
Oracle8 i

Designing and Tuning for Performance

Release 2 (8.1.6)

December 1999

Part No. A76992-01

Designing and Tuning for Performance, Release 2 (8.1.6)

Part No. A76992-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Michele Cyran.

Contributing Authors: Mark Bauer, Ruth Baylis, Lance Ashdown, Joyce Fee, Jackie Gosselin, Shelley
Higgins, Diana Lorentz, Rita Moran, Randy Urbano, Nitin Vengurlekar, and Sandy Venning.

Contributors: T. Akiba, Ahmed Alomari, D. Austin, A. Brumm, D. Colello, B. Dageville, D. Daniels,
Dinesh Das, S. DeMel, Harv Heneman, S. Gossett, T. Guay, G. Hallmark, M. Hartstein, S. Heisey, A. Ho,
Andrew Holdsworth, Hakan Jakobssen, S. Jang, R. Jenkins, J. Klokkers, A. Kolk, Tirthankar Lahiri, J.
Loaiza, G. Lumpkin, R. Manalac, S. Maring, Alan Maxwell, K. Morse, Ari Mozes, K. Ono, Cetin Ozbutun,
Peter Povinec, M. Rhodes, R. Roccaforte, H. Sankar, R. Shah, Ekrem Soylemez, Juan Tellez, Bob Thome,
L. To, A. Tsukerman, Steve Vivian, S. Wadhwa, Steve Wertheimer, Graham Wood, M. Zait, Zia Ziauddin.

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.
If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and JServer, LogMiner, Net8, Oracle Advanced Queuing, Oracle Call
Interface, Oracle COM Cartridge, Oracle Data Migration Assistant, Oracle Database Assistant, Oracle
Database Configuration Assistant, Oracle DBA Management Pack, Oracle Designer, Oracle Developer,
Oracle Enterprise Manager, Oracle Enterprise Manager Performance Pack, Oracle Expert, Oracle iFS,
Oracle interMedia, Oracle Lite, Oracle Parallel Server, Oracle Spatial, Oracle Virtual Private Database,
Oracle Visual Information Retrieval (VIR), Oracle Web Application Server, Oracle WebDB, Oracle7,
Oracle8, Oracle8 Enterprise Edition, Oracle8i, Oracle8i Lite, PL/SQL, Pro*C, Pro*C/C++, Pro*COBOL,
SQL, SQL*Loader, SQL*Net, SQL*Plus, and Wallet Manager are trademarks or registered trademarks of
Oracle Corporation. All other company or product names mentioned are used for identification purposes
only and may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments .. xvii

Preface .. xix

Intended Audience ... xx
How This Book is Organized ... xx
What’s New .. xxii
Related Documents .. xxii
Conventions .. xxiii

Text .. xxiii
Syntax Diagrams and Notation ... xxiii
Code Examples.. xxv

Part I Introduction to Tuning

1 Understanding Oracle Performance Tuning

What Is Performance Tuning? .. 1-2
Trade-offs Between Response Time and Throughput .. 1-2
Critical Resources ... 1-4
Effects of Excessive Demand... 1-5
Adjustments to Relieve Problems .. 1-6

Who Tunes? .. 1-7
Setting Performance Targets ... 1-9
Setting User Expectations.. 1-9
Evaluating Performance .. 1-10

iv

2 Performance Tuning Methods

When Is Tuning Most Effective? .. 2-2
Proactive Tuning While Designing and Developing Systems ... 2-2
Reactive Tuning to Improve Production Systems ... 2-3

Prioritized Tuning Steps .. 2-5
Step 1: Tune the Business Rules.. 2-7
Step 2: Tune the Data Design .. 2-8
Step 3: Tune the Application Design ... 2-9
Step 4: Tune the Logical Structure of the Database ... 2-9
Step 5: Tune Database Operations.. 2-9
Step 6: Tune the Access Paths ... 2-11
Step 7: Tune Memory Allocation.. 2-11
Step 8: Tune I/O and Physical Structure... 2-12
Step 9: Tune Resource Contention ... 2-13
Step 10: Tune the Underlying Platform(s)... 2-13

Applying the Tuning Method... 2-14
Set Clear Goals for Tuning .. 2-14
Create Minimum Repeatable Tests .. 2-14
Test Hypotheses .. 2-15
Keep Records and Automate Testing .. 2-15
Avoid Common Errors .. 2-15
Stop Tuning When Objectives Are Met... 2-16
Demonstrate Meeting the Objectives ... 2-16

Part II Application Design Tuning for Designers and Developers

3 Application and System Performance Characteristics

Types of Applications .. 3-2
Online Transaction Processing (OLTP) ... 3-2
Decision Support Systems ... 3-4
Multipurpose Applications ... 3-6

Registering Applications ... 3-7
Oracle Configurations .. 3-7

Distributed Systems.. 3-8

v

Multi-Tier Systems ... 3-9
Oracle Parallel Server... 3-10
Client/Server Configurations... 3-11

4 The Optimizer

SQL Processing Architecture .. 4-2
Parser .. 4-3
Optimizer... 4-3
Row Source Generator ... 4-3
SQL Execution... 4-3

EXPLAIN PLAN .. 4-3
What Is The Optimizer? .. 4-4

Execution Plan... 4-5
Choosing an Optimizer Approach and Goal... 4-8

OPTIMIZER_MODE Initialization Parameter ... 4-10
Statistics in the Data Dictionary ... 4-10
OPTIMIZER_GOAL Parameter of the ALTER SESSION Statement 4-11
Changing the Goal with Hints.. 4-11

Cost-Based Optimizer (CBO) ... 4-12
Architecture of the CBO .. 4-13
Features that Require the CBO ... 4-19
Using the CBO... 4-20
Access Paths for the CBO .. 4-20
How the CBO Chooses an Access Path ... 4-25

CBO Parameters .. 4-28
Parameters Affecting CBO Plans.. 4-29
Parameters Affecting How the Optimizer Uses Indexes .. 4-30
Setting Initialization Parameters .. 4-31

Extensible Optimizer ... 4-32
User-Defined Statistics... 4-33
User-Defined Selectivity .. 4-33
User-Defined Costs... 4-33

Rule-Based Optimizer (RBO) ... 4-34
Access Paths for the RBO .. 4-34

Overview of Optimizer Operations .. 4-47

vi

Types of SQL Statements ... 4-47
Optimizer Operations .. 4-48

Optimizing Joins ... 4-49
Optimizing Join Statements .. 4-49
Join Operations.. 4-50
How the Optimizer Chooses the Join Method ... 4-56
Forcing the Join Order.. 4-57
Choosing Execution Plans for Join Statements... 4-58
Optimizing Anti-Joins and Semi-Joins .. 4-61
Optimizing Star Queries .. 4-62

Optimizing Statements that Use Common Subexpressions .. 4-63
Evaluation of Expressions and Conditions .. 4-65

Constants.. 4-65
LIKE Operator ... 4-66
IN Operator.. 4-66
ANY or SOME Operator.. 4-67
ALL Operator .. 4-67
BETWEEN Operator... 4-68
NOT Operator ... 4-68
Transitivity... 4-69
DETERMINISTIC Functions ... 4-70

Transforming and Optimizing Statements .. 4-71
Transforming ORs into Compound Queries .. 4-71
Transforming Complex Statements into Join Statements ... 4-74
Optimizing Statements That Access Views .. 4-76
Optimizing Compound Queries... 4-91
Optimizing Distributed Statements ... 4-94

5 Using EXPLAIN PLAN

Understanding EXPLAIN PLAN.. 5-2
Creating the Output Table... 5-3
Displaying PLAN_TABLE Output .. 5-4
Output Table Columns... 5-4
Bitmap Indexes and EXPLAIN PLAN... 5-13
EXPLAIN PLAN and Partitioned Objects .. 5-14

vii

Displaying Range and Hash Partitioning with EXPLAIN PLAN 5-14
Pruning Information with Composite Partitioned Objects .. 5-16
Partial Partition-wise Joins.. 5-19
Full Partition-wise Joins... 5-20
INLIST ITERATOR and EXPLAIN PLAN.. 5-21
Domain Indexes and EXPLAIN PLAN ... 5-22

EXPLAIN PLAN Restrictions ... 5-23

6 Using SQL Trace and TKPROF

Understanding SQL Trace and TKPROF ... 6-2
Understanding the SQL Trace Facility .. 6-2
Understanding TKPROF ... 6-3

Using the SQL Trace Facility and TKPROF... 6-3
Step 1: Setting Initialization Parameters for Trace File Management................................... 6-4
Step 2: Enabling the SQL Trace Facility... 6-5
Step 3: Formatting Trace Files with TKPROF... 6-6
Step 4: Interpreting TKPROF Output .. 6-11
Step 5: Storing SQL Trace Facility Statistics.. 6-16

Avoiding Pitfalls in TKPROF Interpretation .. 6-19
The Argument Trap.. 6-19
The Read Consistency Trap .. 6-19
The Schema Trap .. 6-20
The Time Trap... 6-21
The Trigger Trap... 6-22

TKPROF Output Example... 6-22
Header.. 6-23
Body.. 6-23
Summary.. 6-29

7 Using Optimizer Hints

Understanding Hints.. 7-2
Specifying Hints.. 7-2

Using Hints .. 7-6
Hints for Optimization Approaches and Goals ... 7-6
Hints for Access Methods.. 7-9

viii

Hints for Join Orders .. 7-18
Hints for Join Operations... 7-19
Hints for Parallel Execution .. 7-24
Additional Hints ... 7-30
Using Hints with Views... 7-36

8 Gathering Statistics

Understanding Statistics.. 8-2
Generating Statistics .. 8-3

Using the ANALYZE Statement... 8-4
Using the DBMS_STATS Package .. 8-5
Statistics Data .. 8-10
Missing Statistics... 8-11

Using Statistics .. 8-12
Managing Statistics... 8-12
Verifying Table Statistics ... 8-13
Verifying Index Statistics... 8-14
Verifying Column Statistics... 8-15

Using Histograms.. 8-17
When to Use Histograms... 8-18
Creating Histograms .. 8-18
Types of Histograms .. 8-19
Viewing Histograms... 8-21
Verifying Histogram Statistics .. 8-21

9 Optimizing SQL Statements

Approaches to SQL Statement Tuning ... 9-2
Restructuring the Indexes.. 9-2
Restructuring the Statement.. 9-2
Modifying or Disabling Triggers.. 9-12
Restructuring the Data ... 9-12
Keeping Statistics Current and Using Plan Stability to Preserve Execution Plans 9-13

Tuning Goals.. 9-13
Tuning a Serial SQL Statement ... 9-14
Tuning Parallel Execution ... 9-14

ix

Tuning OLTP Applications ... 9-16
Best Practices.. 9-17

Avoiding Rule-Based Optimizer Techniques... 9-17
Index Cost .. 9-17
Analyzing Object Statistics.. 9-18
Avoiding Complex Expressions ... 9-21
Avoiding Balloon Tactic for Coding SQL ... 9-21
Handling Complex Logic in the Application ... 9-22

SQL Tuning Tips ... 9-22
Using EXPLAIN PLAN on All Queries... 9-24
Predicate Collapsing .. 9-24
Tuning for the Typical Case.. 9-25
Disk Reads and Buffer Gets .. 9-27

Using EXISTS versus IN.. 9-28
Trouble Shooting .. 9-29
Tuning Distributed Queries ... 9-30

Remote and Distributed Queries.. 9-30
Distributed Query Restrictions... 9-40
Transparent Gateways ... 9-40
Optimizing Performance of Distributed Queries .. 9-41

10 Using Plan Stability

Using Plan Stability to Preserve Execution Plans .. 10-2
Hints and Exact Text Matching .. 10-2
Storing Outlines .. 10-4
Enabling Plan Stability... 10-4
Creating Outlines.. 10-4
Using Stored Outlines .. 10-5
Viewing Outline Data .. 10-6
Using the OUTLN_PKG Package to Manage Stored Outlines .. 10-7
Moving Outline Tables .. 10-7

Plan Stability Procedures for the Cost-Based Optimizer.. 10-8
Using Outlines to Move to the Cost-Based Optimizer.. 10-8
RDBMS Upgrades and the Cost-Based Optimizer .. 10-9

x

Part III Application Design Tools for Designers and DBAs

11 Overview of Diagnostic Tools

Sources of Data for Tuning ... 11-2
Data Volumes .. 11-2
Online Data Dictionary .. 11-3
Operating System Tools... 11-3
Dynamic Performance Tables ... 11-3
Oracle Trace and Oracle Trace Data Viewer... 11-3
SQL Trace Facility... 11-3
Alert Log .. 11-4
Application Program Output.. 11-4
Users ... 11-4
Initialization Parameter Files .. 11-4
Program Text ... 11-4
Design (Analysis) Dictionary .. 11-5
Comparative Data... 11-5

Dynamic Performance Views ... 11-5
Oracle and SNMP Support.. 11-5
EXPLAIN PLAN .. 11-6
SQL Trace and TKPROF .. 11-6
Supported Scripts.. 11-7
Application Registration ... 11-8
Oracle Enterprise Manager, Packs, and Applications.. 11-8

Introduction to Oracle Enterprise Manager.. 11-9
Oracle Diagnostics Pack... 11-10
Oracle Tuning Pack .. 11-12

Oracle Parallel Server Management.. 11-14
Independent Tools .. 11-14

12 Data Access Methods

Using Indexes .. 12-2
When to Create Indexes ... 12-2
Tuning the Logical Structure... 12-3

xi

Choosing Columns and Expressions to Index ... 12-4
Choosing Composite Indexes ... 12-5
Writing Statements that Use Indexes... 12-6
Writing Statements that Avoid Using Indexes... 12-7
Assessing the Value of Indexes .. 12-7
Using Fast Full Index Scans .. 12-8
Re-creating Indexes .. 12-9
Compacting Indexes... 12-10
Using Nonunique Indexes to Enforce Uniqueness.. 12-10
Using Enabled Novalidated Constraints .. 12-11

Using Function-based Indexes ... 12-12
Function-based Indexes and Index Organized Tables .. 12-13

Using Bitmap Indexes .. 12-13
When to Use Bitmap Indexes.. 12-14
Creating Bitmap Indexes ... 12-16
Initialization Parameters for Bitmap Indexing... 12-19
Using Bitmap Access Plans on Regular B*-tree Indexes... 12-20
Estimating Bitmap Index Size... 12-21
Bitmap Index Restrictions ... 12-24

Using Domain Indexes .. 12-24
Using Clusters ... 12-25
Using Hash Clusters... 12-26

When to Use Hash Clusters .. 12-26
Creating Hash Clusters.. 12-27

13 Managing Shared SQL and PL/SQL Areas

Comparing SQL Statements and PL/SQL Blocks... 13-2
Testing for Identical SQL Statements .. 13-2
Aspects of Standardized SQL Formatting .. 13-3

Keeping Shared SQL and PL/SQL in the Shared Pool.. 13-3
Reserving Space for Large Allocations.. 13-3
Preventing Objects from Aging Out .. 13-4

xii

14 Using Oracle Trace

Introduction to Oracle Trace ... 14-2
Using Oracle Trace Data .. 14-2

Using Oracle Trace Manager ... 14-4
Managing Collections... 14-4
Collecting Event Data... 14-5
Accessing Collected Data... 14-5

Using Oracle Trace Data Viewer .. 14-6
Oracle Trace Predefined Data Views ... 14-6
Viewing Oracle Trace Data.. 14-13
SQL Statement Property Page... 14-15
Details Property Page... 14-15
Example of Details Property Page.. 14-15
Getting More Information on a Selected Query... 14-17

