating system striping on the disks or by creating

tablespaces that use files on multiple nodes.

Dynamic Performance Views
Use the following performance views to examine parallel execution activity within

an Oracle Parallel Server environment:

■ GV$PX_SESSION

■ GV$PX_SESSSTAT

■ GV$PX_PROCESS

■ GV$PX_PROCESS_SYSSTAT

See Also: Oracle8i Data Warehousing Guide for more information

about parallel execution load balancing and the adaptive multi-user

feature.



Disk Affinity and Parallel Execution

Parallel Execution in Oracle Parallel Server Environments 2-7

Disk Affinity and Parallel Execution
Disk affinity is available only in systems using a shared nothing approach to disks,

making such disks visible globally through an operating system-dependent

software layer. Disk affinity determines which instance performs parallelized DML

or query operations. Affinity is especially important for parallel DML in Oracle

Parallel Server configurations. Affinity information that is consistent across

statements improves buffer cache hit ratios and reduces forced reads/writes.

The granularity of parallelism for most parallel DML operations is by partition. For

parallel execution, however, granularity is by rowid. Parallel DML operations need

partition-to-instance mapping to implement affinity. The segment header of the

partition is used to determine the affinity of the partition for Massively Parallel

Processing systems. You can achieve improved performance by having nodes access

local devices. This provides a better buffer cache hit ratio for every node.

For other Oracle Parallel Server configurations, a deterministic mapping of

partitions to instances is used. Partition-to-instance affinity information is used to

determine process allocation and work assignments for all Oracle Parallel

Server/MPP configurations.

See Also: Oracle8i Reference for information on using these views

to evaluate parallel execution.

See Also:

■ Oracle8i Concepts for a description of Parallel Data

Manipulation Language (PDML) and degree of parallelism.

■ For a discussion of PDML tuning and optimizer hints, see

Oracle8i Designing and Tuning for Performance.

■ Also refer to each installation and configuration guide for

operating system-specific information on disk affinity.



Disk Affinity and Parallel Execution

2-8 Oracle8i Parallel Server Administration, Deployment, and Performance



Oracle Parallel Server Database Creation Issues 3-1

3
Oracle Parallel Server Database Creation

Issues

This chapter describes issues surrounding the creation of Oracle Parallel Server

databases. Information in this chapter supplements information presented in the

Oracle8i Parallel Server Setup and Configuration Guide for using the Database Creation

Assistant. Topics in this chapter include:

■ Creating a Database for Multi-Instance Environments

■ Database Objects to Support Multiple Instances

■ Changing The Values for CREATE DATABASE Options

Note: The Database Configuration Assistant creates the objects

you need for an Oracle Parallel Server database. If the database that

the Database Configuration Assistant creates does not match your

requirements, Oracle recommends creating your database with the

Database Configuration Assistant and modifying it instead of

manually creating your database.

See Also: Oracle8i Parallel Server Setup and Configuration Guide for

information on database creation procedures.



Creating a Database for Multi-Instance Environments

3-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Creating a Database for Multi-Instance Environments
This section covers aspects of database creation specific to Oracle Parallel Server

such as:

■ Setting Initialization Parameters for Database Creation

■ Setting CREATE DATABASE Options

Setting Initialization Parameters for Database Creation
As described in Chapter 1, certain initialization parameters that are critical for

database creation or that affect certain database operations must have the same

value for every instance. Be sure the settings for these parameters are identical

across all instances before creating an Oracle Parallel Server database.

Using ARCHIVELOG Mode
To enable the archiving process (ARCH) while creating a database, set the

initialization parameter LOG_ARCHIVE_START to TRUE. Then change the mode

to ARCHIVELOG with the ALTER DATABASE statement before starting the

instance that creates the database.

Alternatively, you can reduce overhead by creating the database in

NOARCHIVELOG mode. This is the default. Then change to ARCHIVELOG mode.

You cannot use the STARTUP command to change the database archiving mode.

Instead, after you create the database, use the following commands to change to

archiving mode and reopen the database with Parallel Server enabled:

   ALTER DATABASE CLOSE;
   ALTER DATABASE ARCHIVELOG;
   SHUTDOWN;
   STARTUP;

Setting CREATE DATABASE Options
This section describes the following CREATE DATABASE options specific to Oracle

Parallel Server.

■ Setting MAXINSTANCES

■ Setting MAXLOGFILES and MAXLOGMEMBERS



Setting CREATE DATABASE Options

Oracle Parallel Server Database Creation Issues 3-3

■ Setting MAXLOGHISTORY

■ Setting MAXDATAFILES

Setting MAXINSTANCES
The MAXINSTANCES option of CREATE DATABASE limits the number of

instances that can access a database concurrently. MAXINSTANCES defaults to the

maximum value specific to your operating system.

For Oracle Parallel Server, set MAXINSTANCES to a value greater than the

maximum number of instances you expect to run concurrently. This way, if instance

A fails and is being recovered by instance B, you will be able to start instance C

before instance A is fully recovered.

Setting MAXLOGFILES and MAXLOGMEMBERS
The MAXLOGFILES option of CREATE DATABASE specifies the maximum

number of redo log groups that can be created for the database. The

MAXLOGMEMBERS option specifies the maximum number of members or copies

per group. For Parallel Server, set MAXLOGFILES to the maximum number of

threads possible, multiplied by the maximum anticipated number of groups per

thread.

Setting MAXLOGHISTORY
The MAXLOGHISTORY option of CREATE DATABASE specifies the maximum

number of redo log files that can be recorded in the log history of the control file.

The log history is used for automatic media recovery of Oracle Parallel Server.

For Oracle Parallel Server, you should set MAXLOGHISTORY to a large value, such

as 1000. The control files can then only store information about this number of redo

log files. When the log history exceeds this limit, Oracle overwrites the oldest

entries. The default for MAXLOGHISTORY is zero, which disables log history.

Setting MAXDATAFILES
The MAXDATAFILES option is generic, but Oracle Parallel Server tends to have

more data files and log files than standard systems. On your platform, the default

value of this option may be too low.



Database Objects to Support Multiple Instances

3-4 Oracle8i Parallel Server Administration, Deployment, and Performance

Database Objects to Support Multiple Instances
To prepare a new database for Oracle Parallel Server, create and configure the

additional database objects as described under the following headings:

■ Creating Additional Rollback Segments

■ Configuring the Online Redo Log for Oracle Parallel Server

■ Providing Locks for Added Data Files

Creating Additional Rollback Segments
You must create at least one rollback segment for each instance of a parallel server.

To avoid contention, create these rollback segments in a separate tablespace. Do not

store these rollback segments in the SYSTEM tablespace.

You must create and bring online one additional rollback segment in the SYSTEM

tablespace before creating rollback segments in other tablespaces. The instance that

creates the database can create this additional rollback segment and new

tablespaces, but it cannot create database objects in non-SYSTEM tablespaces until

you bring the additional rollback segment online.

Using Private Rollback Segments
To allocate a private rollback segment to one instance, follow these steps:

1. Create the rollback segment with the SQL statement CREATE ROLLBACK

SEGMENT, omitting the keyword PUBLIC. Optionally, before creating the

rollback segment, you can create a tablespace for it.

2. Specify the rollback segment in the instance’s parameter file by naming it as a

value for the parameter. This reserves the rollback segment for that instance.

3. Use ALTER ROLLBACK SEGMENT to bring the rollback segment online. You

can also restart the instance to use the reserved rollback segment.

See Also:

■ Oracle8i SQL Reference for complete descriptions of the CREATE

DATABASE and ALTER DATABASE SQL statements.

■ "Redo Log History in the Control File" on page 13-7 for more

information about redo log groups and members.



Database Objects to Support Multiple Instances

Oracle Parallel Server Database Creation Issues 3-5

A private rollback segment should be specified in only the instance initialization

parameter file so that it is associated with only one instance. If an instance attempts

to acquire a private rollback segment that another instance has already acquired,

Oracle generates an error message and prevents the instance from starting up.

Using Public Rollback Segments
Any instance can create public rollback segments that are available for any instance

to use. Once a rollback segment is in use by an instance, it is only used by that

instance until the instance shuts down. When it shuts down, the instance that used

the rollback segment releases it for use by other instances.

To create public rollback segments, use the SQL statement CREATE PUBLIC

ROLLBACK SEGMENT. Public rollback segments are owned as PUBLIC in the data

dictionary view DBA_ROLLBACK_SEGS. If you do not set a value for the

ROLLBACK_SEGMENTS parameter for an instance, the instance uses public

rollback segments. The procedures you use to create and manage rollback segments

are the same regardless of whether Parallel Server is enabled or disabled.

Typically, the parameter file for a particular instance does not specify public

rollback segments because they are assumed to be available to any instance needing

them. However, if another instance is not already using it, you can name a public

rollback segment as a value of the ROLLBACK_SEGMENTS parameter.

A public rollback segment comes online when an instance acquires it at startup.

However, starting an instance that uses public rollback segments does not ensure

that the instance uses a particular public rollback segment. The exception to this is

when the instance acquires all available public rollback segments.

Private rollback segments stay offline until brought online or until the owning

instance restarts. A public rollback segment stays offline until brought online for a

specific instance or until an instance requiring a public rollback segment starts up

and acquires it.

If you need to keep a public rollback segment offline and do not want to drop it and

recreate it, you must prevent other instances that require public rollback segments

from starting up.

Monitoring Rollback Segments
To monitor rollback segments, query the dynamic performance views

V$ROLLNAME and V$ROLLSTAT for information about the current instance’s

rollback segments. You can also query the data dictionary views



Database Objects to Support Multiple Instances

3-6 Oracle8i Parallel Server Administration, Deployment, and Performance

DBA_ROLLBACK_SEGS and DBA_SEGMENTS or the global dynamic views

GV$ROLLNAME and GV$ROLLSTAT for rollback segment information.

To monitor rollback segments on another instance, use the command CONNECT

@instance-path to change the current instance before using the MONITOR command

or querying the V$ views.

To list the rollback segments currently in use by an instance, query

DBA_ROLLBACK_SEGS with the following syntax:

   SELECT segment_name, segment_id, owner, status
      FROM dba_rollback_segs

This query displays the rollback segment’s name, ID number, owner, and whether it

is in use, or "online", as shown in the following sample output:

SEGMENT_NAME             SEGMENT_ID     OWNER     STATUS
------------------------ ----------     ------    ------------
SYSTEM                            0     SYS       ONLINE
PUBLIC_RS                         1     PUBLIC    ONLINE
USERS1_RS                         2     SYS       ONLINE
USERS2_RS                         3     SYS       OFFLINE
USERS3_RS                         4     SYS       ONLINE
USERS4_RS                         5     SYS       ONLINE
PUBLIC2_RS                        6     PUBLIC    OFFLINE

In this example, rollback segments identified as owned by user SYS are private

rollback segments. The rollback segments identified as owned by user PUBLIC are

public rollback segments.

The view DBA_ROLLBACK_SEGS also includes information (not shown) about the

tablespace containing the rollback segment, the datafile containing the segment

header, and the extent sizes. The view DBA_SEGMENTS includes additional

information about the number of extents in each rollback segment and the segment

size.

See Also:

■ Oracle8i Administrator’s Guide for more information about

rollback segments, and about connecting to a database.

■ Oracle8i Reference for a description of DBA_ROLLBACK_SEGS

and DBA_SEGMENTS, and for information about other

dynamic performance views.



Database Objects to Support Multiple Instances

Oracle Parallel Server Database Creation Issues 3-7

Configuring the Online Redo Log for Oracle Parallel Server
Each database instance has its own "thread" of online redo, consisting of its own

online redo log groups. When running Oracle Parallel Server, two or more instances

concurrently access a single database and each instance must have its own thread.

This section explains how to configure these online redo threads for multiple

instances with Oracle Parallel Server.

You must create each thread with at least two redo log files (multiplexing), and you

must enable the thread before an instance can use it. The CREATE DATABASE

statement creates thread number 1 as a public thread and enables it automatically.

Use the ALTER DATABASE statement to create and enable subsequent threads.

Creating Threads
Threads can be either public or private. The initialization parameter THREAD

assigns a unique thread number to the instance. If you set THREAD to zero, which

is the default, the instance acquires an available public thread.

Each thread must be created with at least two redo log files or multiplexed groups.

You must also enable each thread before an instance can use it.

The CREATE DATABASE statement creates thread number 1 as a public thread and

enables it automatically. Subsequent threads must be created and enabled with the

ALTER DATABASE statement. For example, the following statements create thread

2 with two groups of three members each.

   ALTER DATABASE ADD LOGFILE THREAD 2
   GROUP 4 (disk1_file4, disk2_file4, disk3_file4) SIZE 1M REUSE
   GROUP 5 (disk1_file5, disk2_file5, disk3_file5) SIZE 1M REUSE;
   ALTER DATABASE ENABLE PUBLIC THREAD 2;

If you omit the keyword PUBLIC when you enable the thread, it will be a private

thread that cannot be acquired by default. Only one thread number may be

specified in the ALTER DATABASE ADD LOGFILE statement, and the THREAD

clause must be specified if the thread number of the current instance was chosen by

default.

See Also: Oracle8i Parallel Server Concepts for more information

about threads of redo.



Database Objects to Support Multiple Instances

3-8 Oracle8i Parallel Server Administration, Deployment, and Performance

Disabling Threads
Disable a public or private thread with the ALTER DATABASE DISABLE THREAD

statement. You cannot disable a thread if an instance using the thread has the

database mounted. To change a thread from public to private, or vice versa, you

must disable the thread and then enable it again. An instance cannot disable its own

thread. The database must be open when you disable or enable a thread.

When you disable a thread, Oracle marks its current redo log file as needing to be

archived. If you want to drop that file, you might need to first archive it manually.

An error or failure while a thread is being enabled can result in a thread that has a

current set of log files but is not enabled. You cannot drop or archive these log files.

In this case, disable the thread, even though it is already disabled, then re-enable it.

Setting the Log’s Mode
The mode of using the redo log, ARCHIVELOG or NOARCHIVELOG, is set at

database creation. Although rarely necessary, the archive mode can be changed by

the SQL statement ALTER DATABASE. When archiving is enabled, online redo log

files cannot be reused until they are archived. To switch archiving modes, the

database must be mounted with Oracle Parallel Server disabled, but the database

cannot be open.

The redo log mode is associated with the database rather than with individual

instances. For most purposes, all instances should use the same archiving method,

either automatic or manual, if the redo log is being used in ARCHIVELOG mode.

Changing the Redo Log
You can change the configuration of the redo log, such as adding, dropping, or

renaming a log file or log file member, while the database is mounted with Oracle

Parallel Server either enabled or disabled. The only restrictions are that you cannot

drop or rename a log file or log file member currently in use by any thread.

Moreover, you cannot drop a log file if that would reduce the number of log groups

to less than two for the thread it is in.

Any instance can add or rename redo log files, or members, of any group for any

other instance. As long as there are more than two groups for an instance, a redo log

group can be dropped from that instance by any other instance. Changes to redo log

files and log members take effect on the next log switch.

See Also: "Archiving the Redo Log Files" on page 13-2.



Changing The Values for CREATE DATABASE Options

Oracle Parallel Server Database Creation Issues 3-9

Providing Locks for Added Data Files
If you add data files while Oracle Parallel Server is running, evaluate whether

enough locks are available to cover the new files. Data files that you add in this way

use any unassigned locks that were created when Oracle Parallel Server initially

created locks to accommodate the value for GC_FILES_TO_LOCKS.

If the remaining number of locks is inadequate to protect the new files and avoid

contention, provide more locks by increasing the value for the

GC_FILES_TO_LOCKS parameter. Performance problems are likely if you neglect

to make these adjustments. This is especially true if your database experiences a

high number of inserts. Note, however, that in read-only databases extra locks are

unnecessary even if you added many new data files.

If you determine that you need more locks, do the following:

1. Shut down your database.

2. Modify the GC_FILES_TO_LOCKS initialization parameter to provide enough

locks for the additional data files.

3. Restart the system.

Changing The Values for CREATE DATABASE Options
You can use the CREATE CONTROLFILE statement to change the value of the

following database parameters for a database:

■ MAXINSTANCES

■ MAXLOGFILES

■ MAXLOGMEMBERS

■ MAXLOGHISTORY

■ MAXDATAFILES

See Also: "Tips for Setting GC_FILES_TO_LOCKS" on page 9-6.

See Also: Oracle8i SQL Reference for a description of the

statements CREATE CONTROLFILE and ALTER DATABASE

BACKUP CONTROLFILE TO TRACE.



Changing The Values for CREATE DATABASE Options

3-10 Oracle8i Parallel Server Administration, Deployment, and Performance



Administering Instances 4-1

4
Administering Instances

This chapter describes starting up and shutting down instances. It discusses the

following topics:

■ Starting Up and Shutting Down Instances

■ How Instances Are Affected by SQL*Plus and SQL



Starting Up and Shutting Down Instances

4-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Starting Up and Shutting Down Instances
This chapter discusses these topics in the following sections:

■ Starting Instances

■ Shutting Down Instances

Starting Instances
This section provides procedures for starting instances with Oracle Parallel Server

enabled or disabled by explaining:

■ Enabling Oracle Parallel Server and Starting Instances

■ Setting and Connecting to Instances

Enabling Oracle Parallel Server and Starting Instances
You can start instances using either SQL*Plus or the Oracle Enterprise Manager as

described in the Oracle8i Parallel Server Setup and Configuration Guide.

Starting an Instance Using SQL*Plus
Starting Oracle Parallel Server instances is procedurally identical to starting a single

instance with these exceptions:

1. Make sure the PARALLEL_SERVER parameter is set to TRUE in the instance

initialization file.

2. Ensure your Cluster Manager software is running. Detailed instructions on

Cluster Manager software administration appear in your operating-system

specific documentation. If the Cluster Manager is not available or if Oracle

cannot communicate with this component, Oracle displays the error

ORA-29701: "Unable to connect to Cluster Manager".

Note: In Oracle8i, the keywords SHARED, EXCLUSIVE, and

PARALLEL are obsolete in the STARTUP and ALTER DATABASE

MOUNT statements.

See Also: For Windows NT, the Cluster Manager is described in

your vendor documentation.



Starting Instances

Administering Instances 4-3

3. Start any required operating system specific processes. For more information

about these processes, see your Oracle operating system-specific

documentation.

If you use the Oracle Database Configuration Assistant to create your database,

specifically request that it create an Oracle Parallel Server database so it sets

PARALLEL_SERVER to TRUE in your initialization file. To start a database with

Oracle Parallel Server disabled, use the default value of FALSE for the

PARALLEL_SERVER parameter on your instance.

Using RETRY to Mount a Database in Shared Mode
If you attempt to start an instance and mount a database in shared mode while

another instance is currently recovering the same database, your new instance

cannot mount the database until the recovery is complete.

Rather than repeatedly attempting to start the instance, use the STARTUP RETRY

statement. This causes the new instance to retry mounting the database every five

seconds until it succeeds or has reached the retry limit. Use the syntax:

   STARTUP OPEN database_name RETRY

To set the maximum number of times the instance attempts to mount the database,

use the SQL*Plus SET command with the RETRY option; you can specify either an

integer (such as 10) or the keyword INFINITE.

If the database can only be opened by being recovered by another instance, then

using the RETRY will not repeat connection attempts. For example, if the database

was mounted in exclusive mode by one instance, then trying the STARTUP RETRY

command in shared mode does not work for another instance.

Setting and Connecting to Instances
Before you can set instances and connect to them, you must install and configure

Net8 for the Oracle Parallel Server nodes and any clients that access these nodes.

This allows clients to establish remote connections to the nodes.

See Also: Oracle8i Parallel Server Concepts for more information

about Cluster Manager.

See Also:

■ Oracle8i Parallel Server Setup and Configuration Guide.

■ Net8 Administrator’s Guide.



Starting Instances

4-4 Oracle8i Parallel Server Administration, Deployment, and Performance

SQL*Plus commands operate on the current instance with some exceptions as noted

under the next heading. The current instance can be either the local, default instance

on which you initiated your SQL*Plus session, or it can be a remote instance.

Because the SQL*Plus prompt does not indicate which instance is the current

instance, be sure you direct your commands to the correct instance.

Initiating a SQL*Plus session and connecting to the database without specifying an

instance directs all SQL*Plus commands to the local instance. In this case, the

default instance is also the current instance.

To switch the current instance from the local instance to a remote instance, do one of

the following:

■ Re-execute the CONNECT command specifying a remote instance net service

name as in this example:

CONNECT SYSTEM/MANAGER@net_service_name

■ Disconnect from the database and execute a SET INSTANCE command as in

this example:

SET INSTANCE net_service_name

Then issue another CONNECT command with only your user ID and password.

Specifying a remote instance with the CONNECT command while connected to the

database by way of an instance allows you to switch from one instance to another

without disconnecting.

The SET INSTANCE and SHOW INSTANCE Commands
When using SET INSTANCE to specify an instance on a remote node for the

STARTUP command, the parameter file for the remote instance must be accessible

by the local node.

The SHOW INSTANCE command displays the net service name for the current

instance. SHOW INSTANCE returns the value "LOCAL" if you have not used SET

INSTANCE during the SQL*Plus session.

See Also:

■ Net8 Administrator’s Guide for information on configuring net

service names.

■ Your operating system-specific Oracle documentation for more

information about the exact format required for the connect

string used in the SET INSTANCE and CONNECT commands.



Shutting Down Instances

Administering Instances 4-5

To reset to the default instance, use SET INSTANCE without specifying a net service

name or specify "LOCAL". Do not follow the SET INSTANCE command with the

word "DEFAULT"; this indicates a connect string for an instance named

"DEFAULT".

The CONNECT Command
Connecting as SYSOPER or SYSDBA allows you to perform privileged operations,

such as instance startup and shutdown. Multiple SQL*Plus sessions can connect to

the same instance at the same time. SQL*Plus automatically disconnects you from

the first instance whenever you connect to another one.

Shutting Down Instances
Shutting down an Oracle Parallel Server instance is procedurally identical to

shutting down a single instance with these exceptions:

■ In Parallel Server, shutting down one instance does not interfere with the

operation of other running instances.

■ To shut down a database mounted in shared mode, shut down every instance in

the Parallel Server cluster.

■ When you shut down an instance abnormally, Oracle forces all user processes

running in that instance to log off the database. If a user process is currently

accessing the database, Oracle terminates that access and displays the message

"ORA-1092: Oracle instance terminated. Disconnection forced". If a user process

is not currently accessing the database when the instance shuts down, Oracle

displays the message "ORA-1012: Not logged on" upon the next call or request

made to Oracle.

■ After a NORMAL or IMMEDIATE shutdown, instance recovery is not required.

Recovery is required, however, after you issue the SHUTDOWN ABORT

command or after an instance terminates abnormally. The SMON process of an

instance that is still running performs instance recovery for the instance that

shut down. If no other instances are running, the next instance to open the

database performs instance recovery for any instances needing it.

See Also:

■ Oracle8i Parallel Server Setup and Configuration Guide for the

proper specification of net_service_name.

■ Oracle8i Administrator’s Guide for information on connecting to

the database using SYSDBA or SYSOPER privileges.



How Instances Are Affected by SQL*Plus and SQL

4-6 Oracle8i Parallel Server Administration, Deployment, and Performance

■ If multiple SQL*Plus sessions are connected to the same instance

simultaneously, all but one must disconnect before the instance can shut down

normally. You can use the IMMEDIATE or ABORT option of the SHUTDOWN

command to shut down an instance when multiple SQL*Plus sessions (or any

other sessions) are connected to it.

How Instances Are Affected by SQL*Plus and SQL
The following topics are described in this section:

■ How SQL*Plus Commands Apply to Instances

■ How SQL Statements Apply to Instances

How SQL*Plus Commands Apply to Instances
Table 4–1 describes how common SQL*Plus commands apply to instances.

See Also: Oracle8i Administrator’s Guide for more information on

shutting down Oracle databases.

Table 4–1 How SQL*Plus Commands Apply to Instances

SQL*Plus Command Associated Instance

ARCHIVE LOG Always applies to the current instance.

CONNECT Applies the default instance if no instance is specified in the
CONNECT command.

HOST Applies to the node running the SQL*Plus session, regardless
of the location of the current and default instances.

RECOVER Does not apply to any particular instance, but rather to the
database.

SHOW INSTANCE Displays information about the current instance, which can
be different from the default local instance if you have
redirected your commands to a remote instance.

SHOW PARAMETER and
SHOWN SGA

Display parameter and SGA information from the current
instance.

STARTUP and SHUTDOWN Always apply to the current instance. These are privileged
SQL*Plus commands.



How Instances Are Affected by SQL*Plus and SQL

Administering Instances 4-7

How SQL Statements Apply to Instances
Most SQL statements apply to the current instance. For example, the statement

ALTER DATABASE ADD LOGFILE only applies to the instance to which you are

currently connected, rather than the default instance or all instances.

ALTER SYSTEM CHECKPOINT LOCAL also applies to the current instance. By

contrast, ALTER SYSTEM CHECKPOINT or ALTER SYSTEM CHECKPOINT

GLOBAL applies to all instances.

ALTER SYSTEM SWITCH LOGFILE applies only to the current instance. To force a

global log switch, use the ALTER SYSTEM ARCHIVE LOG CURRENT statement.

The THREAD option of ALTER SYSTEM ARCHIVE LOG allows you to archive

online redo log files for a specific instance.

Note: The security mechanism that Oracle uses when you execute

privileged SQL*Plus commands depends on your operating

system. Most operating systems have a secure authentication

mechanism when logging onto the operating system. On these

systems, your default operating system privileges usually

determine whether you can use STARTUP and SHUTDOWN. For

more information, see your operating system-specific

documentation.



How Instances Are Affected by SQL*Plus and SQL

4-8 Oracle8i Parallel Server Administration, Deployment, and Performance



Part III
 Oracle Parallel Server Design and

Deployment

Part Three explains the design issues for deploying Oracle Parallel Server

applications. It includes the following chapters:

■ Chapter 5, "Application Analysis and Partitioning"

■ Chapter 6, "Database Design Techniques"

■ Chapter 7, "Planning the Use of PCM and Non-PCM Instance Locks"

■ Chapter 8, "Using Free List Groups to Partition Data"

■ Chapter 9, "Setting Instance Locks"

■ Chapter 10, "Ensuring DLM Capacity for Locks and Resources"





Application Analysis and Partitioning 5-1

5
Application Analysis and Partitioning

This chapter explains application design optimization techniques for Oracle Parallel

Server. It includes the following sections:

■ Overview of Development Techniques

■ Application Transactions and Table Access Patterns

■ Selecting A Partitioning Method

■ Application Partitioning Techniques

■ Departmental and User Partitioning

■ Departmental and User Partitioning

■ Physical Table Partitioning

■ Transaction Partitioning

■ Scaling Up and Partitioning

■ Adding Instances

■ Design-Related Batch Processing Issues

Note: If you have determined that you cannot partition your

application, refer to Chapter 8.



Overview of Development Techniques

5-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Overview of Development Techniques
Application deployment for Oracle Parallel Server requires that you consider

special topics and use particular techniques beyond those you would use to

develop applications in single-instance environments. This chapter explains these

issues and provides a high-level development methodology for deploying parallel

server-based applications to optimize Oracle Parallel Server’s features.

A poorly written application that provides sub-optimal performance on a single

instance will likely run even worse in an Oracle Parallel Server environment. Before

moving an application to Oracle Parallel Server from a single instance, tune it as

much as possible. Note that even a well-tuned application may run worse on

Parallel Server. This is usually due to excessive pinging.

Before You Begin, Determine Your Application’s Suitability
Before developing Oracle Parallel Server applications, determine whether your

system is suitable for multi-instance environments. In general, if you can easily

partition your data to avoid inter-instance contention, the more likely Oracle

Parallel Server is a suitable solution for you.

The optimal type of application to deploy on Oracle Parallel Server is one that only

uses read-only tables, such as Decision Support Systems (DSS). These applications

are "perfectly partitionable", thus, inter-instance contention is minimal.

The majority of OLTP applications, however, can be partitioned to varying degrees.

Because of the introduction of Cache Fusion, you may experience significant

performance gains despite being unable to partition your data to create strict

data-to-instance affinities. However, partitioned applications are more scalable than

non-partitioned applications.

Note: Use the information in the discussions of how to deploy

Oracle Parallel Server applications in this section as well as

discussions for single-instance application development as

described in the Oracle8i Application Developers’ book set.

Note: Simple, updatable star schemas and non-partitionable

applications can experience performance problems when deployed

with Oracle Parallel Server.



Application Transactions and Table Access Patterns

Application Analysis and Partitioning 5-3

How Detailed Must Your Analysis Be?
To use Oracle Parallel Server to improve overall database throughput, conduct a

detailed analysis of your database design and application’s workload. This ensures

that you fully exploit the additional processing power provided by the additional

nodes for application processing. Even if you are using Oracle Parallel Server only

for high availability, careful analysis enables you to more accurately predict your

system resource requirements.

A primary characteristic of high performance Oracle Parallel Server systems is that

they minimize the computing resources used for Parallel Cache Management. This

means they minimize the number of instance lock operations. In addition, the

machine-to-machine high speed interconnect traffic should remain within, or

preferably well below, the design limitations of the cluster.

Application Transactions and Table Access Patterns
Before beginning your analysis, you must understand how Oracle Parallel Server

processes various transactions within tables based on transaction types such as:

■ Read-Only Tables

■ Random SELECT and UPDATE Tables

■ INSERT, UPDATE, or DELETE Tables

Read-Only Tables
With tables that are predominantly read-only, all Oracle Parallel Server nodes

quickly initialize the PCM locks to shared mode and very little lock activity occurs.

Ideally, each read-only table and its associated index structures should require only

one PCM lock. This is why read-only tables offer better performance and scalability

with Oracle Parallel Server.

Also consider putting read-only tables into read-only tablespaces by using the SQL

statement ALTER TABLESPACE READ ONLY. This has several advantages:

■ It speeds up recovery

■ PCM locks are not required

■ You only need to back up a tablespace once after you make it read-only

Scalability of parallel execution in Oracle Parallel Server is subject to the

interconnect speed between the nodes. You may also need to use higher degrees of



Application Transactions and Table Access Patterns

5-4 Oracle8i Parallel Server Administration, Deployment, and Performance

parallelism just to keep the processors busy. It is not unusual to run a degree of

parallelism equal to three times the number of nodes or processors.

Random SELECT and UPDATE Tables
Random SELECT and UPDATE tables have transactions that may read and then

update any rows in your tables. This type of access requires multiple lock

conversions. First, the instance executing the transaction must obtain a shared PCM

lock on one or more data blocks. This lock request may cause lock downgrade

operations on another node. The instance executing the transaction must finally

obtain an exclusive mode PCM lock when the UPDATE is actually performed.

If user transactions on different nodes modify the same range of data blocks

concurrently and frequently, there can be a noticeable response time performance

penalty. In some cases you can reduce contention by controlling the lock granularity

or the access frequency.

In large tables, however, hardware and practical limitations may mean that the

number of fixed PCM locks you can effectively use is limited. In these cases,

releasable locks may be a good alternative.

INSERT, UPDATE, or DELETE Tables
Transactions on random INSERT, UPDATE and DELETE tables require reading a

number of data blocks and then modifying some or all of the data blocks read. This

process for each of the data blocks specified again requires converting the PCM lock

to shared mode and then converting it to exclusive mode upon block modification.

This process has the same performance issues as random SELECT and UPDATE

tables mentioned in the previous section.

Performance issues for randomly modified tables may arise when indexes need to

be updated or maintained. This is especially true when inserts are performed or

when Oracle searches for free space and then allocates it to a table or index.

For INSERT, DELETE, and UPDATE transactions that modify indexed keys, you

need to maintain the table’s indexes. This process requires access to multiple index

blocks such as root, branch, and leaf blocks. Thus, the number of potential lock

conversions increases. The branch or leaf blocks of an index may split, requiring

See Also: Oracle8i Data Warehousing Guide for information about

setting the degree of parallelism.

See Also: "Implementing High or Low Granularity Locking" in

the Case Study on page A-17.



Application Transactions and Table Access Patterns

Application Analysis and Partitioning 5-5

multiple locks to be held simultaneously. This increases the probability of conflicts

across instances. The dispersion of key values in an index can be very important.

With monotonically increasing index keys, a hot spot may be created in the right

edge of the index key.

If the INSERT and DELETE operations are subject to long-running transactions,

then there is a greater chance that another instance will require read consistency

information to complete its transactions. This type of concurrence is handled

efficiently by Cache Fusion for reads.

Index block contention can be problematic when using a sequence number

generator to generate unique keys for a table from multiple Oracle Parallel Server

nodes. When generating unique keys, make the instance number part of the

primary key so each instance performs INSERTs into a different part of the index.

Spreading the INSERT load over the full width of the index can improve both single

and multiple instance performance. Do this using reverse key indexes.

Creating Reverse Key Indexes
Creating reverse key indexes can improve performance in an Oracle Parallel Server

environment where modifications to the index are concentrated on a small set of

leaf blocks. A reverse key index reverses the bytes of each indexed column (except

the rowid) while keeping the column order. By reversing the keys of the index, the

insertions become distributed across all leaf keys in the index.

For example, to create a reverse key index use the syntax:

CREATE INDEX i ON t (a,b) REVERSE;

Where "a" is the instance number and "b" is a generated unique key.

In INSERT operations, allocation of free space within an extent may also cause high

lock convert rates. This is because multiple instances may wish to insert new rows

into the same data blocks or into data blocks that are arranged closely together.

Contention occurs if these data blocks are managed by the same PCM lock. To avoid

this, either partition the tables and indexes so different instances use them, or create

tables to allow use of multiple free lists and multiple free list groups.

See Also:

■ Chapter 8.

■ Oracle8i Concepts.



Selecting A Partitioning Method

5-6 Oracle8i Parallel Server Administration, Deployment, and Performance

Selecting A Partitioning Method
To implement applications that optimize Oracle Parallel Server, use one of these

partitioning methods:

■ Application Partitioning Techniques

■ Departmental and User Partitioning

■ Physical Table Partitioning

■ Transaction Partitioning

Partitioning is an important part of Oracle Parallel Server deployment because it is

the best way to avoid global data block contention or "pinging". With Cache Fusion,

partitioning becomes less critical since the number of forced writes to disk

significantly decreases.

Partitioning tables to increase Oracle Parallel Server performance has various

development and administration implications. From a development perspective,

when you partition a table, the quantity and complexity of application code

required for that table may increase. In addition, partitioning a table may

compromise the performance of other application functions, such as batch and data

warehouse queries.

You must also understand your system’s performance implications and be aware of

the design trade-offs due to partitioning. Your goal is to minimize the need for

synchronization. With minimal lock conversions, and the resulting decrease in

Distributed Lock Manager activity, Oracle Parallel Server performance is

predictable and scalable.

By partitioning applications and data, you can maintain data-to-node affinities. If

your system experiences excessive Distributed Lock Manager lock activity, your

partitioning strategy may be inappropriate, or the database creation and tuning

process was ineffective.

Regardless of the method you use, the method must be "data-centric" to achieve

optimal results, as described in the next section.

Partitioning Based on Data, Not Function
Focus your partitioning strategy on the data and how it is used, not on the

application’s functions. When you partition, load balancing is not necessarily the

primary objective.



Application Partitioning Techniques

Application Analysis and Partitioning 5-7

To determine which partitioning method to use, examine the data access properties

of your business function, for example, the locality, type, and frequency. Group

them into a few main categories and determine the locking strategy and

configuration.

Using this method to set up partitioning creates data block-to-cache affinities across

all instances. In addition, Distributed Lock Manager activity is more predictable so

you can more easily achieve:

■ Higher availability with minimum lock allocation

■ Greater speed-up and scale-up with minimal lock conversions

If the methodologies described in this chapter do not provide adequate

performance, consider doing one of the following:

■ Creating lock groups

■ Using releasable locks

■ Using free lists to partition data as described in Chapter 8

Note that the more blocks you cover with a single lock, the greater the likelihood

that your application will experience excessive false pings.

Application Partitioning Techniques
One of the simplest ways to partition your database load is to run subcomponents

of applications that access the same database on different nodes of the cluster. For

example, one subcomponent may only reference a fixed set of tables residing in one

set of data files. Another application may reference different tables residing in a

different set of data files.

In this example, you can run these applications on different nodes of a cluster and

achieve good performance. Moreover:

■ There will be few conflicts for the same database objects

■ Data block-to-instance affinity will be high

■ Global conflicts will be decreased because of the disjoint data set that each

subcomponent uses

This scenario is particularly applicable to applications that during the day support

many users and high OLTP workloads, and during the night run high batch and

decision support workloads. In this case, you can partition applications among the

cluster nodes to sustain good OLTP performance during the day.



Application Partitioning Techniques

5-8 Oracle8i Parallel Server Administration, Deployment, and Performance

This model is similar to a distributed database model where tables that are accessed

together are stored together. At night, when it is necessary to access tables that may

be partitioned for OLTP purposes, you still can exploit the advantages of a single

database: all the data is stored effectively within a single database. This should

provide improved batch and decision support performance, better overall SQL

performance, reduced network traffic, and fewer data replication issues.

With this approach, ensure that each application’s tables and indexes are stored

such that PCM locks do not cover data blocks used by both applications. Otherwise

the benefit of partitioning is lost. To do this, store each application’s table and index

data in separate data files.

Applications sharing SQL statements perform best when they run on the same

instance. Because shared SQL areas are not shared across instances, similar sets of

SQL statements should run on one instance to improve memory usage and reduce

parsing.

Methodology for Application Partitioning
This section describes the following five steps for application partitioning:

■ Step 1: Define the Major Functional Areas of the System

■ Step 2: Identify Table Access Requirements and Define Overlaps

■ Step 3: Define the Access Type for Each Overlap

■ Step 4: Identify Transaction Volumes

■ Step 5: Classify Overlaps

Step 1: Define the Major Functional Areas of the System
Identify the major functions of the application. For example, a major hotel chain

might develop a system to automate the following high-level functions:

■ Reservations

■ Property Management and Maintenance

■ Sales and Marketing

■ Front Desk, Concierge, and Dining Facilities Management

Also determine which users are going to access the data from each of the functional

areas.



Application Partitioning Techniques

Application Analysis and Partitioning 5-9

Step 2: Identify Table Access Requirements and Define Overlaps
Determine which tables each functional area accesses and identify the overlaps.

Overlaps are simply tables that users from more than one functional area access.

Table 5–1 shows the overlapping tables from this example in bold; the remaining

tables are accessed exclusively by the listed functions denoted by the column

headings.

The objective is to identify overlaps that can cause global conflicts and thus

adversely affect application performance. In this example, both functions

concurrently access three tables. The remaining tables that are accessed exclusively

require fewer locks.

Table 5–1 Example of Overlapping Tables

Hotel Reservation
Operations

Front Desk
Operations

Table 1 Table 12

Table 7 Table 14

Table 15 Table 15

Table 11 Table 16

Table 19 Table 19

Table 20 Table 20



Application Partitioning Techniques

5-10 Oracle8i Parallel Server Administration, Deployment, and Performance

Step 3: Define the Access Type for Each Overlap
Determine the access type for each overlap.

Table 5–2 Example of Table Access Types

In this example, both functions access:

■ Table 15 for selects

■ Table 19 for inserts

■ Table 20 for updates

Step 4: Identify Transaction Volumes
Estimate the number of transactions you expect the overlaps to generate.

Table 5–3 Example of Table Transaction Volumes

Given these transaction volumes, the overlap tables may prove to be a performance

problem. However, if the application infrequently accesses the tables, the volumes

shown in Table 5–3 may not be a problem.

Hotel Reservation
Operations

Overlap Access
Type by

Reservations Overlaps

Overlap
Access Type

by Front Desk
Front Desk
Operations

Table 1 S (Select)

I (Insert)

U (Update)

Table 15

Table 19

Table 20

S

I

U

Table 12

Table 7 Table 14

Table 11  Table 16

Hotel Reservation
Operations

Transaction
Overlap by

Reservations Overlaps

Transaction
Overlap by Front

Desk
Front Desk
Operations

Table 1 S (10 per second)

I (100 per second)

U (50 per second)

Table 15

Table 19

Table 20

S (50 per second)

I (10 per second)

U (90 per second)

Table 12

Table 7 Table 14

Table 11  Table 16



Application Partitioning Techniques

Application Analysis and Partitioning 5-11

Step 5: Classify Overlaps
Use the following criteria to determine how to deal with the tables:

■ Ignore non-overlapping tables, select-only overlaps, and low-frequency

overlaps

■ Categorize index-only tables and their indexes

■ Categorize mixed access tables and their indexes

Index-only Tables and Their Indexes For these tables, you can assign extents by instance

to acquire an exclusive lock. Conflicts for these tables and their indexes are

relatively easy for Oracle Parallel Server to resolve.



Application Partitioning Techniques

5-12 Oracle8i Parallel Server Administration, Deployment, and Performance

Resulting Example Configuration Figure 5–1 illustrates the resulting configuration of

the tables:

Figure 5–1 Classifying Overlaps for Application Partitioning

If you cannot use application partitioning to resolve conflicts within these tables,

consider departmental partitioning as described in the next section.

Instance
2

1

7

11

15

19

20

12

14

16

Overlap

Instance
1

Reservations Front
Desk



Departmental and User Partitioning

Application Analysis and Partitioning 5-13

Departmental and User Partitioning
An alternative partitioning method than can help minimize contention is

departmental or user partitioning. There are several methods of implementing

departmental and user partitioning.

For one type of departmental partitioning, separate the tables by access groups

based on geographic location. For example, assume the hotel reservation system

processes room requests for hotels around the world. In this case, you might

partition the application by geographic markets such as:

■ European Market

■ North American Market

■ Central and South American Market

■ Asia Pacific Market



Departmental and User Partitioning

5-14 Oracle8i Parallel Server Administration, Deployment, and Performance

This configuration might resemble the partitioning illustrated in Figure 5–2:

Figure 5–2 Overlaps for Geographic Partitioning

In addition to geographic partitioning, you can also use the advanced partitioning

options of the Oracle8i Enterprise Edition. These include three table partitioning

methods:

■ Range

■ Hash

■ Composite

Each method has a different set of advantages and disadvantages. Thus, each

method is appropriate for a particular situation where the others are not.

Range Partitioning Range partitioning maps data to partitions based on boundaries

identified by ranges of column values that you establish for each partition. This

feature is generally useful only for Decision Support Systems applications.

Instance
2

1

7

11

15

19

20

12

14

16

Overlap

Instance
1

North
American

Market

European
Market



Transaction Partitioning

Application Analysis and Partitioning 5-15

Hash Partitioning Hash partitioning maps data to partitions based on a hashing

algorithm that Oracle applies to a partitioning key. This feature is primarily useful

for DSS applications.

