
Oracle8 i

National Language Support Guide

Release 2 (8.1.6)

December 1999

Part No. A76966-01

National Language Support Guide, Release 2 (8.1.6)

Part No. A76966-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Paul Lane

Contributors: Winson Chu, Jason Durbin, Jessica Fan, Yu Gong, Josef Hasenberger, Claire Ho, Peter
Linsley, Tom Portfolio, Den Raphaely, Linus Tanaka, Makoto Tozawa, Gail Yamanaka, Michael Yau, Hiro
Yoshioka, Sergiusz Wolicki, Simon Wong

Graphic Designer: Valarie Moore

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by such
use of the Programs.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free. Except as may be expressly permitted in your license agreement
for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs including documentation, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
Programs delivered subject to the Federal Acquisition Regulations are "restricted computer software"
and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and Enterprise Manager, Pro*COBOL, Server Manager, SQL*Forms,
SQL*Net, and SQL*Plus, Net8, Oracle Call Interface, Oracle7, Oracle7 Server, Oracle8, Oracle8 Server,
Oracle8i, Oracle Forms, PL/SQL, Pro*C, Pro*C/C++, and Trusted Oracle are registered trademarks or
trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xiii

Preface ... xv

Feature Coverage and Availability .. xv
Audience... xv

Knowledge Assumed of the Reader .. xv
Installation and Migration Information ... xvi
Application Design Information ... xvi

How Oracle8i National Language Support Guide Is Organized ... xvi
Conventions Used in This Manual ... xvii

1 Understanding Oracle NLS

Oracle Server NLS Architecture... 1-2
Locale-Independent Operation... 1-2
Client/Server Architecture ... 1-4

Standard Features ... 1-5
Language Support .. 1-5
Territory Support.. 1-6
Date and Time Formats ... 1-7
Monetary and Numeric Formats.. 1-7
Calendars ... 1-7
Linguistic Sorting.. 1-7
Character Set Support .. 1-9

Customization Features ... 1-10
 iii

Character Set Customization... 1-10
Calendar Customization.. 1-10

SQL Support .. 1-10

2 Setting Up an NLS Environment

Setting NLS Parameters ... 2-2
Choosing a Locale with NLS_LANG .. 2-4

Specifying NLS_LANG.. 2-5
NLS_LANG Examples ... 2-5
Overriding Language and Territory Specifications... 2-6
NLS Database Parameters ... 2-7

Checking NLS Parameters... 2-7
NLS Views ... 2-7
OCI Functions.. 2-8
Language and Territory Parameters .. 2-8

Time Parameters .. 2-13
Date Parameters... 2-13

Date Formats ... 2-13
NLS_DATE_FORMAT... 2-14
NLS_DATE_LANGUAGE... 2-16

Calendar Parameter .. 2-17
Calendar Formats.. 2-17
NLS_CALENDAR .. 2-20

Numeric Parameters ... 2-21
Numeric Formats .. 2-21
NLS_NUMERIC_CHARACTERS .. 2-21

Monetary Parameters.. 2-22
Currency Formats ... 2-23
NLS_CURRENCY... 2-23
NLS_ISO_CURRENCY .. 2-24
NLS_DUAL_CURRENCY ... 2-25
NLS_MONETARY_CHARACTERS .. 2-26
NLS_CREDIT... 2-27
NLS_DEBIT.. 2-27

Collation Parameters .. 2-27
 iv

Sorting Order... 2-28
Sorting Character Data .. 2-28
NLS_SORT... 2-32
NLS_COMP ... 2-32
NLS_LIST_SEPARATOR... 2-33

Character Set Parameters... 2-34
NLS_NCHAR.. 2-34

3 Choosing a Character Set

What is an Encoded Character Set? ... 3-2
Which Characters to Encode? ... 3-3

Writing Systems.. 3-3
How Many Languages does a Character Set Support?.. 3-4

ASCII Encoding .. 3-6
How are These Characters Encoded? .. 3-8

Single-Byte Encoding Schemes... 3-8
Multibyte Encoding Schemes ... 3-9

Oracle's Naming Convention for Character Sets.. 3-10
Tips on Choosing an Oracle Database Character Set .. 3-10

Interoperability with System Resources and Applications .. 3-11
Character Set Conversion .. 3-11
Database Schema .. 3-12
Performance Implications ... 3-12
Restrictions .. 3-12

Tips on Choosing an Oracle NCHAR Character Set.. 3-13
Database Schema .. 3-14
Performance Implications ... 3-14
Recommendations .. 3-14

Considerations for Different Encoding Schemes ... 3-14
Be Careful when Mixing Fixed-Width and Varying-Width Character Sets 3-15
Storing Data in Multi-Byte Character Sets .. 3-15

Naming Database Objects... 3-16
Summary of Data Types and Supported Encoding Schemes .. 3-18

Changing the Character Set After Database Creation ... 3-19
Customizing Character Sets.. 3-20
 v

Character Sets with User-Defined Characters .. 3-21
Oracle's Character Set Conversion Architecture.. 3-22
Unicode 2.1 Private Use Area ... 3-23
UDC Cross References ... 3-23

Monolingual Database Example .. 3-23
Character Set Conversion .. 3-24

Multilingual Database Example .. 3-26
Restricted Multilingual Support... 3-26
Unrestricted Multilingual Support... 3-27

4 SQL Programming

Locale-Dependent SQL Functions... 4-2
Default Specifications... 4-3
Specifying Parameters.. 4-3
Unacceptable Parameters .. 4-4
CONVERT Function... 4-5
Character Set SQL Functions... 4-6
NLSSORT Function .. 4-7
Pattern Matching Characters for Fixed-Width Multi-Byte Character Sets......................... 4-10

Time/Date/Calendar Formats.. 4-10
Date Formats ... 4-10

Numeric Formats ... 4-11
Miscellaneous Topics ... 4-12

5 OCI Programming

Using the OCI NLS Functions .. 5-2
NLS Language Information Retrieval... 5-2

OCINlsGetInfo .. 5-3
OCI_Nls_MaxBufSz.. 5-6
NLS Language Information Retrieval Sample Code ... 5-7

String Manipulation ... 5-7
OCIMultiByteToWideChar ... 5-9
OCIMultiByteInSizeToWideChar .. 5-10
OCIWideCharToMultiByte ... 5-11
OCIWideCharInSizeToMultiByte .. 5-11
 vi

OCIWideCharToLower ... 5-12
OCIWideCharToUpper ... 5-13
OCIWideCharStrcmp... 5-13
OCIWideCharStrncmp .. 5-14
OCIWideCharStrcat ... 5-15
OCIWideCharStrchr... 5-16
OCIWideCharStrcpy .. 5-16
OCIWideCharStrlen ... 5-17
OCIWideCharStrncat ... 5-17
OCIWideCharStrncpy.. 5-18
OCIWideCharStrrchr ... 5-18
OCIWideCharStrCaseConversion.. 5-19
OCIWideCharDisplayLength ... 5-20
OCIWideCharMultiByteLength ... 5-20
OCIMultiByteStrcmp ... 5-21
OCIMultiByteStrncmp ... 5-21
OCIMultiByteStrcat .. 5-22
OCIMultiByteStrcpy... 5-23
OCIMultiByteStrlen.. 5-23
OCIMultiByteStrncat.. 5-24
OCIMultiByteStrncpy .. 5-24
OCIMultiByteStrnDisplayLength .. 5-25
OCIMultiByteStrCaseConversion .. 5-25
String Manipulation Sample Code... 5-26

Character Classification ... 5-27
OCIWideCharIsAlnum.. 5-27
OCIWideCharIsAlpha ... 5-28
OCIWideCharIsCntrl ... 5-28
OCIWideCharIsDigit.. 5-29
OCIWideCharIsGraph ... 5-29
OCIWideCharIsLower ... 5-30
OCIWideCharIsPrint.. 5-30
OCIWideCharIsPunct .. 5-31
OCIWideCharIsSpace .. 5-31
OCIWideCharIsUpper ... 5-32
 vii

OCIWideCharIsXdigit.. 5-32
OCIWideCharIsSingleByte.. 5-33
Character Classification Sample Code... 5-33

Character Set Conversion .. 5-34
OCICharSetToUnicode .. 5-34
OCIUnicodeToCharSet .. 5-35
OCICharSetConversionIsReplacementUsed .. 5-36
Character Set Conversion Sample Code.. 5-36

Messaging Mechanism .. 5-37
OCIMessageOpen... 5-38
OCIMessageGet .. 5-39
OCIMessageClose ... 5-40
LMSGEN .. 5-40
Text Message File Format .. 5-41
Message Example.. 5-41

6 Java

Overview of Oracle8i Java Support... 6-2
JDBC .. 6-3

JDBC Class Library ... 6-5
JDBC OCI Driver... 6-6
JDBC Thin Driver.. 6-7
JDBC Server Driver... 6-7
The oracle.sql.CHAR Class.. 6-8
NLS Restrictions.. 6-10

SQLJ... 6-12
Java Virtual Machine .. 6-14
Java Stored Procedures... 6-15
CORBA and EJB .. 6-17

CORBA ORB.. 6-17
Enterprise Java Beans ... 6-21

Configurations for Multilingual Applications.. 6-24
Multilingual Database.. 6-24
Internationalized Java Server Objects .. 6-25
Clients of Different Languages ... 6-26
 viii

Multilingual Demo Applications in SQLJ... 6-27
The Database Schema... 6-27
Java Stored Procedures .. 6-28
The SQLJ Client... 6-30

Summary... 6-34

A Locale Data

Languages... A-2
Translated Messages... A-4
Territories ... A-5
Character Sets .. A-6

Asian Language Character Sets .. A-7
European Language Character Sets ... A-9
Middle Eastern Language Character Sets ... A-15
Universal Character Sets.. A-17

Linguistic Definitions .. A-19
Calendar Systems.. A-21
Character Sets that Support the Euro Symbol... A-23
Default Values for NLS Parameters .. A-25

B Customizing Locale Data

Customized Character Sets ... B-2
Character Set Definition Files ... B-2

Customized Calendars ... B-11
NLS Calendar Utility.. B-12
Utilities ... B-12

NLS Data Installation Utility ... B-13
Overview.. B-13
Syntax ... B-13
Return Codes... B-14
Usage .. B-14

NLS Configuration Utility... B-16
Syntax ... B-17
Menus... B-18
 ix

C Obsolete Locale Data

Obsolete NLS Data .. C-2

D Glossary
 x

Send Us Your Comments

Oracle8 i National Language Support Guide, Release 2 (8.1.6)

Part No. A76966-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ E-mail - infodev@us.oracle.com

■ FAX - (650) 506-7228. Attn: Information Development

■ Postal service:

Oracle Corporation

Server Technologies Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.
xiii

xiv

Preface

This manual provides reference information about Oracle’s National Language

Support (NLS) capabilities. This information includes:

Feature Coverage and Availability
Oracle8i National Language Support Guide describes how to deal with many of the

common problems in working in environments with multiple languages or

character sets.

Audience
This manual is written for database administrators, system administrators, and

database application developers who need to deal with NLS-related matters.

Knowledge Assumed of the Reader
It is assumed that readers of this manual are familiar with relational database

concepts, basic Oracle server concepts, and the operating system environment

under which they are running Oracle.

See Also: Getting to Know Oracle8i for information about the

differences between Oracle8i and the Oracle8i Enterprise Edition

and the available features and options. That book also describes all

the features that are new in Oracle8i. Oracle8i National Language
Support Guide describes those features which are common to both

products.
xv

Installation and Migration Information
This manual is not an installation or migration guide. If your primary interest is

installation, refer to your operating-system-specific Oracle documentation. If your

primary interest is database and application migration, refer to Oracle8i Migration.

Application Design Information
In addition to administrators, experienced users of Oracle and advanced database

application designers will find information in this manual useful. However,

database application developers should also refer to the Oracle8i Application
Developer’s Guide - Fundamentals and to the documentation for the tool or language

product they are using to develop Oracle database applications.

How Oracle8 i National Language Support Guide Is Organized
This manual is organized as follows:

Chapter 1, "Understanding Oracle NLS"
This chapter contains an overview of NLS issues and Oracle’s approach to NLS.

Chapter 2, "Setting Up an NLS Environment"
This chapter contains an explanation of Oracle’s NLS capabilities.

Chapter 3, "Choosing a Character Set"
This chapter contains sample scenarios for enabling NLS capabilities.

Chapter 4, "SQL Programming"
This chapter describes NLS considerations for SQL programming.

Chapter 5, "OCI Programming"
This chapter describes NLS considerations for OCI programming.

Chapter 6, "Java"
This chapter describes NLS considerations for Java.

Appendix A, "Locale Data"
This chapter describes the languages, territories, character sets, and other locale

data supported by the Oracle server.
xvi

Appendix B, "Customizing Locale Data"
This chapter shows how to customize NLS data objects.

Appendix C, "Obsolete Locale Data"
This chapter lists some obsolete names for character sets.

Appendix D, "Glossary"
This chapter defines NLS terminology.

Conventions Used in This Manual
The following sections describe the conventions used in this manual.

Text of the Manual
The text of this manual uses the following conventions.

UPPERCASE Characters
Uppercase text is used to call attention to command keywords, database object

names, parameters, filenames, and so on.

For example, "After inserting the default value, Oracle checks the FOREIGN KEY

integrity constraint defined on the DEPTNO column," or "If you create a private

rollback segment, the name must be included in the ROLLBACK_SEGMENTS

initialization parameter."

Italicized Characters
Italicized words within text are book titles or emphasized words.

Code Examples
Commands or statements of SQL, Oracle Enterprise Manager line mode, and

SQL*Plus appear in a monospaced font.

For example:

INSERT INTO emp (empno, ename) VALUES (1000, 'SMITH');
ALTER TABLESPACE users ADD DATAFILE 'users2.ora' SIZE 50K;

Example statements may include punctuation, such as commas or quotation marks.

All punctuation in example statements is required. All example statements
xvii

terminate with a semicolon (;). Depending on the application, a semicolon or other

terminator may or may not be required to end a statement.

UPPERCASE in Code Examples
Uppercase words in example statements indicate the keywords within Oracle SQL.

When you issue statements, however, keywords are not case sensitive.

lowercase in Code Examples
Lowercase words in example statements indicate words supplied only for the

context of the example. For example, lowercase words may indicate the name of a

table, column, or file.

Your Comments Are Welcome
We value and appreciate your comments as an Oracle user and reader of our

manuals. As we write, revise, and evaluate our documentation, your opinions are

the most important feedback we receive.

You can send comments and suggestions about this manual to the Information

Development department at the following e-mail address:

infodev@us.oracle.com

If you prefer, you can send letters or faxes containing your comments to:

Server Technologies Documentation Manager

Oracle Corporation

500 Oracle Parkway Redwood Shores, CA 94065

Fax: (650) 506-7228 Attn: National Language Support Guide
xviii

Understanding Oracle
1

Understanding Oracle NLS

This chapter provides an overview of Oracle NLS support, including:

■ Oracle Server NLS Architecture

■ Standard Features

■ Customization Features

■ SQL Support
 NLS 1-1

Oracle Server NLS Architecture
Oracle Server NLS Architecture
Oracle's National Language Support (NLS) architecture allows you to store, process,

and retrieve data in native languages. It ensures that database utilities and error

messages, sort order, date, time, monetary, numeric, and calendar conventions

automatically adapt to the native language and locale.

Parameter settings determine the behavior of individual conventions.

Locale-Independent Operation
Oracle's National Language Support architecture is implemented with the use of the

Oracle NLS Runtime Library. The NLS Runtime library provides a comprehensive

suite of language-independent functions, which allows for proper text and

character processing and language convention manipulations. Behavior of these

functions for a specific language and territory is governed by a set of locale-specific

data identified and loaded at runtime.

Figure 1–1 illustrates loading locale-specific data at run time. For example, French

and Japanese locale data is loaded.
1-2 Oracle8i National Language Support Guide

Oracle Server NLS Architecture
Figure 1–1 Loading Locale-specific Data at Runtime

The locale-specific NLS data is stored in a directory specified by the ORA_NLS*

environment variable. For each new release, there is a different corresponding

ORA_NLS data directory. For Oracle8i, the ORA_NLS33 directory is used. For

example, on most UNIX platforms, the environment variable ORA_NLS33 should

be set to $ORACLE_HOME/ocommon/nls/admin/data. On Win32 platforms, the

default setting done by the installer should work fine as long as one ORACLE_

HOME has just one release of Oracle.

If your system is running in a multi-version Oracle environment, you must ensure

that the appropriate ORA_NLS* variable (for example, ORA_NLS33) is set and that

the corresponding NLS data files for that release are available.

Table 1–1 Location of NLS Data

Release Environment Variable

7.2 ORA_NLS

7.3 ORA_NLS32

8.0, 8.1 ORA_NLS33

Multilingual
Database

French

Data

Ja
pa

ne
se

Dat
a

French
Data

German
Data

Japanese
Data
Understanding Oracle NLS 1-3

Oracle Server NLS Architecture
A boot file is used to determine the availability of the NLS objects that can be

loaded. Oracle supports both system and user boot files. The user boot file gives

you the flexibility to tailor what NLS locale objects will be available for the

database, thus helping you control memory consumption. Also, new locale-data can

be added and some locale-data components can be customized.

Client/Server Architecture
Oracle8i is implemented using a client/server architecture. The

language-dependent operations are controlled by a number of parameters and

environment variables on both the client and the server. On the server, each session

started on behalf of a client may run in the same or different locale, and have the

same or different language requirements specified.

A database itself also has a set of session-independent NLS parameters specified at

its creation time. Two of them are the database and the national character set. They

specify the character set used to store text data in the database. Other parameters,

like language and territory, are used in the evaluation of CHECK constraints.

In the event that the client and server specify different character sets, Oracle8i will

handle character set conversion of strings automatically.

As far as NLS architecture is concerned, all applications, even these running on the

same physical machine as the Oracle instance, are considered clients. For example,

SQL*Plus started by the Unix user which owns Oracle software, from the Oracle

Home in which RDBMS software is installed, and connecting to the database

through an adapter by specifying the ORACLE_SID, is still considered a client and

its behavior is ruled by client-side NLS parameters.

When a client application is started, it initializes its client NLS environment from

environment settings. All NLS operations performed locally are executed using

these settings. Examples of local NLS operations are display formatting (using item

format masks) in Oracle Developer applications or user OCI code executing NLS

OCI functions with OCI environment handles. See Chapter 5, "OCI Programming",

for further details.

When the application connects to a database, a session is created on the server. The

new session initializes its NLS environment from NLS instance parameters specified

in the initialization parameter file. These settings can be subsequently changed by

an ALTER SESSION statement. The statement changes the session NLS

environment only. It does not change the local client NLS environment. The session

NLS settings are used in the processing of SQL and PL/SQL statements executed on

the server.
1-4 Oracle8i National Language Support Guide

Standard Features
Immediately after the connection, if the NLS_LANG environment setting is defined

on the client side, an implicit ALTER SESSION statement synchronizes the client

and the session NLS environments. See Chapter 2, "Setting Up an NLS

Environment", for details.

Standard Features
Oracle's standard features include

■ Language Support

■ Territory Support

■ Date and Time Formats

■ Monetary and Numeric Formats

■ Calendars

■ Linguistic Sorting

■ Character Set Support

Language Support
Oracle8i allows users to store, process, and retrieve data in native languages. The

languages that can be stored in an Oracle8i database are all languages written in

scripts encoded by Oracle-supported character sets. Through the Unicode (UTF8)

character set, Oracle8i supports most contemporary languages.

Additional support is available for a subset of the native languages, for which

Oracle8i knows, for example, how to display dates using translated month names

or how to sort text data according to cultural conventions.

When using the term language support, this manual refers to the additional

language-dependent functionality, not to the ability to store text of the given

language.

For some of the supported languages, Oracle provides translated error messages

and a translated user interface of the database utilities.

Table 1–2 lists the languages supported, with an asterisk for languages with

translated error messages.
Understanding Oracle NLS 1-5

Standard Features
See "Languages" on page A-2 for a complete list of Oracle language names and

abbreviations.

Message Support
Utilities and error messages can be made to appear in the native language. See

"Translated Messages" on page A-4, for further details.

Territory Support
Oracle8i supports different cultural conventions which are specific to a given

geographical location. Local time, date, numeric and monetary conventions are

handled. The following territories are supported.

Table 1–2 Language Support

American English * English Italian * Russian *

Arabic * Estonian Japanese * Simplified Chinese *

Bengali Finnish * Korean * Slovak *

Brazilian Portuguese * French * Latin American Spanish * Slovenian

Bulgarian German * Latvian Spanish *

Canadian French German Din Lithuanian Swedish *

Catalan * Greek * Malay Tamil

Croatian Hebrew * Mexican Spanish Thai

Czech * Hindi Norwegian * Traditional Chinese *

Danish * Hungarian * Polish * Turkish *

Dutch * Icelandic Portuguese * Ukrainian

Egyptian Indonesian Romanian * Vietnamese

Table 1–3 Territory Support

Algeria Estonia Latvia Slovenia

America Finland Lebanon Somalia

Austria France Libya South Africa

Australia Germany Lithuania Spain

Bahrain Greece Luxembourg Sudan

Bangladesh Hong Kong Malaysia Sweden
1-6 Oracle8i National Language Support Guide

Standard Features
Date and Time Formats
The world's various conventions for hour, day, month, and year can be handled in

local formats.

Monetary and Numeric Formats
Currency, credit, and debit symbols can be represented in local formats. Radix

symbols and thousands separators can be defined by locales.

Calendars
Gregorian, Japanese Imperial, ROC Official, Thai Buddha, Persian, English Hijrah,

and Arabic Hijrah are supported. See "Calendar Systems" on page A-21 for a

complete list of calendars.

Linguistic Sorting
Oracle8i provides linguistic definitions for culturally accurate sorting and case

conversion.

Belgium Hungary Mauritania Switzerland

Brazil Iceland Mexico Syria

Bulgaria India Morocco Taiwan

Canada Indonesia New Zealand Thailand

Catalonia Iraq Norway The Netherlands

China Ireland Oman Tunisia

CIS Israel Poland Turkey

Croatia Italy Portugal Ukraine

Cyprus Japan Qatar United Arab Emirates

Czech Republic Jordan Romania United Kingdom

Denmark Kazakhstan Saudi Arabia Uzbekistan

Djibouti Korea Singapore Vietnam

Egypt Kuwait Slovakia Yemen

Table 1–3 Territory Support
Understanding Oracle NLS 1-7

Standard Features
Some of the definitions listed in Table 1–4 have two versions. The basic definition

treats strings as sequences of independent characters. The extended definition

recognizes pairs of characters that should be treated as special cases.

Strings converted to upper case or lower case using the basic definition always

retain their lengths, strings converted using the extended definition may get longer

or shorter.

Table 1–4 Linguistic Definitions

Basic Name Extended Name Special Cases

ARABIC --

ARABIC_MATCH --

ARABIC_ABJ_SORT --

ARABIC_ABJ_MATCH --

ASCII7 --

BENGALI --

BULGARIAN --

CANADIAN FRENCH --

CATALAN XCATALAN æ, AE, ß

CROATIAN XCROATIAN D, L, N, d, l, n, ß

CZECH XCZECH ch, CH, Ch, ß

DANISH XDANISH A, ß, Å , å

DUTCH XDUTCH ij, IJ

EEC_EURO --

EEC_EUROPA3 --

ESTONIAN --

FINNISH --

FRENCH XFRENCH

GERMAN XGERMAN ß

GERMAN_DIN XGERMAN_DIN ß, ä, ö, ü, Ä, Ö, Ü

GREEK --

HEBREW --

HUNGARIAN XHUNGARIAN cs, gy, ny, sz, ty, zs, ß, CS, Cs, GY, Gy, NY,
Ny, SZ, Sz, TY, Ty, ZS, Zs
1-8 Oracle8i National Language Support Guide

Standard Features
Character Set Support
Oracle supports a large number of single-byte, multi-byte, and fixed-width

encoding schemes which are based on national, international, and vendor-specific

ICELANDIC --

INDONESIAN --

ITALIAN --

JAPANESE --

LATIN --

LATVIAN --

LITHUANIAN --

MALAY --

NORWEGIAN --

POLISH --

PUNCTUATION XPUNCTUATION

ROMANIAN --

RUSSIAN --

SLOVAK XSLOVAK dz, DZ, Dz, ß (caron)

SLOVENIAN XSLOVENIAN ß

SPANISH XSPANISH ch, ll, CH, Ch, LL, Ll

SWEDISH --

SWISS XSWISS ß

THAI_DICTIONARY --

THAI_TELEPHONE --

TURKISH XTURKISH æ, AE, ß

UKRAINIAN --

UNICODE_BINARY

VIETNAMESE --

WEST_EUROPEAN XWEST_EUROPEAN ß

Table 1–4 Linguistic Definitions

Basic Name Extended Name Special Cases
Understanding Oracle NLS 1-9

Customization Features
standards. See "Character Sets" on page A-6 for a complete list of supported

character sets.

Customization Features
Oracle allows you to customize character sets and calendars.

Character Set Customization
User-defined characters are sometimes needed to support special symbols,

vendor-specific characters, or characters that represent proper names, historical

terms, and so on. Developers can extend an existing character set definition by

using the Unicode Private Use Area. See "Customized Character Sets" on page B-2

for further information.

Calendar Customization
You can define ruler eras for imperial calendars, and deviation days for lunar

calendars. See "Customized Calendars" on page B-11 for further information.

SQL Support
NLS parameters can be used to modify the behavior of SQL functions. For instance,

SQL functions that deal with time, date, monetary, and numeric formats, as well as

sorting and character classification, can change behavior based on different NLS

parameters that are implicitly set in the users' environment or explicitly set as a

parameter to a function call. See Chapter 4, "SQL Programming", for further

information about function calls and see Chapter 2, "Setting Up an NLS

Environment", for information about environment parameters.
1-10 Oracle8i National Language Support Guide

Setting Up an NLS Environ
2

Setting Up an NLS Environment

This chapter tells how to set up an NLS environment, and includes the following

topics:

■ Setting NLS Parameters

■ Choosing a Locale with NLS_LANG

■ Checking NLS Parameters

■ Time Parameters

■ Date Parameters

■ Calendar Parameter

■ Numeric Parameters

■ Monetary Parameters

■ Collation Parameters

■ Character Set Parameters
ment 2-1

Setting NLS Parameters
Setting NLS Parameters
NLS parameters determine the locale-specific behavior on both the client and the

server. There are four ways to specify NLS parameters:

1. As initialization parameters on the server. You can include parameters in the

initialization parameter file to specify a default session NLS environment. These

settings have no effect on the client side; they control only the server's behavior.

For example:

NLS_TERRITORY = "CZECH REPUBLIC"

2. As environment variables on the client. You can use NLS parameters to specify

locale-dependent behavior for the client, and also override the defaults set for

the session in the initialization file. For example, on a UNIX system:

% setenv NLS_SORT FRENCH

3. As ALTER SESSION parameters. NLS parameters set in an ALTER SESSION

statement can be used to override the defaults set for the session in the

initialization file, or set by the client with environment variables.

SQL> ALTER SESSION SET NLS_SORT = FRENCH;

For a complete description of ALTER SESSION, see Oracle8i SQL Reference.

4. As a SQL function parameter. NLS parameters can be used explicitly to

hardcode NLS behavior within a SQL function. Doing so will override the

defaults set for the session in the initialization file, the client with environment

variables, or set for the session by ALTER SESSION. For example:

TO_CHAR(hiredate, 'DD/MON/YYYY', 'nls_date_language = FRENCH')

The database character set and the national character set are specified in the

CREATE DATABASE statement. For a complete description of CREATE

DATABASE, see Oracle8i SQL Reference.

Table 2–1 shows the precedence order when using NLS parameters. Higher priority

settings will override lower priority settings. For example, a default value will have

the lowest possible priority, and can be overridden by any other method. And

explicitly setting an NLS parameter within a SQL function can override all other

settings — default, initialization parameter, environment variable, and ALTER

SESSION parameters.
2-2 Oracle8i National Language Support Guide

Setting NLS Parameters
Table 2–2 lists the NLS parameters available with the Oracle server.

Table 2–1 Parameters and Their Priorities

Highest Priority

1 Explicitly set in SQL functions

2 Set by an ALTER SESSION statement

3 Set as an environment variable

4 Specified in the initialization parameter file

5 Default

Lowest Priority

Table 2–2 Parameters and their Scope

Parameter Description Default

Scope
(I= INIT.ORA,
E= Environment
Variable,
A= Alter Session)

NLS_CALENDAR Calendar system Gregorian I, E, A

NLS_COMP SQL Operator comparison Binary I, E, A

NLS_CREDIT Credit accounting symbol NLS_TERRITORY -, E, -

NLS_CURRENCY Local currency symbol NLS_TERRITORY I, E, A

NLS_DATE_FORMAT Date format NLS_TERRITORY I, E, A

NLS_DATE_LANGUAGE Language for day and month
names

NLS_LANGUAGE I, E, A

NLS_DEBIT Debit accounting symbol NLS_TERRITORY -, E, -

NLS_ISO_CURRENCY ISO international currency
symbol

NLS_TERRITORY I, E, A

NLS_LANG Language, territory, character
set

American_
America.US7ASCII

-, E, -

NLS_LANGUAGE Language NLS_LANG I, -, A

NLS_LIST_SEPARATOR Character separating items in
a list

NLS_TERRITORY -, E, -

NLS_MONETARY_
CHARACTERS

Monetary symbol for dollar
and cents (or their
equivalents)

NLS_TERRITORY -, E, -
Setting Up an NLS Environment 2-3

Choosing a Locale with NLS_LANG
Choosing a Locale with NLS_LANG
A locale is a linguistic and cultural environment in which a system or program is

running. Setting the NLS_LANG parameter is the simplest way to specify locale

behavior. It sets the language and territory used by the client application. It also sets

the character set of the client, i.e., the character set of data entered or displayed by a

client program.

The NLS_LANG parameter has three components (language, territory, and charset) in
the form:

NLS_LANG = language_territory.charset

Each component controls the operation of a subset of NLS features.

NLS_NCHAR National character set NLS_LANG -, E, -

NLS_NUMERIC_
CHARACTERS

Decimal character and group
separator

NLS_TERRITORY I, E, A

NLS_SORT Character Sort Sequence NLS_LANGUAGE I, E, A

NLS_TERRITORY Territory NLS_LANG I, -, A

NLS_DUAL_CURRENCY Dual currency symbol NLS_TERRITORY I, E, A

language Specifies conventions such as the language used for Oracle messages,
collation, day names, and month names. Each supported language has a
unique name; for example, American, French, or German. The language
argument specifies default values for the territory and character set
arguments, so either (or both) territory or charset can be omitted. If
language is not specified, the value defaults to American. For a complete list

of languages, see Appendix A, "Locale Data".

territory Specifies conventions such as the default date, monetary, and numeric
formats. Each supported territory has a unique name; for example, America,
France, or Canada. If territory is not specified, the value defaults from the

language. For a complete list of territories, see Appendix A, "Locale
Data".

charset Specifies the character set used by the client application (normally that of
the user's terminal). Each supported character set has a unique acronym, for
example, US7ASCII, WE8ISO8859P1, WE8DEC, WE8EBCDIC500, or
JA16EUC. Each language has a default character set associated with it. For a

complete list of character sets, see Appendix A, "Locale Data".

Table 2–2 Parameters and their Scope
2-4 Oracle8i National Language Support Guide

Choosing a Locale with NLS_LANG
The three arguments of NLS_LANG can be specified in many combinations, as in

the following examples:

NLS_LANG = AMERICAN_AMERICA.US7ASCII

or

NLS_LANG = FRENCH_CANADA.WE8DEC

or

NLS_LANG = JAPANESE_JAPAN.JA16EUC

Note that illogical combinations could be set, but would not work properly. For

example, the following tries to support Japanese by using a Western European

character set:

NLS_LANG = JAPANESE_JAPAN.WE8DEC

Because WE8DEC does not support any Japanese characters, the result is that you

would be unable to store Japanese data.

Specifying NLS_LANG
You can set NLS_LANG as an environment variable at the command line. For

example, on UNIX, you could specify the value of NLS_LANG by entering the

following line at the prompt:

% setenv NLS_LANG FRENCH_FRANCE.WE8DEC

NLS_LANG Examples
Because NLS_LANG is an environment variable, it is read by the client application

at startup time. The client communicates the information defined by NLS_LANG to

the server when it connects to the database server.

Note: All components of the NLS_LANG definition are optional;

any item left out will default. If you specify territory or charset, you

must include the preceding delimiter [underscore (_) for territory,

period (.) for charset], otherwise the value will be parsed as a

language name.
Setting Up an NLS Environment 2-5

Choosing a Locale with NLS_LANG
The following examples show how date and number formats are affected by NLS_

LANG.

% setenv NLS_LANG American_America.WE8ISO8859P1
SQL> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL
------- --------- -------
Clark 09-DEC-88 4195.83
Miller 23-MAR-92 4366.67
Strauß 01-APR-95 3795.87

If NLS_LANG is set with the language as French, the territory as France, and the

character set as Western European 8-bit ISO 8859-1, the same query returns:

% setenv NLS_LANG French_France.WE8ISO8859P1
SQL> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL
--------- --------- -------
Clark 09/12/88 4195,83
Miller 23/03/92 4366,67
Strauß 01/04/95 3795,87

Overriding Language and Territory Specifications
NLS_LANG sets the language and territory environment used by both the server

session (for example, SQL command execution) and the client application (for

example, display formatting in Oracle tools). Using this parameter ensures that the

language environments of both database and client application are automatically

the same.

The language and territory components of NLS_LANG set the default values for the

other NLS parameters, such as date format, numeric characters, and collation. Each

of these detailed parameters can be set in the client environment to fine-tune the

language and territory defaults.

Note that NLS parameters in the client environment are ignored if NLS_LANG is

not set.

If NLS_LANG is not set, the server session environment remains initialized with

values of NLS_LANGUAGE, NLS_TERRRITORY, and other NLS instance

parameters from the initialization parameter file. You can modify these parameters

and restart the instance to change the defaults.
2-6 Oracle8i National Language Support Guide

Checking NLS Parameters
You might want to modify your NLS environment dynamically during the session.

To do so, you can use NLS_LANGUAGE, NLS_TERRITORY and other NLS

parameters in the ALTER SESSION statement.

The ALTER SESSION statement modifies only the session environment. The local

client NLS environment is not modified, unless the client explicitly retrieves the

new settings and modifies its local environment. SQL*Plus is an example of an

application that does it; Oracle Developer is an example of an application that does

not do this.

NLS Database Parameters
When a new database is created during the execution of CREATE DATABASE

statement, the NLS database environment is established. The current NLS instance

parameters, as defined by the initialization parameter file, are stored in the Data

Dictionary along with the database and national character sets.

Checking NLS Parameters
You can find the values for NLS settings with some views and an OCI function call.

NLS Views
Applications can check the current session, instance and database NLS parameters

by querying the following Data Dictionary views:

■ NLS_SESSION_PARAMETERS shows the current NLS parameters of the

session querying the view.

■ NLS_INSTANCE_PARAMETERS shows the current NLS parameters of the

instance, that is, NLS parameters read from the initialization file (INIT.ORA) at

instance startup. The view shows only parameters that were explicitly set.

■ NLS_DATABASE_PARAMETERS shows the current NLS parameters of the

database, including the database character set.

■ V$NLS_VALID_VALUES can be used to see which language, territory, linguistic

and character set definitions are supported by the server.

See Oracle8i Reference for further details.
Setting Up an NLS Environment 2-7

Checking NLS Parameters
OCI Functions
To allow user applications to query client NLS settings Oracle8i OCI contains the

OCINlsGetInfo function. See Chapter 5, "OCI Programming", for the description

of this function.

Language and Territory Parameters
NLS_LANGUAGE and NLS_TERRITORY parameters are general NLS parameters

describing NLS behavior of locale-dependent operations.

NLS_LANGUAGE

NLS_LANGUAGE specifies the default conventions for the following session

characteristics:

■ language for server messages

■ language for day and month names and their abbreviations (specified in the

SQL functions TO_CHAR and TO_DATE)

■ symbols for equivalents of AM, PM, AD, and BC

■ default sorting sequence for character data when ORDER BY is specified

(GROUP BY uses a binary sort, unless ORDER BY is specified)

■ writing direction

■ affirmative/negative response strings

The value specified for NLS_LANGUAGE in the initialization file is the default for

all sessions in that instance.

For example, to specify the default session language as French, the parameter

should be set as follows:

NLS_LANGUAGE = FRENCH

In this case, the server message

ORA-00942: table or view does not exist

Parameter type: String

Parameter scope: Initialization Parameter and ALTER SESSION

Default value: Derived from NLS_LANG

Range of values: Any valid language name
2-8 Oracle8i National Language Support Guide

Checking NLS Parameters
will appear as

ORA-00942: table ou vue inexistante

Messages used by the server are stored in binary-format files that are placed in the

ORA_RDBMS directory, or the equivalent. Multiple versions of these files can exist,

one for each supported language, using the filename convention

<product_id><language_abbrev>.MSB

For example, the file containing the server messages in French is called ORAF.MSB,

with "F" being the language abbreviation for French.

Messages are stored in these files in one specific character set, depending on the

language and operating system. If this is different from the database character set,

message text is automatically converted to the database character set. If necessary, it

will be further converted to the client character set if it is different from the database

character set. Hence, messages will be displayed correctly at the user's terminal,

subject to the limitations of character set conversion.

The default value of NLS_LANGUAGE may be operating system-specific. You can

alter the NLS_LANGUAGE parameter by changing the value in the initialization

file and then restarting the instance.

For more information on the default value, see your operating system-specific

Oracle documentation.

The following examples show behavior before and after setting NLS_LANGUAGE.

SQL> ALTER SESSION SET NLS_LANGUAGE=Italian;
SQL> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL
----- -------- ---
Clark 09-Dic-88 4195.83
Miller 23-Mar-87 4366.67
Strauß 01-Apr-95 3795.87

SQL> ALTER SESSION SET NLS_LANGUAGE=German;
SQL> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL
----- -------- ---
Clark 09-DEZ-88 4195.83
Miller 23-MÄR-87 4366.67
Strauß 01-APR-95 3795.87
Setting Up an NLS Environment 2-9

Checking NLS Parameters
NLS_TERRITORY

NLS_TERRITORY specifies the conventions for the following default date and

numeric formatting characteristics:

■ date format

■ decimal character and group separator

■ local currency symbol

■ ISO currency symbol

■ dual currency symbol

■ week start day

■ credit and debit symbol

■ ISO week flag

■ list separator

The value specified for NLS_TERRITORY in the initialization file is the default for

the instance. For example, to specify the default as France, the parameter should be

set as follows:

NLS_TERRITORY = FRANCE

In this case, numbers would be formatted using a comma as the decimal character.

You can alter the NLS_TERRITORY parameter by changing the value in the

initialization file and then restarting the instance. The default value of NLS_

TERRITORY can be operating system-specific.

If NLS_LANG is specified in the client environment, the initialization file value is

overridden already at the connection time.

The territory can be modified dynamically during the session by specifying the new

NLS_TERRITORY value in an ALTER SESSION statement. Modification of NLS_

TERRITORY resets all derived NLS session parameters to default values for the new

territory.

Parameter type: String

Parameter scope: Initialization Parameter and ALTER SESSION

Default value: Derived from NLS_LANG

Range of values: Any valid territory name
2-10 Oracle8i National Language Support Guide

Checking NLS Parameters
To change the territory dynamically to France, the following statement should be

issued:

SQL> ALTER SESSION SET NLS_TERRITORY=France;

The following examples show behavior before and after setting NLS_TERRITORY.

SQL> describe SalaryTable;
Name Null? TYPE
--------- ------- ------
SALARY NUMBER

SQL> column SALARY format L999,999.99;
SQL> SELECT * from SalaryTable;
 SALARY

 $100,000.00
 $150,000.00

SQL> ALTER SESSION SET NLS_TERRITORY = Germany;
Session altered.

SQL> SELECT * from SalaryTable;
 SALARY

 DM100,000.00
 DM150,000.00

SQL> ALTER SESSION SET NLS_LANGUAGE = German;
Sitzung wurde ge ändert.

SQL> SELECT * from SalaryTable;
 SALARY

 DM100,000.00
 DM150,000.00

SQL> ALTER SESSION SET NLS_TERRITORY = France;
Sitzung wurde ge ändert.

SQL> SELECT * from SalaryTable;
 SALARY

 F100,000.00
Setting Up an NLS Environment 2-11

Checking NLS Parameters
 F150,000.00

Note that the symbol for currency units changed, but no monetary conversion

calculations were performed. The numeric characters did not change because they

were hardcoded by the SQL*Plus statement.