Manually Collecting Oracle Trace Data.. 14-20
Using the Oracle Trace Command-Line Interface ... 14-20
Using Initialization Parameters to Control Oracle Trace.. 14-22
Using Stored Procedures to Control Oracle Trace ... 14-25
Oracle Trace Collection Results .. 14-27
Formatting Oracle Trace Data to Oracle Tables ... 14-27
Oracle Trace Statistics Reporting Utility ... 14-28

15 Dynamic Performance Views

Instance-Level Views for Tuning ... 15-2
Session-Level or Transient Views for Tuning.. 15-3
Current Statistic Values and Rates of Change... 15-3

Finding the Current Value of a Statistic .. 15-4
Finding the Rate of Change of a Statistic... 15-4

16 Diagnosing System Performance Problems

Tuning Factors for Well Designed Existing Systems ... 16-2
Insufficient CPU .. 16-5
Insufficient Memory ... 16-5
I/O Constraints .. 16-6

xiii

Network Constraints .. 16-6
Software Constraints.. 16-7

17 Transaction Modes

Using Discrete Transactions ... 17-2
Deciding When to Use Discrete Transactions .. 17-2
How Discrete Transactions Work .. 17-3
Errors During Discrete Transactions ... 17-3
Using Discrete Transactions.. 17-3
Example.. 17-4

Using Serializable Transactions... 17-6

Part IV Optimizing Instance Performance

18 Tuning CPU Resources

Understanding CPU Problems ... 18-2
Detecting and Solving CPU Problems.. 18-4

System CPU Utilization ... 18-4
Oracle CPU Utilization .. 18-6

Solving CPU Problems by Changing System Architectures .. 18-13
Single Tier to Two-Tier .. 18-14
Multi-Tier: Using Smaller Client Machines .. 18-15
Two-Tier to Three-Tier... 18-15
Three-Tier .. 18-17
Oracle Parallel Server... 18-17

19 Tuning Memory Allocation

Understanding Memory Allocation Issues.. 19-2
Detecting Memory Allocation Problems.. 19-3
Solving Memory Allocation Problems ... 19-3

Tuning Operating System Memory Requirements ... 19-4
Tuning the Redo Log Buffer.. 19-6
Tuning Private SQL and PL/SQL Areas... 19-8
Tuning the Shared Pool ... 19-11

xiv

Tuning the Buffer Cache .. 19-27
Tuning Multiple Buffer Pools ... 19-32
Tuning Sort Areas... 19-41
Reallocating Memory ... 19-42
Reducing Total Memory Usage .. 19-42

20 Tuning I/O

Understanding I/O Problems.. 20-2
Tuning I/O: Top Down and Bottom Up ... 20-2
Analyzing I/O Requirements ... 20-3
Planning File Storage.. 20-5
Choosing Data Block Size .. 20-10
Evaluating Device Bandwidth .. 20-11

Detecting I/O Problems ... 20-15
Checking System I/O Utilization... 20-15
Checking Oracle I/O Utilization .. 20-15

Solving I/O Problems ... 20-18
Reducing Disk Contention by Distributing I/O .. 20-18
Striping Disks .. 20-22
Avoiding Dynamic Space Management.. 20-26
Tuning Sorts... 20-35
Tuning Checkpoint Activity.. 20-39
Tuning LGWR and DBWR I/O .. 20-41
Tuning Backup and Restore Operations ... 20-48
Configuring the Large Pool... 20-64

21 Tuning Resource Contention

Understanding Contention Issues ... 21-2
Detecting Contention Problems... 21-2
Solving Contention Problems .. 21-3

Reducing Contention for Rollback Segments ... 21-3
Reducing Contention for Multi-Threaded Servers .. 21-5
Reducing Contention for Parallel Execution Servers .. 21-14
Reducing Contention for Redo Log Buffer Latches... 21-16

xv

Reducing Contention for the LRU Latch... 21-19
Reducing Free List Contention ... 21-20

22 Tuning Networks

Understanding Connection Models .. 22-2
Detecting Network Problems ... 22-9

Using Dynamic Performance Views.. 22-9
Understanding Latency and Bandwidth... 22-10

Solving Network Problems... 22-11
Finding Bottlenecks .. 22-12
Dissecting Bottlenecks ... 22-14
Using Array Interfaces... 22-16
Adjusting Session Data Unit Buffer Size... 22-16
Using TCP.NODELAY... 22-17
Using Connection Manager .. 22-17

23 Tuning the Operating System

Understanding Operating System Performance Issues .. 23-2
Operating System and Hardware Caches... 23-2
Raw Devices .. 23-2
Process Schedulers.. 23-3
Operating System Resource Managers.. 23-3

Detecting Operating System Problems .. 23-5
Solving Operating System Problems.. 23-5

Performance on UNIX-Based Systems .. 23-6
Performance on NT Systems... 23-6
Performance on Mainframe Computers.. 23-6

24 Tuning Instance Recovery Performance

Understanding Instance Recovery... 24-2
How Oracle Applies Redo Log Information .. 24-2
Trade-offs of Minimizing Recovery Duration.. 24-2

Tuning the Duration of Instance and Crash Recovery .. 24-3
Using Initialization Parameters to Influence Recovery Time .. 24-3

xvi

Using Redo Log Size to Influence Checkpointing Frequency.. 24-6
Using SQL Statements to Initiate Checkpoints... 24-7

Monitoring Instance Recovery ... 24-7
Tuning the Phases of Instance Recovery .. 24-14

Tuning the Rolling Forward Phase .. 24-15
Tuning the Rolling Back Phase ... 24-16

Index

xvii

Send Us Your Comments

Designing and Tuning for Performance, Release 8.1.6

Part No. A76992-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ E-mail - infodev@us.oracle.com

■ FAX - (650) 506-7228. Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.

xviii

xix

Preface

You can enhance Oracle performance by adjusting database applications, the

database, and the operating system. Making such adjustments is known as tuning.

Proper tuning of Oracle provides the best possible database performance for your

specific application and hardware configuration.

Oracle8i Designing and Tuning for Performance contains information describing the

features and functionality of the Oracle8i and the Oracle8i Enterprise Edition

products. Oracle8i and Oracle8i Enterprise Edition have the same basic features.

However, several advanced features are available only with the Enterprise Edition,

and some of these are optional. For example, to use application failover, you must

have the Enterprise Edition and the Parallel Server option.

This preface includes the following sections:

■ Intended Audience

■ How This Book is Organized

■ What’s New

■ Related Documents

■ Conventions

See Also: For information about the differences between Oracle8i,
Oracle8i Enterprise Edition, and Oracle8i Personal Edition, see

Getting to Know Oracle8i.

xx

Intended Audience
This manual is an aid for people responsible for the operation, maintenance, and

performance of Oracle. To use this book, you could be a database administrator,

application designer, or programmer. You should be familiar with Oracle8i, the

operating system, and application design before reading this manual.

How This Book is Organized
This book has five parts. The book begins by describing tuning and explaining

tuning methods. Part Two describes how system designers and programmers plan

for performance. Part Three describes design tools for designers and DBAs. Part

Four explains how to optimize performance during production. Part Five describes

parallel execution tuning and processing. The contents of the five parts of this

manual are:

Part One: Introduction to Tuning

Part Two: Application Design Tuning for Designers and Developers

Chapter 1,
"Understanding Oracle
Performance Tuning"

This chapter provides an overview of tuning issues. It defines
performance tuning and the roles of people involved in the
process.

Chapter 2,
"Performance Tuning
Methods"

This chapter presents the recommended tuning method, and
outlines its steps in order of priority.

Chapter 3, "Application
and System
Performance
Characteristics"

This chapter describes the various types of application that use
Oracle databases and the suggested approaches and features
available when designing each.

Chapter 4, "The
Optimizer"

This chapter discusses SQL processing, Oracle optimization, and
how the Oracle optimizer chooses how to execute SQL statements.

Chapter 5, "Using
EXPLAIN PLAN"

This chapter shows how to use the SQL statement EXPLAIN PLAN,
and format its output.

Chapter 6, "Using SQL
Trace and TKPROF"

This chapter describes the use of the SQL trace facility and
TKPROF, two basic performance diagnostic tools that can help you
monitor and tune applications that run against the Oracle Server.

Chapter 7, "Using
Optimizer Hints"

This chapter offers recommendations on how to use cost-based
optimizer hints to enhance Oracle performance.

xxi

Part Three: Application Design Tools for Designers and DBAs

Part Four: Optimizing Oracle Instance Performance

Chapter 8, "Gathering
Statistics"

This chapter explains why statistics are important for the
cost-based optimizer, and how to gather and use statistics.

Chapter 9, "Optimizing
SQL Statements"

This chapter describes how Oracle optimizes Structured Query
Language (SQL) using the cost-based optimizer (CBO).

Chapter 10, "Using Plan
Stability"

This chapter describes how to use plan stability (stored outlines)
to preserve performance characteristics.

Chapter 11, "Overview
of Diagnostic Tools"

This chapter introduces the full range of diagnostic tools available
for monitoring production systems and determining performance
problems.

Chapter 12, "Data
Access Methods"

This chapter provides an overview of data access methods that
can enhance performance, and warns of situations to avoid.

Chapter 13, "Managing
Shared SQL and
PL/SQL Areas"

This chapter explains the use of shared SQL to improve
performance.

Chapter 14, "Using
Oracle Trace"

This chapter provides an overview of Oracle Trace usage and
describes the Oracle Trace initialization parameters.

Chapter 15, "Dynamic
Performance Views"

This chapter describes views that are of the greatest use for both
performance tuning and ad hoc investigation

Chapter 16,
"Diagnosing System
Performance Problems"

This chapter provides an overview of performance factors in
existing systems that have been properly designed.

Chapter 17,
"Transaction Modes"

This chapter describes the different methods in which read
consistency is performed.

Chapter 18, "Tuning
CPU Resources"

This chapter describes how to identify and solve problems with
CPU resources.

Chapter 19, "Tuning
Memory Allocation"

This chapter explains how to allocate memory to database
structures. Proper sizing of these structures can greatly improve
database performance.

Chapter 20, "Tuning
I/O"

This chapter explains how to avoid I/O bottlenecks that could
prevent Oracle from performing at its maximum potential.

xxii

What’s New
For release 8.1.6, this book was renamed Oracle8i Designing and Tuning for
Performance to emphasize the importance of designing applications and writing SQL

properly. Although the goal of the book remains the same, many chapters from

release 8.1.5 have been restructured. The main changes with 8.1.6 include the

following:

■ This manual has expanded information on using the cost-based optimizer

(CBO), particularly Chapter 4, "The Optimizer" and Chapter 9, "Optimizing

SQL Statements". Some of this information was formerly in the Oracle8i Concepts
manual.

■ Part Five from release 8.1.5 (including information on parallel execution and

partitioning) is now part of the new Oracle8i Data Warehousing Guide.

■ Some information from the 8.1.5 release of this manual was duplicated in other

manuals in the Oracle documentation set. This includes information on using

the multi-threaded server and using PL/SQL packages. You will find

cross-references to those books where this information is provided.

Related Documents
Before reading this manual, you should have already read Oracle8i Concepts, the

Oracle8i Application Developer’s Guide - Fundamentals, and the Oracle8i Administrator’s
Guide.

For more information about Oracle Enterprise Manager and its optional

applications, see Oracle Enterprise Manager Concepts Guide, Oracle Enterprise Manager
Administrator’s Guide, and Oracle Enterprise Manager Performance Monitoring and
Planning Guide.

Chapter 21, "Tuning
Resource Contention"

This chapter explains how to detect and reduce contention that
affects performance.

Chapter 22, "Tuning
Networks"

This chapter introduces networking issues that affect tuning, and
points to the use of array interfaces, out-of-band breaks, and other
tuning techniques.

Chapter 23, "Tuning the
Operating System"

This chapter explains how to tune the operating system for
optimal performance of Oracle.

Chapter 24, "Tuning
Instance Recovery
Performance"

This chapter explains how to tune recovery performance.

xxiii

For more information about tuning the Oracle Application Server, see the Oracle
Application Server Performance and Tuning Guide.

Conventions
This section explains the conventions used in this manual including the following:

■ Text

■ Syntax Diagrams and Notation

■ Code Examples

Text
This section explains the conventions used within the text:

UPPERCASE Characters
Uppercase text is used to call attention to statement keywords, object names,

parameters, filenames, and so on.

For example, "If you create a private rollback segment, then the name must be

included in the ROLLBACK_SEGMENTS parameter of the parameter file".

Italicized Characters
Italicized words within text are book titles or emphasized words.

Syntax Diagrams and Notation
The syntax diagrams and notation in this manual show the syntax for SQL

statements, functions, hints, and other elements. This section tells you how to read

syntax diagrams and examples and write SQL statements based on them.

Keywords
Keywords are words that have special meanings in the SQL language. In the syntax

diagrams in this manual, keywords appear in uppercase. You must use keywords

in your SQL statements exactly as they appear in the syntax diagram, except that

they can be either uppercase or lowercase. For example, you must use the CREATE
keyword to begin your CREATE TABLE statements just as it appears in the CREATE
TABLE syntax diagram.

xxiv

Parameters
Parameters act as place holders in syntax diagrams. They appear in lowercase.

Parameters are usually names of database objects, Oracle datatype names, or

expressions. When you see a parameter in a syntax diagram, substitute an object or

expression of the appropriate type in your SQL statement. For example, to write a

CREATE TABLE statement, use the name of the table you want to create, such as

EMP, in place of the table parameter in the syntax diagram. (Note that parameter

names appear in italics in the text.)

This list shows parameters that appear in the syntax diagrams in this manual and

examples of the values you might substitute for them in your statements:

Parameter Description Examples

table The substitution value must be the name
of an object of the type specified by the
parameter.

emp

’text’ The substitution value must be a
character literal in single quotes.

’Employee Records’

condition The substitution value must be a
condition that evaluates to TRUE or
FALSE.

ename > ’A’

date The substitution value must be a date
constant or an expression of DATE
datatype.

TO_DATE (

’01-Jan-1996’,

DD-MON-YYYY’)

expr The substitution value can be an
expression of any datatype.

sal + 1000

integer The substitution value must be an integer. 72

rowid The substitution value must be an
expression of datatype ROWID.

AAAAqYAABAAAEPvAAB

subquery The substitution value must be a SELECT
statement contained in another SQL
statement.

SELECT ename
 FROM emp

statement_name

block_name

The substitution value must be an
identifier for a SQL statement or PL/SQL
block.

s1

b1

xxv

Code Examples
SQL and SQL*Plus statements appear separated from the text of paragraphs in a

monospaced font. For example:

INSERT INTO emp (empno, ename) VALUES (1000, ’SMITH’);
ALTER TABLESPACE users ADD DATAFILE ’users2.ora’ SIZE 50K;

Example statements may include punctuation, such as commas or quotation marks.

All punctuation in example statements is required. All SQL example statements

terminate with a semicolon (;). Depending on the application, a semicolon or other

terminator may or may not be required to end a statement.

Uppercase words in example statements indicate the keywords within Oracle SQL.

When you issue statements, however, keywords are not case sensitive.

Lowercase words in example statements indicate words supplied only for the

context of the example. For example, lowercase words may indicate the name of a

table, column, or file.

xxvi

Part I
Introduction to Tuning

Part I provides an overview of Oracle Server tuning concepts. The chapters in this

part are:

■ Chapter 1, "Understanding Oracle Performance Tuning"

■ Chapter 2, "Performance Tuning Methods"

Understanding Oracle Performance Tuning 1-1

1
Understanding Oracle Performance Tuning

The Oracle server is a sophisticated and highly tunable software product. Its

flexibility allows you to make small adjustments that affect database performance.