Composite Partitioning Composite partitioning combines the features of range and

hash partitioning. With composite partitioning, Oracle first distributes data into

partitions according to boundaries established by the beginnings and ends of the

partition ranges. Then Oracle further divides the data and distributes it with a

hashing algorithm into subpartitions within each range partition.

The remaining two partitioning methods discussed in this chapter require

significant programming effort and should be used only when the previously

described methods do not provide optimal performance.

Physical Table Partitioning
Physical table partitioning involves the division of one table into two or more

smaller tables. This requires application changes to use the new names of the

smaller tables. Report programs must also change so they can join the smaller tables

as needed to provide data.

However, Oracle can automatically manage partition independence for you. That is,

if you use the same table name for all the smaller tables across the application,

Oracle automatically segregates the data.

If you have adequate resources, you can use transaction partitioning. However, this

method is quite complex and it takes much longer to implement than any of the

methods described previously.

Transaction Partitioning
Transaction partitioning is the lowest level partitioning method. This method

requires a three-tiered architecture where clients and servers are separated by a

transaction monitor processing layer. Based on the content of a transaction, the

transaction monitor routes transactions that act on specific tables to specific nodes.

Using this method, you can create and load your tables using any method because

the transaction monitor determines which node processes a particular transaction.

See Also: Oracle8i Data Warehousing Guide for more information

about partitioning.



Scaling Up and Partitioning

5-16 Oracle8i Parallel Server Administration, Deployment, and Performance

This method also allows you to achieve fine-grained transaction control. This makes

transaction processing monitors very scalable. However, significant development

effort is required to deploy this method.

The correct node for execution of the transaction is a function of the actual data

values being used in the transaction. This process is more commonly known as

data-dependent routing.

You can accomplish data-dependent routing in one of two ways: if the partitioning

of the tables fits well within actual partition usage patterns, in other words, you

partitioned the table by state or call center, and users are similarly partitionable,

then you can accomplish manual routing by having users connect to the instance

that is running the relevant application. Otherwise, the administration of

data-dependent routing may be complex and can involve additional application

code.

You can simplify the process if the application uses a transaction processing

monitor (TPM) or remote procedure call (RPC) mechanism. It is possible to code

into the configuration of the TPM a data-dependent routing strategy based on the

input RPC arguments. Similarly, this process could be coded into procedural code

using a case statement to determine which instance should execute the transaction.

Scaling Up and Partitioning
If you have properly partitioned your application for Oracle Parallel Server, as the

size of your database increases, you should be able to maintain the same

partitioning strategy and simultaneously have optimal performance.

The method to use when adding new functionality is dependent upon the types of

data the new functions access. If the functions access disjoint data, your existing

partitioning scheme should be adequate. If the new functions access the same data

as the existing functions, you may need to change your partitioning strategy.

If your application is popular and it attracts more users than you expected, you may

need to add more instances. Adding a new instance may also require that you

repartition your application. You may also need to repartition if you add new

instances in response to your application experiencing increased transaction rates.

Adding Instances
Before adding instances to your Oracle Parallel Server environment, analyze the

new instance’s data access requirements. If the new instance accesses its own subset

of data, or data that is not accessed by existing instances, your current partitioning



Design-Related Batch Processing Issues

Application Analysis and Partitioning 5-17

strategy should adequately prevent data contention. However, if the new instance

accesses existing data, consider the following issues.

If you are adding new functionality to the new instance and the new functionality

requires access to existing tables, consider revising your partitioning strategy. You

may also need to alter your partitioning strategy if you reassign some users of an

existing application to the additional instance.

You must also consider how adding additional instances to accommodate

unexpected growth can result in complex, expensive re-partitioning tasks. This is

why your initial planning and design process should take long-term growth into

account.

Design-Related Batch Processing Issues
When scheduling batch operations, do not assume you can separate batch jobs from

online processing and run batch jobs on a separate instance. Instead, consider the

batch jobs as part of the normal daily load.

When developing a partitioning strategy, include you application’s batch processing

needs. Attempt to run batch jobs when there are not a lot of interactive users, such

as a night or during off-peak hours.

Using the DBMS_JOB Package to Manage Batch Job and Instance Affinity
Use this package to control which instances process which jobs. This package allows

you to distribute job processing across a cluster in a manner that makes the most

sense given each job’s functions. This improves load balancing and limits block

contention since only the SNP processes of the selected instance can execute the job.

As an example, simultaneously using Oracle Parallel Server and replication often

results in pinging on the deferred transaction queue if all instances in a clustered

environment propagate transactions from the deferred transaction queue. To limit

activity against tables to only one instance, use DBMS_JOB to assign the work of

processing jobs in the queue to a particular Oracle Parallel Server instance.

Although the following examples use replication to illustrate job affinity, you can

use this feature for other scenarios.

Note: Beware of batch jobs that perform full scans on shared

tables.



Design-Related Batch Processing Issues

5-18 Oracle8i Parallel Server Administration, Deployment, and Performance

See Also:

■ Oracle8i Supplied PL/SQL Packages Reference for details about

DBMS_JOB.

■ Oracle8i Administrator’s Guide.



Database Design Techniques 6-1

6
Database Design Techniques

This chapter describes database design techniques for Oracle Parallel Server

environments. The sections in this chapter include:

■ Principles of Database Design for Oracle Parallel Server

■ Database Operations, Block Types, and Access Control

■ Global Cache Coherence Work and Block Classes

■ General Recommendations for Database Object Parameters

■ Index Issues

■ Using Sequence Numbers

■ Logical And Physical Database Layout

■ Global Cache Lock Allocation

■ Conclusions And Guidelines



Principles of Database Design for Oracle Parallel Server

6-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Principles of Database Design for Oracle Parallel Server
When designing database layouts for shared Oracle Parallel Server databases,

remember that accessing globally shared data from multiple nodes increases

transaction processing costs. In other words, multi-node transactions incur more

wait time and higher CPU consumption than transactions processed on single-node

systems. Because of this, carefully consider the database access characteristics of

your applications you can create scalable database designs. In general, you can

achieve scalable systems by:

■ Assigning transactions with similar data access characteristics to specific nodes

■ Creating data objects with parameters that enable more efficient access when

globally shared

Many of the principles of the above to points have been covered in Chapter 5. The

most scalable and efficient application designs for clustered systems enable a high

degree of transaction affinity to the data the transactions access on the nodes. The

more that your application’ s data access is local and thus does not require

cross-instance synchronization, the more efficient your application.

All systems have a certain proportion of data with lower node affinity. This data is

shared across the cluster and thus requires synchronization. Cache Fusion reduces

the costs associated with globally shared database partitions by more efficiently

keeping data synchronized across multiple nodes. This increases the data’s

availability to all nodes in the cluster. Some features exist that help optimize

concurrent access to globally shared data.

Some database resources can become critical when certain transactions execute in

an Oracle Parallel Server environment. A high rate of inter-instance access to blocks

in the same table can cause increased I/O, messaging, context switches and general

processing overhead. If a table has one or more indexes to maintain, the cost may

increase even more due to the relative complexity of an index access. Searching for

free space and allocating it when inserting new data requires access to space

management structures, such as segment free lists. Also, generating unique

sequence numbers using an Oracle sequence number can become a severe

bottleneck if every node in the cluster uses it.

All resources can be either locally cached on disk or they must be re-generated

frequently. Each type of database operation, such as INSERTs, UPDATEs, DELETEs,

and SELECTs, require different types of resources depending on whether your

application runs in shared or exclusive mode.



Database Operations, Block Types, and Access Control

Database Design Techniques 6-3

Database Operations, Block Types, and Access Control
Most business transactions involve a mixture of INSERTs, UPDATEs, DELETEs, and

SELECTs. Exactly what percentage of each of these a transaction uses depends on

the business transaction type.

Likewise, each of these operations accesses certain types of data blocks. These block

types can be categorized as:

■ Data blocks

■ Index blocks (root, branch, leaf)

■ Segment header blocks

■ Rollback segment header blocks

■ Rollback segment blocks

Concurrent access to data blocks in a cache is controlled by access or lock modes. In

the buffer cache, a block can be accessed in exclusive current read (XCUR), shared

current read (SCUR), or consistent read (CR) mode. To guarantee global cache

coherency, these access modes map to global lock modes as shown in Table 6–1:

Table 6–1 Parallel Cache Management Lock Mode and Buffer State

Parallel Cache
Management Lock

Mode Buffer State Name Description

X XCUR Instance has an EXCLUSIVE lock for this buffer.

S SCUR Instance has a SHARED lock for this buffer.

N CR Instance has a NULL lock for this buffer.



Database Operations, Block Types, and Access Control

6-4 Oracle8i Parallel Server Administration, Deployment, and Performance

Each operation accesses certain types of blocks in a particular mode, as shown in

Figure 6–1:

Figure 6–1 Modes of Block Access

Block Accesses During INSERTS
When Oracle processes an INSERT, it reads the segment header of a database object.

This might mean that the INSERT must read the segment header of a table or an

index to locate a block with sufficient space in which to fit a new row into the

segment free list. Therefore, to process INSERTs, Oracle reads the CURRENT, or

most up-to-date version of the header block. If there is enough free space in the

block after completing the INSERT, the block remains on the free list and the

transaction reads the corresponding data block and writes to it. For this sequence of

events:

■ The segment header is acquired in SCUR mode, which means that the instance

must request a global S lock

■ The data block is acquired in XCUR mode, or globally in X mode

If the free space in the block is insufficient after inserting, Oracle unlinks the block

from the free list. This means Oracle updates the segment header block containing

the free list. For this sequence of events:

1. The segment header block is first acquired in SCUR mode (global S lock)

2. After checking the block, Oracle then escalates the buffer access mode to XCUR,

(global X)

Instance 1 Instance 2

SCUR (S) SCUR (S)

XCUR (X) CR (N) 

XCUR (X) CR (N)

UPDATE

SELECT



Database Operations, Block Types, and Access Control

Database Design Techniques 6-5

3. Oracle removes the block from the free list

4. If a new block beyond the current highwater mark is used, Oracle raises the

highwater mark

5. The data block is read in XCUR mode and written to disk

This scenario assumes that the highwater mark of the segment, or the last or highest

block in the segment containing data, resides in an allocated extent. If no free list

groups were defined, the highwater mark as well as a map of allocated extents is

stored in the segment header. If Oracle must allocate an additional extent to insert

the object, Oracle raises the highwater mark and updates the extent map. In other

words, Oracle changes the segment header block in a consistent fashion; this also

requires Oracle to lock the header block in exclusive mode.

For an insert into a table with an index, even more data block accesses are required.

First, Oracle reads the header block of the index segment in SCUR mode, then

Oracle reads the root and branch blocks in SCUR mode. Finally, Oracle reads the

leaf block in XCUR mode. Depending on the height of the index tree, Oracle would

also have to read more branch blocks. If a free list modification is required, Oracle

must escalate the index segment header lock mode to XCUR mode. If there is

concurrency for the segment header due to free list modifications, the header block

can ping back and forth between multiple instances.

Using FREELIST GROUPS at table creation effectively achieves free list partitioning.

The number of FREELIST GROUPS that you define for an object should a least

match the number of nodes in the cluster that participate in INSERTs. With free list

groups, the free lists are in a separate block that is physically located after the

header block. Processes inserting rows into the same objects from different nodes

must hash to different free list group blocks. Hence, the free list group blocks

remain local to a particular instance. This means Oracle does not need to acquire

globally conflicting locks.

Note: For the preceding explanations and the following

descriptions, assume that all the blocks required for the operation

are cached in memory.



Database Operations, Block Types, and Access Control

6-6 Oracle8i Parallel Server Administration, Deployment, and Performance

Static and Dynamic Extent Allocation
There are two methods with which Oracle allocates extents to provide sufficient free

space for newly inserted rows. One method requires manual intervention; the other

is derived automatically from certain settings. Static allocation requires, for

example, that you issue statements such as:

   CREATE TABLE
   STORAGE (FREELIST GROUPS 2)
   ALTER TABLE
   ALLOCATE EXTENT
   FILE SIZE INSTANCE;

when creating or altering a table or index. This type of statement allows the

allocation of extents of data blocks from particular physical files to free list groups

and thus to instances. Note that you must set the parameter INSTANCE_NUMBER

to ensure than an instance consistently uses a particular allocation of free list

groups. If you do not set a value for INSTANCE_NUMBER, Oracle allocates the

space to the object; Oracle does not take the space from a particular free list group.

Instead, Oracle uses the master free list in the general segment header.

When Oracle pre-allocates extents in this manner, Oracle contiguously allocates

blocks to a particular free list group. Files containing these objects are good

candidates for 1:N locks with a blocking factor; in other words, use the ! syntax

when you set the GC_FILES_TO_LOCKS parameter and when you set the blocking

factor to the extent size allocated. For example, if your extent size is 10 blocks for

file number 4 consisting of 1000 blocks, then use the following syntax:

   GC_FILES_TO_LOCKS3D "43D1000!10"

This ensures that the blocks in that extent are covered by one lock.

For dynamic allocations, simply set GC_FILES_TO_LOCKS with a blocking factor,

as described in the previous syntax. The space management layer determines the

new extent size based on the value for !n.

You can use several methods to define this, for example:

   GC_FILES_TO_LOCKS3D"43D1000!10"

or

   GC_FILES_TO_LOCKS3D"43D1000!10R"

or

   GC_FILES_TO_LOCKS3D"43D0!10"



Database Operations, Block Types, and Access Control

Database Design Techniques 6-7

where the first example assigns 10 contiguous blocks to a fixed lock out of 1000

locks pooled for this file. The second example assigns a releasable lock in the same

manner, and the third uses releasable locks out of an unlimited pool.

Depending on which method you use, a certain number of contiguous blocks

comprise an extent of free space and these blocks are covered by the same lock. The

method you use depends on your application’s requirements. If ease of use is a high

priority and the data files are extensible, use dynamic allocation as shown by the

third entry in the previous example set. However, static allocation has the

advantage of reducing run-time space management and the required data

dictionary table and row cache updates. This is because the extents are already

allocated.

In summary, when designing for INSERT-intensive transactions in Oracle Parallel

Server, if you have identified certain tables as "insert only" when determining the

partitioning strategy, then:

1. Run inserting transactions only from one node

2. Use free list groups on these tables and on any indexes associated with them

3. Use the ! syntax for the GC_FILES_TO_LOCKS parameter when dynamically

allocating space

4. Pre-allocate extents to the table or index using the CREATE TABLE...

ALLOCATE EXTENTS or ALTER TABLE... ALLOCATE EXTENTS statements

and set the blocking factor ! for the GC_FILES_TO_LOCKS parameter to the

size of the extents

Block Accesses During UPDATES
An UPDATE statement always reads a database block in its current version and sets

the buffer to XCUR mode. Globally, this maps to a request for an X lock on the

block. Assuming all blocks are cached, the transaction:

1. Reads the buffer in XCUR mode and get a global X lock

2. Writes to the buffer and modify a row

3. If the updated row fits into the same block, the instance does not need to

acquire new blocks from the free list and the modification is complete; segment

header access is unnecessary

4. The instance retains the global X lock until another instance requests a lock on

the block in a conflicting mode, so Oracle writes the dirty buffer to disk for the

other instance to "see" the most current changes



Database Operations, Block Types, and Access Control

6-8 Oracle8i Parallel Server Administration, Deployment, and Performance

5. Oracle closes the lock or retains it in NULL mode, and Oracle reads the buffer

from disk if the local instance requests the block for subsequent updates; this is

known as a "forced read"

If Oracle has built an index on the table, the UPDATE:

1. Reads the root block of the index in SCUR mode

2. Reads one or more branch blocks in SCUR mode

3. Reads the leaf block and pins it into the cache in SCUR mode

4. Reads the data block in XCUR mode

5. Modifies the data block

If the index key value was changed, Oracle:

1. Rereads the root and branch blocks in SCUR mode

2. Reads the leaf block in XCUR mode

3. Modifies the index key value for the updated row

During the update operation with an index, a block can be "pinged" out of the cache

of the updating instance at any time and would have to be reacquired. The shared

global locks on the root and branch blocks are not an issue, as long as another

instance reads only these blocks. If a branch block has to be modified because a leaf

block splits, Oracle escalates the S lock to an X lock, thus increasing the probability

of conflict.

It is therefore essential to clearly identify frequently updated tables when you

establish your partitioning strategy. The update frequency, randomness of access,

and data referencing patterns eventually determine the layout and locking strategy

you use. For random access, a locking policy using 1:1 releasable locks is

appropriate. If certain transactions access the same range of blocks repetitively, you

can use a table partitioning and transaction routing strategy. Once data partitions

within a table can be established, very few fixed locks are needed.

In the case of frequent random access, the probability of contention for the same

data or index blocks can be decreased by setting PCTFREE to a higher value when

creating and loading the table, so that a block is populated by fewer rows. However,

the trade-off might be more block reads and more I/O to access the same number of

rows.

See Also : Oracle8i Parallel Server Concepts for more information

about 1:1 and 1:n locks, and releasable and fixed lock durations.



Global Cache Coherence Work and Block Classes

Database Design Techniques 6-9

Block Accesses During DELETES
Oracle accesses blocks in the cache for a DELETE in a similar way that it does for an

update. Oracle scans the table for the block containing the row to be deleted.

Therefore, if the table does not have an index, the transaction reads the segment

header, reads the block, and then modifies the block. The transaction creates free

space in the block so that if the data in the block drops below PCTUSED, the block

is linked to the free list.

Consequently, the transaction acquires the segment header or free list group block

in exclusive mode. The block in question is returned to the instance’s free list group,

if there is one. In general, you should schedule massive deletions to occur during

off-peak hours and you should run them from one instance.

Block Accesses During SELECTS
A SELECT reads a buffer in either SCUR or CR mode. For an SCR, such as for

segment headers or when the only readers in the system are for a particular block, a

global S lock is acquired. When a block is modified or contains uncommitted

changes, and a consistent read version is requested, the buffer containing that

version will be in CR mode. If the most recent modifications are made on another

node, a CR copy from the modifying node must be requested. Once the request has

completed, no lock is retained on the instance that received the consistent read

version of the block.

For a full table scan, a SELECT may have to read the segment header in order to

determine the extent boundaries for the extents allocated to a table. As this requires

Shared Current access to the buffer containing the header block, in Parallel Server

the global S lock might conflict with an INSERT that attempts to modify the header

block.

Global Cache Coherence Work and Block Classes
In general, data blocks, index blocks, rollback segment headers, free list group

blocks, rollback segment blocks, and segment headers are considered to be different

classes of blocks. All of these classes are subject to "pinging" because they represent

structures of a shared database.

For rollback segment headers and rollback segment blocks, the effect of global cache

synchronization is less significant, because instances should privately own rollback

segments in Oracle Parallel Server. This limits writes to a rollback segment to the

local instance. With Cache Fusion for consistent reads, the effect of rollback segment

cache coherence operations is limited. Most consistent read information is



General Recommendations for Database Object Parameters

6-10 Oracle8i Parallel Server Administration, Deployment, and Performance

generated by the local instance which creates a version of a data block and sends it

directly to the requesting instance.

Without free list groups and with suboptimal physical storage parameters for an

index or a table, segment header blocks can be "pinged" frequently. Configuring free

list groups can alleviate this. As a general rule, segment header pings should

amount to more than 5% of the total pings.

The V$CLASS_PING view lists the number of lock converts of a particular type for

the different block classes. Use this view to monitor the proportion of pings for each

block class of the total pings.

General Recommendations for Database Object Parameters
The following represent some general recommendations for database objects:

■ For tables or indexes that are expected to grow or shrink during regular OLTP

processing, or objects that can have frequent INSERTs or DELETEs from

multiple nodes, use FREELISTS and FREELIST GROUPS to build the objects.

■ Preallocate extents to the object’s FREELIST GROUP and/or use a blocking

factor when defining GC_FILES_TO_LOCKS. This ensures that blocks

belonging to a particular extent are used by only one instance and that the

blocks are covered by the same lock.

■ For objects and files with random local and remote access, restrict the number

of rows contained in one block by selecting the correct database block size or by

allowing more free space when loading data by setting PCTFREE to a higher

value (the default is 10%). However, this results in increased space

requirements.

Index Issues
In most high volume OLTP systems, inter-instance contention for index blocks

increases the cost of Oracle Parallel Server processing and the commonly used

B*Tree index structures are vulnerable to "pinging" at various levels. A

"right-growing" tree can incur frequent pinging of one particular leaf block. While

traversing the tree structure, branch blocks might have to be "forced read", because

they were last modified by another instance. Leaf block splits are vulnerable

because three blocks need to be modified in one transaction. Generally, some

situations you should avoid are:

■ Leaf and branch block contention



Index Issues

Database Design Techniques 6-11

■ Root block contention

■ Index segment header contention

The following section addresses how to avoid leaf and branch block contention.

Minimizing Leaf/Branch Block Contention
You can use various strategies to isolate or distribute access to different parts of the

index and improve performance.

Use reverse-key indexes to avoid the right-growing index trees. By reversing the

keys, you can achieve a broader spread of index keys over the leaf blocks of an

index and thus lower the probability of accessing the same leaf and branch blocks

from multiple instances. However, reverse key indexes do not allow index range

scans, so carefully consider their use.

For indexes based on sequence numbers, assign different subsequences to each

instance. In the case of database objects that can be partitioned based on certain

characteristics, this might adequately distribute the access patterns.

For other sequentially assigned values, adjust the index value and use

INSTANCE_NUMBER to generate the index key, as shown in the following

example:

Note: Use local partitioned indexes wherever possible.

+*index key 3D (instance_number -1)     100000      Sequence number



Index Issues

6-12 Oracle8i Parallel Server Administration, Deployment, and Performance

Figure 6–2 shows how transactions operating on records stored in tables partitioned

by range can minimize leaf and branch block contention.

Figure 6–2 Node Affinity for Transactions Against Tables Partitioned by Range

Root
node

Leaf
node

Leaf
node

Leaf
node

Leaf
node

Root
node

A-H I-M N-S T-Z

Index
header
block

Instance 1
Transactions

on records
A-M

Instance 2
Transactions
on records
N-Z



Using Sequence Numbers

Database Design Techniques 6-13

Locking Policy For Indexes
Determining the optimal locking policy for files that have indexes can be

problematic. Usually, the best practice is to use releasable locks. Using fixed locks

on indexes increases the potential for false pings. The following guidelines should

help you when deciding how to assign locks:

■ Avoid a right-growing index tree by using reverse key indexes, if possible, or

use techniques to spread the access over multiple leaf blocks

■ Partition index access by using either an appropriate index key value that is

based on a logical partitioning key or by using local partitioned indexes

wherever possible; route transactions to dedicated nodes based on key data

values

■ If you cannot partition at all, use releasable locks

■ If you can use local index partitioning, assign fewer 1:N fixed locks to the files

containing the partitions.

Using Sequence Numbers
When designing applications for Oracle Parallel Server, use sequence numbers

whenever possible. To maximize the use of sequences, each instance’s cache must

be large enough to accommodate the sequences. The default cache size holds 20

sequence numbers. To increase this, for example to hold 200, use this syntax:

ALTER SEQUENCE SEQUENCE_NAME CACHE 200;

Calculating Sequence Number Cache Size
Base your estimates for sequence number cache size on three factors:

■ Transaction rate

■ Number of nodes in the cluster

■ Stability of the cluster

Using ordering suppresses caching in Oracle Parallel Server. It is normal to lose

some numbers after executing the SHUTDOWN command. It is also not unusual to

experience a complete loss of sequence numbers after instance failures.

See Also: Oracle8i Parallel Server Concepts for more information

about 1:1 and 1:N locks, and releasable and fixed lock durations.



Using Sequence Numbers

6-14 Oracle8i Parallel Server Administration, Deployment, and Performance

External Sequence Generators
You should implement external sequence generators when:

■ Ordering is essential

■ Accountability for all numbers is required

■ There are high transaction rates

■ There are many instances

■ There are many sequence numbers

Detecting Global Conflicts On Sequences
If sequences are insufficiently cached or not cached at all, severe performance

problems may result with an increase in service times. This may also result in

reduced scalability.

If you experience performance problems, examine statistics in the

V$SYSTEM_EVENT view as described below to determine whether the problem is

due to the use of Oracle sequences:

■ A problem with sequences appears in V$SYSTEM_EVENT as extended average

wait times for "row cache locks" in the range of a few hundred milliseconds.

The proportion of time waited for row cache locks of the total time waited for

non-idle events will be very high.

■ For the DC_SEQUENCES parameter, the ratio of DLM_CONFLICTS to

DLM_REQUESTS will be very high. If this ratio exceeds 10 to 15% and the row

cache lock wait time is a significant portion of the total wait time, then it is

likely that the deterioration of service times is due to insufficiently cached

sequences.

Note: Avoid using database tables to hold sequence numbers.



Logical And Physical Database Layout

Database Design Techniques 6-15

Logical And Physical Database Layout
Base a physical partitioning strategy on the following considerations:

■ Transaction profiles for objects

– How often are they accessed?

– How are they accessed?

■ Function dependency for objects, if any

– Business function

– Data

You should group these objects into files and tablespaces so that you can apply

consistent locking policies.

General Suggestions for Physical Layouts
Before grouping objects into tablespaces, create a pool of raw volumes that you can

later assign to tablespaces. Because Oracle Parallel Server must use shared raw

volumes or shared raw partitions to physically store data, the available disks should

be partitioned into volumes of various sizes. Begin by considering the following

recommendations:

1. Create a large pool of shared volumes to be assigned to logical partitions later.

2. Define standard sizes for raw volumes, such as 10M, 100M, 500M, and 1G.

3. Slice or stripe the volumes over as many disks as your initial I/O volume

calculation indicates. Take into consideration that 10 to 15% read and write I/O

should be added to the calculations for global cache synchronization I/O.

4. Review the plan. You may need to restructure the layout because some files will

experience higher I/O volumes than others due to pings.

Your goal should be to create a flexible physical layout. Also make sure you account

for the I/O required to preserve cache coherence and ensure that this will not

adversely affect I/O latencies.



Global Cache Lock Allocation

6-16 Oracle8i Parallel Server Administration, Deployment, and Performance

Tablespace Design
Your goal in tablespace design is to group database objects depending on their data

access distributions. If you consider the dependency analyses and transaction

profiles for your database objects, you can divide tablespaces into containers for the

following objects:

■ Frequently and randomly accessed tables and indexes with a lower probability

of having affinity to certain transactions or portions of the database

■ Tables and indexes that are mostly read or read-only and infrequently modified

■ Tables and indexes whose data can be viewed as subdivided into largely

disjoint and autonomous data sets

Consider the following additional criteria for separating database objects into

tablespaces:

■ Tables should be separated from indexes

■ Assign true, read-only tables to READ-ONLY tablespaces.

■ Each node should have TEMPORARY tablespaces

■ Group smaller reference tables in the same tablespace

■ Separate insert-only tables from other tables

Once you have logically grouped your database objects into partitions and

physically assigned them to tablespaces, you can develop an efficient and adaptable

locking policy as described in the following chapters.

Global Cache Lock Allocation
After completing your tablespace design, there will be a few distinct groupings

based on their expected access distribution, estimated access frequency, and affinity

to transactions and nodes. These groupings might include:

■ Frequently and randomly accessed files with little or no affinity to transactions

or nodes and a high probability of false pinging

■ Read-only or "read-mostly" files

■ Frequently accessed files that are shared by multiple nodes but whose data are

subdivided into largely autonomous data sets

■ Files containing rollback segments and temporary segments



Conclusions And Guidelines

Database Design Techniques 6-17

Based on these subdivisions, assign locks as follows:

■ Assign releasable locks to files that are frequently and randomly modified by

multiple nodes; this locking policy is often the best choice for index files

■ Do not assign locks to read-only tablespaces

■ Only assign fixed locks to read-mostly data that has a low probability of

experiencing access conflicts and that has data portions that are accessed mostly

in a disjoint fashion

■ Do not assign locks to rollback segments and files that belong to temporary

tablespaces. Instead, allocate rollback segment locks by setting

GC_ROLLBACK_LOCKS so that only a few fixed locks are necessary

Wherever you assign locks, assigned them as releasable if

GC_RELEASABLE_LOCKS provides sufficient resources so that the cost of opening

and closing locks can be minimized.

Conclusions And Guidelines
Your response time and throughput requirements ultimately determine how

stringent and well-isolated your partitioning strategy needs to be and how much

effort you should invest in achieving an optimal design. Cache Fusion removes a

significant amount of overhead associated with consistent read transactions that

request data other nodes. This allows you to implement a simpler database design

and still achieve optimal performance.

A careful analysis of data access distributions in terms of transaction profiles and

functional dependencies is the basis for allocating work to particular instances.

Moreover, this makes a system more robust and more scalable.

Broadly speaking, 80% or more of overhead results from 20% or less of a given

workload. Dealing with the 20% by observing some simple guidelines and caveats

can produce real benefits with minimal effort:

■ Index block contention should be avoided by all means. However, if index key

values are not modified by multiple instances, the overhead may be acceptable.

■ Globally shared data access may be acceptable if the probability of remote

access and thus false pings is low.

■ Long running transaction that modify globally shared data must be avoided

and should be run at times of lower system use.

■ Read-only tablespaces should be used wherever data remain constant.



Conclusions And Guidelines

6-18 Oracle8i Parallel Server Administration, Deployment, and Performance

■ Free list groups should be defined for partitioned as well as nonpartitioned data

that are modified frequently.

In general, you should design your database for application partitioning and create

the tablespaces to permit data striping. This simplifies the processing for parallel

data loads and inter-instance parallel queries.



Planning the Use of PCM and Non-PCM Instance Locks 7-1

7
Planning the Use of PCM and Non-PCM

Instance Locks

This chapter explains the initialization parameters you set to allocate Parallel Cache

Management (PCM) locks and non-PCM locks to data files in Oracle Parallel Server

environments. It contains the following sections:

■ Planning the Use and Maintenance of PCM Locks

■ How Oracle Assigns Locks to Blocks

■ Examples of Mapping Blocks to PCM Locks

■ Non-PCM Instance Locks

Note: Tuning PCM locks may not provide optimal application

scalability. For more information, please refer to Chapter 5 and

Appendix A.

See Also:

■ Oracle8i Parallel Server Concepts for a conceptual discussion of

PCM locks and GC_* parameters.

■ Oracle8i Reference for descriptions of initialization parameters

used to allocate locks for Oracle Parallel Server.



Planning the Use and Maintenance of PCM Locks

7-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Planning the Use and Maintenance of PCM Locks
This section describes planning the use and maintenance of PCM locks. It covers:

■ Planning and Maintaining Instance Locks

■ The Key to Allocating PCM Locks

■ Examining Data Files and Data Blocks

Planning and Maintaining Instance Locks
The Distributed Lock Manager (DLM) allows you to allocate only a finite number of

locks. For this reason you need to analyze and plan for the number of locks your

application requires. You also need to know how much memory the locks and

resources require. In planning locks, consider the following issues:

■ If you attempt to use more locks than the number configured in the DLM

facility, Oracle displays an error message and shuts down the instance.

■ Changing the GC_* or LM_* initialization parameters to specify large numbers

of locks affects the amount of memory used and the amount of memory

available in the System Global Area.

■ The number of instances also affects the memory requirements and number of

locks needed by your system.

The Key to Allocating PCM Locks
The key to allocating PCM locks is to analyze how often data is changed using the

INSERT, UPDATE, and DELETE statements. You can then determine how to group

objects into files based on whether they should be read-only or read/write. Finally,

assign locks based on the groupings you have made. In general, follow these

guidelines:

■ Allocate only a few locks to read-only files.

■ Allocate more locks to read/write intensive files.

■ If the entire tablespace is read-only, you can assign it a single lock. If you did

not assign locks to the tablespace, the system attempts to use spare locks. This

can cause contention since the tablespace would contend with other tablespaces

for the spare locks. This can generate unnecessary forced reads/writes.



Planning the Use and Maintenance of PCM Locks

Planning the Use of PCM and Non-PCM Instance Locks 7-3

The key distinction is not between types of objects (index or table), but between

operations being performed on an object. The operation dictates the quantity of

locks needed.

Examining Data Files and Data Blocks
You must allocate locks at various levels by specifying:

■ The maximum number of PCM locks to allocate for all data files.

■ How many locks to allocate to blocks in each data file.

■ Particular locks to cover particular classes of datablocks in a given file.

Begin by examining your data files and the blocks they contain.

Determining File ID, Tablespace Name, and Number of Blocks
Use the following statement to determine the file ID, file name, tablespace name,

and number of blocks for all databases.

   SELECT FILE_NAME, FILE_ID, TABLESPACE_NAME, BLOCKS
   FROM DBA_DATA_FILES;

Oracle displays results as in the following example:

FILE_NAME               FILE_ID     TABLESPACE_NAME     BLOCKS
---------------------------------------------------------------
/v7/data/data01.dbf     1           SYSTEM               200
/v7/data/data02.dbf     2           ROLLBACK            1600
. . .

Determining the Number of Locks You Need
Use the following approach to estimate the number of locks required for particular

uses.

■ Consider the nature of the data and the application.

Many locks are needed on heavily used, concurrently updated data files, but a

query-only application does not need many locks; a single lock on the data file

suffices.

■ Assign many locks to files that many instances modify concurrently.

See Also: Chapter 5 and Chapter 6.



How Oracle Assigns Locks to Blocks

7-4 Oracle8i Parallel Server Administration, Deployment, and Performance

This reduces lock contention, minimizes I/O activity, and increases accessibility

of the data in the files.

■ Assign fewer locks to files that multiple instances do not need to concurrently

access.

This avoids unnecessary lock management overhead.

■ Examine the objects in your files, and consider the operations used on them.

■ Group read-only objects in read-only tablespace(s).

How Oracle Assigns Locks to Blocks
This section explains how fixed locks and releasable locks are assigned to blocks.

(1:1 locks, of course, have a one-to-one correspondence to blocks.)

■ File-to-Lock Mapping

■ Number of Locks Per Block Class

■ Lock Element Number

File-to-Lock Mapping
Two data structures in the System Global Area control file-to-lock mapping. The

first structure maps each file (DB_FILES) to a bucket (index) in the second structure.

This structure contains information on the number of locks allocated to this bucket,

base lock number, and grouping factor. To find the number of locks for a tablespace,

count the number of actual fixed locks that protect the different files. If files share

locks, you count the shared locks only once.

1. To find the number of locks for a tablespace, begin by performing a select from

the FILE_LOCK data dictionary table:

SELECT * FROM FILE_LOCK ORDER BY FILE_ID;



How Oracle Assigns Locks to Blocks

Planning the Use of PCM and Non-PCM Instance Locks 7-5

For example, Oracle responds with something similar to the following if you set

GC_FILES_TO_LOCKS="1=500:5=200":

FILE_ID FILE_NAME       TS_NAME          START_LK     NLOCKS   BLOCKING
------- --------------- -------------- ---------- ---------- ----------
      1 \\.\OPS_SYS01   SYSTEM                100       1500          1
      2 \\.\OPS_USR01   USER_DATA            1600       3000          1
      3 \\.\OPS_RBS01   ROLLBACK_DATA           0        100          1
      4 \\.\OPS_TMP01   TEMPORARY_DATA          0        100          1
      5 \\.\OPS_USR03   TRAVEL_DEMO          4600       4000          1
      6 \\.\PROBLEM_REP PROBLEM_REP             0        100          1

6 rows selected.

2. Count the number of locks in the tablespace by summing the number of locks

(value of the NLOCKS column) only for rows with different values in the
START_LCK column.

In this example, both file 1 and file 5 have different values for START_LCK. You

therefore sum their NLOCKS values for a total of 700 locks.

If, however, you had set GC_FILES_TO_LOCKS="1-2=500:5=200", your results

would look like the following:

FILE_ID  FILE_NAME  TABLESPACE_NAME  START_LK  NLOCKS BLOCKING
1        file1      system             1         500    1
1        file2      system             1         500    1
1        file3      system             0
1        file4      system             0
1        file5      system           501         200    1

This time, file 1 and file 2 have the same value for START_LCK indicating that they

share the locks. File 5 has a different value for START_LCK. You therefore count

once the 500 locks shared by files 1 and 2, and add an additional 200 locks for file 5,

for a total of 700.

Number of Locks Per Block Class
You need only concern yourself with the number of blocks in the data and undo

block classes. Data blocks (class 1) contain data from indexes or tables. Undo header

blocks (class 10) are also known as the rollback segment headers or transaction

tables. System undo blocks (class 11) are part of the rollback segment and provide

storage for undo records.



How Oracle Assigns Locks to Blocks

7-6 Oracle8i Parallel Server Administration, Deployment, and Performance

User undo segment n header blocks are identified as class 10 + (n x 2), where n
represents the rollback segment number. A value of n = 0 indicates the system

rollback segment; a value of n > 0 indicates a non-system rollback segment.

Similarly, user undo segment n header blocks are identified as class 10 + ( (n x 2) +

1).

The following query shows the number of locks allocated per class:

   SELECT CLASS, COUNT(*)
     FROM V$LOCK_ELEMENT
     GROUP BY CLASS
     ORDER BY CLASS;

The following query shows the number of fixed (non-releasable) PCM locks:

   SELECT COUNT(*)
     FROM V$LOCK_ELEMENT
     WHERE bitand(flag, 4)!=0;

The following query shows the number of releasable PCM locks:

   SELECT COUNT(*)
     FROM V$LOCK_ELEMENT
     WHERE bitand(flag, 4)=0;

Lock Element Number
For a data class block the file number is determined from the data block address

(DBA). The bucket is found through the X$KCLFI dynamic performance table. Data

class blocks are fixed to lock element numbers as follows:

Other block classes are fixed to lock element numbers as follows:

(DBA)  modulo (locks_in_class)

modulo   (locks)   +  (start) 
DBA

grouping_factor



Examples of Mapping Blocks to PCM Locks

Planning the Use of PCM and Non-PCM Instance Locks 7-7

Examples of Mapping Blocks to PCM Locks
■ Setting GC_FILES_ TO_LOCKS

■ Sample Settings for Fixed Locks with GC_FILES_TO_LOCKS

■ Sample Releasable Setting of GC_FILES_TO_LOCKS

Setting GC_FILES_ TO_LOCKS
The following examples show different ways of mapping blocks to PCM locks and

how the same locks are used on multiple data files.

Note: These examples discuss very small sample files to illustrate

important concepts. The actual files you manage will be

significantly larger.



Examples of Mapping Blocks to PCM Locks

7-8 Oracle8i Parallel Server Administration, Deployment, and Performance

Figure 7–1  Mapping PCM Locks to Data Blocks

Example 1 Figure 7–1 shows an example of mapping blocks to PCM locks for the

parameter value GC_FILES_TO_LOCKS = "1=60:2-3=40:4=140:5=30".

In data file 1 shown in Figure 7–1, 60 PCM locks map to 120 blocks, which is a

multiple of 60. Each PCM lock therefore covers two data blocks.

In data files 2 and 3, 40 PCM locks map to a total of 160 blocks. A PCM lock can

cover either one or two data blocks in data file 2, and two or three data blocks in

data file 3. Thus, one PCM lock may cover three, four, or five data blocks across

both data files.

In data file 4, each PCM lock maps exactly to a single data block, since there is the

same number of PCM locks as data blocks.

In data file 5, 30 PCM locks map to 170 blocks, which is not a multiple of 30. Each

PCM lock therefore covers five or six data blocks.

Each of the PCM locks illustrated in Figure 7–1 can be held in either read-lock mode

or read-exclusive mode.

Data
File 4

Data
File 5

140 blocks 170 blocks 120 blocks 

Data
File 1

Data
File 2

Data
File 3

60 blocks 100 blocks 

PCM Locks
241 to 270 

PCM Locks
101 to 240 

PCM Locks
61 to 100 

PCM Locks
1 to 60 

5 or 6 blocks
per lock

1 block
per lock

3, 4, or 5
blocks per lock

2 blocks
per lock



Examples of Mapping Blocks to PCM Locks

Planning the Use of PCM and Non-PCM Instance Locks 7-9

Example 2 The following parameter setting allocates 500 PCM locks to data file 1;

400 PCM locks each to files 2, 3, 4, 10, 11, and 12; 150 PCM locks to file 5; 250 PCM

locks to file 6; and 300 PCM locks collectively to files 7 through 9:

GC_FILES_TO_LOCKS = "1=500:2-4,10-12=400EACH:5=150:6=250:7-9=300"

This example assigns a total of (500 + (6*400) + 150 + 250 + 300) = 3600 PCM locks.

You may specify more than this number of PCM locks if you intend to add more

data files.

Example 3 In Example 2, 300 PCM locks are allocated to data files 7, 8, and 9

collectively with the clause "7-9=300". The keyword EACH is omitted. If each of

these data files contains 900 data blocks, for a total of 2700 data blocks, then each

PCM lock covers 9 data blocks. Because the data files are multiples of 300, the 9 data

blocks covered by the PCM lock are spread across the 3 data files; that is, one PCM

lock covers 3 data blocks in each data file.

Example 4 The following parameter value allocates 200 PCM locks each to files 1

through 3; 50 PCM locks to data file 4; 100 PCM locks collectively to data files 5, 6, 7,

and 9; and 20 data locks in contiguous 50-block groups to data files 8 and 10

combined:

GC_FILES_TO_LOCKS = "1-3=200EACH 4=50:5-7,9=100:8,10=20!50"

In this example, a PCM lock assigned to the combined data files 5, 6, 7, and 9 covers

one or more data blocks in each data file, unless a data file contains fewer than 100

data blocks. If data files 5 to 7 contain 500 data blocks each and data file 9 contains

100 data blocks, then each PCM lock covers 16 data blocks: one in data file 9 and

five each in the other data files. Alternatively, if data file 9 contained 50 data blocks,

half of the PCM locks would cover 16 data blocks (one in data file 9); the other half

of the PCM locks would only cover 15 data blocks (none in data file 9).

The 20 PCM locks assigned collectively to data files 8 and 10 cover contiguous

groups of 50 data blocks. If the data files contain multiples of 50 data blocks and the

total number of data blocks is not greater than 20 times 50 (that is, 1000), then each

PCM lock covers data blocks in either data file 8 or data file 10, but not in both. This

is because each of these PCM locks covers 50 contiguous data blocks. If the size of

data file 8 is not a multiple of 50 data blocks, then one PCM lock must cover data

blocks in both files. If the sizes of data files 8 and 10 exceed 1000 data blocks, then

some PCM locks must cover more than one group of 50 data blocks, and the groups

might be in different files.



Examples of Mapping Blocks to PCM Locks

7-10 Oracle8i Parallel Server Administration, Deployment, and Performance

Sample Settings for Fixed Locks with GC_FILES_TO_LOCKS
Examples 5, 6, and 7 show the results of specifying various values of

GC_FILES_TO_LOCKS. In the examples, files 1 and 2 each have 16 blocks of data.