ALTER SESSION
The default values for language and territory can be overridden during a session by

using the ALTER SESSION statement. For example:

% setenv NLS_LANG Italian_Italy.WE8DEC

SQL> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL
----- -------- ---
Clark 09-Dic-88 4195,83
Miller 23-Mar-87 4366,67
Strauß 01-Apr-95 3795,87

SQL> ALTER SESSION SET NLS_LANGUAGE = German
2 > NLS_DATE_FORMAT = 'DD.MON.YY'
3 > NLS_NUMERIC_CHARACTERS = '.,';

SQL> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL
----- -------- ---
Clark 09.DEZ.88 4195.83
Miller 23.MÄR.87 4366.67
Strauß 01.APR.95 3795.87

This feature implicitly determines the language environment of the database for

each session. An ALTER SESSION statement is automatically executed when a

session connects to a database to set the values of the database parameters NLS_

LANGUAGE and NLS_TERRITORY to those specified by the language and territory
arguments of NLS_LANG. If NLS_LANG is not defined, no implicit ALTER

SESSION statement is executed.

When NLS_LANG is defined, the implicit ALTER SESSION is executed for all

instances to which the session connects, for both direct and indirect connections. If

the values of NLS parameters are changed explicitly with ALTER SESSION during a

session, the changes are propagated to all instances to which that user session is

connected.
2-12 Oracle8i National Language Support Guide

Date Parameters
Messages and Text
All messages and text should be in the same language. For example, when running

an Oracle Developer application, messages and boilerplate text seen by the user

originate from three sources:

■ messages from the server

■ messages and boilerplate text generated by Oracle Forms

■ messages and boilerplate text defined as part of the application

The application is responsible for meeting the last requirement. NLS takes care of

the other two.

Time Parameters
Many different time formats are used throughout the world. Some typical ones are

shown in Table 2–3.

Date Parameters
Oracle allows you to control how dates appear through the use of date parameters.

Date Formats
Many different date formats are used throughout the world. Some typical ones are

shown in Table 2–4.

Table 2–3 Time Parameters

Country Description Example

Estonia hh24:mi:ss 13:50:23

Germany hh24:mi:ss 13:50:23

Japan hh24:mi:ss 13:50:23

UK hh24:mi:ss 13:50:23

US hh:mi:ss am 1.50.23 PM

Table 2–4 Date Formats

Country Description Example

Estonia dd.mm.yyyy 28.02.1998
Setting Up an NLS Environment 2-13

Date Parameters
NLS_DATE_FORMAT

This parameter defines the default date format to use with the TO_CHAR and TO_

DATE functions. The default value of this parameter is determined by NLS_

TERRITORY. The value of this parameter can be any valid date format mask, and

the value must be surrounded by quotation marks. For example:

NLS_DATE_FORMAT = "MM/DD/YYYY"

To add string literals to the date format, enclose the string literal with double

quotes. Note that every special character (such as the double quote) must be

preceded with an escape character. The entire expression must be surrounded with

single quotes. For example:

NLS_DATE_FORMAT = '\"Today\'s date\" MM/DD/YYYY'

As another example, to set the default date format to display Roman numerals for

months, you would include the following line in the initialization file:

NLS_DATE_FORMAT = "DD RM YYYY"

With such a default date format, the following SELECT statement would return the

month using Roman numerals (assuming today's date is February 12, 1997):

SELECT TO_CHAR(SYSDATE) CURRDATE
 FROM DUAL;
CURRDATE

Germany dd-mm-rr 28-02-98

Japan rr-mm-dd 98-02-28

UK dd-mon-rr 28-Feb-98

US dd-mon-rr 28-Feb-98

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default format for a particular territory

Range of values: Any valid date format mask

Table 2–4 Date Formats

Country Description Example
2-14 Oracle8i National Language Support Guide

Date Parameters

12 II 1997

The value of this parameter is stored in the internal date format. Each format

element occupies two bytes, and each string occupies the number of bytes in the

string plus a terminator byte. Also, the entire format mask has a two-byte

terminator. For example, "MM/DD/YY" occupies 12 bytes internally because there

are three format elements, two one-byte strings (the two slashes), and the two-byte

terminator for the format mask. The format for the value of this parameter cannot

exceed 24 bytes.

You can alter the default value of NLS_DATE_FORMAT by changing its value in

the initialization file and then restarting the instance, and you can alter the value

during a session using an ALTER SESSION SET NLS_DATE_FORMAT statement.

Year 2000 Issues
Currently, the default date format for most territories specifies the year format as

"RR" to indicate the last 2 digits. If your applications are Year 2000 compliant, you

can safely specify the NLS_DATE_FORMAT using "YYYY" or "RRRR". If your

applications are not yet Year 2000 compliant, you may wish to specify the NLS_

DATE_FORMAT as "RR". The "RR" format will have the following effect: Given a

year with 2 digits, RR will return a year in the next century if the year is less than 50

and the last 2 digits of the current year are greater than or equal to 50; return a year

in the preceding century if the year is greater than or equal to 50 and the last 2 digits

of the current year are less than 50.

See the Date Format Models section in the Oracle8i SQL Reference for full details on

Date Format Elements.

Date Formats and Partition Bound Expressions
Partition bound expressions for a date column must specify a date using a format

which requires that the month, day, and 4-digit year are fully specified. For

example, the date format MM-DD-YYYY requires that the month, day, and 4-digit

year are fully specified. In contrast, the date format DD-MON-YY (11-jan-97, for

example) is invalid because it relies on the current date for the century.

Note: The applications you design may need to allow for a

variable-length default date format. Also, the parameter value must

be surrounded by double quotes: single quotes are interpreted as

part of the format mask.
Setting Up an NLS Environment 2-15

Date Parameters
Use TO_DATE() to specify a date format which requires the full specification of

month, day, and 4-digit year. For example:

TO_DATE('11-jan-1997', 'dd-mon-yyyy')

If the default date format, specified by NLS_DATE_FORMAT, of your session does

not support specification of a date independent of current century (that is, if your

default date format is MM-DD-YY for example), you must take one of the following

actions:

■ Use TO_DATE() to express the date in a format that requires you to fully specify

the day, month, and 4-digit year.

■ Change the value of NLS_DATE_FORMAT for the session to support the

specification of dates in a format which requires you to fully specify the day,

month, and 4-digit year.

For more information on using TO_DATE(), see Oracle8i SQL Reference.

NLS_DATE_LANGUAGE

This parameter specifies the language for the spelling of day and month names by

the functions TO_CHAR and TO_DATE, overriding that specified implicitly by

NLS_LANGUAGE. NLS_DATE_LANGUAGE has the same syntax as the NLS_

LANGUAGE parameter, and all supported languages are valid values. For

example, to specify the date language as French, the parameter should be set as

follows:

NLS_DATE_LANGUAGE = FRENCH

In this case, the query

SQL> SELECT TO_CHAR(SYSDATE, 'Day:Dd Month yyyy')
 > FROM DUAL;

returns

Mercredi:12 Février 1997

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Derived from NLS_LANGUAGE

Range of values: Any valid language name
2-16 Oracle8i National Language Support Guide

Calendar Parameter
Month and day name abbreviations are also in the language specified, for example:

SQL> SELECT TO_CHAR(SYSDATE, 'Dy:dd Mon yyyy')
 > FROM DUAL;

Me:12 Fév 1997

The default date format also uses the language-specific month name abbreviations.

For example, if the default date format is DD-MON-YYYY, the above date would be

inserted using:

SQL> INSERT INTO tablename VALUES ('12-Fév-1997');

The abbreviations for AM, PM, AD, and BC are also returned in the language

specified by NLS_DATE_LANGUAGE. Note that numbers spelled using the TO_

CHAR function always use English spellings; for example:

SQL> SELECT TO_CHAR(TO_DATE('12-Fév'),'Day: ddspth Month')
 > FROM DUAL;

returns:

Mercredi: twelfth Février

You can alter the default value of NLS_DATE_LANGUAGE by changing its value

in the initialization file and then restarting the instance, and you can alter the value

during a session using an ALTER SESSION SET NLS_DATE_LANGUAGE

statement.

Calendar Parameter
Oracle allows you to control calendar-related items through the use of parameters.

Calendar Formats
The type of calendar information stored for each territory is as follows:

■ First Day of the Week

■ First Calendar Week of the Year

■ Number of Days and Months in a Year

■ First Year of Era
Setting Up an NLS Environment 2-17

Calendar Parameter
First Day of the Week
Some cultures consider Sunday to be the first day of the week. Others consider

Monday to be the first day of the week. A German calendar starts with Monday.

First Calendar Week of the Year
Many countries, Germany, for example, use weeks for scheduling, planning, and

bookkeeping. Oracle supports this convention.

In the ISO standard, the year relating to an ISO week number can be different from

the calendar year. For example, 1st Jan 1988 is in ISO week number 53 of 1987. A

week always starts on a Monday and ends on a Sunday.

■ If January 1 falls on a Friday, Saturday, or Sunday, then the week including

January 1 is the last week of the previous year, because most of the days in the

week belong to the previous year.

■ If January 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the

week is the first week of the new year, because most of the days in the week

belong to the new year.

To support the ISO standard, a format element IW is provided that returns the ISO

week number.

A typical example with four or more days in the first week is:

Table 2–5 First Day of the Week

März 1998

Mo Di Mi Do Fr Sa So

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31
2-18 Oracle8i National Language Support Guide

Calendar Parameter
A typical example with three or fewer days in the first week is:

Number of Days and Months in a Year
Oracle supports six calendar systems, as well as the default Gregorian.

■ Japanese Imperial—uses the same number of months and days as Gregorian,

but the year starts with the beginning of each Imperial Era.

■ ROC Official—uses the same number of months and days as Gregorian, but the

year starts with the founding of the Republic of China.

■ Persian—has 12 months of equal length.

■ Thai Buddha—uses a Buddhist calendar.

■ Arabic Hijrah—has 12 months with 354 or 355 days.

■ English Hijrah—has 12 months with 354 or 355 days.

Table 2–6 Day of the Week Example 1

 January 1998

Mo Tu We Th Fr Sa Su

1 2 3 4 <= 1st week of 1998

5 6 7 8 9 10 11 <= 2nd week of 1998

12 13 14 15 16 17 18 <= 3rd week of 1998

19 20 21 22 23 24 25 <= 4th week of 1998

26 27 28 29 30 31 <= 5th week of 1998

Table 2–7 Day of the Week Example 2

 January 1999

Mo Tu We Th Fr Sa Su

1 2 3 <= 53rd week of 1998

4 5 6 7 8 9 10 <= 1st week of 1999

11 12 13 14 15 16 17 <= 2nd week of 1999

18 19 20 21 22 23 24 <= 3rd week of 1999

25 26 27 28 29 30 31 <= 4th week of 1999
Setting Up an NLS Environment 2-19

Calendar Parameter
First Year of Era
The Islamic calendar starts from the year of the Hegira. The Japanese Imperial

calendar starts from the beginning of an Emperor's reign. For example, 1998 is the

tenth year of the Heisei era. It should be noted, however, that the Gregorian system

is also widely understood in Japan, so both 98 and Heisei 10 can be used to

represent 1998.

NLS_CALENDAR

Many different calendar systems are in use throughout the world. NLS_

CALENDAR specifies which calendar system Oracle uses.

NLS_CALENDAR can have one of the following values:

■ Arabic Hijrah

■ English Hijrah

■ Gregorian

■ Japanese Imperial

■ Persian

■ ROC Official (Republic of China)

■ Thai Buddha

For example, if NLS_CALENDAR is set to "Japanese Imperial", the date format is "E

YY-MM-DD", and the date is May 15, 1997, then the SYSDATE is displayed as

follows:

SELECT SYSDATE FROM DUAL;
SYSDATE

H 09-05-15

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and ALTER
SESSION

Default value: Gregorian

Range of values: Any valid calendar format name
2-20 Oracle8i National Language Support Guide

Numeric Parameters
Numeric Parameters
Oracle allows you to control how numbers appear.

Numeric Formats
The database must know the number-formatting convention used in each session to

interpret numeric strings correctly. For example, the database needs to know

whether numbers are entered with a period or a comma as the decimal character

(234.00 or 234,00). Similarly, the application needs to be able to display numeric

information in the format expected at the client site.

Some typical ones are shown in Table 2–8.

NLS_NUMERIC_CHARACTERS

This parameter specifies the decimal character and grouping separator, overriding

those defined implicitly by NLS_TERRITORY. The group separator is the character

that separates integer groups (that is, the thousands, millions, billions, and so on).

The decimal character separates the integer and decimal parts of a number.

Any character can be the decimal or group separator. The two characters specified

must be single-byte, and both characters must be different from each other. The

Table 2–8 Numeric Formats

Country Example Numeric Formats

Estonia 1 234 567,89

Germany 1.234.567,89

Japan 1,234,567.89

UK 1,234,567.89

US 1,234,567.89

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default decimal character and group separator for a
particular territory

Range of values: Any two valid numeric characters
Setting Up an NLS Environment 2-21

Monetary Parameters
characters cannot be any numeric character or any of the following characters: plus

(+), hyphen (-), less than sign (<), greater than sign (>).

The characters are specified in the following format:

NLS_NUMERIC_CHARACTERS = "<decimal_character><group_separator>"

The grouping separator is the character returned by the number format mask G. For

example, to set the decimal character to a comma and the grouping separator to a

period, the parameter should be set as follows:

NLS_NUMERIC_CHARACTERS = ",."

Both characters are single byte and must be different. Either can be a space.

Note: SQL statements can include numbers represented as numeric or text literals.

Numeric literals are not enclosed in quotes. They are part of the SQL language

syntax and always use a dot as the decimal separator and never contain a group

separator. Text literals are enclosed in single-quotes. They are implicitly or explicitly

converted to numbers, if required, according to the current NLS settings. For

example, in the following statement:

INSERT INTO SIZES (ITEMID, WIDTH, HEIGHT, QUANTITY)
 VALUES (618, '45,5', 27.86, TO_NUMBER('1.234','9G999'));

618 and 27.86 are numeric literals. The text literal '45,5' is implicitly converted to the

number 45.5 (assuming that WIDTH is a NUMBER column). The text literal '1.234'

is explicitly converted to a number 1234. This statement is valid only if NLS_

NUMERIC_CHARACTERS is set to ",.".

You can alter the default value of NLS_NUMERIC_CHARACTERS in either of these

ways:

■ Change the value of NLS_NUMERIC_CHARACTERS in the initialization file

and then restart the instance.

■ Use the ALTER SESSION SET NLS_NUMERIC_CHARACTERS command to

change the parameter's value during a session.

Monetary Parameters
Oracle allows you to control how currency and financial symbols appear.
2-22 Oracle8i National Language Support Guide

Monetary Parameters
Currency Formats
Many different currency formats are used throughout the world. Some typical ones

are shown in Table 2–9.

NLS_CURRENCY

This parameter specifies the character string returned by the number format mask

L, the local currency symbol, overriding that defined implicitly by NLS_

TERRITORY. For example, to set the local currency symbol to "Dfl " (including a

space), the parameter should be set as follows:

NLS_CURRENCY = "Dfl "

In this case, the query

SQL> SELECT TO_CHAR(TOTAL, 'L099G999D99') "TOTAL"
 > FROM ORDERS WHERE CUSTNO = 586;

would return

TOTAL

Dfl 12.673,49

Table 2–9 Currency Format Examples

Country Example

Estonia 1 234,56 kr

Germany 1.234,56 DM

Japan ¥1,234.56

UK £1,234.56

US $1,234.56

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default local currency symbol for a particular territory

Range of values: Any valid currency symbol string
Setting Up an NLS Environment 2-23

Monetary Parameters
You can alter the default value of NLS_CURRENCY by changing its value in the

initialization file and then restarting the instance, and you can alter its value during

a session using an ALTER SESSION SET NLS_CURRENCY statement.

NLS_ISO_CURRENCY

This parameter specifies the character string returned by the number format mask

C, the ISO currency symbol, overriding that defined implicitly by NLS_

TERRITORY.

Local currency symbols can be ambiguous; for example, a dollar sign ($) can refer to

US dollars or Australian dollars. ISO Specification 4217 1987-07-15 defines unique

"international" currency symbols for the currencies of specific territories (or

countries).

For example, the ISO currency symbol for the US Dollar is USD, for the Australian

Dollar AUD. To specify the ISO currency symbol, the corresponding territory name

is used.

NLS_ISO_CURRENCY has the same syntax as the NLS_TERRITORY parameter,

and all supported territories are valid values. For example, to specify the ISO

currency symbol for France, the parameter should be set as follows:

NLS_ISO_CURRENCY = FRANCE

In this case, the query

SQL> SELECT TO_CHAR(TOTAL, 'C099G999D99') "TOTAL"
 > FROM ORDERS WHERE CUSTNO = 586;

returns

TOTAL

FRF12.673,49

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Derived from NLS_TERRITORY

Range of values: Any valid territory name
2-24 Oracle8i National Language Support Guide

Monetary Parameters
You can alter the default value of NLS_ISO_CURRENCY by changing its value in

the initialization file and then restarting the instance, and you can alter its value

during a session using an ALTER SESSION SET NLS_ISO_CURRENCY statement.

Typical ISO currency symbols are shown in Table 2–10.

NLS_DUAL_CURRENCY

You can use this parameter to override the default dual currency symbol defined in

the territory. When starting a new session without setting NLS_DUAL_

CURRENCY, you will use the default dual currency symbol defined in the territory

of your current language environment. When you set NLS_DUAL_CURRENCY,

you will start up a session with its value as the dual currency symbol.

NLS_DUAL_CURRENCY was introduced to help support the Euro. The following

Table 2–11 lists the character sets that support the Euro symbol:

Table 2–10 ISO Currency Examples

Country Example

Estonia 1 234 567,89 EEK

Germany 1.234.567,89 DEM

Japan 1,234,567.89 JPY

UK 1,234,567.89 GBP

US 1,234,567.89 USD

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default dual currency symbol for a particular territory

Range of values: Any valid name

Table 2–11 Character Sets that Support the Euro Symbol

Name Description Euro Code Value

D8EBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian German 0x9F

DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish 0x5A

S8EBCDIC1143 EBCDIC Code Page 1143 8-bit Swedish 0x5A

I8EBCDIC1144 EBCDIC Code Page 1144 8-bit Italian 0x9F
Setting Up an NLS Environment 2-25

Monetary Parameters
NLS_MONETARY_CHARACTERS

F8EBCDIC1147 EBCDIC Code Page 1147 8-bit French 0x9F

WE8PC858 IBM-PC Code Page 858 8-bit West European 0xDF

WE8ISO8859P15 ISO 8859-15 West European 0xA4

EE8MSWIN1250 MS Windows Code Page 1250 8-bit East European 0x80

CL8MSWIN1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic 0x88

WE8MSWIN1252 MS Windows Code Page 1252 8-bit West European 0x80

EL8MSWIN1253 MS Windows Code Page 1253 8-bit Latin/Greek 0x80

WE8EBCDIC1140 EBCDIC Code Page 1140 8-bit West European 0x9F

WE8EBCDIC1140C EBCDIC Code Page 1140 Client 8-bit West European 0x9F

WE8EBCDIC1145 EBCDIC Code Page 1145 8-bit West European 0x9F

WE8EBCDIC1146 EBCDIC Code Page 1146 8-bit West European 0x9F

WE8EBCDIC1148 EBCDIC Code Page 1148 8-bit West European 0x9F

WE8EBCDIC1148C EBCDIC Code Page 1148 Client 8-bit West European 0x9F

EL8ISO8859P7 ISO 8859-7 Latin/Greek 0xA4

IW8MSWIN1255 MS Windows Code Page 1255 8-bit Latin/Hebrew 0x80

AR8MSWIN1256 MS Windows Code Page 1256 8-Bit Latin/Arabic 0x80

TR8MSWIN1254 MS Windows Code Page 1254 8-bit Turkish 0x80

BLT8MSWIN1257 MS Windows Code Page 1257 Baltic 0x80

VN8MSWIN1258 MS Windows Code Page 1258 8-bit Vietnamese 0x80

TH8TISASCII Thai Industrial 520-2533 - ASCII 8-bit 0x80

AL24UTFFSS Unicode 1.1 UTF-8 Universal character set U+20AC

UTF8 Unicode 2.1 UTF-8 Universal character set U+20AC

UTFE UTF-EBCDIC encoding of Unicode 2.1 U+20AC

Parameter type: String

Parameter scope: Environment Variable

Default value: Derived from NLS_TERRITORY

Range of values: Any valid name

Table 2–11 Character Sets that Support the Euro Symbol
2-26 Oracle8i National Language Support Guide

Collation Parameters
NLS_MONETARY_CHARACTERS specifies the characters that indicate monetary

units, such as the dollar sign ($) for U.S. Dollars, and the cent symbol (¢) for cents.

The two characters specified must be single-byte and cannot be the same as each

other. They also cannot be any numeric character or any of the following characters:

plus (+), hyphen (-), less than sign (<), greater than sign (>).

NLS_CREDIT

NLS_CREDIT sets the symbol that displays a credit in financial reports. The default

value of this parameter is determined by NLS_TERRITORY.

This parameter can be specified only in the client environment. It can be retrieved

through the OCIGetNlsInfo function.

NLS_DEBIT

NLS_DEBIT sets the symbol that displays a debit in financial reports. The default

value of this parameter is determined by NLS_TERRITORY.

This parameter can be specified only in the client environment. It can be retrieved

through the OCIGetNlsInfo function.

Collation Parameters
Oracle allows you to choose how data is sorted through the use of collation

parameters.

Parameter type: String

Parameter scope: Environment Variable

Default value: Derived from NLS_TERRITORY

Range of values: Any string, maximum of 9 bytes (not including null)

Parameter type: String

Parameter scope: Environment Variable

Default value: Derived from NLS_TERRITORY

Range of values: Any string, maximum of 9 bytes (not including null)
Setting Up an NLS Environment 2-27

Collation Parameters
Sorting Order
Different languages have different sort orders. What's more, different cultures or

countries using the same alphabets may sort words differently. For example, the

German language sharp s (ß) is sorted differently in Germany and Austria. The

linguistic sort sequence German sorts this sequence as the two characters (SS), while

the linguistic sort sequence Austrian sorts it as (SZ). Another example is the

treatment of ö, o, and œ. They are sorted differently throughout the various

Germanic languages.

Oracle provides many different types of sort, but achieving a linguistically correct

sort frequently harms performance. This is a trade-off the database administrator

needs to make on a case-by-case basis. A typical case would be when sorting

Spanish. In traditional Spanish, ch and ll are distinct characters, which means that

the correct order would be: cerveza, colorado, cheremoya, lago, luna, llama. But a true

linguistic sort will cause some performance degradation.

Sorting East Asian languages is difficult and complex. At present, Oracle typically

relies on the binary order of the particular encoded character set for sorting East

Asian Languages.

Sorting Character Data
Conventionally, when character data is sorted, the sort sequence is based on the

numeric values of the characters defined by the character encoding scheme. Such a

sort is called a binary sort. Such a sort produces reasonable results for the English

alphabet because the ASCII and EBCDIC standards define the letters A to Z in

ascending numeric value.

Note, however, that in the ASCII standard, all uppercase letters appear before any

lowercase letters. In the EBCDIC standard, the opposite is true: all lowercase letters

appear before any uppercase letters.

Binary Sorts
When characters used in other languages are present, a binary sort generally does

not produce reasonable results. For example, an ascending ORDER BY query would

return the character strings ABC, ABZ, BCD, ÄBC, in that sequence, when the Ä has

a higher numeric value than B in the character encoding scheme.

Linguistic Sorts
To produce a sort sequence that matches the alphabetic sequence of characters for a

particular language, another sort technique must be used that sorts characters
2-28 Oracle8i National Language Support Guide

Collation Parameters
independently of their numeric values in the character encoding scheme. This

technique is called a linguistic sort. A linguistic sort operates by replacing characters

with other binary values that reflect the character's proper linguistic order so that a

sort returns the desired result.

The Oracle server provides both sort mechanisms. Linguistic sort sequences are

defined as part of language-dependent data. Each linguistic sort sequence has a

unique name. NLS parameters define the sort mechanism for ORDER BY queries. A

default value can be specified, and this value can be overridden for each session

with the NLS_SORT parameter. A complete list of linguistic definitions is provided

in "Linguistic Definitions" on page A-19.

Warning: Linguistic sorting is not supported on Asian multi-byte character sets. If

the database character set is multi-byte, you will get binary sorting, which makes

the sort sequence dependent on the character set specification. There are two

exceptions to this rule: Japanese Hiragana/Katakana and the UTF8 character set.

This means that the Japanese Yomi sort is only possible by creating an extra column

using the Hiragana or Katakana reading for the kanji and sorting on that column.

Linguistic Indexes
You can create a function-based index that uses languages other than English. The

index does not change the linguistic sort order determined by NLS_SORT. The

index just improves the performance. A simple example is:

SQL> CREATE INDEX nls_index ON my_table (NLSSORT(name, 'NLS_SORT = German'));

So

SQL> SELECT * FROM my_table WHERE NLSSORT(name) IS NOT NULL
 > ORDER BY name;

returns the result much faster than without an index.

For more information, see the description of function-based indexes in Oracle8i
Concepts.

Multiple Linguistic Indexes
If you store character data of multiple languages into one database, you may want

to create multiple linguistic indexes for one column. This approach improves the

performance of the linguistic sort for a specific column for multiple languages and

is a powerful feature for multilingual databases.

An example of creating multiple linguistic indexes is:
Setting Up an NLS Environment 2-29

Collation Parameters
CREATE INDEX french_index ON emp (NLSSORT(emp_name, 'NLS_SORT=FRENCH'));
CREATE INDEX german_index ON emp (NLSSORT(emp_name, 'NLS_SORT=GERMAN'));

When session variable NLS_SORT is set to FRENCH, french_index can be used and

when it is set to GERMAN, german_index can be used.

Requirements for Linguistic Indexes
If you want to use a single linguistic index or multiple linguistic indexes, there are

some requirements to be met in order for the linguistic index to be used. The first

requirement is that QUERY_REWRITE_ENABLED needs to be true. This is not a

specific requirement for linguistic indexes, but for all function-based indexes. Here

is an example of setting QUERY_REWRITE_ENABLED.

ALTER SESSION SET query_rewrite_enabled=true;

The second requirement, which is specific to linguistic indexes, is that

NLS_COMP needs to be ANSI. There are various ways to set NLS_COMP.

Here is an example.

ALTER SESSION SET NLS_COMP = ANSI;

The third requirement is that NLS_SORT needs to indicate the linguistic definition

you want to use for the linguistic sort. If you want a FRENCH linguistic sort order,

NLS_SORT needs to be FRENCH. If you want a GERMAN linguistic sort order,

NLS_SORT needs to be GERMAN. There are various ways to set NLS_SORT. The

below is an example. Although the example below uses the ALTER SESSION

statement, it's probably better for you to set NLS_SORT as a client environment

variable so that you can use the same SQL statements for all languages and different

linguistic indexes can be picked up based on NLS_SORT being set in the client

environment.

ALTER SESSION SET NLS_SORT='FRENCH';

The fourth requirement is that you need to use the cost-based optimizer.

Function-based indexes do not get picked up by the rule-based optimizer.

Function-based indexes are used only by the cost-based optimizer.

The last thing is that you need to specify "WHERE NLSSORT(column_name) IS

NOT NULL" when you want to use "ORDER BY column_name" and the "column_

name" is the column with the linguistic index. This is necessary only when you use

"ORDER BY". See the example below.
2-30 Oracle8i National Language Support Guide

Collation Parameters
The below is an example of using a FRENCH linguistic index. For NLS_SORT, you

may want to set it in the client environment variable instead of the ALTER SESSION

statement (as described above).

ALTER SESSION SET query_rewrite_enabled=true;
ALTER SESSION SET NLS_COMP = ANSI;
ALTER SESSION SET NLS_SORT='FRENCH';
CREATE TABLE test(col VARCHAR(20) NOT NULL);
CREATE INDEX test_idx ON test(NLSSORT(col, 'NLS_SORT=FRENCH'));
SELECT * FROM test WHERE NLSSORT(col) IS NOT NULL ORDER BY col;
SELECT * FROM test WHERE col > 'JJJ';

For more information, see the description of function-based indexes in Oracle8i
Concepts.

Case-Insensitive Search
You can create a function-based index which improves the performance of

case-insensitive searches. For example:

SQL> CREATE INDEX case_insensitive_ind ON my_table(NLS_UPPER(empname));
SQL> SELECT * FROM my_table WHERE NLS_UPPER(empname) = 'KARL';

For more information, see the description of function-based indexes in Oracle8i
Application Developer’s Guide - Fundamentals.

Linguistic Special Cases
Linguistic special cases are character sequences that need to be treated as a single

character when sorting. Such special cases are handled automatically when using a

linguistic sort. For example, one of the linguistic sort sequences for Spanish specifies

that the double characters ch and ll are sorted as single characters appearing

between c and d and between l and m respectively.

Another example is the German language sharp s (ß). The linguistic sort sequence

German can sort this sequence as the two characters SS, while the linguistic sort

sequence Austrian sorts it as SZ.

Special cases like these are also handled when converting uppercase characters to

lowercase, and vice versa. For example, in German the uppercase of the sharp s (ß)

is the two characters SS. Such case-conversion issues are handled by the NLS_

UPPER, NLS_LOWER, and NLS_INITCAP functions, according to the conventions

established by the linguistic sort sequence. (The standard functions UPPER,

LOWER, and INITCAP do not handle these special cases.)
Setting Up an NLS Environment 2-31

Collation Parameters
NLS_SORT

This parameter specifies the type of sort for character data, overriding that defined

implicitly by NLS_LANGUAGE.

The syntax of NLS_SORT is:

NLS_SORT = { BINARY | name }

BINARY specifies a binary sort and name specifies a particular linguistic sort sequence.

For example, to specify the linguistic sort sequence called German, the parameter should be

set as follows:

NLS_SORT = German

The name given to a linguistic sort sequence has no direct connection to language

names. Usually, however, each supported language has an appropriate linguistic

sort sequence defined that uses the same name.

Note: When the NLS_SORT parameter is set to BINARY, the optimizer can, in some

cases, satisfy the ORDER BY clause without doing a sort (by choosing an index

scan). But when NLS_SORT is set to a linguistic sort, a sort is always needed to

satisfy the ORDER BY clause if the linguistic index does not exist for the linguistic

sort order specified by NLS_SORT. If the linguistic index exists for the linguistic sort

order specified by NLS_SORT, the optimizer can, in some cases, satisfy the ORDER

BY clause without doing a sort (by choosing an index scan).

You can alter the default value of NLS_SORT by changing its value in the

initialization file and then restarting the instance, and you can alter its value during

a session using an ALTER SESSION SET NLS_SORT command.

A complete list of linguistic definitions is provided in Table A–8, "Linguistic

Definitions".

NLS_COMP

Parameter type: String

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Default character sort sequence for a particular language

Range of values: BINARY or any valid linguistic definition name

Parameter type: String
2-32 Oracle8i National Language Support Guide

Collation Parameters
You can use this parameter to avoid the cumbersome process of using NLS_SORT in

SQL statements. Normally, comparison in the WHERE clause is binary. To use

linguistic comparison, the NLSSORT function must be used. Sometimes this can be

tedious, especially when the linguistic sort needed has already been specified in the

NLS_SORT session parameter. You can use NLS_COMP in such cases to indicate

that the comparisons must be linguistic according to the NLS_SORT session

parameter. This is done by altering the session:

SQL> ALTER SESSION SET NLS_COMP = ANSI;

To specify that comparison in the WHERE clause is always binary, issue

SQL> ALTER SESSION SET NLS_COMP = BINARY;

As a final note, when NLS_COMP is set to ANSI, a linguistic index improves the

performance of the linguistic comparison.

To enable a linguistic index, use the syntax:

SQL> CREATE INDEX i ON t(NLSSORT(col, 'NLS_SORT=FRENCH'));

NLS_LIST_SEPARATOR

NLS_LIST_SEPARATOR specifies the character to use to separate values in a list of

values.

The character specified must be single-byte and cannot be the same as either the

numeric or monetary decimal character, any numeric character, or any of the

following characters: plus (+), hyphen (-), less than sign (<), greater than sign (>),

period (.).

Parameter scope: Initialization Parameter, Environment Variable and ALTER
SESSION

Default value: Binary

Range of values: BINARY or ANSI

Parameter type: String

Parameter scope: Environment Variable

Default value: Derived from NLS_TERRITORY

Range of values: Any valid character
Setting Up an NLS Environment 2-33

Character Set Parameters
Character Set Parameters
You can specify the character set used for the client.

NLS_NCHAR

NLS_NCHAR specifies the character set used by the client application for national

character set data (NCHAR, NVARCHAR2, NCLOB). If it is not specified, the client

application uses the same character set that it uses for the database character set

data.

Parameter type: String

Parameter scope: Environment Variable

Default value: Derived from NLS_LANG

Range of values: Any valid character set name
2-34 Oracle8i National Language Support Guide

Choosing a Charact
3

Choosing a Character Set

This chapter explains NLS topics that you need to know when choosing a character

set. These topics are:

■ What is an Encoded Character Set?

■ Which Characters to Encode?

■ How Many Languages does a Character Set Support?

■ How are These Characters Encoded?

■ Oracle's Naming Convention for Character Sets

■ Tips on Choosing an Oracle Database Character Set

■ Tips on Choosing an Oracle NCHAR Character Set

■ Considerations for Different Encoding Schemes

■ Naming Database Objects

■ Changing the Character Set After Database Creation

■ Customizing Character Sets

■ Monolingual Database Example

■ Multilingual Database Example
er Set 3-1

What is an Encoded Character Set?
What is an Encoded Character Set?
An encoded character set is specified when creating a database, and your choice of

character set determines what languages can be represented in the database. This

choice also influences how you create the database schema and develop

applications that process character data. It also influences interoperability with

operating system resources and database performance.

When processing characters, computer systems handle character data as numeric

codes rather than as their graphical representation. For instance, when the database

stores the letter "A", it actually stores a numeric code that is interpreted by software

as that letter.

A group of characters (for example, alphabetic characters, ideographs, symbols,

punctuation marks, control characters) can be encoded as a coded character set. A

coded character set assigns unique numeric codes to each character in the character

repertoire. Table 3–1 shows examples of characters that are assigned a numeric code

value.

There are many different coded character sets used throughout the computer

industry and supported by Oracle. Oracle supports most national, international,

and vendor-specific encoded character set standards. The complete list of character

Table 3–1 Encoded Characters in the ASCII Character Set

Character Description Code Value

! Exclamation Mark 0x21

Number Sign 0x23

$ Dollar Sign 0x24

1 The Number 1 0x31

2 The Number 2 0x32

3 The Number 3 0x33

A An Uppercase A 0x41

B An Uppercase B 0x42

C An Uppercase C 0x43

a A Lowercase a 0x61

b A Lowercase b 0x62

c A Lowercase c 0x63
3-2 Oracle8i National Language Support Guide

Which Characters to Encode?
sets supported by Oracle is included in Appendix A, "Locale Data". Character sets

differ in:

■ the number of characters available

■ the particular characters (character repertoire) available

■ the writing script(s) and the languages therefore represented

■ the code values assigned to each character in the repertoire

■ the encoding scheme used to represent a character entity

These differences are discussed throughout this chapter.

Which Characters to Encode?
The first choice to make when choosing a character set is based on what languages

you wish to store in the database. The characters that are encoded in a character set

depend on the writing systems that are represented.

Writing Systems
A writing system can be used to represent a language or group of languages. For

the purposes of this book, writing systems can be classified into two broad

categories, phonetic and ideographic.

Phonetic Writing Systems
Phonetic writing systems consist of symbols which represent different sounds

associated with a language. Greek, Latin, Cyrillic, and Devanagari are all examples

of phonetic writing systems based on alphabets. Note that alphabets can represent

more than one language. For example, the Latin alphabet can represent many

Western European languages such as French, German, and English.

Characters associated with a phonetic writing system (alphabet) can typically be

encoded in one byte since the character repertoire is usually smaller than 256

characters.

Ideographic Writing Systems
Ideographic writing systems, in contrast, consist of ideographs or pictographs that

represent the meaning of a word, not the sounds of a language. Chinese and

Japanese are examples of ideographic writing systems that are based on tens of

thousands of ideographs. Languages that use ideographic writing systems may use
Choosing a Character Set 3-3

How Many Languages does a Character Set Support?
a syllabary as well. Syllabaries provide a mechanism for communicating phonetic

information along with the pictographs when necessary. For instance, Japanese has

two syllabaries, Hiragana, normally used for grammatical elements, and Katakana,

normally used for foreign and onomatopoeic words.

Characters associated with an ideographic writing system must typically be

encoded in more than one byte because the character repertoire can be as large as

tens of thousands of characters.

Punctuation, Control Characters, Numbers, and Symbols
In addition to encoding the script of a language, other special characters, such as

punctuation marks, need to be encoded such as punctuation marks (for example,

commas, periods, apostrophes), numbers (for example, Arabic digits 0-9), special

symbols (for example, currency symbols, math operators) and control characters for

computers (for example, carriage returns, tabs, NULL).

Writing Direction
Most Western languages are written left-to-right from the top to the bottom of the

page. East Asian languages are usually written top-to-bottom from the right to the

left of the page. Exceptions are frequently made for technical books translated from

Western languages. Arabic and Hebrew are written right-to-left from the top to the

bottom.

Another consideration is that numbers reverse direction in Arabic and Hebrew. So,

even though the text is written right-to-left, numbers within the sentence are

written left-to-right. For example, "I wrote 32 books" would be written as "skoob 32

etorw I". Irrespective of the writing direction, Oracle stores the data in logical order.

Logical order means the order used by someone typing a language, not how it looks

on the screen.

How Many Languages does a Character Set Support?
Different character sets support different character repertoires. Because character

sets are typically based on a particular writing script, they can thus support

different languages. When character sets were first developed in the United States,

they had a limited character repertoire and even now there can be problems using

certain characters across platforms. The following CHAR and VARCHAR characters

are representable in all Oracle database character sets and transportable to any

platform:

■ Upper and lower case English characters A-Z and a-z
3-4 Oracle8i National Language Support Guide

How Many Languages does a Character Set Support?
■ Arabic digits 0-9

■ The following punctuation marks:

■ The following control characters:

■ '<space>'

■ '<horizontal tab>'

■ '<vertical tab>'

■ '<form feed>'

If you are using

■ characters outside this set or

■ the national character set feature (NCHAR or NVARCHAR characters)

take care that your data is in well-formed strings.

During conversion from one character set to another, Oracle expects CHAR and

VARCHAR items to be well-formed strings encoded in the declared database

character set. If you put other values into the string (for example, using the CHR or

CONVERT function), the values may be corrupted when they are sent to a database

with a different character set.

If you are currently using only two or three well-established character sets, you may

not have experienced any problems with character conversion. However, as your

enterprise grows and becomes more global, problems may arise with such

conversions. Therefore, Oracle Corporation recommends that you store any values

other than well-formed strings in RAW columns rather than CHAR or VARCHAR

columns.

% ‘ ' (

) * + -

, . / \

: ; < >

= ! _ &

~ { } |

^ ? $ #

@ " []
Choosing a Character Set 3-5

How Many Languages does a Character Set Support?
ASCII Encoding
The ASCII and IBM EBCDIC character sets support a similar character repertoire,

but assign different code values to some of the characters. Table 3–2 shows how

ASCII is encoded. Row and column headings denote hexadecimal digits. To find the

encoded value of a character, read the column number followed by the row number.

For example, the value of the character A is 0x41.

Over the years, character sets evolved to support more than just monolingual

English in order to meet the growing needs of users around the world. New

character sets were quickly created to support other languages. Typically, these new

character sets supported a group of related languages, based on the same script.

For example, the ISO 8859 character set series was created based on many national

or regional standards to support different European languages.

Table 3–2 7-Bit ASCII Coded Character Set

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ' p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 TAB EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
3-6 Oracle8i National Language Support Guide

How Many Languages does a Character Set Support?
Character sets evolved and provided restricted multilingual support, restricted in

the sense that they were limited to groups of languages based on similar scripts.

More recently, there has been a push to remove boundaries and limitations on the

character data that can be represented through the use of an unrestricted or

universal character set. Unicode is one such universal character set that

encompasses most major scripts of the modern world. The Unicode character set

provides support for a character repertoire of approximately 39,000 characters and

continues to grow.

Table 3–3 lSO 8859 Character Sets

Standard Languages Supported

ISO 8859-1 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Faeroese,
Finnish, French, German, Greenlandic, Icelandic, Irish Gaelic, Italian, Latin, Luxemburgish,
Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish)

ISO 8859-2 Eastern European (Albanian, Croatian, Czech, English, German, Hungarian, Latin, Polish,
Romanian, Slovak, Slovenian, Serbian)

ISO 8859-3 Southeastern European (Afrikaans, Catalan, Dutch, English, Esperanto, German, Italian,
Maltese, Spanish, Turkish)

ISO 8859-4 Northern European (Danish, English, Estonian, Finnish, German, Greenlandic, Latin,
Latvian, Lithuanian, Norwegian, Sámi, Slovenian, Swedish)

ISO 8859-5 Eastern European (Cyrillic-based: Bulgarian, Byelorussian, Macedonian, Russian, Serbian,
Ukrainian)

ISO 8859-6 Arabic

ISO 8859-7 Greek

ISO 8859-8 Hebrew

ISO 8859-9 Western European (Albanian, Basque, Breton, Catalan, Cornish, Danish, Dutch, English,
Finnish, French, Frisian, Galician, German, Greenlandic, Irish Gaelic, Italian, Latin,
Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish,
Swedish, Turkish)

ISO 8859-10 Northern European (Danish, English, Estonian, Faeroese, Finnish, German, Greenlandic,
Icelandic, Irish Gaelic, Latin, Lithuanian, Norwegian, Sámi, Slovenian, Swedish)

ISO 8859-15 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Estonian,
Faroese, Finnish, French, Frisian, Galician, German, Greenlandic, Icelandic, Irish Gaelic,
Italian, Latin, Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic,
Spanish, Swedish)
Choosing a Character Set 3-7

How are These Characters Encoded?
How are These Characters Encoded?
Different types of encoding schemes have been created by the computer industry.