By tuning your system, you can tailor its performance to best meet your needs.

Tuning begins in the system planning and design phases and continues throughout

the life of your system. Carefully consider performance issues during the planning

phase, and it will be easier to tune your system during production.

This chapter contains the following sections:

■ What Is Performance Tuning?

■ Who Tunes?

■ Setting Performance Targets

■ Setting User Expectations

■ Evaluating Performance

What Is Performance Tuning?

1-2 Designing and Tuning for Performance

What Is Performance Tuning?
When considering performance, you should understand several fundamental

concepts as described in this section:

■ Trade-offs Between Response Time and Throughput

■ Critical Resources

■ Effects of Excessive Demand

■ Adjustments to Relieve Problems

Trade-offs Between Response Time and Throughput
Goals for tuning vary, depending on the needs of the application. Online

transaction processing (OLTP) applications define performance in terms of

throughput. These applications must process thousands or even millions of very

small transactions per day. By contrast, decision support systems (DSS applications)

define performance in terms of response time. Demands on the database that are

made by users of DSS applications vary dramatically. One moment they may enter

a query that fetches only a few records, and the next moment they may enter a

massive parallel query that fetches and sorts hundreds of thousands of records from

different tables. Throughput becomes more of an issue when an application must

support a large number of users running DSS queries.

Response Time
Because response time equals service time plus wait time, you can increase

performance two ways: by reducing service time or by reducing wait time.

What Is Performance Tuning?

Understanding Oracle Performance Tuning 1-3

Figure 1–1 illustrates ten independent tasks competing for a single resource.

Figure 1–1 Sequential Processing of Multiple Independent Tasks

In this example, only task 1 runs without having to wait. Task 2 must wait until task

1 has completed; task 3 must wait until tasks 1 and 2 have completed, and so on.

(Although the figure shows the independent tasks as the same size, the size of the

tasks vary.)

System Throughput
System throughput equals the amount of work accomplished in a given amount of

time. Two techniques of increasing throughput exist:

■ Get more work done with the same resources (reduce service time).

■ Get the work done quicker by reducing overall response time. To do this, look

at the wait time. You may be able to duplicate the resource for which all the

Note: In parallel processing, if you have multiple resources, then

more resources can be assigned to the tasks. Each independent task

executes immediately using its own resource: no wait time is

involved.

service time

wait time

TOTAL ELAPSED TIME

SEQUENTIAL
TASKS

1

2

3

4

5

6

7

8

9

10

What Is Performance Tuning?

1-4 Designing and Tuning for Performance

users are waiting. For example, if the system is CPU bound, then you can add

more CPUs.

Wait Time
The service time for a task may stay the same, but wait time increases as contention

increases. If many users are waiting for a service that takes 1 second, then the tenth

user must wait 9 seconds for a service that takes 1 second.

Figure 1–2 Wait Time Rising with Increased Contention for a Resource

Critical Resources
Resources such as CPUs, memory, I/O capacity, and network bandwidth are key to

reducing service time. Added resources make higher throughput possible and

facilitate swifter response time. Performance depends on the following:

■ How many resources are available?

■ How many clients need the resource?

■ How long must they wait for the resource?

■ How long do they hold the resource?

Figure 1–3 shows that as the number of units requested rises, the time to service

completion rises.

Contention for a Resource

W
ai

t T
im

e

What Is Performance Tuning?

Understanding Oracle Performance Tuning 1-5

Figure 1–3 Time to Service Completion vs. Demand Rate

To manage this situation, you have two options:

■ You can limit demand rate to maintain acceptable response times.

■ Alternatively, you can add multiple resources: another CPU or disk.

Effects of Excessive Demand
Excessive demand gives rise to the following:

■ Greatly increased response time.

■ Reduced throughput.

If there is any possibility of demand rate exceeding achievable throughput, then a

demand limiter is essential.

Demand Rate

T
im

e
to

 s
er

vi
ce

 c
om

pl
et

io
n

What Is Performance Tuning?

1-6 Designing and Tuning for Performance

Figure 1–4 Increased Response Time/Reduced Throughput

Adjustments to Relieve Problems
You can relieve performance problems by making the following adjustments:

For example, if your system’s busiest times are from 9:00AM to 10:30AM and from

1:00PM to 2:30PM, then you can run batch jobs in the background after 2:30PM

when there is more capacity. Thus, you can spread the demand more evenly.

Alternatively, you can allow for delays at peak times.

Adjusting unit

consumption

You can relieve some problems by using fewer

resources per transaction or by reducing service time.

Or you can take other approaches, such as reducing

the number of I/Os per transaction.

Adjusting functional

demand

Other problems can be solved by rescheduling or

redistributing the work.

Adjusting capacity You can also relieve problems by increasing or

reallocating resources.

Demand Rate

T
hr

ou
gh

pu
t

Who Tunes?

Understanding Oracle Performance Tuning 1-7

Figure 1–5 Adjusting Capacity and Functional Demand

Who Tunes?
Everyone involved with the system has a role in tuning. When people communicate

and document the system’s characteristics, tuning becomes significantly easier and

faster.

Time

F
un

ct
io

na
l D

em
an

d

9:00 10:30 1:00 2:30

Who Tunes?

1-8 Designing and Tuning for Performance

Figure 1–6 Who Tunes the System?

■ Business executives must define and then reexamine business rules and

procedures to provide a clear and adequate model for application design. They

must identify the specific types of rules and procedures that influence the

performance of the entire system.

■ Application designers must design around potential performance bottlenecks.

They must communicate the system design so everyone can understand an

application’s data flow.

■ Application developers must communicate the implementation strategies they

select so modules and SQL statements can be quickly and easily identified

during statement tuning.

■ Database administrators (DBAs) must carefully monitor and document system

activity so they can identify and correct unusual system performance.

Hardware and software administrators (also know as system administrators

and network administrators) must document and communicate the

configuration of the system so everyone can design and administer the system

effectively.

Decisions made in application development and design have the greatest effect on

performance. Once the application is deployed, the database administrator usually

has the primary responsibility for tuning.

Database, System
and Network

Administrators

Application
Developer

Business
Executive

Business Rules
Business

Procedures

Application
Designer

Design Implementation Management

Setting User Expectations

Understanding Oracle Performance Tuning 1-9

Setting Performance Targets
Whether you are designing or maintaining a system, you should set specific

performance goals so that you know when to tune. You may waste time tuning

your system if you alter initialization parameters or SQL statements without a

specific goal.

When designing your system, set a goal such as "achieving an order entry response

time of less than three seconds for 90% of transactions". If the application does not

meet that goal, then identify the bottleneck that prevents this (for example, I/O

contention), determine the cause, and take corrective action. During development,

test the application to determine whether it meets the designed performance goals

before deploying the application.

Tuning is usually a series of trade-offs. Once you have identified bottlenecks, you

may need to sacrifice other system resources to achieve the desired results. For

example, if I/O is a problem, you may need to purchase more memory or more

disks. If a purchase is not possible, then you may need to limit the concurrency of

the system to achieve the desired performance. However, with clearly defined

performance goals, the decision on what resource to relinquish in exchange for

improved performance is simpler because you have identified the most important

areas.

Setting User Expectations
Application developers and database administrators must be careful to set

appropriate performance expectations for users. When the system performs a

particularly complicated operation, response time may be slower than when it is

performing a simple operation. In this case, slower response time is not

unreasonable.

If a DBA promises 1-second response time, then consider how this might be

interpreted. The DBA might mean that the operation would take 1 second in the

See Also: Chapter 16, "Diagnosing System Performance

Problems" for problem-solving methods that can help identify and

solve performance problems.

Note: At no time should achieving performance goals override

your ability to recover data. Performance is important, but ability to

recover data is critical.

Evaluating Performance

1-10 Designing and Tuning for Performance

database—and might well be able to achieve this goal. However, users querying

over a network might experience a delay of a couple of seconds due to network

traffic: they may not receive the response they expect in 1 second.

Evaluating Performance
With clearly defined performance goals, you can readily determine when

performance tuning has been successful. Success depends on the functional

objectives you have established with the user community, your ability to measure

objectively whether the criteria are being met, and your ability to take corrective

action to overcome exceptions. The rest of this tuning manual describes the tuning

methodology in detail with information about diagnostic tools and the types of

corrective actions you can take.

DBAs responsible for solving performance problems must remember all factors that

together affect response time. Sometimes what initially seems like the most obvious

source of a problem is actually not the problem at all. Users in the preceding

example might conclude that there is a problem with the database, whereas the

actual problem is with the network. A DBA must monitor the network, disk, CPU,

application design, and so on, to identify the actual source of the problem—rather

than simply assume that all performance problems stem from the database.

Ongoing performance monitoring enables you to maintain a well-tuned system.

You can make useful comparisons by keeping a history of the application’s

performance over time. Data showing resource consumption for a broad range of

load levels helps you conduct objective scalability studies. From such detailed

performance history you can begin to predict the resource requirements for future

load levels.

See Also: Chapter 11, "Overview of Diagnostic Tools".

Performance Tuning Methods 2-1

2
Performance Tuning Methods

A well-planned methodology is the key to success in performance tuning. Different

tuning strategies vary in their effectiveness, and systems with different purposes,

such as online transaction processing systems and decision support systems,

require different tuning methods.

This chapter contains the following sections:

■ When Is Tuning Most Effective?

■ Prioritized Tuning Steps

■ Applying the Tuning Method

See Also: Oracle Expert automates the process of collecting and

analyzing data. It also provides database tuning recommendations,

implementation scripts, and performance reports. See Chapter 11,

"Overview of Diagnostic Tools" for more information on Oracle

Expert.

When Is Tuning Most Effective?

2-2 Oracle8i Designing and Tuning for Performance

When Is Tuning Most Effective?
For best results, tune during the design phase, rather than waiting to tune after

implementing your system. This is illustrated in the following sections:

■ Proactive Tuning While Designing and Developing Systems

■ Reactive Tuning to Improve Production Systems

Proactive Tuning While Designing and Developing Systems
By far, the most effective approach to tuning is the proactive approach. Begin by

following the steps described in this chapter under "Prioritized Tuning Steps" on

page 2-5.

Business executives should work with application designers to establish

performance goals and set realistic performance expectations. During design and

development, the application designers can then determine which combination of

system resources and Oracle features best meet these needs.

By designing a system to perform well, you can minimize its implementation and

on-going administration cost. Figure 2–1 illustrates the relative cost of tuning during

the life of an application.

Figure 2–1 Cost of Tuning During the Life of an Application

Time

C
os

t

Design Development Production

When Is Tuning Most Effective?

Performance Tuning Methods 2-3

To complement this view, Figure 2–2 shows that the relative benefit of tuning an

application over the course of its life is inversely proportional to the cost expended.

Figure 2–2 Benefit of Tuning During the Life of an Application

The most effective time to tune is during the design phase: you get the maximum

benefit for the lowest cost.

Reactive Tuning to Improve Production Systems
The tuning process does not begin when users complain about poor response time.

When response time is this poor, it is usually too late to implement some of the

most effective tuning strategies. At that point, if you are unwilling to completely

redesign the application, then you may only improve performance marginally by

reallocating memory and tuning I/O.

For example: There is a bank that employs one teller and one manager. It has a

business rule that the manager must approve withdrawals over $20. You find a long

line of customers, and you decide that you need more tellers. You add 10 more

tellers, but then you find that the bottleneck moves to the manager’s function.

However, the bank determines that it is too expensive to hire additional managers.

In this example, regardless of how carefully you tune the system using the existing

business rule, getting better performance will be very expensive.

Alternatively, a change to the business rule may be necessary to make the system

more scalable. If you change the rule so that the manager only needs to approve

Time

B
en

ef
it

Design Development Production

When Is Tuning Most Effective?

2-4 Oracle8i Designing and Tuning for Performance

withdrawals exceeding $150, then you have created a scalable solution. In this

situation, effective tuning could only be done at the highest design level, rather than

at the end of the process.

It is possible to reactively tune an existing production system. To take this

approach, start at the bottom of the method and work your way up, finding and

fixing any bottlenecks. A common goal is to make Oracle run faster on the given

platform. You may find, however, that both the Oracle server and the operating

system are working well. To get additional performance gains, you may need to

tune the application or add resources. Only then can you take full advantage of the

many features Oracle provides that can greatly improve performance when

properly used in a well-designed system.

Even the performance of well-designed systems can degrade with use. Ongoing

tuning is, therefore, an important part of proper system maintenance.

See Also: Part IV, "Optimizing Instance Performance", describes
how to tune CPU, memory, I/O, networks, contention, and the
operating system.

For background on the Oracle server architecture and features, see

Oracle8i Concepts.

Prioritized Tuning Steps

Performance Tuning Methods 2-5

Prioritized Tuning Steps
The following steps provide a recommended method for tuning an Oracle database.

These steps are prioritized in order of diminishing returns: steps with the greatest

effect on performance appear first. For optimal results, therefore, resolve tuning

issues in the order listed, from the design and development phases through instance

tuning.

Step 1: Tune the Business Rules

Step 2: Tune the Data Design

Step 3: Tune the Application Design

Step 4: Tune the Logical Structure of the Database

Step 5: Tune Database Operations

Step 6: Tune the Access Paths

Step 7: Tune Memory Allocation

Step 8: Tune I/O and Physical Structure

Step 9: Tune Resource Contention

Step 10: Tune the Underlying Platform(s)

After completing these steps, reassess your database performance, and decide

whether further tuning is necessary.

Tuning is an iterative process. Performance gains made in later steps may pave the

way for further improvements in earlier steps, so additional passes through the

tuning process may be useful.

Figure 2–3 illustrates the tuning method:

Prioritized Tuning Steps

2-6 Oracle8i Designing and Tuning for Performance

Figure 2–3 The Tuning Method

Tune the data design

Tune the business rules

Tune the application design

Tune the access paths

Tune database operations

Tune the I/O and physical structure

Tune memory allocation

Tune the underlying platform(s)

Tune the resource contention

Tune the logical structure of
the database

2

1

3

4

6

5

8

7

10

9

Prioritized Tuning Steps

Performance Tuning Methods 2-7

Decisions you make in one step may influence subsequent steps. For example, in

step 5 you may rewrite some of your SQL statements. These SQL statements may

have significant bearing on parsing and caching issues addressed in step 7. Also,

disk I/O, which is tuned in step 8, depends on the size of the buffer cache, which is

tuned in step 7. Although the figure shows a loop back to step 1, you may need to

return from any step to any previous step.

Step 1: Tune the Business Rules
For optimal performance, you may need to adapt business rules. These concern the

high-level analysis and design of an entire system. Configuration issues are

considered at this level, such as whether to use a multi-threaded server

system-wide. In this way, the planners ensure that the performance requirements of

the system correspond directly to concrete business needs.

Performance problems encountered by DBAs may actually be caused by problems

in design and implementation, or by inappropriate business rules. Designers

sometimes provide far greater detail than is needed when they write business

functions for an application. They document an implementation, rather than simply

the function that must be performed. If business executives effectively distill

business functions or requirements from the implementation, then designers have

more freedom when selecting an appropriate implementation.

Consider the business function of printing checks. The actual requirement is to pay

money to people, not necessarily to print pieces of paper. Whereas it would be very

difficult to print a million checks per day, it would be relatively easy to record that

many direct deposit payments on a tape that could be sent to the bank for

processing.

Business rules should be consistent with realistic expectations for the number of

concurrent users, the transaction response time, and the number of records stored

online that the system can support. For example, it does not make sense to run a

highly interactive application over slow, wide area network lines.