Example 5 GC_FILES_TO_LOCKS="1-2=4"

In this example four locks are specified for files 1 and 2. Therefore, the number of

blocks covered by each lock is 8 ((16+16)/4). The blocks are not contiguous.

Figure 7–2  GC_FILES_TO_LOCKS Example 5

������������
File 2

File 1

Lock 1

Lock 2

Lock 3

Lock 4



Examples of Mapping Blocks to PCM Locks

Planning the Use of PCM and Non-PCM Instance Locks 7-11

Example 6 GC_FILES_TO_LOCKS="1-2=4!8"

In this example, four locks are specified for files 1 and 2. However, the locks must

cover 8 contiguous blocks.

Figure 7–3  GC_FILES_TO_LOCKS Example 6

Example 7 GC_FILES_TO_LOCKS="1-2=4!4EACH"

In this example four locks are specified for file 1 and four for file 2. The locks must

cover four contiguous blocks.

Figure 7–4  GC_FILES_TO_LOCKS Example 7��
File 2

File 1

Lock 1

Lock 2

Lock 3

Lock 4

�����������
��
�
���������������

������
File 2

File 1 Lock 1

Lock 2

Lock 3

Lock 4

Lock 5

Lock 6

Lock 7

Lock 8



Examples of Mapping Blocks to PCM Locks

7-12 Oracle8i Parallel Server Administration, Deployment, and Performance

Sample Releasable Setting of GC_FILES_TO_LOCKS
The following example shows releasable locking mixed with fixed locking.

Example 8 GC_FILES_TO_LOCKS="1=4:2=0"

File 1 has fixed PCM locking with 4 locks. On file 2, releasable locks are allocated on

demand—none are initially allocated.

Figure 7–5  GC_FILES_TO_LOCKS Example 8

Using Worksheets to Analyze PCM Lock Needs
On large applications, carefully study the business processes involved. Worksheets

similar to those in this section may be useful.

Determine the types of operations your system performs on a daily basis. The

distinction between operations needing X locks and those needing S locks is a key

issue. Every time Oracle converts a lock from one mode to the other, you need locks.

Consider the interaction of different instances on a table. Also consider the number

of rows in a block, the number of rows in a table, and the table’s growth rate. Based

on this analysis, group your objects into files, and assign free list groups.�������������
File 2

File 1

Lock 1

Lock 2

Lock 3

Lock 4



Examples of Mapping Blocks to PCM Locks

Planning the Use of PCM and Non-PCM Instance Locks 7-13

Figure 7–6 PCM Lock Worksheet 1

Object Operations needing X mode: Writes

Oracle Parallel
Server needing
S mode: Reads TS/Data File

INSERTS UPDATES DELETES SELECTS

A 80% 20%

Full table scan?

Single row?

B 100%

C

D

Figure 7–7 PCM Lock Worksheet 2

Object Instance 1 Instance 2 Instance 3

D INSERT

UPDATE

DELETE

SELECT

E

F

Figure 7–8 PCM Lock Worksheet 3

Table Name TS to put it in Row Size Number of Columns



Examples of Mapping Blocks to PCM Locks

7-14 Oracle8i Parallel Server Administration, Deployment, and Performance

Mapping Fixed PCM Locks to Data Blocks
In many cases, you need relatively few PCM locks to cover read-only data

compared to data that is updated frequently. This is because read-only data can be

shared by all instances of an Oracle Parallel Server. Data that is never updated can

be covered by a single PCM lock. Data that is not read-only should be covered by

more than a single PCM lock.

If data is read-only, then once an instance owns the PCM locks for the read-only

tablespace, the instance never disowns them. The DLM operations are not required

after the initial lock acquisition.

For best results, partition your read-only tablespace so it is covered by its own set of

PCM locks. Do this by placing read-only data in a tablespace that does not have

writable data. Then allocate PCM locks to the data files in the tablespace using the

GC_FILES_TO_LOCKS parameter.

Partitioning PCM Locks Among Instances
You can map PCM locks to particular data blocks to partition PCM locks among

instances based on the data each instance accesses.

This technique minimizes unnecessary distributed lock management. Likewise, it

minimizes the disk I/O caused by an instance having to write out data blocks

because a requested data block was covered by a PCM lock owned by another

instance.

For example, if Instance X primarily updates data in data files 1, 2, and 3, while

Instance Y primarily updates data in data files 4 and 5, you can assign one set of

PCM locks to files 1, 2, and 3 and another set to files 4 and 5. Then each instance

acquires ownership of the PCM locks for the data it updates. One instance disowns

the PCM locks only if the other instance needs access to the same data.

By contrast, if you assign one set of PCM locks to data files 3 and 4, I/O increases.

This is because both instances regularly use the same set of PCM locks.

Note: Do not put read-only data and writable data in the same

tablespace.



Non-PCM Instance Locks

Planning the Use of PCM and Non-PCM Instance Locks 7-15

Non-PCM Instance Locks
This section describes some of the most common non-PCM instance locks. It covers

the following information:

■ Overview of Non-PCM Instance Locks

■ Transaction Locks (TX)

■ Table Locks (TM)

■ System Change Number (SCN)

■ Library Cache Locks (L[A-Z]), (N[A-Z])

■ Dictionary Cache Locks (Q[A-Z])

■ Database Mount Lock (DM)

See Also: Chapter 10 for details on how to calculate the number

of non-PCM resources and locks to configure in the DLM.



Non-PCM Instance Locks

7-16 Oracle8i Parallel Server Administration, Deployment, and Performance

Overview of Non-PCM Instance Locks
This section explains how Oracle uses non-PCM locks to manage locks for

transactions, tables, and other entities within an Oracle environment. Prefixes for

each type of lock, such as "TX" for transaction locks and "TM" for table locks, refer

to the naming scheme Oracle uses to identify them.

Figure 7–9 highlights non-PCM locks in relation to other locks used in Oracle.

Figure 7–9  Oracle Locking Mechanisms: Non-PCM Locks

Whereas PCM locks are static (you allocate them when you design your

application), non-PCM locks are very dynamic. Their number and corresponding

space requirements will change as your system’s initialization parameter values

change.

Local Enqueues 

Local Latches

Instance Locks 

Local Locks

 

Global Enqueues

TX

DML/Table locks

SCN

Mount lock 

Global 

PCM Locks 



Non-PCM Instance Locks

Planning the Use of PCM and Non-PCM Instance Locks 7-17

Transaction Locks (TX)
Row locks are locks that protect selected rows. A transaction acquires a global

enqueue and an exclusive lock for each individual row modified by one of the

following statements:

■ INSERT

■ UPDATE

■ DELETE

■ SELECT with the FOR UPDATE clause

These locks are stored in the block, and each lock refers to the global transaction

enqueue.

A transaction lock is acquired in exclusive mode when a transaction initiates its first

change. It is held until the transaction performs a COMMIT or ROLLBACK. SMON

also acquires it in exclusive mode when recovering (undoing) a transaction.

Transaction locks are used as a queuing mechanism for processes awaiting the

release of an object locked by a transaction in progress.

Table Locks (TM)
Table locks are DML locks that protect entire tables. A transaction acquires a table

lock when a table is modified by one of the following statements: INSERT,

UPDATE, DELETE, SELECT with the FOR UPDATE clause, and LOCK TABLE. A

table lock can be held in any of several modes: null (N), row share (RS), row

exclusive (RX), share lock (S), share row exclusive (SRX), and exclusive (X).

When an instance attempts to mount the database, a table lock is used to ensure that

all participating instances either have DML_LOCKS = 0 or DML_LOCKS != 0. If

they do not, Oracle displays error ORA-61 and the mount attempt fails. Table locks

are acquired during the execution of a transaction when referencing a table with a

DML statement so that the object is not dropped or altered during the execution of

the transaction. This occurs if and only if the DML_LOCKS parameter is non-zero.

You can also selectively turn table locks on or off for a particular table, using the

statement:

   ALTER TABLE tablename  DISABLE|ENABLE TABLE LOCK



Non-PCM Instance Locks

7-18 Oracle8i Parallel Server Administration, Deployment, and Performance

If DML_LOCKS is set to zero, then no DDL operations are allowed. The same is true

for tables that have disabled table locks.

System Change Number (SCN)
The System Change Number (SCN) is a logical timestamp that Oracle uses to order

events within a single instance, and across all instances. One of the schemes Oracle

uses to generate SCNs is the lock scheme.

The lock SCN scheme keeps the global SCN in the value block of the SCN lock.

Oracle increments this value in response to many database events, most notably

after COMMITs. A process incrementing the global SCN obtains the SCN lock in

exclusive mode, increments the SCN, writes the lock value block, and downgrades

the lock. Access to the SCN lock value is batched. Oracle keeps a cache copy of the

global SCN in memory. A process may obtain an SCN without any communication

overhead by reading the SCN fetched by other processes.

The SCN implementation can differ from platform to platform. On most platforms,

Oracle uses the lock SCN scheme when the

MAX_COMMIT_PROPAGATION_DELAY initialization parameter is smaller than a

platform-specific threshold (typically 7).

Oracle uses the Lamport SCN scheme when

MAX_COMMIT_PROPAGATION_DELAY is larger than the threshold.You can

examine the alert log after an instance is started to see which SCN generation

scheme has been picked.

See Also: "Minimizing Table Locks to Optimize Performance" on

page 10-3 for more information about minimizing instance locks

and disabling table locks for improved performance.

See Also: Your Oracle operating system-specific documentation

for information about SCN implementation.



Non-PCM Instance Locks

Planning the Use of PCM and Non-PCM Instance Locks 7-19

Library Cache Locks (L[A-Z]), (N[A-Z])
When a database object (table, view, procedure, function, package, package body,

trigger, index, cluster, synonym) is referenced during parsing or during the

compiling of a SQL (DML/DDL) or PL/SQL statement, the process parsing or

compiling the statement acquires the library cache lock in the correct mode. In

Oracle8 the lock is held only until the parse or compilation completes (for the

duration of the parse call).

Dictionary Cache Locks (Q[A-Z])
The data dictionary cache contains information from the data dictionary, the

meta-data store. This cache provides efficient access to the data dictionary.

Creating a new table, for example, causes the meta-data of that table to be cached in

the data dictionary. If you drop a table, the meta-data needs to be removed from the

data dictionary cache. To synchronize access to the data dictionary cache, latches are

used in exclusive mode and in single shared mode. Instance locks are used in

multiple shared (parallel) mode.

In Oracle Parallel Server, the data dictionary cache on all nodes may contain the

meta-data of a table that gets dropped on one instance. The meta-data for this table

needs to be flushed from the data dictionary cache of every instance. This is

performed and synchronized by instance locks.

Database Mount Lock (DM)
The mount lock shows whether an instance has mounted a particular database. This

lock is only used with Oracle Parallel Server. It is the only multi-instance lock used

by Oracle Parallel Server in exclusive mode and prevents another instance from

mounting the database in shared mode.

In Oracle Parallel Server single shared mode, a DM lock is held in shared mode, so

another instance can mount the same database in shared mode. In Oracle Parallel

Server exclusive mode, however, another instance cannot to obtain the lock.



Non-PCM Instance Locks

7-20 Oracle8i Parallel Server Administration, Deployment, and Performance



Using Free List Groups to Partition Data 8-1

8
Using Free List Groups to Partition Data

This chapter explains how to allocate free lists and free list groups to partition data.

Free lists exist in single-instance Oracle. However, free list groups only exist in

Oracle Parallel Server environments. You use free list groups in Oracle Parallel

Server to partition data to minimize contention for free space.

Only use free list groups to partition data when your application profile does not

allow table partitioning. It is much simpler to use partitioned tables and indexes to

accomplish the same thing that free list groups accomplish.

Topics in this chapter include:

■ Overview of Free List Implementation Procedures

■ Deciding How to Partition Free Space for Database Objects

■ Using the CREATE Statement FREELISTS and FREELIST GROUPS Parameters

■ Associating Instances, Users, and Locks with Free List Groups

■ Pre-Allocating Extents

■ Dynamically Allocating Extents

■ Identifying and Deallocating Unused Space

See Also: Chapter 5 explains how to use partitioned tables and

indexes.

See Also: Oracle8i Parallel Server Concepts for a conceptual

overview of free list groups.



Overview of Free List Implementation Procedures

8-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Overview of Free List Implementation Procedures
Use the following procedures to use free lists to manage free space for multiple

instances:

1. Analyze your database objects and decide how to partition free space and data.

2. Set FREELISTS and FREELIST GROUPS clauses in the CREATE statements for

each table, cluster, and index.

3. Associate instances, users, and locks with free lists.

4. Allocate blocks to free lists.

5. Pre-allocate extents, if desired.

By effectively managing free space, you can improve the performance of an

application that initially appears not to be ideally suited to Oracle Parallel Server.

Deciding How to Partition Free Space for Database Objects
Use the worksheet in this section to analyze database objects and to decide how to

partition free space and data for optimal performance.

■ Database Object Characteristics

■ Free Space Worksheet

Database Object Characteristics
Analyze the database objects you create and sort the objects into categories as

described in this section.

Objects Read-Only Tables
If a table does not have high insert activity or sufficient updates to require new

space allocations, the table does not need free lists or free list groups.

Objects in Partitioned Applications
With proper partitioning of certain applications, only one node needs to insert into

a table or segment. In such cases, free lists may be necessary if there are many users.

Free list groups are not necessary if there are few users.



Deciding How to Partition Free Space for Database Objects

Using Free List Groups to Partition Data 8-3

Objects Relating to Partitioned Data
Multiple free lists and free list groups are not necessary for objects with partitioned

data.

Objects in Tables with Random Inserts
Free lists and free list groups are needed when random inserts from multiple

instances occur in a table. All instances writing to the segment must check the

master free list to determine where to write. There would thus be contention for the

segment header containing the master free list.

Free Space Worksheet
List each of your database objects, such as tables, clusters, and indexes, in a

worksheet as shown in Table 8–1, and plan free lists and free list groups for each.

Table 8–1 Free Space Worksheet for Database Objects

Database Object Characteristics Free List Groups Free Lists

     Objects in Static Tables NA NA

NA NA

NA NA

NA NA

     Objects in Partitioned Applications NA

NA

NA

NA

     Objects Related to Partitioned Data NA NA

NA NA

NA NA

NA NA

     Objects in Table w/Random Inserts



Using the CREATE Statement FREELISTS and FREELIST GROUPS Parameters

8-4 Oracle8i Parallel Server Administration, Deployment, and Performance

Using the CREATE Statement FREELISTS and FREELIST GROUPS
Parameters

This section covers the following topics:

■ FREELISTS Parameter

■ FREELIST GROUPS Parameter

■ Creating Free Lists for Clustered Tables

■ Creating Free Lists for Indexes

Create free lists and free list groups by specifying the FREELISTS and FREELIST

GROUPS storage parameters in CREATE TABLE, CLUSTER or INDEX statements.

Do this while accessing the database in either exclusive or shared mode.

A general rule is to create a free list group for an Oracle Parallel Server instance if

the instance experiences significant amounts of DML. Then set a value for

FREELIST GROUPS equal to the number of instances in the cluster.

FREELISTS Parameter
FREELISTS specifies the number of free lists in each free list group. The default and

minimum value of FREELISTS is 1. The maximum value depends on the data block

size. If you specify a value that is too large, an error message informs you of the

maximum value. The optimal value of FREELISTS depends on the expected

number of concurrent inserts per free list group for this table.

FREELIST GROUPS Parameter
Each free list group is associated with one or more instances at startup. The default

value of FREELIST GROUPS is 1, which means that the table’s free lists, if any, are

available to all instances. Typically, you should set FREELIST GROUPS equal to the

number of instances in Oracle Parallel Server. Using free list groups also partitions

Note: Do not confuse partitioned data with Oracle8i partitions

that may or may not be in use.

Note: Once you have set these storage parameters you cannot

change their values with the ALTER TABLE, CLUSTER, or INDEX

statements.



Using the CREATE Statement FREELISTS and FREELIST GROUPS Parameters

Using Free List Groups to Partition Data 8-5

data. Blocks allocated to one instance, freed by another instance, are no longer

available to the first instance.

Example The following statement creates a table named DEPT that has seven free

list groups, each of which contains four free lists:

   CREATE TABLE dept
            (deptno   NUMBER(2),
             dname    VARCHAR2(14),
             loc      VARCHAR2(13) )
            STORAGE ( INITIAL 100K        NEXT 50K
                      MAXEXTENTS 10       PCTINCREASE 5
                      FREELIST GROUPS 7   FREELISTS 4 );

Creating Free Lists for Clustered Tables
You cannot specify FREELISTS and FREELIST GROUPS storage parameters in the

CREATE TABLE statement for a clustered table. Instead, specify free list parameters

for the entire cluster rather than for individual tables. This is because clustered

tables use the storage parameters of the CREATE CLUSTER statement.

Clusters are an optional method of storing data in groups of tables having common

key columns. Related rows of two or more tables in a cluster are physically stored

together within the database to improve access time. Oracle Parallel Server allows

clusters (other than hash clusters) to use multiple free lists and free list groups.

Some hash clusters can also use multiple free lists and free list groups if you created

them with a user-defined key for the hashing function and the key is partitioned by

instance.

Note: With multiple free list groups, the free list structure is

detached from the segment header, thereby reducing contention for

the segment header. This is very useful when there is a high

volume of UPDATE and INSERT transactions.

Note: Using the TRUNCATE TABLE table_name REUSE

STORAGE syntax removes extent mappings for free list groups and

resets the high water mark to the beginning of the first extent.



Using the CREATE Statement FREELISTS and FREELIST GROUPS Parameters

8-6 Oracle8i Parallel Server Administration, Deployment, and Performance

Creating Free Lists for Indexes
You can use the FREELISTS and FREELIST GROUPS storage parameters of the

CREATE INDEX statement to create multiple free space lists for concurrent user

processes. Use these parameters in the same manner as described for tables.

When multiple instances concurrently insert rows into a table having an index,

contention for index blocks decreases performance unless index values can be

separated by instance. Figure 8–1 illustrates a situation where all instances are

trying to insert into the same index leaf block (n).

Figure 8–1  Contention for One Index Block

See Also: Oracle8i SQL Reference for more information on the
REUSE STORAGE clause of the TRUNCATE TABLE statement.

1 2 3 4 5 6 7 8 n

Index Root

Index Branch 

Index Leaf 

Contention on a 
single index block 



Using the CREATE Statement FREELISTS and FREELIST GROUPS Parameters

Using Free List Groups to Partition Data 8-7

To avoid this, have each instance insert into its own tree, as illustrated in Figure 8–2.

Figure 8–2  No Index Contention

Compute the index value with an algorithm such as:

301 . . .201 . . .101 . . .

Index Root 

Index Branch 

Index Leaf 

No contention

+*instance_number     (100000000)     sequence_number



Associating Instances, Users, and Locks with Free List Groups

8-8 Oracle8i Parallel Server Administration, Deployment, and Performance

Associating Instances, Users, and Locks with Free List Groups
This section explains how to associate the following with free list groups:

■ Associating Instances with Free List Groups

■ Associating User Processes with Free List Groups

■ Associating PCM Locks with Free List Groups

Associating Instances with Free List Groups
You can associate an instance with extents or free list groups as follows:

The SET INSTANCE clause is useful when an instance fails and users connect to

other instances. For example, consider a database where space is pre-allocated to

the free list groups in a table. With users distributed across instances and the data

well-partitioned, minimal pinging of data blocks occurs. If an instance fails, moving

all users to other instances does not disrupt the data partitioning because each new

session can use the original free list group associated with the failed instance.

Associating User Processes with Free List Groups
User processes are automatically associated with free lists based on the Oracle

process ID of the process in which they are running, as follows:

You can use the ALTER SESSION SET INSTANCE statement if you wish to use the

free list group associated with a particular instance.

INSTANCE_NUMBER

parameter

You can use various SQL clauses with the

INSTANCE_NUMBER initialization parameter to

associate extents of data blocks with instances.

SET INSTANCE clause You can use the SET INSTANCE clause of the ALTER

SESSION statement to ensure a session uses the free

list group associated with a particular instance

regardless of the instance to which the session is

connected. For example:

ALTER SESSION SET INSTANCE = inst_no

+(oracle_pid modulo #free_lists_for_object)     1



Pre-Allocating Extents

Using Free List Groups to Partition Data 8-9

Associating PCM Locks with Free List Groups
If each extent in the table is in a separate data file, use the GC_FILES_TO_LOCKS

parameter to allocate specific ranges of PCM locks to each extent, so each PCM lock

set is associated with only one group of free lists.

Pre-Allocating Extents
This section explains how to pre-allocate extents. This method is useful but a static

approach to extent allocation requires a certain amount of database administration

overhead.

■ The ALLOCATE EXTENT Clause

■ Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parameters

■ Setting the INSTANCE_NUMBER Parameter

■ Examples of Extent Pre-Allocation

The ALLOCATE EXTENT Clause
The ALLOCATE EXTENT clause of the ALTER TABLE or ALTER CLUSTER

statement enables you to pre-allocate an extent to a table, index or cluster with

parameters to specify the extent size, data file, and a group of free lists.

Exclusive and Shared Modes You can use the ALTER TABLE (or CLUSTER)

ALLOCATE EXTENT statement while the database is running in exclusive mode, as

well as in shared mode. When an instance is running in exclusive mode, it still

follows the same rules for locating space. A transaction can use the master free list

or the specific free list group for that instance.

The SIZE parameter This parameter of the ALLOCATE EXTENT clause is the extent

size in bytes, rounded up to a multiple of the block size. If you do not specify SIZE,

the extent size is calculated according to the values of storage parameters NEXT

and PCTINCREASE.

The value of SIZE is not used as a basis for calculating subsequent extent

allocations, which are determined by NEXT and PCTINCREASE.

See Also: Oracle8i Parallel Server Concepts for more information

about associating free lists with instances, users, and locks.



Pre-Allocating Extents

8-10 Oracle8i Parallel Server Administration, Deployment, and Performance

The DATAFILE parameter This parameter specifies the data file from which to take

space for the extent. If you omit this parameter, space is allocated from any

accessible data file in the tablespace containing the table.

The filename must exactly match the string stored in the control file, even with

respect to the case of letters. You can check the DBA_DATA_FILES data dictionary

view for this string.

The INSTANCE parameter This parameter assigns the new space to the free list group

associated with instance number integer. Each instance acquires a unique instance

number at startup that maps it to a group of free lists. The lowest instance number

is 1, not 0; the maximum value is operating system specific. The syntax is as follows:

ALTER TABLE tablename ALLOCATE EXTENT ( ... INSTANCE n )

where n will map to the free list group with the same number. If the instance

number is greater than the number of free list groups, then it is hashed as follows to

determine the free list group to which it should be assigned:

If you do not specify the INSTANCE parameter, the new space is assigned to the

table but not allocated to any group of free lists. Such space is included in the

master free list of free blocks as needed when no other space is available.

Note: Use a value for INSTANCE which corresponds to the

number of the free list group you wish to use—rather than the

actual instance number.

See Also: "Shutting Down Instances" on page 4-5 for more

information about the INSTANCE parameter.

+modulo(n,#_freelistgroups)     1



Pre-Allocating Extents

Using Free List Groups to Partition Data 8-11

Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parameters
You can prevent automatic allocations by pre-allocating extents to free list groups

associated with particular instances, and setting MAXEXTENTS to the current

number of extents (pre-allocated extents plus MINEXTENTS). You can minimize the

initial allocation when you create the table or cluster by setting MINEXTENTS to 1

(the default) and setting INITIAL to its minimum value (two data blocks, or 10K for

a block size of 2048 bytes).

To minimize contention among instances for data blocks, create multiple data files

for each table and associate each instance with a different file.

If you expect to increase the number of nodes in your system, allow for additional

instances by creating tables or clusters with more free list groups than the current

number of instances. You do not have to allocate space to those free list groups until

it is needed. Only the master free list of free blocks has space allocated to it

automatically.

To associate a data block with a free list group, either bring it below PCTUSED by a

process running on an instance using that free list group, or specifically allocate it to

that free list group. Therefore, a free list group that is never used does not leave

unused free data blocks.

Setting the INSTANCE_NUMBER Parameter
The INSTANCE_NUMBER initialization parameter allows you to start an instance

and ensure that it uses the extents allocated to it for inserts and updates. This

ensures that it does not use space allocated for other instances. The instance cannot

use data blocks in another free list unless another instance is restarted with that

INSTANCE_NUMBER. You can also override the instance number during a session

by using an ALTER SESSION statement.



Pre-Allocating Extents

8-12 Oracle8i Parallel Server Administration, Deployment, and Performance

Examples of Extent Pre-Allocation
This section provides examples in which extents are pre-allocated.

Example 1 The following statement allocates an extent for table DEPT from the data

file DEPT_FILE7 to instance number 7:

   ALTER TABLE dept
   ALLOCATE EXTENT ( SIZE 20K
                  DATAFILE ’dept_file7’
                 INSTANCE 7);

Example 2 The following SQL statement creates a table with three free list groups,

each containing ten free lists:

   CREATE TABLE table1 ... STORAGE (FREELIST GROUPS 3 FREELISTS 10);

The following SQL statement then allocates new space, dividing the allocated

blocks among the free lists in the second free list group:

   ALTER TABLE table1 ALLOCATE EXTENT (SIZE 50K INSTANCE 2);

In a Parallel Server running more instances than the value of the FREELIST

GROUPS storage parameter, multiple instances share the new space allocation. In

this example, every third instance to start up is associated with the same group of

free lists.

Example 3 The following CREATE TABLE statement creates a table named EMP

with one initial extent and three groups of free lists, and the three ALTER TABLE

statements allocate one new extent to each group of free lists:

   CREATE TABLE emp ...
    STORAGE ( INITIAL 4096
              MINEXTENTS 1
              MAXEXTENTS 4
              FREELIST GROUPS 3 );
   ALTER TABLE emp
    ALLOCATE EXTENT ( SIZE 100K DATAFILE ’empfile1’ INSTANCE 1 )
    ALLOCATE EXTENT ( SIZE 100K DATAFILE ’empfile2’ INSTANCE 2 )
    ALLOCATE EXTENT ( SIZE 100K DATAFILE ’empfile3’ INSTANCE 3 );

MAXEXTENTS is set to 4, the sum of the values of MINEXTENTS and FREELIST

GROUPS, to prevent automatic allocations.

When you need additional space beyond this allocation, use the ALTER TABLE

statement to increase MAXEXTENTS before allocating the additional extents. For



Dynamically Allocating Extents

Using Free List Groups to Partition Data 8-13

example, if the second group of free lists requires additional free space for inserts

and updates, you could set MAXEXTENTS to 5 and allocate another extent for that

free list group:

   ALTER TABLE emp  ...
    STORAGE ( MAXEXTENTS 5 )
    ALLOCATE EXTENT ( SIZE 100K DATAFILE ’empfile2’ INSTANCE 2 );

Dynamically Allocating Extents
This section explains how to use the !blocks parameter of GC_FILES_TO_LOCKS to

dynamically allocate blocks to a free list from the high water mark within a lock

boundary. It covers:

■ Translation of Data Block Address to Lock Name

■ !blocks with ALLOCATE EXTENT Syntax

Translation of Data Block Address to Lock Name
As described in the "Allocating PCM Instance Locks" chapter, the syntax for setting

the GC_FILES_TO_LOCKS parameter specifies the translation between the

database address of a block, and the lock name that will protect it. Briefly, the

syntax is:

GC_FILES_TO_LOCKS = "{ file_list=#locks [!blocks] [EACH] [:] } ..."

The following entry indicates that 1000 distinct lock names should be used to

protect the files in this bucket. The data in the files is protected in groups of 25

blocks.

   GC_FILES_TO_LOCKS = "1000!25"

!blocks  with ALLOCATE EXTENT Syntax
Similarly, the !blocks parameter enables you to control the number of blocks

available for use within an extent. (To be available, blocks must be put onto a free

list). You can use !blocks to specify the rate at which blocks are allocated within an

extent, up to 255 blocks at a time. Thus,

   GC_FILES_TO_LOCKS = 1000!10

Means 10 blocks will be available each time an instance requires the allocation of

blocks.



Identifying and Deallocating Unused Space

8-14 Oracle8i Parallel Server Administration, Deployment, and Performance

Identifying and Deallocating Unused Space
This section covers:

■ Identifying Unused Space

■ Deallocating Unused Space

■ Space Freed by Deletions or Updates

Identifying Unused Space
The DBMS_SPACE package contains procedures with which you can determine the

amount of used and unused space in the free list groups in a table. In this way you

can determine which instance needs to begin allocating space again. Create the

package using the DBMSUTIL.SQL script as described in the Oracle8i Utilities.

Deallocating Unused Space
Unused space you have allocated to an instance using the ALLOCATE EXTENT

command cannot be deallocated. This is because it exists below the high water

mark.

Unused space can be deallocated from the segment, however, if the space exists

within an extent that was allocated dynamically above the high water mark. You

can use DEALLOCATE UNUSED with the ALTER TABLE or ALTER INDEX

statement to trim the segment to the high water mark.

Space Freed by Deletions or Updates
Blocks freed by deletions or by updates that decreased the size of rows go to the free

list and free list group of the process that deletes them.

See Also: Chapter 9 for more information about the ALLOCATE

EXTENT syntax.



Setting Instance Locks 9-1

9
Setting Instance Locks

This chapter explains how to set instance locks. It contains the following topics:

■ Setting GC_FILES_TO_LOCKS: PCM Locks for Each Data File

■ Tips for Setting GC_FILES_TO_LOCKS

■ Setting Other GC_* Parameters

■ Tuning PCM Locks

■ Lock Names and Lock Name Formats



Setting GC_FILES_TO_LOCKS: PCM Locks for Each Data File

9-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Data File
Set the GC_FILES_TO_LOCKS initialization parameter to specify the number of

Parallel Cache Management (PCM) locks covering data blocks in a data file or set of

data files. This section covers:

■ GC_FILES_TO_LOCKS Syntax

■ Fixed Lock Examples

■ Releasable Lock Examples

■ Guidelines for Setting GC_FILES_TO_LOCKS

GC_FILES_TO_LOCKS Syntax
The syntax for setting the GC_FILES_TO_LOCKS parameter specifies the

translation between the database address and class of a database block, and the lock

name protecting it. You cannot specify this translation for files not mentioned in the

GC_FILES_TO_LOCKS parameter.

Note: Whenever you add or resize a data file, create a tablespace,

or drop a tablespace and its data files, adjust the value of

GC_FILES_TO_LOCKS before restarting Oracle with Parallel

Server enabled.

See Also: Oracle8i Parallel Server Concepts to understand how

Oracle determines the number of data blocks that are covered by a

single PCM lock.



Setting GC_FILES_TO_LOCKS: PCM Locks for Each Data File

Setting Instance Locks 9-3

The syntax for setting this parameter is:

GC_FILES_TO_LOCKS="{file_list=#locks[!blocks][R][EACH][:]} . . ."

where:

In addition to controlling the mapping of PCM locks to data files,

GC_FILES_TO_LOCKS controls the number of locks in the default bucket. Oracle

uses the default bucket for all files not explicitly mentioned in

GC_FILES_TO_LOCKS. You can use a value of zero in setting this parameter, and

the default is "0=0". For example, "0=100", "0=100R", "0-9=100EACH". By default,

locks in this bucket are releasable; you can however, also use fixed locks.

You can specify releasable PCM locks by using the R option with the

GC_FILES_TO_LOCKS parameter. Oracle takes 1:N releasable PCM locks from the

pool of GC_RELEASABLE_LOCKS.

REACH is a keyword that combines "R" with the word "EACH". For example,

GC_FILES_TO_LOCKS="0-9=100REACH". EACHR is not a valid keyword.

file_list file_list specifies a single file, range of files, or list of files and

ranges as follows: fileidA[-fileidC][,fileidE[-fileidG]] ...

Query the data dictionary view DBA_DATA_FILES to find the

correspondence between file names and file ID numbers.

#locks Sets the number of PCM locks to assign to file_list. A value of

zero (0) for #locks means that releasable locks will be used

instead of fixed locks.

!blocks Specifies the number of contiguous data blocks to be covered

by each lock.

EACH Specifies #locks as the number of locks to be allocated to each file

in file_list.

R Specifies that the locks are releasable: they may be released by

the instance when no longer needed. Releasable PCM locks are

taken from the pool GC_RELEASABLE_LOCKS.

Note: GC_ROLLBACK_LOCKS uses the same syntax. Do not use

spaces within the quotation marks of the GC_FILES_TO_LOCKS

parameter.



Setting GC_FILES_TO_LOCKS: PCM Locks for Each Data File

9-4 Oracle8i Parallel Server Administration, Deployment, and Performance

Omitting EACH and "!blocks" means that #locks PCM locks are allocated collectively

to file_list and individual PCM locks cover data blocks for every file in file_list.
However, if any data file contains fewer data blocks than the number of PCM locks,

some PCM locks will not cover a data block in that data file.

The default value for !blocks is 1. When you specify blocks, contiguous data blocks

are covered by each one of the #locks PCM locks. To specify a value for blocks, you

must use the "!" separator. You would primarily specify blocks, and not specify the

EACH keyword to allocate sets of PCM locks to cover multiple data files. You can

use blocks to allocate a set of PCM locks to cover a single data file where PCM lock

contention on that data file is minimal, thus reducing PCM lock management.

Always set the !blocks value to avoid interfering with the data partitioning gained

by using free list groups. Normally you do not need to pre-allocate disk space.

When a row is inserted into a table and new extents need to be allocated,

contiguous blocks specified with !blocks in GC_FILES_TO_LOCKS are allocated to

the free list group associated with an instance.

Fixed Lock Examples
For example, you can assign 300 locks to file 1 and 100 locks to file 2 by adding the

following line to the parameter file of an instance:

   GC_FILES_TO_LOCKS = "1=300:2=100"

The following entry specifies a total of 1500 locks: 500 each for files 1, 2, and 3:

   GC_FILES_TO_LOCKS = "1-3=500EACH"

By contrast, the following entry specifies a total of only 500 locks spread across the

three files:

   GC_FILES_TO_LOCKS = "1-3=500"

The following entry indicates that 1000 distinct locks should be used to protect

file 1. The data in the files is protected in groups of 25 blocks.

   GC_FILES_TO_LOCKS = "1=1000!25"

Releasable Lock Examples
To specify releasable locks with low granularity for data blocks with a group factor,

specify the following in the parameter file of an instance:

   GC_FILES_TO_LOCKS="1=0!4"



Setting GC_FILES_TO_LOCKS: PCM Locks for Each Data File

Setting Instance Locks 9-5

This specifies locks with a group factor of 4 for file 1.

The following entry indicates that 1000 releasable locks protect file 1 in groups of 25

blocks:

   GC_FILES_TO_LOCKS = "1=1000!25R"

Guidelines for Setting GC_FILES_TO_LOCKS
Use the following guidelines to set the GC_FILES_TO_LOCKS parameter:

■ Always specify all data files in GC_FILES_TO_LOCKS.

■ Assign the same value to GC_FILES_TO_LOCKS for each instance accessing the

same database.

■ The number of PCM locks you specify for a data file should never exceed the

number of blocks in the data file. This ensures that if a data file increases in size,

the new blocks can be covered by the extra PCM locks.

If a data file is defined with the AUTOEXTEND clause or if you issue the

ALTER DATABASE... DATAFILE... RESIZE statement, then you should

regularly monitor the data file for an increase in size. If the data file’s size is

increasing, then update the parameter GC_FILES_TO_LOCKS as soon as

possible. Then shut down and restart Oracle Parallel Server.

If the number of PCM locks specified for file_list is less than the actual number

of data blocks in the data files, the DLM uses some PCM locks to cover more

datablocks than specified. This can diminish performance, so always ensure

that sufficient PCM locks are available:

■ When you add new data files, always specify their locks in

GC_FILES_TO_LOCKS to avoid automatic allocation of the "spare" PCM locks.

At some point, you may need to add a data file using the ALTER

TABLESPACE... ADD DATAFILE statement, with Oracle Parallel Server

running. If you do this, update the setting for GC_FILES_TO_LOCKS as soon as

possible, then shut down and restart Oracle Parallel Server.

■ To reduce resource contention by creating disjoint data to be accessed by

different instances, place the data files on different disks. Use

Note: Restarting Oracle Parallel Server is not required, but if you

do not shut down and restart it, the locks will cover more blocks.



Tips for Setting GC_FILES_TO_LOCKS

9-6 Oracle8i Parallel Server Administration, Deployment, and Performance

GC_FILES_TO_LOCKS to allocate PCM locks to cover the data blocks in the

separate data files.

■ Specify relatively fewer PCM locks for blocks containing infrequently modified

index data. Place indexes in their own tablespace or in their own data files

within a tablespace so a separate set of PCM locks can be assigned to them. Use

only one lock for read-only indexes.

■ Files not mentioned in GC_FILES_TO_LOCKS use releasable locks.

Tips for Setting GC_FILES_TO_LOCKS
Setting GC_FILES_TO_LOCKS is an important tuning task in Oracle Parallel Server.

This section covers some simple checks to help ensure your parameter settings are

providing the best performance. This section covers:

■ Providing Room for Growth

■ Checking for Valid Number of Locks

■ Checking for Valid Lock Assignments

■ Setting Tablespaces to Read-Only

■ Checking File Validity

■ Adding Data Files Without Changing Parameter Values

Providing Room for Growth
Sites that run continuously cannot afford to shut down to permit adjustment of

parameter values. Therefore, when you size these parameters, remember to provide

room for growth or room for files to extend.

Additionally, whenever you add or resize a data file, create a tablespace, or drop a

tablespace and its data files, adjust the value of GC_FILES_TO_LOCKS before

restarting Oracle with Parallel Server enabled.

Checking for Valid Number of Locks
Check that the number of locks allocated is not larger than the number of data

blocks allocated.



Tips for Setting GC_FILES_TO_LOCKS

Setting Instance Locks 9-7

Check the FILE_LOCK data dictionary view to see the number of locks allocated

per file. Check the V$DATAFILE view to see the maximum size of the data file.

Checking for Valid Lock Assignments
To avoid lock assignment problems:

■ Do not assign locks to files that only hold rollback segments.

■ Do not assign locks to files that only hold temporary data for internal

temporary tables.

■ Group read-only objects together and assign only one lock to that file. This only

works if there is absolutely no writing done to the file or even if changes are

made to the blocks, such as those done during block clean out.

Setting Tablespaces to Read-Only
If a tablespace is read-only, consider setting it to read-only in Oracle. This ensures

that no write to the database occurs and no PCM locks are used on the tablespace.

The exception to this is a single lock you can assign to ensure the tablespace does

not have to contend for spare locks.

Checking File Validity
Determine the number of objects in each file using the following syntax:

  SELECT E.FILE_ID      FILE_ID,
         COUNT(DISTINCT OWNER||NAME ) OBJS
    FROM DBA_EXTENTS     E,
         EXT_TO_OBJ V
   WHERE E.FILE_ID = FILE#
     AND E.BLOCK_ID >= LOWB
     AND E.BLOCK_ID <= HIGHB
     AND KIND != ’FREE EXTENT’
     AND KIND != ’UNDO’
   GROUP BY E.FILE_ID;

Note: Blocks currently allocated may be zero if you are about to

insert into a table.

See Also: Oracle8i Reference for more information about

FILE_LOCK and V$DATAFILE.



Setting Other GC_* Parameters

9-8 Oracle8i Parallel Server Administration, Deployment, and Performance

Examine the files storing multiple objects. Run CATPARR.SQL to use the

EXT_TO_OBJ view. Make sure the objects can coexist in the same file. That is, make

sure the GC_FILES_TO_LOCKS settings are compatible.

Adding Data Files Without Changing Parameter Values
Consider the consequences for PCM lock distribution if you add a data file to the

database. You cannot assign locks to this file without shutting down the instance,

changing the GC_FILES_TO_LOCKS parameter, and restarting the database. This

may not be possible for a production database. In this case, Oracle gives the data file

locks from the pool of remaining locks, and the file must contend with all files you

omit from your setting for the GC_FILES_TO_LOCKS parameter.

Setting Other GC_* Parameters
This section describes how to set two additional GC_* parameters:

■ Setting GC_RELEASABLE_ LOCKS

■ Setting GC_ROLLBACK_ LOCKS

Setting GC_RELEASABLE_ LOCKS
For GC_RELEASABLE_LOCKS, Oracle recommends that you use the default

setting. This is the value of DB_BLOCK_BUFFERS. This recommendation generally

provides optimal performance. However, you can set GC_RELEASABLE_LOCKS to

less than the default to save memory. Too low a value for

GC_RELEASABLE_LOCKS could adversely affect performance.

The statistic "global cache freelist waits" in the V$SYSSTAT view shows the number

of times the system runs out of releasable locks. If this occurs, as indicated by a

non-zero value for global cache freelist waits, increase the value of

GC_RELEASABLE_LOCKS.

Setting GC_ROLLBACK_ LOCKS
If you are using fixed locks, check that the number of locks allocated is not larger

than the number of data blocks allocated. Blocks currently allocated may be zero if

you are about to insert into a table. Find the number of blocks allocated to a rollback

segment by entering:

   SELECT S.SEGMENT_NAME NAME,
         SUM(R.BLOCKS) BLOCKS



Setting Other GC_* Parameters

Setting Instance Locks 9-9

    FROM DBA_SEGMENTS S,
         DBA_EXTENTS R
   WHERE S.SEGMENT_TYPE = ’ROLLBACK’
     AND S.SEGMENT_NAME = R.SEGMENT_NAME
   GROUP BY S.SEGMENT_NAME;

This query displays the number of blocks allocated to each rollback segment. When

there are many unnecessary forced reads/writes on the undo blocks, try using

releasable locks. The default setting for GC_ROLLBACK_LOCKS is:

   GC_ROLLBACK_LOCKS = "0-128=32!8REACH"

This protects rollback segments 0 through 129 with locks. The first 129 rollback

segments have 32 releasable locks, with a grouping of 8. In other words, each lock

covers 8 contiguous blocks.

The parameter GC_ROLLBACK_LOCKS takes arguments much like the

GC_FILES_TO_LOCKS parameter, for example:

GC_ROLLBACK_LOCKS="0=100:1-10=10EACH:11-20=20EACH"

In this example rollback segment 0, the system rollback segment, has 100 locks.

Rollback segments 1 through 10 have 10 locks each, and rollback segments 11

through 20 have 20 locks each.

The first of the following examples is invalid and the second is valid, since each of

the undo segments has 100 locks to itself:

Invalid:

   GC_ROLLBACK_LOCKS="1-10=100"

Valid:

   GC_ROLLBACK_LOCKS="1-10=100EACH"

Note: You cannot use GC_ROLLBACK_LOCKS to make undo

segments share locks.