These schemes have different performance characteristics, and can influence your

database schema and application development requirements for handling character

data, so you need to be aware of the characteristics of the encoding scheme used by

the character set you choose. The character set you choose will typically use one of

the following types of encoding schemes.

Single-Byte Encoding Schemes
Single byte encoding schemes are the most efficient encoding schemes available.

They take up the least amount of space to represent characters and are easy to

process and program with because one character can be represented in one byte.

7-bit Encoding Schemes
Single-byte 7-bit encoding schemes can define up to 128 characters, and normally

support just one language. One of the most common single-byte character sets, used

since the early days of computing, is ASCII (American Standard Code for

Information Interchange).

8-bit Encoding Schemes
Single-byte 8-bit encoding schemes can define up to 256 characters, and often

support a group of related languages. One example being ISO 8859-1, which

supports many Western European languages.
3-8 Oracle8i National Language Support Guide

How are These Characters Encoded?
Figure 3–1 8-Bit Encoding Schemes

Multibyte Encoding Schemes
Multibyte encoding schemes are needed to support ideographic scripts used in

Asian languages like Chinese or Japanese since these languages use thousands of

characters. These schemes use either a fixed number of bytes to represent a

character or a variable number of bytes per character.

Fixed-width Encoding Schemes
In a fixed-width multibyte encoding scheme, each character is represented by a

fixed number of n bytes, where n is greater than or equal to two.

Variable-width Encoding Schemes
A variable-width encoding scheme uses one or more bytes to represent a single

character. Some multibyte encoding schemes use certain bits to indicate the number

of bytes that will represent a character. For example, if two bytes is the maximum

number of bytes used to represent a character, the most significant bit can be

toggled to indicate whether that byte is part of a single-byte character or the first
Choosing a Character Set 3-9

Oracle's Naming Convention for Character Sets
byte of a double-byte character. In other schemes, control codes differentiate

single-byte from double-byte characters. Another possibility is that a shift-out code

will be used to indicate that the subsequent bytes are double-byte characters until a

shift-in code is encountered.

Oracle's Naming Convention for Character Sets
Oracle uses the following naming convention for character set names:

<language_or_region><#_of_bits_representing_a_char><standard_name>[S] [C]
[FIXED]

Note that UTF8 and UTFE are exceptions to this naming convention.

For instance:

■ US7ASCII is the U.S. 7-bit ASCII character set

■ WE8ISO8859P1 is the Western European 8-bit ISO 8859 Part 1 character set

■ JA16SJIS is the Japanese 16-bit Shifted Japanese Industrial Standard character

set

The optional "S" or "C" at the end of the character set name is sometimes used to

help differentiate character sets that can only be used on the server (S) or client (C).

On Macintosh platforms, the server character set should always be used. The

Macintosh client character sets are now obsolete. On EBCDIC platforms, if

available, the "S" version should be used on the server and the "C" version on the

client.

The optional "FIXED" at the end of the character set name is used to denote a

fixed-width multibyte encoding.

Tips on Choosing an Oracle Database Character Set
Oracle uses the database character set for:

■ data stored in CHAR, VARCHAR2, CLOB, and LONG columns

■ identifiers such as table names, column names, and PL/SQL variables

■ entering and storing SQL and PL/SQL program source

Four considerations you should make when choosing an Oracle character set for the

database are:
3-10 Oracle8i National Language Support Guide

Tips on Choosing an Oracle Database Character Set
1. What languages does the database need to support?

2. Interoperability with system resources and applications

3. Performance implications

4. Restrictions

Several character sets may meet your current language requirements, but you

should consider future language requirements as well. If you know that you will

need to expand support in the future for different languages, picking a character set

with a wider range now will obviate the need for migration later. The Oracle

character sets listed in Appendix A, "Locale Data", are named according to the

languages and regions which are covered by a particular character set. In the case of

regions covered, some character sets, the ISO character sets for instance, are also

listed explicitly by language. You may want to see the actual characters that are

encoded in some cases. The actual code pages are not listed in this manual,

however, since most are based on national, international, or vendor product

documentation, or are available in standards documents.

Interoperability with System Resources and Applications
While the database maintains and processes the actual character data, there are

other resources that you must depend on from the operating system. For instance,

the operating system supplies fonts that correspond to the character set you have

chosen. Input methods that support the language(s) desired and application

software must also be compatible with a particular character set.

Ideally, a character set should be available on the operating system and is handled

by your application to ensure seamless integration.

Character Set Conversion
If you choose a character set that is different from what is available on the operating

system, Oracle can handle character set conversion from the database character set

to the operating system character set. However, there is some character set

conversion overhead, and you need to make sure that the operating system

character set has an equivalent character repertoire to avoid any possible data loss.

Also note that character set conversions can sometimes cause data loss. For

example, if you are converting from character set A to character set B, the

destination character set B must have the same character set repertoire as A. Any

characters that are not available in character set B will be converted to a

replacement character, which is most often specified as "?" or a linguistically related
Choosing a Character Set 3-11

Tips on Choosing an Oracle Database Character Set
character. For example, ä (a with an umlaut) will be converted to "a". If you have

distributed environments, consider using character sets with similar character

repertoires to avoid loss of data.

Character set conversion may require copying strings between buffers multiple

times before the data reaches the client. Therefore, if possible, using the same

character sets for the client and the server can avoid character set conversion, and

thus optimize performance.

Database Schema
The character datatypes CHAR and VARCHAR2 are specified in bytes, not

characters. Hence, the specification CHAR(20) in a table definition allows 20 bytes

for storing character data.

This works out well if the database character set uses a single-byte character

encoding scheme because the number of characters will be the same as the number

of bytes. If the database character set uses a multibyte character encoding scheme,

there is no such correspondence. That is, the number of bytes no longer equals the

number of characters since a character can consist of one or more bytes. Thus,

column widths must be chosen with care to allow for the maximum possible

number of bytes for a given number of characters.

Performance Implications
There can be different performance overheads in handling different encoding

schemes, depending on the character set chosen. For best performance, you should

try to choose a character set that avoids character set conversion and uses the most

efficient encoding for the languages desired. Single-byte character sets are more

optimal for performance than multi-byte character sets, and they also are the most

efficient in terms of space requirements.

Restrictions
You cannot currently choose an Oracle database character set that is a fixed-width

multibyte character set. In particular, the following character sets cannot be used as

the database character set:

Table 3–4 Restricted Character Sets

JA16EUCFIXED

ZHS16GBKFIXED
3-12 Oracle8i National Language Support Guide

Tips on Choosing an Oracle NCHAR Character Set
Tips on Choosing an Oracle NCHAR Character Set
In some cases, you may wish to have the ability to choose an alternate character set

for the database because the properties of a different character encoding scheme

may be more desirable for extensive character processing operations, or to facilitate

ease-of-programming. In particular, the following data types can be used with an

alternate character set:

■ NCHAR

■ NVARCHAR2

■ NCLOB

Specifying an NCHAR character set allows you to specify an alternate character set

from the database character set for use in NCHAR, NVARCHAR2, and NCLOB

columns. This can be particularly useful for customers using a variable-width

multibyte database character set because NCHAR has the capability to support

fixed-width multibyte encoding schemes, whereas the database character set

cannot. The benefits in using a fixed-width multibyte encoding over a

variable-width one are:

■ optimized string processing performance on NCHAR, NVARCHAR2, and

NCLOB columns

■ ease-of-programming with a fixed-width multibyte character set as opposed to

a variable-width multibyte character set

JA16DBCSFIXED

KO16DBCSFIXED

ZHS16DBCSFIXED

JA16SJISFIXED

ZHT32TRISFIXED

KO16KSC5601FIXED

ZHS16CGB231280FIXED

ZHT32EUCFIXED

ZHT16BIG5FIXED

ZHT16DBCSFIXED

Table 3–4 Restricted Character Sets
Choosing a Character Set 3-13

Considerations for Different Encoding Schemes
When choosing an NCHAR character set, you must ensure that the NCHAR

character repertoire is equivalent to or a subset of the database character set

repertoire.

Note: all SQL commands will use the database character set, not the NCHAR

character set. Therefore, literals can only be specified in the database character set.

Database Schema
When using the NCHAR, NVARCHAR2, and NCLOB data types, the width

specification can be in terms of bytes or characters depending on the encoding

scheme used. If the NCHAR character set uses a variable-width multibyte encoding

scheme, the width specification refers to bytes. If the NCHAR character set uses a

fixed-width multibyte encoding scheme, the width specification will be in

characters. For example, NCHAR(20), using the variable-width multibyte character

set JA16EUC, will allocate 20 bytes while NCHAR(20) using the fixed-width

multibyte character set JA16EUCFIXED will allocate 40 bytes.

Performance Implications
Some string operations are faster when you choose a fixed-width character set for

the national character set. For instance, string-intensive operations such as the SQL

LIKE operator used on an NCHAR fixed-width column outperform LIKE

operations on a multi-byte CHAR column. A possible usage scenario is as follows:

With a Database Character Set of

JA16EUC

Use an NCHAR Character Set of

JA16EUCFIXED

Recommendations
Because SQL text such as the literals in SQL statements can only be represented by

the database character set, and not the NCHAR character set, you should choose an

NCHAR character set that either has an equivalent or subset character repertoire of

the database character set.

Considerations for Different Encoding Schemes
Keep the following points in mind when dealing with encoding schemes.
3-14 Oracle8i National Language Support Guide

Considerations for Different Encoding Schemes
Be Careful when Mixing Fixed-Width and Varying-Width Character Sets
Because fixed-width multi-byte character sets are measured in characters, and

varying-width character sets are measured in bytes, be careful if you use a

fixed-width multi-byte character set as your national character set on one platform

and a varying-width character set on another platform.

As an example, if you use %TYPE or a named type to declare an item on one

platform using the declaration information of an item from the other platform, you

might receive a constraint limit too small to support the data. So, for example,

"NCHAR (10)" on the platform using the fixed-width multi-byte set allocates

enough space for 10 characters, but if %TYPE or the use of a named type creates a

correspondingly typed item on the other platform, it allocates only 10 bytes.

Usually, this is not enough for 10 characters. To be safe:

■ Do not mix fixed-width multi-byte and varying-width character sets as the

national character set on different platforms.

■ If you do mix fixed-width multi-byte and varying-width character sets as the

national character set on different platforms, use varying-length type

declarations with relatively large constraint values.

Storing Data in Multi-Byte Character Sets
Width specifications of the character datatypes CHAR and VARCHAR2 refer to

bytes, not characters. Hence, the specification CHAR(20) in a table definition allows

20 bytes for storing character data.

If the database character set is single byte, and that character set includes only

composite characters, the number of characters and the number of bytes are the

same. If the database character set is multi-byte, in general, there is no such

correspondence. A character can consist of one or more bytes, depending on the

specific multi-byte encoding scheme and whether shift-in/shift-out control codes are

present. Hence, column widths must be chosen with care to allow for the maximum possible

number of bytes for a given number of characters.

A typical situation is when character elements are combined to form a single

character. For example, o and an umlaut can be combined to form ö. In the Thai

language, up to three separate character elements can be combined to form one

character, and one Thai character would require up to 3 bytes when TH8TISASCII

or another single-byte Thai character set is used. One Thai character would require

up to 9 bytes when the UTF8 character set is used.

One Thai character consists of up to three separate character elements as shown in

Figure 3–2, where two of the characters are comprised of three character elements.
Choosing a Character Set 3-15

Naming Database Objects
Figure 3–2 Combining Characters

In the lower row of Figure 3–2, nine Thai characters are shown in the correct display

format. Inside the database, these nine Thai characters are stored just like the upper

row of Figure 3–2. They look like thirteen characters, but they are actually nine

characters. Note that the upper row is just showing how Thai characters are stored

in the database (and it is the same as how Thai characters are represented in

computer memory), but the way shown in the upper row is an incorrect way of

displaying Thai characters.

When using the NCHAR and NVARCHAR2 data types, the width specification

refers to characters when the national character set is fixed-width multi-byte.

Otherwise, the width specification refers to bytes.

 A separate performance issue is space efficiency (and thus speed) when using

smaller-width character sets. These issues potentially trade-off against each other

when the choice is between a varying-width and a fixed-width character set.

Naming Database Objects
You can use Oracle to name database objects.

Restrictions on Character Sets Used to Express Names and Text
Table 3–5 lists the restrictions on the character sets that can be used to express

names and other text in Oracle.

2

3

4

1

3-16 Oracle8i National Language Support Guide

Naming Database Objects
For a list of supported string formats and character sets, including LOB data (LOB,

BLOB, CLOB, and NCLOB), see Table 3–7.

The character encoding scheme used by the database is defined at database creation

as part of the CREATE DATABASE statement. All data columns of type CHAR,

CLOB, VARCHAR2, and LONG, including columns in the data dictionary, have

their data stored in the database character set. In addition, the choice of database

character set determines which characters can name objects in the database. Data

columns of type NCHAR, NCLOB, and NVARCHAR2 use the national character

set.

After the database is created, the character set choices cannot be changed, with

some exceptions, without re-creating the database. Hence, it is important to

consider carefully which character set(s) to use. The database character set should

always be a superset or equivalent of the client's operating system's native character

Table 3–5 Restrictions on Character Sets Used to Express Names and Text

Name

Single-
Byte
Fixed

Varying
Width

Multi-Byte
Fixed Width
Character Sets Comments

Column Names Yes Yes No

Schema Objects Yes Yes No

comments Yes Yes No

database link names Yes No No

database names Yes No No

filenames (datafile, logfile,
controlfile, initialization
parameter file)

Yes No No

instance names Yes No No

directory names Yes No No

keywords Yes No No Can be expressed in English ASCII or
EBCDIC characters only

recovery manager filenames Yes No No

rollback segment names Yes No No The ROLLBACK_SEGMENTS
parameter does not support NLS

stored script names Yes Yes No

tablespace names Yes Yes No
Choosing a Character Set 3-17

Naming Database Objects
set. The character sets used by client applications that access the database usually

determine which superset is the best choice.

If all client applications use the same character set, then this is the normal choice for

the database character set. When client applications use different character sets, the

database character set should be a superset (or equivalent) of all the client character

sets. This ensures that every character is represented when converting from a client

character set to the database character set.

When a client application operates with a terminal that uses a different character

set, then the client application's characters must be converted to the database

character set, and vice versa. This conversion is performed automatically, and is

transparent to the client application, except that the number of bytes for a character

string may be different in the client character set and the database character set. The

character set used by the client application is defined by the NLS_LANG parameter.

Similarly, the character set used for national character set data is defined by the

NLS_NCHAR parameter.

Summary of Data Types and Supported Encoding Schemes
Table 3–6 lists the supported encoding schemes associated with different data types.

Table 3–7 lists the supported data types associated with Abstract Data Types (ADT).

Table 3–6 Supported Encoding Schemes for Data Types

Data Type Single-Byte
Multi-byte
Varying Width

Multi-byte
Fixed Width

CHAR Yes Yes No

NCHAR Yes Yes Yes

BLOB Yes Yes Yes

CLOB Yes Yes No

NCLOB Yes Yes Yes

Table 3–7 Supported Data Types for Abstract Data Types

Abstract DataType CHAR NCHAR BLOB CLOB NCLOB

Object Yes No Yes Yes No

Collection Yes No Yes Yes No
3-18 Oracle8i National Language Support Guide

Changing the Character Set After Database Creation
Changing the Character Set After Database Creation
In some cases, you may wish to change the existing database character set. For

instance, you may find that the number of languages that need to be supported in

your database have increased. In most cases, you will need to do a full

export/import to properly convert all data to the new character set. However, if,

and only if, the new character set is a strict superset of the current character set, it is

possible to use the ALTER DATABASE CHARACTER SET statement to expedite the

change in the database character set.

The target character set is a strict superset if and only if each and every codepoint in

the source character set is available in the target character set, with the same

corresponding codepoint value. For instance, the following migration scenarios can

take advantage of the ALTER DATABASE CHARACTER SET statement because

US7ASCII is a strict subset of WE8ISO8859P1, ZHS16GBK, and UTF8:

Attempting to change the database character set to a character set that is not a strict

superset can result in data loss and data corruption. To ensure data integrity,

whenever migrating to a new character set that is not a strict superset, you must use

export/import. It is essential to do a full backup of the database before using the

ALTER DATABASE [NATIONAL] CHARACTER SET statement, since the

command cannot be rolled back. The syntax is:

ALTER DATABASE [<db_name>] CHARACTER SET <new_character_set>;
ALTER DATABASE [<db_name>] NATIONAL CHARACTER SET <new_NCHAR_character_set>;

The database name is optional. The character set name should be specified without

quotes, for example:

Note: BLOBs process characters as a series of byte sequences.

The data is not subject to any NLS-sensitive operations.

Table 3–8 Sample Migration Scenarios

Current Character Set New Character Set New Character Set is Strict
Superset?

US7ASCII WE8ISO8859P1 Yes

US7ASCII ZHS16GBK Yes

US7ASCII UTF8 Yes
Choosing a Character Set 3-19

Customizing Character Sets
ALTER DATABASE CHARACTER SET WE8ISO8859P1;

To change the database character set, perform the following steps. Not all of them

are absolutely necessary, but they are highly recommended:

SQL> SHUTDOWN IMMEDIATE; -- or NORMAL
 <do a full backup>

SQL> STARTUP MOUNT;
SQL> ALTER SYSTEM ENABLE RESTRICTED SESSION;
SQL> ALTER SYSTEM SET JOB_QUEUE_PROCESSES=0;
SQL> ALTER DATABASE OPEN;
SQL> ALTER DATABASE CHARACTER SET <new_character_set_name>;
SQL> SHUTDOWN IMMEDIATE; -- or NORMAL
SQL> STARTUP;

To change the national character set, replace the ALTER DATABASE CHARACTER

SET statement with the ALTER DATABASE NATIONAL CHARACTER SET

statement. You can issue both statements together if desired.

Customizing Character Sets
In some cases, you may wish to tailor a character set to meet specific user needs. In

Oracle8i, users can extend an existing encoded character set definition to suit their

needs. User-defined Characters (UDC) are often used to encode special characters

representing:

■ Proper names

■ Historical Han characters which are not defined in an existing character set

standard

■ Vendor-specific characters

■ New symbols or characters you define

This section describes how Oracle supports UDC. It describes:

■ Character Sets with User-Defined Characters

■ Oracle's Character Set Conversion Architecture

■ Unicode 2.1 Private Use Area

■ UDC Cross References
3-20 Oracle8i National Language Support Guide

Customizing Character Sets
Character Sets with User-Defined Characters
User-defined characters are typically supported within East Asian character sets.

These East Asian character sets have at least one range of reserved codepoints for

use as user-defined characters. For example, Japanese Shift JIS preserves 1880

codepoints for UDC as follows:

The Oracle character sets listed in Table 3–10 contain pre-defined ranges that allow

you to support User Defined Characters:

Table 3–9 Shift JIS Codepoint Example

Japanese Shift JIS UDC Range Number of Codepoints

0xf040-0xf07e, 0xf080-0xf0fc 188

0xf140-0xf17e, 0xf180-0xf1fc 188

0xf240-0xf27e, 0xf280-0xf2fc 188

0xf340-0xf37e, 0xf380-0xf3fc 188

0xf440-0xf47e, 0xf480-0xf4fc 188

0xf540-0xf57e, 0xf580-0xf5fc 188

0xf640-0xf67e, 0xf680-0xf6fc 188

0xf740-0xf77e, 0xf780-0xf7fc 188

0xf840-0xf87e, 0xf880-0xf8fc 188

0xf940-0xf97e, 0xf980-0xf9fc 188

Table 3–10 Oracle Character Sets with UDC

Character Set Name Number of UDC Codepoints Available

JA16DBCS 4370

JA16DBCSFIXED 4370

JA16EBCDIC930 4370

JA16SJIS 1880

JA16SJISFIXED 1880

JA16SJISYEN 1880

KO16DBCS 1880

KO16DBCSFIXED 1880
Choosing a Character Set 3-21

Customizing Character Sets
Oracle's Character Set Conversion Architecture
The codepoint value that represents a particular character may vary among

different character sets. For example, the Japanese kanji character:

Figure 3–3 Kanji Example

is encoded as follows in different Japanese character sets:

In Oracle, all character sets are defined in terms of a Unicode 2.1 code point. That is

each character is defined as a Unicode 2.1 code value. Character conversion takes

place transparently to users by using Unicode as the intermediate form. For

example, when a JA16SJIS client connects to a JA16EUC database, the character

shown in Figure 3–3, "Kanji Example" (value 0x889F) entered from the JA16SJIS

client is internally converted to Unicode (value 0x4E9C), and then converted to

JA16EUC(value 0xB0A1).

KO16MSWIN949 1880

ZHS16DBCS 1880

ZHS16DBCSFIXED 1880

ZHS16GBK 2149

ZHS16GBKFIXED 2149

ZHT16DBCS 6204

ZHT16MSWIN950 6217

Table 3–11 Kanji Example with Character Conversion

Character Set Unicode JA16SJIS JA16EUC JA16DBCS

Character Value of 0x4E9C 0x889F 0xB0A1 0x4867

Table 3–10 Oracle Character Sets with UDC
3-22 Oracle8i National Language Support Guide

Monolingual Database Example
Unicode 2.1 Private Use Area
Unicode 2.1 reserves the range 0xE000-0xF8FF for the Private Use Area (PUA). The

PUA is intended for private use character definition by end users or vendors.

UDC can be converted between two Oracle character sets by using Unicode 2.1

PUA as the intermediate form, the same as standard characters.

UDC Cross References
UDC cross references between Japanese character sets, Korean character sets,

Simplified Chinese character sets and Traditional Chinese character sets are

contained in the following distribution sets:

${ORACLE_HOME}/ocommon/nls/demo/udc_ja.txt
${ORACLE_HOME}/ocommon/nls/demo/udc_ko.txt
${ORACLE_HOME}/ocommon/nls/demo/udc_zhs.txt
${ORACLE_HOME}/ocommon/nls/demo/udc_zht.txt

These cross references are useful when registering User Defined Characters across

operating systems. For example, when registering a new UDC on both a Japanese

Shift-JIS operating system and a Japanese IBM Host operating system, you may

want to pick up 0xF040 on Shift-JIS operating system and 0x6941 on IBM Host

operating system for the new UDC so that Oracle can convert correctly between

JA16SJIS and JA16DBCS. You can find out that both Shift-JIS UDC value 0xF040 and

IBM Host UDC value 0x6941 are mapped to the same Unicode PUA value 0xE000 in

the UDC cross reference.

For further details on how to customize a character set definition file, see

Appendix B, "Customizing Locale Data".

Monolingual Database Example

Same Character Set on the Client and the Server
This section describes the simplest example of an NLS database setup.

Both the client and server in Figure 3–4, "Monolingual Scenario", are running with

the same language environment, and are both using the same character encoding.

The monolingual scenario has the advantage of fast response because the overhead

associated with character set conversion is avoided.
Choosing a Character Set 3-23

Monolingual Database Example
Figure 3–4 Monolingual Scenario

Character Set Conversion
Character set conversion is often necessary in a client/server computing

environment where a client application may reside on a different computer

platform from that of the server, and both platforms may not use the same character

encoding schemes. Character data passed between client and server must be

converted between the two encoding schemes. Character conversion occurs

automatically and transparently via Net8.

A conversion is possible between any two character sets, as shown in Figure 3–5:

Unix
(JA16EUC)

Japanese
Server

(JA16EUC)
3-24 Oracle8i National Language Support Guide

Monolingual Database Example
Figure 3–5 Character Set Conversion Example

However, in cases where a target character set does not contain all characters in the

source data, replacement characters are used. If, for example, a server uses

US7ASCII and a German client WE8ISO8859P1, the German character ß is replaced

with ? and the character ä is replaced with a.

Replacement characters may be defined for specific characters as part of a character

set definition. Where a specific replacement character is not defined, a default

replacement character is used. To avoid the use of replacement characters when

converting from client to database character set, the server character set should be a

superset (or equivalent) of all the client character sets. In Figure 3–4, "Monolingual

Scenario", the server's character set was not chosen wisely. If German data is

expected to be stored on the server, a character set which supports German letters is

needed, for example, WE8ISO8859P1 for both the server and the client.

In some varying-width multi-byte cases, character set conversion may introduce

noticeable overhead. Users need to carefully evaluate their situation and choose

character sets to avoid conversion as much as possible. Having the appropriate

character set for the database and the client will avoid the overhead of character

conversion, as well as any possible data loss.

Unix
(JA16EUC)

Windows
(JA16SJIS)

Japanese
Server

(JA16EUC)

Character
Conversion
Choosing a Character Set 3-25

Multilingual Database Example
Multilingual Database Example
Note that some character sets support multiple languages. For example,

WE8ISO8859P1 supports the following Western European languages:

The reason WE8ISO8859P1 supports the languages above is because they are all

based on a similar writing script. This situation is often called restricted multilingual

support. Restricted because this character set supports a group of related writing

systems or scripts. In Table 3–12, WE8ISO8859-1 supports Latin-based scripts.

Restricted Multilingual Support
In Figure 3–6, both clients have access to the server's data.

Table 3–12 WE8ISO8859P1 Example

Catalan Finnish Italian Swedish

Danish French Norwegian

Dutch German Portuguese

English Icelandic Spanish
3-26 Oracle8i National Language Support Guide

Multilingual Database Example
Figure 3–6 Restricted Multilingual Support Example

Unrestricted Multilingual Support
Often, unrestricted multilingual support is needed, and a universal character set

such as Unicode is necessary as the server database character set. Unicode has two

major encoding schemes: UCS2 and UTF8. UCS2 is a two-byte fixed-width format;

UTF8 is a multi-byte format with a variable width. Oracle8i provides support for

the UTF8 format. This enhancement is transparent to clients who already provide

support for multi-byte character sets.

Character set conversion between a UTF8 database and any single-byte character

set introduces very little overhead. Conversion between UTF8 and any multi-byte

character set has some overhead but there is no conversion loss problem except that

some multi-byte character sets do not support user-defined characters during

character set conversion to and from UTF8. See Appendix A, "Locale Data", for

further information.

Figure 3–7, "Unrestricted Multilingual Support Example", shows how a database

can support many different languages. Here, Japanese, French, and German clients

are all accessing the same database based on the Unicode character set. Please note

that each client accesses only data it can process. If Japanese data were retrieved,

modified, and stored back by the German client, all Japanese characters would be

lost during the character set conversion.

German
(WE8DEC)

French
(WE8ISO8859P1)

Western
European

Server
(WE8ISO8859P1)

Character
Conversion
Choosing a Character Set 3-27

Multilingual Database Example
Figure 3–7 Unrestricted Multilingual Support Example

Unicode
Database

(UTF8)

Germ
an

Data

French

Data

Ja
pa

ne
se

Dat
a

Japanese
Client

(JA16SJIS)

German
Client

(WE8DEC)

French
Client

(WE8ISO8859P1)

Japanese
Client

(JA16EUC)

Character
Conversion

Character
Conversion

Character
Conversion

Character
Conversion
3-28 Oracle8i National Language Support Guide

SQL Program
4

SQL Programming

This chapter contains information useful for SQL programming in an NLS

environment, including:

■ Locale-Dependent SQL Functions

■ Time/Date/Calendar Formats

■ Numeric Formats

■ Miscellaneous Topics
ming 4-1

Locale-Dependent SQL Functions
Locale-Dependent SQL Functions
All SQL functions whose behavior depends on NLS conventions allow NLS

parameters to be specified. These functions are:

■ TO_CHAR

■ TO_DATE

■ TO_NUMBER

■ NLS_UPPER

■ NLS_LOWER

■ NLS_INITCAP

■ NLSSORT

Explicitly specifying the optional NLS parameters for these functions allows the

function evaluations to be independent of the NLS parameters in force for the

session. This feature may be important for SQL statements that contain numbers

and dates as string literals.

For example, the following query is evaluated correctly if the language specified for

dates is American:

SQL> SELECT ENAME FROM EMP
 > WHERE HIREDATE > '1-JAN-91';

Such a query can be made independent of the current date language by using these

statements:

SQL> SELECT ENAME FROM EMP
 > WHERE HIREDATE > TO_DATE('1-JAN-91','DD-MON-YY',
 > 'NLS_DATE_LANGUAGE = AMERICAN');

In this way, language-independent SQL statements can be defined where necessary.

For example, such statements might be necessary when string literals appear in SQL

statements in views, CHECK constraints, or triggers.

All character functions support both single-byte and multi-byte characters. Except

where explicitly stated, character functions operate character-by-character, rather

than byte-by-byte.
4-2 Oracle8i National Language Support Guide

Locale-Dependent SQL Functions
Default Specifications
When evaluating views and triggers, default values for NLS function parameters

are taken from the values currently in force for the session. When evaluating

CHECK constraints, default values are set by the NLS parameters that were

specified at database creation.

Specifying Parameters
The syntax that specifies NLS parameters in SQL functions is:

'parameter = value'

The following NLS parameters can be specified:

■ NLS_DATE_LANGUAGE

■ NLS_NUMERIC_CHARACTERS

■ NLS_CURRENCY

■ NLS_ISO_CURRENCY

■ NLS_SORT

Only certain NLS parameters are valid for particular SQL functions, as shown in

Table 4–1:

Table 4–1 SQL Functions and Their Parameters

SQL Function Valid NLS Parameters

TO_DATE NLS_DATE_LANGUAGE
NLS_CALENDAR

TO_NUMBER: NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY

TO_CHAR NLS_DATE_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_DUAL_CURRENCY
NLS_CALENDAR

NLS_UPPER NLS_SORT

NLS_LOWER NLS_SORT
SQL Programming 4-3

Locale-Dependent SQL Functions
Examples of the use of NLS parameters are:

TO_DATE ('1-JAN-89', 'DD-MON-YY',
 'nls_date_language = American')

TO_CHAR (hiredate, 'DD/MON/YYYY',
 'nls_date_language = French')

TO_NUMBER ('13.000,00', '99G999D99',
 'nls_numeric_characters = '',.''')

TO_CHAR (sal, '9G999D99L', 'nls_numeric_characters = '',.''
 nls_currency = '' Dfl''')

TO_CHAR (sal, '9G999D99C', 'nls_numeric_characters = ''.,''
 nls_iso_currency = Japan')

NLS_UPPER (ename, 'nls_sort = Swiss')

NLSSORT (ename, 'nls_sort = German')

Unacceptable Parameters
Note that NLS_LANGUAGE and NLS_TERRITORY are not accepted as parameters

in SQL functions, except for NLSSORT. Only NLS parameters that explicitly define

the specific data items required for unambiguous interpretation of a format are

accepted. NLS_DATE_FORMAT is also not accepted as a parameter for the reason

described below.

NLS_INITCAP NLS_SORT

NLSSORT NLS_SORT

Note: For some languages, various lowercase characters

correspond to a sequence of uppercase characters, or vice versa. As

a result, the length of the output from the functions NLS_UPPER,

NLS_LOWER, and NLS_INITCAP can differ from the input.

Table 4–1 SQL Functions and Their Parameters

SQL Function Valid NLS Parameters
4-4 Oracle8i National Language Support Guide

Locale-Dependent SQL Functions
If an NLS parameter is specified in TO_CHAR, TO_NUMBER, or TO_DATE, a

format mask must also be specified as the second parameter. For example, the

following specification is legal:

TO_CHAR (hiredate, 'DD/MON/YYYY', 'nls_date_language = French')

The following specifications are illegal:

TO_CHAR (hiredate, 'nls_date_language = French')
TO_CHAR (hiredate, 'nls_date_language = French',
 'DD/MON/YY')

This restriction requires that a date format always be specified if an NLS parameter

is in a TO_CHAR or TO_DATE function. As a result, NLS_DATE_FORMAT is not a

valid NLS parameter for these functions.

CONVERT Function
The SQL function CONVERT allows for conversion of character data between

character sets.

The CONVERT function converts the binary representation of a character string in

one character set to another. It uses exactly the same technique described previously

for the conversion between database and client character sets. Hence, it uses

replacement characters and has the same limitations.

If the CONVERT function is used in a stored procedure, the stored procedure runs

independently of the client character set (that is, it uses the server's character set),

which sometimes results in the last converted character being truncated.

The syntax for CONVERT is:

Figure 4–1 CONVERT Syntax

where source_char_set is the source character set and dest_char_set is the destination character

set.

CONVERT (char , dest_char_set
, source_char_set

)

SQL Programming 4-5

Locale-Dependent SQL Functions
In client/server environments using different character sets, use the TRANSLATE

(...USING...) statement to perform conversions instead of CONVERT. The

conversion to client character sets will then properly know the server character set

of the result of the TRANSLATE statement.

For more information on CONVERT, see Oracle8i SQL Reference.

Character Set SQL Functions
Two SQL functions, NLS_CHARSET_NAME and NLS_CHARSET_ID, are provided

to convert between character set ID numbers and character set names. They are

used by programs that need to determine character set ID numbers for binding

variables through OCI.

The NLS_CHARSET_DECL_LEN function returns the declaration length (in

number of characters) for an NCHAR column.

For more information on these functions, see Oracle8i SQL Reference.

Converting from Character Set Number to Character Set Name
The NLS_CHARSET_NAME(n) function returns the name of the character set

corresponding to ID number n. The function returns NULL if n is not a recognized

character set ID value.

Converting from Character Set Name to Character Set Number
NLS_CHARSET_ID(TEXT) returns the character set ID corresponding to the name

specified by TEXT. TEXT is defined as a run-time VARCHAR2 quantity, a character

set name. Values for TEXT can be NLSRTL names that resolve to sets other than the

database character set or the national character set.

If the value CHAR_CS is entered for TEXT, the function returns the ID of the

server's database character set. If the value NCHAR_CS is entered for TEXT, the

function returns the ID of the server's national character set. The function returns

NULL if TEXT is not a recognized name. The value for TEXT must be entered in all

uppercase.

Returning the Length of an NCHAR Column
NLS_CHARSET_DECL_LEN(BYTECNT, CSID) returns the declaration length (in

number of characters) for an NCHAR column. The BYTECNT argument is the byte

length of the column. The CSID argument is the character set ID of the column.
4-6 Oracle8i National Language Support Guide

Locale-Dependent SQL Functions
NLSSORT Function
The NLSSORT function replaces a character string with the equivalent sort string

used by the linguistic sort mechanism. For a binary sort, the sort string is the same

as the input string. The linguistic sort technique operates by replacing each

character string with some other binary values, chosen so that sorting the resulting

string produces the desired sorting sequence. When a linguistic sort is being used,

NLSSORT returns the binary values that replace the original string.

The ORDER BY clause in a SQL statement is determined by the NLS_SORT session

parameter, but it can be overridden by explicitly using the NLSSORT() function, as

the following example shows.

SQL> ALTER SESSION SET NLS_SORT = GERMAN;
 > SELECT *
 > FROM table1
 > ORDER BY col1;

The preceding example uses a German sort, but the following example uses a

French one.

SQL> ALTER SESSION SET NLS_SORT = GERMAN;
 > SELECT *
 > FROM table1
 > ORDER BY NLSSORT(col1, 'NLS_SORT = FRENCH');

The WHERE clause normally uses binary comparison rather than linguistic

comparison. But this can be overridden by two methods.

1. Use of the NLSSORT() function in the WHERE clause.

SQL> SELECT *
 > FROM table1
 > WHERE NLSSORT(col1, 'NLS_SORT = FRENCH')>

 > NLSSORT(col2, 'NLS_SORT = FRENCH');

2. Setting the session parameter NLS_COMP to ANSI, in which case the NLS_

SORT session parameter is used in the WHERE clause.

SQL> ALTER SESSION SET NLS_COMP = ANSI;

NLSSORT Syntax
There are four ways to use NLSSORT:

■ NLSSORT()—which relies on the NLS_SORT parameter
SQL Programming 4-7

Locale-Dependent SQL Functions
■ NLSSORT(column1, 'NLS_SORT=xxxx')

■ NLSSORT(column1, 'NLS_LANG= xxxx')

■ NLSSORT(column1, 'NLS_LANGUAGE=xxxx')

The NLS_LANG parameter of the NLS_SORT function is not the same as the NLS_

LANG client environment setting. In the NLSSORT function, NLS_LANG specifies

the abbreviated language name, for example, US for American or PL for Polish. An

example is:

SQL> SELECT * FROM emps
 > ORDER BY NLSSORT(col1, 'NLS_LANG=PL');

String Comparisons in a WHERE Clause
NLSSORT allows applications to perform string matching that follows alphabetic

conventions. Normally, character strings in a WHERE clause are compared using

the characters' binary values. A character is "greater than" another if it has a higher

binary value in the database character set. Because the sequence of characters based

on their binary values might not match the alphabetic sequence for a language, such

comparisons often do not follow alphabetic conventions. For example, if a column

(COL1) contains the values ABC, ABZ, BCD, and ÄBC in the ISO 8859/1 8-bit

character set, the following query:

SQL> SELECT col1 FROM tab1 WHERE col1 > 'B';

returns both BCD and ÄBC because Ä has a higher numeric value than B. However,

in German, an Ä is sorted alphabetically before B. Such conventions are language

dependent even when the same character is used. In Swedish, an Ä is sorted after Z.

Linguistic comparisons can be made using NLSSORT in the WHERE clause, as

follows:

WHERE NLSSORT(col) comparison_operator NLSSORT(comparison_string)

Note that NLSSORT has to be on both sides of the comparison operator. For

example:

SELECT col1 FROM tab1 WHERE NLSSORT(col1) > NLSSORT('B')

If a German linguistic sort is being used, this does not return strings beginning with

Ä because, in the German alphabet, Ä comes before B. If a Swedish linguistic sort is

being used, such names are returned because, in the Swedish alphabet, Ä comes

after Z.
4-8 Oracle8i National Language Support Guide

Locale-Dependent SQL Functions
NLS_COMP
Normally, comparison in the WHERE clause is binary. To use linguistic comparison,

the NLSSORT function can be used. Sometimes this can be tedious, especially when

the linguistic sort needed has already been specified in the NLS_SORT session

parameter. One can use NLS_COMP in such cases to indicate that the comparisons

must be linguistic according to the NLS_SORT session parameter. This is done by

altering the session:

SQL> ALTER SESSION SET NLS_COMP = ANSI;

To specify that comparison in the WHERE clause is always binary, issue the

following statement:

SQL> ALTER SESSION SET NLS_COMP = BINARY;

As a final note, when NLS_COMP is set to ANSI, a linguistic index improves the

performance of the linguistic comparison.

To enable a linguistic index, use the syntax:

SQL> CREATE INDEX i ON t(NLSSORT(col, 'NLS_SORT=FRENCH'));

Partitioned Tables and Indexes
String comparison for partition VALUES LESS THAN collation for DDL and DML

always follows BINARY order.

Controlling an ORDER BY Clause
If a linguistic sorting sequence is in use, then NLSSORT is used implicitly on each

character item in the ORDER BY clause. As a result, the sort mechanism (linguistic

or binary) for an ORDER BY is transparent to the application. However, if the

NLSSORT function is explicitly specified for a character item in an ORDER BY item,

then the implicit NLSSORT is not done.

In other words, the NLSSORT linguistic replacement is only applied once, not twice.

The NLSSORT function is generally not needed in an ORDER BY clause when the

default sort mechanism is a linguistic sort. However, when the default sort

mechanism is BINARY, then a query such as:

SELECT ename FROM emp
ORDER BY ename

uses a binary sort. A German linguistic sort can be obtained using:

SELECT ename FROM emp
SQL Programming 4-9

Time/Date/Calendar Formats
ORDER BY NLSSORT(ename, 'NLS_SORT = GERMAN')

Pattern Matching Characters for Fixed-Width Multi-Byte Character Sets
The LIKE operator is used in character string comparisons with pattern matching.

Its syntax requires the use of two special pattern matching characters: the

underscore (_) and the percent sign(%). The space character is used to pad CHAR

values to the declared column length.

When the LIKE operator is applied to a national character set column (NCHAR or

NVARCHAR2) or a value of an NCHAR column must be padded to its declared

length, and the national character set is fixed-byte multi-width, a problem arises

because the (single-byte) underscore, percent, and space characters are not present

in the character set. Table 4–2 lists characters that should be used instead.

Time/Date/Calendar Formats
Several format masks are provided with the TO_CHAR, TO_DATE, and TO_

NUMBER functions to format dates and numbers according to the relevant

conventions.