Similarly, a company soliciting users for an Internet service might advertise 10 free

hours per month for all new subscribers. If 50,000 users per day signed up for this

service, then the demand far exceeds the capacity for a client/server configuration.

The company should instead consider using a multi-tier configuration. In addition,

the signup process must be simple: it should require only one connection from the

user to the database, or connection to multiple databases without dedicated

connections, using a multi-threaded server or transaction monitor approach.

Prioritized Tuning Steps

2-8 Oracle8i Designing and Tuning for Performance

Step 2: Tune the Data Design
In the data design phase, you must determine what data is needed by your

applications. You must consider what relations are important, and what their

attributes are. Finally, you need to structure the information to best meet

performance goals.

The database design process generally undergoes a normalization stage when data

is analyzed to eliminate data redundancy. With the exception of primary keys, any

one data element should be stored only once in your database. After the data is

normalized, however, you may need to denormalize it for performance reasons.

You might decide that the database should retain frequently used summary values.

For example, rather than forcing an application to recalculate the total price of all

the lines in a given order each time it is accessed, you might decide to always

maintain a number representing the total value for each order in the database. You

could set up primary key and foreign key indexes to access this information

quickly.

Another data design consideration is avoiding data contention. Consider a database

1 terabyte in size on which one thousand users access only 0.5% of the data. This

"hot spot" in the data could cause performance problems.

In a multiple-instance setup, try to localize access to the data down to the partition

level, process, and instance levels. That is, localize access to data, such that any

process requiring data within a particular set of values is confined to a particular

instance. Contention begins when several remote processes simultaneously attempt

to access one particular set of data.

In Oracle Parallel Server, look for synchronization points—any point in time, or

part of an application that must run sequentially, one process at a time. The

requirement of having sequential order numbers, for example, is a synchronization

point that results from poor design.

Also consider implementing two Oracle8i features that can help avoid contention:

■ Consider partitioning your data.

■ Consider using local or global indexes.

See Also: For more information on partitioning and indexes, see

Oracle8i Concepts.

Prioritized Tuning Steps

Performance Tuning Methods 2-9

Step 3: Tune the Application Design
Business executives and application designers should translate business goals into

an effective system design. Business processes concern a particular application

within a system, or a particular part of an application.

An example of intelligent process design is strategically caching data. For example,

in a retail application, you can select the tax rate once at the beginning of each day,

and cache it within the application. In this way, you avoid retrieving the same

information over and over during the day.

At this level, you can also consider the configuration of individual processes. For

example, some PC users may access the central system using mobile agents, where

other users may be directly connected. Although they are running on the same

system, the architecture for each type of user is different. They may also require

different mail servers and different versions of the application.

Step 4: Tune the Logical Structure of the Database
After the application and the system have been designed, you can plan the logical

structure of the database. This primarily concerns fine-tuning the index design to

ensure that the data is neither over- nor under-indexed. In the data design stage

(Step 2), you determine the primary and foreign key indexes. In the logical structure

design stage, you may create additional indexes to support the application.

Performance problems due to contention often involve inserts into the same block

or incorrect use of sequence numbers. Use particular care in the design, use, and

location of indexes, as well as in using the sequence generator and clusters.

Step 5: Tune Database Operations
Before tuning the Oracle server, be certain that your application is taking full

advantage of the SQL language and the Oracle features designed to enhance

application processing. Use features and techniques such as the following, based on

the needs of your application:

■ Array processing

■ The Oracle optimizer

■ The row-level lock manager

■ PL/SQL

See Also: For more information, see "Using Indexes" in

Chapter 12, "Data Access Methods".

Prioritized Tuning Steps

2-10 Oracle8i Designing and Tuning for Performance

Understanding Oracle’s query processing mechanisms is also important for writing

effective SQL statements.

Whether you are writing new SQL statements or tuning problematic statements in

an existing application, your methodology for tuning database operations

essentially concerns CPU and disk I/O resources.

■ Step 1: Find the Statements that Consume the Most Resources

■ Step 2: Tune These Statements To Use Fewer Resources

Step 1: Find the Statements that Consume the Most Resources
Focus your tuning efforts on statements where the benefit of tuning demonstrably

exceeds the cost of tuning. Use tools such as TKPROF, the SQL trace facility, SQL

Analyze, Oracle Trace, and the Enterprise Manager Tuning Pack to find the problem

statements and stored procedures. Alternatively, you can query the V$SORT_USAGE
view to see the session and SQL statement associated with a temporary segment.

The statements with the most potential to improve performance, if tuned, include:

■ Those consuming greatest resource overall.

■ Those consuming greatest resource per row.

■ Those executed most frequently.

In the V$SQLAREA view, you can find those statements still in the cache that have

done a great deal of disk I/O and buffer gets. (Buffer gets show approximately the

amount of CPU resource used.)

Step 2: Tune These Statements To Use Fewer Resources
Remember that application design is fundamental to performance. No amount of

SQL statement tuning can make up for inefficient application design. If you

See Also: Part II, "Application Design Tuning for Designers and

Developers" discusses the Oracle optimizer and how to write

statements to achieve optimal performance. It also discusses

statistics management and describes preserving execution plans

with the plan stability feature.

See Also: For more information on dynamic performance views,

see Chapter 6, "Using SQL Trace and TKPROF", Chapter 14, "Using

Oracle Trace", and Oracle8i Reference.

Prioritized Tuning Steps

Performance Tuning Methods 2-11

encounter SQL statement tuning problems, then perhaps you need to change the

application design.

You can use two strategies to reduce the resources consumed by a particular

statement:

■ Get the statement to use fewer resources.

■ Use the statement less frequently.

Statements may use more resources because they do the most work, or because they

perform their work inefficiently—or they may do both. However, the lower the

resource used per unit of work (per row processed), the more likely it is that you

can significantly reduce resources used only by changing the application itself. That

is, rather than changing the SQL, it may be more effective to have the application

process fewer rows, or process the same rows less frequently.

These two approaches are not mutually exclusive. The former is clearly less

expensive, because you should be able to accomplish it either without program

change (by changing index structures) or by changing only the SQL statement itself

rather than the surrounding logic.

Step 6: Tune the Access Paths
Ensure that there is efficient data access. Consider the use of clusters, hash clusters,

B*-tree indexes, bitmap indexes, and optimizer hints. Also consider analyzing tables

and using histograms to analyze columns in order to help the optimizer determine

the best query plan.

Ensuring efficient access may mean adding indexes or adding indexes for a

particular application and then dropping them again. It may also mean

re-analyzing your design after you have built the database. You may want to

further normalize your data or create alternative indexes. Upon testing the

application, you may find that you are still not obtaining the required response

time. If this happens, then look for more ways to improve the design.

Step 7: Tune Memory Allocation
Appropriate allocation of memory resources to Oracle memory structures can have

a positive effect on performance.

See Also: For more information, see Chapter 18, "Tuning CPU

Resources" and Chapter 20, "Tuning I/O".

See Also: Chapter 12, "Data Access Methods".

Prioritized Tuning Steps

2-12 Oracle8i Designing and Tuning for Performance

Oracle8i shared memory is allocated dynamically to the following structures, which

are all part of the shared pool. Although you explicitly set the total amount of

memory available in the shared pool, the system dynamically sets the size of each of

the following structures contained within it:

■ The data dictionary cache

■ The library cache

■ Context areas (if running a multi-threaded server)

You can explicitly set memory allocation for the following structures:

■ Buffer cache

■ Log buffer

■ Sequence caches

Proper allocation of memory resources improves cache performance, reduces

parsing of SQL statements, and reduces paging and swapping.

Process local areas include:

■ Context areas (for systems not running a multi-threaded server)

■ Sort areas

■ Hash areas

Be careful not to allocate to the system global area (SGA) such a large percentage of

the machine’s physical memory that it causes paging or swapping.

Step 8: Tune I/O and Physical Structure
Disk I/O tends to reduce the performance of many software applications. The

Oracle server, however, is designed so that its performance is not unduly limited by

I/O. Tuning I/O and physical structure involves these procedures:

■ Distributing data so that I/O is distributed to avoid disk contention.

■ Storing data in data blocks for best access: setting an adequate number of free

lists and using proper values for PCTFREE and PCTUSED.

See Also: For more information on memory structures and

processes, see Chapter 19, "Tuning Memory Allocation" and

Oracle8i Concepts.

Prioritized Tuning Steps

Performance Tuning Methods 2-13

■ Creating extents large enough for your data, to avoid dynamic extension of

tables. This adversely affects the performance of high-volume OLTP

applications.

■ Evaluating the use of raw devices.

Step 9: Tune Resource Contention
Concurrent processing by multiple Oracle users may create contention for Oracle

resources. Contention may cause processes to wait until resources are available.

Take care to reduce the following types of contention:

■ Block contention

■ Shared pool contention

■ Lock contention

■ Pinging (in a parallel server environment)

■ Latch contention

Step 10: Tune the Underlying Platform(s)
See your platform-specific Oracle documentation for ways to tune the underlying

system. For example, on UNIX-based systems you might want to tune the

following:

■ Size of the UNIX buffer cache

■ Logical volume managers

■ Memory and size for each process

See Also: Chapter 20, "Tuning I/O".

See Also: Chapter 21, "Tuning Resource Contention".

See Also: Chapter 23, "Tuning the Operating System".

Applying the Tuning Method

2-14 Oracle8i Designing and Tuning for Performance

Applying the Tuning Method
This section explains how to apply the tuning method:

■ Set Clear Goals for Tuning

■ Create Minimum Repeatable Tests

■ Test Hypotheses

■ Keep Records and Automate Testing

■ Avoid Common Errors

■ Stop Tuning When Objectives Are Met

■ Demonstrate Meeting the Objectives

Set Clear Goals for Tuning
Never begin tuning without having first established clear objectives: you cannot

succeed without a definition of "success."

"Just make it go as fast as you can" may sound like an objective, but it is very

difficult to determine whether this has been achieved. It is even more difficult to tell

whether your results have met the underlying business requirements. A more

useful objective is: "We need to have as many as 20 operators, each entering 20

orders per hour, and the packing lists must be produced within 30 minutes of the

end of the shift."

Keep your goals in mind as you consider each tuning measure. Consider its

performance benefits in light of your goals.

Also remember that your goals may conflict. For example, to achieve best

performance for a specific SQL statement, you may need to sacrifice the

performance of other SQL statements running concurrently on your database.

Create Minimum Repeatable Tests
Create a series of minimum repeatable tests. For example, if you identify a single

SQL statement that is causing performance problems, then run both the original

and the revised version of that statement in SQL*Plus (with the SQL Trace Facility

or Oracle Trace enabled), so that you can see statistically the difference in

performance. In many cases, a tuning effort can succeed simply by identifying one

SQL statement that was causing the performance problem.

Applying the Tuning Method

Performance Tuning Methods 2-15

For example, assume that you need to reduce a 4-hour run to 2 hours. To do this,

perform your trial runs using a test environment similar to the production

environment. For example, you could impose additional restrictive conditions, such

as processing one department instead of all 500 departments. The ideal test case

should run for more than 1 minute but probably not longer than 5, so you can

intuitively detect improvements. You should also measure the test run using timing

features.

Test Hypotheses
With a minimum repeatable test established, and with a script both to conduct the

test and to summarize and report the results, you can test various hypotheses to see

the effect.

Remember that with Oracle’s caching algorithms, the first time data is cached there

is more overhead than when the same date is later accessed from memory. Thus, if

you perform two tests, one after the other, then the second test should run faster

then the first. This is because data that the test run would otherwise have had to

read from disk may instead be more quickly retrieved from the cache.

Keep Records and Automate Testing
Keep records of the effect of each change by incorporating record keeping into the

test script. You also should automate testing. Automation provides a number of

advantages:

■ It permits cost effectiveness in terms of the tuner’s ability to conduct tests

quickly.

■ It helps ensure that tests are conducted in the same systematic way, using the

same instrumentation for each hypothesis you are testing.

You should also carefully check test results derived from observations of system

performance against the objective data before accepting them.

Avoid Common Errors
A common error made by inexperienced tuners is to adhere to preconceived notions

about what may be causing the problem. The next most common error is to attempt

various solutions at random.

Scrutinize your resolution process by developing a written description of your

theory of what you think the problem is. This often helps you detect mistakes,

simply from articulating your ideas. For best results, consult a team of people to

Applying the Tuning Method

2-16 Oracle8i Designing and Tuning for Performance

help resolve performance problems. While a performance tuner can tune SQL

statements without knowing the application in detail, the team should include

someone who understands the application and who can validate the solutions the

SQL tuner may devise.

Avoid Poorly Thought Out Solutions
Beware of changing something in the system by guessing. Or, once you have a

hypothesis that you have not completely thought through, you may be tempted to

implement it globally. Doing this in haste can seriously degrade system

performance to the point where you may have to rebuild part of your environment

from backups.

Avoid Preconceptions
Try to avoid preconceptions when you address a tuning problem. Ask users to

describe performance problems. However, do not expect users to know why the

problem exists.

One user, for example, had serious system memory problems over a long period of

time. During the morning, the system ran well, but performance rapidly degraded

in the afternoon. A consultant tuning the system was told that a PL/SQL memory

leak was the cause. As it turned out, this was not at all the problem.

Instead, the user had set SORT_AREA_SIZE to 10MB on a machine with 64 MB of

memory serving 20 users. When users logged on to the system, the first time they

executed a sort, their sessions were assigned to a sort area. Each session held the

sort area for the duration of the session. So, the system was burdened with 200MB

of virtual memory, hopelessly swapping and paging.

Stop Tuning When Objectives Are Met
One of the great advantages of having targets for tuning is that it becomes possible

to define success. Past a certain point, it is no longer cost effective to continue

tuning a system.

Demonstrate Meeting the Objectives
As the tuner, you may be confident that performance targets have been met.

Nonetheless, you must demonstrate this to two communities:

■ The users affected by the problem.

■ Those responsible for the application’s success.

Part II
 Application Design Tuning for Designers

and Developers

Part II provides information on designing and tuning applications for optimal

performance. The chapters in Part II are:

■ Chapter 3, "Application and System Performance Characteristics"

■ Chapter 4, "The Optimizer"

■ Chapter 5, "Using EXPLAIN PLAN"

■ Chapter 6, "Using SQL Trace and TKPROF"

■ Chapter 7, "Using Optimizer Hints"

■ Chapter 8, "Gathering Statistics"

■ Chapter 9, "Optimizing SQL Statements"

■ Chapter 10, "Using Plan Stability"

Application and System Performance Characteristics 3-1

3
Application and System Performance

Characteristics

This chapter describes types of applications and systems that use Oracle databases,

and the suggested approaches and features available when designing each type.

This chapter contains the following sections:

■ Types of Applications

■ Registering Applications

■ Oracle Configurations

Types of Applications

3-2 Oracle8i Designing and Tuning for Performance

Types of Applications
You can build thousands of types of applications on top of an Oracle Server. This

section categorizes the most popular types and describes the design considerations

for each. Each category lists performance issues that are crucial for that type of

application.

■ Online Transaction Processing (OLTP)

■ Decision Support Systems

■ Multipurpose Applications

Online Transaction Processing (OLTP)
Online transaction processing (OLTP) applications are high throughput and

insert/update-intensive. These applications are characterized by growing volumes

of data that several hundred users access concurrently. Typical OLTP applications

are airline reservation systems, large order-entry applications, and banking

applications. The key goals of OLTP applications are availability (sometimes 7

day/24 hour availability); speed (throughput); concurrency; and recoverability.