Tuning PCM Locks

9-10 Oracle8i Parallel Server Administration, Deployment, and Performance

Tuning PCM Locks
This section discusses several issues to consider before tuning PCM locks:

■ Detecting False Pinging

■ Determining How Much Time PCM Lock Conversions Require

■ Identifying Sessions That Are Waiting for PCM Lock Conversions to Complete

■ This section covers the following topics:

Detecting False Pinging
False pinging occurs when you down-convert a lock element protecting two or

more blocks that are concurrently updated from different nodes. Assume that each

node is updating a different block covered by the same lock. In this event, each

node must ping both blocks, even though the node is updating only one of them.

This is necessary because the same lock covers both blocks.

No statistics are available to show false pinging activity. To assess false pinging,

you can only consider circumstantial evidence. This section describes activity you

should look for.

The following SQL statement shows the number of lock operations causing a write,

and the number of blocks actually written:

   SELECT VALUE/(A.COUNTER + B.COUNTER + C.COUNTER) "PING RATE"
     FROM V$SYSSTAT,
       V$LOCK_ACTIVITY A,
       V$LOCK_ACTIVITY B,
       V$LOCK_ACTIVITY C
   WHERE A.FROM_VAL = ’X’
       AND A.TO_VAL = ’NULL’
       AND B.FROM_VAL = ’X’
       AND B.TO_VAL = ’S’
       AND C.FROM_VAL = ’X’
       AND C.TO_VAL = ’SSX’
       AND NAME = ’DBWR forced writes’;



Tuning PCM Locks

Setting Instance Locks 9-11

Table 9–1 shows how to interpret the ping rate.

Use this formula to calculate the percentage of false pings:

Then check the total number of writes and calculate the number due to false pings:

   SELECT Y.VALUE "ALL WRITES",
       Z.VALUE "PING WRITES",
       Z.VALUE * pingrate "FALSE PINGS",
   FROM V$SYSSTAT Z,
       V$SYSSTAT Y,
   WHERE Z.NAME = ’DBWR forced writes’
   AND Y.NAME = ’physical writes’;

Here, ping_rate is given by the following SQL statement:

   CREATE OR REPLACE VIEW PING_RATE AS
   SELECT ((VALUE/(A.COUNTER+B.COUNTER+C.COUNTER))-1)/
       (VALUE/(A.COUNTER+B.COUNTER+C.COUNTER)) RATE
   FROM V$SYSSTAT,
       V$LOCK_ACTIVITY A,
       V$LOCK_ACTIVITY B,
       V$LOCK_ACTIVITY C
   WHERE A.FROM_VAL = ’X’
       AND A.TO_VAL   = ’NULL’
       AND B.FROM_VAL = ’X’
       AND B.TO_VAL   = ’S’
       AND C.FROM_VAL = ’X’

Table 9–1 Interpreting the Ping Rate

Ping Rate Meaning

< 1 False pings may be occurring, but there are more lock operations than

writes for pings. DBWR is writing out blocks fast enough, causing no
write for a lock activity. This is also known as a "soft ping", meaning
I/O activity is not required for the ping, only lock activity.

= 1 Each lock activity involving a potential write causes the write to occur.
False pinging may be occurring.

> 1 False pings are definitely occurring.

*  100
(ping_rate - 1)

ping_rate



Tuning PCM Locks

9-12 Oracle8i Parallel Server Administration, Deployment, and Performance

   AND C.TO_VAL   = ’SSX’
   AND NAME = ’DBWR forced writes’;

The goal is not only to reduce overall pinging, but also to reduce false pinging. To

do this, look at the distribution of instance locks in GC_FILES_TO_LOCKS and

check the data in the files.

Determining How Much Time PCM Lock Conversions Require
Be sure to check the amount of time needed for a PCM lock acquisition. This time

differs across systems. Enter the following SQL statement to find the lock

acquisition duration:

   SELECT *
   FROM V$SYSTEM_EVENT
   WHERE EVENT LIKE ’global cache%’

Oracle responds with output similar to:

EVENT                    TOTAL_WAITS TOTAL_TIMEOUTS TIME_WAITED AVERAGE_WAIT
----------------------------------------------------------------------------
global cache lock open s         743              0         494    .66487214
global cache lock open x        5760              0        5945   1.03211806
global cache lock null to s      263              0         697   2.65019011
global cache lock null to x     2149              0        7804   3.63145649
global cache lock s to x        1427              0        1394   .976874562
global cache cr request        25248              5        4729   .187301965
global cache lock busy            21              0          46   2.19047619
global cache bg acks               2              0           0            0

Identifying Sessions That Are Waiting for PCM Lock Conversions to Complete
Enter the following SQL statement to determine which sessions are currently

waiting and which have just waited for a PCM lock conversion to complete:

   SELECT *
   FROM V$SESSION_WAIT
   WHERE EVENT LIKE ’ global cache% ’ AND ’wait_time = 0’



PCM and Non-PCM Lock Names and Formats

Setting Instance Locks 9-13

PCM and Non-PCM Lock Names and Formats
This section covers the following topics:

■ Lock Names and Lock Name Formats

■ PCM Lock Names

■ Non-PCM Lock Names

Lock Names and Lock Name Formats
Oracle names all enqueues and instance locks using one of the following formats:

■ type ID1 ID2

■ type, ID1, ID2

■ type (ID1, ID2)

where:

For example, a space management lock might be named ST00. A PCM lock might be

named BL 1 900.

The V$LOCK table lists local and global Oracle enqueues currently held or

requested by the local instance. The "lock name" is actually the name of the

resource; locks are taken out against the resource.

type A two-character type name for the lock type, as described in

the V$LOCK table.

ID1 The first lock identifier, used by the DLM. The convention for

this identifier differs from one lock type to another.

ID2 The second lock identifier, used by the DLM. The convention

for this identifier differs from one lock type to another.



PCM and Non-PCM Lock Names and Formats

9-14 Oracle8i Parallel Server Administration, Deployment, and Performance

PCM Lock Names
All PCM locks are Buffer Cache Management locks. Buffer Cache Management

Locks are of type "BL". The syntax of PCM lock names is type ID1 ID2, where:

Some example PCM lock names are:

Non-PCM Lock Names
Non-PCM locks have many different names. Table 9–2 contains a list of the names:

type Is always BL because PCM locks are buffer locks.

ID1 For fixed locks, ID2 is the lock element (LE) index number

obtained by hashing the block address (see the

V$LOCK_ELEMENT fixed view). For releasable locks, ID2 is

the database address of the block.

ID2 The block class.

BL (100, 1) This is a data block with lock element 100.

BL (1000, 4) This is a segment header block with lock element 1000.

BL (27, 1) This is an undo segment header with rollback segment #10. The

formula for the rollback segment is 7 + (10 * 2).

Table 9–2 Non-PCM Lock Types and Names

Type Lock Name

CF Controlfile Transaction

CI Cross-Instance Call Invocation

DF data file

DL Direct Loader Index Creation

DM Database Mount

DX Distributed Recovery

FS File Set

KK Redo Log "Kick"

IN Instance Number

IR Instance Recovery



PCM and Non-PCM Lock Names and Formats

Setting Instance Locks 9-15

IS Instance State

MM Mount Definition

MR Media Recovery

IV Library Cache Invalidation

L[A-P] Library Cache Lock

N[A-Z] Library Cache Pin

Q[A-Z] Row Cache

PF Password File

PR Process Startup

PS Parallel Slave Synchronization

RT Redo Thread

SC System Commit Number

SM SMON

SN Sequence Number

SQ Sequence Number Enqueue

SV Sequence Number Value

ST Space Management Transaction

TA Transaction Recovery

TM DML Enqueue

TS Temporary Segment (also Table-Space)

TT Temporary Table

TX Transaction

UL User-Defined Locks

UN User Name

WL Begin written Redo Log

XA Instance Registration Attribute Lock

XI Instance Registration Lock

Table 9–2 Non-PCM Lock Types and Names

Type Lock Name



PCM and Non-PCM Lock Names and Formats

9-16 Oracle8i Parallel Server Administration, Deployment, and Performance

See Also: Oracle8i Reference for descriptions of non-PCM locks.



Ensuring DLM Capacity for Locks and Resources 10-1

10
Ensuring DLM Capacity for Locks and

Resources

To reduce contention for shared resources and to gain maximum Oracle Parallel

Server performance, ensure that the Distributed Lock Manager is adequately

configured for all the locks and resources that your system requires. This chapter

covers the following topics:

■ Overview of Planning Distributed Lock Manager Capacity

■ Planning Distributed Lock Manager Capacity

■ Adjusting Oracle Initialization Parameters

■ Minimizing Table Locks to Optimize Performance

When you have finished adjusting your system’s settings for locks and resources,

you can use SQL*Loader to load data into your database as described under the

topic:

■ Using SQL*Loader

See Also: Oracle8i Parallel Server Concepts for an overview of

Parallel Cache Management and non-Parallel Cache Management

locks.



Overview of Planning Distributed Lock Manager Capacity

10-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Overview of Planning Distributed Lock Manager Capacity
Planning the allocation of Parallel Cache Management (PCM) locks alone is not

sufficient to manage locks on your system. Besides explicitly allocating PCM locks,

you must continually monitor the Distributed Lock Manager to ensure it is

adequately configured. You must do this on each node for all required PCM and

non-PCM locks and resources. Consider also that larger databases and higher

degrees of parallelism require increased demands for many resources.

Many different types of non-PCM locks exist, and each is handled differently.

Although you cannot directly adjust their number, you can estimate the overall

number of non-PCM resources and locks required and adjust the LM_* or GC_*

initialization parameters, or both, to guarantee adequate space. You also have the

option of minimizing table locks to optimize performance.

Planning Distributed Lock Manager Capacity
Distributed Lock Manager capacity is determined by the settings for the LM_RESS

and LM_LOCKS parameters. The Distributed Lock Manager automatically

calculates values for LM_RESS and LM_LOCKS based on other parameter settings

in your initialization parameter file. The settings that Oracle makes for LM_RESS

and LM_LOCKS appear in your alert.log file at startup. These settings,

however, are only estimates because enqueue resource usage is application

dependent.

If your shared pool runs out space, or if the maximum utilization shown in the

V$RESOURCE_LIMIT view is greater than the values Oracle sets for LM_RESS and

LM_LOCKS, increase your settings for LM_RESS and LM_LOCKS and re-examine

the statistics in V$RESOURCE_LIMIT. Otherwise, you do not need to set LM_RESS

and LM_LOCKS.

Avoiding Dynamic Allocation of Resources and Locks
If the required number of locks or resources increases beyond the amount Oracle

initially allocates, Oracle will allocate additional locks and resources from the

System Global Area shared pool. This feature prevents the instance from stopping.

Dynamic allocation causes Oracle to write a message to the alert file indicating that

you should adjust the initialization parameters for the next time the database is

started. Since performance and memory usage may be adversely affected by

dynamic allocation, it is highly recommended that you accurately compute your

lock and resource needs.



Minimizing Table Locks to Optimize Performance

Ensuring DLM Capacity for Locks and Resources 10-3

Recommended SHARED_POOL_SIZE Settings
The recommended default value for SHARED_POOL_SIZE is 16MB for 64-bit

applications and 8MB for 32-bit applications.

Adjusting Oracle Initialization Parameters
Another way to ensure your system has enough space for the required non-PCM

locks and resources is to adjust the values of the following Oracle initialization

parameters:

■ DB_BLOCK_BUFFERS

■ DB_FILES

■ DML_LOCKS

■ PARALLEL_MAX_SERVERS

■ PROCESSES

■ SESSIONS

■ TRANSACTIONS

Do not, however, specify actual parameter values considerably greater than needed

for each instance. Setting these parameters unnecessarily high incurs overhead.

Minimizing Table Locks to Optimize Performance
Obtaining table locks, such as DML locks, for inserts, deletes, and updates can

diminish performance in Oracle Parallel Server. Locking a table in Oracle Parallel

Server is undesirable because all instances holding locks on the table must release

those locks. Consider disabling these locks entirely using one of the two methods

described under the following headings:

■ Disabling Table Locks

■ Setting DML_LOCKS to Zero

Note: If you disable all table locks, you cannot perform DDL

commands against either the instance or the table.



Minimizing Table Locks to Optimize Performance

10-4 Oracle8i Parallel Server Administration, Deployment, and Performance

Disabling Table Locks
To prevent users from acquiring table locks, use the following statement:

   ALTER TABLE table_name  DISABLE TABLE LOCK

Users attempting to lock a table when its table lock is disabled will receive an error.

To re-enable table locking, use the following statement:

   ALTER TABLE table_name  ENABLE TABLE LOCK

Once you execute this syntax, all currently executing transactions commit before

enabling the table lock. The statement does not need to wait for new transactions

starting after issuing the ENABLE statement.

To determine whether a table has its table lock enabled or disabled, query the

column TABLE_LOCK in the data dictionary table USER_TABLES. If you have

select privilege on DBA_TABLES or ALL_TABLES, you can query the table lock

state of other users tables.

Setting DML_LOCKS to Zero
Table locks are set with the initialization parameter DML_LOCKS. If the DROP

TABLE, CREATE INDEX, and LOCK TABLE statements are not needed, set

DML_LOCKS to zero to minimize lock conversions and achieve maximum

performance.

Note: If DML_LOCKS is set to zero on one instance, you must set

it to zero on all instances. With other values, this parameter need

not be identical on all instances.



Using SQL*Loader

Ensuring DLM Capacity for Locks and Resources 10-5

Using SQL*Loader
Once you have configured your Distributed Lock Manager, you are ready to load

data into the database. An efficient method of loading data is to use SQL*Loader.

With SQL*Loader, you can use either conventional or direct path loading for Oracle

Parallel Server databases. However, each method has advantages and

disadvantages.

The conventional path method imposes identical data integrity rules as Oracle

imposes on regular user-based inserts. Redo logs, rollback segments, indexes, and

triggers function as they would during normal insert processing. Because overall

data integrity is more important than processing speed, Oracle recommends using

the conventional path method for data loads unless it is critical that you reduce the

duration of load processing.

When using the conventional path method and running loads in parallel, you

should avoid:

■ Read contention on input files

■ Write contention on affected data files

■ Saturating the CPU of any node

■ Running out of space for the required extents

SQL*Loader’s direct path method bypasses most processing within the System

Global Area. When SQL*Loader adds rows to tables, Oracle does not record the

rows in rollback segments. Oracle therefore cannot create read-consistent blocks for

queries from the new data. However, users can read new records after the data is

written to disk.

Parallel direct loads can write block images into the same data file block addresses.

To avoid this, use the PARALLEL keyword to set a flag in the control file. Each

parallel SQL*Loader session checks the flag to ensure there is not a non-parallel

direct load running against the same table. This forces Oracle to create new extents

for each session.

See Also: Oracle8i Utilities for more information on SQL*Loader.



Using SQL*Loader

10-6 Oracle8i Parallel Server Administration, Deployment, and Performance



PartIV
        Oracle Parallel Server Performance

Monitoring and Tuning

Part Four describes how to monitor performance statistics and adjust parameters to

improve Oracle Parallel Server performance. It contains the following chapters:

■ Chapter 11, "General Tuning Recommendations"

■ Chapter 12, "Tuning Oracle Parallel Server and Inter-Instance Performance"





General Tuning Recommendations 11-1

11
General Tuning Recommendations

This chapter provides an overview of Oracle Parallel Server tuning issues by

presenting a general methodology with which you can tune your Oracle Parallel

Server applications. This chapter covers the following topics:

■ Overview of Tuning Oracle Parallel Server

■ Statistics for Monitoring Oracle Parallel Server Performance

■ Determining the Costs of Synchronization

■ Measuring Global and Local Work Ratios

■ Calculating the Cost of Global Cache Synchronization Due to Lock Contention

■ Resolving Problems in Oracle Parallel Server-Based Applications

See Also: Oracle8i Parallel Server Setup and Configuration Guide for

more information about performance monitoring and tuning with

Oracle Parallel Server Management.



Overview of Tuning Oracle Parallel Server

11-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Overview of Tuning Oracle Parallel Server
With experience, you can anticipate many performance problems before deploying

your Oracle Parallel Server applications. Some single-instance tuning practices are

valid when tuning Oracle Parallel Server applications. However, you must also

effectively tune the buffer cache, shared pool, and your shared disk subsystems

with Parallel Server-specific goals in mind.

Oracle Parallel Server introduces parameters that are not used in single-instance

environments. Many of these are tunable parameters that can significantly enhance

Parallel Server performance when you properly set them. However, even the most

effective tuning cannot overcome problems caused by poor analysis or database

and application design flaws.

Tuning Oracle Parallel Server also requires monitoring several views and collecting

Parallel Server-specific statistics. Do this using the methods described in this

chapter.

Statistics for Monitoring Oracle Parallel Server Performance
This section describes the statistics that you can use for specifically monitoring and

tuning Oracle Parallel Server applications. Topics in this section include:

■ Contents of V$SYSSTAT and V$SYSTEM_EVENT

■ Recording Statistics for Tuning

Oracle maintains many statistics in local System Global Areas. Access these

statistics using SQL against dynamic performance views or V$ tables as described

in this chapter.

You can also use utilities such as UTLBSTAT and UTLESTAT to record statistics

over a period of time to capture them for specific measurement intervals. Statistics

are available as message request counters or as timed statistics. Message counters

include statistics showing the number of a certain type of lock conversion. Oracle

Parallel Server timed statistics reveal, for example, the total or average time waited

for read and write I/O on particular operations.



Statistics for Monitoring Oracle Parallel Server Performance

General Tuning Recommendations 11-3

The most significant statistics from an Oracle Parallel Server perspective are:

■ Cache-related statistics such as consistent gets, db block gets, db block changes,

and waits for busy buffers

■ I/O statistics such as physical reads, physical writes, cross-instance writes, and

wait times for reads and writes

■ Global cache lock requests and wait times, such as global cache gets, global

cache converts, and waits for events such as null-to-X conversions

Two of the most important views showing Oracle Parallel Server-specific statistics

are V$SYSSTAT and V$SYSTEM_EVENT.

Contents of V$SYSSTAT and V$SYSTEM_EVENT
The following section describes the contents of V$SYSSTAT and

V$SYSTEM_EVENT and lists other Oracle Parallel Server-specific views.

Statistics in V$SYSSTAT
The V$SYSSTAT view includes the following statistics:

■ consistent gets

■ db block gets

■ db block changes

■ physical reads

■ physical writes

■ DBWR cross-instance writes

■ global cache get

■ global cache converts

■ global cache get time

■ global cache convert time

■ global cache cr blocks received



Statistics for Monitoring Oracle Parallel Server Performance

11-4 Oracle8i Parallel Server Administration, Deployment, and Performance

■ global cache cr block receive time

■ global cache cr timeouts

■ global cache convert timeouts

■ CPU used by this session

Statistics in V$SYSTEM_EVENT
The V$SYSTEM_EVENT view contains the following statistics:

■ db file sequential read

■ db file scattered read

■ db file parallel write

■ log file sync

■ global cache lock null to x

■ global cache lock null to s

■ global cache lock s to x

■ global cache lock open x

■ global cache lock open s

■ global cache cr request

■ global cache lock busy

■ buffer busy

■ buffer busy due to global cache

■ enqueue

■ row cache

■ library cache pin

■ lkmgr wait for remote messages



Statistics for Monitoring Oracle Parallel Server Performance

General Tuning Recommendations 11-5

Other Parallel Server-Specific Views
Other important statistics relate to the following performance issues:

■ Buffer cache usage

■ Types of lock conversions

■ Lock activity with regard to block classes and files

■ Messages sent and received by the Distributed Lock Manager

These statistics appear in the following views:

■ V$CACHE

■ V$LOCK_ACTIVITY

■ V$CLASS_PING

■ V$FILE_PING

■ V$DLM_MISC

In addition to these views, you should analyze operating system statistics showing

CPU usage, disk I/O, and the amount of CPU used for certain background

processes such as LCK, LMD, BSP, DBW using procedures discussed in this

chapter.

Recording Statistics for Tuning
Oracle recommends that you record statistics about the rates at which certain events

occur. You should also record information about specific transactions within your

Oracle Parallel Server environment. To do this, you can use performance-oriented

utilities, such as UTLBSTAT and UTLESTAT, that compute statistic counts per

second and per transaction. You can also measure the number of statement

executions and the number of business transactions that applications submit.

For example, an insurance application might define a transaction as an insurance

quote. This transaction might be composed of several DML operations and queries.

If you know how many of these quotes your system processes in a certain time

interval, divide that value by the number of quotes completed in the interval. Do

this over a period of time to gauge performance.

This reveals an application profile in terms of the resources used per transaction

and the application workload. The counts per transaction are useful for detecting

changing workload patterns, while rates indicate the workload intensity.



Statistics for Monitoring Oracle Parallel Server Performance

11-6 Oracle8i Parallel Server Administration, Deployment, and Performance

Performance and Efficiency of Oracle Parallel Server Workloads
In Oracle Parallel Server, application performance and scalability are determined by

the rate and cost of synchronization between nodes. You can measure the costs by

identifying how effectively a transaction uses CPU resources. A transaction uses

CPU resources to:

■ Send and receive messages

■ Maintain locks and resources required to guarantee global cache coherency

■ Process additional I/O requests due to the invalidation of cache buffers

associated with ping processing

An additional cost is incurred waiting for I/O events and lock open or convert

requests. Conflicts for resources between local and remote transactions while

opening or converting a lock on a database resource can increase the cost of

synchronization.

As a general example, approximate the cost of a transaction or request using this

formula:

You can also calculate:

■ CPU time spent at the IPC layer

■ CPU time required to process lock requests

■ CPU spent for application processing, such as parsing SQL statements, fetching

rows, and sorting

■ CPU time spent in processing read and write I/O caused by synchronization

between nodes

Statistics about these events appear in V$ tables such as V$SYSTEM_EVENT. The

response time for each transaction depends on the number of requests for I/O and

locks, and on the time required to process the instructions, plus the delay or wait

time for each request.

Note: Delays associated with these events are called "waits".

+ + + +++CPUapps     CPUsyncio     CPUipc     CPUlocks     WAITsyncio     WAITipc     WAITlocks



Determining the Costs of Synchronization

General Tuning Recommendations 11-7

Contention on certain resources adds to the cost of each measurable component. For

example, increased disk service or queueing times due to:

■ Frequent I/O requests to certain disks

■ Contention for the same data or index blocks by local and remote transactions

can result in waits for busy buffers. This can in turn increase costs for each

transaction and add to the operating system overhead.

As described in Chapter 5, you can create Oracle Parallel Server applications that

are more scalable and that perform well enough to meet the service level

requirements of a user community by minimizing either the rate or the cost of

synchronization. In other words, strive to minimize inter-node synchronization and

communication requirements. Partitioning, for example, where you isolate portions

of an application that you can process by a group of transactions without

interference from other transactions, reduces the cost and rate of global

synchronization.

The choice of locking mechanisms and lock allocation, as described in Chapter 7,

also has an effect on the rate and cost of global cache coherence. Recent

optimizations in Oracle Parallel Server, such as Cache Fusion, attempt to reduce the

cost of operations across instances by decreasing the delays for requests for shared

or exclusive buffer access.

Determining the Costs of Synchronization
This section explains how to determine the cost incurred by synchronization and

coherence between instances due to additional CPU time, I/O and global lock

processing and contention. To do this, examine these groups of Oracle statistics:

■ Calculating CPU Service Time Required

■ Estimating I/O Synchronization Costs

■ Measuring Global Cache Coherence and Contention

■ Measuring Global and Local Work Ratios

■ Calculating the Cost of Global Cache Synchronization Due to Lock Contention



Determining the Costs of Synchronization

11-8 Oracle8i Parallel Server Administration, Deployment, and Performance

Calculating CPU Service Time Required
To derive the CPU service time required per transaction, divide the CPU used by a

session as shown in V$SYSSTAT by the number of user commits or the number of

business transactions. Note that this is the amount of time required by the user

process to execute in either user or kernel mode. This does not include the time

spent by the operating system kernel on behalf of the transaction.

This measure is useful for comparing how applications behave in single instance

environments running in exclusive mode to applications running in an Oracle

Parallel Server environment. This measure is also instrumental in comparing the

effect of different workloads and application design changes.

Estimating I/O Synchronization Costs
Refer to the V$SYSSTAT view for counts of the following requests:

■ DBWR cross-instance writes

■ physical writes

■ physical reads

Refer to the V$SYSTEM_EVENT view for time waited and average waits for the

following actions:

■ db file parallel write

■ db file sequential read

■ db file scattered read

To estimate the time waited for reads incurred by rereading data blocks that had to

be written to disk because of a request from another instance, multiply the statistic

(for example, the time waited for db file sequential reads) by the percentage of read

I/O caused by previous cache flushes as shown in this formula:

Where "lock buffers for read" is the value for lock converts from N to S derived from

V$LOCK_ACTIVITY and "physical reads" is from the V$SYSSTAT view.

lock buffers for read

physical reads



Determining the Costs of Synchronization

General Tuning Recommendations 11-9

Similarly, the proportion of the time waited for database file parallel writes caused

by pings can be estimated by multiplying db file parallel write time as found in

V$SYSTEM_EVENTS by:

Measuring Global Cache Coherence and Contention
Table 11–1 describes some global cache coherence-related views and the types of

statistics they contain.

For indicators of high contention or excessive delays, refer to the following statistics

and views:

■ global cache cr timeouts as found in V$SYSSTAT

■ global cache convert timeouts as found in V$SYSSTAT

Table 11–1 Global Cache Coherence and Contention Statistics and Their Views

View Statistics

Refer to V$SYSSTAT to count
requests for the actions shown
to the right.

global cache gets (count of new locks opened)

global cache converts (count of conversion for existing locks)

global cache cr blocks received (count of consistent read buffers received
from the BSP)

Note: Also refer to the convert type-specific rows in V$LOCK_ACTIVITY.

Refer to V$SYSSTAT for the
amount of time waited for the
actions shown to the right.

global cache get time (total processing time including waits)

global cache convert time (total processing time including waits)

global cache cr block receive time (includes waits)

Refer to V$SYSTEM_EVENT
for time waited for the events
shown to the right.

global cache lock null to X

global cache lock null to S

global cache lock S to X

global cache lock open X

global cache lock open S

global cache cr request

DBWR cross-instance writes

physical writes



Determining the Costs of Synchronization

11-10 Oracle8i Parallel Server Administration, Deployment, and Performance

■ global cache lock busy as found in V$SYSTEM_EVENT

■ buffer busy due to global cache as found in V$SYSTEM_EVENT

As mentioned, it is useful to maintain application profiles per transaction and per

unit of time. This allows you to compare two distinct workloads or to detect

changes in a workload. The rates are also helpful in determining capacities and for

identifying throughput issues. Oracle recommends that you incorporate the

following ratios of statistics in your performance monitoring scripts:

■ lock gets per transaction, for example, global cache gets per transaction

■ lock converts per transaction, for example, global cache converts per transaction

■ cr request per transaction, for example, global cache cr blocks received per

transaction

■ lock convert waits per transaction, the value shown in the TIME_WAITED

column in V$SYSTEM_EVENT

■ global cache lock null to x per transaction

■ global cache lock null to s per transaction

■ global cache lock s to x per transaction

■ lock open waits per transaction, for example, from the TIME_WAITED column

in V$SYSTEM_EVENT

■ global cache lock open x per transaction

■ global cache lock open per transaction

■ lock busy waits per transaction, for example, from the TIME_WAITED column

in V$SYSTEM_EVENT

■ global cache lock busy per transaction

Calculate the same statistics per second or minute by dividing the total counts or

times waited by the measurement interval.

Note: To record timed statistics, set the TIMED_STATISTICS

parameter to TRUE. Oracle records these statistics in hundredths of

seconds.



Measuring Global and Local Work Ratios

General Tuning Recommendations 11-11

Measuring Global and Local Work Ratios
The percentage of buffers accessed for global work or the percentage of I/O caused

by inter-instance synchronization can be important measures of how efficient your

application processes share data. It can also reveal whether the database is designed

for optimum scalability.

Use the following calculation to determine the percentage of buffer accesses for

local operations, in other words, reads and changes of database buffers that are not

subject to a lock conversion:

Similarly, compute the percentage of read and write I/O for local operations using

the following equations:

This calculation implies the percent of times DBWR writes for local work.

Also:

This calculation implies the number of percent reads by user processes for local

work only; it does not refer to forced reads.

In the previous formula, the physical read statistic from V$SYSSTAT is combined

with the "Lock buffers for read" value from V$LOCK_ACTIVITY. You can base the

local write ratio entirely on the corresponding values from V$SYSSTAT.

Apart from determining the proportion of local and global work (the degree of

partitioning) you can also use these percentages to detect changing workload

((consistent gets     db block gets)    (global cache gets     global cache converts)   100)

(consistent gets     db block gets)

+ +- *

+

(physical writes - (DBWR cross-instance writes))   100

physical writes

*

(physical reads - (lock buffers for read))   100

physical reads

*



Measuring Global and Local Work Ratios

11-12 Oracle8i Parallel Server Administration, Deployment, and Performance

patterns. Moreover, they represent the probability that a data block access is either

global or local. You can therefore use this information as a rough estimator in

scalability calculations.

In addition to these ratios, the proportion of delays due to unavailable buffers or

locks is easy to derive using the formula:

More generally:

For lock opens and converts, the percentage of waits that are caused by busy locks

(locks that are being acquired or released) can be indicative of either delays in

opening or converting locks or very high concurrency on a small set of buffers.

Once you identify a problem area, such as a high ratio of global busy waits, convert

and consistent read timeouts, or a high percentage of DBWR cross-instance writes,

you can obtain more detail about the problem by referring to these views:

■ V$FILE_PING

■ V$CACHE

■ V$CLASS_PING

The statistics in these views help identify the files and blocks shared by both

instances. These shared files may be responsible for the majority of the costs in

inter-instance synchronization and global cache coherency processing.

100   (buffer busy due to global cache)

buffer busy + buffer busy due to global cache

*

100   (buffer busy due to global cache)

consistent gets+db block gets

*

100   (time waited for global cache lock busy)

sum(time waited for global cache opens and global cache converts)

*



Calculating the Cost of Global Cache Synchronization Due to Lock Contention

General Tuning Recommendations 11-13

Calculating the Cost of Global Cache Synchronization Due to Lock
Contention

Reduced throughput and degradation of transaction response times are the result of

the increased costs of synchronization between instances. There are several possible

sources of such increased costs as described in this section under the following

headings:

■ Contention for the Same Data Blocks

■ Contention for Segment Headers and Free List Blocks

■ Contention for Resources Other Than Database Blocks

■ A Shortage of Locks

Contention for the Same Data Blocks
Contention for the same data blocks occurs if rows commonly accessed from

multiple instances are spread over a limited range of blocks. The probability of this

happening depends on the access distribution of the data within the table as a result

of the application’s behavior. The probability of contention can also depend on the

block size. For example, more rows fit into an 8K block than into a 4K block. The

PCTFREE defined for that particular table can also affect the level of contention. In

fact, database block size and PCTFREE can be part of your Oracle Parallel Server

design strategy: your goal is to reduce the number of rows per block and thus the

probability of conflicting access.

Indicators of very "hot" globally accessed blocks include:

■ A high percentage of buffer busy waits or buffer busy due to global cache waits

■ Frequent convert timeouts or consistent read timeouts

If you see a high proportion of global cache lock waits per transaction, consider

determining which files and blocks are accessed frequently from both nodes. The

following describes one method for identifying contended files.

Using V$CACHE, V$PING, and V$BH to Identify Contended Objects
The dynamic performance views V$CACHE, V$PING and V$BH have two

columns, FORCED_READS and FORCED_WRITES, that allow you to determine

which objects and blocks are used by both nodes.

The FORCED_WRITE column carries a count of how many times a certain block

was pinged out of the local buffer cache, that is, written to disk because the current



Calculating the Cost of Global Cache Synchronization Due to Lock Contention

11-14 Oracle8i Parallel Server Administration, Deployment, and Performance

version was requested by another instance. Correspondingly, the FORCED_READ

column tracks how frequently a particular block had to be reread from disk because

it was previously invalidated by an exclusive request from another instance. You

can also use V$FILE_PING to identify files that experience the most pinging.

Using V$FILE_PING to Identify Files with Excessive Pinging
Use the V$FILE_PING view to identify files containing blocks that are most

frequently written to due to pings. Once you have identified the files with the

highest ping rates, reconsider your locking policy for these files (fixed or releasable).

You may also want to consider whether you should physically distribute these files

to reduce I/O delays. Of course, the best strategy is to increase the percentage of

local work on the objects contained in the files, that is, to avoid pinging altogether.

Contention for Segment Headers and Free List Blocks
Contention for segment headers can occur when the headers for tables or indexes

have to be read and updated by many transactions at the same time. Usually this

happens when transactions are searching for blocks with enough free space to hold

the size of the data to be inserted or updated. Oracle also updates a segment header

if new extents or additional free blocks are added to the table.

New applications that insert a significant amount of data from multiple nodes can

become a serious performance bottleneck. This is because Oracle must copy the

segment header block containing the free lists into another instance’s cache. This

results in a single point of contention.

You can significantly improve this situation by creating free list groups for the

tables and indexes in question. The advantage of using free list groups is to

partition access to segment free lists according to instance. This reduces conflicts

between instances when the INSERT and DELETE rates are high.

Note: A frequently pinged block will be visible in the local buffer
caches of all instances in the cluster.



Calculating the Cost of Global Cache Synchronization Due to Lock Contention

General Tuning Recommendations 11-15

Contention for Resources Other Than Database Blocks
Contention for resources other than database blocks should be infrequent. However,

when this occurs, it will definitely have an adverse affect on performance. Usually,

there are two layers that may exhibit such problems:

■ The row cache or data dictionary cache

■ The library cache

Using Oracle sequences that are not cached, or using poorly configured space

parameters for a table or tablespace, may result in frequent changes to the data

dictionary. Rows from the data dictionary are stored in a separate cache and use a

different buffer format than that of the data buffer cache. If these objects are often

read and updated from both nodes, Oracle must invalidate them and write them to

disk. Unfortunately, these objects are often used in recursive, internal transactions

while other locks are held. Because of the complexity of such internal data

dictionary transactions, this processing can cause serious delays.

When this occurs, the values for "row cache lock" wait count and "time waited"

statistics in V$SYSTEM_EVENT increase; these become two of the most waited-for

events. The percentage of time waited for row cache locks should never be more

than 5% of the total wait time. To determine which objects in the row cache may be

causing the delays, query the V$ROWCACHE view. Oracle’s response to the query

is the name of the row cache object type, such as DC_SEQUENCES or DC_USED

EXTENTS, and the DLM requests and DLM conflicts for these objects. If the

conflicts exceed 10 to 15 percent of the requests and row cache lock wait time is

excessive, then take preventive action by caching sequence numbers, defragmenting

tablespaces, or by tuning space parameters.

Most frequently, problems occur when Oracle creates sequences without the

CACHE option. In these cases, the values for DC_SEQUENCES show high DLM

conflict rates. Frequent space management operations due to fragmented

tablespaces or inadequate extent sizes can result in pinging for

DC_USED_EXTENTS and DC_FREE_EXTENTS objects in the data dictionary cache.

If there are frequent changes to the data dictionary, many data blocks from the data

dictionary tables, normally from file number 1, can be found in each instance’s

buffer cache when you query V$CACHE or V$PING.

Library cache performance problems in Oracle Parallel Server are rare. They usually

manifest themselves as high wait times for "library cache pin" and could be caused

by the frequent reparsing of cursors or by the loading of procedures and packages.

Query the DLM column in the V$LIBRARYCACHE view to obtain more detail

about this problem. Cross-instance invalidations of library cache objects should be



Resolving Problems in Oracle Parallel Server-Based Applications

11-16 Oracle8i Parallel Server Administration, Deployment, and Performance

rare. However, such invalidations can occur if you drop objects referenced by a

cursor that is executed in two instances.

A Shortage of Locks
A shortage of locks or resources may occur if the database and the buffer cache are

large and if there is a constraint on memory. You can set the parameter

GC_RELEASABLE_LOCKS to a value lower than the default. This value should be

equal to the size of the buffer cache as determined by DB_BLOCK_BUFFERS. This

allows you to save memory for locks and resources can be saved.

However, if a lot of resources are used to maintain global cache coherency and the

free lists are depleted, locks need to be freed and reopened more frequently. An

increasing count of global cache lock free list waits and global cache gets or global

cache lock open events can indicate this. Waiting for locks to be freed or a higher

percentage of locks that are opened add to the cost incurred by synchronizing

instances and usually results in higher transaction response times and higher CPU

use.

Resolving Problems in Oracle Parallel Server-Based Applications
This section explains how to identify and resolve problems in Oracle Parallel

Server-based applications. It contains the following sections:

■ Query Tuning Tips

■ Query Tuning Tips

■ Application Tuning Tips

■ Contention Problems Specific to Parallel Server Environments

Query Tuning Tips
Query-intensive applications benefit from tuning techniques that maximize the

amount of data for each I/O request. Before trying these techniques, monitor the

performance both before and after implementing them to measure and assess their

success.

Large Block Size
Use a large block size to increase the number of rows that each operation retrieves.

A large block size also reduces the depth of your application’s index trees. Your



Resolving Problems in Oracle Parallel Server-Based Applications

General Tuning Recommendations 11-17

block size should be at least 8K if your database is used primarily for processing

queries.

Increase Value for DB_FILE_MULTIBLOCK_READ_COUNT
You should also set the value for DB_FILE_MULTIBLOCK_READ_COUNT to the

largest possible value. Doing this also improves the speed of full table scans by

reducing the number of reads required to scan the table. Note that your system I/O

is limited by the block size multiplied by the number of blocks read.

If you use operating system striping, set the stripe size to

DB_FILE_MULTIBLOCK_READ_COUNT multiplied by the DB_BLOCK_SIZE

times 2. If your system can differentiate index stripes from table data stripes, use a

stripe size of DB_BLOCK_SIZE time 2 for indexes.

Also remember to:

■ Use read-only tablespaces for data and indexes

■ Define tablespaces holding temporary segments as type TEMPORARY and use

a large blocking factor for PCM locks on data files containing tables that are

frequently fully scanned

Application Tuning Tips
Transaction-based applications generally write more data to disk than other

application types. You can use several methods to optimize transaction-based

applications. However, you cannot use these techniques on all types of systems.

After initiating any of these methods, monitor your application’s performance to

make sure it is acceptable.

To improve the ability of the database writer processes (DBWn) to write large

amounts of data quickly, use asynchronous I/O. Oracle8i uses multiple DBWn

processes to improve performance. You can also use low granularity locking to

avoid false pings.

If you have partitioned users by instance and if you have enough space to

accommodate the multiple lists, use free list groups. This helps your application

avoid dynamic data partitioning. You can also manually partition tables by value. If

the access is random, consider using a smaller block size. Remember these points:

■ Be aware of contention on related indexes and sequence generators

■ Consider using a multi-tiered architecture to route users for partitioning and for

failover



Resolving Problems in Oracle Parallel Server-Based Applications

11-18 Oracle8i Parallel Server Administration, Deployment, and Performance

Diagnosing Performance Problems
If your application is not performing well, analyze each component of the

application to identify which components are causing problems. To do this, check

the operating system and DLM statistics, as explained under the next heading, for

indications of contention or excessive CPU usage. Excessive lock conversions that

you can measure with specific procedures may reveal excessive read/write activity

or high CPU requirements by DLM components.

DLM Statistics for Monitoring Contention and CPU Usage
If your application is not performing optimally, consider examining statistics as

described in the following points:

■ Use standard tuning techniques by running UTLBSTAT, UTLESTAT, and then

querying the V$SQL_AREA view. Examine the statistics from this view and

analyze the hit ratios in the shared pool and the buffer cache.

■ Examine the dynamic performance table statistics created when you run

CATPARR.SQL.

■ Use the V$LOCK_ACTIVITY table to monitor lock rates.

■ Use the V$BH table to identify which blocks are being pinged. This table sums

the number of times each block’s PCM locks are downgraded from exclusive to

null.

■ The V$PING view shows rows from the V$CACHE table where the exclusive to

null count is non-zero.

See Also: Chapter 11 for more information about tuning Oracle

Parallel Server performance.

Note: Blocks that are newly acquired by an object do not appear

in these tables until you rerun CATPARR.SQL.



Resolving Problems in Oracle Parallel Server-Based Applications

General Tuning Recommendations 11-19

Contention Problems Specific to Parallel Server Environments
There are significant contention problems that you can avoid in Oracle Parallel

Server environments. These are the result of inserts into index blocks when multiple

instances share a sequence generator for primary key values. You can minimize

these problems by:

■ Using Sequence Number Multipliers

■ Using Oracle Sequences

Using Sequence Number Multipliers
You may need to use a multiplier such as SEQUENCE_NUMBER x

INSTANCE_NUMBER x 1,000,000,000 to prevent the instances from inserting new

entries into the same index.

Using Oracle Sequences
Creating a sequence without using the CACHE clause may create a lot of overhead.

It may also cause synchronization overhead if both instances use the same

sequence.



Resolving Problems in Oracle Parallel Server-Based Applications

11-20 Oracle8i Parallel Server Administration, Deployment, and Performance



Tuning Oracle Parallel Server and Inter-Instance Performance 12-1

12
Tuning Oracle Parallel Server and

Inter-Instance Performance

The chapter describes Oracle Parallel Server and Cache Fusion-related statistics and

provides procedures that explain how to use these statistics to monitor and tune

performance. This chapter also briefly explains how Cache Fusion resolves

reader/writer conflicts in Oracle Parallel Server. It describes Cache Fusion’s benefits

in general terms that apply to most types of systems and applications.

The topics in this chapter include:

■ How Cache Fusion Produces Consistent Read Blocks

■ Improved Scalability with Cache Fusion

■ The Interconnect and Interconnect Protocols for Oracle Parallel Server

■ Performance Expectations

■ Monitoring Cache Fusion and Inter-Instance Performance

See Also: Oracle8i Parallel Server Concepts for an overview of
Cache Fusion processing.



How Cache Fusion Produces Consistent Read Blocks

12-2 Oracle8i Parallel Server Administration, Deployment, and Performance

How Cache Fusion Produces Consistent Read Blocks
When a data block requested by one instance is in the memory cache of a remote

instance, Cache Fusion resolves the read/write conflict using remote memory

access, not disk access. The requesting instance sends a request for a consistent-read

copy of the block to the holding instance. The Block Server Process (BSP) on the

holding instance transmits the consistent-read image of the requested block directly

from the holding instance’s buffer cache to the requesting instance’s buffer cache

across a high speed interconnect.

As Figure 12–1 illustrates, Cache Fusion enables the buffer cache of one node to

send data blocks directly to the buffer cache of another node by way of low latency,

high bandwidth interconnects. This reduces the need for expensive disk I/O in

parallel cache management.

Cache Fusion also leverages new interconnect technologies for low latency,

user-space based, interprocessor communication. This potentially lowers CPU

usage by reducing operating system context switches for inter-node messages.