Date Formats
A format element RM (Roman Month) returns a month as a Roman numeral. One

can specify either uppercase or lowercase using RM or rm respectively. For

example, for the date 7 Sep 1998, "DD-rm-YYYY" will return "07-ix-1998" and

"DD-RM-YYYY" will return "07-IX-1998".

Note that the MON and DY format masks explicitly support month and day

abbreviations that may not be three characters in length. For example, the

abbreviations "Lu" and "Ma" can be specified for the French "Lundi" and "Mardi",

respectively.

Table 4–2 Encoding for the Underscore, Percent Sign, and Pad Character

For This Character Set Use These Code Point Values

Underscore Percent Sign Pad Character (Space)

JA16SJISFIXED 0x8151 0x8193 0x8140

JA16EUCFIXED 0xa1b2 0xa1f3 0xa1a1

JA16DBCSFIXED 0x426d 0x426c 0x4040

ZHT32TRISFIXED 0x8eb1a1df 0x8eb1a1a5 0x8ebla1a0
4-10 Oracle8i National Language Support Guide

Numeric Formats
Week and Day Number Conventions
The week numbers returned by the WW format mask are calculated according to

the algorithm int((day-ijan1)/7). This week number algorithm does not follow the ISO

standard (2015, 1992-06-15).

To support the ISO standard, a format element IW is provided that returns the ISO

week number. In addition, format elements I IY IYY and IYYY, equivalent in

behavior to the format elements Y, YY, YYY, and YYYY, return the year relating to

the ISO week number.

In the ISO standard, the year relating to an ISO week number can be different from

the calendar year. For example, 1st Jan 1988 is in ISO week number 53 of 1987. A

week always starts on a Monday and ends on a Sunday.

■ If January 1 falls on a Friday, Saturday, or Sunday, then the week including

January 1 is the last week of the previous year, because most of the days in the

week belong to the previous year.

■ If January 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the

week is the first week of the new year, because most of the days in the week

belong to the new year.

For example, January 1, 1991, is a Tuesday, so Monday, December 31, 1990, to

Sunday, January 6, 1991, is week 1. Thus, the ISO week number and year for

December 31, 1990, is 1, 1991. To get the ISO week number, use the format mask

"IW" for the week number and one of the "IY" formats for the year.

Numeric Formats
Several additional format elements are provided for formatting numbers:

■ D (Decimal) returns the decimal point character.

■ G (Group) returns the group separator.

■ L (Local currency) returns the local currency symbol.

■ C (International Currency) returns the ISO currency symbol.

■ RN (Roman Numeral) returns the number as its Roman numeral equivalent.

For Roman numerals, one can specify either uppercase or lowercase, using RN or

rn, respectively. The number being converted must be an integer in the range 1 to

3999.
SQL Programming 4-11

Miscellaneous Topics
For complete information on using date and number masks, see Oracle8i SQL
Reference.

Miscellaneous Topics

The Concatenation Operator
If the database character set replaces the vertical bar ("|") with a national character,

then all SQL statements that use the concatenation operator (ASCII 124) will fail.

For example, creating a procedure will fail because it generates a recursive SQL

statement that uses concatenation. When you use a 7-bit replacement character set

such as D7DEC, F7DEC, or SF7ASCII for the database character set, then the

national character which replaces the vertical bar is not allowed in object names

because the vertical bar is interpreted as the concatenation operator.

On the user side, one can use a 7-bit replacement character set if the database

character set is the same or compatible, that is, if both character sets replace the

vertical bar with the same national character.
4-12 Oracle8i National Language Support Guide

OCI Program
5

OCI Programming

This chapter contains information useful for OCI programming, including:

■ Using the OCI NLS Functions

■ NLS Language Information Retrieval

■ String Manipulation

■ Character Classification

■ Character Set Conversion

■ Messaging Mechanism
ming 5-1

Using the OCI NLS Functions
Using the OCI NLS Functions
Many OCI NLS functions accept either the environment handle or the user session

handle. The OCI environment handle is associated with the client NLS environment

and initialized with the client NLS settings (environment variables). This

environment does not change when ALTER SESSION statements are issued to the

server. The character set associated with the environment handle is the client

character set. The OCI session handle (returned by OCISessionBegin) is associated

with the server session environment. Its NLS settings change when the session

environment is modified with ALTER SESSION. The character set associated with

the session handle is the database character set.

Note that the OCI session handle does not have any NLS settings associated with it

until the first transaction begins in the session. SELECT statements do not begin a

transaction.

NLS Language Information Retrieval
An Oracle locale consists of language, territory, and character set definitions. The

locale determines conventions such as native day and month names, as well as date,

time, number, and currency formats. An internationalized application obeys a user's

locale setting and cultural conventions. For example, in a German locale setting,

users expect to see day and month names in German.

Using environment handles, you can retrieve the following information:

■ Days of the Week (Translated)

■ Abbreviated Days of the Week (Translated)

■ Month Names (Translated)

■ Abbreviated Month Names (Translated)

■ Yes/No (Translated)

■ AM/PM (Translated)

■ AD/BC (Translated)

■ Numeric Format

■ Debit/Credit

■ Date Format

■ Currency Formats
5-2 Oracle8i National Language Support Guide

NLS Language Information Retrieval
■ Default Language

■ Default Territory

■ Default Character Set

■ Default Linguistic Sort

■ Default Calendar

OCINlsGetInfo

Syntax
sword OCINlsGetInfo(dvoid *hndl, OCIError *errhp, OraText *buf, size_t buflen, ub2 item)

Remarks
This function generates language information specified by item from OCI

environment or user session handle hndl into an array pointed to by buf within a

size limitation as buflen.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR on wrong items.

Table 5–1 OCINlsGetInfo Keywords/Parameters

Keyword/
Parameter Meaning

hndl(IN/OUT) The OCI environment or user session handle initialized in object mode

errhp(IN/OUT) The OCI error handle. If there is an error, it is recorded in errhp and this
function returns a NULL pointer. Diagnostic information can be
obtained by calling OCIErrorGet()

buf(OUT) Pointer to the destination buffer
OCI Programming 5-3

NLS Language Information Retrieval
buflen(IN) The size of the destination buffer. The maximum length for each piece of
information is OCI_NLS_MAXBUFSZ bytes

item(IN) Specifies which item in OCI environment handle to return. Can be one
of the following values:

OCI_NLS_DAYNAME1: Native name for Monday

OCI_NLS_DAYNAME2: Native name for Tuesday

OCI_NLS_DAYNAME3: Native name for Wednesday

OCI_NLS_DAYNAME4: Native name for Thursday

OCI_NLS_DAYNAME5: Native name for Friday

OCI_NLS_DAYNAME6: Native name for Saturday

OCI_NLS_DAYNAME7: Native name for Sunday

OCI_NLS_ABDAYNAME1: Native abbreviated name for Monday

OCI_NLS_ABDAYNAME2: Native abbreviated name for Tuesday

OCI_NLS_ABDAYNAME3: Native abbreviated name for Wednesday

OCI_NLS_ABDAYNAME4: Native abbreviated name for Thursday

OCI_NLS_ABDAYNAME5: Native abbreviated name for Friday

OCI_NLS_ABDAYNAME6: Native abbreviated name for Saturday

OCI_NLS_ABDAYNAME7: Native abbreviated name for Sunday

Table 5–1 OCINlsGetInfo Keywords/Parameters

Keyword/
Parameter Meaning
5-4 Oracle8i National Language Support Guide

NLS Language Information Retrieval
OCI_NLS_MONTHNAME1: Native name for January

OCI_NLS_MONTHNAME2: Native name for February

OCI_NLS_MONTHNAME3: Native name for March

OCI_NLS_MONTHNAME4: Native name for April

OCI_NLS_MONTHNAME5: Native name for May

OCI_NLS_MONTHNAME6: Native name for June

OCI_NLS_MONTHNAME7: Native name for July

OCI_NLS_MONTHNAME8: Native name for August

OCI_NLS_MONTHNAME9: Native name for September

OCI_NLS_MONTHNAME10: Native name for October

OCI_NLS_MONTHNAME11: Native name for November

OCI_NLS_MONTHNAME12: Native name for December

OCI_NLS_ABMONTHNAME1: Native abbreviated name for January

OCI_NLS_ABMONTHNAME2: Native abbreviated name for February

OCI_NLS_ABMONTHNAME3: Native abbreviated name for March

OCI_NLS_ABMONTHNAME4: Native abbreviated name for April

OCI_NLS_ABMONTHNAME5: Native abbreviated name for May

OCI_NLS_ABMONTHNAME6: Native abbreviated name for June

OCI_NLS_ABMONTHNAME7: Native abbreviated name for July

OCI_NLS_ABMONTHNAME8: Native abbreviated name for August

OCI_NLS_ABMONTHNAME9: Native abbreviated name for
September

OCI_NLS_ABMONTHNAME10: Native abbreviated name for October

OCI_NLS_ABMONTHNAME11: Native abbreviated name for
November

OCI_NLS_ABMONTHNAME12: Native abbreviated name for
December

Table 5–1 OCINlsGetInfo Keywords/Parameters

Keyword/
Parameter Meaning
OCI Programming 5-5

NLS Language Information Retrieval
OCI_Nls_MaxBufSz
When calling OCINlsGetInfo(), you need to allocate the buffer to store the returned

information for the particular language. The buffer size varies, depending on which

item you are querying and what encoding you are using to store the information.

Developers should not need to know how many bytes it takes to store "January" in

Japanese using JA16SJIS encoding. That is exactly what OCI_NLS_MAXBUFSZ is

used for; it guarantees that the OCI_NLS_MAXBUFSZ is big enough to hold the

largest item returned by OCINlsGetInfo(). This guarantees that the largest item

returned by OCINlsGetInfo() will fit in the buffer.

OCI_NLS_YES: Native string for affirmative response

OCI_NLS_NO: Native negative response

OCI_NLS_AM: Native equivalent string of AM

OCI_NLS_PM: Native equivalent string of PM

OCI_NLS_AD: Native equivalent string of AD

OCI_NLS_BC: Native equivalent string of BC

OCI_NLS_DECIMAL: Decimal character

OCI_NLS_GROUP: Group separator

OCI_NLS_DEBIT: Native symbol of debit

OCI_NLS_CREDIT: Native symbol of credit

OCI_NLS_DATEFORMAT: Oracle date format

OCI_NLS_INT_CURRENCY: International currency symbol

OCI_NLS_DUAL_CURRENCY: Dual currency symbol

OCI_NLS_LOC_CURRENCY: Locale currency symbol

OCI_NLS_LANGUAGE: Language name

OCI_NLS_ABLANGUAGE: Abbreviation for language name

OCI_NLS_TERRITORY: Territory name

OCI_NLS_CHARACTER_SET: Character set name

OCI_NLS_LINGUISTIC_NAME: Linguistic name

OCI_NLS_CALENDAR: Calendar name

Table 5–1 OCINlsGetInfo Keywords/Parameters

Keyword/
Parameter Meaning
5-6 Oracle8i National Language Support Guide

String Manipulation
See Oracle Call Interface Programmer’s Guide and Oracle8i Data Cartridge Developer’s
Guide for further information.

NLS Language Information Retrieval Sample Code
The following is a simple case of retrieving information and checking for errors.

sword MyPrintLinguisticName(envhp, errhp)
OCIEnv *envhp;
OCIError *errhp;
{
 OraText infoBuf[OCI_NLS_MAXBUFSZ];
 sword ret;

 ret = OCINlsGetInfo(envhp, /* environment handle */
 errhp, /* error handle */
 infoBuf, /* destination buffer */
 (size_t) OCI_NLS_MAXBUFSZ, /* buffer size */
 (ub2) OCI_NLS_LINGUISTIC_NAME); /* item */

 if (ret != OCI_SUCCESS)
 {
 checkerr(errhp, ret, OCI_HTYPE_ERROR);
 ret = OCI_ERROR;
 }
 else
 {
 printf("NLS linguistic: %s\n", infoBuf);
 }
 return(ret);
}

String Manipulation
Two types of data structure are supported for string manipulation: multi-byte string

and wide character string. Multi-byte strings are in native Oracle character set

encoding and functions operated on them take the string as a whole unit. Wide

character string wchar functions provide more flexibility in string manipulation and

support character-based and string-based operations.

The wide character data type is Oracle-specific and not to be confused with the

wchar_t defined by the ANSI/ISO C standard. The Oracle wide character is always

4 bytes in all platforms, while wchar_t is implementation- and platform-dependent.

The idea of the Oracle wide character is to normalize multibyte character to have a
OCI Programming 5-7

String Manipulation
fixed-width encoding for easy processing. This way, round-trip conversion

between the Oracle wide character and the native character set is guaranteed.

The string manipulation can be classified into the following categories:

■ Conversion of string between multibyte and wide character

■ Character classifications

■ Case conversion

■ Display length calculation

■ General string manipulation, such as compare, concatenation and searching

Table 5–2 OCI String Manipulation Calls

Function Call Description

OCIMultiByteToWideChar() Converts an entire null-terminated string into the wchar format

OCIMultiByteInSizeTo
WideChar()

Converts part of a string into the wchar format

OCIWideCharToMultiByte() Converts an entire null-terminated wide character string into a multi-byte
string

OCIWideCharInSizeTo
MultiByte()

Converts part of a wide character string into the multi-byte format

OCIWideCharToLower() If there is a lower-case character mapping in the specified locale, it will return
the lower-case in wide character. If not, returns the same wide character

OCIWideCharToUpper() If there is an lower-case character mapping in the specified locale, it will
return the upper-case in wide character. If not, returns the same wide
character

OCIWideCharStrcmp() Compares two wide character strings in binary, linguistic, or case-insensitive
manners

OCIWideCharStrncmp() Similar to OCIWideCharStrcmp(), but compares two multi-byte strings in
binary, linguistic, or case-insensitive manners, except that at most len1 bytes
form str1 and len2 bytes form str2 are compared

OCIWideCharStrcat() Appends a copy of the string pointed to by wsrcstr. Then returns the number
of characters in the resulting string

OCIWideCharStrchr() Searches for the first occurrence of wc in the string pointed to by wstr. Then
returns a pointer to the wchar if successful

OCIWideCharStrcpy() Copies the wchar string pointed to by wsrcstr into the array pointed to by
wdststr. Then returns the number of characters copied

OCIWideCharStrlen() Computes the number of characters in the wchar string pointed to by wstr,
and returns this number
5-8 Oracle8i National Language Support Guide

String Manipulation
OCIMultiByteToWideChar

Syntax
sword OCIMultiByteToWideChar(dvoid *hndl, OCIWchar *dst, CONST OraText *src, size_t *rsize);

OCIWideCharStrncat() Appends a copy of the string pointed to by wsrcstr. Then returns the number
of characters in the resulting string, except that at most n characters are
appended

OCIWideCharStrncpy() Copies the wchar string pointed to by wsrcstr into the array pointed to by
wdststr. Then returns the number of characters copied, except that at most n
characters are copied from the array

OCIWideCharStrrchr() Searches for the last occurrence of wc in the string pointed to by wstr

OCIWideCharStrCase
Conversion()

Converts the wide character string pointed to by wsrcstr into case specified by
flag and copies the result into the array pointed to by wdststr

OCIWideCharDisplayLength() Determines the number of column positions required for wc in display

OCIWideCharMultibyte
Length()

Determines the number of bytes required for wc in multi-byte encoding

OCIMultiByteStrcmp() Compares two multi-byte strings in binary, linguistic, or case-insensitive
manners

OCIMultiByteStrncmp() Compares two multi-byte strings in binary, linguistic, or case-insensitive
manners, except that at most len1 bytes form str1 and len2 bytes form str2 are
compared

OCIMultiByteStrcat() Appends a copy of the multi-byte string pointed to by srcstr

OCIMultiByteStrcpy() Copies the multi-byte string pointed to by srcstr into an array pointed to by
dststr. It returns the number of bytes copied

OCIMultiByteStrlen() Computes the number of bytes in the multi-byte string pointed to by str, and
returns this number

OCIMultiByteStrncat() Appends a copy of the multi-byte string pointed to by srcstr, except that at
most n bytes from srcstr are appended to dststr

OCIMultiByteStrncpy() Copies the multi-byte string pointed to by srcstr into an array pointed to by
dststr. It returns the number of bytes copied, except that at most n bytes are
copied from the array pointed to by srcstr to the array pointed to by dststr

OCIMultiByteStrnDisplay
Length()

Returns the number of display positions occupied by the complete characters
within the range of n bytes

OCIMultiByteStrCase
Conversion()

Converts part of a string from one character set to another

Table 5–2 OCI String Manipulation Calls

Function Call Description
OCI Programming 5-9

String Manipulation
Remarks
This routine converts an entire NULL-terminated string into the wchar format. The

wchar output buffer will be NULL-terminated.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

OCIMultiByteInSizeToWideChar

Syntax
sword OCIMultiByteInSizeToWideChar(dvoid *hndl, OCIWchar *dst, size_t dstsz, CONST OraText *src,
size_t srcsz, size_t *rsize)

Remarks
This routine converts part of a string into the wchar format. It will convert as many

complete characters as it can until it reaches the output buffer size or input buffer

size or it reaches a NULL-terminator in source string. The output buffer will be

NULL-terminated if space permits. If dstsz is zero, this function will only return the

number of characters not including the ending NULL terminator needed for

converted string.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

Table 5–3 OCIMultiByteToWideChar Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set of string

dst(OUT) Destination buffer for wchar

src(IN) Source string to be converted

rsize(OUT) Number of characters converted including NULL-terminator.
If it is a NULL pointer, nothing to return

Table 5–4 OCIMultiByteInSizeToWideChar Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set of string

dst(OUT) Pointer to a destination buffer for wchar. It can be NULL
pointer when dstsz is zero
5-10 Oracle8i National Language Support Guide

String Manipulation
OCIWideCharToMultiByte

Syntax
sword OCIWideCharToMultiByte(dvoid *hndl, OraText *dst, CONST OCIWchar *src, size_t *rsize)

Remarks
This routine converts an entire NULL-terminated wide character string into a

multi-byte string. The output buffer will be NULL-terminated.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

OCIWideCharInSizeToMultiByte
sword OCIWideCharInSizeToMultiByte(dvoid *hndl, OraText *dst, size_t dstsz,
CONST OCIWchar *src, size_t srcsz, size_t *rsize)

dstsz(IN) Destination buffer size in character. If it is zero, this function
just returns number of characters will be need for the
conversion

src (IN) Source string to be converted

srcsz(IN) Length of source string in byte

rsize(OUT) Number of characters written into destination buffer, or
number of characters for converted string is dstsz is zero. If it
is a NULL pointer, nothing to return

Table 5–5 OCIWideCharToMultiByte Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set of string

dst(OUT) Destination buffer for multi-byte string

src(IN) Source wchar string to be converted

srcsz(IN) Length of source string in byte

rsize(OUT) Number of characters written into destination buffer. If it is a
NULL pointer, nothing will be returned

Table 5–4 OCIMultiByteInSizeToWideChar Keywords/Parameters

Keyword/Parameter Meaning
OCI Programming 5-11

String Manipulation
Remarks
This routine converts part of wchar string into the multi-byte format. It will convert

as many complete characters as it can until it reaches the output buffer size, the

input buffer size, or it reaches a NULL-terminator in source string. The output

buffer will be NULL-terminated if space permits. If dstsz is zero, the function just

returns the size of byte not including ending NULL-terminator needed to store the

converted string.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

OCIWideCharToLower

Syntax
OCIWchar OCIWideCharToLower(dvoid *hndl, OCIWchar wc)

Remarks
If there is a lower-case character mapping for wc in the specified locale, it will

return the lower-case in wchar, else return wc itself.

Returns
A wchar.

Table 5–6 OCIWideCharInSizeToMultiByte Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set of string

dst(OUT) Destination buffer for multi-byte. It can be a NULL pointer if
dstsz is zero

dstsz(IN) Destination buffer size in byte. If it is zero, it just returns the
size of bytes need for converted string

src(IN) Source wchar string to be converted

srcsz(IN) Length of source string in character

rsize(OUT) Number of bytes written into destination buffer, or number of
bytes need to store the converted string if dstsz is zero. If it is a
NULL pointer, nothing to return
5-12 Oracle8i National Language Support Guide

String Manipulation
OCIWideCharToUpper

Syntax
OCIWchar OCIWideCharToUpper(dvoid *hndl, OCIWchar wc)

Remarks
If there is a upper-case character mapping for wc in the specified locale, it will

return the upper-case in wchar, it will return wc itself otherwise.

Returns
A wchar.

OCIWideCharStrcmp

Syntax
int OCIWideCharStrcmp(dvoid *hndl, CONST OCIWchar *wstr1, CONST OCIWchar *wstr2, int flag)

Remarks
It compares two wchar strings in binary (based on wchar encoding value),

linguistic, or case-insensitive.

Returns
■ 0, if wstr1 == wstr2.

■ Positive, if wstr1 > wstr2.

■ Negative, if wstr1 < wstr2.

Table 5–7 OCIWideCharToLower Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for upper-case mapping

Table 5–8 OCIWideCharToUpper Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for upper-case mapping
OCI Programming 5-13

String Manipulation
OCIWideCharStrncmp

Syntax
int OCIWideCharStrncmp(dvoid *hndl, CONST OCIWchar *wstr1, size_t len1, CONST OCIWchar *wstr2,
size_t len2, int flag)

Remarks
This function is similar to OCIWideCharStrcmp(), except that at most len1

characters from wstr1 and len2 characters from wstr1 are compared. The

NULL-terminator will be taken into the comparison.

Returns
■ 0, if wstr1 = wstr2

■ Positive, if wstr1 > wstr2

■ Negative, if wstr1 < wstr2

Table 5–9 OCIWideCharStrcmp Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wstr1(IN) Pointer to a NULL-terminated wchar string

wstr2(IN) Pointer to a NULL-terminated wchar string

flag(IN) Is used to decide the comparison method. It can take one of the
following values:

OCI_NLS_BINARY: for the binary comparison, this is default
value.

OCI_NLS_LINGUISTIC: for linguistic comparison specified in
the locale.

This flag can be ORed with OCI_NLS_CASE_INSENSITIVE for
case-insensitive comparison

Table 5–10 OCIWideCharStrncmp Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wstr1(IN) Pointer to the first wchar string
5-14 Oracle8i National Language Support Guide

String Manipulation
OCIWideCharStrcat

Syntax
size_t OCIWideCharStrcat(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar *wsrcstr)

Remarks
This function appends a copy of the wchar string pointed to by wsrcstr, including

the NULL-terminator to the end of wchar string pointed to by wdststr.

Returns
The number of characters in the result string, not including the ending

NULL-terminator.

len1(IN) The length for the first string for comparison

wstr2(IN) Pointer to the second wchar string

len2(IN) The length for the second string for comparison

flag(IN) It is used to decide the comparison method. It can take one of
the following values:

OCI_NLS_BINARY: for the binary comparison, this is default
value.

OCI_NLS_LINGUISTIC: for linguistic comparison specified in
the locale.

This flag can be ORed with OCI_NLS_CASE_INSENSITIVE for
case-insensitive comparison

Table 5–11 OCIWideCharStrcat Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/) OCI environment or user session handle to determine the
character set

wdststr(IN/OUT) Pointer to the destination wchar string for appending

wsrcstr(IN) Pointer to the source wchar string to append

Table 5–10 (Cont.) OCIWideCharStrncmp Keywords/Parameters

Keyword/Parameter Meaning
OCI Programming 5-15

String Manipulation
OCIWideCharStrchr

Syntax
OCIWchar *OCIWideCharStrchr(dvoid *hndl, CONST OCIWchar *wstr, OCIWchar wc)

Remarks
This function searches for the first occurrence of wc in the wchar string pointed to

by wstr.

Returns
A wchar pointer if successful, otherwise a NULL pointer.

OCIWideCharStrcpy

Syntax
size_t OCIWideCharStrcpy(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar *wsrcstr)

Remarks
This function copies the wchar string pointed to by wsrcstr, including the

NULL-terminator, into the array pointed to by wdststr.

Returns
The number of characters copied not including the ending NULL-terminator.

Table 5–12 OCIWideCharStrchr Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wstr(IN) Pointer to the wchar string to search

wc(IN) wchar to search for

Table 5–13 OCIWideCharStrcpy Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wdststr(OUT) Pointer to the destination wchar buffer

wsrcstr(IN) Pointer to the source wchar string
5-16 Oracle8i National Language Support Guide

String Manipulation
OCIWideCharStrlen

Syntax
size_t OCIWideCharStrlen(dvoid *hndl, CONST OCIWchar *wstr)

Remarks
This function computes the number of characters in the wchar string pointed to by

wstr, not including the NULL-terminator, and returns this number.

Returns
The number of characters not including ending NULL-terminator.

OCIWideCharStrncat

Syntax
size_t OCIWideCharStrncat(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar *wsrcstr, size_t n)

Remarks
This function is similar to OCIWideCharStrcat(), except that at most n characters

from wsrcstr are appended to wdststr. Note that the NULL-terminator in wsrcstr

will stop appending. wdststr will be NULL-terminated.

Returns
The number of characters in the result string, not including the ending

NULL-terminator.

Table 5–14 OCIWideCharStrlen Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wstr(IN) Pointer to the source wchar string

Table 5–15 OCIWideCharStrncat Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wdststr(IN/OUT) Pointer to the destination wchar string for appending

wsrcstr(IN) Pointer to the source wchar string to append
OCI Programming 5-17

String Manipulation
OCIWideCharStrncpy

Syntax
size_t OCIWideCharStrncpy(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar *wsrcstr, size_t n)

Remarks
This function is similar to OCIWideCharStrcpy(), except that at most n characters

are copied from the array pointed to by wsrcstr to the array pointed to by wdststr.

Note that the NULL-terminator in wdststr will stop coping and result string will be

NULL-terminated.

Returns
The number of characters copied not including the ending NULL-terminator.

OCIWideCharStrrchr

Syntax
OCIWchar *OCIWideCharStrrchr(dvoid *hndl, CONST OCIWchar *wstr, OCIWchar wc)

Remarks
This function searches for the last occurrence of wc in the wchar string pointed to

by wstr. It returns a pointer to the wchar if successful, or a NULL pointer.

Returns
wchar pointer if successful, otherwise a NULL pointer.

n(IN) Number of characters from wsrcstr to append

Table 5–16 OCIWideCharStrncpy Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wdststr(OUT) Pointer to the destination wchar buffer

wsrcstr(IN) Pointer to the source wchar string

n(IN) Number of characters from wsrcstr to copy

Table 5–15 OCIWideCharStrncat Keywords/Parameters

Keyword/Parameter Meaning
5-18 Oracle8i National Language Support Guide

String Manipulation
OCIWideCharStrCaseConversion

Syntax
size_t OCIWideCharStrCaseConversion(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar*wsrcstr, ub4
flag)

Remarks
This function converts the wide char string pointed to by wsrcstr into the uppercase

or lowercase specified by flag and copies the result into the array pointed to by

wdststr. The result string will be NULL-terminated.

Returns
The number of characters for result string not including NULL-terminator.

Table 5–17 OCIWideCharStrrchr Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wstr(IN) Pointer to the wchar string to search

wc(IN) wchar to search for

Table 5–18 OCIWideCharStrCaseConversion Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle

wdststr(OUT) Pointer to destination array

wsrcstr(IN) Pointer to source string

flag(IN) Specify the case to convert:

OCI_NLS_UPPERCASE: convert to uppercase.

OCI_NLS_LOWERCASE: convert to lowercase.

This flag can be ORed with OCI_NLS_LINGUISTIC to specify
that the linguistic setting in the locale will be used for case
conversion
OCI Programming 5-19

String Manipulation
OCIWideCharDisplayLength

Syntax
size_t OCIWideCharDisplayLength(dvoid *hndl, OCIWchar wc)

Remarks
This function determines the number of column positions required for wc in

display. It returns the number of column positions, or 0 if wc is the

NULL-terminator.

Returns
The number of display positions.

OCIWideCharMultiByteLength

Syntax
size_t OCIWideCharMultiByteLen(dvoid *hndl, OCIWchar wc)

Remarks
This function determines the number of byte required for wc in multi-byte

encoding. It returns the number of bytes in multi-byte for wc.

Returns
The number of bytes.

Table 5–19 OCIWideCharDisplayLength Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar character

Table 5–20 OCIWideCharMultiByteLength Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar character
5-20 Oracle8i National Language Support Guide

String Manipulation
OCIMultiByteStrcmp

Syntax
int OCIMultiByteStrcmp(dvoid *hndl, CONST OraText *str1, CONST OraText *str2, int flag)

Remarks
It compares two multi-byte strings in binary (based on encoding value), linguistic,

or case-insensitive.

Returns
■ 0, if str1 == str2.

■ Positive, if str1 > str2.

■ Negative, if str1 < str2.

OCIMultiByteStrncmp

Syntax
int OCIMultiByteStrncmp(dvoid *hndl, CONST OraText *str1, size_t len1, OraText *str2, size_t
len2, int flag)

Remarks
This function is similar to OCIMultiByteStrcmp(), except that at most len1 bytes

from str1 and len2 bytes from str2 are compared. The NULL-terminator will be

taken into the comparison.

Table 5–21 OCIMultiByteStrcmp Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle

str1(IN) Pointer to a NULL-terminated string

str2(IN) Pointer to a NULL-terminated string

flag(IN) It is used to decide the comparison method. It can take one of
the following values:

OCI_NLS_BINARY: for the binary comparison, this is default
value.

OCI_NLS_LINGUISTIC: for linguistic comparison specified in
the locale.

This flag can be ORed with OCI_NLS_CASE_INSENSITIVE for
case-insensitive comparison
OCI Programming 5-21

String Manipulation
Returns
■ 0, if str1 = str2

■ Positive, if str1 > str2

■ Negative, if str1 < str2

OCIMultiByteStrcat

Syntax
size_t OCIMultiByteStrcat(dvoid *hndl, OraText *dststr, CONST OraText *srcstr)

Remarks
This function appends a copy of the multi-byte string pointed to by srcstr, including

the NULL-terminator to the end of string pointed to by dststr. It returns the number

of bytes in the result string not including the ending NULL-terminator.

Returns
The number of bytes in the result string not including the ending NULL-terminator.

Table 5–22 OCIMultiByteStrncmp Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle

str1(IN) Pointer to the first string

len1(IN) The length for the first string for comparison

str2(IN) Pointer to the second string

len2(IN) The length for the second string for comparison

flag(IN) It is used to decide the comparison method. It can take one of
the following values:

OCI_NLS_BINARY: for the binary comparison, this is default
value.

OCI_NLS_LINGUISTIC: for linguistic comparison specified in
the locale.

This flag can be ORed with OCI_NLS_CASE_INSENSITIVE for
case-insensitive comparison
5-22 Oracle8i National Language Support Guide

String Manipulation
OCIMultiByteStrcpy

Syntax
size_t OCIMultiByteStrcpy(dvoid *hndl, OraText *dststr, CONST OraText *srcstr)

Remarks
This function copies the multi-byte string pointed to by srcstr, including the

NULL-terminator, into the array pointed to by dststr. It returns the number of bytes

copied, not including the ending NULL-terminator.

Returns
The number of bytes copied not including the ending NULL-terminator.

OCIMultiByteStrlen

Syntax
size_t OCIMultiByteStrlen(dvoid *hndl, CONST OraText *str)

Remarks
This function computes the number of bytes in the multi-byte string pointed to by

str, not including the NULL-terminator, and returns this number.

Returns
The number of bytes not including ending NULL-terminator.

Table 5–23 OCIMultiByteStrcat Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

dststr(IN/OUT) Pointer to the destination multi-byte string for appending

srcstr(IN) Pointer to the source string to append

Table 5–24 OCIMultiByteStrcpy Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) Pointer to the OCI environment or user session handle

dststr(OUT) Pointer to the destination buffer

srcstr(IN) Pointer to the source multi-byte string
OCI Programming 5-23

String Manipulation
OCIMultiByteStrncat

Syntax
size_t OCIMultiByteStrncat(dvoid *hndl, OraText *dststr, CONST OraText *srcstr, size_t n)

Remarks
This function is similar to OCIMultiByteStrcat(), except that at most n bytes from

srcstr are appended to dststr. Note that the NULL-terminator in srcstr will stop

appending and the function will append as many character as possible within n

bytes. dststr will be NULL-terminated.

Returns
The number of bytes in the result string not including the ending NULL-terminator.

OCIMultiByteStrncpy

Syntax
size_t OCIMultiByteStrncpy(dvoid *hndl, OraText *dststr, CONST OraText *srcstr, size_t n)

Remarks
This function is similar to OCIMultiByteStrcpy(), except that at most n bytes are

copied from the array pointed to by srcstr to the array pointed to by dststr. Note

that the NULL-terminator in srcstr will stop coping and the function will copy as

many character as possible within n bytes. The result string will be

NULL-terminated.

Table 5–25 OCIMultiByteStrlen Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) Pointer to the OCI environment or user session handle

str(IN) Pointer to the source multi-byte string

Table 5–26 OCIMultiByteStrncat Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) Pointer to OCI environment or user session handle

dststr(IN/OUT) Pointer to the destination multi-byte string for appending

srcstr(IN) Pointer to the source multi-byte string to append

n(IN) The number of bytes from srcstr to append
5-24 Oracle8i National Language Support Guide

String Manipulation
Returns
The number of bytes copied not including the ending NULL-terminator.

OCIMultiByteStrnDisplayLength

Syntax
size_t OCIMultiByteStrnDisplayLength(dvoid *hndl, CONST OraText *str1, size_t n)

Remarks
This function returns the number of display positions occupied by the complete

characters within the range of n bytes.

Returns
The number of display positions.

OCIMultiByteStrCaseConversion

Syntax
size_t OCIMultiByteStrCaseConversion(dvoid *hndl, OraText *dststr, CONST OraText *srcstr, ub4
flag)

Table 5–27 OCIMultiByteStrncpy Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) Pointer to OCI environment or user session handle

srcstr(OUT) Pointer to the destination buffer

dststr(IN) Pointer to the source multi-byte string

n(IN) The number of bytes from srcstr to copy

Table 5–28 OCIMultiByteStrncpy Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle

str(IN) Pointer to a multi-byte string

n(IN) The number of bytes to examine
OCI Programming 5-25

String Manipulation
Remarks
This function convert the multi-byte string pointed to by srcstr into the uppercase or

lowercase specified by flag and copies the result into the array pointed to by dststr.

The result string will be NULL-terminated.

Returns
The number of bytes for result string not including NULL-terminator.

String Manipulation Sample Code
The following is a simple case of handling string manipulation.

size_t MyConvertMultiByteToWideChar(envhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
OCIWchar *dstBuf;
size_t dstSize;
OraText *srcStr; /* null terminated source string
*/
{
 sword ret;
 size_t dstLen = 0;
 size_t srcLen;

 /* get length of source string */
 srcLen = OCIMultiByteStrlen(envhp, srcStr);

 ret = OCIMultiByteInSizeToWideChar(envhp, /* environment handle */
 dstBuf, /* destination buffer */
 dstSize, /* destination buffer size */

Table 5–29 OCIMultibyteStrCaseConversion Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle

dststr(OUT) Pointer to destination array

srcstr(IN) Pointer to source string

flag(IN) Specify the case to convert:

OCI_NLS_UPPERCASE: convert to uppercase.

OCI_NLS_LOWERCASE: convert to lowercase.

This flag can be ORed with OCI_NLS_LINGUISTIC to specify
that the linguistic setting in the locale will be used for case
conversion
5-26 Oracle8i National Language Support Guide

Character Classification
 srcStr, /* source string */
 srcLen, /* length of source string */
 &dstLen); /* pointer to destination length */

 if (ret != OCI_SUCCESS)
 {
 checkerr(envhp, ret, OCI_HTYPE_ENV);
 }
 return(dstLen);
}

See Oracle Call Interface Programmer’s Guide and Oracle8i Data Cartridge Developer’s
Guide for further information.

Character Classification
The Oracle Call Interface offers many function calls for classifying characters.

OCIWideCharIsAlnum

Syntax
boolean OCIWideCharIsAlnum(dvoid *hndl, OCIWchar wc)

Table 5–30 OCI Character Classification Calls

Function Call Description

OCIWideCharIsAlnum() Tests whether the wide character is a letter or decimal digit

OCIWideCharIsAlpha() Tests whether the wide character is an alphabetic letter

OCIWideCharIsCntrl() Tests whether the wide character is a control character

OCIWideCharIsDigit() Tests whether the wide character is a decimal digital character

OCIWideCharIsGraph() Tests whether the wide character is a graph character

OCIWideCharIsLower() Tests whether the wide character is a lowercase letter

OCIWideCharIsPrint() Tests whether the wide character is a printable character

OCIWideCharIsPunct() Tests whether the wide character is a punctuation character

OCIWideCharIsSpace() Tests whether the wide character is a space character

OCIWideCharIsUpper() Tests whether the wide character is an uppercase character

OCIWideCharIsXdigit() Tests whether the wide character is a hexadecimal digit

OCIWideCharIsSingleByte() Tests whether wc is a single-byte character when converted into multi-byte
OCI Programming 5-27

Character Classification
Remarks
It tests whether wc is a letter or decimal digit.

Returns
TRUE or FALSE.

OCIWideCharIsAlpha

Syntax
boolean OCIWideCharIsAlpha(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is an alphabetic letter.

Returns
TRUE or FALSE.

OCIWideCharIsCntrl

Syntax
boolean OCIWideCharIsCntrl(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a control character.

Returns
TRUE or FALSE.

Table 5–31 OCIWideCharIsAlnum Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for testing

Table 5–32 OCIWideCharIsAlpha Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for testing
5-28 Oracle8i National Language Support Guide

Character Classification
OCIWideCharIsDigit

Syntax
boolean OCIWideCharIsDigit(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a decimal digit character.

Returns
TRUE or FALSE.

OCIWideCharIsGraph

Syntax
boolean OCIWideCharIsGraph(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a graph character. A graph character is character with a visible

representation and normally includes alphabetic letter, decimal digit, and

punctuation.

Returns
TRUE or FALSE.

Table 5–33 OCIWideCharIsCntrl Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for testing

Table 5–34 OCIWideCharIsDigit Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for testing
OCI Programming 5-29

Character Classification
OCIWideCharIsLower

Syntax
boolean OCIWideCharIsLower(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a lowercase letter.

Returns
TRUE or FALSE.

OCIWideCharIsPrint

Syntax
boolean OCIWideCharIsPrint(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a printable character.

Returns
TRUE or FALSE.

Table 5–35 OCIWideCharIsGraph Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for testing

Table 5–36 OCIWideCharIsLower Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for testing

Table 5–37 OCIWideCharIsPrint Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set
5-30 Oracle8i National Language Support Guide

Character Classification
OCIWideCharIsPunct

Syntax
boolean OCIWideCharIsPunct(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a punctuation character.

Returns
TRUE or FALSE.

OCIWideCharIsSpace

Syntax
boolean OCIWideCharIsSpace(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a space character. A space character only causes white space

in displayed text (for example, space, tab, carriage return, newline, vertical tab or

form feed).

Returns
TRUE or FALSE.

wc(IN) wchar for testing

Table 5–38 OCIWideCharIsPunct Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for testing

Table 5–39 OCIWideCharIsSpace Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

Table 5–37 OCIWideCharIsPrint Keywords/Parameters

Keyword/Parameter Meaning
OCI Programming 5-31

Character Classification
OCIWideCharIsUpper

Syntax
boolean OCIWideCharIsUpper(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is an uppercase letter.

Returns
TRUE or FALSE.

OCIWideCharIsXdigit

Syntax
boolean OCIWideCharIsXdigit(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a hexadecimal digit (0-9, A-F, a-f).

Returns
TRUE or FALSE.

wc(IN) wchar for testing

Table 5–40 OCIWideCharIsUpper Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for testing

Table 5–41 OCIWideCharIsXdigit Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for testing

Table 5–39 OCIWideCharIsSpace Keywords/Parameters

Keyword/Parameter Meaning
5-32 Oracle8i National Language Support Guide

Character Classification
OCIWideCharIsSingleByte

Syntax
boolean OCIWideCharIsSingleByte(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a single-byte character when converted into multi-byte.

Returns
TRUE or FALSE.

Character Classification Sample Code
 /* Character classification sample code */
boolean MyIsNumberWideCharString(envhp, srcStr)
OCIEnv *envhp;
OCIWchar *srcStr; /* wide char source string */
{
 OCIWchar *pstr = srcStr; /* define and init pointer */
 boolean status = TRUE; /* define and init status variable */

 /* Check input */
 if (pstr == (OCIWchar*) NULL)
 return(FALSE);

 if (*pstr == (OCIWchar) NULL)
 return(FALSE);

 /* check each character for digit */
 do
 {
 if (OCIWideCharIsDigit(envhp, *pstr) != TRUE)
 {
 status = FALSE;
 break; /* non decimal digit character */

Table 5–42 OCIWideCharIsSingleByte Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) OCI environment or user session handle to determine the
character set

wc(IN) wchar for testing
OCI Programming 5-33

Character Set Conversion
 }
 } while (*++pstr != (OCIWchar) NULL);

 return(status);
}

See Oracle Call Interface Programmer’s Guide and Oracle8i Data Cartridge Developer’s
Guide for further information.