Figure 3–1 illustrates the interaction between an OLTP application and an Oracle

Server.

See Also: For more information on these topics and how to

implement their features, see Oracle8i Concepts, Oracle8i Application
Developer’s Guide - Fundamentals, and Oracle8i Administrator’s Guide.

Types of Applications

Application and System Performance Characteristics 3-3

Figure 3–1 Online Transaction Processing Systems

When you design an OLTP system, you must ensure that the large number of

concurrent users does not interfere with the system’s performance. You must also

avoid excessive use of indexes and clusters, because these structures slow down

insert and update activity.

The following elements are crucial for tuning OLTP systems:

■ Rollback segments

■ Indexes, clusters, and hashing

■ Discrete transactions

■ Data block size

■ Buffer cache size

■ Dynamic allocation of space to tables and rollback segments

■ Transaction processing monitors and the multi-threaded server

■ Use of bind variables

■ The shared pool

■ Partitioning

■ Well-tuned SQL statements

■ Integrity constraints

■ Client/server architecture

■ Dynamically changeable initialization parameters

Database

Data

Data

Types of Applications

3-4 Oracle8i Designing and Tuning for Performance

■ Procedures, packages, and functions

Decision Support Systems
Decision support systems applications typically convert large amounts of

information into user-defined reports. Decision support applications perform

queries on the large amounts of data gathered from OLTP applications. Decision

makers use these applications to determine what strategies the organization should

take. Figure 3–2 illustrates the interaction between a decision support application

and an Oracle Server.

Figure 3–2 Decision Support Systems

An example of a decision support system is a marketing tool that determines the

buying patterns of consumers based on information gathered from demographic

studies. The demographic data is assembled and entered into the system, and the

marketing staff queries this data to determine which items sell best in which

locations. This report helps users decide which items to purchase and market in the

various locations.

The key goals of a decision support system are response time, accuracy, and

availability. When designing decision support systems, ensure that queries on large

amounts of data are performed within a reasonable timeframe. Decision makers

often need reports on a daily basis, so you may need to guarantee that the report

completes overnight.

See Also: For descriptions of these topics, see Oracle8i Concepts
and Oracle8i Administrator’s Guide. Read more about these topics

before designing your system, and decide which features can

benefit your particular situation.

DatabaseData

Types of Applications

Application and System Performance Characteristics 3-5

The key to performance in a decision support system is properly tuned queries and

proper use of indexes, clusters, and hashing. The following issues are crucial in

implementing and tuning a decision support system:

■ Materialized Views

■ Indexes (B*-tree and bitmap)

■ Clusters, hashing

■ Data block size

■ Parallel execution

■ Star query

■ The optimizer

■ Using hints in queries

■ PL/SQL functions in SQL statements

■ Partitioning

One way to improve the response time in decision support systems is to use parallel

execution. This feature enables multiple processes to simultaneously process a

single SQL statement. By spreading processing over many processes, Oracle can

execute complex statements more quickly than if only a single server processed

them.

Figure 3–3 illustrates parallel execution.

Figure 3–3 Parallel Execution Processing

Parallel execution can dramatically improve performance for data-intensive

operations associated with decision support applications or very large database

environments. In some cases, it can also benefit OLTP processing.

DatabaseData

Process 1

Process 2

Process 3

Types of Applications

3-6 Oracle8i Designing and Tuning for Performance

Symmetric multiprocessing (SMP), clustered, or massively parallel systems gain the

largest performance benefits from parallel execution. This is because operations can

be effectively spread among many CPUs on a single system.

Parallel execution helps system performance scale when adding hardware

resources. If your system’s CPUs and disk controllers are already heavily loaded,

then reduce the system’s load before attempting to use parallel execution to

improve performance.

Multipurpose Applications
Many applications rely on several configurations. You must decide what type of

activity your application performs and determine which features are best suited for

it. One typical multipurpose configuration is a combination of OLTP and data

warehousing systems. Often, data gathered by an OLTP application "feeds" a data

warehousing system.

Figure 3–4 illustrates multiple configurations and applications accessing an Oracle

Server.

Figure 3–4 A Hybrid OLTP/Data Warehousing System

One example of a combination OLTP/data warehousing system is a marketing tool

that determines the buying patterns of consumers based on information gathered

from retail stores. The retail stores gather data from daily purchase records, and the

marketing staff queries this data to determine which items sell best in which

See Also: For more information on data warehousing and parallel

execution, see Oracle8i Data Warehousing Guide. For general

information on parallel execution, see Oracle8i Concepts.

Database DataData
DataDatabase

Oracle Configurations

Application and System Performance Characteristics 3-7

locations. This report is then used to determine inventory levels for particular items

in each store.

In this example, both systems could use the same database, but the conflicting goals

of OLTP and data warehousing might cause performance problems. To solve this,

an OLTP database stores the data gathered by the retail stores, then an image of that

data is copied into a second database, which is queried by the data warehousing

application. This configuration may slightly compromise the goal of accuracy for

the data warehousing application (the data is copied only once per day), but the

benefit is significantly better performance from both systems.

For hybrid systems, determine which goals are most important. You may need to

compromise on meeting lower-priority goals to achieve acceptable performance

across the whole system.

Registering Applications
Application developers can use the DBMS_APPLICATION_INFO package with

Oracle Trace and the SQL trace facility to register the name of the application and

actions performed by that application with the database. Registering an application

lets system administrators and performance tuning specialists track performance by

module. System administrators can also use this information to track resource use

by module. When an application registers with the database, its name and actions

are recorded in the V$SESSION and V$SQLAREA views.

Your applications should set the name of the module and name of the action

automatically each time a user enters that module. The module name could be the

name of a form in an Oracle Developer application, or the name of the code

segment in an Oracle precompilers application. The action name should usually be

the name or description of the current transaction within a module.

Oracle Configurations
You can configure your system depending on the hardware and software available.

The basic configurations are:

■ Distributed Systems

■ Multi-Tier Systems

See Also: For information about the required privileges and the

procedures in DBMS_APPLICATION_INFO, see Oracle8i Supplied
PL/SQL Packages Reference.

Oracle Configurations

3-8 Oracle8i Designing and Tuning for Performance

■ Oracle Parallel Server

■ Client/Server Configurations

Depending on your application and your operating system, each of these, or a

combination of these, configurations may best suit your needs.

Distributed Systems
Distributed applications spread data over multiple databases on multiple machines.

Several smaller server machines can be less expensive and more flexible than one

large, centrally located server. Distributed configurations take advantage of small,

powerful server machines and less expensive connectivity options. Distributed

systems also allow you to store data at several sites, and each site can transparently

access all the data.

Figure 3–5 illustrates the distributed database configuration of the Oracle Server.

Figure 3–5 Distributed Database System

An example of a distributed database system is a mail order application with order

entry clerks in several locations across the country. Each clerk has access to a copy

of the central inventory database, but clerks also perform local operations on a local

order-entry system. The local orders are forwarded daily to the central shipping

department. The local order-entry system is convenient for clerks serving customers

Database

Database

Data

Database

Oracle Configurations

Application and System Performance Characteristics 3-9

in the same geographic region. The centralized nature of the company-wide

inventory database provides processing convenience for the mail order function.

The key goals of a distributed database system are availability, accuracy,

concurrency, and recoverability. When you design a distributed system, the

location of the data is the most important factor. You must ensure that local clients

have quick access to the data they use most frequently. You must also ensure that

remote operations do not occur often. Replication is one means of dealing with the

issue of data location. The following issues are crucial to the design of distributed

database systems:

■ Network configuration

■ Distributed database design

■ Symmetric replication

■ Table snapshots and snapshot logs

■ Procedures, packages, and functions

Multi-Tier Systems
A multi-tier architecture has the following components:

■ A client or initiator process that starts an operation.

■ One or more application servers that perform parts of the operation. An

application server is a process that provides access to the data for the client and

performs some of the query processing, thus removing some of the load from

the database server. It can serve as an interface between clients and multiple

database servers, including providing an additional level of security.

■ An end or database server that serves as the repository for most of the data

used in the operation.

This architecture allows you to use an application server to do the following:

■ Validate the credentials of a client, such as a web browser.

■ Connect to an Oracle database server.

■ Perform the requested operation on behalf of the client.

See Also: For more information on distributed queries, see

Oracle8i Distributed Database Systems, Oracle8i Replication, and

Chapter 9, "Optimizing SQL Statements".

Oracle Configurations

3-10 Oracle8i Designing and Tuning for Performance

The identity of the client is maintained throughout all tiers of the connection. The

Oracle database server audits operations that the application server performs on

behalf of the client separately from operations that the application server performs

on its own behalf (such as a request for a connection to the database server). The

application server’s privileges are limited to prevent it from performing unneeded

and unwanted operations during a client operation.

Oracle Parallel Server
The Oracle Parallel Server is available on clustered or massively parallel systems. A

parallel server allows multiple machines to have separate instances access the same

database. This configuration greatly enhances data throughput. Figure 3–6

illustrates the Oracle Parallel Server.

Figure 3–6 An Oracle Parallel Server

When configuring Oracle Parallel Server, a key concern is preventing data

contention among the various nodes. Although the cache fusion feature of Oracle

Parallel Server minimizes block pinging among nodes contending for data, you

should still strive to properly partition data. This is especially true for write/write

conflicts where each node must first obtain a lock on that data to ensure data

consistency.

If multiple nodes require access to the same data for DML operations, then that data

must first be written to disk before the next node can obtain a lock. This type of

See Also: For more information on multi-tier systems, see

"Solving CPU Problems by Changing System Architectures" on

page 18-13.

Data Database

Data

Data

Node 1

Node 2

Node 3

Oracle Configurations

Application and System Performance Characteristics 3-11

contention significantly degrades performance. On such systems, data must be

effectively partitioned among the various nodes for optimal performance.

Read-only data can be efficiently shared across all instances in an Oracle Parallel

Server configuration without the problem of lock contention, because Oracle uses a

non-locking query logic. Consider adding sufficient free lists on tables that are

mostly inserted.

Client/Server Configurations
Client/server architectures distribute the work of a system between the client

(application) machine and the server (in this case an Oracle Server). Typically, client

machines are workstations that execute a graphical user interface (GUI) application

connected to a larger server machine that houses the Oracle Server.

See Also: For more information, see the Oracle8i Parallel Server
Documentation Set: Oracle8i Parallel Server Concepts; Oracle8i Parallel
Server Setup and Configuration Guide; Oracle8i Parallel Server
Administration, Deployment, and Performance.

Oracle Configurations

3-12 Oracle8i Designing and Tuning for Performance

The Optimizer 4-1

4
The Optimizer

This chapter discusses SQL processing, optimization methods, and how the

optimizer chooses to execute SQL statements.

This chapter contains the following sections:

■ SQL Processing Architecture

■ EXPLAIN PLAN

■ What Is The Optimizer?

■ Choosing an Optimizer Approach and Goal

■ Cost-Based Optimizer (CBO)

■ CBO Parameters

■ Extensible Optimizer

■ Rule-Based Optimizer (RBO)

■ Overview of Optimizer Operations

■ Optimizing Joins

■ Optimizing Statements that Use Common Subexpressions

■ Evaluation of Expressions and Conditions

■ Transforming and Optimizing Statements

SQL Processing Architecture

4-2 Oracle8i Designing and Tuning for Performance

SQL Processing Architecture
The SQL processing architecture is comprised of the following main components:

■ Parser

■ Optimizer

■ Row Source Generator

■ SQL Execution

Figure 4–1 illustrates the SQL processing architecture:

Figure 4–1 SQL Processing Architecture

The parser, the optimizer, and the row source generator form the SQL Compiler. This

compiles the SQL statements into a shared cursor. Associated with the shared

cursor is the execution plan.

Rule-Based
Optimizer

Cost-Based
Optimizer

Optimizer Mode?
CBORBO

SQL query

Query plan

User

Parser

Row Source
Generator

Statistics

Dictionary

Result

SQL
Execution

EXPLAIN PLAN

The Optimizer 4-3

Parser
The parser performs two functions:

■ Syntax analysis: This checks SQL statements for correct syntax.

■ Semantic analysis: This checks, for example, that the current database objects

and object attributes referenced are correct.

Optimizer
The optimizer is the heart of the SQL processing engine. The Oracle server provides

two methods of optimization: rule-based optimizer (RBO) and cost-based optimizer

(CBO).

Row Source Generator
The row source generator receives the optimal plan from the optimizer. It outputs

the execution plan for the SQL statement. The execution plan is a collection of row

sources structured in the form of a tree. A row source is an iterative control structure.

It processes a set of rows, one row at a time, in an iterated manner. A row source

produces a row set.

SQL Execution
SQL execution is the component that operates on the execution plan associated with

a SQL statement. It then produces the results of the query.

EXPLAIN PLAN
You can examine the execution plan chosen by the optimizer for a SQL statement by

using the EXPLAIN PLAN statement. This causes the optimizer to choose the

execution plan, and then insert data describing the plan into a database table.

Simply issue the EXPLAIN PLAN statement and then query the output table. The

following output table describes the statement examined in the previous section:

What Is The Optimizer?

4-4 Oracle8i Designing and Tuning for Performance

ID OPERATION OPTIONS OBJECT_NAME
--
0 SELECT STATEMENT
1 FILTER
2 NESTED LOOPS
3 TABLE ACCESS FULL EMP
4 TABLE ACCESS BY ROWID DEPT
5 INDEX UNIQUE SCAN PK_DEPTNO
6 TABLE ACCESS FULL SALGRADE

Each box in Figure 4–2 and each row in the output table corresponds to a single step

in the execution plan. For each row in the listing, the value in the ID column is the

value shown in the corresponding box in Figure 4–2.

What Is The Optimizer?
The optimizer determines the most efficient way to execute a SQL statement. This is

an important step in the processing of any data manipulation language (DML)

statement: SELECT, INSERT, UPDATE, or DELETE. There are often many different

ways to execute a SQL statement; for example, by varying the order in which tables

or indexes are accessed. The procedure Oracle uses to execute a statement can

greatly affect how quickly the statement executes.

The optimizer considers many factors among alternative access paths. It can use

either a a cost-based or a rule-based approach (see "Cost-Based Optimizer (CBO)"

on page 4-12 and "Rule-Based Optimizer (RBO)" on page 4-34).

You can influence the optimizer’s choices by setting the optimizer approach and

goal, and by gathering statistics for the CBO. Sometimes, the application designer,

who has more information about a particular application’s data than is available to

the optimizer, can choose a more effective way to execute a SQL statement. The

application designer can use hints in SQL statements to specify how the statement

should be executed.

See Also: For detailed information on how to use EXPLAIN PLAN
and how to produce and interpret its output, see Chapter 5, "Using

EXPLAIN PLAN".

Note: The optimizer may not make the same decisions from one

version of Oracle to the next. In recent versions, the optimizer may

make different decisions based on better information available to it.

What Is The Optimizer?

The Optimizer 4-5

Execution Plan
To execute a DML statement, Oracle may need to perform many steps. Each of these

steps either retrieves rows of data physically from the database or prepares them in

some way for the user issuing the statement. The combination of the steps Oracle

uses to execute a statement is called an execution plan. An execution plan includes an

access method for each table that the statement accesses and an ordering of the tables

(the join order).

The following SQL statement selects the name, job, salary, and department name for

all employees whose salaries do not fall into a recommended salary range:

SELECT ename, job, sal, dname
FROM emp, dept
WHERE emp.deptno = dept.deptno
AND NOT EXISTS

(SELECT *
FROM salgrade
WHERE emp.sal BETWEEN losal AND hisal);

Figure 4–2 shows a graphical representation of the execution plan for this SQL

statement.