Oracle manages write/write contention using conventional disk-based Parallel

Cache Management (PCM).



How Cache Fusion Produces Consistent Read Blocks

Tuning Oracle Parallel Server and Inter-Instance Performance 12-3

Figure 12–1 Cache Fusion Ships Blocks from Cache to Cache Across the
Interconnect

Note: Cache Fusion is always enabled.

Shared
servers

DLM

LCK0

Node 1 

SGA Cache Fusion

Shared
servers

DLM

LCK0

Node 2 

SGA

Database
Files

Database
Files

Database
Files Redo

Logs (2)
Redo

Logs (2)

Shared Disk Subsystem

LGWR LGWRDBWR DBWR



How Cache Fusion Produces Consistent Read Blocks

12-4 Oracle8i Parallel Server Administration, Deployment, and Performance

Partitioning Data to Improve Write/Write Conflict Resolution
Cache Fusion only solves part of the block conflict resolution issue by providing

improved scalability for applications that experience high levels of reader/writer

contention. For applications with high writer/writer concurrency, you also need to

accurately partition your application’s tables to reduce the potential for

writer/writer conflicts.

Improved Scalability with Cache Fusion
Cache Fusion improves application transaction throughput and scalability by

providing:

■ Reduced context switches, and hence reduced CPU utilization, during

reader/writer cache coherency conflicts

■ Further reduced CPU utilization for user-mode IPC platforms

■ Reduced I/O for block pinging and reduced X-to-S lock conversions

■ Consistent-read block transfers by way of high speed interconnects

Applications demonstrating high reader/writer conflict rates under disk-based

PCM benefit the most from Cache Fusion. Packaged applications also scale more

effectively as a result of Cache Fusion. Applications in which OLTP and reporting

functions execute on separate nodes may also benefit from Cache Fusion.

Reporting functions that access data from tables modified by OLTP functions

receive their versions of data blocks by way of high speed interconnects. This

reduces the pinging of data blocks to disk. Performance gains are derived primarily

from reduced X-to-S lock conversions and the corresponding reduction in disk I/O

for X-to-S lock conversions.

Furthermore, the instance that was changing the cached data block before it

received a read request for the same block from another instance would not have to

request exclusive access to the block again for subsequent changes. This is because

the instance retains the exclusive lock and the buffer after the block is shipped to the

reading instance.

Note: All applications achieve some performance gains from

Cache Fusion. The degree of improvement depends upon the

operating system, the application workload, and the overall system

configuration.



The Interconnect and Interconnect Protocols for Oracle Parallel Server

Tuning Oracle Parallel Server and Inter-Instance Performance 12-5

Consistent-Read Block Transfers By Way of High Speed Interconnects
Because Cache Fusion exploits high speed IPCs, Oracle Parallel Server benefits from

the performance gains of the latest technologies for low latency communication

across cluster interconnects. Further performance gains can be expected with even

more efficient protocols, such as Virtual Interface Architecture (VIA) and user-mode

IPCs.

Cache Fusion reduces CPU utilization by taking advantage of user-mode IPCs, also

known as "memory-mapped IPCs", for both Unix and NT based platforms. If the

appropriate hardware support is available, operating system context switches are

minimized beyond the basic reductions achieved with Cache Fusion alone. This also

eliminates costly data copying and system calls.

User-mode IPCs, if efficiently implemented by hardware support, can reduce CPU

use because user processes can communicate without using the operating system

kernel. In other words, there is no need to switch from user execution mode to

kernel execution mode.

Reduced I/O for Block Pinging and Reduced X to S Lock Conversions
Cache Fusion reduces expensive lock operations and disk I/O for data and undo

segment blocks by transmitting consistent-read blocks directly from one instance’s

buffer cache to another. This can reduce the latency required to resolve

reader/writer conflicts by as much as 90 percent.

Cache Fusion resolves reader/writer concurrency with approximately one tenth of

the processing effort required by disk-based PCM, using little or no disk I/O. To do

this, Cache Fusion only incurs overhead for processing the consistent-read request

and for constructing a consistent-read copy of the requested block in memory and

transferring it to the requesting instance. On some platforms this can take less than

one millisecond.

The Interconnect and Interconnect Protocols for Oracle Parallel Server
The primary components affecting Cache Fusion performance are the interconnect

and the protocols that process inter-node communication. The interconnect

bandwidth, its latency, and the efficiency of the IPC protocol determine the speed

with which Cache Fusion processes consistent-read block requests.



Performance Expectations

12-6 Oracle8i Parallel Server Administration, Deployment, and Performance

Influencing Interconnect Processing
Once your interconnect is operative, you cannot significantly influence its

performance. However, you can influence a protocol’s efficiency by adjusting the

IPC buffer sizes.

Supported Interconnect Software
Interconnects that support Oracle Parallel Server and Cache Fusion use one of these

protocols:

■ TCP/IP (Transmission Control Protocol/Interconnect Protocol)

■ UDP (User Datagram Protocol)

■ VIA (Virtual Interface Architecture)

■ Other proprietary protocols that are hardware vendor-specific

Oracle Parallel Server can use any interconnect product that supports these

protocols. The interconnect product must also be certified for Oracle Parallel Server

hardware cluster platforms.

Performance Expectations
Cache Fusion performance levels may vary in terms of latency and throughput

from application to application. Performance is further influenced by the type and

mixture of transactions your system processes.

The performance gains from Cache Fusion also vary with each workload. The

hardware, the interconnect protocol specifications, and the operating system

resource usage also affect performance.

If your application did not demonstrate a significant amount of consistent-read

contention prior to Cache Fusion, your performance with Cache Fusion will likely

remain unchanged. However, if your application experienced numerous lock

conversions and heavy disk I/O as a result of consistent-read conflicts, your

performance with Cache Fusion should improve significantly.

A comparison of the locking and I/O statistics for Oracle 8.1. and Oracle 8.0 reveals

a major reduction of exclusive to shared lock requests and physical write I/O. The

following section, "Monitoring Cache Fusion and Inter-Instance Performance",

describes how to evaluate Cache Fusion performance in more detail.

See Also: For more information, consult your vendor-specific

interconnect documentation.



Cache Fusion and Oracle Parallel Server Performance Monitoring Goals

Tuning Oracle Parallel Server and Inter-Instance Performance 12-7

Monitoring Cache Fusion and Inter-Instance Performance
This section describes how to obtain and analyze Oracle Parallel Server and Cache

Fusion statistics to monitor inter-instance performance. Topics in this section

include:

■ Cache Fusion and Oracle Parallel Server Performance Monitoring Goals

■ Statistics for Monitoring Oracle Parallel Server and Cache Fusion

■ Using the V$SYSTEM_EVENTS View to Identify Performance Problems

Cache Fusion and Oracle Parallel Server Performance Monitoring Goals
The main goal of monitoring Cache Fusion and Oracle Parallel Server performance

is to determine the cost of global processing and quantify the resources required to

maintain coherency and synchronize the instances. Do this by analyzing the

performance statistics from several views as described in the following sections.

Use these monitoring procedures on an ongoing basis to observe processing trends

and to maintain processing at optimal levels.

Many statistics are available to measure the work done by different components of

the database kernel, such as the cache layer, the transaction layer or the I/O layer.

Moreover, timed statistics allow you to accurately determine the time spent on

processing certain requests or the time waited for specific events.

From these statistics sources, work rates, wait time and efficiency ratios can be

derived.

See Also: Chapter 7 for more information on lock types.

See Also: Chapter 11 for additional suggestions on which

statistics to collect and how to use them to compute performance

ratios.



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

12-8 Oracle8i Parallel Server Administration, Deployment, and Performance

Statistics for Monitoring Oracle Parallel Server and Cache Fusion
Oracle collects Cache Fusion-related performance statistics from the buffer cache

and DLM layers. Oracle also collects general Oracle Parallel Server statistics for lock

requests and lock waits. You can use several views to examine these statistics.

Maintaining an adequate history of system performance helps you identify trends

as these statistics change. This facilitates identifying contributors to increasing

response times and reduced throughput. It would also be helpful in spotting

workload changes and peak processing requirements.

Procedures in this section use statistics that are grouped according to the following

topics:

■ Analyzing Global Cache and Cache Fusion Statistics

■ Analyzing Global Lock Statistics

■ Analyzing DLM Resource, Lock, Message, and Memory Resource Statistics

■ DLM Message Statistics

■ Analyzing Oracle Parallel Server I/O Statistics

■ Analyzing Latch, Oracle Parallel Server, and DLM Statistics

As described in Chapter 11, consider maintaining statistics from the V$SYSSTAT

view and the V$SYSTEM_EVENT view on a per second and per transaction basis to

obtain a general profile of the workload. Relevant observations from these views

are:

■ Requests or counts per transaction, for example, physical reads per transaction

and logical reads per transaction

■ Wait times or elapsed time per transaction, for example, read I/O wait time per

transaction and lock convert time per transaction

■ Requests or counts per second

■ Average times per request, for example, average time to receive a consistent

read buffer from another instance

By maintaining these statistics, you can accurately estimate the effect of an

increasing cost for a certain type of operation on transaction response times. Major

increases in work rates or average delays also contribute to identifying capacity

issues.

You must set the parameter TIMED_STATISTICS to TRUE for Oracle to collect

statistics for most views discussed in the procedures in this section. The timed



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

Tuning Oracle Parallel Server and Inter-Instance Performance 12-9

statistics from views discussed in this chapter are displayed in units of 1/100ths of a

second.

Creating Oracle Parallel Server Data Dictionary Views with CATPARR.SQL
The SQL script CATPARR.SQL creates parallel server data dictionary views. To run

this script, you must have SYSDBA privileges.

CATALOG.SQL creates the standard V$ dynamic views, as well as:

■ GV$CACHE

■ GV$PING

■ GV$CLASS_PING

■ GV$FILE_PING

■ GV$ROWCACHE

■ GV$LIBRARYCACHE

You can rerun CATPARR.SQL if you want the EXT_TO_OBJ table to contain the

latest information after you add extents. If you drop objects without rerunning

CATPARR.SQL, EXT_TO_OBJ may display misleading information.

Global Dynamic Performance Views
Tuning and performance information for the Oracle database is stored in a set of

dynamic performance tables known as the "V$ fixed views". Each active instance

has its own set of fixed views. In Oracle Parallel Server, you can query a global

dynamic performance (GV$) view to retrieve the V$ view information from all

qualified instances. A global fixed view is available for all of the existing dynamic

performance views except for V$ROLLNAME, V$CACHE_LOCK,

V$LOCK_ACTIVITY, and V$LOCKS_WITH_COLLISIONS.

The global view contains all the columns from the local view, with an additional

column, INST_ID (datatype INTEGER). This column displays the instance number

Note: You must also run CATPARR.SQL to create Oracle Parallel

Server-related views and tables for storing and viewing statistics as

described under the next heading.

See Also: Oracle8i Reference for more information on dynamic

views.



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

12-10 Oracle8i Parallel Server Administration, Deployment, and Performance

from which the associated V$ information was obtained. You can use the INST_ID

column as a filter to retrieve V$ information from a subset of available instances.

For example, the query:

   SELECT * FROM GV$LOCK WHERE INST_ID = 2 or INST_ID = 5;

Retrieves information from the V$ views on instances 2 and 5.

Each global view contains a GLOBAL hint that creates a parallel query to retrieve

the contents of the local view on each instance.

If you have reached the limit of PARALLEL_MAX_SERVERS on an instance and

you attempt to query a GV$ view, one additional parallel server process will be

spawned for this purpose. The extra process is not available for parallel operations

other than GV$ queries.

If you have reached the limit of PARALLEL_MAX_SERVERS on an instance and

issue multiple GV$ queries, all but the first query will fail. In most parallel queries,

if a server process could not be allocated this would result in either an error or a

sequential execution of the query by the query coordinator.

Note: If PARALLEL_MAX_SERVERS is set to zero for an instance,

additional parallel server processes do not spawn to accommodate

a GV$ query.

See Also:

■ Chapter 2

■ Oracle8i Reference for restrictions on GV$ views and complete

descriptions of all related parameters and V$ dynamic

performance views



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

Tuning Oracle Parallel Server and Inter-Instance Performance 12-11

Analyzing Global Cache and Cache Fusion Statistics
Oracle collects global cache statistics at the buffer cache layer within an instance.

These statistics include counts and timings of requests for global resources.

Requests for global locks on data blocks originate in the buffer cache of the

requesting instance. Before a request enters the DLM, Oracle allocates data

structures in the System Global Area to track the state of the request. These

structures are called "lock elements".

To monitor global cache statistics, query the V$SYSSTAT view and analyze its

output as described in the following procedures.

Procedures for Monitoring Global Cache Statistics
Complete the following steps to analyze global cache statistics.

1. Use this syntax to query V$SYSSTAT:

   SELECT * FROM V$SYSSTAT WHERE NAME LIKE ’global cache%’;

Oracle responds with output similar to:

NAME                                                           VALUE
--------------------------------------------------------------------
global cache cr blocks received                                 7372
global cache cr block receive time                              2293
global cache cr blocks served                                   7882
global cache cr block serve time                                  60
global cache cr block send time                                  239
global cache cr block log flushes                                119
global cache cr block log flush time                             140
global cache cr timeouts                                           2
global cache cr requests blocked                                   0

2. The average latency of a consistent block request, in other words, its round-trip

time, can be calculated as:

The result, which should typically be about 15 milliseconds depending on your

system configuration and volume, is the average latency of a consistent-read

global cache cr block receive time

global cache cr blocks received



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

12-12 Oracle8i Parallel Server Administration, Deployment, and Performance

request round trip from requesting instance, to holding instance, and back to

the requesting instance. If your CPU has limited idle time and your system

typically processes long-running queries, the latency may be higher. However,

it is possible to have an average latency of less than one millisecond.

Consistent-read server request latency can also be influenced by a high value

for the DB_MULTI_BLOCK_READ_COUNT parameter. This is because a

requesting process may issue more than one request for a block depending on

the setting of this parameter. Correspondingly, the requesting process may wait

longer.

3. For a high number of incoming requests, especially in report-intensive

applications, or if there are multiple nodes from which requests can arrive at a

BSP, the round-trip time can increase because BSP’s service time increases. To

determine whether the length of the delay is caused by BSP, compute the

average service time per request.

Track the average BSP service time per request and the total round-trip time per

request as presented in this step.

To determine which part of the service time correlates most with the total

service time, derive the time waited for a log flush and the time spent in

sending the completed request using the following two equations:

global cache cr block serve time

global cache cr blocks served

global cache cr log flush time

global cache cr log flushes

-

global cache cr block send time

global cache cr blocks served



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

Tuning Oracle Parallel Server and Inter-Instance Performance 12-13

By calculating these averages, you can account for almost all the processing

steps of a consistent read block request. The remaining difference between the

total round-trip time and the BSP service time per request falls onto processing

time in the LMD processing and network IPC time.

4. Calculate the average convert times and average get times using one of these

formulas:

High convert times may indicate excessive global concurrency. A large number

of global cache gets, global cache converts, and a rapid increase in average

convert or get times indicates that there is excessive contention. Another cause

may be that latencies for lock operations are high due to overall system

workload or system problems. A reasonable value for a cache get is 20 to 30

milliseconds while converts should take 10 to 20 milliseconds on average.

Oracle increments global cache gets when a new lock on a resource is opened. A

convert is counted when there is already an open lock and Oracle converts it to

another mode.

The elapsed time for a get thus includes the allocation and initialization of new

locks. If the average cache get or average convert times are excessive, your

system may be experiencing timeouts.

If the global cache convert times or global cache get times are high, refer to

statistics in the V$SYSTEM_EVENTS view to identify events with a high value

for TIME_WAITED statistics.

5. Analyze lock convert timeouts by examining the value for "global cache convert

timeouts". If your V$SYSSTAT output shows a value other than zero for this

statistic, check your system for congestion or high contention. In general,

convert timeouts should not occur; their existence indicates serious

performance problems.

6. Analyze the global cache consistent-read timeouts by examining the value for

this statistic in your V$SYSSTAT output. Oracle increments this statistic after

the system waits too long for the completion of a consistent-read request. If this

statistic shows a value other than zero, too much time has elapsed after the

initiation of a consistent-read request and a timeout has occurred. If this

global cache convert time

global cache converts

global cache get time

global cache gets
or



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

12-14 Oracle8i Parallel Server Administration, Deployment, and Performance

happens, you will also usually find that the average time for consistent-read

request completions has increased. If you have timeouts and the latency is high,

your system may have an excessive workload or there may be excessive

contention for data blocks. It might also be used as an indicator of IPC or

network problems.

Other Useful Cache Fusion Statistics
The following describes additional Cache Fusion statistics that you may find useful

in diagnosing global cache and Cache Fusion operations. Use these statistics to

monitor all the major operations of a consistent block request.

global cache cr blocks received When a process requests a consistent read for a data

block that it cannot satisfy from its local cache, it sends a request to another

instance. Once the request is complete, in other words, the buffer has been received,

Oracle decrements the request count.

global cache cr block receive time This statistic records the total time it took for

consistent read requests to complete, in other words, the accumulated round-trip

time for all requests for consistent read blocks.

global cache cr timeouts This statistic identifies a request for a consistent read block

that has a long delay and that has timed out. This could be due to system

performance problems, a slow interconnect network or dropped network packets.

The value of this statistic should always be 0.

global cache cr blocks served This is the number of requests for a consistent read

block served by BSP. Oracle increments this statistic when the block is sent.

global cache cr block serve time This statistic represents the accumulated time it took

BSP to fill all incoming requests. For each request, the start time is recorded

immediately after BSP takes a request off the request queue. The interval is

computed after the blocks is sent.

global cache cr block send time This is the time required by BSP to initiate a send of a

consistent read block. For each request, timing starts when the block is sent and

stops when the send has completed. It is a part of the serve time. Note that this

statistic only measures the time it takes to initiate the send; it does not measure the

time elapsed before the block arrives at the requestor.

global cache cr block log flushes For changes to buffers containing a version of a data

block that the block sever process has produced, a log flush must be initiated. BSP



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

Tuning Oracle Parallel Server and Inter-Instance Performance 12-15

handles the wait asynchronously by managing a completion queue. Once LGWR

has completed flushing the changes to a buffer that is on the log flush queue, BSP

can send it. Therefore it periodically checks the queue. Oracle increments this

statistic when a log flush is queued.

global cache cr block log flush time This is the time waited for a log flush. It is part of

the serve time.

Analyzing Global Lock Statistics
Global lock statistics provide counts and timings for both PCM and non-PCM lock

activity. Oracle collects global lock statistics from the DLM API layer. All Oracle

clients to the DLM, of which the buffer cache is only one, make their requests to the

DLM through this layer. Thus, global lock statistics include lock requests

originating from all layers of the kernel, while global cache statistics relate to buffer

cache Oracle Parallel Server activity.

Use the procedures in this section to monitor data from the V$SYSSTAT view to

derive averages, latencies, and counts. This establishes a rough indicator of the

Oracle Parallel Server workload generated by an instance.

Procedures for Analyzing Global Lock Statistics
Use the following procedures to view and analyze statistics from the V$SYSSTAT

view for global lock processing.

1. Use this syntax to query V$SYSSTAT:

   SELECT * FROM V$SYSSTAT WHERE NAME LIKE ’global lock%’;

Oracle responds with output similar to:

NAME VALUE
---------------------------------------------------------------- ----------
global lock sync gets 703
global lock async gets 12748
global lock get time 1071
global lock sync converts 303
global lock async converts 41
global lock convert time 93
global lock releases 573

Use your V$SYSSTAT output to perform the calculations and analyses

described in the remaining procedures in this group of procedures.



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

12-16 Oracle8i Parallel Server Administration, Deployment, and Performance

2. Calculate the average global lock gets using this formula:

If the result is more than 20 or 30 milliseconds, query the TIME_WAITED

column in the V$SYSTEM_EVENTS view using the DESCEND keyword to

identify which lock events are waited for most frequently using this query:

   SELECT EVENT_TIME_WAITED, AVERAGE_WAIT
   FROM V$SYSTEM_EVENTS
   ORDER BY TIME_WAITED DESCEND;

Oracle increments global lock gets when a new lock on a resource is opened. A

convert is counted when there is already an open lock and Oracle converts it to

another mode.

The elapsed time for a get thus includes the allocation and initialization of new

locks. If the average lock get or average lock convert times are excessive, your

system may be experiencing timeouts.

If the global lock convert times or global lock get times are high, refer to

statistics in the V$SYSTEM_EVENTS view to identify events with a high value

for TIME_WAITED statistics.

3. Calculate the average global lock convert time using this formula:

If the result is more than 20 milliseconds, query the TIME_WAITED column in

the V$SYSTEM_EVENTS view using the DESCEND keyword to identify the

event causing the delay.

4. As mentioned, global lock statistics apply to buffer cache lock operations and

lock operations for resources other than data blocks. To determine which type

of resources may be a performance problem, divide the global lock get and

global lock convert statistics into two categories:

global lock get time

(global lock sync gets + global lock async gets)

global lock convert time

(global lock sync converts + global lock async converts)



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

Tuning Oracle Parallel Server and Inter-Instance Performance 12-17

– Synchronous Operations

Synchronous lock gets includes, for example, global lock sync gets. These

are usually performed for lock requests for resources other than cached

data blocks. To determine the proportion of the time required for

synchronous lock gets, divide global lock get time or global lock convert

time by the corresponding number of synchronous operations.

– Asynchronous Operations

Asynchronous lock operations include, for example, global lock async gets.

These are typically lock operations for global cache locks. You can derive

the proportion of the total time using the same calculation as for

synchronous operations. In this way, the proportion of work and the cost of

global cache lock requests and other lock requests can be determined.

Normally, if the proportion of global lock requests for resources other than

global cache lock requests dominates the cost for all lock operations, the

V$SYSTEM_EVENTS view shows high wait times for row cache locks,

enqueues or library cache pins.

5. Analyze the V$LIBRARYCACHE and V$ROWCACHE views to observe DLM

activity on non-PCM resources. These views have DLM-specific columns that

identify DLM resource use. Analyze these views for DLM activity if you have

frequent and extended waits for library cache pins, enqueues, or DFS lock

handles.

Analyzing DLM Resource, Lock, Message, and Memory Resource Statistics
Oracle collects DLM resource, lock, and message statistics at the DLM level. Use

these statistics to monitor DLM latency and workloads. These statistics appear in

the V$DLM_CONVERT_LOCAL and V$DLM_CONVERT_REMOTE views.

These views record average convert times, count information, and timed statistics

for each type of lock request. The V$DLM_CONVERT_LOCAL view shows

statistics for local lock operations. The V$DLM_CONVERT_REMOTE view shows

values for remote conversions. The average convert times in these views are in

100ths of a second.

Note: Count information in these views is cumulative for the life

of an instance.



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

12-18 Oracle8i Parallel Server Administration, Deployment, and Performance

How DLM Workloads Affect Performance
The DLM workload is an important aspect of Oracle Parallel Server and Cache

Fusion performance because each consistent-read request results in a lock request.

High DLM workloads as a result of heavy request rates can adversely affect

performance.

The DLM performs local lock operations entirely within the local node, or in other

words, without sending messages. Remote lock operations require sending

messages to and waiting for responses from other nodes. Most down-converts,

however, are local operations for the DLM.

The following procedures for analyzing DLM resource, locks, and message statistics

appear in two groups. The first group of procedures explains how to monitor DLM

resources and locks. The second group explains how to monitor message statistics.

Procedures for Analyzing DLM Resource and Lock Statistics
Use the following procedures to obtain and analyze statistics from the

V$DLM_CONVERT_LOCAL and V$DLM_CONVERT_REMOTE views for DLM

resource processing.

You must enable event 29700 to populate the V$DLM_CONVERT_LOCAL and

V$DLM_CONVERT_REMOTE views. Do this by entering this syntax:

   EVENT="29700 TRACE NAME CONTEXT FOREVER"

1. Use this syntax to query the V$DLM_CONVERT_LOCAL view:

   SELECT CONVERT_TYPE,
   AVERAGE_CONVERT_TIME,
   CONVERT_COUNT
   FROM V$DLM_CONVERT_LOCAL;

Oracle responds with output similar to:

CONVERT_TYPE                           AVERAGE_CONVERT_TIME CONVERT_COUNT
-------------------------------------- -------------------- -------------
NULL -> SS                                                0             0
NULL -> SX                                                0             0
NULL -> S                                                 1           146
NULL -> SSX                                               0             0
NULL -> X                                                 1            92
SS   -> SX                                                0             0
SS   -> S                                                 0             0
SS   -> SSX                                               0             0
SS   -> X                                                 0             0



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

Tuning Oracle Parallel Server and Inter-Instance Performance 12-19

SX   -> S                                                 0             0
SX   -> SSX                                               0             0
SX   -> X                                                 0             0
S    -> SX                                                0             0
S    -> SSX                                               0             0
S    -> X                                                 3            46
SSX  -> X                                                 0             0
16 rows selected.

2. Use this syntax to query the V$DLM_CONVERT_REMOTE view:

   SELECT * FROM V$DLM_CONVERT_REMOTE;

Oracle responds with output identical in format to the output for the

V$DLM_CONVERT_LOCAL view.

Use your output from the V$DLM_CONVERT_LOCAL and

V$DLM_CONVERT_REMOTE views to perform the calculation described in

the following procedure.

3. Calculate the ratio of local-to-remote lock operations using this query:

   SELECT r.CONVERT_TYPE,
    r.AVERAGE_CONVERT_TIME,
    l.AVERAGE_CONVERT_TIME,
    r.CONVERT_COUNT,
    l.CONVERT_COUNT,
      FROM V$DLM_CONVERT_LOCAL l, V$DLM_CONVERT_REMOTE r
      GROUP BY r.CONVERT_TYPE;

4. It is useful to maintain a history of workloads and latencies for lock converts.

Changes in lock requests per transaction without increases in average latencies

usually result from changing application workload patterns.

Deterioration of both request rates and latencies usually indicates an increased

rate of lock conflicts or an increased workload due to message latencies, system

problems, or timeouts. If the LMD process shows high CPU consumption, or

consumption is greater than 20 percent of the CPU while overall system

resource consumption is normal, consider binding the LMD process to a specific

processor if the system has more than one CPU.

If latencies increase, also examine CPU data and other operating system

statistics that you can obtain using utilities such as "sar," "vmstat" and "netstat"

on UNIX or Perfmon on Windows NT.



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

12-20 Oracle8i Parallel Server Administration, Deployment, and Performance

5. Derive an estimate of CPU busy time for LMD from the V$SYSTEM_EVENT

view.

For a quick estimate of the CPU time spent by LMD, you can transform the wait

time event for LMD presented in the V$SYSTEM_EVENT view. To do this, look

for the event name "lkmgr wait for remote messages" that represents the time

that the LMD process is idle. The TIME_WAITED column contains the

accumulated idle time for LMD in units of hundredths of a second.

To derive the busy time, divide the value for TIME_WAITED by the length of

the measurement interval after normalizing it to seconds. In other words, a

value of 17222 centiseconds is 172.22 seconds. The result is the idle time of the

LMD process, or the percentage of idle time. Subtract that value from 1 and the

result is the busy time for the LMD process. This is a fairly accurate estimate

when compared with operating system utilities that provide information about

CPU utilization per process.

DLM Message Statistics
The DLM sends messages either directly or by using flow control. For both

methods, the DLM attaches markers known as "tickets" to each message. The

allotment of tickets for each DLM is limited. However, the DLM can re-use tickets

indefinitely.

DLMs send messages directly until no more tickets are available. When an DLM

runs out of tickets, messages must wait in a flow control queue until outstanding

messages have been acknowledged and more tickets are available. Flow-controlled

messaging is managed by the LMD process.

The rationing of tickets prevents one node from sending an excessive amount of

messages to another node during periods of heavy inter-instance communication.

This also prevents one node with heavy remote consistent-read block requirements

from assuming control of messaging resources throughout a cluster at the expense

of other, less-busy nodes.

The V$DLM_MISC view contains the following statistics about message activity:

■ DLM messages sent directly

■ DLM messages flow controlled

Note: You should have beginning and ending snapshots to make

an accurate calculation.



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

Tuning Oracle Parallel Server and Inter-Instance Performance 12-21

■ DLM messages received

■ DLM total incoming message queue length



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

12-22 Oracle8i Parallel Server Administration, Deployment, and Performance

Procedures for Analyzing DLM Message Statistics
Use the following procedures to obtain and analyze message statistics in the

V$DLM_MISC view.

1. Use this syntax to query the V$DLM_MISC view:

   SELECT NAME, VALUE FROM V$DLM_MISC;

Oracle responds with output similar to:

STATISTIC# NAME                                VALUE
---------- ----------------------------------- -----------
         0 dlm messages sent directly           29520

         1 dlm messages flow controlled          1851

         2 dlm messages received                29668

         3 dlm total incoming msg queue length    297

4 rows selected.

Use your output from the V$DLM_MISC view to perform the following

procedure.

2. Calculate the average receive queue length between two snapshots using this

equation:

Oracle increments the value for "total incoming message queue length"

whenever a new request enters the LMD process’ message queue. When

messages leave the LMD queue to begin processing, Oracle increments the

value for "messages received".

Note: Oracle support may request information from your

V$DLM_MISC output for debugging purposes.

total incoming message queue length

messages received



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

Tuning Oracle Parallel Server and Inter-Instance Performance 12-23

The size of the queue may increase if a large number of requests simultaneously

arrives at the LMD. This can occur when the volume of locking activity is high or

when the LMD processes a large quantity of consistent-read requests. Typically, the

average receive queue length is less than 10.

Analyzing Oracle Parallel Server I/O Statistics
In addition to the global cache and global lock statistics that were previously

discussed, you can also use statistics in the V$SYSSTAT view to measure the I/O

workload related to global cache synchronization. There are three important

statistics in the V$SYSSTAT view for this purpose:

■ DBWR forced writes

■ Remote instance undo header writes

■ Remote instance undo block writes

DBWR forced writes occur when Oracle resolves inter-instance data block

contention by writing the requested block to disk before the requesting node can

use it.

Cache Fusion minimizes the disk I/O for consistent-reads. This can lead to a

substantial reduction in physical writes and reads performed by each instance.

Before Cache Fusion, a consistent-read requesting data from a remote instance

could result in up to three write I/Os on the remote instance and three

corresponding read I/Os for the requesting instance: one for the data block, one for

the rollback segment header, and one for a rollback segment block.



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

12-24 Oracle8i Parallel Server Administration, Deployment, and Performance

Analyzing Oracle Parallel Server I/O Statistics in the V$SYSSTAT View
You can obtain the following statistics to quantify the write I/Os required for global

cache synchronization.

1. Use this syntax to query the V$SYSSTAT view:

   SELECT NAME, VALUE FROM V$SYSSTAT
   WHERE NAME IN (’DBWR forced writes’,
   ’remote instance undo block writes’,
   ’remote instance undo header writes’,
   ’physical writes’);

Oracle responds with output similar to:

NAME                                                           VALUE
--------------------------------------------------------- ----------
physical writes                                                41802
DBWR cross-instance writes                                      5403
remote instance undo block writes                                  0
remote instance undo header writes                                 2
4 rows selected.

Where the statistic "physical writes" refers to all physical writes that occurred

from a particular instance performed by DBWR, the value for "DBWR

cross-instance writes" accounts for all writes caused by writing a dirty buffer

containing a data block that is requested for modification by another instance.

As cross-instance writes are also handled by DBWR, it follows that "DBWR

cross-instance writes" is a subset of all "physical writes".

The other notable statistics, "remote instance undo block writes" and "remote

instance undo header writes", refer to the number of times that Oracle writes a

rollback segment block to disk because another instance intends to build a

consistent read version of a data block but the information required to roll back

the block are not in the instance’s cache. Both are a subset of "DBWR

cross-instance writes". Their significance for performance is less critical in

Oracle8i because Cache Fusion reduces the need to "export" and "import"

rollback information. In most cases, instances send the complete version of a

data block by way of the interconnect to the requesting instance.

Note that every lock conversion from Exclusive (X) to Null (N) or from

Exclusive (X) to Shared (S) is associated with a write to disk when the buffer

under the lock is dirty. However, in Oracle8i, the number of X to S lock

conversions is reduced because Cache Fusion does not require them. In most

cases, the holding instance retains the X lock.



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

Tuning Oracle Parallel Server and Inter-Instance Performance 12-25

2. Calculate the ratio of Oracle Parallel Server-related I/O to overall physical I/O

using this equation:

You should see a noticeable decrease in this ratio between this calculation and

pre-Cache Fusion statistics.

3. Use this equation to calculate how many writes to rollback segments occur

when a remote instance needs to read from rollback segments that are in use by

a local instance:

The ratio shows how much disk I/O is related to writes to rollback segments.

With Cache Fusion, this ratio should be very low.

4. To estimate the number or percentage of reads due to global cache

synchronization, use the number of lock requests for conversions from

NULL(N) to Shared mode (S) counted in V$LOCK_ACTIVITY and the

"physical reads" statistics from V$SYSSTAT.

The following formula computes the percentage of reads that are only for local

work:

Where "lock buffers for read" represents the N to S lock conversions.

These so-called "forced reads" occur when a cached data block that was

previously modified by the local instance had to be written to disk due to a

DBWR forced writes

physical writes

(remote instance undo header writes+
remote instance undo block writes)

DBWR forced writes

*(physical reads    (lock buffers for read)) 100

physical reads

-



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

12-26 Oracle8i Parallel Server Administration, Deployment, and Performance

"ping" from another instance and the block is then re-acquired by the local

instance for a read.

Analyzing Lock Conversions by Type
This section describes how to analyze output from three views to quantify lock

conversions by type. The tasks and the views discussed in this section are:

■ Using the V$LOCK_ACTIVITY View to Analyze Lock Conversions

■ Using the V$CLASS_PING View to Identify Pinging by Block Class

■ Using the V$PING View to Identify Hot Objects

Using the V$LOCK_ACTIVITY View to Analyze Lock Conversions
The V$LOCK_ACTIVITY view summarizes how many lock up- and down-converts

have occurred during an instance’s lifetime. X-to-N down-converts denote the

number of times a lock was down-converted because another instance wanted to

modify a resource.

The other major type of down-convert is X-to-S. This type of down-convert occurs

when an instance reads a resource that was last modified by a local instance. Both

types of lock conversions involve I/O. However, Cache Fusion should reduce

X-to-S down-converts because they are not needed for buffer locks.

Using the V$CLASS_PING View to Identify Pinging by Block Class
The V$CLASS_PING view summarizes lock conversion activity by showing

whether disk I/O is occurring on the following classes of blocks:

■ Data blocks

■ Segment headers

■ Extent headers

■ Undo blocks

All X_2_NULL_FORCED_WRITE and X_2_S_FORCED_WRITE conversions

involve write I/O. In other words, values in the columns for each block class

provide an indicator of the cause of the disk I/O.

See Also: Chapter 11 for more observations regarding estimations

of local and global work rates and percentages in Oracle Parallel
Server clusters.



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

Tuning Oracle Parallel Server and Inter-Instance Performance 12-27

Using the V$PING View to Identify Hot Objects
The V$PING view helps identify "hot" blocks and "hot" objects. The sum of each

column, FORCED_READS and FORCED_WRITES, indicates the actual pinging

activity on a particular block or object.

All three views provide different levels of detail. If you suspect that pinging or

Oracle Parallel Server itself is the cause of a performance problem, monitor the

V$LOCK_ACTIVITY view to generate an overall Oracle Parallel Server workload

profile. Use information from the V$LOCK_ACTIVITY view to record the rate at

which lock conversions occur.

For more details, use the V$CLASS_PING view to identify the type of block on

which lock conversions and pinging are occurring. Once you have identified the

class, use the V$PING view to obtain details about a particular table or index and

the file and block numbers on which there is significant lock conversion activity.

If your response time or throughput requirements are no longer being met, you

would normally examine the V$LOCK_ACTIVITY, V$CLASS_PING, V$CACHE,

V$PING or V$FILE_PING views. In addition, you might also examine:

■ V$SYSSTAT to identify an increase in lock requests per transaction

■ V$SYSSTEM_EVENT to identify longer waits for global cache locks or

consistent read server requests per transaction

■ Global and local work done as described in Chapter 11 to see if there is a

noticeable change in performance percentages

In summary, a change in the application profile and the work rates typically

warrant a detailed analysis using the above-mentioned views. Apart from

diagnosing performance problems of existing applications, these views are also

useful when developing applications or when deciding on a partitioning strategy.



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

12-28 Oracle8i Parallel Server Administration, Deployment, and Performance

Analyzing Latch, Oracle Parallel Server, and DLM Statistics
Latches are low-level locking mechanisms that protect System Global Area data

structures. Excessive contention for latches degrades performance.

Use the V$DLM_LATCH and V$LATCH_MISSES views to monitor latch contention

within the DLM. These views show information about a particular latch, its

statistics, and the location in the code from where the latch is acquired.

For normal operations, the value latch statistics is limited. In some cases, multiple

latches can help increase the performance for certain layers by a small amount.

High latch contention is often the result of either:

■ Higher level performance issues or badly tuned system

■ Oracle internal inefficiencies or performance bugs

The following procedures are suggestions as to which information is available.

Oracle does not recommend that you monitor these statistics on a regular basis and

derive conclusions solely on the basis of latching issues. However, gathering this

information might be useful to Oracle Support or Oracle’s Development Staff. Also,

latch tuning can be the object of advanced tuning activities, but in the majority of

cases latch tuning will not be your actual performance problem.

On the other hand, record information from these procedures if the TIME_WAITED

value for the "latch free" wait event is very high and ranks among the events that

accrue the largest times as indicated by the V$SYSTEM_EVENT view.

Procedures for Analyzing Latch, Parallel Server, and DLM Statistics
Use the following procedures to analyze latch, Oracle Parallel Server, and

DLM-related statistics.

1. Query the V$LATCH view using this syntax:

   SELECT * FROM V$LATCH;

Oracle responds with output similar to the following where the columns from

left to right show the statistic name, gets, misses, and sleeps:

cache buffer handle 46184 1 0

cache buffers chained 84139946 296547 29899

cache buffers lru 4760378 11718 227

channel handle pool 1 0 0

channel operations 1 0 0

dlm ast latch 542776 494 1658



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

Tuning Oracle Parallel Server and Inter-Instance Performance 12-29

2. If the output from the previous procedure reveals a high ratio of

sleeps-to-misses, attempt to determine where the sleeps occur. To do this,

execute this query on the V$LATCH_MISSES view:

   SELECT PARENT_NAME, "WHERE", SLEEP_COUNT
   FROM V$LATCH_MISSES
   ORDER BY SLEEP_COUNT DESCENDING;

Oracle responds with output similar to:

dlm cr bast queue 37194 1 0

dlm deadlock list 32839 0 0

dlm domain lock la 1 0 0

dlm domain lock ta 49164 1 0

dlm group lock lat 1 0 0

dlm group lock tab 25239 1 0

dlm lock table fre 325306 270 327

dlm process hash l 6346 0 0

dlm process table 2 0 0

dlm recovery domai 2014 0 0

dlm resource hash 683031 1709 41342

dlm resource scan 188 0 0

dlm resource table 182093 70 2

dlm shared communication 190766 211 313

dlm timeout list 113294 40 3

dml lock allocation 261 0 0

22 rows selected.

Note: The content of the five columns in this output example from

left to right are: gets, hits, misses, sleeps, and the sleeps-to-misses

ratio.

PARENT_NAME WHERE  SLEEP_COUNT

------------------------ ---------------------- --------------

dlm resource hash list kjrrmas1: lookup master n 39392

cache buffers chains kcbgtcr: kslbegin 27738

library cache kglhdgn: child: 15408

shared pool kghfnd: min scan 6876

cache buffers chains kcbrls: kslbegin 2124



Statistics for Monitoring Oracle Parallel Server and Cache Fusion

12-30 Oracle8i Parallel Server Administration, Deployment, and Performance

Use your V$LATCH and V$LATCH_MISSES output to perform the following

procedures.

3. Calculate the ratio of gets to misses using your V$LATCH output from the step

1 in this section in this formula:

High numbers for misses usually indicate contention for the same resources

and locks. Acceptable ratios range from 90 to 95%.

4. Analyze the ratio of sleeps to misses using your V$LATCH_MISSES output

from step 1 in this section. This ratio determines how often a process sleeps

when it cannot immediately get a latch but wants to wait for the latch.

A ratio of 2 means that for each miss, a process attempts to get a latch twice

before acquiring it. A high number of sleeps-to-misses usually indicates process

scheduling delays or high operating system workloads. It can also indicate

internal inefficiencies or high concurrency on one resource. For example, when

many locks are opened simultaneously on the same resource, then processes

might have to wait for a resource latch.

In the V$LATCH_MISSES view, the WHERE column shows the function in

which the latch is acquired. This information is useful in determining internal

performance problems. Usually, the latch slept on for long periods shows up in

the V$SESSION_WAIT or V$SYSTEM_EVENT views under the ’latch free’ wait

event category.

The following section describes how to use the V$SYSTEM_EVENTS view in more

detail.

shared pool kghalo 1667

dlm ast latch kjucll: delete lock from 1464

7 rows selected.

gets

misses



Using the V$SYSTEM_EVENTS View to Identify Performance Problems

Tuning Oracle Parallel Server and Inter-Instance Performance 12-31

Using the V$SYSTEM_EVENTS View to Identify Performance Problems
Data about Cache Fusion and Oracle Parallel Server events appears in the

V$SYSTEM_EVENT view. To identify events for which processes have waited the

longest, query the V$SYSTEM_EVENT view on the TIME_WAITED column using

the DESCENDING keyword. The TIME_WAITED column shows the total wait time

for each system event listed.

By generating an ordered list of event waits, you can easily locate performance

bottlenecks. Each COUNT represents a voluntary context switch. The TIME_WAIT

value is the cumulative time that processes waited for particular system events. The

values in the TOTAL_TIMEOUT and AVERAGE_WAIT columns provide additional

information about system efficiency.

Oracle recommends dividing the sum of values from the TOTAL_WAITS and

TIME_WAITED columns by the number of transactions, as outlined in Chapter 11.

Transactions can be defined as business transactions, for example, insurance quotes,

order entry, and so on, or you can define them on the basis of "user commits" or

"executions", depending on your perspective.

The goal is to estimate which event type contributes primarily to transaction

response times, since in general:

By this rationale, the total wait time can be divided into subcomponents of the wait

time, such as:

where tm is "time waited".

It is also useful to derive the total wait time by adding the individual events and

then observing the percentages that are spent waiting for each event to derive the

major cost factors for transaction response times. Reducing the time for the largest

proportion of the waits will have the most significant effect on response time.

response time

number of transactions
=

CPU time

number of transactions
+

wait time

number of transactions

total wait time

number of transactions
=

(db file sequential read tm)

number of transactions
+ + . . .