Character Set Conversion
Conversion between Oracle character set and Unicode (16 bit, fixed width Unicode

encoding) is supported. Replacement characters will be used if there is no mapping

from Unicode to the Oracle character set, therefore, round-trip conversion is not

always possible.

OCICharSetToUnicode

Syntax
sword OCICharSetToUnicode(dvoid *hndl, ub2 *dst, size_t dstlen, CONST OraText *src, size_t
srclen, size_t *rsize)

Remarks
This function converts a multi-byte string pointed to by src to Unicode into the

array pointed to by dst. The conversion will stop when it reach to the source

limitation or destination limitation. The function will return number of characters

converted into Unicode. If dstlen is zero, it will just return the number of characters

into rsize for the result without real conversion.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

Table 5–43 OCI Character Set Conversion Calls

Function Call Description

OCICharsetToUnicode() Converts a multi-byte string pointed to by src to Unicode into the array pointed
to by dst

OCIUnicodeToCharset() Converts a Unicode string pointed to by src to multi-byte into the array pointed
to by dst

OCICharSetConversionIs
ReplacementUsed()

Indicates whether the replacement character was used for nonconvertible
characters in character set conversion in the last invocation of OCICharsetConv()
5-34 Oracle8i National Language Support Guide

Character Set Conversion
OCIUnicodeToCharSet

Syntax
sword OCIUnicodeToCharSet(dvoid *hndl, OraText *dst, size_t dstlen, CONST ub2 *src, size_t
srclen, size_t *rsize)

Remarks
This function converts a Unicode string pointed to by src to multi-byte into the

array pointed to by dst. The conversion will stop when it reach to the source

limitation or destination limitation. The function will return the number of bytes

converted into multi-byte. If dstlen is zero, it will just return the number of bytes

into rsize for the result without real conversion.

If a Unicode character is not convertible for the character set specified in OCI

environment or user session handle, a replacement character will be used for it. In

this case, OCICharsetConversionIsReplacementUsed() will return true.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

Table 5–44 OCICharSetToUnicode Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) Pointer to an OCI environment or user session handle

dst(OUT) Pointer to a destination buffer

dstlen(IN) The size of the destination buffer in character

src(IN) Pointer to multi-byte source string

srclen(IN) The size of source string in bytes

rsize(OUT) The number of characters converted. If it is a NULL pointer,
nothing to return

Table 5–45 OCIUnicodeToCharSet Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) Pointer to an OCI environment or user session handle

dst(OUT) Pointer to a destination buffer

dstlen(IN) The size of destination buffer in bytes

src(IN) Pointer to a Unicode string
OCI Programming 5-35

Character Set Conversion
OCICharSetConversionIsReplacementUsed

Syntax
boolean OCICharSetConversionIsReplacementUsed(dvoid *hndl)

Remarks
This function indicates whether or not the replacement character was used for

nonconvertible characters in character set conversion in the last invocation of

OCICharSetToUnicode().

Returns
TRUE is the replacement character was used in last OCICharsetConv() invoking,

else FALSE.

Conversion between the Oracle character set and Unicode (16-bit, fixed-width

Unicode encoding) is supported. Replacement characters will be used if there is no

mapping from Unicode to the Oracle character set, thus, round-trip conversion is

not always possible.

Character Set Conversion Sample Code
The following is a simple conversion into Unicode.

size_t MyConvertMultiByteToUnicode(envhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
ub2 *dstBuf;
size_t dstSize;
OraText *srcStr;
{

srclen(IN) The size of source string in characters

rsize(OUT) The number of bytes converted. If it is a NULL pointer,
nothing to return

Table 5–46 OCICharSetConversionIsReplacementUsed Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) Pointer to an OCI environment or user session handle

Table 5–45 OCIUnicodeToCharSet Keywords/Parameters

Keyword/Parameter Meaning
5-36 Oracle8i National Language Support Guide

Messaging Mechanism
 sword ret;
 size_t dstLen = 0;
 size_t srcLen;

 /* get length of source string */
 srcLen = OCIMultiByteStrlen(envhp, srcStr);

 ret = OCICharSetToUnicode(envhp, /* environment handle */
 dstBuf, /* destination buffer */
 dstSize, /* size of destination buffer */
 srcStr, /* source string */
 srcLen, /* length of source string */
 &dstLen); /* pointer to destination length */

 if (ret != OCI_SUCCESS)
 {
 checkerr(envhp, ret, OCI_HTYPE_ENV);
 }
 return(dstLen);
}

See Oracle Call Interface Programmer’s Guide and Oracle8i Data Cartridge Developer’s
Guide for further information.

Messaging Mechanism
The user message API provides a simple interface for cartridge developers to

retrieve their own messages as well as Oracle messages.

Table 5–47 OCI Messaging Function Calls

Function Call Description

OCIMessageOpen() Opens a message handle for facility of product in a language
pointed to by hndl

OCIMessageGet() Retrieves a message with message number identified by msgno
and if the buffer is not zero, the function will copy the message
into the buffer pointed to by msgbuf

OCIMessageClose() Closes a message handle pointed to by msgh and frees any
memory associated with this handle
OCI Programming 5-37

Messaging Mechanism
See Oracle Call Interface Programmer’s Guide and Oracle8i Data Cartridge Developer’s
Guide for further information.

OCIMessageOpen

Syntax
sword OCIMessageOpen(dvoid *hndl, OCIError *errhp, OCIMsg **msghp, CONST OraText *product, CONST
OraText *facility, OCIDuration dur)

Remarks
This function opens a message handle for facility of product in a language pointed

to by hndl. It first tries to open the message file corresponding to hndl for the

facility. If it succeeds, it will use that file to initialize a message handle, else it will

use the default message file which is for American language for the facility. The

function returns a pointer pointed to a message handle into the msghp parameter.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

Table 5–48 OCICharSetConversionIsReplacementUsed Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) Pointer to an OCI environment or user session handle for
message language

errhp(IN/OUT) The OCI error handle. If there is an error, it is record in errhp
and this function returns a NULL pointer. Diagnostic
information can be obtained by calling OCIErrorGet()

msghp(OUT) A message handle for return

product(IN) A pointer to a product name. Product name is used to locate
the directory for message in a system dependent way. For
example, in Solaris, the directory of message files for the
product 'rdbms' is '${ORACLE_HOME}/rdbms'

facility(IN) A pointer to a facility name in the product. It is used to
construct a message file name. A message file name follows the
conversion with facility as prefix. For example, the message file
name for facility 'img' in the American language will be
'imgus.msb' where 'us' is the abbreviation for the American
language and 'msb' as message binary file extension
5-38 Oracle8i National Language Support Guide

Messaging Mechanism
OCIMessageGet

Syntax
OraText *OCIMessageGet(OCIMsg *msgh, ub4 msgno, OraText *msgbuf, size_t buflen)

Remarks
This function will get message with message number identified by msgno and if

buflen is not zero, the function will copy the message into the buffer pointed to by

msgbuf. If buflen is zero, the message will be copied into a message buffer inside

the message handle pointed to by msgh. For both cases. it will return the pointer to

the NULL-terminated message string. If it cannot get the message required, it will

return a NULL pointer.

Returns
A pointer to a NULL-terminated message string on success, otherwise a NULL

pointer.

dur(IN) The duration for memory allocation for the return message
handle. It can be the following values:

OCI_DURATION_PROCESS

OCI_DURATION_STATEMENT

OCI_DURATION_SESSION

Table 5–49 OCIMessageGet Keywords/Parameters

Keyword/Parameter Meaning

msgh(IN/OUT) Pointer to a message handle which was previously opened by
OCIMessageOpen()

msgno(IN) The message number for getting message

msgbuf(OUT) Pointer to a destination buffer to the message retrieved. If
buflen is zero, it can be NULL pointer

buflen(IN) The size of the above destination buffer

Table 5–48 OCICharSetConversionIsReplacementUsed Keywords/Parameters

Keyword/Parameter Meaning
OCI Programming 5-39

Messaging Mechanism
OCIMessageClose

Syntax
sword OCIMessageClose(dvoid *hndl, OCIError *errhp, OCIMsg *msgh)

Remarks
This function closes a message handle pointed to by msgh and frees any memory

associated with this handle.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

LMSGEN

Remarks
The lmsgen utility converts text based message files (.msg) into binary format

(.msb).

Syntax
LMSGEN <text file> <product> <facility> [language]
WHERE,
 <text file> is a message text file
 <product> the name of the product
 <facility> the name of the facility
 [language] optional message language in <language>_<territory>.<character
set> format

This is required if the message file is not tagged properly with language.

Table 5–50 OCIMessageClose Keywords/Parameters

Keyword/Parameter Meaning

hndl(IN/OUT) Pointer to an OCI environment or user session handle for
message language

errhp(IN/OUT) The OCI error handle. If there is an error, it is record in errhp
and this function returns a NULL pointer. Diagnostic
information can be obtained by calling OCIErrorGet()

msgh(IN/OUT) A pointer to a message handle that was previously opened by
OCIMessageOpen()
5-40 Oracle8i National Language Support Guide

Messaging Mechanism
Text Message File Format
■ Lines start with "/" and "//" are treated as internal comments and hence are

ignored.

■ To tag the message file with a specific language:

CHARACTER_SET_NAME= Japanese_Japan.JA16EUC

■ Each message is composed of 3 fields:

<message #>, <warning level #>, <message text>

– Message # has to be unique within a message file.

– Warning level # is not used currently, simply use 0.

– Message text cannot be longer than 76 bytes.

Example
/ Copyright (c) 1988 by the Oracle Corporation. All rights reserved.
/ This is a testing us7ascii message file
CHARACTER_SET_NAME= american_america.us7ascii
/
00000, 00000, "Export terminated unsuccessfully\n"
00003, 00000, "no storage definition found for segment(%lu, %lu)"

Message Example

Settings
This example will retrieve messages from a .msb message file. The following

settings are used:

product = $HOME/myApp
facility = imp
Language = American language

Based on the above setting, the message file $HOME/myApp/mesg/impus.msb will

be used.

Message file
Lmsgen will convert the message file (impus.msg) into binary format (impus.msb).
OCI Programming 5-41

Messaging Mechanism
The following is a portion of the text message file, impus.msg:

...
00128,2, "Duplicate entry %s found in %s"
...

Messaging sample code:
/* Assume that the OCI environment or user session handle, product, facility and
cache size are all initialized properly. */
...
OCIMsg msghnd; /* message handle */
 /* initialize a message handle for retrieving messages from impus.msg*/
err = OCIMessageOpen(hndl,errhp, &msghnd, prod,fac,OCI_DURATION_SESSION);
if (err != OCI_SUCCESS)
 /* error handling */
...
 /* retrieve the message with message number = 128 */
msgptr = OCIMessageGet(msghnd, 128, msgbuf, sizeof(msgbuf));
 /* do something with the message, such as display it */
...
 /* close the message handle when we has no more message to retrieve */
OCIMessageClose(hndl, errhp, msghnd);
5-42 Oracle8i National Language Support Guide

6

Java

This chapter covers NLS issues with the use of Java. It contains:

■ Overview of Oracle8i Java Support

■ JDBC

■ SQLJ

■ Java Virtual Machine

■ Java Stored Procedures

■ CORBA and EJB

■ Configurations for Multilingual Applications

■ Multilingual Demo Applications in SQLJ

■ Summary
Java 6-1

Overview of Oracle8i Java Support
Overview of Oracle8 i Java Support
Java support is included in all tiers of a multi-tier computing environment in order

to enable users to develop and deploy Java programs. You can run Java classes as

Java stored procedures, Java CORBA objects, and Enterprise Java Beans (EJB) on the

Java Virtual Machine (VM) of the database server. Users are able to develop a Java

class, load it into the database, and package it as a stored procedure callable from

SQL. Users can also develop a standard Java CORBA object or EJB, load the related

classes into the database and publish them as a named object callable from any

CORBA or EJB client.

The JDBC driver and SQLJ translator are also provided as programmatic interfaces

enabling Java programs to access the Oracle8i database. Users can write a Java

application using JDBC or SQLJ programs with embedded SQL statements to access

the database. Globalization support is provided across all these Java components to

ensure that they function properly across databases of different character sets and

language environments, and that they enable the development and deployment of

multilingual Java applications for Oracle8i.

This chapter examines the NLS support for individual Java components. Typical

database and client configurations are discussed for multilingual application

deployment, and how the Java components are used in the midst of them. Finally,

the design and implementation of a demo application are explored to demonstrate

how Oracle's Java support is used to make the application run in a multilingual

environment.

Java components provide NLS support and use Unicode as the multilingual

character set of choice. The following are Oracle8i's Java components:

■ JDBC Driver - Oracle provides JDBC as the core programmatic interface for

accessing Oracle8i databases. There are three JDBC drivers provided by Oracle:

two for client access and one for server access.

■ The JDBC OCI driver is used by Java applications

■ The JDBC Thin driver is primarily used by Java applets

■ the JDBC Server driver is a server-side driver that is used by Java classes

running on the Java VM of the database server

■ SQLJ Translator - SQLJ acts like a preprocessor that translates embedded SQL

in the SQLJ program file into a Java source file with JDBC calls. It gives

programmers a higher level of programmatic interface for accessing databases.

■ Java Runtime Environment - A Java VM based on that of the JDK is integrated

into the database server that enables the running of Java classes. It comes with a
6-2 Oracle8i National Language Support Guide

JDBC
set of supporting services such as the library manager, which manages Java

classes stored in the database.

■ CORBA Support - In addition to the Java runtime environment, Oracle

integrates the CORBA Object Request Broker (ORB) into the database server,

and makes the database a CORBA server. Any CORBA client can call the Java

CORBA objects published to the ORB of the database server.

■ EJB Support - The Enterprise Java Bean version 1.0 container is built into the

database server to provide a platform to develop and deploy EJBs.

JDBC
This section describes the following:

■ JDBC Class Library

■ JDBC OCI Driver

■ JDBC Thin Driver

■ JDBC Server Driver

■ The oracle.sql.CHAR Class

■ NLS Restrictions

Oracle JDBC drivers provide globalization support by allowing users to retrieve

data from or insert data into a database in any character set that Oracle supports.

Because Java strings are UCS2 encoded (16-bit Unicode) for JDBC programs, the

target character set on the client is always UCS2. Character set conversion is

required to convert data from the database character set (Db Charset) to UCS2. This

applies to CHAR, LONG, CLOB, and VARCHAR2 data types; RAW data is not

converted.

Following are a few examples of commonly used Java methods for JDBC that rely

heavily on NLS character set conversion:

■ java.sql.ResultSet 's methods getString() and getUnicodeStream()
return values from the database as Java strings and as a stream of Unicode

characters, respectively.

■ oracle.sql.CLOB 's method getCharacterStream() returns the contents

of a CLOB as a Unicode stream.

■ oracle.sql.CHAR 's methods getString() , toString() , and

getStringWithReplacement() .
Java 6-3

JDBC
The techniques that Oracle's drivers use to perform character set conversion for Java

applications depend on the character set the database uses. The simplest case is

where the database uses a US7ASCII or WE8ISO8859P1 character set. In this case,

the driver converts the data directly from the database character set to UCS2,which

is used in Java applications.

If you are working with databases that employ a non-US7ASCII or

non-WE8ISO8859P1 character set (for example, Japanese or Korean), then the driver

converts the data, first to UTF8, then to UCS2.

Figure 6–1 presents a graphical view of how data is converted in JDBC drivers.

Note: The JDBC drivers perform all character set conversions

transparently. No user intervention is necessary for the conversions

to occur.
6-4 Oracle8i National Language Support Guide

JDBC
Figure 6–1 Data Conversion in JDBC Drivers

JDBC Class Library
The JDBC Class Library is a Java layer that implements the JDBC interface. Java

applications, applets and stored procedures interact with this layer. The library

always accepts US7ASCII, UTF8 or WE8ISO8859P1 encoded string data from the

input stream of the JDBC drivers. It also accepts UCS2 for the JDBC server-side

driver. The JDBC Class Library converts the input stream to UCS2 before passing it

to the client applications. If the input stream is in UTF8, the JDBC Class Library

converts the UTF8 encoded string to UCS2 by using the bit-wise operation defined

in the UTF8-to-UCS2 conversion algorithm. If the input stream is in US7ASCII or

WE8ISO8859P1, it converts the input string to UCS2 by casting the bytes to Java

Java Stored
Procedures, or
Corba Objects,
or EJBs

JDBC Server
Driver in C

Oracle8i
Database
Charset

Database Charset

Database Charset

Java strings

UCS2
UTF8
WE8ISO8859PI
US7ASCII

Server

Java strings

UTF8
WE8ISO8859PI
US7ASCII

UTF8
WE8ISO8859PI
US7ASCII

Java strings

Database Charset

UTF8
WE8ISO8859PI
US7ASCII

Client

SQL Engine or
PL/SQL Engine

Java Applets

JDBC Thin
(Calling Java
Socket in Java)

Java Applications

JDBC OCI
(Calling Oracle
OCI in C)

JDBC Class Library in Java

Net8
Java 6-5

JDBC
characters. This is based on the first 128 and 256 characters of UCS2 corresponding

to the US7ASCII and WE8ISO8859P1 character sets, respectively. Treating

WE8ISO8859P1 and US7ASCII separately improves the performance for commonly

used single-byte clients by eliminating the bit-wise conversion to UTF8.

At database connection time, the JDBC Class Library sets the server NLS_

LANGUAGE and NLS_TERRITORY parameters to correspond to the locale of the

Java VM that runs the JDBC driver. This operation is performed on the JDBC OCI

and JDBC Thin drivers only, and ensures that the server and the Java client

communicate in the same language. As a result, Oracle error messages returned

from the server are in the same language as the client locale.

JDBC OCI Driver
In the case of a JDBC OCI driver installation, there is a client-side character set as

well as a database character set. The client character set is determined at

client-installation time by the value of the NLS_LANG environment variable. The

database character set is determined at database creation. The character set used by

the client can be different from the character set used by the database on the server.

So, when performing character set conversion, the JDBC OCI driver has to take

three factors into consideration:

■ the database character set and language

■ the client character set and language

■ the Java application's character set

The JDBC OCI driver transfers the data from the server to the client in the character

set of the database. Depending on the value of the NLS_LANG environment

variable, the driver handles character set conversions in one of two ways.

■ If the value of NLS_LANG is not specified, or if it is set to the US7ASCII or

WE8ISO8859P1 character set, then the JDBC OCI driver uses Java to convert the

character set from US7ASCII or WE8ISO8859P1 directly to UCS2 in the JDBC

class library.

■ If the value of NLS_LANG is set to a non-US7ASCII or non-WE8ISO8859P1

character set, then the driver changes the value of the NLS_LANG parameter

on the client to UTF8. This happens automatically and does not require any

user-intervention. OCI uses the value of NLS_LANG to convert the data from

the database character set to UTF8; the OCI JDBC driver then passes the data to

the JDBC class library where the UTF8 data is converted to UCS2.
6-6 Oracle8i National Language Support Guide

JDBC
JDBC Thin Driver
If your applications or applets use the JDBC Thin driver, then there is no Oracle

client installation. Because of this, the OCI client conversion routines in C are not

available. In this case, the client conversion routines are different from the JDBC

OCI driver.

If the database character set is US7ASCII or WE8ISO8859P1, the data is transferred

to the client without any conversion. The driver then converts the character set to

UCS2 in Java.

If the database character set is something other than US7ASCII or WE8ISO8859P1,

then the server first translates the data to UTF8 before transferring it to the client.

On the client, the JDBC Thin driver converts the data to UCS2 in Java.

JDBC Server Driver
For Java classes running in the Java VM of the Oracle8i Server, the JDBC Server

driver is used to talk to the SQL engine or the PL/SQL engine for SQL processing.

Because the JDBC Server driver is running in the same address space as the Oracle

server process, it makes a local function call to the SQL engine or the PL/SQL

engine. Data sent to or returned from the SQL engine or the PL/SQL engine will be

encoded in the database character set. If the database character set is US7ASCII,

WE8ISO8859P1, or UTF8, no conversion is performed in the JDBC Server driver,

and the data is passed to or from the JDBC Class Library as is. Otherwise, the JDBC

Server driver converts the data from the database character set to UCS2 before

passing them to and from the class library. The class library does not need to do any

conversion in this case.

Notes:

■ The driver sets the value of NLS_LANG to UTF8 to minimize

the number of conversions it performs in Java. It performs the

conversion from the database character set to UTF8 in C.

■ The change to UTF8 is for the JDBC application process only.

■ For more information on the NLS_LANG parameter, see

"Choosing a Locale with NLS_LANG" on page 2-4.

Note: The OCI and Thin drivers both provide the same

transparent support for NLS.
Java 6-7

JDBC
The oracle.sql.CHAR Class
The oracle.sql.CHAR class has special functionality for NLS conversion of

character data. A key attribute of the oracle.sql.CHAR class, and a parameter

always passed in when an oracle.sql.CHAR object is constructed, is the NLS

character set used in presenting the character data. Without a known character set,

the bytes of data in the oracle.sql.CHAR object are meaningless.

JDBC constructs and populates oracle.sql.CHAR objects after character data has

been read from the database.

The oracle.sql.CHAR class provides the following methods for converting

character data to strings:

■ getString() : converts the sequence of characters represented by the

oracle.sql.CHAR object to a string, returning a Java String object. If the

character set is not recognized (that is, if you entered an invalid OracleID),

then getString() throws a SQLException .

■ toString() : identical to getString() , but if the character set is not

recognized (that is, if you entered an invalid OracleID), then toString()
returns a hexadecimal representation of the oracle.sql.CHAR data and does

not throw a SQLException .

■ getStringWithReplacement() : identical to getString() , except a default

replacement character replaces characters that have no Unicode representation

in the character set of this oracle.sql.CHAR object. This default character

varies from character set to character set, but is often a question mark.

Additionally, you might want to construct an oracle.sql.CHAR object yourself

(to pass into a prepared statement, for example). When you construct an

oracle.sql.CHAR object, you must provide character set information to the

oracle.sql.CHAR object by way of an instance of the

oracle.sql.CharacterSet class. Each instance of the CharacterSet class

represents one of the NLS character sets that Oracle supports.

Follow these general steps to construct an oracle.sql.CHAR object:

1. Create a CharacterSet instance by calling the static CharacterSet.make()
method. This method is a factory for the character set class. It takes as input an

integer OracleId , which corresponds to a character set that Oracle supports.

For example:

int OracleId = CharacterSet.JA16SJIS_CHARSET; // this is character set 832
...
CharacterSet mycharset = CharacterSet.make(OracleId);
6-8 Oracle8i National Language Support Guide

JDBC
Each character set that Oracle supports has a unique predefined OracleId .

The OracleId can always be referenced as a character set <Oracle charset

name>_CHARSET where <Oracle charset name> is the Oracle character set.

2. Construct an oracle.sql.CHAR object. Pass to the constructor a string (or the

bytes that represent the string) and the CharacterSet object that indicates

how to interpret the bytes based on the character set. For example:

String mystring = "teststring";
...
oracle.sql.CHAR mychar = new oracle.sql.CHAR(teststring, mycharset);

The oracle.sql.CHAR class has multiple constructors: they can take a string,

a byte array, or an object as input along with the CharacterSet object. In the

case of a string, the string is converted to the character set indicated by the

CharacterSet object before being placed into the oracle.sql.CHAR object.

Refer to the oracle.sql.CHAR class Javadoc for more information.

The server (database) and the client (or application running on the client) can use

different character sets. When you use the methods of this class to transfer data

between the server and the client, the JDBC drivers must convert the data from the

server character set to the client character set (or vice versa).

The oracle.sql.CHAR in Oracle Object Types
In Oracle8i, JDBC drivers support Oracle object types. Oracle objects are always

sent from database to client as an object represented in the database character set.

That means the data conversion path in Figure 6–1, "Data Conversion in JDBC

Drivers", does not apply to Oracle object access. Instead, the oracle.sql.CHAR
class is used for passing string data from the database to the client. An example of

an object type created by SQL:

CREATE TYPE PERSON_TYPE AS OBJECT (NAME VARCHAR2(30), AGE NUMBER);
CREATE TABLE EMPLOYEES (ID NUMBER, PERSON PERSON_TYPE) ;

The Java class corresponding to this object type can be constructed as follows:

public class person implement SqlData
{
 oracle.sql.CHAR name;
 oracle.sql.NUMBER age;
 // SqlData interfaces
 getSqlType() {...}
 writeSql(SqlOutput stream) {...}
Java 6-9

JDBC
 readSql(SqlInput stream, String sqltype) {...}
}

The oracle.sql.CHAR class is used here to map to the NAME attributes of the

Oracle object type which is of VARCHAR type. JDBC populates this class with the

byte representation of the VARCHAR data in the database and the character set

object corresponding to the database character set. The following code retrieves a

person object from the people table,

TypeMap map = ((OracleConnection)conn).getTypeMap();
map.put(“PERSON_TYPE”, Class.forName(“person”));
conn.setTypeMap(map);
 . . .
 . . .
ResultSet rs = stmt.executeQuery(“SELECT PERSON FROM EMPLOYEES”);
rs.next();
person p = (person) rs.getObject(1);
oracle.sql.CHAR sql_name = p.name;
String java_name = sql_name.getString();

The getString() method of the oracle.sql.CHAR class converts the byte array

from the database character set to UCS2 by calling Oracle's Java data conversion

classes and return a Java string. For the rs.getObject(1) call to work, the

SqlData interface has to be implemented in the class person , and the Typemap

map has to be set up to indicate the mapping of the object type PERSON_TYPE to

the Java class.

NLS Restrictions

Data Size Restriction for NLS Conversions
There is a limit on the maximum sizes for CHAR and VARCHAR2 datatypes when

used in bind calls. This limitation is necessary to avoid data corruption. Data

corruption occurs only with binds (not for defines) and it affects only CHAR and

VARCHAR2 datatypes if you are connected to a multibyte character set database.

The maximum bind lengths are limited in the following way:

CHARs and VARCHAR2s experience character set conversions that can result in an

increase in the length of the data in bytes. The ratio between data sizes before and

after a conversion is called the NLS Ratio. After conversion, the bind values should

not be greater than 4 Kbytes.
6-10 Oracle8i National Language Support Guide

JDBC
For example, when connecting to an Oracle8 server, you cannot bind more than:

■ min (2000, 4000 / NLS_RATIO) for CHAR types

OR

■ 4000 / NLS_RATIO for VARCHAR2 types

Table 6–2 contains examples of the NLS Ratio and maximum bind values for some

common server character sets.

Character Integrity Issues in an NLS Environment
Oracle JDBC drivers perform character set conversions as appropriate when

character data is inserted into or retrieved from the database, i.e., the drivers

convert Unicode characters used by Java clients to Oracle database character set

characters, and vice versa. Character data making a round trip from the Java

Unicode character set to the database character set and back to Java can suffer some

loss of information. This happens when multiple Unicode characters are mapped to

a single character in the database character set. An example would be the Unicode

full-width tilde character (0xFF5E) and its mapping to Oracle's JA16SJIS character

set. The round trip conversion for this Unicode character results in the Unicode

character 0x301C, which is a wave dash (a character commonly used in Japan to

indicate range), not a tilde.

Table 6–1 New Restricted Maximum Bind Length for Client-Side Drivers

Driver Datatype
Old Max Bind
Length (bytes)

New Restricted Max Bind Length
(bytes)

Thin and OCI CHAR 2000 min(2000,4000 / NLS_Ratio)

VARCHAR2 4000 (4000 / NLS_Ratio)

Table 6–2 NLS Ratio and Size Limits for Common Server Character Sets

Server Character Set NLS Ratio
Maximum Bind Value on
Oracle8 Server (in bytes)

WE8DEC 1 4000

US7ASCII 1 4000

 ISO 8859-1 through 10 1 4000

JA16SJIS 2 2000

JA16EUC 3 1333
Java 6-11

SQLJ
Figure 6–2 Character Integrity

This issue is not a bug in Oracle's JDBC, but rather is an unfortunate side effect of

the ambiguity in character mapping specification on different operating systems.

Fortunately, this problem affects only a small number of characters in a small

number of Oracle character sets such as JA16SJIS, JA16EUC, ZHT16BIG5, and

KO16KS5601. The workaround is to avoid making a full round-trip with these

characters.

SQLJ
SQLJ is a SQL-to-Java translator that translates embedded SQL statements in a Java

program into the corresponding JDBC calls irrespective of which JDBC driver is

used. It also provides a callable interface that the Oracle8i database server uses to

transparently translate the embedded SQL in server-side Java programs. SQLJ by

itself is a Java application that reads the SQLJ programs (Java programs containing

embedded SQL statements) and generates the corresponding Java program files

with JDBC calls. There is an option to specify a checker to check the embedded SQL

statements against the database at translation time. The javac compiler is then

used to compile the generated Java program files to regular Java class files.

Figure 6–3 presents a graphical view of how the SQLJ translator works.

Oracle database
Character Set

(JA16SJIS) Java UnicodeJava Unicode

0x8160

0xFF5E

0x301C
0x301C

0xFF5E

...

...

...

...

...
...

...

...
6-12 Oracle8i National Language Support Guide

SQLJ
Figure 6–3 Using the SQLJ Translator

SQLJ enables multilingual Java application development by allowing SQLJ files

encoded in different encoding schemes (those supported by the JDK). In the

diagram above, a UCS2 encoded SQLJ program is being passed to the SQLJ

translator and the Java program output is also encoded in UCS2. SQLJ preserves the

encoding of the source in the target. To specify the encoding of the source, use the

-encoding option as follows:

sqlj -encoding Unicode <source file>

Unicode notation \uXXXX (which is referred to as a Unicode escape sequence) can

be used in embedded SQL statements for characters that cannot be represented in

the encoding of the SQLJ program file. This enables you to specify multilingual

object names in the SQL statement without using a UCS2 encoded SQLJ file. The

following SQLJ code shows the usage of Unicode escape sequences in embedded

SQL as well as in a string literal.

int empno = 12345;
#sql {insert into E\u0063\u0064 (ENAME, EMPNO) values ('Joe', :empno)};
String name ename = "\ua0a1\ua0a2";
double raise = 0.1;
#sql { update EMP set SAL = :(getNewSal(raise, ename))
where ENAME = :ename;

See "Multilingual Demo Applications in SQLJ" on page 6-27 for an example of SQLJ

usage for a multilingual Java application.

Regular Java
class file

SQLJ program
(encoded in
UCS2)

Java program
with JDBC calls
(encoded in
UCS2)

Oracle8i

SQLJ translator Java Compiler
JDBC driver
Java 6-13

Java Virtual Machine
Java Virtual Machine
The Oracle8i Java VM base is integrated into the database server to enable the

running of Java classes stored in the database. Oracle8i allows user to store Java

class files, Java or SQLJ source files and Java resource files into the database, to

publish the Java entry points to SQL so that it can be called from SQL or PL/SQL,

and to run the Java byte code.

In addition to the engine that interprets Java byte code, the Oracle Java VM includes

the core run-time classes of the JDK. The components of the Java VM are depicted in

Figure 6–4.

Figure 6–4 Components of Oracle’s Java Virtual Machine

The Java VM provides an embedded Java class loader that locates, loads, and

initializes locally stored Java classes in the database, and a byte code compiler

which translates standard Java programs into standard Java .class binary

representation. A library manager is also included to manage Java program, class,

and resource files as schema objects known as library units. It not only loads and

manages these Java files in the database, but also maps Java name space to library

units. For example:

public class Greeting
{
 public String Hello(String name)

Byte code interpreter
+

run time

Java compiler

Class loader

Object memories
+

garbage collector

Library manager RDBMS
memory manager Java VM

Java VM

Net8 and IIOP

loadjava
6-14 Oracle8i National Language Support Guide

Java Stored Procedures
 {
 return ("Hello" + name + "!");
 }
}

After the preceding Java code is compiled, it is loaded into the database as follows:

loadjava Greeting.class

As a result, a library unit called Greeting , is created as a schema object in the

database. If the class name contains characters that cannot be represented in the

database character set, a US7ASCII library unit name is generated and mapped to

the real class name stored in a RAW column so that the class loader can find the

library unit corresponding to the real class name when the real class name is

referenced in a Java program running in the server. In other words, the library

manager and the class loader support class names or method names outside the

namespace of the database character set.

Java Stored Procedures
A Java stored procedure or function requires that the library unit of the Java classes

implementing it already be present in the database. Using the Greeting library

unit example in the previous section, the following call specification DDL publishes

the method Greeting.Hello() as a Java stored function:

CREATE FUNCTION MYHELLO(NAME VARCHAR2) RETURN VARCHAR2
AS LANGUAGE JAVA NAME
'Greeting.Hello(java.lang.String) return java.lang.String';

The DDL maps the Java methods, parameter types and return types to the SQL

counterparts. To the users, the Java stored function has the same calling syntax as

any other PL/SQL stored functions. Users can call the Java stored procedures the

same way they call any PL/SQL stored procedures. Figure 6–5 depicts the runtime

environment of a stored function.
Java 6-15

Java Stored Procedures
Figure 6–5 Running of Java Stored Procedures

The Java entry point, Greeting.Hello() , is called by invoking the proxy

PL/SQL MYHELLO() from the client. The server process serving the client runs as a

normal PL/SQL stored function; when the PL/SQL engine finds that it is a call

specification of the Java method, it calls the Java VM, and passes the method name

of the Java stored function and the argument to the Java VM for execution. The Java

VM takes control, calls the SQL to Java using code to convert the VARCHAR2

argument from the database character set to UCS2, loads the class Greeting , and

runs the method Hello() with the converted argument. The string returned by

Hello() is then converted back to the database character set and returned as a

VARCHAR2 string to the caller.

The globalization support that enables deployment and development of

internationalized Java stored procedures includes:

1. The strings in the arguments of Java stored procedures are automatically

converted from SQL data types (in the database character set) to UCS2-encoded

Java strings.

PL/SQL engine

MYHELLO('Oracle')

Java VM

Greeting.Hello()

Server response
to the Java stored
procedure call

Net8

Database Charset

Client running

SQL>CALL
 MYHELLO('Oracle');
SQL>SELECT MYHELLO
 (ENAME)FROM EMP;

Oracle8i

MYHELLO(VARCHAR2)

Greeting.class

Invoke Java VM to run the
Greeting.Hello() method

Convert the argument from
Database Charset to UCS2
before passing it to the method.
The Java VM locale is Japanese.
The Java VM encoding is the
database character set.

NLS_LANG=
JAPANESE_JAPAN.JA16SJIS
6-16 Oracle8i National Language Support Guide

CORBA and EJB
2. The default Java locale of the Java VM follows the language setting (defined by

the NLS_LANGUAGE and NLS_TERRITORY database parameters) of the

current database session propagated from the NLS_LANG environment

variable of the client. A mapping on Oracle language and territory names to

Java locale names is in place for this purpose. In additions, the default encoding

of the Java VM follows the database character set.

3. The loadjava utility supports loading of Java and SQLJ source files encoded

in any encoding supported by the JDK. The content of the Java or SQLJ

program is not limited by the database character set. Unicode escape sequences

are also supported in the program files.

CORBA and EJB
Visigenic's CORBA Object Request Broker (ORB) is integrated into the database

server to make it a Java CORBA object and EJB server running the IIOP protocol.

CORBA support also includes a set of supporting services that enables the

deployment of CORBA objects to the database. For more information regarding

Oracle's CORBA support, see Oracle8 Database Programming with Java.

CORBA ORB
The CORBA ORB is written in Java and includes an IIOP interpreter and the object

adapter. The IIOP interpreter processes the IIOP message by invoking the object

adapter to look for the CORBA object being activated and load it into the memory,

and running the object method specified in the message.

A couple of CORBA objects are predefined. The LoginServer object is used for

explicit session log in, and the PublishContext object is to used to resolve a

published CORBA object name to the corresponding PublishedObject .

CORBA objects implemented in Java in Oracle8i are required to be loaded and then

published before the client can reference it. Publish is a Java written utility that

publishes a CORBA object to the ORB by creating an instance of

PublishedObject which represents and activates the CORBA object, and binding

the input (CosNaming) name to the published object.

Note: The entry method name and class name of a Java stored

procedure has to be in the database character set because it has to

be published to SQL as DDL.
Java 6-17

CORBA and EJB
Oracle8i implements the CosNaming standard for specifying CORBA object names.

CosNaming provides a directory-like structure that is a context for binding names

to CORBA objects. A new JNDI URL, "sess_iiop:" is created, and indicates a session

based IIOP connection for a CORBA object. A name for a CORBA object in the local

database can be published as:

sess_iiop://local:2222:ORCL/Demo/MyGreeting

where 2222 is the port number for receiving IIOP requests, ORCL is the database

instance identifier and /Demo/MyGreeting is the name of the published object.

The namespace for CORBA objects in Oracle8i is limited to US7ASCII characters.

Figure 6–6 presents a graphical view of the components in a CORBA environment:

Figure 6–6 Components Supporting CORBA

Java CORBA Object
The CORBA objects for Oracle8i can only be written in Java and they run on the

Java VM of the database. The CORBA client can be written in any language the

CORBA ORB

Object adapter

JDBC KPRB

Java VM
IIOP

Java CORBA client

Browser

Greeting=
lookup("/Demo/MyGreeting");
Greeting.Hello('Oracle');

Greeting.jar

IIOP interpreterORB

Oracle8i

/Demo/MyGreeting

PublishedObject

GreetingImpl

publish

loadjava

GreetingImpl

LoginServer

PublishContext

PublishedObject
for GreetingImpl
6-18 Oracle8i National Language Support Guide

CORBA and EJB
standard supports. An interface definition language (IDL) file that identifies the

CORBA objects and their interfaces will be compiled with the idl2java translator to

generate the stub for the client and the skeleton code for the CORBA server objects.

CORBA object programmers are required to program the implementation classes of

the CORBA objects defined in the IDL in Java by extending the skeleton classes

generated and load them to the database together with the skeleton code.

Greeting.idl
Module Demo
{
 interface Greeting
 {
 wstring Hello(string str);
 };
};

>idl2java Greeting.IDL
Creating:
 Demo/Greeting.java
 Demo/GreetingHolder.java
 Demo/GreetingHelper.java
 Demo/_GreetingImpBase.java

GreetingImpl.java
public class GreetingImpl
extends _GreetingImplBase
implements ActivatableObject
{
 public GreetingImpl (String name)
 {
 super(name);
 }
 public GreetingImpl()
 {
 super();
 }
 public org.omg.CORBA.Object
 _intializeAuroraObject()
 {
 return this
 }
 public String Hello(String str)
 {
Java 6-19

CORBA and EJB
 return "Hello" + str;
 }
}

In the above code, the CORBA object Greeting has been implemented with a

method called Hello() . The CORBA standard defines the wstring data type to

pass multibyte strings via CORBA/IIOP, and the Visigenic ORB implements the

wstring data type as a Unicode string. If the string data type is specified

instead, the parameter passed into the Hello() method is assumed to be a single

byte. The wstring data type enables the development of multilingual CORBA

objects. The implementation class for Greeting extends the skeleton class

_GreetingImplBase generated by idl2java.

Once the CORBA object has been implemented, the below example shows the steps

involved in loading the Java object implementation classes into the database and

publishing the Java CORBA object using the CosNaming convention.

loadjava -user scott/tiger -grant public Greeting.jar
publish -user scott -password tiger -service
 sess_iiop://local:2222:orcl/Demo/MyGreeting
 Demo.GreetingImpl Demo.GreetingHelper

Assume that all Java classes (implementation and helper classes) required to

implement the Greeting object are in the Greeting.jar file. They are loaded to

the database as public, and the implementation class is published to the database.

The name of the published object is /Demo/MyGreeting , and it is used in the

client code to reference this CORBA object.

Java CORBA Client
Clients accessing a CORBA object in the database require an ORB and

authentication from the database where the object is stored. The following is a

excerpt of a client code in Java accessing the Greeting object. The ORB is

initialized when the CORBA object is first activated via Oracle's implementation of

JNDI.

import java.util.Hashtable;
import javax.naming.*;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class Client
{
 public static void main(String args[]) throws Exception
 {
 Hashtable environment = new Hashtable();
6-20 Oracle8i National Language Support Guide

CORBA and EJB
 environment.put(javax.naming.Context.URL_PKG_PREFIXES,
 "oracle.aurora.jndi");
 environment.put(Context.SECURITY_PRINCIPAL, "scott");
 environment.put(Context.SECURITY_CREDENTIALS, "tiger");
 environment.put(Context.SECURITY_AUTHENTICATION,
 ServiceCtx.NON_SSL_CREDENTIAL);

 Context ic = new InitialContext(environment);
 Greeting greet = (Greeting)
 ic.lookup("sess_iiop://local:2222:ORCL/Demo/MyGreeting");
 System.out.println(greet.Hello(arg[0]));
 }
}

The database is a secure environment, so Java clients must be authenticated before

they can access CORBA objects, and the locale of the Java VM running the CORBA

object is initialized when the session running the object is authenticated. To access a

CORBA object, users can use explicit or implicit authentication:

1. Implicit Authentication: - The client can initialize the service context object

with its user name and password as shown in the above code. The default

locale of the client Java VM is implicitly stored in the service context object and

passed to the server ORB in the first IIOP request. The server Java VM locale is

initialized with the same locale as the client.