See Also:

■ For more information on optimization goals, see "Choosing an

Optimizer Approach and Goal" on page 4-8.

■ For more information on using statistics, see Chapter 8,

"Gathering Statistics".

■ For more information about using hints in SQL statements, see

Chapter 7, "Using Optimizer Hints".

See Also: For descriptions of the various access methods,

including indexes, hash clusters, and table scans, see "Access Paths

for the RBO" on page 4-34 and "Access Paths for the CBO" on

page 4-20.

What Is The Optimizer?

4-6 Oracle8i Designing and Tuning for Performance

Figure 4–2 An Execution Plan

Steps of Execution Plan
Each step of the execution plan returns a set of rows that either are used by the next

step or, in the last step, are returned to the user or application issuing the SQL

statement. A set of rows returned by a step is called a row source.

Figure 4–2 is a hierarchical diagram showing the flow of row sources from one step

to another. The numbering of the steps reflects the order in which they are

TABLE ACCESS
(FULL)

emp

3 4

TABLE ACCESS
(BY ROWID)

dept

5

INDEX
(UNIQUE SCAN)

pk_deptno

6

TABLE ACCESS
(FULL)

salgrade

1

FILTER

2

NESTED LOOPS

What Is The Optimizer?

The Optimizer 4-7

displayed in response to the EXPLAIN PLAN statement. Generally, this is not the

order in which the steps are executed.

Each step of the execution plan either retrieves rows from the database or accepts

rows from one or more row sources as input:

■ Steps indicated by the shaded boxes physically retrieve data from an object in

the database. Such steps are called access paths:

– Steps 3 and 6 read all the rows of the emp and salgrade tables,

respectively.

– Step 5 looks up each deptno value in the pk_deptno index returned by

step 3. There it finds the rowids of the associated rows in the dept table.

– Step 4 retrieves the rows whose rowids were returned by step 5 from the

dept table.

■ Steps indicated by the clear boxes operate on row sources:

– Step 2 performs a nested loops operation, accepting row sources from steps

3 and 4, joining each row from step 3 source to its corresponding row in

step 4, and returning the resulting rows to step 1.

– Step 1 performs a filter operation. It accepts row sources from steps 2 and 6,

eliminates rows from step 2 that have a corresponding row in step 6, and

returns the remaining rows from step 2 to the user or application issuing

the statement.

Execution Order
The steps of the execution plan are not performed in the order in which they are

numbered. Rather, Oracle first performs the steps that appear as leaf nodes in the

tree-structured graphical representation of the execution plan (steps 3, 5, and 6 in

Figure 4–2). The rows returned by each step become the row sources of its parent

step. Then, Oracle performs the parent steps.

See Also: EXPLAIN PLAN is described in "EXPLAIN PLAN"

section below. The order in which the steps are executed is

described in "Execution Order" on page 4-7.

See Also: For more information on access paths, see "Access

Paths for the RBO" on page 4-34 and "Access Paths for the CBO" on

page 4-20. For more information on the methods by which Oracle

joins row sources, see "Optimizing Joins" on page 4-49.

Choosing an Optimizer Approach and Goal

4-8 Oracle8i Designing and Tuning for Performance

For example, Oracle performs the following steps to execute the statement in

Figure 4–2:

■ Oracle performs step 3 and returns the resulting rows, one by one, to step 2.

■ For each row returned by step 3, Oracle performs the following steps:

– Oracle performs step 5 and returns the resulting rowid to step 4.

– Oracle performs step 4 and returns the resulting row to step 2.

– Oracle performs step 2, joining the single row from step 3 with a single row

from step 4, and returns a single row to step 1.

– Oracle performs step 6 and returns the resulting row, if any, to step 1.

– Oracle performs step 1. If a row is not returned from step 6, then Oracle

returns the row from step 2 to the user issuing the SQL statement.

Note that Oracle performs steps 5, 4, 2, 6, and 1 once for each row returned by

step 3. If a parent step requires only a single row from its child step before it can be

executed, then Oracle performs the parent step (and possibly the rest of the

execution plan) as soon as a single row has been returned from the child step. If the

parent of that parent step also can be activated by the return of a single row, then it

is executed as well.

Thus, the execution can cascade up the tree, possibly to encompass the rest of the

execution plan. Oracle performs the parent step and all cascaded steps once for each

row in turn retrieved by the child step. The parent steps that are triggered for each

row returned by a child step include table accesses, index accesses, nested loops

joins, and filters.

If a parent step requires all rows from its child step before it can be executed, then

Oracle cannot perform the parent step until all rows have been returned from the

child step. Such parent steps include sorts, sort-merge joins, and aggregate

functions.

Choosing an Optimizer Approach and Goal
By default, the goal of the CBO is the best throughput; i.e., using the least amount of

resources necessary to process all rows accessed by the statement.

Oracle can also optimize a statement with the goal of best response time; i.e., using

the least amount of resources necessary to process the first row accessed by a SQL

statement.

Choosing an Optimizer Approach and Goal

The Optimizer 4-9

For parallel execution of a SQL statement, the optimizer can choose to minimize

elapsed time at the expense of resource consumption. The initialization parameter

OPTIMIZER_PERCENT_PARALLEL specifies how much the optimizer attempts to

parallelize execution.

The execution plan produced by the optimizer can vary depending on the

optimizer’s goal. Optimizing for best throughput is more likely to result in a full

table scan rather than an index scan, or a sort-merge join rather than a nested loops

join. Optimizing for best response time, however, more likely results in an index

scan or a nested loops join.

For example, suppose you have a join statement that is executable with either a

nested loops operation or a sort-merge operation. The sort-merge operation may

return the entire query result faster, while the nested loops operation may return

the first row faster. If your goal is to improve throughput, then the optimizer is

more likely to choose a sort-merge join. If your goal is to improve response time,

then the optimizer is more likely to choose a nested loops join.

Choose a goal for the optimizer based on the needs of your application:

■ For applications performed in batch, such as Oracle Reports applications,

optimize for best throughput. Throughput is usually more important in batch

applications, because the user initiating the application is only concerned with

the time necessary for the application to complete. Response time is less

important, because the user does not examine the results of individual

statements while the application is running.

■ For interactive applications, such as Oracle Forms applications or SQL*Plus

queries, optimize for best response time. Response time is usually important in

interactive applications, because the interactive user is waiting to see the first

row accessed by the statement.

■ For queries that use ROWNUM to limit the number of rows, optimize for best

response time. Because of the semantics of ROWNUM queries, optimizing for

response time provides the best results.

The optimizer’s behavior when choosing an optimization approach and goal for a

SQL statement is affected by the following factors:

■ OPTIMIZER_MODE Initialization Parameter

■ Statistics in the Data Dictionary

■ OPTIMIZER_GOAL Parameter of the ALTER SESSION Statement

■ Changing the Goal with Hints

Choosing an Optimizer Approach and Goal

4-10 Oracle8i Designing and Tuning for Performance

OPTIMIZER_MODE Initialization Parameter
The OPTIMIZER_MODE initialization parameter establishes the default behavior for

choosing an optimization approach for the instance. It can have the following

values:

If the optimizer uses the cost-based approach for a SQL statement, and if some

tables accessed by the statement have no statistics, then the optimizer uses internal

information (such as the number of data blocks allocated to these tables) to estimate

other statistics for these tables.

Statistics in the Data Dictionary
Oracle stores statistics about columns, tables, clusters, indexes, and partitions in the

data dictionary for the CBO. You can collect exact or estimated statistics about

physical storage characteristics and data distribution in these schema objects by

using the DBMS_STATS package, the ANALYZE statement, or the COMPUTE
STATISTICS clause of the CREATE or ALTER INDEX statement.

To provide the optimizer with up-to-date statistics, you should collect new statistics

after modifying the data or structure of schema objects in ways that could affect

their statistics.

CHOOSE The optimizer chooses between a cost-based approach and a

rule-based approach based on whether statistics are available for the

CBO. If the data dictionary contains statistics for at least one of the

accessed tables, then the optimizer uses a cost-based approach and

optimizes with a goal of best throughput. If the data dictionary

contains no statistics for any of the accessed tables, then the

optimizer uses a rule-based approach. This is the default value for

the parameter.

ALL_ROWS The optimizer uses a cost-based approach for all SQL statements in

the session regardless of the presence of statistics and optimizes with

a goal of best throughput (minimum resource use to complete the

entire statement).

FIRST_ROWS The optimizer uses a cost-based approach for all SQL statements in

the session regardless of the presence of statistics and optimizes with

a goal of best response time (minimum resource use to return the

first row of the result set).

RULE The optimizer chooses a rule-based approach for all SQL statements

regardless of the presence of statistics.

Choosing an Optimizer Approach and Goal

The Optimizer 4-11

OPTIMIZER_GOAL Parameter of the ALTER SESSION Statement
The OPTIMIZER_GOAL parameter of the ALTER SESSION statement can override

the optimizer approach and goal established by the OPTIMIZER_MODEinitialization

parameter for an individual session.

The value of this parameter affects the optimization of SQL statements issued by

stored procedures and functions called during the session, but it does not affect the

optimization of recursive SQL statements that Oracle issues during the session.

The OPTIMIZER_GOAL parameter can have these values:

Changing the Goal with Hints
A FIRST_ROWS, ALL_ROWS, CHOOSE, or RULE hint in an individual SQL statement

can override the effects of both the OPTIMIZER_MODE initialization parameter and

the OPTIMIZER_GOAL parameter of the ALTER SESSION statement.

By default, the cost-based approach optimizes for best throughput. You can change

the goal of the CBO in the following ways:

See Also: For more information about statistics, see Chapter 8,

"Gathering Statistics".

CHOOSE The optimizer chooses between a cost-based approach and a

rule-based approach based on whether statistics are available for the

cost-based approach. If the data dictionary contains statistics for at

least one of the accessed tables, then the optimizer uses a cost-based

approach and optimizes with a goal of best throughput. If the data

dictionary contains no statistics for any of the accessed tables, then

the optimizer uses a rule-based approach.

ALL_ROWS The optimizer uses a cost-based approach for all SQL statements in

the session regardless of the presence of statistics and optimizes with

a goal of best throughput (minimum resource use to complete

the entire statement).

FIRST_ROWS The optimizer uses a cost-based approach for all SQL statements in

the session regardless of the presence of statistics and optimizes with

a goal of best response time (minimum resource use to return the

first row of the result set).

RULE The optimizer chooses a rule-based approach for all SQL statements

issued to the Oracle instance regardless of the presence of statistics.

Cost-Based Optimizer (CBO)

4-12 Oracle8i Designing and Tuning for Performance

■ To change the goal of the CBO for all SQL statements in your session, issue an

ALTER SESSION SET OPTIMIZER_MODE statement with the ALL_ROWS or

FIRST_ROWS clause.

■ To specify the goal of the CBO for an individual SQL statement, use the ALL_
ROWS or FIRST_ROWS hint.

Example The following statement changes the goal of the CBO for your session to

best response time:

ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS;

Cost-Based Optimizer (CBO)
In general, you should always use the cost-based approach. The rule-based

approach is available for the benefit of existing applications.

The CBO determines which execution plan is most efficient by considering available

access paths and by factoring in information based on statistics for the schema

objects (tables or indexes) accessed by the SQL statement. The CBO also considers

hints, which are optimization suggestions placed in a comment in the statement.

The CBO consists of the following steps:

1. The optimizer generates a set of potential plans for the SQL statement based on

its available access paths and hints.

2. The optimizer estimates the cost of each plan based on statistics in the data

dictionary for the data distribution and storage characteristics of the tables,

indexes, and partitions accessed by the statement.

The cost is an estimated value proportional to the expected resource use needed

to execute the statement with a particular plan. The optimizer calculates the

cost of each possible access method and join order based on the estimated

computer resources, including (but not limited to) I/O and memory, that are

required to execute the statement using the plan.

See Also: For information on how to use hints, see Chapter 7,

"Using Optimizer Hints".

See Also: For more information on hints, see Chapter 7, "Using

Optimizer Hints".

Cost-Based Optimizer (CBO)

The Optimizer 4-13

Serial plans with greater costs take more time to execute than those with

smaller costs. When using a parallel plan, however, resource use is not directly

related to elapsed time.

3. The optimizer compares the costs of the plans and chooses the one with the

smallest cost.

To maintain the effectiveness of the CBO, you must gather statistics and keep them

current. Gather statistics on your objects using either of the following:

■ For releases prior to Oracle8i, use the ANALYZE statement.

■ For Oracle8i releases, use the DBMS_STATS package.

For table columns which contain skewed data (i.e., values with large variations in

number of duplicates), you must collect histograms.

The resulting statistics provide the CBO with information about data uniqueness

and distribution. Using this information, the CBO is able to compute plan costs with

a high degree of accuracy. This enables the CBO to choose the best execution plan

based on the least cost.

Architecture of the CBO
The CBO consists of the following three main components:

■ Query Transformer

■ Estimator

■ Plan Generator

The CBO architecture is illustrated in Figure 4–3.

See Also: For detailed information on gathering statistics, see

Chapter 8, "Gathering Statistics".

Cost-Based Optimizer (CBO)

4-14 Oracle8i Designing and Tuning for Performance

Figure 4–3 Cost-Based Optimizer Architecture

Query Transformer
The input to query transformer is a parsed query, which is represented by a set of

query blocks. The query blocks are nested or interrelated to each other. The form of

the query determines how the query blocks are interrelated to each other. The main

objective of the query transformer is to determine if it is advantageous to change the

form of the query, so that it enables generation of a better query plan. Three

different query transformation techniques are employed by the query transformer:

view merging, subquery unnesting, and query rewrite using materialized views.

Any combination of these transformations may be applied to a given query.

View Merging Each view referenced in a query is expanded by the parser into a

separate query block. The query block essentially represents the view definition,

and therefore the result of a view. One option for the optimizer is to optimize the

view query block separately, and generate a subplan. Then, optimize the rest of the

query by using the view subplan in the generation of overall query plan. Doing so

usually leads to a sub-optimal query plan, because the view is optimized separately

from rest of the query.

Query
Transformer

Estimator

Plan
Generator

Parsed Query
(from Parser)

Query Plan
(to Row Source Generator)

Transformed query

Query + estimates

Dictionarystatistics

Cost-Based Optimizer (CBO)

The Optimizer 4-15

The query transformer removes the potential sub-optimality by merging the view

query block into the query block that contains the view. Most of the views are

merged, with an exception of few types of views. When a view is merged, the query

block representing the view is merged into the containing query block. Now, there

is no need to generate a subplan, because view query block is eliminated.

For those views that are not merged, the query transformer pushes the relevant

predicates from the containing query block into the view query block. Doing so

improves the subplan of the non-merged view, because the pushed in predicates act

either as index drivers or as filters.

Subquery Unnesting Like a view, a subquery is also represented by a separate query

block. Because a subquery is nested within the main query or another subquery,

this constrains the plan generator in trying out different possible plans before it

finds a plan with the lowest cost. For this reason, the query plan produced may not

be the optimal one. The restrictions due to the nesting of subqueries can be removed

by unnesting the subqueries and converting them into joins. Most of the subqueries

are unnested. For those subqueries that remain as nested subqueries, separate

subplans are generated. To improve the execution speed of the overall query plan,

the subplans are ordered in an efficient manner.

Query Rewrite with Materialized Views A materialized view is like a query whose result

is materialized and stored in a table. When a user query is found compatible with

the query associated with a materialized view, the user query can be rewritten in

terms of the materialized view. Doing so improves the execution of the user query,

because most of the query result has already been precomputed. The query

transformer looks for any materialized views that are compatible with the user

query, and selects one or more materialized views to rewrite the user query. The

use of materialized views to rewrite a query is cost-based. That is, the query is not

rewritten if the plan generated without the materialized views has lower cost than

the plan generated with the materialized views.