(global cache cr request tm)

number of transactions



Using the V$SYSTEM_EVENTS View to Identify Performance Problems

12-32 Oracle8i Parallel Server Administration, Deployment, and Performance

Parallel Server Events in V$SYSTEM_EVENTS
The following events appearing in the V$SYSTEM_EVENT output represent waits

for Oracle Parallel Server events:

■ global cache cr request

■ library cache pin

■ buffer busy due to global cache

■ global cache lock busy

■ global cache lock open x

■ global cache lock open s

■ global cache lock null to x

■ global cache lock s to x

■ global cache lock null to s

Events Related to Non-PCM Resources
You can monitor other events in addition to those listed under the previous heading

because performance problems may be related to Oracle Parallel Server. These

events are:

■ Row cache locks

■ Enqueues

■ Library cache pins

■ DFS lock handle

General Observations
If the time waited for global cache events is high relative to other waits, look for

increased latencies, contention, or excessive system workloads using V$SYSSTAT

statistics and operating system performance monitors. A high number of global

cache busy or buffer busy waits indicates increased contention in the buffer cache.

In OLTP systems with data block address locking and a high degree of contention, it

is not unusual when the global cache wait events represent a high proportion of the

sum of the total time waited.

If a lot of wait time is used by waits for non-buffer cache resources as indicated by

statistics in the rows "row cache lock", "enqueues", and "library cache pin", monitor



Using the V$SYSTEM_EVENTS View to Identify Performance Problems

Tuning Oracle Parallel Server and Inter-Instance Performance 12-33

the V$ROWCACHE and V$LIBRARYCACHE views for Oracle Parallel

Server-related issues. Specifically, observe values in the DLM columns of each of

these views.

Common Oracle Parallel Server problems arise from poorly managed space

parameters or sequences that are not cached. In such cases, processes wait for row

cache locks and enqueues and the V$ROWCACHE view will show a high number

of conflicts for certain dictionary caches.



Using the V$SYSTEM_EVENTS View to Identify Performance Problems

12-34 Oracle8i Parallel Server Administration, Deployment, and Performance



Part V
        Oracle Parallel Server Maintenance

Part Five provides information about backup and recovery by presenting the

following chapters:

■ Chapter 13, "Backing Up Your Database"

■ Chapter 14, "Recovering the Database"





Backing Up Your Database 13-1

13
Backing Up Your Database

To protect your data, archive the online redo log files and periodically back up the

data files. Also back up the control file for your database and the parameter files for

each instance. This chapter discusses how to devise a strategy for performing these

tasks by explaining the following topics:

■ Choosing a Backup Method

■ Archiving the Redo Log Files

■ Checkpoints and Log Switches

■ Backing Up the Database

Oracle Parallel Server supports all Oracle backup features in exclusive mode,

including both open and closed backup of either an entire database or individual

tablespaces.

See Also:

■ Oracle8i Backup and Recovery Guide for general information

about backup and recovery.

■ Oracle8i Recovery Manager User’s Guide and Reference for

information about Recovery Manager (RMAN).



Choosing a Backup Method

13-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Choosing a Backup Method
You can perform backup and recovery operations using two methods:

■ Using Recovery Manager (RMAN)

■ Using the operating system

The information provided in this chapter is useful for both methods, unless

specified otherwise.

To avoid confusion between online and offline data files and tablespaces, this

chapter uses the terms "open" and "closed" to indicate whether a database is

available or unavailable during a backup. The term "whole backup" or "database

backup" indicates that all data files and control files have been backed up. "Full"

and "incremental" backups refer only to particular types of backups provided by

RMAN.

Archiving the Redo Log Files
This section explains how to archive the redo log files for each instance of Oracle

Parallel Server:

■ Archiving Mode

■ Automatic or Manual Archiving

■ Archive File Format and Destination

■ Redo Log History in the Control File

■ Backing Up the Archive Logs

See Also: Oracle Enterprise Manager Administrator’s Guide about

using Oracle Enterprise Manager’s Backup Wizard.

See Also: Oracle8i Recovery Manager User’s Guide and Reference for

a complete discussion of backup and recovery operations and

terminology related to RMAN.



Archiving the Redo Log Files

Backing Up Your Database 13-3

Archiving Mode
Oracle provides two archiving modes: ARCHIVELOG mode and

NOARCHIVELOG mode. In ARCHIVELOG mode, the instance must archive its

redo logs as they are filled, before they can be overwritten. Oracle can then recover

the log files in the event of failure. In ARCHIVELOG mode, you can produce both

open and closed backups. In NOARCHIVELOG mode, you can make only closed

backups.

Changing the Archiving Mode
Determine whether to use archive logging which preserves groups of online redo

log files. Without archive logging, Oracle overwrites redo log files once they are

available for reuse.

The choice of whether to enable the archiving of filled online redo log files depends

on your application’s availability and reliability requirements. If you cannot afford

to lose any data in the event of a disk failure, use ARCHIVELOG mode. Note that

archiving filled online redo log files can require extra administrative operations.

To enable archive logging in Oracle Parallel Server environments, the database must

be mounted but not open. Then start Parallel Server in a disabled state. To do this:

1. Shut down all instances.

2. Reset the parameter PARALLEL_SERVER to FALSE on one instance.

Note: Archiving is a per-instance operation that can be handled in

one of two ways:

■ Each instance on Oracle Parallel Server can archive its own

redo log files

■ Alternatively, one or more instances can archive the redo log

files manually for all instances, as described in the following

section

See Also: "Open and Closed Database Backups" on page 13-16.

See Also: Oracle8i Parallel Server Setup and Configuration Guide for

information on how to configure archive logs in Oracle Parallel

Server.



Archiving the Redo Log Files

13-4 Oracle8i Parallel Server Administration, Deployment, and Performance

3. Start up the instance on which you have set PARALLEL_SERVER to FALSE.

4. Enter the following statement:

ALTER DATABASE ARCHIVELOG

5. Shut down the instance.

6. Change the value of the PARALLEL_SERVER parameter to TRUE.

7. Restart your instances.

To disable archive logging, follow the same steps but use the NOARCHIVELOG

clause of the ALTER DATABASE statement.

Automatic or Manual Archiving
Archiving can be performed automatically or manually for a given instance,

depending on the value you set for the LOG_ARCHIVE_START initialization

parameter:

■ With LOG_ARCHIVE_START set to TRUE, Oracle automatically archives redo

logs as they fill.

■ With LOG_ARCHIVE_START set to FALSE, Oracle waits until you instruct it to

archive.

You can set LOG_ARCHIVE_START differently for each Oracle Parallel Server

instance. For example, you can manually use SQL statements to have instance 1

archive the redo log files of instance 2, if instance 2 has LOG_ARCHIVE_START set

to FALSE.

Automatic Archiving
The ARCH background process performs automatic archiving upon instance

startup when LOG_ARCHIVE_START is set to TRUE. With automatic archiving,

online redo log files are copied only for the instance performing the archiving.

In the case of a closed thread, the archiving process in the active instance performs

the log switch and archiving for the closed thread. This is done when log switches

are forced on all threads to maintain roughly the same range of SCNs in the

archived logs of all enabled threads.

Manual Archiving
When LOG_ARCHIVE_START is set to FALSE, you can perform manual archiving

in one of the following ways:



Archiving the Redo Log Files

Backing Up Your Database 13-5

■ Use the ARCHIVE LOG clause of the SQL statement ALTER SYSTEM.

■ Enable automatic archiving using the SQL statement ALTER SYSTEM

ARCHIVE LOG START.

Manual archiving is performed by the user process issuing the archiving command;

it is not performed by the instance’s ARCH process.

ALTER SYSTEM ARCHIVE LOG Clauses for Manual Archiving
ALTER SYSTEM ARCHIVE LOG manual archiving clauses include:

You can use the THREAD clause of ALTER SYSTEM ARCHIVE LOG to archive

redo log files in a thread associated with an instance other than the current instance.

ALL All online redo log files that are full but have not been

archived

CHANGE The lowest system change number (SCN) in the online

redo log file

CURRENT The current redo log of every enabled thread

GROUP integer The group number of an online redo log

LOGFILE ’filename’ The filename of an online redo log file in the thread

NEXT The next full redo log file that needs to be archived

SEQ integer The log sequence number of an online redo log file

THREAD integer The thread containing the redo log file to archive

(defaults to the thread number assigned to the current

instance)

See Also:

■ "Forcing a Log Switch" on page 13-15 regarding threads and log

switches.

■ Oracle8i Reference for information about the syntax of the

ALTER SYSTEM ARCHIVE LOG statement.

■ Oracle8i Recovery Manager User’s Guide and Reference as well as

the "Managing Archiving Redo Information" chapter in the

Oracle8i Administrator’s Guide for more information about

manual and automatic archiving.



Archiving the Redo Log Files

13-6 Oracle8i Parallel Server Administration, Deployment, and Performance

Monitoring the Archiving Process
The GV$ARCHIVE_PROCESSES and V$ARCHIVE_PROCESSES views provide

information about the state of the various ARCH processes on the database and

instance respectively. The GV$ARCHIVE_PROCESSES view displays 10*n rows,

where ’n’ is the number of open instances for the database. The

V$ARCHIVE_PROCESSES view displays 10 rows, 1 row for each possible ARCH

process.

Archive File Format and Destination
Archived redo logs are uniquely named as specified by the

LOG_ARCHIVE_FORMAT parameter. This operating system-specific format can

include text strings, one or more variables, and a filename extension.

LOG_ARCHIVE_FORMAT can have variables as shown in Table 13–1. Examples in

this table assume that LOG_ARCHIVE_FORMAT= arch%parameter, and the upper

bound for all parameters is 10 characters.

The thread parameters %t and %T are used only with Oracle Parallel Server. For

example, if the instance associated with redo thread number 7 sets

LOG_ARCHIVE_FORMAT to LOG_%s_T%t.ARC, then its archived redo log files

are named:

LOG_1_T7.ARC
LOG_2_T7.ARC
LOG_3_T7.ARC
...

See Also: Oracle8i Reference for more information about these

views.

Table 13–1 Archived Redo Log Filename Format Parameters

Parameter Description Example

%T Thread number, left-zero-padded arch0000000001

%t Thread number, not padded arch1

%S Log sequence number, left-zero-padded arch0000000251

%s Log sequence number, not padded arch251



Archiving the Redo Log Files

Backing Up Your Database 13-7

Redo Log History in the Control File
You can use the MAXLOGHISTORY clause of the CREATE DATABASE or CREATE

CONTROLFILE statement to make the control file retain a history of redo log files

that an instance has filled. After creating the database, you can only increase or

decrease the log history by creating new control files. Using CREATE

CONTROLFILE destroys all log history in the current control file.

The MAXLOGHISTORY clause specifies how many entries can be recorded in the

archive history. Its default value is operating system-specific. If MAXLOGHISTORY

is set to a value greater than zero, then whenever an instance switches from one

online redo log file to another, its LGWR process writes the following data to the

control file.

■ Thread number

■ Log sequence number

■ Low system change number (SCN)

■ Low SCN timestamp

■ Next SCN (that is, the low SCN of the next log in sequence)

Log history records are small and are overwritten in a circular fashion when the log

history exceeds the limit set by MAXLOGHISTORY.

During recovery, SQL*Plus prompts you for the appropriate file names. RMAN

automatically restores the redo logs it requires. You can use the log history to

Note: Always specify thread and sequence number in archive log

file format for easy identification of the redo log file.

See Also:

■ Oracle8i Administrator’s Guide for information about specifying

the archived redo log filename format and destination.

■ Oracle system-specific documentation for information about

the default log archive format and destination.

Note: LGWR writes log history data to the control file during a

log switch, not when a redo log file is archived.



Archiving the Redo Log Files

13-8 Oracle8i Parallel Server Administration, Deployment, and Performance

reconstruct archived log file names from an SCN and thread number, for automatic

media recovery of a parallel server that has multiple redo threads. An Oracle

instance accessing the database in exclusive mode with only one thread enabled

does not need the log history. However, the log history is useful when multiple

threads are enabled even if only one thread is open.

You can query the log history information from the V$LOG_HISTORY view.

V$RECOVERY_LOG also displays information about archived logs needed to

complete media recovery. This information is derived from log history records.

Multiplexed redo log files do not require multiple entries in the log history. Each

entry identifies a group of multiplexed redo log files, not a particular filename.

Backing Up the Archive Logs
Archive logs are generally accessible only by the node on which they were created.

In Oracle Parallel Server you have three backup options:

■ Share the location of all archive log destinations with all nodes

■ Have each node back up its own archive log

■ Move the archive logs to one node and back them up

You can use RMAN to implement the first and second solutions and operating

system utilities to implement the third.

Backing Up Archive Logs with RMAN
If you share all archive logs with all nodes of a cluster, backup is very easy and can

be executed from any node because every node can read all the logs. In the example

below, node 1 backs up all redo logs of all nodes. Make sure that the directories are

configured for sharing as described in the Oracle8i Parallel Server Setup and
Configuration Guide.

rman TARGET INTERNAL/sys@node1 catalog rman/rman@rman

  RUN {
         ALLOCATE CHANNEL t1 type ’sbt_tape’ FORMAT ’al_t%t_s%s_p%p’;

See Also:

■ "Restoring and Recovering Redo Log Files" on page 14-8 for

SQL*Plus prompts that appear during recovery.

■ Your Oracle system-specific documentation also has

information about the default MAXLOGHISTORY value.



Archiving the Redo Log Files

Backing Up Your Database 13-9

         SQL ’ALTER SYSTEM ARCHIVE LOG CURRENT’;
         BACKUP ARCHIVELOG ALL DELETE INPUT;
         RELEASE CHANNEL t1;
         }

With the ALTER SYSTEM ARCHIVE LOG CURRENT statement, you force all

nodes to back up their current log files.

If you do not share all archive logs, you can back up the logs locally on every node.

In case of recovery, however, you need to have access from the node on which you

begin recovery to all the archive logs on all nodes. For this reason Oracle

recommends using a media management system that supports archiving over the

network or shared directory services to simplify restoring log files. The following

RMAN script starts the local backup of all nodes using the CONNECT and LIKE

clauses.

rman TARGET internal/sys@node1 catalog rman/rman@rman

  RUN {
         ALLOCATE CHANNEL t1 TYPE ’sbt_tape’ FORMAT ’al_n1_t%t_s%s_p%p’
         CONNECT internal/sys@node1;
         SQL ’ALTER SYSTEM ARCHIVE LOG CURRENT’;
         BACKUP ARCHIVELOG LIKE ’%/arch1/%’ delete input;
         RELEASE CHANNEL t1;
         }

  RUN {
         ALLOCATE CHANNEL t1 TYPE ’sbt_tape’ FORMAT ’al_n2_t%t_s%s_p%p’
         CONNECT internal/sys@node2;
         BACKUP ARCHIVELOG LIKE ’%/arch2/%’ DELETE INPUT;
         RELEASE CHANNEL t1;
         }

  RUN {
         ALLOCATE CHANNEL t1 TYPE ’sbt_tape’ FORMAT ’al_n3_t%t_s%s_p%p’
         CONNECT internal/sys@node3;

Note: Oracle recommends using the LIKE clause instead of

THREAD so that one instance can archive logs on behalf on another

thread when the other thread is down. As well, the archive log

destinations of the various instances must be different so that LIKE

can distinguish them from one another.



Archiving the Redo Log Files

13-10 Oracle8i Parallel Server Administration, Deployment, and Performance

         BACKUP ARCHIVELOG LIKE ’%/arch3/%’ DELETE INPUT;
         RELEASE CHANNEL t1;
         }

Back up all the archive logs from one node into one backup archive instead of

archiving them from each node separately. This makes it easier to find all backups

during recovery. If you do not use shared directories to back up and restore archive

logs, copy or move them using operating system tools. You can easily create scripts

to do this job before backing up or restoring the logs.

To copy all archive logs to the local directories on node 1 use a script similar to the

following:

#!/bin/sh
sqlplus system/manager@node1 @switchlog.sql
rcp node2:/u01/app/oracle/product/815/admin/ops/arch2/*
/u01/app/oracle/product/815/admin/ops/arch2
rcp node3:/u01/app/oracle/product/815/admin/ops/arch3/*
/u01/app/oracle/product/815/admin/ops/arch3

The switchlog.sql  script is used to make sure to get all necessary log files for

recovery. It looks like this:

#!/bin/sh
ALTER SYSTEM ARCHIVE LOG CURRENT;
EXIT

To back up the archived logs from node 1 using RMAN, the command is similar to

the example on page 13-8 except that the ALTER SYSTEM ARCHIVE LOG

CURRENT statement is executed from the shell script:

rman TARGET internal/sys@node1 catalog rman/rman@rman

  RUN {
         ALLOCATE CHANNEL t1 TYPE ’sbt_tape’ FORMAT ’al_t%t_s%s_p%p’;
         BACKUP ARCHIVELOG ALL DELETE INPUT;
         RELEASE CHANNEL t1;
         }



Archiving the Redo Log Files

Backing Up Your Database 13-11

Restoring Archive Logs with RMAN
If RMAN has concurrent access to all backups, it automatically restores all

necessary archive logs from previous backups for recovery. In Oracle Parallel Server

environments, the restore procedure varies depending on the option you used to

back up the archive logs.

If you share archive log directories, you can change the destination of the automatic

restoration of archive logs with the SET clause to restore the files to a local directory

of the node from where you begin recovery.

To restore the USERS tablespace from node 1, use an RMAN command syntax

similar to the following:

rman TARGET internal/sys@node1 catalog rman/rman@rman

  run {
         allocate channel t1 type ’sbt_tape’;
         set archivelog destination to
’/u01/app/oracle/product/815/admin/ops/arch1’;
         recover tablespace users;
         sql ’alter tablespace users online’;
         release channel t1;
         }

If you backed up each node’s log files using a central media management system,

you can use the RMAN AUTOLOCATE option of the SET command. If you use

several channels for recovery, RMAN asks every channel for the required file if it

does not find it in the first one. This feature allows you to recover a database using

the local tape drive on the remote node:

rman TARGET internal/sys catalog rman/rman@rman
  RUN {
         ALLOCATE CHANNEL t1 type ’sbt_tape’ parms ’ENV=(NSR_CLIENT=node1)’;
         ALLOCATE CHANNEL t2 type ’sbt_tape’ parms ’ENV=(NSR_CLIENT=node2)’;
         ALLOCATE CHANNEL t3 type ’sbt_tape’ parms ’ENV=(NSR_CLIENT=node3)’;
         SET AUTOLOCATE ON;
         RECOVER TABLESPACE users;
         SQL ’ALTER TABLESPACE users ONLINE’;
         RELEASE CHANNEL t1;}
If you backed up the logs from each node without using a central media

management system, you must first restore all the log files from the remote nodes



Archiving the Redo Log Files

13-12 Oracle8i Parallel Server Administration, Deployment, and Performance

and move them to the host from which you will start recovery. This means you

must perform recovery in three steps:

1. Restore the datafiles.

2. Restore the archive logs.

3. Begin recovery.

rman target internal/sys catalog rman/rman@rman
RUN {
         ALLOCATE CHANNEL t1 TYPE ’sbt_tape’ connect internal/sys@node1;
         RESTORE TABLESPACE users;
         RELEASE CHANNEL t1;
         }

         RUN {
         ALLOCATE CHANNEL t1 TYPE ’sbt_tape’ connect internal/sys@node2;
         RESTORE ARCHIVELOG
            # this line is optional if you don’t want to restore ALL archive
logs:
            FROM TIME "to_date(’05.09.1999 00:00:00’,’DD.MM.YYYY HH24:Mi:SS’)"
            LIKE ’%/2_%’;
         RELEASE CHANNEL t1;
         }
RUN {
         ALLOCATE CHANNEL t1 TYPE ’sbt_tape’ connect internal/sys@node3;
         RESTORE ARCHIVELOG
            # this line is optional if you don’t want to restore ALL archive
logs:
            FROM TIME "to_date(’05.09.1999 00:00:00’,’DD.MM.YYYY HH24:Mi:SS’)"
            like ’%/3_%’;
         RELEASE CHANNEL t1;
         }

         EXIT

rcp node2:/u01/app/oracle/product/815/admin/ops/arch2
/u01/app/oracle/product/815/admin/ops/arch2
rcp node3:/u01/app/oracle/product/815/admin/ops/arch2
/u01/app/oracle/product/815/admin/ops/arch2

rman TARGET internal/sys catalog rman/rman@rman

         RUN {
         ALLOCATE CHANNEL t1 TYPE ’sbt_tape’;



Archiving the Redo Log Files

Backing Up Your Database 13-13

         ALLOCATE CHANNEL d1 type disk;
         RECOVER TABLESPACE users;
         SQL ’ALTER TABLESPACE USERS ONLINE’;
         }

If you moved all archive logs to one node to back them up, recovery is as easy as

recovery using shared directories. To make sure you have all the log files, copy all

remote log files with your shell script as in this example:

/rcp_all_logs.sh
rman TARGET internal/sys@node1 catalog rman/rman@rman
RUN {
         ALLOCATE CHANNEL t1 type ’sbt_tape’ format ’al_t%t_s%s_p%p’;
         BACKUP ARCHIVELOG ALL DELETE INPUT;
         RELEASE CHANNEL t1;
         }

Note: In the recover step, there is an ’sbt_tape’ channel allocated

so that the archivelogs generated on node 1 will be automatically

restored.



Checkpoints and Log Switches

13-14 Oracle8i Parallel Server Administration, Deployment, and Performance

Checkpoints and Log Switches
This section discusses:

■ Checkpoints

■ Forcing a Checkpoint

■ Forcing a Log Switch

■ Forcing a Log Switch on a Closed Thread

Checkpoints
Oracle performs checkpointing automatically on a consistent basis. Checkpointing

requires that Oracle write all dirty buffers to disk and advance the checkpoint.

Forcing a Checkpoint
The SQL statement ALTER SYSTEM CHECKPOINT explicitly forces Oracle to

perform a checkpoint for either the current instance or all instances. Forcing a

checkpoint ensures that all changes to the database buffers are written to the data

files on disk.

The GLOBAL clause of ALTER SYSTEM CHECKPOINT is the default. It forces all

instances that have opened the database to perform a checkpoint. The LOCAL

option forces a checkpoint by the current instance.

A global checkpoint is not finished until all instances requiring recovery have been

recovered. If any instance fails during the global checkpoint, however, the

checkpoint might complete before that instance has been recovered.

To force a checkpoint on an instance running on a remote node, you can change the

current instance with the CONNECT statement.

See Also: Oracle8i Designing and Tuning for Performance for more

information about checkpoints.

Note: You need the ALTER SYSTEM privilege to force a

checkpoint.

See Also: "Setting and Connecting to Instances" on page 4-3 for

information on specifying a remote node.



Checkpoints and Log Switches

Backing Up Your Database 13-15

Forcing a Log Switch
A parallel server can force a log switch for any instance that fails to archive its

online redo log files for some period of time. This can be done either because the

instance has not generated many redo entries or because the instance has shut

down. This prevents an instance’s redo log, known as a thread of redo, from

remaining unarchived for too long. If media recovery is necessary, the redo entries

used for recovery are always recent.

For example, after an instance has shut down, another instance can force a log

switch for that instance so its current redo log file can be archived. The SQL

statement ALTER SYSTEM SWITCH LOGFILE forces the current instance to begin

writing to a new redo log file, regardless of whether the current redo log file is full.

When all instances to perform forced log switches, it is known as a "global log

switch." To do this, use the SQL statement ALTER SYSTEM ARCHIVE LOG

CURRENT omitting the THREAD keyword. After issuing this statement, Oracle

waits until all online redo log files are archived before returning control to you. Use

this statement to force a single instance to perform a log switch and archive its

online redo log files by specifying the THREAD keyword.

Use the INSTANCE FORCE LOG SWITCH clause for each instance; there is no

global option for forcing a log switch. You may want to force a log switch so that

you can archive, drop, or rename the current redo log file.

Forcing a Log Switch on a Closed Thread
You can force a closed thread to complete a log switch while the database is open.

This is useful if you want to drop the current log of the thread. This procedure does

not work on an open thread, including the current thread, even if the instance that

had the thread open is shut down. For example, if an instance aborted while the

thread was open, you could not force the thread’s log to switch.

To force a log switch on a closed thread, manually archive the thread using the SQL

statement ALTER SYSTEM with the ARCHIVE LOG clause. For example:

   ALTER SYSTEM ARCHIVE LOG GROUP 2;

Note: You need the ALTER SYSTEM privilege to force a log

switch.



Backing Up the Database

13-16 Oracle8i Parallel Server Administration, Deployment, and Performance

To archive a closed redo log group manually that will force it to log switch, you

must connect with SYSOPER or SYSDBA privileges.

Backing Up the Database
This section describes backup operation issues in Oracle Parallel Server. It covers

the following topics:

■ Open and Closed Database Backups

■ RMAN Backup Issues

■ Operating System Backup Issues

Open and Closed Database Backups
You can perform all backup operations from any node of an Oracle Parallel Server.

Open backups allow you to back up all or part of the database while it is running.

Users can update data in any part of the database during an open backup. With

Oracle Parallel Server you can make open backups of multiple tablespaces

simultaneously from different nodes. An open backup includes copies of one or

more data files and the current control file. Subsequent archived redo log files or

incremental backups are also necessary to allow recovery up to the time of a media

failure.

When you use the operating system, closed backups are done while the database is

closed. When you use RMAN, an instance must be started and mounted, but not

open, to perform closed backups. Before making a closed backup, shut down all
instances of your Oracle Parallel Server. While the database is closed, you can back

up its files in parallel from different nodes. A closed, whole database backup

includes copies of all data files and the current control file.

If you archive redo log files, a closed backup allows recovery up to the time of a

media failure. In NOARCHIVELOG mode, full recovery is not possible since a

closed backup only allows restoration of the database to the point in time of the

backup.

See Also: The Oracle8i Administrator’s Guide for information on

connecting with SYSDBA or SYSOPER privileges.

Warning: Do not use operating-system utilities to back up the
control file in ARCHIVELOG mode unless you are performing a
closed, whole backup.



Online Backups and Oracle Parallel Server

Backing Up Your Database 13-17

Never erase, reuse, or destroy archived redo log files until completing another

whole backup, or preferably two whole backups, in either open or closed mode.

Online Backups and Oracle Parallel Server
Online backups in Oracle Parallel Server are efficient because they do not use the

cache. This means you can run online backups from a single instance in the cluster

and not experience pinging.

Because backups use primarily CPU resources, so you can make use of the less busy

instances. However, you should monitor disk usage to ensure that the I/O is not

being saturated by the backup. If the I/O is saturated by the backup, it may

adversely affect the online users.

RMAN Backup Issues
This section describes the following RMAN backup issues:

■ Preparing for Snapshot Control Files in RMAN

■ Performing an Open Backup Using RMAN

■ Node Affinity Awareness

Preparing for Snapshot Control Files in RMAN
In Oracle Parallel Server, you must prepare for snapshot control files before

performing backups using RMAN.

Any node making a backup may need to create a snapshot control file. Therefore,

on all nodes used for backup, ensure the existence of the destination directory for

such a snapshot control file.

See Also:

■ Oracle8i Backup and Recovery Guide.

■ Oracle8i Concepts.

Note: Using the ALTER TABLESPACE ... BEGIN BACKUP

statement generates extra redo logs.



Online Backups and Oracle Parallel Server

13-18 Oracle8i Parallel Server Administration, Deployment, and Performance

For example, to specify that the snapshot control file should be written to the file

/oracle/db_files/snapshot/snap_prod.cf , enter:

   SET SNAPSHOT CONTROLFILE TO ’/ORACLE/DB_FILES/snapshot/snap_prod.cf’;

You must then ensure that the directory /oracle/db_files/snapshot  exists on

all nodes from which you perform backups.

It is also possible to specify a raw device destination for a snapshot control file,

which like other data files in Oracle Parallel Server will be shared across all nodes in

the cluster.

Performing an Open Backup Using RMAN
If you are also backing up archive logs, then issue an ALTER SYSTEM ARCHIVE

LOG CURRENT statement after the backup is complete. This ensures that you have

all redo data to make the files in your backup consistent.

The following sample script distributes data file and archive log backups across two

instances in a Parallel Server environment. It assumes:

■ There are more than 20 files in the database

■ 4 tape drives available, two on each node

■ The archive log files produced by thread 2 are readable by node1

The sample script is as follows:

   RUN {
     ALLOCATE CHANNEL NODE1_T1 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE1';
     ALLOCATE CHANNEL NODE1_T2 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE1';
     ALLOCATE CHANNEL NODE2_T3 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE2';
     ALLOCATE CHANNEL NODE2_T4 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE2';
     BACKUP
      FILESPERSET 6
      FORMAT 'DF_%T_%S_%P'
      (DATABASE);
     SQL 'ALTER SYSTEM ARCHIVE LOG CURRENT';
     BACKUP
       FILESPERSET 10
       FORMAT 'AL_%T_%S_%P'
       (ARCHIVELOG UNTIL TIME ’SYSDATE’ LIKE ’node1_archivelog_dest%’ DELETE
        INPUT CHANNEL NODE1_T1)
       (ARCHIVELOG UNTIL TIME ’SYSDATE’ LIKE ’node2_archivelog_dest%’ DELETE
        INPUT CHANNEL NODE2_T3);



Online Backups and Oracle Parallel Server

Backing Up Your Database 13-19

Node Affinity Awareness
On some cluster platforms, certain nodes of the cluster have faster access to some

data files than to other data files. RMAN automatically detects this type of affinity.

When deciding which channel will back up a particular data file, RMAN gives

preference to channels allocated at nodes with affinity to that data file. To use this

feature, allocate RMAN channels at the various nodes of the cluster that have

affinity to the data files being backed up.

For example:

   RUN
   {
     ALLOCATE CHANNEL CH1 TYPE ’SBT_TAPE’ CONNECT ’@INST1’;
     ALLOCATE CHANNEL CH2 TYPE ’SBT_TAPE’ CONNECT ’@INST2’;
     ...
   }

See Also : Oracle8i Recovery Manager User’s Guide and Reference for

complete information on open backups using RMAN.

See Also: Oracle8i Backup and Recovery Guide for more information

about the CONNECT clause of the ALLOCATE statement.



Online Backups and Oracle Parallel Server

13-20 Oracle8i Parallel Server Administration, Deployment, and Performance

Operating System Backup Issues
This section discusses the following operating system backup issues:

■ Beginning and Ending an Open Backup Using Operating System Utilities

■ Performing an Open Backup Using Operating System Utilities

Beginning and Ending an Open Backup Using Operating System Utilities
When using the operating system method, you can begin an open backup of a

tablespace at one instance and end the backup at the same instance or another

instance. For example:

   ALTER TABLESPACE TABLESPACE BEGIN BACKUP;/* INSTANCE x */
   Statement processed.

....operating system commands to copy data files...

   ....COPY COMPLETED...

   ALTER TABLESPACE TABLESPACE END BACKUP;/* INSTANCE y */
   Statement processed.

It does not matter which instance issues each of these statements, but they must be

issued whenever you make an open backup. The BEGIN BACKUP clause has no

effect on user access to tablespaces.

For an open backup to be usable for complete or incomplete media recovery, retain

all archived redo logs spanning the period of time between the execution of the

BEGIN BACKUP statement and the recovery end-point.

After making an open backup, you can force a global log switch by using ALTER

SYSTEM ARCHIVE LOG CURRENT. This statement archives all online redo log

files that need to be archived, including the current online redo log files of all

Note: If you do not issue the ALTER TABLESPACE ... BEGIN

BACKUP statement, or if processing does not complete before an

operating system backup of the tablespace begins, then the backed

up data files are not useful for subsequent recovery operations.

Attempting to recover such a backup is risky and can cause errors

resulting in inconsistent data.



Online Backups and Oracle Parallel Server

Backing Up Your Database 13-21

enabled threads and closed threads of any instance that shut down without

archiving its current redo log file.

Performing an Open Backup Using Operating System Utilities
The following steps are recommended if you are using operating system utilities to

perform an open backup in Oracle Parallel Server.

1. Before starting the open backup, issue the ALTER SYSTEM ARCHIVE LOG

CURRENT statement.

This switches and archives the current redo log file for all threads in your Oracle

Parallel Server environment, including threads that are not currently up.

2. Issue the ALTER TABLESPACE tablespace BEGIN BACKUP statement.

3. Wait for the ALTER TABLESPACE statement to successfully complete.

4. In the operating-system environment, issue the appropriate statements to back

up the data files for the tablespace.

5. Wait for the operating-system backup to successfully complete.

6. Issue the ALTER TABLESPACE tablespace END BACKUP statement.

7. Back up the control files with ALTER DATABASE BACKUP CONTROLFILE TO

filename.

For added safety, back up the control file to a trace file with the ALTER DATABASE

BACKUP CONTROLFILE TO TRACE NORESETLOGS statement, then identify and

back up that trace file.

If you are also backing up archive logs, then issue an ALTER SYSTEM ARCHIVE

LOG CURRENT statement after END BACKUP. This ensures that you have all redo

to roll back to the "end backup" marker.

See Also: Oracle8i SQL Reference for a description of the BEGIN

BACKUP and END BACKUP clauses of the ALTER TABLESPACE

statement.



Online Backups and Oracle Parallel Server

13-22 Oracle8i Parallel Server Administration, Deployment, and Performance



Recovering the Database 14-1

14
Recovering the Database

This chapter describes Oracle recovery features on Oracle Parallel Server. It covers

the following topics:

■ Recovery from Instance Failure

■ Recovery from Media Failure

■ Parallel Recovery

See Also: Oracle8i Backup and Recovery Guide for general

information about Oracle recovery.



Three Types of Recovery

14-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Three Types of Recovery
This chapter discusses three types of recovery:

■ Recovery from Instance Failure

■ Recovery from Media Failure

■ Parallel Recovery

Recovery from Instance Failure
Instance failure occurs when a software or hardware problem prevents an instance

from continuing work. The following sections describe the recovery performed after

failure of instances accessing the database in shared mode.

■ Single-Node Failure

■ Multiple-Node Failure

■ Fast-Start Checkpointing

■ Fast-Start Rollback

■ Access to Data Files for Instance Recovery

■ Steps of Oracle Instance Recovery

After instance failure, Oracle uses the online redo log files to perform automatic

recovery of the database. For a single instance running in exclusive mode, instance

recovery occurs as soon as the instance starts up after it has failed or shut down

abnormally.

When instances accessing the database in shared mode fail, online instance recovery

is performed automatically. Instances that continue running on other nodes are not

affected as long as they are reading from the buffer cache. If instances attempt to

write, the transaction stops. All operations to the database are suspended until

cache recovery of the failed instance is complete.

Single-Node Failure
Oracle Parallel Server performs instance recovery by coordinating recovery

operations through the SMON processes of the other running instances. If one

instance fails, the SMON process of another instance notices the failure and

automatically performs instance recovery for the failed instance.

See Also: Oracle8i Backup and Recovery Guide.



Recovery from Instance Failure

Recovering the Database 14-3

Instance recovery does not include restarting the failed instance or any applications

that were running on that instance. Applications that were running may continue

by failover, as described in "Recovery from Instance Failure" on page 14-2.

When one instance performs recovery for another failed instance, the surviving

instance reads redo log entries generated by the failed instance and uses that

information to ensure all committed transactions are reflected in the database. Data

from committed transactions is not lost. The instance performing recovery rolls

back any transactions that were active at the time of the failure and releases

resources being used by those transactions.

Multiple-Node Failure
As long as one instance continues running, its SMON process performs instance

recovery for any other instances that fail.

If all instances of an Oracle Parallel Server fail, instance recovery is performed

automatically the next time an instance opens the database. The instance does not

have to be one of the instances that failed, and it can mount the database in either

shared or exclusive mode from any node of the Oracle Parallel Server. This recovery

procedure is the same for Oracle running in shared mode as it is for Oracle in

exclusive mode, except that one instance performs instance recovery for all failed

instances.

Fast-Start Checkpointing
Fast-start checkpointing is the basis for Fast-start fault recovery in Oracle. Fast-start

checkpointing occurs continuously, advancing the checkpoint as Oracle writes

blocks to disk. Fast-start checkpointing always writes the oldest modified block

first, ensuring that every write allows the checkpoint time to be advanced. This

eliminates bulk writes and the resulting I/O spikes that occur with conventional

checkpointing, yielding smooth and efficient on-going performance.

You can specify a limit on the duration of the roll forward phase of Fast-start

checkpointing. Oracle automatically adjusts the checkpoint write rate to meet the

specified roll-forward limit while issuing the minimum number of writes.

See Also: Oracle8i Parallel Server Concepts for more information

about application failover.

See Also: Oracle8i Designing and Tuning for Performance for details

on how to do this.



Recovery from Instance Failure

14-4 Oracle8i Parallel Server Administration, Deployment, and Performance

Fast-Start Rollback
The rollback phase of system fault recovery in Oracle uses "non-blocking" rollback

technology. This means new transactions can begin immediately after roll forward

completes. When a new transaction accesses a row locked by a dead transaction, the

new transaction rolls back only the changes that prevent the transaction’s progress.

New transactions do not have to wait for Oracle to roll back the entire dead

transaction, so long-running transactions no longer affect recovery time. The

Fast-start technology maximizes data availability and ensures predictable recovery

time.

In addition, the database server can roll back dead transactions in parallel. This

technique is used against rows not blocking new transactions, and only when the

cost of performing dead transaction roll back in parallel is less than performing it

serially.

Access to Data Files for Instance Recovery
An instance performing recovery for another instance must have access to all online

data files that the failed instance was accessing. When instance recovery fails

because a data file fails verification, the instance that attempted to perform recovery

does not fail but a message is written to the alert log file.

After you correct the problem that prevented access to the database files, use the

SQL statement ALTER SYSTEM CHECK DATAFILES to make the files available to

the instance.

See Also: Oracle8i Parallel Server Concepts for more information on

Fast-start rollback.

See Also: "Datafiles" on page 6-2.



Recovery from Instance Failure

Recovering the Database 14-5

Steps of Oracle Instance Recovery
Figure 14–1 illustrates the degree of database availability during each step of Oracle

instance recovery.

Figure 14–1 Steps of Oracle Instance Recovery

The steps involved in recovery are:

1. Oracle Parallel Server is running on multiple nodes.

2. Node failure is detected.

3. The LM is reconfigured; resource and lock management is redistributed onto

the set of surviving nodes. One call gets persistent resources. Lock value block

is marked as dubious for locks held in exclusive or protected write mode. Lock

requests are queued.

4. LCKn processes build a list of all invalid lock elements.

5. Roll forward. Redo logs of the dead threads are applied to the database.

6. LCKn processes make all invalid lock elements valid.

7. Roll back. Rollback segments are applied to the database for all uncommitted

transactions.

8. Instance recovery is complete and all data is accessible.

During step 5, forward application of the redo log, database access is limited by the

transitional state of the buffer cache. The following data access restrictions exist for

D
at

ab
as

e 
A

va
ila

b
ili

ty
 

Elapsed Time 

None

Partial

Full 1

2

3 4 5 6

8

7



Recovery from Media Failure

14-6 Oracle8i Parallel Server Administration, Deployment, and Performance

all user data in all data files, regardless of whether you are using high or low

granularity locking or any particular features:

■ No writes to surviving buffer caches can succeed while the access is limited

■ No disk I/O of any sort by way of the buffer cache and direct path can be done

from any of the surviving instances

■ No lock requests are made to the DLM for user data

Oracle can read buffers already in the cache with the correct global lock because this

does not involve any I/O or lock operations.

The transitional state of the buffer cache begins at the conclusion of the initial lock

scan step when instance recovery is first started by scanning for dead redo threads.

Subsequent lock scans are made if new "dead" threads are discovered. This state

lasts while the redo log is applied (cache recovery) and ends when the redo logs

have been applied and the file headers have been updated. Cache recovery

operations conclude with validation of the invalid locks, which occurs after the

buffer cache state is normalized.

Recovery from Media Failure
Media failure occurs when the storage medium for Oracle files is damaged. This

usually prevents Oracle from reading or writing data after a media failure resulting

in the loss of one or more database files, use backups of the data files to recover the

database. If you are using Recovery Manager (RMAN), you may also need to apply

incremental backups, archived redo log files, and a backup of the control file. If you

are using operating system utilities, you might need to apply archived redo log files

to the database and use a backup of the control file.

This section describes:

■ Complete Media Recovery

■ Incomplete Media Recovery

■ Restoring and Recovering Redo Log Files

■ Disaster Recovery

See Also: Oracle8i Backup and Recovery Guide for procedures to

recover from various types of media failure.



Recovery from Media Failure

Recovering the Database 14-7

Complete Media Recovery
You can perform complete media recovery in either exclusive or shared mode.

Table 14–1 shows the status of the database that is required to recover particular

database objects.

You can recover multiple data files or tablespaces on multiple instances

simultaneously.

Complete Media Recovery Using Operating System Utilities
With operating system utilities you can perform open database recovery of

tablespaces or data files in shared mode. Do this using the RECOVER

TABLESPACE or RECOVER DATAFILE statements.

You can use the RECOVER DATABASE statement to recover a database that is

mounted in shared mode, but not open. Only one instance can issue this statement

in Oracle Parallel Server.

Table 14–1 Database Status for Media Recovery

To Recover Database Status

An entire database or
the SYSTEM
tablespace.

The database must be mounted but not opened by any
instance.

A tablespace other
than the SYSTEM
tablespace.

The database must be opened by the instance performing
the recovery and the tablespace must be offline.

A data file. The database can be open with the data file offline, or the
database can be mounted but not opened by any instance.
(For a data file in the SYSTEM tablespace, the database
must be mounted but not open.)

Note: The recommended method of recovering a database is to

use RMAN. Oracle does not recommend use of the SQL statement

ALTER DATABASE RECOVER.



Recovery from Media Failure

14-8 Oracle8i Parallel Server Administration, Deployment, and Performance

Incomplete Media Recovery
You can perform incomplete media recovery while the database is mounted in

shared or exclusive mode providing it is not opened by an instance. Do this using

the following database recovery options:

With RMAN use one of the following clauses with the SET statement before

restoring and recovering:

■ UNTIL CHANGE integer

■ UNTIL TIME date

■ UNTIL LOGSEQ integer THREAD integer

With operating system utilities, restore your backups and then use one of the

following clauses with the RECOVER DATABASE statement:

■ UNTIL CANCEL

■ UNTIL CHANGE integer

■ UNTIL TIME date

Restoring and Recovering Redo Log Files
Media recovery of a database accessed by Oracle Parallel Server may require the

simultaneous opening of multiple archived log files. Because each instance writes

redo log data to a separate redo thread, recovery may require as many as one

archived log file per thread. However, if a thread’s online redo log contains enough

recovery information, restoring archived log files for that thread is unnecessary.