2. Explicit Authentication: - The client can call the authenticate() method of

the Login object to access the LoginServer CORBA object in the server. The

LoginServer object can be accessed without being authenticated. The

authenticate() method accepts user name, password, role and Java locale

as arguments. If the Java locale argument is not provided, the default locale of

the Java VM in the server will be initialized to the database language defined by

the NLS_LANGUAGE and NLS_TERRITORY database parameters.

Enterprise Java Beans
In addition to CORBA objects, Oracle provides tools and an environment for

developing and deploying EJBs in the Oracle8i server. An EJB is called using the

IIOP protocol provided for CORBA support, and hence shares a lot of similarities

with the CORBA object. An EJB is defined in the EJB descriptor, which specifies the

home interface, remote interface, home name and allowed identities of the EJB

among other things. For basic concepts about EJBs, refer to Oracle8i Enterprise
JavaBeans and CORBA Developer’s Guide. The following shows the EJB descriptor for
Java 6-21

CORBA and EJB
GreetingBean, which is functionally equivalent to the CORBA object Greeting

described earlier.

SessionBean GreetingServer.GreetingBean
{
 BeanHomeName = "Demo/MyGreeting";
 RemoteInterfaceClassName = hello.Greeting;
 HomeInterfaceClassName = hello.GreetingHome;
 AllowedIdentities = { PUBLIC };
 RunAsMode = CLIENT_IDENTITY;
 TransactionAttribute = TX_SUPPORTS;
}

An EJB descriptor can be in any encoding supported by the JDK. However, only the

AllowedIdentities field can be non-US7ASCII. There are two ways you can specify

non-US7ASCII AllowedIdentities.

1. Use the encoding of the non-US7ASCII character set for the EJB descriptor file

and specify -encoding command line argument to tell ejbdeploy the encoding of

the input file.

2. Use the corresponding Unicode escape sequence to represent the non-US7ASCII

identities.

The implementation class for the EJB is in GreetingBean.java package

GreetingServer ;

import javax.ejb.SessionBean;
import javax.ejb.CreateException;
import javax.ejb.SessionContext;
import java.rmi.RemoteException;

public class GreetingBean implements SessionBean

{
 // Methods of the Greeting interface
 public String Hello (String str) throws RemoteException
 {
 return "Hello" + str;
 }
 // Methods of the SessionBean
 public void ejbCreate () throws RemoteException, CreateException {}
 public void ejbRemove() {}
 public void setSessionContext (SessionContext ctx) {}
 public void ejbActivate () {}
 public void ejbPassivate () {}
6-22 Oracle8i National Language Support Guide

CORBA and EJB
}

Note that all strings passed to the EJB as arguments and returned from the EJB as

function values are UCS2 encoded Java strings.

An EJB resembles a CORBA object in that it is required to be published before being

referenced. The EJB Home name specified in the EJB descriptor will be used to

publish. For example:

deployejb -republish -temp temp -u scott -p tiger -encoding Unicode
 -s sess_iiop://local:2222:ORCL -descriptor Greeting.ejb server.jar

Because deployejb uses IIOP to connect to Oracle, the service name (-s) for the IIOP

service of the database server has to be specified. Also, server.jar should contain

the class files for the home interface object, remote interface object, and the bean

implementation object of the EJB Greeting. Note that -encoding is required if the EJB

descriptor file Greeting.ejb is in different encoding from the default encoding of

the Java VM. In this example, the Greeting.ejb is a Unicode text file.

EJB Client
An EJB client is like a CORBA client in that it can be a Java program using Oracle's

JNDI interface to authenticate a session and look for the EJB object in the database

server. To look for the corresponding EJB object, the EJB client looks for the home

interface object whose name is specified in the EJB descriptor and calls the

create() method of this home interface object to create the EJB instance in the

database server. Once the instance of the EJB is created, you can call the methods

within it.

The following code shows how the EJB client calls the Hello() method of the EJB

called "Demo/Greeting". It is functionally equivalent to the code of the CORBA

Client in the previous section, but uses the explicit authentication mechanism.

import Demo.Greeting; //Remote interface object
import Demo.GreetingHome; //Home interface object
import javax.naming.*;
import java.util.Hashtable;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.client.*;
public class Client
{
 public static void main (String[] args) throws Exception
 {
 Hashtable environment = new Hashtable ();
 environment.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Java 6-23

Configurations for Multilingual Applications
 Context ic = new InitialContext (environment);
 // Login to the 8i server
 LoginServer lserver = (LoginServer)
 ic.lookup ("sess_iiop://local:2222:ORCL/etc/login");
 Login li = new Login (lserver)
 li.authenticate (username, password, null);
 // Activate a Greeting instance in the 8i server
 // This creates a first session in the server

 GreetingHome greetingHome = (GreetingHome)
 ic.lookup ("sess_iiop://local:2222:ORCL/Demo/MyGreeting");
 Greeting greet = greetingHome.create ();
 System.out.println (greet.Hello (arg[0]));
 }
}

Similar to the implicit authentication mechanism, the explicit authentication

protocol, namely the li.authenticate() call, will automatically pass the default

Java locale of the client to the LoginServer object in the database server. This Java

locale will be used to initialize the Java locale of the server Java VM on which the

EJB runs. In addition, the NLS_LANGUAGE and NLS_TERRITORY session

parameters will be set to reflect this Java VM locale. This is to preserve the locale

settings from EJB client to EJB server so that server uses the same language as the

client.

Configurations for Multilingual Applications
To develop and deploy multilingual Java applications for Oracle8i, the database

configurations and client environments for the targeted systems have to be

determined first.

Multilingual Database
To choose a database character set for multilingual applications, the following

should be considered.

1. The languages to be supported - If only single-byte western European languages

are to be supported, WE8ISO8859P1 should be used. Otherwise, UTF8 should

be used as the database character set. UTF8 can represent data from the

Unicode 2.1 standard, which is comprised of characters from the most

commonly used languages in the world. UTF8 is good for supporting both

single-byte languages and multibyte languages at the same time.
6-24 Oracle8i National Language Support Guide

Configurations for Multilingual Applications
2. Performance of the database - If UTF8 is used, Oracle8i treats it as a multibyte

character set and follows a different code path from that of single-byte character

set. In this case, the performance of the UTF8 character set is worse than a

single-byte character set such as WE8ISO8859P1, but comparable to a multibyte

character set such as JA16SJIS.

3. Database replication - If the languages of single- and multibyte character sets

are required to be supported and performance cannot be sacrificed, users may

consider using UTF8 as a master database and replicate it with a single-byte

character set database for European sites, and multibyte character sets for Asian

sites. For multilingual sites, the master database will be used.

To use a UTF8 database, consider the following design issues:

1. Because a maximum of 3 bytes is required to represent a Unicode character

from any other character set in UTF8, the size of the VARCHAR2 or CHAR data

type should be 3 times the number of Unicode characters required to be stored

in a column.

2. Because Oracle identifiers use VARCHAR(30) in the data dictionary, the strictest

limit for the length of identifier names is 10 Unicode characters in any client

character set.

Internationalized Java Server Objects
For each Oracle8i session, a separate Java VM instance is created in the server for

running the Java object, and Oracle8i Java support ensures that the locale of the Java

VM instance is the same as that of the client Java VM. For non-Java clients, the

default locale of the Java VM instance will be the best matched Java locale

corresponding to the NLS_LANGUAGE and NLS_TERRITORY session parameters

propagated from the client NLS_LANG environment variable.

Java objects in the database such as Java stored procedures, Java CORBA, and EJB

objects are server objects which are accessible from clients of different language

preferences, and therefore, should be internationalized in such a way that they are

sensitive to the Java VM locale. For example, with JDK internationalization support,

all localizable strings or objects from a Java stored procedure, Java CORBA object,

or EJB should be externalized to resource bundles and make the resource bundles as

part of the procedure, object, or EJB. With the use of resource bundles, any messages

gotten back from the Java server objects will be in the language of the client locale.

In addition to the resource bundles, all Java locale-sensitive classes such as date and

time formats can be used with the assumption that they will reflect the locale of the

calling client.
Java 6-25

Configurations for Multilingual Applications
All Java server objects access the database with the JDBC Server driver and should

use either a Java string or oracle.sql.CHAR to represent string data to and from

the database. Java strings are always encoded in UCS2, and the required conversion

from the database character set to UCS2 is transparently done as described

previously. oracle.sql.CHAR stores the database data in byte array and tags it

with a character set ID. It should be used when no string manipulation is required

on the data. For example, oracle.sql.CHAR is the best choice for transferring

string data from one table to another in the database.

When developing Java CORBA objects, the wstring data type should be used in

the IDL as described in "Java CORBA Object" on page 6-20 to ensure Unicode data

is being passed from client to server.

Clients of Different Languages
Clients (or middle tiers) can be of different language preferences, database access

mechanisms, and Java runtime environments. The following are several commonly

used client configurations.

1. Java CORBA clients running an ORB - A CORBA client written in Java can

access CORBA objects in the database server via IIOP. The client can be of

different language environments. Upon log in, the locale of the Java VM

running the CORBA client will be automatically sent to the database ORB, and

is used to initialize the Java VM session running the server objects. The use of

the wstring data type of the server objects ensures the client and server

communicate in Unicode.

2. Java applets running in browsers - Java applets running in browsers can access

the Oracle8i database via the JDBC Thin driver. No client-side Oracle library is

required. The applets use the JDBC Thin driver to invoke SQL, PL/SQL as well

as Java stored procedures. The JDBC Thin driver makes sure that Java stored

procedures run in the same locale as that of the Java VM running the applets.

3. Java applications running on client Java VMs - Java applications running on

the Java VM of the client machine can access the database via either JDBC OCI

or JDBC Thin drivers. Java applications can also be a middle tier servlet

running on a Web server. The applications use JDBC drivers to invoke SQL,

PL/SQL as well as Java stored procedures. The JDBC Thin and JDBC OCI

drivers make sure that Java stored procedures will be running in the same

locale as that of the client Java VM.

4. C clients such as OCI, Pro*C, and ODBC - Non-Java clients can call Java stored

procedures the same way they call PL/SQL stored procedures. The Java VM

locale is the best match of Oracle's language settings NLS_LANGUAGE and
6-26 Oracle8i National Language Support Guide

Multilingual Demo Applications in SQLJ
NLS_TERRITORY propagated from the NLS_LANG environment variable of

the client. As a result, the client always gets messages from the server in the

language specified by NLS_LANG. Data in the client are converted to and from

the database character set by OCI.

Multilingual Demo Applications in SQLJ
This section contains a simple bookstore application written in SQLJ to demonstrate

a database storing book information of different languages, and how SQLJ and

JDBC are used to access the book information from the database. It also

demonstrates the use of internationalized Java stored procedures to accomplish

transactional tasks in the database server. The demo program consists of the

following components:

■ The SQLJ client Java application that displays a list of books in the store and

allow users to add new books to and remove books from the inventory

■ A Java stored procedure to add a new book to the inventory

■ A Java stored procedure to remove an existing book from the inventory

The Database Schema
UTF8 is used as the database character set to store book information, such as names

and authors, in languages around the world. The following tables in Figure 6–7 are

defined for storing the book and inventory information of the store.

Figure 6–7 Sample Tables

In addition, indexes are built with the NAME and AUTHOR columns of the BOOK

table to speed up searching for books. A sequence BOOKSEQ will be created to

generate a unique Book ID.

Book

Field Names

ID (PRIMARY KEY)

NAME

PUBLISH_DATE

PRICES

AUTHOR

Data Types

NUMBER(10)

VARCHAR(300)

DATE

NUMBER(10,2)

VARCHAR(120)

Inventory

Field Names

ID (PRIMARY KEY)

LOCATION (PRIMARY KEY)

QUANTITY

Data Types

NUMBER(10)

VARCHAR(90)

NUMBER(3)
Java 6-27

Multilingual Demo Applications in SQLJ
Java Stored Procedures
The Java class called Book is created to implement the methods Book.remove()
and Book.add() that perform the tasks of removing books from and adding books

to the inventory respectively. They are defined as per the following code. In this

class, only the remove() method and the constructor are shown. The resource

bundle BookRes.class is used to store localizable messages. The remove()
method returns a message gotten from the resource bundle according to the current

Java VM locale. There is no JDBC connection required to access the database since

the stored procedure is already running in the context of a database session.

import java.sql.*;
import java.util.*;
import sqlj.runtime.ref.DefaultContext;
/* The book class implementation the transaction logics of the
 Java stored procedures.*/
public class Book
{
 static ResourceBundle rb;
 static int q, id;
 static DefaultContext ctx;
 public Book()
 {
 try
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 DefaultContext.setDefaultContext(ctx);
 rb = java.util.ResourceBundle.getBundle("BookRes");
 }
 catch (Exception e)
 {
 System.out.println("Transaction failed: " + e.getMessage());
 }
 }
 public static String Remove(int id, int quantity, String location) throws
 SQLException
 {
 rb = ResourceBundle.getBundle("BookRes");
 try
 {
 #sql {SELECT QUANTITY INTO :q FROM INVENTORY WHERE ID = :id AND
 LOCATION = :location};
 if (id == 1) return rb.getString ("NotEnough");
 }
 catch (Exception e)
6-28 Oracle8i National Language Support Guide

Multilingual Demo Applications in SQLJ
 {
 return rb.getString ("NotEnough");
 }
 if ((q - quantity) == 0)
 {
 #sql {DELETE FROM INVENTORY WHERE ID = :id AND LOCATION = :location};
 try
 {
 #sql {SELECT SUM(QUANTITY) INTO :q FROM INVENTORY WHERE ID = :id};
 }
 catch (Exception e)
 {
 #sql { DELETE FROM BOOK WHERE ID = :id };
 return rb.getString("RemoveBook");
 }
 return rb.getString("RemoveInventory");
 }
 else
 {
 if ((q-quantity) < 0) return rb.getString ("NotEnough");
 #sql { UPDATE INVENTORY SET QUANTITY = :(q-quantity) WHERE ID = :id and
 LOCATION = :location };
 return rb.getString("DecreaseInventory");
 }
 }
 public static String Add(String bname, String author, String location,
 double price, int quantity, String publishdate) throws SQLException
 {
 rb = ResourceBundle.getBundle("BookRes");
 try
 {
 #sql { SELECT ID into :id FROM BOOK WHERE NAME = :bname AND AUTHOR =
 :author };
 }
 catch (Exception e)
 {
 #sql { SELECT BOOKSEQ.NEXTVAL INTO :id FROM DUAL };
 #sql { INSERT INTO BOOK VALUES (:id, :bname,
 TO_DATE(:publishdate,'YYYY-MM-DD'), :author, :price) };
 #sql { INSERT INTO INVENTORY VALUES (:id, :location, :quantity) };
 return rb.getString("AddBook");
 }
 try
 {
 #sql { SELECT QUANTITY INTO :q FROM INVENTORY WHERE ID = :id
Java 6-29

Multilingual Demo Applications in SQLJ
 AND LOCATION = :location };
 }
 catch (Exception e)
 {
 #sql { INSERT INTO INVENTORY VALUES (:id, :location, :quantity) };
 return rb.getString("AddInventory");
 }
 #sql { UPDATE INVENTORY SET QUANTITY = :(q + quantity) WHERE ID = :id
 AND LOCATION = :location };
 return rb.getString("IncreaseInventory");
 }
}

Once the methods Book.remove() and Book.add() are defined, they are in turn

published as Java stored functions in the database called REMOVEBOOK() and

ADDBOOK() as follows:

CREATE FUNCTION REMOVEBOOK (ID NUMBER, QUANTITY NUMBER,
 LOCATION VARCHAR2)
 RETURN VARCHAR2
 AS LANGUAGE JAVA NAME
 'Book.remove(int, int, java.lang.String) return java.lang.String';

CREATE FUNCTION ADDBOOK (NAME VARCHAR2, AUTHOR VARCHAR2,
 LOCATION VARCHAR2, PRICE NUMBER, QUANTITY NUMBER, PUBLISH_DATE DATE)
 RETURN VARCHAR2
 AS LANGUAGE JAVA NAME
 'Book.add(java.lang.String, java.lang.String, java.lang.String,
 double, int, java.sql.Date) return java.lang.String';

Note that the Java string returned will first be converted to a VARCHAR2 string,

which is encoded in the database character set, before they are passed back to the

client. If the database character is not UTF8, any Unicode characters in the Java

strings that cannot be represented in the database character set will become "?".

Similarly, the VARCHAR2 strings, which are encoded in the database character set,

are converted to Java strings before being passed to the Java methods.

The SQLJ Client
The SQLJ client is a GUI Java application using either a JDBC Thin or JDBC OCI

driver. It connects the client to a database, displays a list of books given a searching

criterion, removes selected books from the inventory, and adds new books to the

inventory. A class called BookDB is created to accomplish these tasks, and it is

defined in the following code.
6-30 Oracle8i National Language Support Guide

Multilingual Demo Applications in SQLJ
A BookDB object is created when the demo program starts up with the user name,

password and the location of the database, and the methods are called from the GUI

portion of the applications. The methods removeBook() and addBook() call the

corresponding Java stored functions in the database and return the status of the

transaction. The methods searchByName() and searchByAuthor() list books

by name and author respectively, and store the results in the iterator books (the

BookRecs class is generated by SQLJ) inside the BookDB object. The GUI code in

turn calls the getNextBook() function to retrieve the list of books from the

iterator object until a NULL is returned. The getNextBook() function simply

fetches the next row from the iterator.

package sqlj.bookstore;

import java.sql.*;
import sqlj.bookstore.BookDescription;
import sqlj.runtime.ref.DefaultContext;
import java.util.Locale;
/*The iterator used for a book description when communicating with the server*/
#sql iterator BooksRecs(int ID, String NAME, String AUTHOR, Date PUBLISH_DATE,
 String LOCATION, int QUANTITY, double PRICE);
/*This is the class used for connection to the server.*/
class BookDb
{
 static public final String DRIVER = "oracle.jdbc.driver.OracleDriver";
 static public final String URL_PREFIX = "jdbc:oracle:thin:@";
 private DefaultContext m_ctx = null;
 private String msg;
 private BooksRecs books;
 /*Constructor - registers the driver*/
 BookDb()
 {
 try
 {
 DriverManager.registerDriver
 ((Driver) (Class.forName(DRIVER).newInstance()));
 }
 catch (Exception e)
 {
 System.exit(1);
 }
 }
 /*Connect to the database.*/
 DefaultContext connect(String id, String pwd, String userUrl) throws
 SQLException
Java 6-31

Multilingual Demo Applications in SQLJ
 {
 String url = new String(URL_PREFIX);
 url = url.concat(userUrl);
 Connection conn = null;
 if (m_ctx != null) return m_ctx;
 try
 {
 conn = DriverManager.getConnection(url, id, pwd);
 }
 catch (SQLException e)
 {
 throw(e);
 }
 if (m_ctx == null)
 {
 try
 {
 m_ctx = new DefaultContext(conn);
 }
 catch (SQLException e)
 {
 throw(e);
 }
 }
 return m_ctx;
 }
 /*Add a new book to the database.*/
 public String addBook(BookDescription book)
 {
 String name = book.getTitle();
 String author = book.getAuthor();
 String date = book.getPublishDateString();
 String location = book.getLocation();
 int quantity = book.getQuantity();
 double price = book.getPrice();
 try
 {
 #sql [m_ctx] msg = {VALUE (ADDBOOK (:name, :author, :location,
 :price, :quantity, :date))};
 #sql [m_ctx] {COMMIT};
 }
 catch (SQLException e)
 {
 return (e.getMessage());
 }
6-32 Oracle8i National Language Support Guide

Multilingual Demo Applications in SQLJ
 return msg;
 }
 /*Remove a book.*/
 public String removeBook(int id, int quantity, String location)
 {
 try
 {
 #sql [m_ctx] msg = {VALUE (REMOVEBOOK (:id, :quantity,
 :location))};
 #sql [m_ctx] {COMMIT};
 }
 catch (SQLException e)
 {
 return (e.getMessage());
 }
 return msg;
 }
 /*Search books by the given author.*/
 public void searchByAuthor(String author)
 {
 String key = "%" + author + "%";
 books = null;
 System.gc();
 try
 {
 #sql [m_ctx] books = { SELECT BOOK.ID, NAME, AUTHOR, PUBLISH_DATE,
 LOCATION, QUANTITY, PRICE
 FROM BOOK, INVENTORY WHERE BOOK.ID = INVENTORY.ID AND AUTHOR LIKE
 :key ORDER BY BOOK.ID};
 }
 catch (SQLException e) {}
 }
 /*Search books with the given title.*/
 public void searchByTitle(String title)
 {
 String key = "%" + title + "%";
 books = null;
 System.gc();
 try
 {
 #sql [m_ctx] books = { SELECT BOOK.ID, NAME, AUTHOR, PUBLISH_DATE,
 LOCATION, QUANTITY, PRICE
 FROM BOOK, INVENTORY WHERE BOOK.ID = INVENTORY.ID AND NAME LIKE
 :key ORDER BY BOOK.ID};
 }
Java 6-33

Summary
 catch (SQLException e) {}
 }
 /*Returns the next BookDescription from the last search, null if at the
 end of the result list.*/
 public BookDescription getNextBook()
 {
 BookDescription book = null;
 try
 {
 if (books.next())
 {

book = new BookDescription(books.ID(), books.AUTHOR(), books.NAME(),
 books.PUBLISH_DATE(), books.PRICE(),
 books.LOCATION(), books.QUANTITY());
 }
 }
 catch (SQLException e) {}
 return book;
 }
}

Summary
Oracle8i provides the infrastructure for a multi-tier computing environment to

develop and deploy Java applications. JDBC and SQLJ are Java programmatic

interfaces for database access used in clients, middle-tiers and servers. The Java

VM, CORBA ORB, and EJB container bundled with the Oracle8i server provide a

run-time environment for Java stored procedures, Java CORBA objects, and EJBs

running in the server. Additionally, the CORBA ORB of Oracle8i can also be used as

a middle tier to other CORBA servers.

The internationalization support in JDBC, SQLJ, Java VM, CORBA ORB, and EJBs

and all the supporting services enables the development and deployment of

multilingual Java applications for Oracle8i. The transparent conversions from a

database character set to Unicode enables Java program to manipulate string data

from the database in terms of Java strings. The locale of the clients are always

preserved in the Java VM of the database server, and that enables the development

of locale-sensitive Java stored procedures, Java CORBA objects, and EJBs by

leveraging the current internationalization support of the JDK.
6-34 Oracle8i National Language Support Guide

Locale D
A

Locale Data

This appendix lists the languages, territories, character sets, and other locale data

supported by the Oracle server. It includes these topics:

■ Languages

■ Translated Messages

■ Territories

■ Character Sets

■ Linguistic Definitions

■ Calendar Systems

■ Character Sets that Support the Euro Symbol

■ Default Values for NLS Parameters

You can also obtain information about supported character sets, languages,

territories, and sorting orders by querying the dynamic data view V$NLS_VALID_

VALUES. For more information on the data which can be returned by this view, see

Oracle8i Reference.
ata A-1

Languages
Languages
Table A–1 lists the languages supported by the Oracle server.

Table A–1 Oracle Supported Languages

Name Abbreviation

AMERICAN us

ARABIC ar

BENGALI bn

BRAZILIAN PORTUGUESE ptb

BULGARIAN bg

CANADIAN FRENCH frc

CATALAN ca

CROATIAN hr

CZECH cs

DANISH dk

DUTCH nl

EGYPTIAN eg

ENGLISH gb

ESTONIAN et

FINNISH sf

FRENCH f

GERMAN DIN din

GERMAN d

GREEK el

HEBREW iw

HINDI hi

HUNGARIAN hu

ICELANDIC is

INDONESIAN in
A-2 Oracle8i National Language Support Guide

Languages
ITALIAN i

JAPANESE ja

KOREAN ko

LATIN AMERICAN SPANISH esa

LATVIAN lv

LITHUANIAN lt

MALAY ms

MEXICAN SPANISH esm

NORWEGIAN n

POLISH pl

PORTUGUESE pt

ROMANIAN ro

RUSSIAN ru

SIMPLIFIED CHINESE zhs

SLOVAK sk

SLOVENIAN sl

SPANISH e

SWEDISH s

TAMIL ta

THAI th

TRADITIONAL CHINESE zht

TURKISH tr

UKRAINIAN uk

VIETNAMESE vn

Table A–1 Oracle Supported Languages

Name Abbreviation
Locale Data A-3

Translated Messages
Translated Messages
Oracle error messages have been translated into the languages which are listed in

Table A–2.

Table A–2 Oracle Supported Messages

Name Abbreviation

ARABIC ar

BRAZILIAN PORTUGUESE ptb

CATALAN ca

CZECH cs

DANISH dk

DUTCH nl

FINNISH sf

FRENCH f

GERMAN d

GREEK el

HEBREW iw

HUNGARIAN hu

ITALIAN i

JAPANESE ja

KOREAN ko

LATIN AMERICAN SPANISH esa

NORWEGIAN n

POLISH pl

PORTUGUESE pt

ROMANIAN ro

RUSSIAN ru

SIMPLIFIED CHINESE zhs

SLOVAK sk

SPANISH e
A-4 Oracle8i National Language Support Guide

Territories
Territories
Table A–3 lists the territories supported by the Oracle server.

SWEDISH s

TRADITIONAL CHINESE zht

TURKISH tr

Table A–3 Oracle Supported Territories

Name

ALGERIA ICELAND QATAR

AMERICA INDIA ROMANIA

AUSTRALIA INDONESIA SAUDI ARABIA

AUSTRIA IRAQ SINGAPORE

BAHRAIN IRELAND SLOVAKIA

BANGLADESH ISRAEL SLOVENIA

BELGIUM ITALY SOMALIA

BRAZIL JAPAN SOUTH AFRICA

BULGARIA JORDAN SPAIN

CANADA KAZAKHSTAN SUDAN

CATALONIA KOREA SWEDEN

CHINA KUWAIT SWITZERLAND

CIS LATVIA SYRIA

CROATIA LEBANON TAIWAN

CYPRUS LIBYA THAILAND

CZECH REPUBLIC LITHUANIA THE NETHERLANDS

DENMARK LUXEMBOURG TUNISIA

DJIBOUTI MALAYSIA TURKEY

EGYPT MAURITANIA UKRAINE

Table A–2 Oracle Supported Messages

Name Abbreviation
Locale Data A-5

Character Sets
Character Sets
Oracle-supported character sets are listed below, for easy reference, according to

three broad language groups:

■ Asian Language Character Sets

■ European Language Character Sets

■ Middle Eastern Language Character Sets

Note that some character sets may be listed under multiple language groups

because they provide multilingual support. For instance, Unicode spans the Asian,

European, and Middle Eastern language groups because it supports most of the

major scripts of the world.

The comment section indicates the type of encoding used:

SB = Single-byte encoding

MB = Multi-byte encoding

FIXED = Fixed-width multi-byte encoding

As mentioned in Chapter 3, "Choosing a Character Set", the type of encoding will

affect performance, so you should use the most efficient encoding that meets your

language needs. Also, some encoding types can only be used with certain data

types. For instance, fixed-width multibyte encoded character sets can only be used

as an NCHAR character set, and not as a database character set.

Also documented in the comment section are other unique features of the character

set that may be important to users or your database administrator. For instance,

whether the character set supports the new Euro currency symbol, whether

ESTONIA MEXICO UNITED ARAB EMIRATES

FINLAND MOROCCO UNITED KINGDOM

FRANCE NEW ZEALAND UZBEKISTAN

GERMANY NORWAY VIETNAM

GREECE OMAN YEMEN

HONG KONG POLAND

HUNGARY PORTUGAL

Table A–3 Oracle Supported Territories

Name
A-6 Oracle8i National Language Support Guide

Character Sets
user-defined characters are supported for character set customization, and whether

the character set is a strict superset of ASCII (which will allow you to make use of

the ALTER DATABASE [NATIONAL] CHARACTER SET statement in case of

migration.)

EURO = Euro symbol supported

UDC = User-defined Characters supported

ASCII = Strict Superset of ASCII

Oracle does not document individual code page layouts. For specific details about a

particular character set, its character repertoire, and code point values, you should

refer to the actual national, international, or vendor-specific standards.

Asian Language Character Sets
Table A–4 lists the Oracle character sets that can support Asian languages.

Table A–4 Asian Language Character Sets

Name Description Comments

BN8BSCII Bangladesh National Code 8-bit BSCII SB, ASCII

ZHT16BIG5 BIG5 16-bit Traditional Chinese MB, ASCII

ZHS16CGB231280 CGB2312-80 16-bit Simplified Chinese MB, ASCII

JA16EUC EUC 24-bit Japanese MB, ASCII

JA16EUCYEN EUC 24-bit Japanese with '\' mapped to the Japanese yen
character

MB

JA16EUCFIXED EUC 16-bit Japanese. A fixed-width subset of JA16EUC
(contains only the 2-byte characters of JA16EUC). Contains
no 7- or 8-bit ASCII characters

FIXED

ZHT32EUC EUC 32-bit Traditional Chinese MB, ASCII

ZHT32EUCFIXED EUC 32-bit Traditional Chinese (32-bit fixed-width, no single
byte)

FIXED

ZHS16GBK GBK 16-bit Simplified Chinese MB, ASCII, UDC

ZHS16GBKFIXED GBK 16-bit Simplified Chinese (16-bit fixed-width, no single
byte)

FIXED, UDC

ZHT16CCDC HP CCDC 16-bit Traditional Chinese MB, ASCII

JA16DBCS IBM EBCDIC 16-bit Japanese MB, UDC
Locale Data A-7

Character Sets
JA16EBCDIC930 IBM DBCS Code Page 290 16-bit Japanese MB, UDC

JA16DBCSFIXED IBM EBCDIC 16-bit Japanese (16-bit fixed width, no single
byte)

FIXED, UDC

KO16DBCS IBM EBCDIC 16-bit Korean MB, UDC

KO16DBCSFIXED IBM EBCDIC 16-bit Korean (16-bit fixed-width, no single
byte)

FIXED, UDC

ZHS16DBCS IBM EBCDIC 16-bit Simplified Chinese MB, UDC

ZHS16CGB231280
FIXED

CGB2312-80 16-bit Simplified Chinese (16-bit fixed-width, no
single byte)

FIXED

ZHS16DBCSFIXED IBM EBCDIC 16-bit Simplified Chinese (16-bit fixed-width,
no single byte)

FIXED, UDC

ZHT16DBCS IBM EBCDIC 16-bit Traditional Chinese MB, UDC

ZHT16DBCSFIXED IBM EBCDIC 16-bit Traditional Chinese (16-bit fixed-width,
no single byte)

FIXED

KO16KSC5601 KSC5601 16-bit Korean MB, ASCII

KO16KSCCS KSCCS 16-bit Korean MB, ASCII

KO16KSC5601FIXED KSC5601 (16-bit fixed-width, no single byte) FIXED

JA16VMS JVMS 16-bit Japanese MB, ASCII

ZHS16MACCGB231280 Mac client CGB2312-80 16-bit Simplified Chinese MB

JA16MACSJIS Mac client Shift-JIS 16-bit Japanese MB

TH8MACTHAI Mac Client 8-bit Latin/Thai SB

TH8MACTHAIS Mac Server 8-bit Latin/Thai SB, ASCII

TH8TISEBCDICS Thai Industrial Standard 620-2533-EBCDIC Server 8-bit SB

ZHT16MSWIN950 MS Windows Code Page 950 Traditional Chinese MB, ASCII, UDC

KO16MSWIN949 MS Windows Code Page 949 Korean MB, ASCII, UDC

VN8MSWIN1258 MS Windows Code Page 1258 8-bit Vietnamese SB, ASCII, EURO

IN8ISCII Multiple-Script Indian Standard 8-bit Latin/Indian
Languages

SB, ASCII

JA16SJIS Shift-JIS 16-bit Japanese MB, ASCII, UDC

Table A–4 Asian Language Character Sets

Name Description Comments
A-8 Oracle8i National Language Support Guide

Character Sets
European Language Character Sets
Table A–5 lists the Oracle character sets that can support European languages.

JA16SJISFIXED Shift-JIS 16-bit Japanese. A fixed-width subset of JA16SJIS
(contains only the 2-byte characters of JA16JIS). Contains no
7- or 8-bit ASCII characters

FIXED, UDC

JA16SJISYEN Shift-JIS 16-bit Japanese with '\' mapped to the Japanese yen
character

MB, UDC

ZHT32SOPS SOPS 32-bit Traditional Chinese MB, ASCII

ZHT16DBT Taiwan Taxation 16-bit Traditional Chinese MB, ASCII

ZHT16BIG5FIXED BIG5 16-bit Traditional Chinese (16-bit fixed-width, no single
byte)

FIXED

TH8TISASCII Thai Industrial Standard 620-2533 - ASCII 8-bit SB, ASCII, EURO

TH8TISEBCDIC Thai Industrial Standard 620-2533 - EBCDIC 8-bit SB

ZHT32TRIS TRIS 32-bit Traditional Chinese MB, ASCII

ZHT32TRISFIXED TRIS 32-bit Fixed-width Traditional Chinese FIXED

AL24UTFFSS See "Universal Character Sets" on page A-17 for details

UTF8 See "Universal Character Sets" on page A-17 for details

UTFE See "Universal Character Sets" on page A-17 for details

VN8VN3 VN3 8-bit Vietnamese SB, ASCII

Table A–5 European Language Character Sets

Name Description Comments

US7ASCII ASCII 7-bit American SB, ASCII

SF7ASCII ASCII 7-bit Finnish SB

YUG7ASCII ASCII 7-bit Yugoslavian SB

RU8BESTA BESTA 8-bit Latin/Cyrillic SB, ASCII

EL8GCOS7 Bull EBCDIC GCOS7 8-bit Greek SB

WE8GCOS7 Bull EBCDIC GCOS7 8-bit West European SB

Table A–4 Asian Language Character Sets

Name Description Comments
Locale Data A-9

Character Sets
EL8DEC DEC 8-bit Latin/Greek SB

TR7DEC DEC VT100 7-bit Turkish SB

TR8DEC DEC 8-bit Turkish SB, ASCII

TR8EBCDIC1026 EBCDIC Code Page 1026 8-bit Turkish SB

TR8EBCDIC1026S EBCDIC Code Page 1026 Server 8-bit Turkish SB

TR8PC857 IBM-PC Code Page 857 8-bit Turkish SB, ASCII

TR8MACTURKISH MAC Client 8-bit Turkish SB

TR8MACTURKISHS MAC Server 8-bit Turkish SB, ASCII

TR8MSWIN1254 MS Windows Code Page 1254 8-bit Turkish SB, ASCII, EURO

WE8BS2000L5 Siemens EBCDIC.DF.L5 8-bit West European/Turkish SB

WE8DEC DEC 8-bit West European SB, ASCII

D7DEC DEC VT100 7-bit German SB

F7DEC DEC VT100 7-bit French SB

S7DEC DEC VT100 7-bit Swedish SB

E7DEC DEC VT100 7-bit Spanish SB

NDK7DEC DEC VT100 7-bit Norwegian/Danish SB

I7DEC DEC VT100 7-bit Italian SB

NL7DEC DEC VT100 7-bit Dutch SB

CH7DEC DEC VT100 7-bit Swiss (German/French) SB

SF7DEC DEC VT100 7-bit Finnish SB

WE8DG DG 8-bit West European SB, ASCII

WE8EBCDIC37C EBCDIC Code Page 37 8-bit Oracle/c SB

WE8EBCDIC37 EBCDIC Code Page 37 8-bit West European SB

D8EBCDIC273 EBCDIC Code Page 273/1 8-bit Austrian German SB

DK8EBCDIC277 EBCDIC Code Page 277/1 8-bit Danish SB

S8EBCDIC278 EBCDIC Code Page 278/1 8-bit Swedish SB

I8EBCDIC280 EBCDIC Code Page 280/1 8-bit Italian SB

Table A–5 European Language Character Sets

Name Description Comments
A-10 Oracle8i National Language Support Guide

Character Sets
WE8EBCDIC284 EBCDIC Code Page 284 8-bit Latin American/Spanish SB

WE8EBCDIC285 EBCDIC Code Page 285 8-bit West European SB

WE8EBCDIC1047 EBCDIC Code Page 1047 8-bit West European SB

WE8EBCDIC1140 EBCDIC Code Page 1140 8-bit West European SB, EURO

WE8EBCDIC1140C EBCDIC Code Page 1140 Client 8-bit West European SB, EURO

WE8EBCDIC1145 EBCDIC Code Page 1145 8-bit West European SB, EURO

WE8EBCDIC1146 EBCDIC Code Page 1146 8-bit West European SB, EURO

WE8EBCDIC1148 EBCDIC Code Page 1148 8-bit West European SB, EURO

WE8EBCDIC1148C EBCDIC Code Page 1148 Client 8-bit West European SB, EURO

F8EBCDIC297 EBCDIC Code Page 297 8-bit French SB

WE8EBCDIC500C EBCDIC Code Page 500 8-bit Oracle/c SB

WE8EBCDIC500 EBCDIC Code Page 500 8-bit West European SB

EE8EBCDIC870 EBCDIC Code Page 870 8-bit East European SB

EE8EBCDIC870C EBCDIC Code Page 870 Client 8-bit East European SB

EE8EBCDIC870S EBCDIC Code Page 870 Server 8-bit East European SB

WE8EBCDIC871 EBCDIC Code Page 871 8-bit Icelandic SB

EL8EBCDIC875 EBCDIC Code Page 875 8-bit Greek SB

EL8EBCDIC875S EBCDIC Code Page 875 Server 8-bit Greek SB

CL8EBCDIC1025 EBCDIC Code Page 1025 8-bit Cyrillic SB

CL8EBCDIC1025C EBCDIC Code Page 1025 Client 8-bit Cyrillic SB

CL8EBCDIC1025S EBCDIC Code Page 1025 Server 8-bit Cyrillic SB

CL8EBCDIC1025X EBCDIC Code Page 1025 (Modified) 8-bit Cyrillic SB

BLT8EBCDIC1112 EBCDIC Code Page 1112 8-bit Baltic Multilingual SB

BLT8EBCDIC1112S EBCDIC Code Page 1112 8-bit Server Baltic Multilingual SB

D8EBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian German SB, EURO

DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish SB, EURO

S8EBCDIC1143 EBCDIC Code Page 1143 8-bit Swedish SB, EURO

Table A–5 European Language Character Sets

Name Description Comments
Locale Data A-11

Character Sets
I8EBCDIC1144 EBCDIC Code Page 1144 8-bit Italian SB, EURO

F8EBCDIC1147 EBCDIC Code Page 1147 8-bit French SB, EURO

EEC8EUROASCI EEC Targon 35 ASCI West European/Greek SB

EEC8EUROPA3 EEC EUROPA3 8-bit West European/Greek SB

LA8PASSPORT German Government Printer 8-bit All-European Latin SB, ASCII

WE8HP HP LaserJet 8-bit West European SB

WE8ROMAN8 HP Roman8 8-bit West European SB, ASCII

HU8CWI2 Hungarian 8-bit CWI-2 SB, ASCII

HU8ABMOD Hungarian 8-bit Special AB Mod SB, ASCII

LV8RST104090 IBM-PC Alternative Code Page 8-bit Latvian (Latin/Cyrillic) SB, ASCII

US8PC437 IBM-PC Code Page 437 8-bit American SB, ASCII

BG8PC437S IBM-PC Code Page 437 8-bit (Bulgarian Modification) SB, ASCII

EL8PC437S IBM-PC Code Page 437 8-bit (Greek modification) SB, ASCII

EL8PC737 IBM-PC Code Page 737 8-bit Greek/Latin SB

LT8PC772 IBM-PC Code Page 772 8-bit Lithuanian (Latin/Cyrillic) SB, ASCII

LT8PC774 IBM-PC Code Page 774 8-bit Lithuanian (Latin) SB, ASCII

BLT8PC775 IBM-PC Code Page 775 8-bit Baltic SB, ASCII

WE8PC850 IBM-PC Code Page 850 8-bit West European SB, ASCII

EL8PC851 IBM-PC Code Page 851 8-bit Greek/Latin SB, ASCII

EE8PC852 IBM-PC Code Page 852 8-bit East European SB, ASCII

RU8PC855 IBM-PC Code Page 855 8-bit Latin/Cyrillic SB, ASCII

WE8PC858 IBM-PC Code Page 858 8-bit West European SB, ASCII, EURO

WE8PC860 IBM-PC Code Page 860 8-bit West European SB. ASCII

IS8PC861 IBM-PC Code Page 861 8-bit Icelandic SB, ASCII

CDN8PC863 IBM-PC Code Page 863 8-bit Canadian French SB, ASCII

N8PC865 IBM-PC Code Page 865 8-bit Norwegian SB. ASCII

RU8PC866 IBM-PC Code Page 866 8-bit Latin/Cyrillic SB, ASCII

Table A–5 European Language Character Sets

Name Description Comments
A-12 Oracle8i National Language Support Guide

Character Sets
EL8PC869 IBM-PC Code Page 869 8-bit Greek/Latin SB, ASCII

LV8PC1117 IBM-PC Code Page 1117 8-bit Latvian SB, ASCII

US8ICL ICL EBCDIC 8-bit American SB

WE8ICL ICL EBCDIC 8-bit West European SB

WE8ISOICLUK ICL special version ISO8859-1 SB

WE8ISO8859P1 ISO 8859-1 West European SB, ASCII

EE8ISO8859P2 ISO 8859-2 East European SB, ASCII

SE8ISO8859P3 ISO 8859-3 South European SB, ASCII

NEE8ISO8859P4 ISO 8859-4 North and North-East European SB, ASCII

CL8ISO8859P5 ISO 8859-5 Latin/Cyrillic SB, ASCII

AR8ISO8859P6 ISO 8859-6 Latin/Arabic SB, ASCII

EL8ISO8859P7 ISO 8859-7 Latin/Greek SB, ASCII, EURO

IW8ISO8859P8 ISO 8859-8 Latin/Hebrew SB, ASCII

NE8ISO8859P10 ISO 8859-10 North European SB, ASCII

WE8ISO8859P15 ISO 8859-15 West European SB, ASCII, EURO

LA8ISO6937 ISO 6937 8-bit Coded Character Set for Text Communication SB, ASCII

IW7IS960 Israeli Standard 960 7-bit Latin/Hebrew SB

AR8ARABICMAC Mac Client 8-bit Latin/Arabic SB

EE8MACCE Mac Client 8-bit Central European SB

EE8MACCROATIAN Mac Client 8-bit Croatian SB

WE8MACROMAN8 Mac Client 8-bit Extended Roman8 West European SB

EL8MACGREEK Mac Client 8-bit Greek SB

IS8MACICELANDIC Mac Client 8-bit Icelandic SB

CL8MACCYRILLIC Mac Client 8-bit Latin/Cyrillic SB

AR8ARABICMACS Mac Server 8-bit Latin/Arabic SB, ASCII

EE8MACCES Mac Server 8-bit Central European SB, ASCII

EE8MACCROATIANS Mac Server 8-bit Croatian SB, ASCII

Table A–5 European Language Character Sets

Name Description Comments
Locale Data A-13

Character Sets
WE8MACROMAN8S Mac Server 8-bit Extended Roman8 West European SB, ASCII

CL8MACCYRILLICS Mac Server 8-bit Latin/Cyrillic SB, ASCII

EL8MACGREEKS Mac Server 8-bit Greek SB, ASCII

IS8MACICELANDICS Mac Server 8-bit Icelandic SB

BG8MSWIN MS Windows 8-bit Bulgarian Cyrillic SB, ASCII

LT8MSWIN921 MS Windows Code Page 921 8-bit Lithuanian SB, ASCII

ET8MSWIN923 MS Windows Code Page 923 8-bit Estonian SB, ASCII

EE8MSWIN1250 MS Windows Code Page 1250 8-bit East European SB, ASCII, EURO

CL8MSWIN1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic SB, ASCII, EURO

WE8MSWIN1252 MS Windows Code Page 1252 8-bit West European SB, ASCII, EURO

EL8MSWIN1253 MS Windows Code Page 1253 8-bit Latin/Greek SB, ASCII, EURO

BLT8MSWIN1257 MS Windows Code Page 1257 8-bit Baltic SB, ASCII, EURO

BLT8CP921 Latvian Standard LVS8-92(1) Windows/Unix 8-bit Baltic SB, ASCII

LV8PC8LR Latvian Version IBM-PC Code Page 866 8-bit Latin/Cyrillic SB, ASCII

WE8NCR4970 NCR 4970 8-bit West European SB, ASCII

WE8NEXTSTEP NeXTSTEP PostScript 8-bit West European SB, ASCII

CL8KOI8R RELCOM Internet Standard 8-bit Latin/Cyrillic SB, ASCII

US8BS2000 Siemens 9750-62 EBCDIC 8-bit American SB

DK8BS2000 Siemens 9750-62 EBCDIC 8-bit Danish SB

F8BS2000 Siemens 9750-62 EBCDIC 8-bit French SB

D8BS2000 Siemens 9750-62 EBCDIC 8-bit German SB

E8BS2000 Siemens 9750-62 EBCDIC 8-bit Spanish SB

S8BS2000 Siemens 9750-62 EBCDIC 8-bit Swedish SB

DK7SIEMENS9780X Siemens 97801/97808 7-bit Danish SB

F7SIEMENS9780X Siemens 97801/97808 7-bit French SB

D7SIEMENS9780X Siemens 97801/97808 7-bit German SB

I7SIEMENS9780X Siemens 97801/97808 7-bit Italian SB

Table A–5 European Language Character Sets

Name Description Comments
A-14 Oracle8i National Language Support Guide

Character Sets
Middle Eastern Language Character Sets
Table A–6 lists the Oracle character sets that can support Middle Eastern languages.