Estimator
The estimator is the heart of the CBO. Its estimates three different types of

measures: selectivity, cardinality, and cost. These measures are related to each

See Also: For more information on subquery unnesting, see "Use

Care When Unnesting Subqueries" in Chapter 9, "Optimizing SQL

Statements".

See Also: For more information on query rewrite, see Oracle8i
Data Warehousing Guide.

Cost-Based Optimizer (CBO)

4-16 Oracle8i Designing and Tuning for Performance

other, and one is derived from another. The end goal of the estimator is to estimate

the overall cost of a given plan. If statistics are available, then the estimator uses

them to compute the measures. The statistics improve the degree of accuracy of the

measures.

Selectivity The first type of measure is the selectivity, which represents a fraction of

rows from a row set. The row set can be a base table, a view, or the result of a join or

a GROUP BY operator. The selectivity is tied to a query predicate, such as last_
name = 'Smith ', or a combination of predicates, such as last_name = 'Smith ' AND
job_type = 'Clerk '. A predicate acts as a filter that filters certain number of rows

from a row set. Therefore, the selectivity of a predicate indicates how many rows

from a row set will pass the predicate test. The selectivity lies in the value range 0.0

to 1.0. A selectivity of 0.0 means that no rows will be selected from a row set, and a

selectivity of 1.0 means that all rows will be selected.

The estimator uses an internal default value for the selectivity if no statistics are

available. Different internal defaults are used depending on the predicate type. For

example, the internal default for an equality predicate (last_name = 'Smith ') is

lower than the internal default for a range predicate (last_name > 'Smith '). This is

because an equality predicate is expected to usually return a smaller fraction of

rows than a range predicate.

When statistics are available, the estimator estimates selectivity based on statistics.

For example, for an equality predicate (last_name = 'Smith ') the selectivity is set

to the reciprocal of the number of distinct values of last_name , because the query

selects rows that all contain one out of N distinct values. If a histogram is available

on the last_name column, then the estimator uses it instead of the number of

distinct values statistic. The histogram captures the distribution of different values

in a column, so its use yields better selectivity estimate. Therefore, having

histograms on columns that contain skewed data (i.e., values with large variations

in number of duplicates) greatly helps the CBO to generate good plans.

Cardinality Cardinality represents the number of rows in a row set. Here, the row

set can be a base table, a view, or the result from a join or GROUP BY operator. The

base cardinality is the number of rows in a base table. The base cardinality can be

captured by analyzing the table. If table statistics are not available, then the

estimator uses the number of extents occupied by the table to estimate the base

cardinality.

The effective cardinality is the number of rows that will be selected from a base

table. The effective cardinality is dependent on the predicates specified on different

columns of a base table. This is because each predicate acts as a successive filter on

the rows of a base table. The effective cardinality is computed as the product of base

Cost-Based Optimizer (CBO)

The Optimizer 4-17

cardinality and combined selectivity of all predicates specified on a table. When

there is no predicate on a table, its effective cardinality equals its base cardinality.

The join cardinality is the number of rows produced when two row sets are joined

together. A join is a Cartesian product of two row sets with the join predicate

applied as a filter to the result. Therefore, the join cardinality is the product of the

cardinalities of two row sets, multiplied by the selectivity of the join predicate.

A distinct cardinality is the number of distinct values in a column of a row set. The

distinct cardinality of a row set is based on the data in the column. For example, in a

row set of 100 rows, if distinct column values are found in 20 rows, then the distinct

cardinality is 20.

The group cardinality is the number of rows produced from a row set after the

GROUP BYoperator is applied. The effect of the GROUP BYoperator is to decrease the

number of rows in a row set. The group cardinality depends on the distinct

cardinality of each of the grouping columns. For example, if a row set of 100 rows is

grouped by colx , whose distinct cardinality is 30, then the group cardinality is 30.

If the row set of 100 rows is grouped by colx and coly , and distinct cardinalities

of colx and coly are 30 and 60 respectively, then the group cardinality lies

between max(30,60) and 100.

Cost The cost represents units of work or resource used. The CBO uses disk I/O as

a unit of work. The other possible work units are cpu and network usage. So, the

cost used by the CBO represents an estimate of the number of disk I/Os incurred in

performing an operation. The operation can be scanning a table, accessing rows

from a table using an index, joining two tables together, or sorting a row set. The

cost of a query plan is the number of disk I/Os that are expected to be incurred

when the query is executed and its result produced.

The access cost represents the number of units of work done in accessing data from

a base table. The access path can be a table scan, a fast full index scan, or an index

scan. During table scan or fast full index scan, multiple blocks are read from the

disk in a single I/O operation. Therefore, the cost of a table scan or a fast full index

scan depends on the number of blocks to scan and the multiblock read count value.

The cost for an index scan depends on the levels in the B-tree, the number of index

leaf blocks to scan, and the number of rows to fetch using the rowid in the index

keys. The cost to fetch rows using rowids depends on the index clustering factor.

The higher the clustering factor, the more randomly scattered the individual rows

are on the disk. So, a higher clustering factor means it costs more to fetch rows by

rowid.

The join cost represents the combination of the individual access costs of the two

row sets being joined. In a join, one row set is called inner, and the other is called

Cost-Based Optimizer (CBO)

4-18 Oracle8i Designing and Tuning for Performance

outer. In a nested loops join, for every row in the outer row set, the inner row set is

accessed to find all matching rows to join. Therefore, in a nested loops join, the

inner row set is accessed as many times as the number of rows in the outer row set.

The cost of nested loops join = outer access cost + (inner access cost * outer

cardinality).

In sort merge join, the two row sets being joined are sorted by the join keys, if they

are not already in key order. The cost of sort merge join = outer access cost + inner

access cost + sort costs (if sort used).

In hash join, the inner row set is hashed into memory, and a hash table is built using

the join key. Then, each row from the outer row set is hashed, and the hash table is

probed to join to all matching rows. If the inner row set is very large, then only a

portion of it is hashed into memory. This is called a hash partition.

Each row from the outer row set is hashed to probe matching rows in the hash

partition. After this, the next portion of the inner row set is hashed into memory,

followed by a probe from the outer row set. This process is repeated until all

partitions of the inner row set are exhausted. The cost of hash join = (outer access

cost * # of hash partitions) + inner access cost.

Plan Generator
The main function of the plan generator is to try out different possible plans for a

given query and pick the one that has the lowest cost. Many different plans are

possible because of the various combination of different access paths, join methods

and join orders that can be used to access and process data in different ways and

produce the same result.

A join order is the order in which different join items (such as tables) are accessed

and joined together. For example, in a join order of t1 , t2 , and t3 , table t1 is

accessed first. This is followed by access of t2 , whose data is joined to t1 data to

produce a join of t1 and t2 . Finally, t3 is accessed, and its data is joined to the

result of join between t1 and t2 .

The plan for a query is established by first generating subplans for each of the

unnested subqueries and non-merged views. Each unnested subquery or

non-merged view is represented by a separate query block. The query blocks are

optimized separately in a bottom-up order. That is, the innermost query block is

optimized first, and a subplan is generated for it. The outermost query block, which

represents the entire query, is optimized last.

See Also: For more information on joins, see "Optimizing Joins"

on page 4-49.

Cost-Based Optimizer (CBO)

The Optimizer 4-19

The plan generator explores different plans for a query block by trying out different

access paths, join methods, and join orders. The number of possible plans for a

query block is proportional to the number of join items in the FROM clause. This

number rises exponentially with the number of join items.

Because of this reason, the plan generator uses an internal cutoff to reduce the

number of plans it tries to find the one with the lowest cost. The cutoff is based on

the cost of the current best plan. If current best cost is large, then the plan generator

tries harder (i.e., explores more alternate plans) to find a better plan with lower cost.

If current best cost is small, then the plan generator ends the search swiftly, because

further cost improvement will not be significant.

The cutoff works very well if the plan generator starts with an initial join order that

produces a plan with cost close to optimal. Finding a good initial join order is a

difficult problem. The plan generator uses a simple heuristic for the initial join

order. It orders the join items by their effective cardinalities. The join item with the

smallest effective cardinality goes first, and the join item with the largest effective

cardinality goes last.

Features that Require the CBO
The use of any of the following features requires the use of the CBO:

■ Partitioned tables

■ Index-organized tables

■ Reverse key indexes

■ Function-based indexes

■ SAMPLE clauses in a SELECT statement

■ Parallel execution and parallel DML

■ Star transformations

■ Star joins

■ Extensible optimizer

■ Query rewrite (materialized views)

■ Progress meter

■ Hash joins

■ Bitmap indexes

Cost-Based Optimizer (CBO)

4-20 Oracle8i Designing and Tuning for Performance

■ Partition views (release 7.3)

Using the CBO
To use the CBO for a statement, collect statistics for the tables accessed by the

statement, and enable the CBO using one of the following methods:

■ Make sure that the OPTIMIZER_MODE initialization parameter is set to its

default value of CHOOSE.

■ To enable the CBO for your session only, issue an ALTER SESSION SET
OPTIMIZER_MODE statement with the ALL_ROWS or FIRST_ROWS clause.

■ To enable the CBO for an individual SQL statement, use any hint other than

RULE.

The plans generated by the CBO depend upon the sizes of the tables, and

potentially on the data distributions as well, if histograms are being used. When

using the CBO with a small amount of data to test an application prototype, do not

assume that the plan chosen for the full-size database will be the same as that

chosen for the prototype.

Access Paths for the CBO
One of the most important choices the optimizer makes when formulating an

execution plan is how to retrieve data from the database. For any row in any table

accessed by a SQL statement, there may be many access paths by which that row

can be located and retrieved. The optimizer chooses one of them.

This section describes the basic methods by which Oracle can access data.

Note: Even if the parameter OPTIMIZER_MODE is set to RULE, the

use of these features enables the CBO.

See Also: For information on enabling the CBO, see "CBO

Parameters" on page 4-28.

See Also: For the a list of the access paths that are available for

the RBO, as well as their ranking, see "Access Paths for the RBO" on

page 4-34.

Cost-Based Optimizer (CBO)

The Optimizer 4-21

Full Table Scans
A full table scan retrieves rows from a table. To perform a full table scan, Oracle

reads all rows in the table, examining each row to determine whether it satisfies the

statement’s WHERE clause. Oracle reads every data block allocated to the table

sequentially, so a full table scan can be performed very efficiently using multiblock

reads. Oracle reads each data block only once.

Sample Table Scans
A sample table scan retrieves a random sample of data from a table. This access

method is used when the statement’s FROM clause includes the SAMPLE clause or

the SAMPLE BLOCK clause. To perform a sample table scan when sampling by rows

(the SAMPLE clause), Oracle reads a specified percentage of rows in the table and

examines each of these rows to determine whether it satisfies the statement’s WHERE
clause. To perform a sample table scan when sampling by blocks (the SAMPLE
BLOCK clause), Oracle reads a specified percentage of the table’s blocks and

examines each row in the sampled blocks to determine whether it satisfies the

statement’s WHERE clause.

Oracle does not support sample table scans when the query involves a join or a

remote table. However, you can perform an equivalent operation by using a

CREATE TABLE AS SELECT query to materialize a sample of an underlying table

and then rewrite the original query to refer to the newly created table sample.

Additional queries can be written to materialize samples for other tables. Sample

table scans require the CBO.

Example: The following statement uses a sample table scan to access 1% of the emp
table, sampling by blocks:

SELECT *
 FROM emp SAMPLE BLOCK (1);

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS SAMPLE EMP

Table Access by Rowid
A table access by rowid also retrieves rows from a table. The rowid of a row

specifies the datafile and data block containing the row and the location of the row

Cost-Based Optimizer (CBO)

4-22 Oracle8i Designing and Tuning for Performance

in that block. Locating a row by its rowid is the fastest way for Oracle to find a

single row.

To access a table by rowid, Oracle first obtains the rowids of the selected rows,

either from the statement’s WHERE clause or through an index scan of one or more

of the table’s indexes. Oracle then locates each selected row in the table based on its

rowid.

Cluster Scans
From a table stored in an indexed cluster, a cluster scan retrieves rows that have the

same cluster key value. In an indexed cluster, all rows with the same cluster key

value are stored in the same data blocks. To perform a cluster scan, Oracle first

obtains the rowid of one of the selected rows by scanning the cluster index. Oracle

then locates the rows based on this rowid.

Hash Scans
Oracle can use a hash scan to locate rows in a hash cluster based on a hash value. In

a hash cluster, all rows with the same hash value are stored in the same data blocks.

To perform a hash scan, Oracle first obtains the hash value by applying a hash

function to a cluster key value specified by the statement. Oracle then scans the data

blocks containing rows with that hash value.

Index Scans
An index scan retrieves data from an index based on the value of one or more

columns of the index. To perform an index scan, Oracle searches the index for the

indexed column values accessed by the statement. If the statement accesses only

columns of the index, then Oracle reads the indexed column values directly from

the index, rather than from the table.

The index contains not only the indexed value, but also the rowids of rows in the

table having that value. Therefore, if the statement accesses other columns in

addition to the indexed columns, then Oracle can find the rows in the table with a

table access by rowid or a cluster scan.

An index scan can be one of the following types:

Unique scan This returns only a single rowid. Oracle performs a unique scan

only in cases in which a single rowid is required, rather than

many rowids. For example, Oracle performs a unique scan if

there is a UNIQUE or a PRIMARY KEY constraint that guarantees

that the statement accesses only a single row.

Cost-Based Optimizer (CBO)

The Optimizer 4-23

Range scan This can return zero or more rowids, depending on how many

rows the statement accesses.

Full scan This is available if a predicate references one of the columns in

the index. The predicate does not need to be an index driver. Full

scan is also available when there is no predicate, if all of the

columns in the table referenced in the query are included in the

index and at least one of the index columns is not null. Full scan

can be used to eliminate a sort operation. It reads the blocks

singly.

Fast full scan This is an alternative to a full table scan when the index contains

all the columns that are needed for the query, and at least one

column in the index key has the NOT NULL constraint. Fast full

scan accesses the data in the index itself, without accessing the

table. It cannot be used to eliminate a sort operation. It reads the

entire index using multiblock reads (unlike a full index scan) and

can be parallelized.

Fast full scan is available only with the CBO. You can specify it

with the initialization parameter OPTIMIZER_FEATURES_
ENABLE or the INDEX_FFS hint. Fast full index scans cannot be

performed against bitmap indexes.

Cost-Based Optimizer (CBO)

4-24 Oracle8i Designing and Tuning for Performance

Index join This is a hash join of several indexes that together contain all the

columns from the table that are referenced in the query. If an

index join is used, then no table access is needed, because all the

relevant column values can be retrieved from the indexes. An

index join cannot be used to eliminate a sort operation.

Index join is available only with the CBO. You can specify it with

the initialization parameter OPTIMIZER_FEATURES_ENABLE or

the INDEX_JOIN hint.

Example: The following statement uses an index join to access

the empno and sal columns, both of which are indexed, in the

emp table:

SELECT empno, sal
 FROM emp
 WHERE sal > 2000;

The EXPLAIN PLAN output for this statement might look like

this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 VIEW index$_join$_001
 HASH JOIN
 INDEX RANGE SCAN EMP_SAL
 INDEX FAST FULL SCAN EMP_EMPNO

Bitmap This uses a bitmap for key values and a mapping function that

converts each bit position to a rowid. Bitmaps can efficiently

merge indexes that correspond to several conditions in a WHERE
clause, using Boolean operations to resolve AND and OR
conditions.