Recovery Using RMAN
RMAN automatically restores and applies the archive logs required. By default,

RMAN restores archive logs to the LOG_ARCHIVE_DEST directory of the instances

to which it connects. If you are using multiple nodes to restore and recover, this

means that the archive logs may be restored to any of the nodes performing the

restore/recover.

The node that reads the restored logs and performs the roll forward is the target

node to which the connection was initially made. You must ensure that the logs are

readable from that node using the following platform-specific methods.

See Also: Oracle8i Backup and Recovery Guide for more information

on the use of the SET and RECOVER DATABASE statements.



Recovery from Media Failure

Recovering the Database 14-9

Making Archive Logs Readable by All Nodes For detailed procedures on how to

configure this, refer to the Oracle8i Parallel Server Setup and Configuration Guide.

Recovery Using Operating System Utilities
During recovery, Oracle prompts you for the archived log files as they are needed.

Messages supply information about the required files and Oracle prompts you for

the filenames.

For example, if the log history is enabled and the filename format is

LOG_T%t_SEQ%s, where %t is the thread and %s is the log sequence number, then

you might receive these messages to begin recovery with SCN 9523 in thread 8:

ORA-00279: Change 9523 generated at 27/09/91 11:42:54 needed for thread 8
ORA-00289: Suggestion : LOG_T8_SEQ438
ORA-00280: Change 9523 for thread 8 is in sequence 438
Specify log: {<RET> = suggested | filename | AUTO | FROM | CANCEL}

If you use the ALTER DATABASE statement with the RECOVER clause, you receive

these messages but not the prompt. Redo log files may be required for each enabled

thread in Oracle Parallel Server. Oracle issues a message when a log file is no longer

needed. The next log file for that thread is then requested, unless the thread was

disabled or recovery is finished.

If recovery reaches a time when an additional thread was enabled, Oracle simply

requests the archived log file for that thread. Whenever an instance enables a

thread, it writes a redo entry that records the change; therefore, all necessary

information about threads is available from the redo log files during recovery.

If recovery reaches a time when a thread was disabled, Oracle informs you that the

log file for that thread is no longer needed and does not request further log files for

the thread.

Note: If Oracle reconstructs the names of archived redo log files,

the format that LOG_ARCHIVE_FORMAT specifies for the instance

doing recovery must be the same as the format specified for the

instances that archived the files. All instances should use the same

value of LOG_ARCHIVE_FORMAT in Oracle Parallel Server, and

the instance performing recovery should also use that value. You

can specify a different value of LOG_ARCHIVE_DEST during

recovery if the archived redo log files are not at their original

archive destinations.



Recovery from Media Failure

14-10 Oracle8i Parallel Server Administration, Deployment, and Performance

Disaster Recovery
This section describes disaster recovery using RMAN and operating system

utilities. Disaster recovery is used when a failure makes an entire site unavailable. In

this case, you can recover at an alternate site using open or closed database

backups.

Disaster Recovery Using RMAN
The following scenario assumes:

■ You have lost the entire database, all control files, and the online redo log

■ You will be distributing your restore over 2 nodes

■ There are 4 tape drives (two on each node)

■ You are using a recovery catalog

The SET UNTIL statement is used in case the database structure has changed in the

most recent backups and you wish to recover to that point in time. In this way,

RMAN restores the database to the same structure the database had at the specified

time.

Before You Begin: Before beginning the database restore, you must:

■ Restore your initialization file and your recovery catalog from your most recent

backup

■ Catalog archive logs, data file copies, or backup sets that are on disk but are not

registered in the recovery catalog

The archive logs up to the logseq number being restored must be cataloged in

the recovery catalog, or RMAN will not know where to find them.

Note: To recover up to the latest point in time, all logs must be

available at a remote site; otherwise some committed transactions

may be lost.

Note: It is highly advisable to back up the database immediately

after opening the database reset logs, because all previous backups

are invalidated. This step is not shown in this example.



Recovery from Media Failure

Recovering the Database 14-11

If you resynchronize the recovery catalog frequently, and have an up-to-date

copy from which you have restored, there should not be many archive logs that

need cataloging.

What the Sample Script Does: The following script restores and recovers the

database to the most recently available archived log, which is log 124 thread 1. It

does the following:

■ Starts the database NOMOUNT and restricts connections to DBA-only users

■ Restores the control file to the location specified

■ Copies (or replicates) this control file to all the other locations specified by the

CONTROL_FILES initialization parameter

■ Mounts the control file

■ Catalogs any archive logs not in the recovery catalog

■ Restores the database files (to the original locations)

If volume names have changed, you must use the statement SET NEWNAME

FOR... before the restore, then perform a switch after the restore. This updates

the control file with the data files’ new locations.

■ Recovers the data files by either using a combination of incremental backups

and redo, or just redo

RMAN completes the recovery when it reaches the log sequence number

specified.

■ Opens the database resetlogs

Note: You only have to perform this step if you lose your recovery

catalog and have already restored and performed point-in-time

recovery on it. This is not necessary if the recovery catalog is still

intact. You might, however, need to catalog a few archived logs,

even with an intact catalog, but you only need to recreate the ones

that were created since the last "catalog resync". A "catalog resync"

is the process by which RMAN copies information about backups,

copies, and archivelogs from the target database control file to the

recovery catalog.



Recovery from Media Failure

14-12 Oracle8i Parallel Server Administration, Deployment, and Performance

■ Oracle recommends you back up your database after the resetlogs. This is not

shown in the example.

Restore/Recover Sample Script:

Start SQL*Plus as follows:

   CONNECT scott/tiger AS SYSDBA

Oracle responds with:

   Connected.

Enter the following STARTUP syntax:

   STARTUP NOMOUNT RESTRICT

Start RMAN and run the script.

   RMAN TARGET scott/tiger@node1 RCVCAT RMAN/RMAN@RCAT
   RUN {
     SET UNTIL LOGSEQ 124 THREAD 1;
     ALLOCATE CHANNEL t1 TYPE 'SBT_TAPE' CONNECT 'internal/knl@node1';
     ALLOCATE CHANNEL t2 TYPE 'SBT_TAPE' CONNECT 'internal/knl@node1';
     ALLOCATE CHANNEL t3 TYPE 'SBT_TAPE' CONNECT 'internal/knl@node2';
     ALLOCATE CHANNEL t4 TYPE 'SBT_TAPE' CONNECT 'internal/knl@node2';
     ALLOCATE CHANNEL d1 TYPE DISK;
     RESTORE CONTROLFILE;
     ALTER DATABASE MOUNT;
     CATALOG ARCHIVELOG '/oracle/db_files/node1/arch/arch_1_123.rdo';
     CATALOG ARCHIVELOG '/oracle/db_files/node1/arch/arch_1_124.rdo';
     RESTORE DATABASE;
     RECOVER DATABASE;
     SQL 'ALTER DATABASE OPEN RESETLOGS';
     }

Note: Only complete the following step if you are certain there are

no other archived logs to apply.

Note: The user specified in the target parameter must have

SYSDBA privilege.



Parallel Recovery

Recovering the Database 14-13

Disaster Recovery Using Operating System Utilities
To do this, use the following procedure:

1. Restore the last full backup at the alternate site as described in the Oracle8i
Backup and Recovery Guide.

2. Start SQL*PLus.

3. Connect as SYSDBA.

4. Start and mount the database with the STARTUP MOUNT statement.

5. Initiate an incomplete recovery using the RECOVER statement with the

appropriate UNTIL clause.

The following statement is an example:

RECOVER DATABASE USING BACKUP CONTROLFILE UNTIL CANCEL

6. When prompted with a suggested redo log file name for a specific thread, use

that filename.

If the suggested archive log is not in the archive directory, specify where the file

can be found. If redo information is needed for a thread and a file name is not

suggested, try using archive log files for the thread in question.

7. Repeat step 6 until all archive log files have been applied.

8. Stop the recovery operation using the CANCEL statement.

9. Issue the ALTER DATABASE OPEN RESETLOGS statement.

Parallel Recovery
The goal of the parallel recovery feature is to use computed and I/O parallelism to

reduce the elapsed time required to perform crash recovery, single-instance

recovery, or media recovery. Parallel recovery is most effective at reducing recovery

time when several data files on several disks are being recovered concurrently.

For RMAN, the restore and application of incremental backups are parallelized

using channel allocation. The RECOVERY_PARALLELISM parameter determines

Note: If any distributed database actions are used, check to see

whether your recovery procedures require coordinated distributed

database recovery. Otherwise, you may cause logical corruption to

the distributed data.



Parallel Recovery

14-14 Oracle8i Parallel Server Administration, Deployment, and Performance

the number of concurrent processes that participate in recovery. Setting

RECOVERY_PARALLELISM to 0 or 1 invokes serial recovery.

Parallel Recovery Using RMAN
With RMAN’s RESTORE and RECOVER statements, Oracle can automatically

parallelize all three stages of recovery.

Restoring Data Files: When restoring data files, the number of channels you

allocate in the RMAN recover script effectively sets the parallelism RMAN uses. For

example, if you allocate 5 channels, you can have up to 5 parallel streams restoring

data files.

Applying Incremental Backups: Similarly, when you are applying incremental

backups, the number of channels you allocate determines the potential parallelism.

Applying Redo Logs: Oracle applies redo logs using a specific number of parallel

processes as determined by your setting for the RECOVERY_PARALLELISM

parameter.

The RECOVERY_PARALLELISM initialization parameter specifies the number of

redo application server processes participating in instance or media recovery.

During parallel recovery, one process reads the log files sequentially and dispatches

redo information to several recovery processes that apply the changes from the log

files to the data files. A value of 0 or 1 indicates that Oracle performs recovery

serially. The value of this parameter cannot exceed the value of the

PARALLEL_MAX_SERVERS parameter.



Parallel Instance Recovery

Recovering the Database 14-15

Parallel Instance Recovery
Parallel execution can also improve recovery processing. To use parallel execution

for recovery, the parallel execution processes must be running when the instance

starts up.

Set the PARALLEL_MIN_SERVERS parameter to establish the number of parallel

execution servers available for parallel recovery. You can do this even if you do not

intend to use parallel execution for the rest of your Oracle processing. Use the

PARALLEL_MAX_SERVERS parameter to set a limit on the number of parallel

execution processes available for recovery.

Media Recovery
The PARALLEL clause of the RECOVER DATABASE statement determines the

degree of parallelism in media recovery. Media recovery uses the value for

RECOVERY_PARALLELISM as a default degree of parallelism if the value for this

parameter is non-zero and if you do not supply a value for

RECOVERY_PARALLELISM in the RECOVER DATABASE statement. You can

override this degree of parallelism with the PARALLEL clause of the RECOVER

DATABASE statement.

For instance recovery, set the RECOVERY_PARALLELISM parameter to equal the

number of parallel execution servers that you want to be available to assist SMON

during recovery.

Parallel Recovery Using Operating System Utilities
You can parallelize instance and media recovery two ways by:

■ Setting the RECOVERY_ PARALLELISM Parameter

■ Specifying RECOVER Statement Options

The Oracle Parallel Server can use one process to read the log files sequentially and

dispatch redo information to several recovery processes to apply the changes from

the log files to the data files. Oracle automatically starts the recovery processes, so

you do not need to use more than one session to perform recovery.

Setting the RECOVERY_ PARALLELISM Parameter
The RECOVERY_PARALLELISM initialization parameter specifies the number of

redo application server processes participating in instance or media recovery. One

process reads the log files sequentially and dispatches redo information to several



Parallel Instance Recovery

14-16 Oracle8i Parallel Server Administration, Deployment, and Performance

recovery processes. The recovery processes then apply the changes from the log files

to the data files. A value of 0 or 1 indicates that recovery is performed serially by

one process. The value of this parameter cannot exceed the value of the

PARALLEL_MAX_SERVERS parameter.

Specifying RECOVER Statement Options
When you use the RECOVER statement to parallelize instance and media recovery,

the allocation of recovery processes to instances is operating system specific. The

DEGREE keyword of the PARALLEL clause can either signify the number of

processes on each instance of a parallel server or the number of processes to spread

across all instances.

Fast-Start Parallel Rollback in Oracle Parallel Server
Setting the initialization file parameter FAST_START_PARALLEL_ROLLBACK to

LOW or HIGH enables Fast-start parallel rollback. This parameter helps determine

the maximum number of server processes that participate in Fast-start parallel

rollback. If the value is set to FALSE, Fast-start parallel rollback is disabled.

If the value for FAST_START_PARALLEL_ROLLBACK is set to LOW, the number

of processes used for Fast-start rollback is twice the value of CPU_COUNT. If the

value is HIGH, at most 4 times the value of CPU_COUNT is the number of rollback

servers used for Fast-start parallel rollback.

In Oracle Parallel Server, multiple parallel recovery processes are owned by and

operated only within the instance that generated them. To determine an accurate

setting for FAST_START_PARALLEL_ROLLBACK, examine the contents of

V$FAST_START_SERVERS and V$FAST_START_TRANSACTIONS.

Fast-start parallel rollback does not perform cross-instance rollback. However, it can

improve the processing of rollback segments for a single database with multiple

instances since each instance can spawn its own group of recovery processes.

See Also:

■ Oracle8i Concepts for more information on Fast-start parallel

rollback

■ Oracle system-specific documentation for more information on

the allocation of recovery processes to instances



Disaster Protection Strategies

Recovering the Database 14-17

Disaster Protection Strategies
You can protect Oracle Parallel Server systems against disasters by using standby

databases, the Primary/Secondary Instance feature, and by following high

availability practices for Oracle Parallel Server.

To simplify the administration of standby databases, consider using a managed

standby database.

See Also:

■ Oracle8i Standby Database Concepts and Administration for details

about the managed standby database feature.

■ Oracle8i Parallel Server Concepts for more information on high

availability and the Primary/Secondary Instance feature.



Disaster Protection Strategies

14-18 Oracle8i Parallel Server Administration, Deployment, and Performance



Part VI
        Oracle Parallel Server Reference

Part Six contains reference material about Oracle Parallel Server. It contains the

following appendix:

■ Appendix A, "A Case Study in Parallel Server Database Design"





A Case Study in Parallel Server Database Design A-1

A
A Case Study in Parallel Server Database

Design

This appendix describes a case study that presents a methodology for designing

systems optimized for Oracle Parallel Server.

■ Case Study Overview

■ Case Study: From Initial Database Design to Oracle Parallel Server

■ Analyzing Access to Tables

■ Analyzing Transaction Volume by Users

■ Case Study: Initial Partitioning Plan

■ Partitioning Indexes

■ Implementing High or Low Granularity Locking

■ Implementing and Tune Your Design



Case Study Overview

A-2 Oracle8i Parallel Server Administration, Deployment, and Performance

Case Study Overview
The case study presented in this appendix provides techniques for designing new

applications for use with Oracle Parallel Server. You can also use these techniques to

evaluate existing applications and determine how well suited they are for migration

to Oracle Parallel Server.

This case study assumes you have made an initial database design. To optimize

your design for Parallel Server, follow the methodology suggested here.

1. Develop an initial database design.

2. Analyze access to tables.

3. Analyze transaction volume.

4. Decide how to partition users and data.

5. Decide how to partition indexes, if necessary.

6. Choose high or low granularity locking.

7. Implement and tune your design.

Case Study: From Initial Database Design to Oracle Parallel Server
This case study demonstrates analytical techniques in practice. Although your

applications will differ, this example helps you to understand the process. The

topics in this section are:

■ "Eddie Bean" Catalog Sales

■ Tables

■ Users

■ Application Profile

Note: Always remember that your goal is to minimize contention:

doing so results in optimized performance.

See Also: Part III, "Oracle Parallel Server Design and

Deployment", for detailed information on this methodology.



Case Study: From Initial Database Design to Oracle Parallel Server

A Case Study in Parallel Server Database Design A-3

"Eddie Bean" Catalog Sales
The case study is about the fictitious "Eddie Bean" catalog sales company. This

company has many order entry clerks processing telephone orders for various

products. Shipping clerks fill orders and accounts receivable clerks handle billing.

Accounts payable clerks handle orders for supplies and services the company

requires internally. Sales managers and financial analysts run reports on the data.

This company’s financial application has three business processes operating on a

single database:

■ Order entry

■ Accounts payable

■ Accounts receivable

Tables
Tables from the Eddie Bean database include:

Table A–1  "Eddie Bean" Sample Tables

Table Contents

ORDER_HEADER Order number, customer name and address.

ORDER_ITEMS Products ordered, quantity, and price.

ORGANIZATIONS Names, addresses, phone numbers of customers and suppliers.

ACCOUNTS_PAYABLE Tracks the company’s internal purchase orders and payments
for supplies and services.

BUDGET Balance sheet of the company’s expenses and income.

FORECASTS Projects future sales and records current performance.



Case Study: From Initial Database Design to Oracle Parallel Server

A-4 Oracle8i Parallel Server Administration, Deployment, and Performance

Users
Various application users access the database to perform different functions:

■ Order entry clerks

■ Accounts payable clerks

■ Accounts receivable clerks

■ Shipping clerks

■ Sales manager

■ Financial analyst

Application Profile
Operation of the Eddie Bean application is fairly consistent throughout the day:

order entry, order processing, and shipping occur all day. These functions are not

for example, segregated into separate one-hour time slots.

About 500 orders are entered per day. Each order header is updated about 4 times

during its lifetime. So we expect about 4 times as many updates as inserts. There are

many selects, because many employees are querying order headers: people doing

sales work, financial work, shipping, tracing the status of orders, and so on.

There are on average 4 items per order. Order items are never updated: an item may

be deleted and another item entered. The ORDER_HEADER table has four indexes.

Each of the other tables has a primary key index only.

Budget and forecast activity has a much lower volume than the order tables. They

are read frequently, but modified infrequently. Forecasts are updated more often

than budgets, and are deleted once they go into actuals.

The vast bulk of the deletes are performed as a nightly batch job. This maintenance

activity does not, therefore, need to be included in the analysis of normal

functioning of the application.



Analyzing Access to Tables

A Case Study in Parallel Server Database Design A-5

Analyzing Access to Tables
Begin by analyzing the existing (or expected) access patterns for tables in your

database. Then decide how to partition the tables and group them according to

access pattern.

■ Table Access Analysis Worksheet

■ Case Study: Table Access Analysis

Table Access Analysis Worksheet
List all your high-activity database tables in a worksheet like the one shown in

Table A–2:

To complete this worksheet, estimate the volume of each type of operations. Then

calculate the number of reads and writes (I/Os) the operations entail.

Estimating Volume of Operations
For each type of operation to be performed on a table, enter a value reflecting the

normal volume you would expect in a day.

Table A–2 Table Access Analysis Worksheet

Table Name

Daily Access Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

Note: The emphasis throughout this analysis is on relative

values—gross figures describing the normal use of an application.

Even if an application does not yet exist, you can project the types

of users and estimate relative levels of activity. Maintenance

activity on the tables is not generally relevant to this analysis.



Analyzing Access to Tables

A-6 Oracle8i Parallel Server Administration, Deployment, and Performance

Calculating I/Os per Operation
For each value in the Operations column, calculate the number of I/Os that will be

generated using a worst-case scenario.

The SELECT operation involves read access, and the INSERT, UPDATE and

DELETE operations involve both read and write access. These operations access not

only data blocks, but also any related index blocks.

For example, Figure A–1 illustrates read and write access to data in a large table in

which two levels of the index are not in the buffer cache and only a high level index

is cached in the System Global Area.

Figure A–1  Number of I/So per SELECT or INSERT Operation

Note: The number of I/Os generated per operation changes by
table depending on the access path of the table, and the table’s size.

It also changes depending on the number of indexes a table has. A

small index, for example, may have only a single index branch

block.

Lower Level 
Index Branch 

Index
Leaf Block

Data
Block

Cached

Not Cached

Index
Root

Index
Branch

INSERTSELECT

Read

Read

Read

Read

Read/Write

Read/Write



Analyzing Access to Tables

A Case Study in Parallel Server Database Design A-7

In this example, assuming that you are accessing data by way of a primary key, a

SELECT requires three I/Os:

1. One I/O to read the first lower level index block.

2. One I/O to read the second lower level index block.

3. One I/O to read the data block.

An INSERT or DELETE statement requires at least five I/Os:

1. One I/O to read the data block.

2. One I/O to write the data block.

3. Three I/Os per index: 2 to read the index entries and 1 to write the index.

One UPDATE in this example entails seven I/Os:

1. One I/O to read the first lower level index block.

2. One I/O to read the second lower level index block.

3. One I/O to read the data block.

4. One I/O to write the data block.

5. One I/O to read the first lower level index block again.

6. One I/O to read the second lower level index block again.

7. One I/O to write the index block.

Note: If all of the root and branch blocks are in the SGA, a

SELECT may entail only two I/Os: read leaf index block, read data

block.

Note: An INSERT or DELETE affects all indexes, but an UPDATE

sometimes affects only one index. Check the number of changed

index keys.



Analyzing Access to Tables

A-8 Oracle8i Parallel Server Administration, Deployment, and Performance

I/Os per Operation for Sample Tables
In the case study, the number of I/Os per operation differs from table to table

because the number of indexes differs from table to table.

Table A–3 shows how many I/Os are generated by each type of operation on the

ORDER_HEADER table. It assumes that the ORDER_HEADER table has four

indexes.

Table A–4 shows how many I/Os generated per operation for each of the other

tables in the case study, assuming each of them has a primary key index only.

For this analysis, you can disregard the fact that changes made to data also generate

rollback segments, entailing additional I/Os. These I/Os are instance-based.

Therefore, they should not cause problems with your Oracle Parallel Server

application.

Table A–3 Number of I/Os per Operation: Sample ORDER_HEADER Table

Operation SELECT INSERT UPDATE DELETE

Type of Access read read/write read/write read/write

Number of I/Os 3 14 7 14

Note: You must adjust these figures depending upon the actual

number of indexes and access path for each table in your database.

Table A–4 Number of I/Os per Operation: Other Sample Tables

Operation SELECT INSERT UPDATE DELETE

Type of Access read read/write read/write read/write

Number of I/Os 3 5 7 5

See Also: Oracle8i Concepts for more information about indexes.



Analyzing Access to Tables

A Case Study in Parallel Server Database Design A-9

Case Study: Table Access Analysis
Table A–5 shows rough figures reflecting normal use of the application in the case

study.

You can make the following conclusions from the data in this table:

■ Only the ORDER_HEADER and ORDER_ITEM tables have significant levels of

write access.

■ ORGANIZATIONS, by contrast, is predominantly a read-only table. While a

certain number of INSERT, UPDATE, and DELETE operations will maintain it,

its normal use is SELECT-only.

Table A–5 Case Study: Table Access Analysis Worksheet

Table Name

Daily Access Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

ORDER_HEADER 20,000 60,000 500 7,000 2,000 14,000 1,000 14,000

ORDER_ITEM 60,000 180,000 2,000 10,000 0 0 4,030 20,150

ORGANIZATIONS 40,000 120,000 10 50 100 700 0 0

BUDGET 300 900 1 5 2 14 0 0

FORECASTS 500 1,500 1 5 10 70 2 10

ACCOUNTS_PAYABLE 230 690 50 250 20 140 0 0



Analyzing Transaction Volume by Users

A-10 Oracle8i Parallel Server Administration, Deployment, and Performance

Analyzing Transaction Volume by Users
Begin by analyzing the existing (or expected) access patterns for tables in your

database. Then partition the tables and group them according to access pattern.

■ Transaction Volume Analysis Worksheet

■ Case Study: Transaction Volume Analysis

Transaction Volume Analysis Worksheet
For each table with a high volume of write access, analyze the transaction volume

per day for each type of user.

Use worksheets like the one in Table A–6:

Begin by estimating the volume of transactions by each type of user and then

calculate the number of I/Os required.

Note: For read-only tables, you do not need to analyze transaction

volume by user type.

Table A–6 Transaction Volume Analysis Worksheet

Table Name:

Type of User No.Users

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os



Analyzing Transaction Volume by Users

A Case Study in Parallel Server Database Design A-11

Case Study: Transaction Volume Analysis
The following tables show transaction volume analysis of the three tables in the case

study that have high write access levels: ORDER_HEADER, ORDER_ITEMS, and

ACCOUNTS_PAYABLE.

ORDER_HEADER Table
Table A–7 shows rough estimates for values in the ORDER_HEADER table in the

case study.

You can make the following conclusions from the data in this table:

■ Order entry clerks perform all inserts on this table.

■ Accounts receivable and shipping clerks perform all updates.

■ Sales managers and financial analysts only perform select operations.

■ Accounts payable clerks never use the table.

Deletes are performed as a maintenance operation, so you do not need to consider

them in this analysis. Furthermore, the application developers realize that sales

managers normally access data for the current month, whereas financial analysts

access mostly historical data.

Table A–7 Case Study: Transaction Volume Analysis: ORDER_HEADER Table

Table Name: ORDER_HEADER

Type of

User

No.

Users

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

Order entry clerk 25 5,000 15,000 500 7,000 0 0 0 0

Accounts payable
clerk

5 0 0 0 0 0 0 0 0

Accounts
receivable clerk

5 6,000 18,000 0 0 1,000 7,000 0 0

Shipping clerk 4 4,000 12,000 0 0 1,000 7,000 0 0

Sales manager 2 3,000 9,000 0 0 0 0 0 0

Financial analyst 2 2,000 6,000 0 0 0 0 0 0



Analyzing Transaction Volume by Users

A-12 Oracle8i Parallel Server Administration, Deployment, and Performance

ORDER_ITEMS Table
Table A–8 shows rough estimates for values in the ORDER_ITEMS table in the case

study.

The following conclusions can be drawn from this table:

■ Order entry clerks perform all inserts on this table.

■ Updates are rarely performed

■ Accounts receivable clerks, shipping clerks, sales managers and financial

analysts perform a heavy volume of select operations on the table.

■ Accounts payable clerks never use the table.

The ORDER_HEADER table has more writes than ORDER_ITEMS because the

order header tends to require more changes of status, such as address changes, than

the list of available products. The ORDER_ITEM table is seldom updated because

new items are listed as journal entries.

Table A–8 Case Study: Transaction Volume Analysis: ORDER_ITEMS Table

Table Name: ORDER_ITEMS

Type of

User

No.

Users

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

Order entry clerk 25 15,000 45,000 2,000 10,000 0 0 20 100

Accounts payable
clerk

5 0 0 0 0 0 0 0 0

Accounts
receivable clerk

5 18,000 54,000 0 0 0 0 10 50

Shipping clerk 4 12,000 36,000 0 0 0 0 0 0

Sales manager 2 9,000 27,000 0 0 0 0 0 0

Financial analyst 2 6,000 18,000 0 0 0 0 0 0



Analyzing Transaction Volume by Users

A Case Study in Parallel Server Database Design A-13

ACCOUNTS_PAYABLE Table
Table A–9 shows rough figures for the ACCOUNTS_PAYABLE table in the case

study. Although this table does not have a particularly high level of write access, we

have analyzed it because it contains the main operation that the accounts payable

clerks perform.

You can make the following conclusions from the data in this table:

■ Accounts payable clerks send about 50 purchase orders per day to suppliers.

These clerks are the only users who change the data in this table.

■ Financial analysts occasionally study the information.

Deletes are performed as a maintenance operation, so you do not need to consider

them in this analysis.

Table A–9 Case Study: Transaction Volume Analysis: ACCOUNTS_PAYABLE Table

Table Name: ACCOUNTS_PAYABLE

Type of

User

No.

Users

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

Order
entry
clerk

25 0 0 0 0 0 0 0 0

Accounts
payable
clerk

5 200 600 50 250 20 140 0 0

Accounts
receivable
clerk

5 0 0 0 0 0 0 0 0

Shipping
clerk

4 0 0 0 0 0 0 0 0

Sales
manager

2 0 0 0 0 0 0 0 0

Financial
analyst

2 30 90 0 0 0 0 0 0



Case Study: Initial Partitioning Plan

A-14 Oracle8i Parallel Server Administration, Deployment, and Performance

Case Study: Initial Partitioning Plan
In the case study, the large number of order entry clerks doing heavy insert activity

on the ORDER_HEADER and ORDER_ITEM tables should not be separated across

machines. You should concentrate these users on one node along with the two

tables they use most. A good starting point is to set aside one node for the OE

clerks, and one node for all other users as illustrated in Figure A–2.

Figure A–2  Case Study: Partitioning Users and Data

This system is probably well balanced across nodes. The database intensive

reporting done by financial analysts takes a good deal of system resources, whereas

the transactions run by the order entry clerks are relatively simple.

Attempting to use load balancing by manipulating the number of users across the

system is typically useful, but not always critical. Load balancing has a lower

priority for tuning than reducing contention.

Partitioning
Users

Partitioning
Data

Instance 2Instance 1

OE Clerks

O
R

D
E

R
_H

E
A

D
E

R

O
R

D
E

R
_IT

E
M

A
C

C
O

U
N

T
S

_P
A

Y
A

B
LE

O
R

G
A

N
IZ

A
T

IO
N

S

B
U

D
G

E
T

AP Clerks
AR Clerks

Shipping Clerks
Sales Managers

Financial Analysts



Case Study: Initial Partitioning Plan

A Case Study in Parallel Server Database Design A-15

Case Study: Further Partitioning Plans
In the case study it is also clear that accounts payable data is written exclusively by

accounts payable clerks. You can thus effectively partition this data onto a separate

instance as shown in Figure A–3.

Figure A–3  Case Study: Partitioning Users and Data: Design Option 1

When all users needing write access to a certain part of the data are concentrated on

one node, the PCM locks all reside on that node. In this way, lock ownership is not

moving between instances.

Based on this analysis, you have two design options as described under the

following headings.

Design Option 1
You can set up your system as shown in Figure A–3 with all order entry clerks on

one instance to minimize contention for exclusive PCM locks on the tables. This

allows sales managers and financial analysts to get up-to-the-minute information.

Since they do want data that is predominantly historical, there should not be too

much contention for current records.

Partitioning
Users

Partitioning
Data

Instance 3Instance 1

OE Clerks

O
R

D
E

R
_IT

E
M

Instance 2

A
C

C
O

U
N

T
S

_P
A

Y
A

B
LE

AP Clerks

O
R

G
A

N
IZ

A
T

IO
N

S

B
U

D
G

E
T

F
O

R
E

C
A

S
T

S

AR Clerks
Shipping Clerks
Sales Manager

Financial Analysts

O
R

D
E

R
_H

E
A

D
E

R



Case Study: Initial Partitioning Plan

A-16 Oracle8i Parallel Server Administration, Deployment, and Performance

Design Option 2
Alternatively, you could implement a separate temporary table for ORDER_ITEM/

ORDER_HEADER. This table is only for recording new order information.

Overnight, you could incorporate changes into the main table against which all

queries are performed. This solution would work well if it is not required that

financial analysis have current data. This is probably an acceptable solution only if

they are primarily interested in looking at historical data. This would not be

appropriate if the financial analysts needed up-to-the-minute data.

Figure A–4  Case Study: Partitioning Users and Data: Design Option 2

Partitioning
Users

Partitioning
Data

Instance 3Instance 1

OE Clerks 

O
R

D
E

R
_H

E
A

D
E

R
_T

E
M

P

O
R

D
E

R
_IT

E
M

_T
E

M
P

Instance 2

AR Clerks
Shipping Clerks

Sales Mangagers
Financial Analysts   

O
R

D
E

R
_H

E
A

D
E

R

O
R

D
E

R
_IT

E
M

O
R

G
A

N
IZ

A
T

IO
N

S

A
C

C
O

U
N

T
S

_P
A

Y
A

B
LE

AP Clerks

B
U

D
G

E
T

F
O

R
E

C
A

S
T

S



Implementing High or Low Granularity Locking

A Case Study in Parallel Server Database Design A-17

Partitioning Indexes
You need to consider index partitioning if multiple nodes in your system are

inserting into the same index. In this situation, you must ensure that different

instances insert into different points within the index.

Implementing High or Low Granularity Locking
For many applications, the DBA needs to decide whether to use high or low

granularity locking for particular database files.

You should design for the worst case scenario that would use high granularity

locking. Then, in the design or monitoring phases, if you discover a situation where

you have too many locks, or if you suspect false pings, you should try low

granularity locking.

Begin with an analysis at the database level. You can use a worksheet like the one

shown in Table A–10:

Note: This problem is avoided in the Eddie Bean case study

because application and data usage are partitioned.

See Also:

■ "Creating Free Lists for Indexes"  on page 8-6 for tips on using

free lists, free list groups, and sequence numbers to avoid

contention on indexes.

■ Oracle8i Concepts for recommendations on how to physically

partition a table and an instance to avoid the use of free list

groups.

Table A–10 Worksheet: Database Analysis for High or Low Granularity Locking

Block Class Relevant Parameter(s) Use High or Low Granularity Locking?



Implementing and Tune Your Design

A-18 Oracle8i Parallel Server Administration, Deployment, and Performance

Next, list the files and database objects in a worksheet like the one shown in

Table A–11. Decide which locking mode to use for each file.

Implementing and Tune Your Design
Up to this point, you conducted an analysis using estimated figures. To finalize

your design you must now either prototype the application or actually implement

it. By observing the actual system, you can tune it further.

To do this, try the following techniques:

■ Identify blocks that are being pinged and determine where contention exists.

■ Consider moving users from one instance to another to reduce pinging and

false pinging.

■ If you detect a high level of false pinging, consider increasing the granularity of

the locks by placing more locks on each file.

■ If there is pinging on inserts, adjust the free lists or use multiple sequence

number generators so that inserts occur in different parts of the index.

Table A–11 Worksheet: When to Use High or Low Granularity Locking

Filename Objects Contained Use High or Low Granularity Locking?

See Also: Chapter 9, "Setting Instance Locks" for more

information about applying locks to data files.

See Also: Oracle8i Designing and Tuning for Performance.