N7SIEMENS9780X Siemens 97801/97808 7-bit Norwegian SB

E7SIEMENS9780X Siemens 97801/97808 7-bit Spanish SB

S7SIEMENS9780X Siemens 97801/97808 7-bit Swedish SB

WE8BS2000 Siemens EBCDIC.DF.04 8-bit West European SB

CL8BS2000 Siemens EBCDIC.EHC.LC 8-bit Cyrillic SB

AL24UTFFSS See "Universal Character Sets" on page A-17 for details

UTF8 See "Universal Character Sets" on page A-17 for details

UTFE See "Universal Character Sets" on page A-17 for details

Table A–6 Middle Eastern Character Sets

Name Description Comments

AR8APTEC715 APTEC 715 Server 8-bit Latin/Arabic SB, ASCII

AR8APTEC715T APTEC 715 8-bit Latin/Arabic SB

AR8ASMO708PLUS ASMO 708 Plus 8-bit Latin/Arabic SB, ASCII

AR8ASMO8X ASMO Extended 708 8-bit Latin/Arabic SB, ASCII

AR8ADOS710 Arabic MS-DOS 710 Server 8-bit Latin/Arabic SB, ASCII

AR8ADOS710T Arabic MS-DOS 710 8-bit Latin/Arabic SB

AR8ADOS720 Arabic MS-DOS 720 Server 8-bit Latin/Arabic SB, ASCII

AR8ADOS720T Arabic MS-DOS 720 8-bit Latin/Arabic SB

TR7DEC DEC VT100 7-bit Turkish SB

TR8DEC DEC 8-bit Turkish SB

WE8EBCDIC37C EBCDIC Code Page 37 8-bit Oracle/c SB

IW8EBCDIC424 EBCDIC Code Page 424 8-bit Latin/Hebrew SB

IW8EBCDIC424S EBCDIC Code Page 424 Server 8-bit Latin/Hebrew SB

Table A–5 European Language Character Sets

Name Description Comments
Locale Data A-15

Character Sets
WE8EBCDIC500C EBCDIC Code Page 500 8-bit Oracle/c SB

IW8EBCDIC1086 EBCDIC Code Page 1086 8-bit Hebrew SB

AR8EBCDIC420S EBCDIC Code Page 420 Server 8-bit Latin/Arabic SB

AR8EBCDICX EBCDIC XBASIC Server 8-bit Latin/Arabic SB

TR8EBCDIC1026 EBCDIC Code Page 1026 8-bit Turkish SB

TR8EBCDIC1026S EBCDIC Code Page 1026 Server 8-bit Turkish SB

AR8HPARABIC8T HP 8-bit Latin/Arabic SB

TR8PC857 IBM-PC Code Page 857 8-bit Turkish SB, ASCII

IW8PC1507 IBM-PC Code Page 1507/862 8-bit Latin/Hebrew SB, ASCII

AR8ISO8859P6 ISO 8859-6 Latin/Arabic SB, ASCII

IW8ISO8859P8 ISO 8859-8 Latin/Hebrew SB, ASCII

WE8ISO8859P9 ISO 8859-9 West European & Turkish SB, ASCII

LA8ISO6937 ISO 6937 8-bit Coded Character Set for Text Communication SB, ASCII

IW7IS960 Israeli Standard 960 7-bit Latin/Hebrew SB

IW8MACHEBREW Mac Client 8-bit Hebrew SB

AR8ARABICMAC Mac Client 8-bit Latin/Arabic SB

AR8ARABICMACT Mac 8-bit Latin/Arabic SB

TR8MACTURKISH Mac Client 8-bit Turkish SB

IW8MACHEBREWS Mac Server 8-bit Hebrew SB, ASCII

AR8ARABICMACS Mac Server 8-bit Latin/Arabic SB, ASCII

TR8MACTURKISHS Mac Server 8-bit Turkish SB, ASCII

TR8MSWIN1254 MS Windows Code Page 1254 8-bit Turkish SB, ASCII, EURO

IW8MSWIN1255 MS Windows Code Page 1255 8-bit Latin/Hebrew SB, ASCII, EURO

AR8MSWIN1256 MS Windows Code Page 1256 8-Bit Latin/Arabic SB. ASCII, EURO

IN8ISCII Multiple-Script Indian Standard 8-bit Latin/Indian
Languages

SB

AR8MUSSAD768 Mussa'd Alarabi/2 768 Server 8-bit Latin/Arabic SB, ASCII

AR8MUSSAD768T Mussa'd Alarabi/2 768 8-bit Latin/Arabic SB

Table A–6 Middle Eastern Character Sets

Name Description Comments
A-16 Oracle8i National Language Support Guide

Character Sets
Universal Character Sets
Table A–7 lists the Oracle character sets that provide universal language support,

that is, they attempt to support all languages of the world, including, but not

limited to, Asian, European, and Middle Eastern languages.

AR8NAFITHA711 Nafitha Enhanced 711 Server 8-bit Latin/Arabic SB, ASCII

AR8NAFITHA711T Nafitha Enhanced 711 8-bit Latin/Arabic SB

AR8NAFITHA721 Nafitha International 721 Server 8-bit Latin/Arabic SB, ASCII

AR8NAFITHA721T Nafitha International 721 8-bit Latin/Arabic SB

AR8SAKHR706 SAKHR 706 Server 8-bit Latin/Arabic SB, ASCII

AR8SAKHR707 SAKHR 707 Server 8-bit Latin/Arabic SB, ASCII

AR8SAKHR707T SAKHR 707 8-bit Latin/Arabic SB

AR8XBASIC XBASIC 8-bit Latin/Arabic SB

WE8BS2000L5 Siemens EBCDIC.DF.04.L5 8-bit West European/Turkish SB

AL24UTFFSS See "Universal Character Sets" on page A-17 for details

UTF8 See "Universal Character Sets" on page A-17 for details

UTFE See "Universal Character Sets" on page A-17 for details

Table A–7 Universal Character Sets

Name Description Comments

AL24UTFFSS Unicode 1.1 UTF-8 Universal character set MB, ASCII, EURO

UTF8 Unicode 2.1 UTF-8 Universal character set MB, ASCII, EURO

UTFE UTF-EBCDIC character set (EBCDIC-friendly UTF encoding
of Unicode 2.1). UTFE works only on EBCDIC-based
platforms such as IBM mainframe as compared to UTF8,
which works only on ASCII-based platforms such as UNIX
and Win32. The maximum length of one character in Oracle’s
current UTFE character set is 4 bytes (the maximum in UTF8
is 3 bytes). Both UTF8 and UTFE include exactly the same set
of characters, but the character codes are different.

Table A–6 Middle Eastern Character Sets

Name Description Comments
Locale Data A-17

Character Sets
Note: The Unicode 1.1 character set has been superseded by Unicode 2.1. One of the

major differences between version 1.1 and 2.1 is the redefinition and addition of

11,172 Korean characters. Whenever possible, you should use the latest version of

the Unicode standard. The primary scripts currently supported by Unicode 2.1 are:

For details on the Unicode standard, see http://www.unicode.org or refer to the

Unicode Standard, defined by the Unicode consortium.

UTF8 Support
Oracle’s UTF8 character set currently supports the following characters.

■ Unicode 2.1 (UCS2 and UTF16) characters U+0000 through U+007F inclusive.

These are 1-byte characters in UTF8, that have character codes 0x00 through

0x7f inclusive. These can represent only English ASCII characters. All English

ASCII characters have exactly the same character codes (0x00 through 0x7f

inclusive) in US7ASCII and UTF8 character sets.

■ Unicode 2.1 (UCS2 and UTF16) characters U+0080 through U+07FF inclusive

 These are 2-byte characters in UTF8, that have character codes 0xc0WW through

0xdfWW inclusive where WW can be 0x80 through 0xbf inclusive.

These can represent characters of most European (including Greek and Russian),

Arabic, Hebrew and some other languages.

■ Unicode 2.1 (UCS2 and UTF16) characters U+0800 through U+D7FF inclusive

and U+E000 through U+FFFF inclusive

 These are 3-byte characters in UTF8, that have character codes

0xe0WWTT through 0xecWWTT inclusive

Arabic Gujarati Latin

Armenian Gurmukhi Lao

Bengali Han Malayalam

Bopomofo Hangul Oriya

Cyrillic Hebrew Tamil

Devanagari Hiragana Telugu

Georgian Kannada Thai

Greek Katakana Tibetan
A-18 Oracle8i National Language Support Guide

Linguistic Definitions
0xed80TT through 0xed9fTT inclusive

0xeeWWTT through 0xefWWTT inclusive

where WW and TT are 0x80 through 0xbf inclusive.

These can represent characters of Chinese, Japanese, Korean, Thai, Indic,

Dravidian and some other languages. Also, the "euro" currency sign is included

in this group of characters.

Oracle’s UTF8 character set currently does not support the following characters. If

you use these characters in Oracle’s current UTF8 character set, the result is not

guaranteed, and the behavior changes in the future releases of Oracle.

■ Unicode 2.1 (UTF16) characters U+D800 through U+DFFF inclusive

These are called surrogates in Unicode 2.1 (UTF16). These are 4-byte characters

in UTF8 (when implemented in the future). Since Unicode 2.1 didn’t assign any

character using surrogates yet, all assigned characters in Unicode 2.1 can be

represented in Oracle’s current UTF8 character set. Currently, the only

advantage of UTF16 (which Oracle’s current UTF8 character set doesn’t have) is

that surrogates can represent 131,072 extra User Defined Characters on top of

6,400 User-Defined Characters that are available in Oracle’s current UTF8

character set.

Therefore, unless you need more than 6,400 User-Defined Characters, Oracle’s

current UTF8 character set can represent all characters of Unicode 2.1.

Linguistic Definitions
Linguistic definitions define linguistic cases for particular languages. Extended

linguistic definitions include some special linguistic cases for the language.

Typically, using the extended definition means that characters will be sorted

differently from their ASCII values. For example, ch and ll are treated as only one

character in XSPANISH. Table A–8 lists the linguistic definitions supported by the

Oracle server.

Table A–8 Linguistic Definitions

Basic Name Extended Name Special Cases

ARABIC --

ARABIC_MATCH --

ARABIC_ABJ_SORT --
Locale Data A-19

Linguistic Definitions
ARABIC_ABJ_MATCH --

ASCII7 --

BENGALI --

BULGARIAN --

CANADIAN FRENCH --

CATALAN XCATALAN æ, AE, ß

CROATIAN XCROATIAN D, L, N, d, l, n, ß

CZECH XCZECH ch, CH, Ch, ß

DANISH XDANISH A, ß, Å, å

DUTCH XDUTCH ij, IJ

EEC_EURO --

EEC_EUROPA3 --

ESTONIAN --

FINNISH --

FRENCH XFRENCH

GERMAN XGERMAN ß

GERMAN_DIN XGERMAN_DIN ß, ä, ö, ü, Ä, Ö, Ü

GREEK --

HEBREW --

HUNGARIAN XHUNGARIAN cs, gy, ny, sz, ty, zs, ß, CS, Cs, GY,
Gy, NY, Ny, SZ, Sz, TY, Ty, ZS, Zs

ICELANDIC --

INDONESIAN --

ITALIAN --

JAPANESE --

LATIN --

LATVIAN --

Table A–8 Linguistic Definitions

Basic Name Extended Name Special Cases
A-20 Oracle8i National Language Support Guide

Calendar Systems
Calendar Systems
By default, most territory definitions use the Gregorian calendar system. Table A–9

lists the other calendar systems supported by the Oracle server.

LITHUANIAN --

MALAY --

NORWEGIAN --

POLISH --

PUNCTUATION XPUNCTUATION

ROMANIAN --

RUSSIAN --

SLOVAK XSLOVAK dz, DZ, Dz, ß (caron)

SLOVENIAN XSLOVENIAN ß

SPANISH XSPANISH ch, ll, CH, Ch, LL, Ll

SWEDISH --

SWISS XSWISS ß

THAI_DICTIONARY --

THAI_TELEPHONE --

TURKISH XTURKISH æ, AE, ß

UKRAINIAN --

UNICODE_BINARY

VIETNAMESE --

WEST_EUROPEAN XWEST_EUROPEAN ß

Table A–8 Linguistic Definitions

Basic Name Extended Name Special Cases
Locale Data A-21

Calendar Systems
Figure A–1 shows how March 20, 1998 appears in ROC Official:

Figure A–1 ROC Official Example

Figure A–2 shows how March 27, 1998 appears in Japanese Imperial:

Table A–9 NLS Supported Calendars

Name Default Format
Character Set Used
For Default Format

Japanese Imperial EEYY"\307\257"MM"\267\356"DD"\306\374" JA16EUC

ROC Official EEyy"\310\241"mm"\305\314"dd"\305\312" ZHT32EUC

Thai Buddha dd month EE yyyy TH8TISASCII

Persian DD Month YYYY AR8ASMO8X

Arabic Hijrah DD Month YYYY AR8ISO8859P6

English Hijrah DD Month YYYY AR8ISO8859P6
A-22 Oracle8i National Language Support Guide

Character Sets that Support the Euro Symbol
Figure A–2 Japanese Imperial Example

Character Sets that Support the Euro Symbol
Table A–10 lists the character sets that support the Euro symbol.

Table A–10 Character Sets with Euro Support

Name Description Euro Code Value

WE8EBCDIC1140 EBCDIC Code Page 1140 8-bit West
European

0x9F

WE8EBCDIC1140C EBCDIC Code Page 1140C 8-bit West
European

0x9F

D8EBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian
German

0x9F

DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish 0x5A

S8EBCDIC1143 EBCDIC Code Page 1143 8-bit Swedish 0x5A

I8EBCDIC1144 EBCDIC Code Page 1144 8-bit Italian 0x9F

WE8EBCDIC1145 EBCDIC Code Page 1145 8-bit West
European

0x9F
Locale Data A-23

Character Sets that Support the Euro Symbol
WE8EBCDIC1146 EBCDIC Code Page 1146 8-bit West
European

0x9F

F8EBCDIC1147 EBCDIC Code Page 1147 8-bit French 0x9F

WE8EBCDIC1148 EBCDIC Code Page 1148 8-bit West
European

0x9F

WE8EBCDIC1148C EBCDIC Code Page 1148C 8-bit West
European

0x9F

WE8PC858 IBM-PC Code Page 858 8-bit West European 0xDF

EL8ISO8859P7 ISO 8859-7 Latin/Greek 0xA4

WE8ISO8859P15 ISO 8859-15 West European 0xA4

EE8MSWIN1250 MS Windows Code Page 1250 8-bit East
European

0x80

CL8MSWIN1251 MS Windows Code Page 1251 8-bit
Latin/Cyrillic

0x88

WE8MSWIN1252 MS Windows Code Page 1252 8-bit West
European

0x80

EL8MSWIN1253 MS Windows Code Page 1253 8-bit
Latin/Greek

0x80

TR8MSWIN1254 MS Windows Code Page 1254 8-bit Turkish 0x80

IW8MSWIN1255 MS Windows Code Page 1255 8-bit
Latin/Hebrew

0x80

AR8MSWIN1256 MS Windows Code Page 1256 8-bit
Latin/Arabic

0x80

BLT8MSWIN1257 MS Windows Code Page 1257 Baltic 0x80

VN8MSWIN1258 MS Windows Code Page 1258 8-bit
Vietnamese

0x80

TH8TISASCII Thai Industrial 520-2533 - ASCII 8-bit 0x80

AL24UTFFSS Unicode 1.1 UTF-8 Universal character set U+20AC

UTF8 Unicode 2.1 UTF-8 Universal character set U+20AC

UTFE UTF-EBCDIC encoding of Unicode 2.1 U+20AC

Table A–10 Character Sets with Euro Support

Name Description Euro Code Value
A-24 Oracle8i National Language Support Guide

Default Values for NLS Parameters
Default Values for NLS Parameters
Table A–11 lists the default values for NLS parameters.

Table A–11 Default Values for NLS Parameters

Name Default Value

NLS_CALENDAR Gregorian

NLS_COMP Binary

NLS_CREDIT NLS_TERRITORY

NLS_CURRENCY NLS_TERRITORY

NLS_DATE_FORMAT NLS_TERRITORY

NLS_DATE_LANGUAGE NLS_LANGUAGE

NLS_DEBIT NLS_TERRITORY

NLS_ISO_CURRENCY NLS_TERRITORY

NLS_LANG American_America.US7ASCII

NLS_LANGUAGE NLS_LANG

NLS_LIST_SEPARATOR NLS_TERRITORY

NLS_MONETARY_
CHARACTERS

NLS_TERRITORY

NLS_CREDIT NLS_TERRITORY

NLS_NCHAR NLS_LANG

NLS_NUMERIC_CHARACTERS NLS_TERRITORY

NLS_SORT NLS_LANGUAGE

NLS_TERRITORY NLS_LANG

NLS_DUAL_CURRENCY NLS_TERRITORY
Locale Data A-25

Default Values for NLS Parameters
A-26 Oracle8i National Language Support Guide

Customizing Locale D
B

Customizing Locale Data

A set of NLS data objects is included with every Oracle distribution set, some of

which is customizable.

This appendix contains:

■ Customized Character Sets

■ Customized Calendars

■ NLS Data Installation Utility

■ NLS Configuration Utility
ata B-1

Customized Character Sets
Customized Character Sets
You can extend Oracle's character set definition files by adding user-defined

characters to an existing Oracle character set.

Character set information and encoding are defined in text files. These character set

definition text files contain descriptions of a character set and are specified so that a

database administrator can modify or create a new character set easily. All

characters are defined in terms of Unicode 2.1 code points. That is, each character is

defined as a Unicode 2.1 character code value. Conversion between character sets is

done by using Unicode as the intermediate form.

Once a character set definition file is created, it must be 'compiled' into

platform-specific binary files that can be dynamically loaded into memory at

runtime. The NLS Data Installation Utility (lxinst) described in this appendix allows

you to convert and install character set definition text files into binary format, and

merge it into an NLS data object set.

Be aware that this procedure does not ensure any of the following:

■ Input of User-Defined Characters

Input of user-defined characters must still be managed by the system, either

through an input method or a virtual keyboard.

■ Display of User-Defined Characters

Display of user-defined characters must still be managed by the system and/or

the application. In the case of display, a new font specification may be needed.

Many vendors provide support of a font editor. Once a new font is created, they

must be installed onto your system and made accessible to application

programs.

■ Sorting of User-Defined Characters

Sorting of user-defined characters is not supported. More specifically,

customized sorting of any character set is currently not supported. Binary or

linguistic sorting can be chosen, however, in the case of linguistic sorting, only

the predefined Oracle linguistic sorts can be used.

Character Set Definition Files
Character set information and encoding are defined in text files (with the suffix

".nlt"). Character set definition text files (*.nlt files) contain descriptions of a

character set and are specified in a user-friendly format so that a database

administrator can modify or create a new character set easily. All characters are
B-2 Oracle8i National Language Support Guide

Customized Character Sets
defined in terms of Unicode 2.1 code points. That is, each character is defined as a

Unicode 2.1 character code value.

Conversion between character sets is done by using Unicode as the intermediate

form. The following file is a sample customized character set template character set

definition file format:

Customized Character Set Definition File Format Template

The following is a template of a customized character set definition file.
You may use this template to create a user-defined character set or copy
and modify an existing one. The convention used for naming character
set definition (.nlt) files is in the format: lx2 dddd.nlt, where
dddd = 4 digit character set ID in hex
All letters in the definition file are case-insensitive.

Version number: specify the current loadable data version.
VERSION = <x.x.x.x.x>

The following is the body of the definition file
DEFINE character_set

Oracle supports a feature called 'base_char_set'. It allows you
to extend an existing character set based on an existing Oracle supported
standard character set. Generally, you may only need to edit the
following fields:

Name and ID of the character set are required for any character sets.

Character set name must be specified in a double quoted string.
Rules for choosing a character set name:
- Cannot use a character set name that is already in use. (Each
character set must be assigned a unique character set name).
- Must consist of single-byte ASCII or EBCDIC characters only
(single-byte compiler character set).
- Cannot contain multibyte characters.
- Maximum length of 30 characters.
- Must start with an alphabetic character.
- Composed of alphanumeric characters only (e.g. no periods,
dashes, underscore characters allowed)
- The name is case-insensitive.
To register a unique character set name, send mail to
nlsreg@us.oracle.com.
 name = <text_string>
Customizing Locale Data B-3

Customized Character Sets
Character set ID is specified as an integer value.
Rules for choosing a character set ID:
- Cannot use a character set ID that is already in use. (Each
character set must be assigned a unique character set ID.)
- Must be in the decimal range of 10000-20000
- Character set IDs must be registered with Oracle to receive a
uniquely assigned character set ID number.
To register a unique character set ID, send mail to nlsreg@us.oracle.com.
 id = <integer>

The "base_char_set" feature allows users to define the base character set in
a new character set definition file.
The new character set will inherit all definitions from the base
character set, therefore, the user only needs to add the customized data
into the new character set definition file.

The syntax of the base character set is:
base_char_set = <id> | <name>

- <id> or <name> should be a valid Oracle NLS character set id or name.
Example is: base_char_set = "JA16EUC" or base_char_set = 830
base_char_set = <id> | <name>

If you use base_char_set feature, remember you need to copy your base
character set definition file (text or binary format) from $ORA_NLS33
into the working directory specified by $ORANLS so that the new character
set can inherit the definition from the base character set.
Example:
%cp $ORA_NLS33/lx2033e.nlt $ORANLS
or
%cp $ORA_NLS33/lx*33e.nlb $ORANLS

Character data is defined as a list of <char_value>:<unicode_value>
pairs. <char_value> is a hex number specifying the complete character
value in this character set (e.g. 0xa1b1), while <unicode_value> is a
16-bit hex number specifying its corresponding Unicode 2.1 character
value.
Alternatively, a range of characters can be specified with a corresponding
range of Unicode values. Each successive character in the
<start_char>-<end_char> range will be assigned to each successive
character in the <start_unicode>-<end_unicode> range. There must be
an equal number of characters in each range.
User-defined characters must be assigned to characters in Unicode's
private use area, and in particular the range 0xe000 to 0xf4ff. The
B-4 Oracle8i National Language Support Guide

Customized Character Sets
remaining 1024 characters in the private use area are reserved for Oracle
private use.
If you already defined "base_char_set", you only need to add the
customized character set mappings.
 character_data = {
<char_value>:<unicode_value>,
<start_char>-<end_char>:<start_unicode>-<end_unicode>,
...
 }

A character classification list is used to specify the type of characters.
Valid values:
UPPER LOWER DIGIT SPACE PUNCTUATION CONTROL
HEX_DIGIT LETTER PRINTABLE
You only need to add customized characters' classification if you defined
base_char_set.
classification = {
<char_value> = { UPPER, LOWER, DIGIT,
 SPACE, PUNCTUATION, CONTROL,
 HEX_DIGIT, LETTER, PRINTABLE },
...
 }

Lower-to-Upper case character relationships are defined as pairs, where
the first specifies the value of a character in this character set and the
second specifies its uppercase value in this character set. You may add
the customized case mapping only if needed.
 uppercase = {
<char_value>:<upper_char_value>,
<start_char>-<end_char>:<start_upper>-<end_upper>,
...
 }

Upper-to-Lower case character relationships are defined as pairs, where
the first specifies the value of a character in this character set and the
second specifies its lowercase value in this character set. You may add
the customized case mapping only if needed.
 lowercase = {
<char_value>:<lower_char_value>,
<start_char>-<end_char>:<start_lower>-<end_lower>,
...
 }

There are a lot of other fields in an Oracle character set definition file.
Presumably, you will only need the above fields, at most.
Customizing Locale Data B-5

Customized Character Sets
ENDDEFINE character_set

Example of Character Set Customization
This section uses an example to introduce the steps required to create a new

character set with an example. For this example, we will create a new character set

based on Oracle's JA16EUC character set and add a few user defined characters.

Step 1. Register a New Character Set Name and ID
In order to maintain unique character set names and IDs, you must register the

character name with Oracle to receive a uniquely assigned character set ID.

Requests for character set name and ID registration can be sent to:

nlsreg@us.oracle.com

Observe the following restrictions on character set names:

■ you cannot use a character set name that is already in use. (Each character set

must be assigned a unique character set name)

■ the name must consist of single-byte ASCII or EBCDIC characters only

(single-byte compiler character set)

■ there is a maximum length of 30 characters

■ the name must start with an alphabetic character

■ the name must be composed of alphanumeric characters only (e.g., no periods,

dashes, underscore characters allowed)

■ the name is case-insensitive

Rules for choosing a character set ID:

■ the ID cannot use a character set ID that is already in use (each character set

must be assigned a unique character set ID)

■ the ID must be in the decimal range of 10000-20000 (hexadecimal range of

0x2710-0x3a98)

Note: If the character set name and ID are not unique, you could

experience incompatibilities between character sets and potential

loss of data.
B-6 Oracle8i National Language Support Guide

Customized Character Sets
If a character set is derived from an existing Oracle character set, we recommend

using the following character set naming convention:

<Oracle_character_set_name><organization_name>EXT<version>

Example:

If a company such as Sun Microsystems were adding user-defined characters to the

JA16EUC character set, the following character set name might be appropriate:

JA16EUCSUNWEXT1

where:

For this example and all further steps, we will use the character set ID 10000 (hex

value 0x2710).

Step 2. Create an NLS Text Boot File
The NLS binary boot files indicate which NLS data objects will be loaded into the

database. Therefore, the binary boot file must be updated whenever a new character

set is created. To update the binary boot file, you must create an entry for your new

character set in a text boot file lx0boot.nlt first.

NLS Boot File Format

The following is a template for an Oracle NLS boot file.

Version number specifies the current loadable data version.
VERSION=<x.x.x.x.x>

List the character set names and IDs that will be merged into the existing
system boot file using the $ORACLE_HOME/bin/lxinst utility.
#
CHARACTER_SET
<name> <id>

JA16EUC is the character set name defined by Oracle

SUNW represents the organization name (company stock trading
abbreviation for Sun Microsystems)

EXT specifies that this is an extension to the JA16EUC character
set

1 specifies the version
Customizing Locale Data B-7

Customized Character Sets
<name> <id>
...

Example:

Create a text boot file (lx0boot.nlt) in the working directory.

% vi /tmp/lx0boot.nlt

To add JA16EUCSUNWEXT1, set:

VERSION=2.1.0.0.0

CHARACTER_SET
"JA16EUCSUNWEXT1" 10000

where the version number is based on the Oracle release. Refer to the version

number listed in the existing lx2*.nlt files for the latest version number.

Note that it is possible to list multiple user defined character sets in a single

lx0boot.nlt file. For example:

VERSION=2.1.0.0.0

CHARACTER_SET
"JA16EUCSUNWEXT1" 10000
"ZH16EUCSUNWEXT1" 10001

Step 3. Create a Character Set Definition File (lx2 dddd .nlt)
The convention used for naming character set definition (.nlt) files is in the format:

lx2dddd.nlt, where dddd = 4 digit Character Set ID in hex.

A few things to note when editing a character set definition file:

■ You can only extend (add characters to) an existing Oracle character set.

■ You should not remap existing characters.

■ All character mappings must be unique.

■ One-to-many character mapping is not allowed.

■ Many-to-one character mapping is not allowed.

■ New characters should be mapped into the Unicode private use range:

e000-f4ff. (Note that the actual Unicode 2.1 private use range is e000-f8ff,

however, Oracle reserves f500-f8ff for its own private use.)

■ No line can be longer than 80 characters in the character set definition file.
B-8 Oracle8i National Language Support Guide

Customized Character Sets
There is a feature, 'BASE_CHAR_SET', that can make customized character set

support easier. Since you are extending an existing Oracle character set, you can use

the 'BASE_CHAR_SET' feature which causes the new character set to inherit all

definitions from the base character set and the user only need add user-specific

customized character set data.

Example:

Assume you are extending the JA16EUC character set and have added some new

customized character set data to it.

Based on the character set ID of 10000 you specified in Step 1, name the new

character set definition file lx22710.nlt (based on the character set id hex value of

0x2710).

This example uses /tmp as the working directory. Edit the new character definition

file with an editor.

% vi /tmp/lx22710.nlt
VERSION = 2.1.0.0.0

DEFINE character_set
 name = "JA16EUCSUNWEXT1"
 id = 10000
 base_char_set = 830
 character_data = {
 0x9a41 : 0xe001,
 0x9a42 : 0xe002,
 }
 classification = {
 0x9a41 = { LETTER, LOWER },
 0x9a42 = { LETTER, UPPER },
 }
 uppercase = {
 0x9a41 : 0x9a42,
 }
 lowercase = {
 0x9a42 : 0x9a41,
 }
ENDDEFINE character_set

Refer to "Customized Character Set Definition File Format Template" on page B-3

for more information about the format of the character set definition files.

Minimally, you will need to set the character set name, character set ID and, base character
set, add customized character data and classification fields.
Customizing Locale Data B-9

Customized Character Sets
Step 4. Back up the NLS binary boot files
Oracle recommends that you backup the NLS installation boot file (lx0boot.nlb) and

the NLS system boot file (lx1boot.nlb) in the ORA_NLS33 directory prior to

generating and installing .nlb files.

% cd $ORA_NLS33
% cp lx0boot.nlb lx0boot.nlb.orig
% cp lx1boot.nlb lx1boot.nlb.orig

Step 5. Generate and install the .nlb files
Now you are ready to generate and install the new .nlb files. The .nlb files are

platform-dependent, so you must make sure to regenerate them on each platform

and also install these files on both the server and clients.

You use the lxinst utility to create both the binary character definition files

(lx2dddd.nlb) and update the NLS boot file (lx*boot.nlb).

Example:

The lxinst utility will make use of the existing system boot file. Therefore, copy the

existing binary system boot file into the directory specified by SYSDIR. For this

example, specify SYSDIR to the working directory (/tmp).

% cp lx1boot.nlb /tmp

The new character set definition file (lx22710.nlt) and the text boot file containing

the new character set entry (lx0boot.nlt) that was created in Step 2 & 3 should reside

in the directory specified by ORANLS, for this example, specify it to be /tmp. Also,

since we define JA16EUC (Id 830 in hex value 033e) as "BASE_CHAR_SET", the

base definition file, text-format (lx2033e.nlt) or binary format (lx*033e.nlb), should

be in the directory ORANLS too, so that the new character set can inherit all

definitions from it.

% cp lx2033e.nlt /tmp

or

% cp lx*033e.nlb /tmp

Use the lxinst utility to generate a binary character set definition file (lx22710.nlb) in

the directory specified by ORANLS and an updated binary boot file (lx1boot.nlb) in

the directory specified by DESTDIR. For this example, define ORANLS, SYSDIR

and DESTDIR all to be /tmp.

% $ORACLE_HOME/bin/lxinst oranls=/tmp sysdir=/tmp destdir=/tmp
B-10 Oracle8i National Language Support Guide

Customized Calendars
Then, install the newly generated binary boot file (lx1boot.nlb) into the ORA_NLS33

directory:

% cp /tmp/lx1boot.nlb $ORA_NLS33/lx1boot.nlb

Finally, install the new character set definition file lx2*.nlb into the ORA_NLS33

directory. If there is lx5*.nlb or lx6*.nlb or both, install them too:

% cp /tmp/lx22710.nlb $ORA_NLS33
% cp /tmp/lx52710.nlb $ORA_NLS33
% cp /tmp/lx62710.nlb $ORA_NLS33

Step 6. Repeat for Each Platform
You must repeat Step 5 on each hardware platform since the .nlb file is a

platform-specific binary. It must also be repeated for every system that must

recognize the new character set. Therefore, you should compile and install the new

.nlb files on both server and client machines.

Step 7. Create the Database Using New Character Set
After installing the .nlb files, you must shutdown and restart the database server in

order to initialize NLS data loading.

After bringing the database server back up, create the new database using the

newly created character set.

To use the new character set on the client side, simply exit the client (such as

Enterprise Manager or SQL*Plus) and re-invoke it after installing the .nlb files.

Customized Calendars
A number of calendars besides Gregorian are supported. Although all of them are

defined with data linked directly into NLS, some of them may require the addition

of ruler eras (in the case of imperial calendars) or deviation days (in the case of

lunar calendars) in the future. In order to do this without waiting for a new release,

you can define the additional eras or deviation days in an external file, which is

then automatically loaded when executing the calendar functions.

The calendar data is first defined in a text-format definition file. This file must be

converted into binary format before it can be used. The Calendar Utility described

here allows you to do this.
Customizing Locale Data B-11

Customized Calendars
NLS Calendar Utility

Syntax
The Calendar Utility is invoked directly from the command line:

LXEGEN

There are no parameters.

Usage
The Calendar Utility takes as input a text-format definition file. The name of the file

and its location are hard-coded as a platform-dependent value. On UNIX platforms,

the file name is lxecal.nlb, and its location is $ORACLE_HOME/ocommon/nls. A

sample calendar definition file is included in the distribution.

Note: The location of files is platform dependent. Please see the platform-specific

Oracle documentation for information about the location of files on your system.

The lxegen executable produces as output a binary file containing the calendar data

in the appropriate format. The name of the output file is also hard-coded as a

platform-dependent value; on UNIX, the name would be lxecal.nlb were you to

define deviation days for the Arabic Hijrah calendar. The file will be generated in

the same directory as the text-format file, and an already-existing file will be

overwritten.

Once the binary file has been generated, it will automatically be loaded during

system initialization. Do not move or rename the file, as it is expected to be found in

the same hard-coded name and location.

Utilities
The Oracle server includes the following three utilities to assist you in maintaining

NLS data:

NLS Data Installation Utility
(lxinst)

Generate binary-format data objects from
their text-format versions. Use this when you
receive NLS data updates or if you create
your own data objects.

NLS Calendar Utility
(lxegen)

Generate a binary file with the appropriate
format for the calendar data.

NLS Configuration Utility
(lxbcnf)

Create and edit user boot files.
B-12 Oracle8i National Language Support Guide

NLS Data Installation Utility
NLS Data Installation Utility

Overview
When you order an Oracle distribution set, a default set of NLS data objects is

included. Some NLS data objects are customizable. For example, in Oracle8i, you

can extend Oracle's character set definition files to add user-defined characters.

These NLS definition files must be converted into binary format and merged into

the existing NLS object set. The NLS Data Installation Utility described here will

allow you to do this.

Along with the binary object files, a boot file is generated by the NLS Data

Installation Utility. This boot file is used by the modules to identify and locate all

the NLS objects which it needs to load.

To facilitate boot file distribution and user configuration, three types of boot files are

defined:

Syntax
The NLS Data Installation Utility is invoked from the command line with the

following syntax:

LXINST [ORANLS=pathname] [SYSDIR= pathname] [DESTDIR= pathname] [HELP=[yes | no]]
[WARNING=[0 | 1 | 2 | 3]]

where

Installation Boot File The boot file included as part of the distribution set.

System Boot File The boot file generated by the NLS Data Installation Utility
which loads the NLS objects. If the user already has an installed
system boot file, its contents can be merged with the new system
boot file during object generation.

User Boot File A boot file that contains a subset of the system boot file
information. For information about how this file is generated,
see "NLS Configuration Utility" on page B-16.
Customizing Locale Data B-13

NLS Data Installation Utility
Return Codes
You may receive the following return codes upon executing lxinst:

Usage
Use lxinst to install customized character sets by completing the following tasks:

■ Create a text-format boot file (lx0boot.nlt) containing references to new data

objects.

■ Data objects can be generated only if they are referenced in the boot file.

ORANLS=pathname Specifies where to find the text-format boot and object files and
where to store the new binary-format boot and object files. If not
specified, NLS Installation Utility uses the value in the
environment variable ORA_NLS33 (or the equivalent for your
operating system). If both are specified, the command line
parameter overrides the environment variable. If neither is
specified, the NLS Installation Utility will exit with an error.

SYSDIR=pathname Specifies where to find the existing system boot file. If not
specified, the NLS Installation Utility uses the directory
specified in the initialization file parameter ORANLS. If there is
no existing system boot file or the NLS Installation Utility is
unable to find the file, it will create a new file and copy it to the
appropriate directory.

DESTDIR=pathname Specifies where to put the new (merged) system boot file. If not
specified, the NLS Installation Utility uses the directory
specified in the initialization file parameter ORANLS. Any
system boot file that exists in this directory will be overwritten,
so make a backup first.

HELP=[yes | no] If "yes", a help message describing the syntax for the NLS
Installation Utility will be displayed.