Index-1

Index
A
acquiring rollback segments, 3-5

ACTIVE_INSTANCE_COUNT parameter, 1-8

adaptive multi-user feature, 2-6

ADD LOGFILE clause

thread required, 3-7

adding a file, 3-8

affinity

awareness, 13-19

disk, 2-3, 2-7

ALERT file, 14-4

ALL option, 13-5

ALL_TABLES table, 10-4

ALLOCATE EXTENT, 8-9

!blocks parameter, 8-13

DATAFILE option, 8-10

exclusive mode, 8-9

in exclusive mode, 8-9

instance number, 8-11

INSTANCE option, 8-10

pre-allocating extents, 8-12

SIZE option, 8-9

allocation

automatic, 8-11, 8-12

dynamic, 6-6

extents, 1-6, 8-12, 8-13

extents, dynamic, 8-13

of PCM locks, 7-9

PCM locks, 7-9, 8-9

rollback segments, 3-4

static, 6-6

ALTER CLUSTER statement

ALLOCATE EXTENT, 8-9

allocating extents, 8-12

ALTER DATABASE ADD LOGFILE

command, 4-7

ALTER DATABASE DISABLE THREAD

statement, 3-8

ALTER DATABASE OPEN RESETLOGS

statement, 14-13

ALTER DATABASE statement

CLOSE clause, 4-7

DATFILE RESIZE, 9-5

DISABLE, 3-8

RECOVER, 14-7

RECOVER option, 14-7

setting the log mode, 3-2, 3-8

THREAD, 3-8

thread of redo, 3-8

ALTER INDEX statement

DEALLOCATE UNUSED option, 8-14

ALTER ROLLBACK SEGMENT statement, 3-4

ALTER SESSION SET INSTANCE statement, 8-8

ALTER SESSION statement

SET INSTANCE option, 8-8

ALTER SYSTEM ARCHIVE LOG CURRENT

statement, 4-7

ALTER SYSTEM ARCHIVE LOG statement, 4-7,

13-21

CURRENT clause, 13-15

global log switch, 13-15, 13-21

THREAD clause, 4-7, 13-5

ALTER SYSTEM CHECK DATAFILES statement

instance recovery, 14-4

ALTER SYSTEM CHECKPOINT LOCAL

statement, 4-7

ALTER SYSTEM CHECKPOINT statement, 13-14



Index-2

global versus local, 4-7

specifying an instance, 4-7

ALTER SYSTEM privilege, 13-14, 13-15

ALTER SYSTEM SWITCH LOGFILE

statement, 4-7, 13-15

DBA privilege, 13-15

ALTER TABLE statement

ALLOCATE EXTENT, 8-9

allocating extents, 8-12, 8-13

DISABLE TABLE LOCK clause, 7-17, 10-4

ENABLE TABLE LOCK clause, 7-17, 10-4

MAXEXTENTS option, 8-13

ALTER TABLESPACE statement

ADD DATAFILE, 9-5

BACKUP option, 13-20

READ ONLY option, 5-3

analysis

of applications for Oracle Parallel Server, 5-3

applications

analysis for Oracle Parallel Server, 5-3

availability, 14-3

designing, A-2

development for Oracle Parallel Server, 5-2

for Oracle Parallel Server, determining

suitability, 5-2

partitioning, methodology, 5-8

table access patterns, 5-3

transactions, 5-3

tuning, 11-1

ARCH process, 13-4

archive log

backup, 13-8

ARCHIVE LOG clause

CURRENT option, 13-15, 13-21

global log switch, 13-15, 13-21

manual archiving, 13-5

THREAD option, 13-1, 13-5

ARCHIVE LOG statement, 13-4

archive logs

backing up with RMAN, 13-8

archive mode

switch, 3-8

ARCHIVELOG mode, 3-2, 3-8

automatic archiving, 13-3

changing mode, 3-2, 3-8

creating a database, 3-2

online and offline backups, 13-3

archiving redo log files, 13-1

automatic versus manual, 13-4

creating a database, 3-2

forcing a log switch, 13-15

history, 13-7

log sequence number, 13-6

online archiving, 13-3

asynchronous lock operations

analyzing, 12-17

AUTOEXTEND, 9-5

AUTOLOCATE

RMAN option, 13-11

automatic archiving, 13-4

automatic recovery, 13-8

availability

data files, 14-4

single-node failure, 14-2

steps of recovery, 14-5

B
background processes

ARCH, 13-4

LGWR, 13-7

SMON, 4-5, 14-2

backups

archive log, 13-8

files used in recovery, 14-7

offline, 13-16

online, 13-16, 13-21

parallel, 13-16

batch processing

and partitioning, 5-17

BEGIN BACKUP option, 13-20

Block Server Process

and consistent-read blocks, 12-2

blocks

allocating dynamically, 8-13

associated with instance, 14-3

classes and synchronization, 6-9

contention, 7-14

on indexes, 5-5

contention for, 8-9, 8-11



Index-3

branch blocks

minimizing contention for, 6-11

buffer cache

instance recovery, 14-3

C
cache

recovery, 14-6

Cache Fusion

benefits, 12-4

performance, 12-1

tuning, 12-1

CATPARR.SQL script, 9-8, 12-9

CHECK DATAFILES clause

instance recovery, 14-4

checkpoints

forcing, 13-14

closed thread, 13-4, 13-21

Cluster Manager software, 4-2

clusters

allocating extents, 8-12

free list groups, 8-9

free lists, 8-5

hash cluster, 8-5

committed data

checkpoint, 13-14

instance failure, 14-3

common parameter files

recommended locations for, 1-2

using multiple, 1-3

compatibility

shared and exclusive modes, 8-9

composite partitioning, 5-15

concurrency

inserts and updates, 8-4

maximum number of instances, 3-3

configurations

change in redo log, 3-8

CONNECT @instance-path command, 3-6

CONNECT command, 4-4, 4-6

forcing a checkpoint, 13-14

CONNECT INTERNAL

example of, 1-5

connect strings, 4-4

connecting

to instances, 4-3

to remote instances, 4-4

consistent-read blocks, 12-2

contention

block, 7-14, 8-9, 8-11

distributed lock, 7-14

SYSTEM tablespace, 3-4

table data, 8-11

context switches

reduced with Cache Fusion, 12-4

control files

backing up, 13-1

creating, 3-9

data files, 8-10

log history, 3-3, 13-7

parameter values, 1-9

CONTROL_FILES parameter, 1-8, 14-11

same for all instances, 1-8

CPU service time required

calculating, 11-8

CPU utilization

reduced with Cache Fusion, 12-4

CREAT DATABASE

MAXLOGHISTORY clause, 3-3

CREATE CLUSTER statement, 8-5

FREELIST GROUPS option, 8-4

FREELISTS option, 8-4

CREATE CONTROLFILE statement, 3-9

changing database options, 3-9

MAXLOGHISTORY, 13-7

CREATE DATABASE

creating threads, 3-7

MAXDATAFILES clause, 3-3

MAXINSTANCES clause, 3-3

MAXLOGFILES clause, 3-3

MAXLOGMEMBERS clause, 3-3

CREATE DATABASE statement, 3-2

MAXINSTANCES, 3-3

MAXLOGFILES, 3-3

MAXLOGHISTORY, 3-3, 13-7

MAXLOGMEMBERS, 3-3

setting the log mode, 3-2, 3-8

CREATE INDEX statement

FREELISTS option, 8-6



Index-4

CREATE PUBLIC ROLLBACK SEGMENT

statement, 3-5

CREATE ROLLBACK SEGMENT statement, 3-4,

3-5

CREATE statement

setting FREELISTS and FREELIST GROUPS, 8-4

CREATE TABLE statement

clustered tables, 8-5

examples, 8-12

FREELISTS option, 8-4

initial storage, 8-11, 8-12

creating a rollback segment, 3-4, 3-5

creating threads, 3-7

CURRENT clause, 13-5

current instance

checkpoint, 13-14

log switch, 13-15

CURRENT option

checkpoints, 13-15

forcing a global log switch, 13-15

global log switch, 13-21

D
data block addresses

translating to lock name, 8-13

data blocks, 7-5

types accessed by transactions, 6-3

data dictionary

querying views, 12-9

views, 3-5

data dictionary cache locks, 7-19

data files

adding, 9-2, 9-5, 9-8

allocating extents, 8-10

backing up, 13-1

file ID, 7-3

instance recovery, 14-4

multiple files per table, 8-9, 8-11

number of blocks, 7-3

parallel recovery, 14-7

recovery, 14-7

tablespace name, 7-3

validity, 9-7

data files and data blocks

examining, 7-3

database

archiving mode, 3-2, 3-8

design techniques for Oracle Parallel Server, 6-2

designing, A-2

mounted but not open, 3-8

number of archived log files, 13-7

number of instances, 3-3

rollback segments, 3-4

standby, 14-17

starting NOMOUNT, 14-11

Database Configuration Assistant

and object creation for Oracle Parallel

Server, 3-1

and the IFILE parameter, 1-3

placement of IFILE parameter, 1-3

database mount locks, 7-19

data-dependent routing, 5-16

DATAFILE option

table, 8-12

DB_BLOCK_BUFFERS parameter

ensuring LM lock capacity, 10-3

GC_RELEASABLE_LOCKS, 9-8

DB_BLOCK_SIZE parameter, 1-8

same for all instances, 1-8

DB_DOMAIN parameter, 1-8

DB_FILES parameter, 1-8

ensuring LM lock capacity, 10-3

same for all instances, 1-8

DB_NAME parameter, 1-8, 1-9

same for all instances, 1-8

DBA_ROLLBACK_SEGS view, 3-6

public rollback segments, 3-5

DBA_SEGMENTS view, 3-6

DBA_TABLES table, 10-4

DBMS_JOB

using, 5-17

DBMS_SPACE package, 8-14

DBMSUTIL.SQL script, 8-14

DDL

commands, 10-3

deallocating unused space, 8-14

degree of parallelism

adaptive multi-user feature, 2-6

setting, 2-2



Index-5

DELETE

block access during, 6-9

departmental partitioning method, 5-13

deployment

techniques for application development, 5-2

designing

databases for Oracle Parallel Server, 6-2

diagnosing

performance problems, 11-18

dictionary cache

lock, 7-19

DISABLE TABLE LOCK clause, 10-4

DISABLE THREAD clause, 3-8

disabling the archive history, 3-3

disabling threads, 3-8

disaster recovery, 14-10, 14-13

DISCONNECT command, 4-5

disconnecting from an instance, 4-5

multiple sessions, 4-6

user process, 4-5

disk

affinity, 2-3, 2-7

contention, avoiding, 2-6

DLM

lock statistics, analyzing, 12-18

message statistics, analyzing, 12-20

parameters, 1-14

recovery steps, 14-5

resources, analyzing, 12-18

statistics, for monitoring contention, 11-18

workloads, affect on performance, 12-18

DM, Database Mount, 7-19

DML_LOCKS parameter, 1-8, 1-10, 7-17

and performance, 10-4

ensuring IDLM lock capacity, 10-3

dropping a redo log file

log switch, 13-15

manual archiving, 3-8

restrictions, 3-8

dropping database objects

tablespace, 9-2

dynamic allocation, 6-6

dynamic performance view

creating, 12-9

E
ENABLE TABLE LOCK clause, 10-4

END BACKUP clause, 13-20

enqueues

in V$LOCK, 9-13

error messages

parameter values, 1-6

rollback segment, 3-5

storage options, 8-4

exclusive mode, 7-19

free lists, 8-4, 8-9

MAXLOGHISTORY, 13-8

media recovery, 3-3

specifying instance number, 8-11

specifying thread number, 1-7

startup, 8-11

switching archive log mode, 3-8

EXCLUSIVE option, 4-2

EXT_TO_OBJ table, 9-8, 12-9

extents

allocating PCM locks, 8-9

allocating to instance, 1-6, 8-8, 8-12

initial allocation, 8-11

not allocated to instance, 8-10

rollback segment, 3-6

size, 3-6, 8-9

specifying a file, 8-10

external sequence generators, 6-14

F
failure

access to files, 14-4

instance recovery, 14-4

media, 14-7

node, 14-2

false pings, 9-11

Fast-Start Parallel Rollback

parallel rollback, Fast-Start, 14-16

features

new, xvii

file

dropping, 3-8

file to lock mapping, 7-4



Index-6

FILE_LOCK view, 7-4, 9-7

files

ALERT, 14-4

allocating extents, 8-10

archiving redo log, 13-3, 13-4, 13-6

control file, 13-7

dropping, 3-8, 13-15

multiplexed, 13-8

parameter, 1-2, 1-9

PFILE, 1-4, 1-5

redo log, 13-3, 13-6, 13-7

renaming, 3-8, 13-15

restricted operations, 13-15

used in recovery, 14-7

fixed locking, 7-12

fixed PCM locks

specifying, 9-4

foreground processes

instance shutdown, 4-5

free list groups

and cache coherency, 6-10

assigning to session, 8-8

setting !blocks, 9-4

unused space, 8-14

used space, 8-14

using to partition data, 8-1

free lists

cluster, 8-5

creating for clustered tables, 8-5

creating for indexes, 8-6

hash cluster, 8-5

implementing, 8-2

in exclusive mode, 8-4, 8-9

index, 8-6

need for, 8-2 to 8-3

number of lists, 8-4

partitioning data, 1-6

PCM locks, 8-9

unused space, 8-14

FREELIST GROUPS

storage option, 1-6

FREELIST GROUPS clause, 1-7, 8-4, 8-12

FREELISTS

creating for clustered tables, 8-5

creating for indexes, 8-6

storage option, 8-4

FREELISTS clause, 8-4

indexes, 8-6

maximum value, 8-4

G
GC_DEFER_TIME parameter, 1-10

GC_FILES_TO_LOCKS parameter, 1-8, 1-10, 3-9,

7-7, 7-10

1 to 1 examples, 9-4

adding data files, 9-8

adjusting after file operations, 9-2

associating PCM locks with extents, 8-9

default bucket, 9-3

fixed examples, 9-4

guidelines, 9-5

index data, 7-14

reducing false pings, 9-12

room for growth, 9-6

setting, 9-2

syntax, 9-2

GC_RELEASABLE_LOCKS parameter, 1-10

default, 9-8

GC_ROLLBACK_LOCKS parameter, 1-8, 1-10, 9-3,

9-9

default setting for, 9-9

geographic

partitioning method, 5-13

global cache

coherence, measuring, 11-9

lock allocation, 6-16

synchronization and block classes, 6-9

global cache cr block log flush time, 12-15

global cache cr block log flushes, 12-14

global cache cr block receive time, 12-14

global cache cr block send time, 12-14

global cache cr block serve time, 12-14

global cache cr blocks received, 12-14

global cache cr blocks served, 12-14

global cache cr timeouts, 12-14

global cache freelist waits, 9-8

global cache parameters, 1-9

global cache statistics

analyzing, 12-11



Index-7

GLOBAL clause

forcing a checkpoint, 13-14

global constant parameter

same for all instances, 1-8, 1-10

global constant parameters

list of, 1-9

GLOBAL hint, 12-10

global lock statistics

analyzing, 12-15

GLOBAL option

forcing a checkpoint, 4-7

global work ratios

measuring, 11-11

group

MAXLOGFILES, 3-3

redo log files, 3-3, 3-8

GROUP clause, 13-5

growth

accommodating with more instances, 5-17

room for, 9-6

GV$CACHE view, 12-9

GV$CLASS_PING view, 12-9

GV$FILE_PING view, 12-9

GV$LIBRARYCACHE view, 12-9

GV$PARAMETER view, 2-5

GV$PING view, 12-9

GV$PX_PROCESS view, 2-6

GV$PX_PROCESS_SYSSTAT view, 2-6

GV$PX_SESSION view, 2-6

GV$PX_SESSSTAT view, 2-6

GV$ROWCACHE view, 12-9

H
hash clusters, 8-5

hash partitioning, 5-15

header

blocks, user undo segments, 7-6

rollback segment, 3-6

segment, 3-6

high speed interconnect, 5-3

history

archive, 13-7, 14-9

HOST command, 4-6

hot blocks

identifying, 12-27

I
identifiers

for locks, 9-13

IDLM parameters, 1-14

IFILE

parameter, 1-3

IFILE parameter, 1-4

multiple files, 1-4

overriding values, 1-3

specifying identical parameters, 1-5

include file parameter, 1-4

incremental growth, 8-11

indexes

block contention, 5-5

creating, 8-6

data partitioning, 7-14

FREELISTS option, 8-6

issues for inter-instance contention, 6-10

locking policy for, 6-13

PCM locks, 7-14

reverse-key, for minimizing contention, 6-11

INITIAL storage parameter

minimum value, 8-11

initialization files

location, 1-4

initialization parameter files

recommended locations for, 1-4

initialization parameters

archiving, 13-4

displaying values, 1-6

duplicate values, 1-3

global constant, 1-9

identical, 3-2

identical for all instances, 1-8

multiple instance issues regarding, 1-10

planning LM capacity, 10-3

setting for multiple instances, 1-7

that must be identical on all instances, 1-8

that must be unique on all instances, 1-8

using default value, 1-9

INSERT

processing within Oracle, 6-4



Index-8

INSERTS

concurrent, 8-4

free lists, 1-6

free space unavailable, 8-9

INSTANCE option

allocating, 8-12

SET INSTANCE command, 8-8

SHOW INSTANCE command, 4-4

INSTANCE_GROUPS parameter, 2-3

INSTANCE_ID column, 12-9

INSTANCE_NUMBER

as determined by startup order, 1-6

INSTANCE_NUMBER parameter, 1-8, 8-8

exclusive mode, 1-6

exclusive or shared mode, 1-6

recommended settings for, 1-6

setting, 8-11

setting for freelist groups, 6-6

unique values for instances, 1-6, 1-10

unspecified, 1-6

instances

adding, 5-16

adding instances, 3-3, 8-11

affinity, 5-17

associated with data file, 8-11

associated with extent, 8-8

current, 4-4, 13-14

failure, 14-3

free list, 8-9

instance number, 8-11

maximum number, 3-3

number, 8-8

recovery, 3-3, 4-5, 14-2

recovery, abnormal shutdown, 4-5

recovery, access to files, 14-4

recovery, global checkpoint, 13-14

recovery, multiple failures, 14-3

recovery, starting another instance, 3-3

remote, 1-4, 1-5, 4-4

scalability, 5-16

startup order, 1-6

thread number, 1-7, 3-7

instance-specific parameter files, 1-2

conditions requiring, 1-3

interconnect, 5-3

protocols for OPS, 12-5

INTERNAL option

instance shutdown, 4-5

I/O

minimizing, 7-14

statistics, analyzing, 12-23

IPCs

and Cache Fusion, 12-5

J
jobs

and instance affinity, 5-17

L
latches, 7-19

analyzing statistics for, 12-28

LCKn process

role in recovery, 14-5

leaf blocks

minimizing contention for, 6-11

LGWR process

log history, 13-7

library cache locks, 7-19

LISTENER

parameter for the multi-threaded server, 1-13

LM_LOCKS parameter, 1-8, 1-14

LM_RESS parameter, 1-14

load balancing

in parallel execution, 2-5

LOCAL clause

forcing a checkpoint, 4-7, 13-14

local instances

nodes, 4-4

local work ratios

measuring, 11-11

lock

elements, number, 7-6

locking policy

for indexes, 6-13

locks

adding for new data files, 3-9

allocation, global cache, 6-16

and resources, avoiding dynamic



Index-9

allocation, 10-2

conversions, analyzing by type, 12-26

convert timeouts, analyzing, 12-13

data dictionary cache, 7-19

database mount, 7-19

dictionary cache, 7-19

DML, 7-17

elements, 9-14

estimating number needed, 7-3

global, 1-9

high convert rates, 5-5

identifier, 9-13

library cache, 7-19

mount lock, 7-19

name format, 9-13

PCM lock, 8-9

row, 7-17

system change number, 7-18

TABLE, 7-17

table, 7-17

transaction, 7-17

value blocks, 7-18

log files

redo log file, 13-1

log history, 3-3, 13-7, 14-9

log sequence numbers, 13-6, 13-7

log switches

adding or dropping files, 3-8

closed thread, 13-15

forcing, 13-15, 13-21

global, 13-21

log history, 13-7

LOG_ARCHIVE_DEST parameter, 1-8, 14-8, 14-9

specifying for recovery, 14-9

LOG_ARCHIVE_FORMAT parameter, 1-11, 13-6,

14-9

same for all instances, 14-9

used in recovery, 14-9

LOG_ARCHIVE_START parameter, 13-4

automatic archiving, 1-4, 13-4

creating a database, 3-2

LOG_CHECKPOINT_TIMEOUT parameter

inactive instance, 13-15

M
manual archiving, 13-4

dropping a redo log file, 3-8

mapping blocks to PCM locks, 7-7

MAX_COMMIT_PROPAGATION_DELAY

parameter, 1-8, 1-11, 7-18

MAXDATAFILES clause, 3-3, 3-9

MAXDATAFILES parameter, 3-9

MAXEXTENTS storage parameter

automatic allocations, 8-11

preallocating extents, 8-13

MAXINSTANCES clause, 3-3

changing, 3-9

MAXINSTANCES parameter, 3-9

MAXLOGFILES clause, 3-3, 3-9

MAXLOGFILES parameter, 3-9

MAXLOGHISTORY clause, 3-3, 13-7

changing, 3-9

CREATE CONTROLFILE, 13-7

log history, 13-7

MAXLOGHISTORY parameter, 3-9

MAXLOGMEMBERS

clause, 3-3, 3-9

MAXLOGMEMBERS clause, 3-3

MAXLOGMEMBERS parameter, 3-9

media failure, 14-7

automatic recovery, 13-8

media recovery, 14-7

incomplete, 14-8

log history, 3-3, 13-8, 14-8

O/S utilities, 14-8

member

MAXLOGMEMBERS, 3-3

messages

access to files, 14-4

ALERT file, 14-4

instance shutdown, 4-5

migration

returning to exclusive mode, 8-9

MINEXTENTS storage parameter

automatic allocations, 8-11, 8-12

default, 8-11

mode

archiving, 3-2, 3-8, 13-3



Index-10

modified data

instance recovery, 14-3

MONITOR command, 3-6

monitoring

statistics for, 11-2

mount locks, 7-19

MTS_DISPATCHERS

parameter for the multi-threaded server, 1-13

MTS_DISPATCHERS parameter, 1-13

multiple nodes

starting from one node, 1-5

multiple shared mode, 7-19

multiplexed redo log files

log history, 13-8

total number of files, 3-3

multi-threaded server

parameters for, 1-13

N
new features, xvii

NEXT storage parameter, 13-5

NLS_* parameters, 1-11

NOARCHIVELOG mode, 3-8

changing mode, 3-2, 3-8

creating a database, 3-2, 3-8

requiring offline backups, 13-3

nodes

adding, 8-11

affinity awareness, 13-19

failure of, 14-2

local, 1-4, 1-5

parallel backup, 13-16

remote, 4-4

NOMOUNT option, 14-11

non-default parameter files, 1-2

non-PCM locks, 7-16

dictionary cache lock, 7-19

DML lock, 7-17

library cache lock, 7-19

mount lock, 7-19

overview, 7-16

system change number, 7-18

table lock, 7-17

transaction lock, 7-17

NSTANCE_GROUPS parameter, 2-5

O
offline backups

parallel, 13-16

redo log files, 13-16

online backups

archiving log files, 13-21

parallel, 13-16

procedure, 13-21

redo log files, 13-16

online recovery, 14-2, 14-4, 14-7

online redo log file

archive log mode, 3-8

log switch, 13-15

thread of redo, 1-7

online redo log files

archiving, 13-1, 13-7

log switch, 13-7

operating system

privileges, 4-7

operating system-specific Oracle documentation

archived redo log name, 13-6

instance number range, 8-10

Oracle

compatibility, 8-9

overlaps, 5-9

P
packaged applications

scalability for, 12-4

parallel automatic tuning, 2-6

parallel backups, 13-16

Parallel Cache Management

locks, minimizing number of, 5-3

parallel cache management locks

releasable, 9-3, 9-5

parallel execution

and scalability, 5-3

limiting instances for, 2-2

load balancing, 2-5

using performance views to examine, 2-6

parallel mode



Index-11

startup, 1-9

PARALLEL option, 4-2

parallel recovery, 14-7, 14-14, 14-16

PARALLEL_ADAPTIVE_MULTIUSER

parameter, 2-6

PARALLEL_INSTANCE_GROUP parameter, 2-4

PARALLEL_MAX_SERVERS parameter, 14-14,

14-16

ensuring LM lock capacity, 10-3

PARALLEL_SERVER parameter, 1-11, 4-2

PARALLEL_SERVER_ INSTANCES

parameter, 1-12

PARALLEL_SERVER_INSTANCES parameter, 1-8

parameter

database creation, 3-3

parameter files

backing up, 13-1

common file, 1-5

duplicate values, 1-3

identical parameters, 1-9

IFILE parameter, 1-4

include file parameter, 1-4

initialization, 1-2

instance specific, 1-2

instance specific, conditions requiring, 1-3

instance-specific, 1-3 to 1-4

location, 1-3

naming conventions for, 1-2

non-default, 1-2

PFILE, 1-4, 1-5

remote instance, 1-4, 1-5

remote instances, 4-4

parameters

database creation, 3-3

initialization, 1-1

setting for multiple instances, 1-7

storage, 8-4, 8-6, 8-9

that must be identical on all instances, 1-8

that must be unique on all instances, 1-8

partitioning

and scalability, 5-16

applications, 5-7

batch processing issues, 5-17

composite, 5-14, 5-15

data among instances, 7-14

departmental, 5-13

hash, 5-14, 5-15

method, selecting, 5-6

methodology, 5-8

methods, table, 5-14

physical table, 5-15

range, 5-14

strategy, based on data, 5-6

strategy, considerations for, 6-15

transaction, 5-15

transactions, 5-15

user, 5-13

users, 5-13

partitioning data

data files, 8-11

free list, 1-6

free lists, 8-9

index data, 7-14

PCM locks, 7-14, 8-9

table data, 7-14, 8-9

PCM locks, 7-14

adding data files, 9-8

allocating, 7-2

checking for valid number, 9-6, 9-8

contention, 7-14, 8-9

conversion time, 9-12

estimating number needed, 7-3

exclusive, 7-8

index data, 7-14

mapping blocks to, 8-9

planning, 7-2

releasable, 9-3, 9-5

sessions waiting, 9-12

shared, 7-8, 7-14

specifying total number, 3-9

valid lock assignments, 9-7

worksheets, 7-12

PCTINCREASE parameter

table extents, 8-9

performance

problems, diagnosing, 11-18

problems, identifying, 12-31

views, using to examine parallel execution, 2-6

PFILE option, 1-4, 1-5

physical layouts



Index-12

design of, 6-15

suggestions for, 6-15

physical partitioning strategy

considerations for, 6-15

physical table partitioning, 5-15

pinging, 9-10, 9-12

identifying by block class, 12-26

rate, 9-11

private rollback segments, 1-9, 3-5

creating, 3-4

private thread, 3-7

privileges

ALTER SYSTEM, 13-14, 13-15

PROCESSES parameter, 1-12

ensuring LM lock capacity, 10-3

PROTOCOL

parameter for the multi-threaded server, 1-13

public rollback segments, 3-5

bringing online, 3-5

creating, 3-5

owner, 3-5

specifying, 3-5

using by default, 3-5

PUBLIC thread, 3-7

R
reader/writer conflicts

and Cache Fusion, 12-1

read-only access

index data, 7-14

read-only tables, 5-3

recording statistics

for tuning, 11-5

RECOVER command, 4-6, 14-7, 14-13, 14-16

RECOVER DATABASE statement, 14-7

RECOVER DATAFILE statement, 14-7

RECOVER TABLESPACE statement, 14-7

recovery, 14-1

access to files, 14-4

after SHUTDOWN ABORT, 4-5

archive history, 3-3

automatic, 13-8

definition, 14-2

disaster, 14-10, 14-13

from an offline backup, 14-10

from an online backup, 14-10

from multiple node failure, 14-3

from single-node failure, 14-2

global checkpoint, 13-14

incomplete media, 14-8

instance, 3-3, 4-5, 14-2

instance recovery, 14-1

log history, 13-8, 14-8

media failure, 13-8, 13-15, 14-6, 14-7

online, 14-2

parallel, 14-14, 14-16

PARALLEL_MAX_SERVERS parameter, 14-14,

14-16

recovery time, 13-15

setting parallelism, 14-14, 14-15

starting another instance, 3-3

steps of, 14-5

using redo log, 13-16

Recovery Manager, 14-6

archive log backup, 13-8

disaster recovery, 14-10

incomplete media recovery, 14-8

RECOVERY_PARALLELISM parameter, 1-12,

14-14, 14-15

redo log files

archiving, 3-8, 13-1, 13-3, 13-15

archiving mode, 13-3

backup, 13-16

dropping, 13-15

instance recovery, 14-3

log history, 13-7

log sequence number, 13-6

multiplexed, 13-8

overwriting, 13-3

reconfiguring, 3-8

renaming, 13-15

redo threads, 13-1, 13-5

releasable locking, 7-12

releasable PCM locks, 9-3, 9-5

remote instance, 1-4, 1-5

remote instances, 4-4

renaming a file

log switch, 13-15

resources



Index-13

and locks, avoiding dynamic allocation, 10-2

operating system, 1-9

releasing, 14-3

restrictions

changing the redo log, 3-8

RETRY option

STARTUP PARALLEL command, 4-3

reverse-key indexes

creating, 5-5

for minimizing contention, 6-11

RMAN

AUTOLOCATE option, 13-11

restoring archive logs with, 13-11

using to back up archive logs, 13-8

rollback segment, 3-4

tablespace, 3-4

rollback segments

contention, 3-4

ID number, 3-4, 3-6

multiple, 3-4

name, 3-4, 3-6

online, 3-6

public, 3-5

public vs. private, 3-5

setting parameters for, 1-8

specifying, 3-4

tablespace, 3-4, 3-6

ROLLBACK_SEGMENTS parameter, 1-9, 1-13

private and public segments, 3-4, 3-5

rolling back

instance recovery, 14-3

routing, data-dependent, 5-16

row level locking

DML locks, 7-17

ROW_LOCKING parameter, 1-8

S
scalability

and partitioning, 5-16

with Cache Fusion, 12-4

SCN

System Change Number, 7-18

segment header

processing during inserts, 6-4

segments

header, 9-14

header block, 3-6

ID number, 3-4, 3-6

name, 3-6

size, 3-6

SELECT

block access during, 6-9

sequence generators

external, 6-14

sequence number cache size, 6-13

sequence number generator

and block contention, 5-5

sequence numbers

using, 6-13

sequences

global conflict detection for, 6-14

log sequence number, 13-6, 13-7

SERIALIZABLE parameter, 1-8

SERVICE_NAMES parameter, 1-8

sessions

multiple, 4-5, 4-6

waiting for PCM lock conversion, 9-12

SESSIONS parameter

ensuring LM lock capacity, 10-3

SET INSTANCE command, 1-5, 4-4

example of, 1-5

instance startup, 1-5, 4-4

SET UNTIL command, 14-10

setting instances, 4-3

shared mode

instance number, 1-6

instance recovery, 14-2

recovery restrictions, 14-7

shared resource system, 8-11

shared SQL area, 5-8

SHARED_POOL_SIZE

setting, 10-3

SHOW INSTANCE command, 4-4, 4-6

SHOW PARAMETER command

example of, 1-6

SHOW PARAMETERS command, 4-6

instance number, 1-6

SHOW SGA command, 4-6

SHUTDOWN ABORT command, 4-5



Index-14

SHUTDOWN command

ABORT option, 4-5, 4-6

IMMEDIATE option, 4-6

specifying an instance, 4-4

shutting down an instance, 4-5

abnormal shutdown, 4-5

archiving redo log files, 13-15

changing startup order, 1-6

forcing a log switch, 13-15

unarchived log files, 13-4

single shared mode, 7-19

SIZE option

allocating extents, 8-12

SMON process

instance recovery, 14-2, 14-3

recovery after SHUTDOWN ABORT, 4-5

space

allocating extents, 8-11

deallocating unused, 8-14

determining unused, 8-14

not allocated to instance, 8-10

unavailable in exclusive mode, 8-9

SQL area

shared, 5-8

SQL statements

instance-specific, 4-7

SQL*Plus sessions

multiple, 4-6

standby databases, 14-17

starting an instance using SQL*Plus, 4-2

starting up

after file operations, 9-2

during instance recovery, 3-3

exclusive mode, 8-11

global constant parameters, 1-9

remote instance, 1-4, 1-5, 4-4

rollback segments, 3-5

startup order, 1-6

STARTUP command, 1-5

MOUNT option, 14-13

PFILE option, 1-4, 1-5

specifying an instance, 4-4

static allocation, 6-6

statistics

DLM, for monitoring contention, 11-18

global cache, analyzing, 12-11

recording for tuning, 11-5

views containing, 11-5

where maintained, 11-2

storage options

clustered tables, 8-4

extent size, 8-9, 8-11, 8-12

index, 8-6

table, 8-4

switch archiving mode, 3-2, 3-8

synchronization

determining the costs of, 11-7

synchronous lock gets

analyzing, 12-17

SYSDBA, 13-16

privilege for connecting, 4-5

SYSOPER, 13-16

privilege for connecting, 4-5

System Change Number, 7-18

system change numbers, 7-18

archive file format, 13-6

archiving redo log files, 13-5

redo log history, 13-7

SYSTEM tablespace, 3-4

system undo blocks, 7-5

system-specific Oracle documentation

MAXLOGHISTORY default, 13-7

redo log archive destination, 13-7

redo log archive format, 13-7

T
table locks, 7-17

TABLE_LOCK column, 10-4

tables

allocating extents, 8-12

cluster, 8-5

contention, 8-11

DELETE, 5-4

free space unavailable, 8-9

initial storage, 8-11

INSERT, 5-4

locks, 7-17

locks, disabling, 10-4

multiple files, 8-11



Index-15

overlapping, 5-9

partitioning, 5-15

PCM locks, 8-9

read-only, 5-3

SELECT, 5-4

UPDATE, 5-4

tablespaces

creating, 9-2

design, for access distribution, 6-16

dropping, 9-2

index data, 7-14

online rollback segments, 3-4, 3-6

parallel backup, 13-16

parallel recovery, 14-7

read-only, 9-7

recovery, 14-7

rollback segment, 3-4, 3-6

SYSTEM, 3-4

THREAD clause, 4-7, 13-1, 13-5, 13-15

disabling a thread, 3-8

when required, 3-7

THREAD parameter, 1-8, 1-13, 3-7

threads

archive file format, 13-6

archiving redo log files, 13-1, 13-5, 13-15

associated with an instance, 3-7

changing from public to private, 3-8

closed, 13-21

creating, 3-7

disabled, 3-8

disabling, 3-8

enabled, 13-8, 13-21, 14-9

exclusive mode, 1-7

forced log switch, 13-15

log history, 13-8

open, 13-8, 13-21

public, 3-7

throughput

with Cache Fusion, 12-4

TM, DML Enqueue, 7-17

transaction processing monitor, 5-6, 5-15

transactions

committed data, 13-14

instance failure, 14-3

locks for, 7-17

partitioning, 5-15

rolling back, 14-3

table access patterns, 5-3

types of DML involved, 6-3

waiting for recovery, 14-3

TRANSACTIONS parameter

ensuring LM lock capacity, 10-3

tuning

overview of, 11-2

TX, Transaction, 7-17

U
undo header blocks, 7-5

unique keys

generating, 5-5

UPDATE

block access during, 6-7

updates

free lists, 1-6

user

moving among instances, 5-17

partitioning method, 5-13

PUBLIC, 3-5, 3-6

SYS, 3-6

undo segment header blocks, 7-6

user processes

free list, 8-6

instance shutdown errors, 4-5

manual archiving, 13-5

USER_TABLES table, 10-4

user-mode IPCs

and Cache Fusion, 12-4, 12-5

UTLBSTAT

for recording statistics, 11-2

UTLESTAT

for recording statistics, 11-2

V
V$CACHE_LOCK view, 12-9

V$DATAFILE view, 9-7

V$FAST_START_SERVERS

view, 14-16

V$FAST_START_TRANSACTIONS



Index-16

view, 14-16

V$LOCK view, 9-13

V$LOCK_ACTIVITY view, 12-9

V$LOCK_ELEMENT view, 9-14

V$LOCKS_WITH_COLLISIONS view, 12-9

V$LOG_HISTORY view, 13-8

V$RECOVERY_LOG view, 13-8

V$RESOURCE_LIMIT

for information about lock usage, 1-14

V$ROLLNAME view, 3-5, 12-9

V$ROLLSTAT view, 3-5

V$SESSION_WAIT view, 9-12

V$SYSSTAT view, 9-8

V$SYSTEM_EVENT view, 9-12

versions, Oracle

compatibility, 8-9

VIA

interconnect protocol, 12-5

W
work ratios

measuring, 11-11


	PDF Directory
	Send Us Your Comments
	Preface
	1 Parameter Files and Oracle Parallel Server-Specific Parameters
	Managing Parameter Files for Oracle Parallel Server
	Parameter File Naming Conventions
	One Common Parameter File
	Instance-Specific Parameter Files
	Conditions Under Which You Must Use Instance-Specific Files
	Placement and Use of IFILE Parameters within Instance-Specific Files
	Using Multiple IFILEs

	Non-Default Parameter Files For Particular Sessions
	Location of Initialization Files
	The Startup Process and Parameters in Parallel Server Environments
	Starting Two Instances on Remote Nodes

	Instance Numbers and Startup Sequence
	Startup Order Determines Instance Number by Default


	Setting Initialization Parameters for Multiple Instances
	Parameters That Must Be Identical Across All Instances
	Parameters That Must Be Unique Across All Instances
	Parameters for Common Parameter Files
	DB_NAME Parameter
	GC_* Global Cache Parameters
	Multiple Instance Issues for Initialization Parameters
	The MTS_DISPATCHER Parameter and Oracle Parallel Server

	LM_* Initialization Parameters


	2 Parallel Execution in Oracle Parallel Server Environments
	Parallel Execution in Oracle Parallel Server
	Setting the Degree of Parallelism

	Parameters for Parallel Execution on Oracle Parallel Server
	Allocating Resources with Instance Groups
	Specifying Instance Groups
	Defining Parallel Instance Groups
	Instance Group Example
	Listing Members of Instance Groups


	Other Resource Management Features of Parallel Execution
	Parallel Execution Load Balancing
	Parallel Execution Adaptive Multi-User
	Avoiding Disk Contention in Parallel Processing

	Dynamic Performance Views
	Disk Affinity and Parallel Execution

	3 Oracle Parallel Server Database Creation Issues
	Creating a Database for Multi-Instance Environments
	Setting Initialization Parameters for Database Creation
	Using ARCHIVELOG Mode

	Setting CREATE DATABASE Options
	Setting MAXINSTANCES
	Setting MAXLOGFILES and MAXLOGMEMBERS
	Setting MAXLOGHISTORY
	Setting MAXDATAFILES

	Database Objects to Support Multiple Instances
	Creating Additional Rollback Segments
	Using Private Rollback Segments
	Using Public Rollback Segments
	Monitoring Rollback Segments

	Configuring the Online Redo Log for Oracle Parallel Server
	Creating Threads
	Disabling Threads
	Setting the Log’s Mode
	Changing the Redo Log

	Providing Locks for Added Data Files

	Changing The Values for CREATE DATABASE Options

	4 Administering Instances
	Starting Up and Shutting Down Instances
	Starting Instances
	Enabling Oracle Parallel Server and Starting Instances
	Starting an Instance Using SQL*Plus
	Using RETRY to Mount a Database in Shared Mode

	Setting and Connecting to Instances
	The SET INSTANCE and SHOW INSTANCE Commands
	The CONNECT Command


	Shutting Down Instances
	How Instances Are Affected by SQL*Plus and SQL
	How SQL*Plus Commands Apply to Instances
	How SQL Statements Apply to Instances


	5 Application Analysis and Partitioning
	Overview of Development Techniques
	Before You Begin, Determine Your Application’s Suitability
	How Detailed Must Your Analysis Be?

	Application Transactions and Table Access Patterns
	Read-Only Tables
	Random SELECT and UPDATE Tables
	INSERT, UPDATE, or DELETE Tables
	Creating Reverse Key Indexes

	Selecting A Partitioning Method
	Partitioning Based on Data, Not Function

	Application Partitioning Techniques
	Methodology for Application Partitioning
	Step 1: Define the Major Functional Areas of the System
	Step 2: Identify Table Access Requirements and Define Overlaps
	Step 3: Define the Access Type for Each Overlap
	Step 4: Identify Transaction Volumes
	Step 5: Classify Overlaps


	Departmental and User Partitioning
	Physical Table Partitioning
	Transaction Partitioning
	Scaling Up and Partitioning
	Adding Instances
	Design-Related Batch Processing Issues
	Using the DBMS_JOB Package to Manage Batch Job and Instance Affinity


	6 Database Design Techniques
	Principles of Database Design for Oracle Parallel Server
	Database Operations, Block Types, and Access Control
	Block Accesses During INSERTS
	Static and Dynamic Extent Allocation
	Block Accesses During UPDATES
	Block Accesses During DELETES
	Block Accesses During SELECTS

	Global Cache Coherence Work and Block Classes
	General Recommendations for Database Object Parameters
	Index Issues
	Minimizing Leaf/Branch Block Contention
	Locking Policy For Indexes

	Using Sequence Numbers
	Calculating Sequence Number Cache Size
	External Sequence Generators
	Detecting Global Conflicts On Sequences

	Logical And Physical Database Layout
	General Suggestions for Physical Layouts
	Tablespace Design

	Global Cache Lock Allocation
	Conclusions And Guidelines

	7 Planning the Use of PCM and Non-PCM Instance Locks
	Planning the Use and Maintenance of PCM Locks
	Planning and Maintaining Instance Locks
	The Key to Allocating PCM Locks
	Examining Data Files and Data Blocks
	Determining File ID, Tablespace Name, and Number of Blocks
	Determining the Number of Locks You Need


	How Oracle Assigns Locks to Blocks
	File-to-Lock Mapping
	Number of Locks Per Block Class
	Lock Element Number

	Examples of Mapping Blocks to PCM Locks
	Setting GC_FILES_ TO_LOCKS
	Sample Settings for Fixed Locks with GC_FILES_TO_LOCKS
	Sample Releasable Setting of GC_FILES_TO_LOCKS
	Using Worksheets to Analyze PCM Lock Needs
	Mapping Fixed PCM Locks to Data Blocks
	Partitioning PCM Locks Among Instances

	Non-PCM Instance Locks
	Overview of Non-PCM Instance Locks
	Transaction Locks (TX)
	Table Locks (TM)
	System Change Number (SCN)
	Library Cache Locks (L[A-Z]), (N[A-Z])
	Dictionary Cache Locks (Q[A-Z])
	Database Mount Lock (DM)


	8 Using Free List Groups to Partition Data
	Overview of Free List Implementation Procedures
	Deciding How to Partition Free Space for Database Objects
	Database Object Characteristics
	Objects Read-Only Tables
	Objects in Partitioned Applications
	Objects Relating to Partitioned Data
	Objects in Tables with Random Inserts

	Free Space Worksheet

	Using the CREATE Statement FREELISTS and FREELIST GROUPS Parameters
	FREELISTS Parameter
	FREELIST GROUPS Parameter
	Creating Free Lists for Clustered Tables
	Creating Free Lists for Indexes

	Associating Instances, Users, and Locks with Free List Groups
	Associating Instances with Free List Groups
	Associating User Processes with Free List Groups
	Associating PCM Locks with Free List Groups

	Pre-Allocating Extents
	The ALLOCATE EXTENT Clause
	Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parameters
	Setting the INSTANCE_NUMBER Parameter
	Examples of Extent Pre-Allocation

	Dynamically Allocating Extents
	Translation of Data Block Address to Lock Name
	!blocks with ALLOCATE EXTENT Syntax

	Identifying and Deallocating Unused Space
	Identifying Unused Space
	Deallocating Unused Space
	Space Freed by Deletions or Updates


	9 Setting Instance Locks
	Setting GC_FILES_TO_LOCKS: PCM Locks for Each Data File
	GC_FILES_TO_LOCKS Syntax
	Fixed Lock Examples
	Releasable Lock Examples
	Guidelines for Setting GC_FILES_TO_LOCKS

	Tips for Setting GC_FILES_TO_LOCKS
	Providing Room for Growth
	Checking for Valid Number of Locks
	Checking for Valid Lock Assignments
	Setting Tablespaces to Read-Only
	Checking File Validity
	Adding Data Files Without Changing Parameter Values

	Setting Other GC_* Parameters
	Setting GC_RELEASABLE_ LOCKS
	Setting GC_ROLLBACK_ LOCKS

	Tuning PCM Locks
	Detecting False Pinging
	Determining How Much Time PCM Lock Conversions Require
	Identifying Sessions That Are Waiting for PCM Lock Conversions to Complete

	PCM and Non-PCM Lock Names and Formats
	Lock Names and Lock Name Formats
	PCM Lock Names
	Non-PCM Lock Names


	10 Ensuring DLM Capacity for Locks and Resources
	Overview of Planning Distributed Lock Manager Capacity
	Planning Distributed Lock Manager Capacity
	Avoiding Dynamic Allocation of Resources and Locks
	Recommended SHARED_POOL_SIZE Settings


	Adjusting Oracle Initialization Parameters
	Minimizing Table Locks to Optimize Performance
	Disabling Table Locks
	Setting DML_LOCKS to Zero

	Using SQL*Loader

	11 General Tuning Recommendations
	Overview of Tuning Oracle Parallel Server
	Statistics for Monitoring Oracle Parallel Server Performance
	Contents of V$SYSSTAT and V$SYSTEM_EVENT
	Statistics in V$SYSSTAT
	Statistics in V$SYSTEM_EVENT
	Other Parallel Server-Specific Views

	Recording Statistics for Tuning
	Performance and Efficiency of Oracle Parallel Server Workloads


	Determining the Costs of Synchronization
	Calculating CPU Service Time Required
	Estimating I/O Synchronization Costs
	Measuring Global Cache Coherence and Contention

	Measuring Global and Local Work Ratios
	Calculating the Cost of Global Cache Synchronization Due to Lock Contention
	Contention for the Same Data Blocks
	Using V$CACHE, V$PING, and V$BH to Identify Contended Objects
	Using V$FILE_PING to Identify Files with Excessive Pinging

	Contention for Segment Headers and Free List Blocks
	Contention for Resources Other Than Database Blocks
	A Shortage of Locks

	Resolving Problems in Oracle Parallel Server-Based Applications
	Query Tuning Tips
	Large Block Size
	Increase Value for DB_FILE_MULTIBLOCK_READ_COUNT

	Application Tuning Tips
	Diagnosing Performance Problems
	DLM Statistics for Monitoring Contention and CPU Usage

	Contention Problems Specific to Parallel Server Environments
	Using Sequence Number Multipliers
	Using Oracle Sequences



	12 Tuning Oracle Parallel Server and Inter-Instance Performance
	How Cache Fusion Produces Consistent Read Blocks
	Partitioning Data to Improve Write/Write Conflict Resolution
	Improved Scalability with Cache Fusion
	Consistent-Read Block Transfers By Way of High Speed Interconnects
	Reduced I/O for Block Pinging and Reduced X to S Lock Conversions

	The Interconnect and Interconnect Protocols for Oracle Parallel Server
	Influencing Interconnect Processing
	Supported Interconnect Software

	Performance Expectations
	Monitoring Cache Fusion and Inter-Instance Performance
	Cache Fusion and Oracle Parallel Server Performance Monitoring Goals
	Statistics for Monitoring Oracle Parallel Server and Cache Fusion
	Creating Oracle Parallel Server Data Dictionary Views with CATPARR.SQL
	Global Dynamic Performance Views
	Analyzing Global Cache and Cache Fusion Statistics
	Procedures for Monitoring Global Cache Statistics
	Other Useful Cache Fusion Statistics

	Analyzing Global Lock Statistics
	Procedures for Analyzing Global Lock Statistics

	Analyzing DLM Resource, Lock, Message, and Memory Resource Statistics
	How DLM Workloads Affect Performance
	Procedures for Analyzing DLM Resource and Lock Statistics

	DLM Message Statistics
	Procedures for Analyzing DLM Message Statistics

	Analyzing Oracle Parallel Server I/O Statistics
	Analyzing Oracle Parallel Server I/O Statistics in the V$SYSSTAT View

	Analyzing Lock Conversions by Type
	Using the V$LOCK_ACTIVITY View to Analyze Lock Conversions
	Using the V$CLASS_PING View to Identify Pinging by Block Class
	Using the V$PING View to Identify Hot Objects

	Analyzing Latch, Oracle Parallel Server, and DLM Statistics
	Procedures for Analyzing Latch, Parallel Server, and DLM Statistics


	Using the V$SYSTEM_EVENTS View to Identify Performance Problems
	Parallel Server Events in V$SYSTEM_EVENTS
	Events Related to Non-PCM Resources

	General Observations


	13 Backing Up Your Database
	Choosing a Backup Method
	Archiving the Redo Log Files
	Archiving Mode
	Changing the Archiving Mode
	Automatic or Manual Archiving
	Automatic Archiving
	Manual Archiving
	ALTER SYSTEM ARCHIVE LOG Clauses for Manual Archiving
	Monitoring the Archiving Process

	Archive File Format and Destination
	Redo Log History in the Control File
	Backing Up the Archive Logs
	Backing Up Archive Logs with RMAN
	Restoring Archive Logs with RMAN

	Checkpoints and Log Switches
	Checkpoints
	Forcing a Checkpoint
	Forcing a Log Switch
	Forcing a Log Switch on a Closed Thread

	Backing Up the Database
	Open and Closed Database Backups

	Online Backups and Oracle Parallel Server
	RMAN Backup Issues
	Preparing for Snapshot Control Files in RMAN
	Performing an Open Backup Using RMAN
	Node Affinity Awareness

	Operating System Backup Issues
	Beginning and Ending an Open Backup Using Operating System Utilities
	Performing an Open Backup Using Operating System Utilities



	14 Recovering the Database
	Three Types of Recovery
	Recovery from Instance Failure
	Single-Node Failure
	Multiple-Node Failure
	Fast-Start Checkpointing
	Fast-Start Rollback
	Access to Data Files for Instance Recovery
	Steps of Oracle Instance Recovery

	Recovery from Media Failure
	Complete Media Recovery
	Complete Media Recovery Using Operating System Utilities

	Incomplete Media Recovery
	Restoring and Recovering Redo Log Files
	Recovery Using RMAN
	Recovery Using Operating System Utilities

	Disaster Recovery
	Disaster Recovery Using RMAN
	Disaster Recovery Using Operating System Utilities


	Parallel Recovery
	Parallel Recovery Using RMAN

	Parallel Instance Recovery
	Media Recovery
	Parallel Recovery Using Operating System Utilities
	Setting the RECOVERY_ PARALLELISM Parameter
	Specifying RECOVER Statement Options

	Fast-Start Parallel Rollback in Oracle Parallel Server

	Disaster Protection Strategies

	A A Case Study in Parallel Server Database Design
	Case Study Overview
	Case Study: From Initial Database Design to Oracle Parallel Server
	"Eddie Bean" Catalog Sales
	Tables
	Users
	Application Profile

	Analyzing Access to Tables
	Table Access Analysis Worksheet
	Estimating Volume of Operations
	Calculating I/Os per Operation
	I/Os per Operation for Sample Tables

	Case Study: Table Access Analysis

	Analyzing Transaction Volume by Users
	Transaction Volume Analysis Worksheet
	Case Study: Transaction Volume Analysis
	ORDER_HEADER Table
	ORDER_ITEMS Table
	ACCOUNTS_PAYABLE Table


	Case Study: Initial Partitioning Plan
	Case Study: Further Partitioning Plans
	Design Option 1
	Design Option 2


	Partitioning Indexes
	Implementing High or Low Granularity Locking
	Implementing and Tune Your Design

	Index