[WARNING=
[0 | 1 | 2 | 3]]

If you specify "0", no warning messages are displayed. If you
specify "1", all messages for level 1 will be displayed. If you
specify "2", all messages for levels 2 and 1 will be displayed. If
you specify "3", all messages for levels 3, 2, and 1 will be
displayed.

0 The generation of the binary boot and object files, and merge of
the installation and system boot files completed successfully.

1 Installation failed: the NLS Installation Utility will exit with an
error message that describes the problem.
B-14 Oracle8i National Language Support Guide

NLS Data Installation Utility
■ You can generate only character set object types.

■ Create your new text-format data object files. See "Data Object File Names" on

page B-16 for naming convention information.

Note: Your distribution set contains a character set definition demonstration file

that you can use as a reference or as a template. On UNIX-based systems, this

file is located in $ORACLE_HOME/demo/*.nlt.

■ Invoke lxinst as described above (using the appropriate parameters) to generate

new binary data object files. These files will be generated in the directory you

specified in ORANLS.

■ Lxinst also generates both a new installation boot file and system boot file.

If you have a previous NLS installation and want to merge the existing

information with the new in the system boot file, copy the existing system

boot file into the directory you specified in SYSDIR. A new system boot file

containing the merged information is generated in the directory specified in

DESTDIR.

Object Types
Only character set object types are currently supported for customizing.

Object IDs
NLS data objects are uniquely identified by a numeric object ID. The ID may never

have a zero or negative value.

In general, you can define new objects as long as you specify the object ID within

the range 10000-20000.

Object Names
Only a very restricted set of characters can be used in object names:

Note: As always, you should have backups of any existing files

you do not want overwritten.

Note: When you want to create a new character set, you must

register with Oracle Corporation by sending email to

nlsreg@us.oracle.com, which will ensure that your character set has

a unique name and ID.
Customizing Locale Data B-15

NLS Configuration Utility
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_- and <space>

Object names must start with an alphabetic character. Language, territory, and

character set names cannot contain an underscore character, but linguistic definition

names can. There is no case distinction in object names, and the maximum size of an

object name is 30 bytes (excluding terminating null).

Data Object File Names
The system-independent object file name is constructed from the generic boot file

entry information:

lxtdddd

where:

The installation boot file name is lx0BOOT; the system boot file name is lx1BOOT;

user boot files are named lx2BOOT. The file extension for text format files is .nlt, for

binary files, .nlb.

Examples:

NLS Configuration Utility
At installation, all available NLS objects are stored and referenced in the system

boot file. This file is used to load the available NLS data.

The NLS Configuration Utility allows you to configure your boot files such that

only the NLS objects that you require will be loaded. It does this by creating a user

boot file, which contains a subset of the system boot file. Data loading by the kernel

will then be performed according to the contents of this user boot file.

t 1 digit object type (hex)

dddd 4 digit object ID (hex)

lx22711.nlt Text-format character set definition, ID=10001

lx0boot.nlt Text-format installation boot file

lx1boot.nlb Binary system boot file

lx22711.nlb Binary character set definition, ID=10001
B-16 Oracle8i National Language Support Guide

NLS Configuration Utility
The NLS Configuration Utility allows you to configure a user boot file, either by

selecting NLS objects from the installed system boot file which will then be

included in a new user boot file, or by reading entries from an existing user boot file

and possibly removing one or more of them and saving the remaining entries into a

new user boot file. Note that you will not be allowed to actually "edit" an existing

boot file as it may be in use by either the RDBMS or some other Oracle tool (that is,

saving of boot file entries is never done to an existing one).

You may also use the NLS Data Installation Utility to check the integrity of an

existing user boot file. This is necessary since the contents of existing NLS objects

may change over time, and the installation of a new system boot file may cause user

boot files to become out of date. Thus, a comparison function will notify you when

it finds that the file is out of date and will allow you to create a new user boot file.

Syntax
The NLS Configuration Utility is invoked from the command line with the

following syntax:

LXBCNF [ORANLS=pathname] [userbootdir= pathname] [DESTDIR= pathname]
[HELP=[yes | no]]

where:

ORANLS=pathname Specifies where to find the text-format boot and object files and
where to store the new binary-format boot and object files. If not
specified, the NLS Installation Utility uses the value in the
environment variable ORA_NLS (or the equivalent for your
operating system). If both are specified, the command line
parameter overrides the environment variable. If neither is
specified, the NLS Installation Utility will exit with an error.

SYSDIR=pathname Specifies where to find the existing system boot file. If not
specified, the NLS Installation Utility uses the directory
specified in the initialization file parameter ORANLS. If there is
no existing system boot file or the NLS Installation Utility is
unable to find the file, it will create a new file and copy or move
it to the appropriate directory.

DESTDIR=pathname Specifies where to put the new (merged) system boot file. If not
specified, the NLS Installation Utility uses the directory
specified in the initialization file parameter ORANLS. Any
system boot file that exists in this directory will be overwritten
so make a backup first.
Customizing Locale Data B-17

NLS Configuration Utility
Menus
When the NLS Configuration Utility is started you are presented with the following

top-level menu:

■ File Menu

■ Edit Menu

■ Action Menu

■ Windows Menu

■ Help

File Menu
The file menu contains choices pertaining to file operations. Options are:

HELP=[yes | no] If "yes", a help message describing the syntax for the NLS
Installation Utility will be displayed.

Table B–1 File Menu Options

Menu Item Options Description

System Boot
File

Open This will open the current system boot file. Note
that the Open menu item will be "greyed out" as
soon as a system Boot File has been successfully
read. Also note that you cannot perform any
other functions until you have opened a system
boot file.

User Boot File New Open a new user boot file.

Read Read the contents of an existing user boot file.

Save Save changes to the new user boot file.

Revert Undo the changes to the currently open user
boot file made since the last "Save".

Choose Printer Not implemented in this release.

Page Setup Not implemented in this release.

Print Not implemented in this release.

Quit Exit from the file.
B-18 Oracle8i National Language Support Guide

NLS Configuration Utility
Note: As long as the system boot file has not been opened and read, all these

menu items will remain greyed out. That is, you cannot build a user boot file as

long as there is no system boot file information available.

As soon as you select New to create a new user boot file, the following NLS objects

will be created in the new file by default:

If you choose to read the contents of an existing user boot file, the entries read will

be checked against the entries of the system boot file. If an entry is found which

does not exist in the system boot file, you will receive a warning, and the entry will

not be included.

Edit Menu
The Edit Menu contains choices for editing information that you enter in any of the

dialogs or windows of the NLS Configuration Utility.

Action Menu
The Action Menu contains choices for performing operations on the user boot file.

Note that this menu is available only in the character mode NLS Configuration

Utility.

Windows Menu
The Windows Menu allows you to either activate certain windows or set the focus

to an already open window (the latter is meant for character-mode platforms).

Whenever a new window is opened, its name will be added to the Windows Menu

automatically.

Help Menu
This menu provides functions which allow you to retrieve various levels of help

about the NLS Configuration Utility.

Copy Item Copies the selected item from the system boot file to the user
boot file.

Delete Item Deletes the selected item from the user boot file.

NLS Defaults Not implemented in this release.
Customizing Locale Data B-19

NLS Configuration Utility
About Shows version information for the NLS Configuration Utility.

Help System Not implemented in this release.
B-20 Oracle8i National Language Support Guide

Obsolete Locale D
C

Obsolete Locale Data

 Oracle has renamed many character sets over time. This appendix lists them in:

■ Obsolete NLS Data
ata C-1

Obsolete NLS Data
Obsolete NLS Data
Prior to Oracle server release 7.2, when a character set was renamed, the old name

was usually supported along with the new name for several releases after the

change. Beginning with release 7.2, the old names are no longer supported.

Table C–1 lists the affected character sets. If you reference any of these character sets

in your code, please replace them with their new name:

Character set CL8MSWINDOW31 has been desupported. The newer character set

CL8MSWIN1251 is actually a duplicate of CL8MSWINDOW31 and includes some

characters omitted from the earlier version. Change any usage of

CL8MSWINDOW31 to CL8MSWIN1251 instead.

Table C–1 New Names for Obsolete NLS Data Character Sets

Old Name New Name

AR8MSAWIN AR8MSWIN1256

JVMS JA16VMS

JEUC JA16EUC

SJIS JA16SJIS

JDBCS JA16DBCS

KSC5601 KO16KSC5601

KDBCS KO16DBCS

CGB2312-80 ZHS16CGB231280

CNS 11643-86 ZHT32EUC

ZHT32CNS1164386 ZHT32EUC
C-2 Oracle8i National Language Support Guide

Gloss
D

Glossary

ASCII
American Standard Code for Information Interchange. A common encoded 7-bit

character set for English. ASCII includes the letters A-Z and a-z, as well as digits,

punctuation symbols, and control characters. The Oracle character set name for this

is US7ASCII.

Binary Sorting
Sorting of character strings based on their binary coded value representations.

Case Conversion
Case conversion refers to changing a character from its uppercase to lowercase

form, or vice versa.

Character
A character is an abstract element of a text. A character is different from a glyph

(font glyph), which is a specific instance of a character. For example, the first

character of the English upper-case Alphabet can be printed (or displayed) as A, A,

A, etc. All these different forms are different glyphs, but representing the same

character. A character, a character code and a glyph are related as follows.

character --(encoding)--> character code --(font)--> glyph

When we have the first character of the English upper-case Alphabet in computer

memory, we actually have a number (or a character code). The character code is

0x41 if we are using the ASCII encoding scheme, or the character code is 0xc1 if we

are using the EBCDIC encoding scheme, or it can be some other number if we are

using different encoding scheme. When we print (or display) this character, we use
ary D-1

a font. We have to choose a font for the ASCII encoding scheme (or a font for a

superset of the ASCII encoding scheme) if we are using the ASCII encoding scheme,

or we have to choose a font for the EBCDIC encoding scheme if we are using the

EBCDIC encoding scheme. Now the character is printed (or displayed) as A, A, A, or

some other form. All these different forms are different glyphs, but represent the

same character.

Character Code
A character code is a number which represents a specific character. In order for

computers to handle a character, we need a specific number which is assigned to

that character. The number (or the character code) depends on what encoding

scheme we are using. For example, the first character of the English upper-case

Alphabet has the character code 0x41 for the ASCII encoding scheme, but the same

character has the character code 0xc1 for the EBCDIC encoding scheme. (See

"character" also.)

Character Set
A character set is a set of characters for a specific language (or languages). There can

be many different character sets just for one language.

Sometimes, a character set doesn't imply any specific character encoding scheme.

In this manual, a character set generally implies a specific character encoding

scheme, which is how a number (or a character code) is assigned to each character

of the character set. Therefore, the meaning of the term character set is generally

same as encoded character set in this manual.

Character String
A character string is a serial string of characters.

A character string can also consist of no character. In this case, the character string

doesn't include any character. This character string is called "null string". "The

number of characters" of this character string is 0 (zero).

Coded Character Set
Same as encoded character set.

An independent unit used to represent data, such as a letter, a letter with a

diacritical mark, a digit, ideograph, punctuation, or symbol.
D-2 Oracle8i National Language Support Guide

Character Classification
Character classification information provides details about the type of character

associated with each legal character code; that is, whether it is an alphabetic,

uppercase, lowercase, punctuation, control, or space character, etc.

Character Encoding Scheme
A character encoding scheme is a rule that assigns numbers (or character codes) to

all characters in a character set. We also use the shortened term encoding scheme (or

encoding method, or just encoding).

Character Set Conversion
Conversion from one encoded character set to another.

Client Character Set
The encoded character set which the client uses. A client character set can differ

from the database server character set, in which case, character set conversion must

occur.

Collation
Ordering of character strings in a given alphabet in a linguistic sort order or a

binary sort order.

Combining Character
A character that graphically combines with a preceding base character. These

characters are not used in isolation. They include such characters as accents,

diacritics, Hebrew points, Arabic vowel signs, and Indic matras.

Composite Character
A single character which can be represented by a composite character sequence.

This type of character is found in the scripts of Thai, Lao, Vietnamese, and Korean

Hangul, as well as many Latin characters used in European languages.
Glossary D-3

Composite Character Sequence
A character sequence consisting of a base character followed by one or more

combining characters. This is also referred to as a combining character sequence.

Database Character Set
The encoded character set in which text is stored in the database is represented. This

includes CHAR, VARCHAR2, LONG, and CLOB column values and all SQL and

PL/SQL text stored in the database.

Diacritical Mark
A mark added to a letter that usually provides information about pronunciation or

stress.

DBCS
DBCS stands for Double-Byte (Coded) Character Set. However, this term should be

used carefully. (Use the term multibyte (coded) character set when appropriate.) See

"double-byte" also.

Double byte
Double-byte (or doublebyte or double byte) means two bytes. However, this term

should be used carefully. (Use the term multibyte when appropriate.) For many

characters of many languages, double-byte is not enough (this is especially true for

UTF8 encoding of Unicode).

EBCDIC
Extended Binary Coded Decimal Interchange Code. EBCDIC is a family of encoded

character sets used mostly on IBM systems.

Encoded Character Set
An encoded character set is a character set with an associated character encoding

scheme.

An encoded character set specifies how a number (or a character code) is assigned

to each character of the character set based on a character encoding scheme.
D-4 Oracle8i National Language Support Guide

Encoding
Encoding Method or Encoding scheme. Same as Character Encoding Scheme.

Encoding Scheme
See "Character Encoding Schemes".

EUC
Extended UNIX Codes. A common encoding method used on Asian UNIX systems.

It combines up to four different encoded character sets in a single data stream.

Euro
The new unit of currency used by participating member states of the European

Union.

Font
An ordered collection of character glyphs which provides a graphical representation

of characters within a character set.

Glyph
A glyph (font glyph) is a specific instance of a character. A character can have many

different glyphs. For example, the first character of the English upper-case Alphabet

can be printed (or displayed) as A, A, A, etc.

All these different forms are different glyphs, but representing the same character.

(See "character" also.)

Ideograph
A symbol representing an idea. Chinese is an example of an ideographic system.

Internationalization
The process of making software flexible enough to be used in many different

linguistic and cultural environments. Internationalization should not be confused

with localization, which is the process of preparing software for use in one specific

locale.
Glossary D-5

ISO
International Standards Organization.

ISO/IEC 10646
A universal character set standard defining the characters of most major scripts

used in the modern world. In 1993, ISO adopted Unicode version 1.1 as ISO/IEC

10646-1:1993. ISO/IEC 10646 has two formats: UCS2 is a 2-byte fixed-width format

and UCS4 is a 4-byte fixed-width format. There are three levels of implementation,

all relating to support for composite characters. Level 1 requires no composite

character support, level 2 requires support for specific scripts (including most of the

Unicode scripts such as Arabic, Thai, etc.), and level 3 requires unrestricted support

for composite characters in all languages.

ISO Currency
The 3-letter abbreviation used to denote a local currency, which is based on the ISO

4217 standard. For example, "USD" represents the United States Dollar.

ISO 8859
A family of 8-bit encoded character sets. The most common one is ISO 8859-1 (also

known as Latin-1), and is used for Western European languages.

Latin-1
Formally known as the ISO 8859-1 character set standard. An 8-bit extension to

ASCII which adds 128 characters covering the most common Latin characters used

in Western Europe. The Oracle character set name for this is WE8ISO8859P1. See

also "ISO 8859".

Linguistic Index
An index built on a linguistic collation order.

Linguistic Sorting
Sorting of strings based on requirements from a locale instead of based on the

binary representation of the strings.
D-6 Oracle8i National Language Support Guide

Local Currency
The currency symbol used in a country or region. For example, "$" represents the

United States Dollar.

Locale
A collection of information regarding the linguistic and cultural preferences from a

particular region. Typically, a locale consists of language territory, character set,

linguistic, and calendar information defined in NLS data files.

Localization
The process of providing language- or culture-specific information for software

systems. Translation of an application's user interface would be an example of

localization. Localization should not be confused with internationalization, which is

the process of generalizing software so it can handle many different linguistic and

cultural conventions.

Monolingual Support
Support for only one language.

Multibyte
Multi-byte (or multibyte or multi byte) means two or more bytes.

When we assign character codes to all characters for a specific language (or a group

of languages), one byte (8 bits) can represent 256 different characters. Two bytes (16

bits) can represent up to 65,536 different characters. However, two bytes are still not

enough to represent all the characters for many languages. We use 3 bytes or 4 bytes

for those characters.

One example is UTF8 encoding of Unicode. In UTF8, there are a lot of 2-byte and

3-byte characters.

Another example is Traditional Chinese language used in Taiwan. It has more than

80,000 different characters. We are using 4 bytes for some of those characters under

some character encoding schemes used in Taiwan.
Glossary D-7

Multibyte Character
A multibyte character is a character whose character code consists of two or more

bytes under a certain character encoding scheme. Note that the same character may

have different character code where the character encoding scheme is different.

Without knowing which character encoding scheme we are using, we cannot tell

which character is a multibyte character. For example, Japanese Hankaku-Katakana

(half width Katakana) characters are one byte in JA16SJIS encoded character set,

two bytes in JA16EUC, and three bytes in UTF8. See "single-byte character" also.

Multibyte Character String
A multibyte character string is a character string which consists of one of the below.

■ No character

(The character string is called "null string" in this case.)

■ One or more single-byte character(s)

■ A mixture of one or more single-byte character(s) and one or more multibyte

character(s)

■ One or more multibyte character(s)

Theoretically, we can exclude single-byte character strings (character strings

including only single-byte characters) from the list above. However, it's probably

more convenient for software to handle single-byte character strings as one type of

multibyte character strings.

NCHAR Character Set
An alternate character set from the database character set that can be specified for

NCHAR, NVARCHAR2, and NCLOB columns. NCHAR character sets, unlike the

database character set, can support fixed-width multibyte character sets. Care must

be taken when selecting an NCHAR character set, since its character repertoire must

be included in the database character set as well.

Net8
Net8 enables two or more computers that run the Oracle server to exchange data

through a third-party network. It is independent of the communications protocol.
D-8 Oracle8i National Language Support Guide

NLS
National Language Support. NLS allows users to interact with the database in their

native languages. It also allows applications to run in different linguistic and

cultural environments.

NLSDATA
A general phrase referring to the contents in many files with .nlb suffixes. These

files contain data that the NLSRTL library uses to provide specific NLS support.

NLSRTL
National Language Support Run-Time Library. This library is responsible for

providing locale-independent algorithms for internationalization. The

locale-specific information (i.e., NLSDATA) is read by the NLSRTL library during

run-time.

Replacement Character
A character used during character conversion when the desired character is not

available in the target character set. For example, "?" is often used as Oracle's

default replacement character.

Restricted Multilingual Support
Multilingual support which is restricted to a group of related languages. Support

for related languages, but not all languages. Similar language families, such as

Western European languages can be represented with, for example, ISO 8859/1. In

this case, however, Thai could not be added.

SQL*Net
Now called Net8. Net8 enables two or more computers that run the Oracle server to

exchange data through a third-party network. It is independent of the

communications protocol.

Script
A collection of related graphic symbols used in a writing system. Some scripts are

used to represent multiple languages, and some languages use multiple scripts.

Example of scripts include Latin, Arabic, and Han.
Glossary D-9

Server Character Set
The character set used by the database server.

Single-byte
Single-byte (or singlebyte or single byte) means one byte. One byte usually consists

of 8 bits. When we assign character codes to all characters for a specific language,

one byte (8 bits) can represent 256 different characters.

Single-byte character
A single-byte character is a character whose character code consists of one byte

under a certain character encoding scheme. Note that the same character may have

different character code where the character encoding scheme is different. Without

knowing which character encoding scheme we are using, we cannot tell which

character is a single-byte character. For example, the euro currency symbol is one

byte in WE8MSWIN1252 encoded character set, two bytes in UCS2, and three bytes

in UTF8. See "multibyte character" also.

Single-byte Character String
A single-byte character string is a character string which consists of one of the

below.

■ No character

(The character string is called "null string" in this case.)

■ One or more single-byte character(s).

UCS-2
UCS stands for "Universal Multiple-Octet Coded Character Set". It is a 1993 ISO and

IEC standard character set. See "UCS2".

UCS2
Fixed-width 16-bit Unicode. Each character occupies 16 bits of storage. The Latin-1

characters are the first 256 code points in this standard, so it can be viewed as a

16-bit extension of Latin-1.
D-10 Oracle8i National Language Support Guide

UCS4
Fixed-width 32-bit Unicode. Each character occupies 32 bits of storage. The UCS2

characters are the first 65,536 code points in this standard, so it can be viewed as a

32-bit extension of UCS2. This is also sometimes referred to as ISO-10646. ISO-10646

is a standard that specifies up to 2,147,483,648 characters in 32768 planes, of which

the first plane is the UCS2 set. The ISO standard also specifies transformations

between different encodings.

Unicode
Unicode is a type of universal character set, a collection of 64K characters encoded

in a 16-bit space. It encodes nearly every character in just about every existing

character set standard, covering most written scripts used in the world. It is owned

and defined by Unicode Inc. Unicode is canonical encoding which means its value

can be passed around in different locales. But it does not guarantee a round-trip

conversion between it and every Oracle character set without information loss.

Unicode Codepoint
A 16-bit binary value that can represent a unit of encoded text for processing and

interchange. Every point between U+0000 and U+FFFF is a code point. The term is

interchangeable with code element, code position, and code value.

Unicode Mapping Between UCS and UTF Formats
The following shows how different Unicode-related character sets relate to one

another in terms of character code value ranges:

UCS2 UTF8 Description

0x0000 - 0x007F 0x00 - 0x7F Single bytes

0x0080 - 0x07FF 0xC0 - 0xDF 2-byte sequence leaders (5+6 bits)

0x0800 - 0xFFFF 0xE0 - 0xEF 3-byte sequence leaders (4+6+6 bits)

0x80 - 0xBF Follower bytes (6 bits each)

UCS4 UTF8 Description

0x00000000 - 0x0000007F 0x00 - 0x7F Single bytes

0x00000080 - 0x000007FF 0xC0 - 0xDF 2-byte sequence leaders (5+6 bits)
Glossary D-11

Unrestricted Multilingual Support
Being able to use as many languages as desired. A universal character set, such as

Unicode, helps to provide unrestricted multilingual support because it supports a

very large character repertoire, encompassing most modern languages of the world.

UTF-8
A variable-width encoding of UCS2 which uses sequences of 1, 2, or 3 bytes per

character. Characters from 0-127 (the 7-bit ASCII characters) are encoded with one

byte, characters from 128-2047 require two bytes, and characters from 2048-65535

require three bytes. The Oracle character set name for this is UTF8 (for the Unicode

2.1 standard). The standard has left room for expansion to support the UCS4

characters with sequences of 4, 5, and 6 bytes per character.

UTF-16
An extension to UCS2 that allows for pairs of UCS2 code points to represent

extended characters from the UCS4 set. UCS2 has ranges of code points allocated

for high (leading) and low (trailing) surrogates that support UTF16 encodings.

0x00000800 - 0x0000FFFF 0xE0 - 0xEF 3-byte sequence leaders (4+6+6 bits)

0x00001000 - 0x001FFFFF 0xF0 - 0xF7 4-byte sequence leaders (3+6+6+6 bits)

0x00200000 - 0x03FFFFFF 0xF8 - 0xFB 5-byte sequence leaders (2+6+6+6+6 bits)

0x04000000 - 0x7FFFFFFF 0xFC - 0xFD 6-byte sequence leaders (1+6+6+6+6+6 bits)

0x80 - 0xBF Follower bytes (6 bits each)

0xFE - 0xFF Reserved or unused

UCS4 UTF16 Description

0x00000000 - 0x0000FFFF 0x0000 - 0xFFFF Same as UCS2

0x00010000 - 0x0010FFFF 0xD800 - 0xDBFF High surrogate ((x-0x10000)>>10)&0x3FF

0xDC00 - 0xDFFF Low surrogate (x-0x10000)&0x3FF

0x00110000 - 0x7FFFFFFF Not mapped to UTF16
D-12 Oracle8i National Language Support Guide

Wide Character
A fixed-width character format that is well-suited for extensive text processing

because it allows for data to be processed in consistent fixed-width chunks. Wide

characters are intended for supporting internal character processing, and are

therefore implementation-dependent.
Glossary D-13

D-14 Oracle8i National Language Support Guide

Index

A
abbreviations

AM/PM, 2-17

BC/AD, 2-17

languages, A-2

ALTER SESSION statement

SET NLS_CURRENCY clause, 2-24, 2-25

SET NLS_DATE_FORMAT clause, 2-15

SET NLS_LANGUAGE clause, 2-12

SET NLS_NUMERIC_CHARACTERS

clause, 2-22

SET NLS_TERRITORY clause, 2-12

ALTER SYSTEM statement

SET NLS_LANGUAGE clause, 2-12

alternate character mappings, 4-10

AM/PM abbreviation

language of, 2-17

ASCII character set

sorting order, 2-28

B
BC/AD abbreviation

language of, 2-17

binary sorting, 2-28

C
calendar systems

support, A-21

calendars, A-21

customized, B-11

formats, 2-17

parameter, 2-17

systems, 2-20

case-insensitive sorting, 2-31

CHAR

class, 6-8

datatype

multi-byte character sets and, 3-15

object, creating, 6-8

character data

binary sorts, 2-28

linguistic indexes, 2-29

linguistic sorts, 2-28

special cases, 2-31

sorting, 2-28

character mappings

alternate, 4-10

character sets, 6-9

8-bit versus 7-bit, 4-5

Asian, A-7

conversion, 3-24

conversion using OCI, 5-34

converting, 4-5

definition files, B-2

European, A-9

Middle Eastern, A-15

multi-byte, 3-15

parameters, 2-34

pattern matching characters, 4-10

sorting data, 2-28

storage, A-6

supported, 3-18

supporting Euro symbol, A-23

universal, A-17

codepoints, 4-10
 Index-1

collation parameters, 2-27

concatenation operator, 4-12

conversions

between character set ID number and character

set name, 4-6

CONVERT function, 4-5, 4-6

converting character sets, 4-5

currencies

formats, 2-23

monetary

units characters, 2-26

symbols

default, 2-10

local currency symbol, 2-23

customized

calendars, B-11

character sets, B-2

D
data

conversion, 4-5

date formats, 2-14, 4-10

and partition bound expressions, 2-15

date parameters, 2-13

dates

ISO standard, 2-18, 4-11

NLS_DATE_LANGUAGE parameter, 2-16

days

format element, 2-17

language of names, 2-17

decimal character

default, 2-10

NLS_NUMERIC_CHARACTERS

parameter, 2-21

when not a period (.), 2-22

drivers

JDBC, 6-2

E
EBCDIC character set

sorting order, 2-28

EJB, 6-21

Enterprise Java Beans, 6-21

Euro symbol

supported character sets, A-23

F
format elements, 4-10, 4-11

C, 4-11

D, 2-22, 4-11

day, 2-17

G, 2-22, 4-11

IW, 4-11

IY, 4-11

L, 2-23, 4-11

month, 2-17

RM, 2-14, 4-10

RN, 4-11

formats

calendar, 2-17

currency, 2-23

numeric, 2-21

G
getString() method, 6-8

getStringWithReplacement() method, 6-8

group separator, 2-21

default, 2-10

NLS_NUMERIC_CHARACTERS

parameter, 2-21

I
indexes

partitioned, 4-9

ISO standard

date format, 2-18, 4-11

ISO week number, 4-11

IW format element, 4-11

IY format element, 4-11

J
Java runtime environment, 6-2

Java stored procedures, 6-15

Java Virtual Machine, 6-14

java.sql.ResultSet, 6-3
Index-2

JDBC

class library, 6-5

drivers, 6-2

OCI driver

NLS considerations, 6-6

Server driver, 6-7

Thin driver

NLS considerations, 6-7

JDBC drivers

and NLS, 6-4

JVM, 6-14

L
L format element, 2-23

language support, 1-5

languages

overriding, 2-6

LIKE operator, 4-10

linguistic definitions, A-19

supported, A-19

linguistic indexes, 2-29

linguistic sorts, 2-28

controlling, 4-9

list separator, 2-33

local currency symbol, 2-23

LXBCNF executable, B-17

LXEGEN executable, B-12

LXINST executable, B-13

M
messages

error, A-4

translated, A-4

monetary

parameters, 2-22

units characters, 2-26

months

format element, 2-17

language of names, 2-17

multi-byte character sets, 3-15

storing data, 3-15

N
naming database objects, 3-16

national character set

parameter, 2-34

National Language Support (NLS)

architecture, 1-2

NLS_LANGUAGE parameter, 4-4

NLS

and JDBC drivers, 6-4

conversions, 6-4

data size restrictions, 6-10

for JDBC OCI drivers, 6-6

for JDBC Thin drivers, 6-7

Java methods that employ, 6-3

ratio, 6-10

NLS Calendar Utility, B-11

NLS data

error messages, A-4

obsolete, C-2

supported calendar systems, A-21

supported linguistic definitions, A-19

supported territories, A-5

NLS Data Installation Utility, B-13

NLS parameters

default values, A-25

using in SQL functions, 4-2

NLS_CALENDAR parameter, 2-20

NLS_CHARSET_DECL_LEN function, 4-6

NLS_CHARSET_ID function, 4-6

NLS_CHARSET_NAME function, 4-6

NLS_COMP parameter, 2-32, 4-9

NLS_CREDIT parameter, 2-23, 2-27

NLS_CURRENCY parameter, 2-23

NLS_DATE_FORMAT parameter, 2-14

NLS_DATE_LANGUAGE parameter, 2-16

NLS_DEBIT parameter, 2-27

NLS_DUAL_CURRENCY parameter, 2-25

NLS_ISO_CURRENCY parameter, 2-24

NLS_LANG

choosing a locale with, 2-4

environment variable, 3-18, 6-6

examples, 2-5

specifying, 2-5

NLS_LANGUAGE parameter, 2-8
 Index-3

NLS_LIST_SEPARATOR parameter, 2-33

NLS_MONETARY_CHARACTERS

parameter, 2-26

NLS_NCHAR environment variable, 3-18

NLS_NCHAR parameter, 2-34

NLS_NUMERIC_CHARACTERS parameter, 2-21

NLS_SORT parameter, 2-32, 2-33

NLS_TERRITORY parameter, 2-10

NLSDATA (language-independent data)

utilities for loading, B-12

NLSSORT function, 4-7

numeric

formats, 2-21, 4-11

parameters, 2-21

O
oracle.sql.CHAR, 6-3

oracle.sql.CHAR class, 6-8

getString() method, 6-8

getStringWithReplacement() method, 6-8

toString() method, 6-8

oracle.sql.CharacterSet class, 6-8

oracle.sql.CLOB, 6-3

ORANLS option, B-13, B-17

ORDER BY clause, 4-9

sorting character data, 2-28

overriding language and territory

specifications, 2-6

P
pad character

alternate mappings, 4-10

parameters

calendar, 2-17

collation, 2-27

date, 2-13

monetary, 2-22

NLS default values, A-25

NLS_CALENDAR, 2-20

NLS_COMP, 2-32

NLS_CREDIT, 2-23, 2-27

NLS_CURRENCY, 2-23

NLS_DATE_FORMAT, 2-14

NLS_DATE_LANGUAGE, 2-16

NLS_DEBIT, 2-27

NLS_DUAL_CURRENCY, 2-25

NLS_ISO_CURRENCY, 2-24

NLS_LANGUAGE, 2-8

NLS_LIST_SEPARATOR, 2-33

NLS_MONETARY_CHARACTERS, 2-26

NLS_NCHAR, 2-34

NLS_NUMERIC_CHARACTERS, 2-21

NLS_SORT, 2-32, 2-33

NLS_TERRITORY, 2-10

numeric, 2-21

setting, 2-2

time, 2-13

partitioned

indexes, 4-9

tables, 4-9

percent sign

alternate mappings, 4-10

Q
queries

ordering output, 2-28

R
replacement characters, 4-5

restricted multilingual support, 3-26

RM format element, 2-14

Roman numerals

format mask for, 2-14

S
sorting

binary, 2-28

character data, 2-28

double characters, 2-31

following language conventions, 2-28

order, 2-28

specifying non-default, 2-32, 2-33

SQLJ

client, 6-30

SQLJ translators, 6-2
Index-4

storage character sets, A-6

stored procedures

Java, 6-15

storing data

in multi-byte character sets, 3-15

string comparisons

and WHERE clause, 4-8

string manipulation using OCI, 5-7

supported character sets, 3-18

supported character string functionality and

character sets, 3-18

T
tables

partitioned, 4-9

territories, 2-10

overriding, 2-6

supported, A-5

territory support, 1-6

time parameters, 2-13

TO_CHAR function

default date format, 2-14

format masks, 4-10

group separator, 2-22

language for dates, 2-16

spelling of days and months, 2-16

TO_DATE function

default date format, 2-14

format masks, 4-10

language for dates, 2-16

spelling of days and months, 2-16

TO_NUMBER function

format masks, 4-10

group separator, 2-22

toString() method, 6-8

translated messages, A-4

translators

SQLJ, 6-2

U
underscore

alternate mappings, 4-10

UNICODE, 3-27

UTF8, A-17

UTF8 support, A-18

UTFE, A-17

V
VARCHAR2 datatype

multi-byte character sets and, 3-15

W
WHERE clause

and string comparisons, 4-8
 Index-5

Index-6

	PDF Directory
	Send Us Your Comments
	Preface
	Feature Coverage and Availability
	Audience
	Knowledge Assumed of the Reader
	Installation and Migration Information
	Application Design Information

	How Oracle8i National Language Support Guide Is Organized
	Conventions Used in This Manual

	1 Understanding Oracle NLS
	Oracle Server NLS Architecture
	Locale-Independent Operation
	Client/Server Architecture

	Standard Features
	Language Support
	Territory Support
	Date and Time Formats
	Monetary and Numeric Formats
	Calendars
	Linguistic Sorting
	Character Set Support

	Customization Features
	Character Set Customization
	Calendar Customization

	SQL Support

	2 Setting Up an NLS Environment
	Setting NLS Parameters
	Choosing a Locale with NLS_LANG
	Specifying NLS_LANG
	NLS_LANG Examples
	Overriding Language and Territory Specifications
	NLS Database Parameters

	Checking NLS Parameters
	NLS Views
	OCI Functions
	Language and Territory Parameters

	Time Parameters
	Date Parameters
	Date Formats
	NLS_DATE_FORMAT
	NLS_DATE_LANGUAGE

	Calendar Parameter
	Calendar Formats
	NLS_CALENDAR

	Numeric Parameters
	Numeric Formats
	NLS_NUMERIC_CHARACTERS

	Monetary Parameters
	Currency Formats
	NLS_CURRENCY
	NLS_ISO_CURRENCY
	NLS_DUAL_CURRENCY
	NLS_MONETARY_CHARACTERS
	NLS_CREDIT
	NLS_DEBIT

	Collation Parameters
	Sorting Order
	Sorting Character Data
	NLS_SORT
	NLS_COMP
	NLS_LIST_SEPARATOR

	Character Set Parameters
	NLS_NCHAR

	3 Choosing a Character Set
	What is an Encoded Character Set?
	Which Characters to Encode?
	Writing Systems

	How Many Languages does a Character Set Support?
	ASCII Encoding

	How are These Characters Encoded?
	Single-Byte Encoding Schemes
	Multibyte Encoding Schemes

	Oracle's Naming Convention for Character Sets
	Tips on Choosing an Oracle Database Character Set
	Interoperability with System Resources and Applications
	Character Set Conversion
	Database Schema
	Performance Implications
	Restrictions

	Tips on Choosing an Oracle NCHAR Character Set
	Database Schema
	Performance Implications
	Recommendations

	Considerations for Different Encoding Schemes
	Be Careful when Mixing Fixed-Width and Varying-Width Character Sets
	Storing Data in Multi-Byte Character Sets

	Naming Database Objects
	Summary of Data Types and Supported Encoding Schemes

	Changing the Character Set After Database Creation
	Customizing Character Sets
	Character Sets with User-Defined Characters
	Oracle's Character Set Conversion Architecture
	Unicode 2.1 Private Use Area
	UDC Cross References

	Monolingual Database Example
	Character Set Conversion

	Multilingual Database Example
	Restricted Multilingual Support
	Unrestricted Multilingual Support

	4 SQL Programming
	Locale-Dependent SQL Functions
	Default Specifications
	Specifying Parameters
	Unacceptable Parameters
	CONVERT Function
	Character Set SQL Functions
	NLSSORT Function
	Pattern Matching Characters for Fixed-Width Multi-Byte Character Sets

	Time/Date/Calendar Formats
	Date Formats

	Numeric Formats
	Miscellaneous Topics

	5 OCI Programming
	Using the OCI NLS Functions
	NLS Language Information Retrieval
	OCINlsGetInfo
	OCI_Nls_MaxBufSz
	NLS Language Information Retrieval Sample Code

	String Manipulation
	OCIMultiByteToWideChar
	OCIMultiByteInSizeToWideChar
	OCIWideCharToMultiByte
	OCIWideCharInSizeToMultiByte
	OCIWideCharToLower
	OCIWideCharToUpper
	OCIWideCharStrcmp
	OCIWideCharStrncmp
	OCIWideCharStrcat
	OCIWideCharStrchr
	OCIWideCharStrcpy
	OCIWideCharStrlen
	OCIWideCharStrncat
	OCIWideCharStrncpy
	OCIWideCharStrrchr
	OCIWideCharStrCaseConversion
	OCIWideCharDisplayLength
	OCIWideCharMultiByteLength
	OCIMultiByteStrcmp
	OCIMultiByteStrncmp
	OCIMultiByteStrcat
	OCIMultiByteStrcpy
	OCIMultiByteStrlen
	OCIMultiByteStrncat
	OCIMultiByteStrncpy
	OCIMultiByteStrnDisplayLength
	OCIMultiByteStrCaseConversion
	String Manipulation Sample Code

	Character Classification
	OCIWideCharIsAlnum
	OCIWideCharIsAlpha
	OCIWideCharIsCntrl
	OCIWideCharIsDigit
	OCIWideCharIsGraph
	OCIWideCharIsLower
	OCIWideCharIsPrint
	OCIWideCharIsPunct
	OCIWideCharIsSpace
	OCIWideCharIsUpper
	OCIWideCharIsXdigit
	OCIWideCharIsSingleByte
	Character Classification Sample Code

	Character Set Conversion
	OCICharSetToUnicode
	OCIUnicodeToCharSet
	OCICharSetConversionIsReplacementUsed
	Character Set Conversion Sample Code

	Messaging Mechanism
	OCIMessageOpen
	OCIMessageGet
	OCIMessageClose
	LMSGEN
	Text Message File Format
	Message Example

	6 Java
	Overview of Oracle8i Java Support
	JDBC
	JDBC Class Library
	JDBC OCI Driver
	JDBC Thin Driver
	JDBC Server Driver
	The oracle.sql.CHAR Class
	NLS Restrictions

	SQLJ
	Java Virtual Machine
	Java Stored Procedures
	CORBA and EJB
	CORBA ORB
	Enterprise Java Beans

	Configurations for Multilingual Applications
	Multilingual Database
	Internationalized Java Server Objects
	Clients of Different Languages

	Multilingual Demo Applications in SQLJ
	The Database Schema
	Java Stored Procedures
	The SQLJ Client

	Summary

	A Locale Data
	Languages
	Translated Messages
	Territories
	Character Sets
	Asian Language Character Sets
	European Language Character Sets
	Middle Eastern Language Character Sets
	Universal Character Sets

	Linguistic Definitions
	Calendar Systems
	Character Sets that Support the Euro Symbol
	Default Values for NLS Parameters

	B Customizing Locale Data
	Customized Character Sets
	Character Set Definition Files

	Customized Calendars
	NLS Calendar Utility
	Utilities

	NLS Data Installation Utility
	Overview
	Syntax
	Return Codes
	Usage

	NLS Configuration Utility
	Syntax
	Menus

	C Obsolete Locale Data
	Obsolete NLS Data

	D Glossary
	ASCII
	Binary Sorting
	Case Conversion
	Character
	Character Code
	Character Set
	Character String
	Coded Character Set
	Character Classification
	Character Encoding Scheme
	Character Set Conversion
	Client Character Set
	Collation
	Combining Character
	Composite Character
	Composite Character Sequence
	Database Character Set
	Diacritical Mark
	DBCS
	Double byte
	EBCDIC
	Encoded Character Set
	Encoding
	Encoding Scheme
	EUC
	Euro
	Font
	Glyph
	Ideograph
	Internationalization
	ISO
	ISO/IEC 10646
	ISO Currency
	ISO 8859
	Latin-1
	Linguistic Index
	Linguistic Sorting
	Local Currency
	Locale
	Localization
	Monolingual Support
	Multibyte
	Multibyte Character
	Multibyte Character String
	NCHAR Character Set
	Net8
	NLS
	NLSDATA
	NLSRTL
	Replacement Character
	Restricted Multilingual Support
	SQL*Net
	Script
	Server Character Set
	Single-byte
	Single-byte character
	Single-byte Character String
	UCS-2
	UCS2
	UCS4
	Unicode
	Unicode Codepoint
	Unicode Mapping Between UCS and UTF Formats
	Unrestricted Multilingual Support
	UTF-8
	UTF-16
	Wide Character

	Index