Bitmap access is available only with the CBO.

Attention: Bitmap indexes are available only if you have

purchased the Oracle8i Enterprise Edition. For more information on

purchasing options, see Getting to Know Oracle8i.

Cost-Based Optimizer (CBO)

The Optimizer 4-25

How the CBO Chooses an Access Path
The CBO chooses an access path based on the following factors:

■ The available access paths for the statement.

■ The estimated cost of executing the statement using each access path or

combination of paths.

To choose an access path, the optimizer first determines which access paths are

available by examining the conditions in the statement’s WHERE clause (and its

FROM clause for the SAMPLE or SAMPLE BLOCK clause). The optimizer then

generates a set of possible execution plans using available access paths and

estimates the cost of each plan using the statistics for the index, columns, and tables

accessible to the statement. Finally, optimizer chooses the execution plan with the

lowest estimated cost.

The optimizer’s choice among available access paths can be overridden with hints,

except when the statement’s FROM clause contains SAMPLE or SAMPLE BLOCK.

To choose among available access paths, the optimizer considers the following

factors:

■ Selectivity: The selectivity is the percentage of rows in the table that the query

selects. A query that selects a small percentage of a table’s rows has good

selectivity, while a query that selects a large percentage of rows has poor

selectivity.

The optimizer is more likely to choose an index scan over a full table scan for a

query with good selectivity than for one with poor selectivity. Index scans are

usually more efficient than full table scans for queries that access only a small

percentage of a table’s rows, while full table scans are usually faster for queries

that access a large percentage.

To determine the selectivity of a query, the optimizer considers these sources of

information:

– The operators used in the WHERE clause.

– Unique and primary key columns used in the WHERE clause.

– Statistics for the table.

The examples below illustrate how the optimizer uses selectivity.

See Also: For information about hints in SQL statements, see

Chapter 7, "Using Optimizer Hints".

Cost-Based Optimizer (CBO)

4-26 Oracle8i Designing and Tuning for Performance

■ DB_FILE_MULTIBLOCK_READ_COUNT: Full table scans use multiblock reads,

so the cost of a full table scan depends on the number of multiblock reads

required to read the entire table. This depends on the number of blocks read by

a single multiblock read, which is specified by the initialization parameter DB_
FILE_MULTIBLOCK_READ_COUNT. For this reason, the optimizer may be more

likely to choose a full table scan when the value of this parameter is high.

Example 1: The following query uses an equality condition in its WHERE clause to

select all employees named Jackson:

SELECT *
 FROM emp
 WHERE ename = ’JACKSON’;

If the ename column is a unique or primary key, then the optimizer determines that

there is only one employee named Jackson, and the query returns only one row. In

this case, the query is very selective, and the optimizer is most likely to access the

table using a unique scan on the index that enforces the unique or primary key.

Example 2: Consider again the query in the previous example. If the ename column

is not a unique or primary key, then the optimizer can use these statistics to

estimate the query’s selectivity:

■ USER_TAB_COLUMNS.NUM_DISTINCT is the number of values for each column

in the table.

■ USER_TABLES.NUM_ROWS is the number of rows in each table.

By dividing the number of rows in the emp table by the number of distinct values in

the ename column, the optimizer estimates what percentage of employees have the

same name. By assuming that the ename values are uniformly distributed, the

optimizer uses this percentage as the estimated selectivity of the query.

Example 3: The following query selects all employees with employee ID numbers

less than 7500:

SELECT *
 FROM emp
 WHERE empno < 7500;

To estimate the selectivity of the query, the optimizer uses the boundary value of

7500 in the WHERE clause condition and the values of the HIGH_VALUE and LOW_
VALUE statistics for the empno column, if available. These statistics can be found in

the USER_TAB_COL_STATISTICS view (or the USER_TAB_COLUMNS view). The

Cost-Based Optimizer (CBO)

The Optimizer 4-27

optimizer assumes that empno values are evenly distributed in the range between

the lowest value and highest value. The optimizer then determines what percentage

of this range is less than the value 7500 and uses this value as the estimated

selectivity of the query.

Example 4: The following query uses a bind variable rather than a literal value for

the boundary value in the WHERE clause condition:

SELECT *
 FROM emp
 WHERE empno < :e1;

The optimizer does not know the value of the bind variable e1 . Indeed, the value of

e1 may be different for each execution of the query. For this reason, the optimizer

cannot use the means described in the previous example to determine selectivity of

this query. In this case, the optimizer heuristically guesses a small value for the

selectivity. This is an internal default value. The optimizer makes this assumption

whenever a bind variable is used as a boundary value in a condition with one of the

operators <, >, <=, or >=.

The optimizer’s treatment of bind variables can cause it to choose different

execution plans for SQL statements that differ only in the use of bind variables

rather than constants. In one case in which this difference may be especially

apparent, the optimizer may choose different execution plans for an embedded SQL

statement with a bind variable in an Oracle precompiler program and the same SQL

statement with a constant in SQL*Plus.

Example 5: The following query uses two bind variables as boundary values in the

condition with the BETWEEN operator:

SELECT *
 FROM emp
 WHERE empno BETWEEN :low_e AND :high_e;

The optimizer decomposes the BETWEEN condition into these two conditions:

empno >= :low_e
empno <= :high_e

The optimizer heuristically estimates a small selectivity (an internal default value)

for indexed columns in order to favor the use of the index.

Example 6: The following query uses the BETWEEN operator to select all employees

with employee ID numbers between 7500 and 7800:

CBO Parameters

4-28 Oracle8i Designing and Tuning for Performance

SELECT *
 FROM emp
 WHERE empno BETWEEN 7500 AND 7800;

To determine the selectivity of this query, the optimizer decomposes the WHERE
clause condition into these two conditions:

empno >= 7500
empno <= 7800

The optimizer estimates the individual selectivity of each condition using the means

described in a previous example. The optimizer then uses these selectivities (S1 and

S2) and the absolute value function (ABS) in this formula to estimate the selectivity

(S) of the BETWEEN condition:

S = ABS(S1 + S2 - 1)

CBO Parameters
This section contains some, but not all, of the parameters specific to the optimizer.

The following sections may be especially useful when tuning Oracle Applications.

CBO Parameters

The Optimizer 4-29

Parameters Affecting CBO Plans
The following parameters affect cost-based optimizer plans:

In data warehousing applications, you often need to set the following parameters:

OPTIMIZER_FEATURES_ENABLED Enables several optimizer features, depending on

the user-specified value. For example, if

OPTIMIZER_FEATURES_ENABLED=8.1.6, then

ALL_ROWS or FIRST_ROWS is also used for the

recursive SQL generated by PL/SQL procedures.

Prior to release 8.1.6, only CHOOSE or RULE was

used for such recursive SQL.

OPTIMIZER_MODE This initialization parameter sets the mode of the

optimizer at instance startup: RULE (use RBO),

ALL_ROWS (use CBO for throughput), FIRST_
ROWS(use CBO for response time), or CHOOSE(an

optimizer choice based on the presence of

statistics.

Set the OPTIMIZER_MODE parameter of the

ALTER SESSION statement to change the value

dynamically during a session.

OPTIMIZER_PERCENT_PARALLEL Defines the amount of parallelism that the

optimizer uses in its cost functions.

HASH_AREA_SIZE Larger values can lower hash join costs,

permitting Oracle to perform more hash joins.

SORT_AREA_SIZE Larger values can lower sort costs, permitting

Oracle to perform more sort merge joins.

DB_FILE_MULTIBLOCK_READ_COUNTLarger values can lower table scan costs and

make Oracle favor table scans over indexes.

ALWAYS_ANTI_JOIN Sets the type of antijoin that Oracle uses: NESTED_LOOPS,
MERGE, or HASH.

HASH_JOIN_ENABLED Enables or disables the hash join feature. This should always

be set to true for data warehousing applications.

CBO Parameters

4-30 Oracle8i Designing and Tuning for Performance

You rarely need to change the following parameters:

Parameters Affecting How the Optimizer Uses Indexes
The following two parameters address the optimizer’s use of indexes for a wide

range of statements, particularly nested-loop join statements in both OLTP and DSS

applications.

HASH_MULTIBLOCK_IO_COUNTLarger value can lower hash join costs, permitting

Oracle to perform more hash joins.

BITMAP_MERGE_AREA_SIZE The size of the area used to merge the different bitmaps

that match a range predicate. Larger size favors use of

bitmap indexes for range predicates.

See Also: For complete information about each parameter, see

Oracle8i Reference.

OPTIMIZER_INDEX_COST_ADJ Encourages the use of all indexes, regardless of their

selectivity. It also applies to index use in general, rather

than to just modeling index caching for nested loops

join probes.

CBO Parameters

The Optimizer 4-31

Setting Initialization Parameters
To enable the CBO for Oracle Applications, you must set the following parameters:

■ OPTIMIZER_MODE=CHOOSE, FIRST_ROWS, or ALL_ROWS

■ OPTIMIZER_FEATURES_ENABLE=8.1.6

■ COMPATIBLE=8.1.6

You can set the following parameters to enable additional CBO-related features:

■ QUERY_REWRITE_ENABLED=TRUE

■ _COMPLEX_VIEW_MERGING=TRUE

■ _PUSH_JOIN_PREDICATE=TRUE

OPTIMIZER_INDEX_CACHING Use this if the following two conditions exist:

■ Indexes Oracle could use for nested loops join

probes are frequently cached in your environment.

■ The optimizer is not using nested loops joins

aggressively enough.

In such an environment, this parameter has two

advantages over OPTIMIZER_INDEX_COST_ADJ:

First, this parameter favors using selective indexes. If

you use a relatively low value for this parameter, then

the optimizer effectively models the caches of all

non-leaf index blocks. In this case, the optimizer bases

the cost of using this index primarily on the basis of its

selectivity. Thus, by setting this to a low value, you

achieve the desired modeling of the index caching

without over-using possibly undesirable indexes that

have poor selectivity.

Second, the effects of using this parameter are

restricted to modeling the use of cached indexes for

nested loops join probes. Thus, its use has fewer side

effects.

Extensible Optimizer

4-32 Oracle8i Designing and Tuning for Performance

Verifying Initialization Parameters
To verify that the initialization parameters have been set correctly, execute the

following statement against the dictionary’s PARAMETER view:

SQL> SELECT NAME, VALUE
 FROM V$PARAMETER
 WHERE NAME LIKE ’optimizer%’;

This returns the following typical data:

NAME VALUE
------------------------------ ---------------------
optimizer_features_enable 8.1.6
optimizer_mode CHOOSE
optimizer_max_permutations 80000
optimizer_index_cost_adj 100
optimizer_index_caching 0
optimizer_percent_parallel 0
optimizer_search_limit 5

Extensible Optimizer
The extensible optimizer is part of the CBO. It allows the authors of user-defined

functions and domain indexes to control the three main components that the CBO

uses to select an execution plan: statistics, selectivity, and cost evaluation.

The extensible optimizer lets you:

■ Associate cost function and default costs with domain indexes, indextypes,

packages, and stand-alone functions.

■ Associate selectivity function and default selectivity with methods of object

types, package functions, and stand-alone functions.

■ Associate statistics collection functions with domain indexes and columns

of tables.

■ Order predicates with functions based on cost.

■ Select a user-defined access method (domain index) for a table based on

access cost.

■ Use the ANALYZE statement to invoke user-defined statistics collection and

deletion functions.

Extensible Optimizer

The Optimizer 4-33

■ Use new data dictionary views to include information about the statistics

collection, cost, or selectivity functions associated with columns, domain

indexes, indextypes, or functions.

■ Add a hint to preserve the order of evaluation for function predicates.

User-Defined Statistics
You can define statistics collection functions for domain indexes, individual columns

of a table, and user-defined datatypes.

Whenever a domain index is analyzed to gather statistics, Oracle calls the associated

statistics collection function. Whenever a column of a table is analyzed, Oracle

collects the standard statistics for that column and calls any associated statistics

collection function. If a statistics collection function exists for a datatype, then

Oracle calls it for each column that has that datatype in the table being analyzed.

User-Defined Selectivity
The selectivity of a predicate in a SQL statement is used to estimate the cost of a

particular access method; it is also used to determine the optimal join order. The

optimizer cannot compute an accurate selectivity for predicates that contain

user-defined operators, because it does not have any information about these

operators.

You can define selectivity functions for predicates containing user-defined operators,

stand-alone functions, package functions, or type methods. The optimizer calls the

user-defined selectivity function whenever it encounters a predicate that contains

the operator, function, or method in one of the following relations with a constant:

<, <=, =, >=, >, or LIKE .

User-Defined Costs
The optimizer cannot compute an accurate estimate of the cost of a domain index

because it does not know the internal storage structure of the index. Also, the

optimizer may underestimate the cost of a user-defined function that invokes

PL/SQL, uses recursive SQL, accesses a BFILE , or is CPU-intensive.

You can define costs for domain indexes and user-defined stand-alone functions,

package functions, and type methods. These user-defined costs can be in the form

of default costs that the optimizer simply looks up or they can be full-fledged cost

See Also: For details about the extensible optimizer, see Oracle8i
Data Cartridge Developer’s Guide.

Rule-Based Optimizer (RBO)

4-34 Oracle8i Designing and Tuning for Performance

functions that the optimizer calls to compute the cost.

Rule-Based Optimizer (RBO)
Although Oracle supports the rule-based optimizer, you should design new

applications to use the cost-based optimizer. You should also use the CBO for data

warehousing applications, because the CBO supports enhanced features for DSS.

Many new performance features, such as partitioned tables, improved star query

processing, and materialized views, are only available with the CBO.

If OPTIMIZER_MODE=CHOOSE, if statistics do not exist, and if you do not add hints

to your SQL statements, then your statements use the RBO. You can use the RBO to

access both relational data and object types. If OPTIMIZER_MODE=FIRST_ROWS or

ALL_ROWS and no statistics exist, then the CBO uses default statistics. You should

migrate your existing applications to use the cost-based approach.

You can enable the CBO on a trial basis simply by collecting statistics. You can then

return to the RBO by deleting the statistics or by setting either the value of the

OPTIMIZER_MODE initialization parameter or the OPTIMIZER_MODE clause of the

ALTER SESSION statement to RULE. You can also use this value if you want to

collect and examine statistics for your data without using the cost-based approach.

Access Paths for the RBO
Using the RBO, the optimizer chooses an execution plan based on the access paths

available and the ranks of these access paths. Oracle’s ranking of the access paths is

heuristic. If there is more than one way to execute a SQL statement, then the RBO

Note: If you have developed OLTP applications using Oracle

version 6, and if you have tuned your SQL statements carefully

based on the rules of the optimizer, then you may want to continue

using the RBO when you upgrade these applications to a new

Oracle release.

If you are using applications provided by third-party vendors, then

check with the vendors to determine which type of optimizer is

best suited to that application.

See Also: For an explanation of how to gather statistics, see

Chapter 8, "Gathering Statistics".

Rule-Based Optimizer (RBO)

The Optimizer 4-35

always uses the operation with the lower rank. Usually, operations of lower rank

execute faster than those associated with constructs of higher rank.

The access paths and their ranking are listed below:

Path 1: Single Row by Rowid

Path 2: Single Row by Cluster Join

Path 3: Single Row by Hash Cluster Key with Unique or Primary Key

Path 4: Single Row by Unique or Primary Key

Path 5: Clustered Join

Path 6: Hash Cluster Key

Path 7: Indexed Cluster Key

Path 8: Composite Index

Path 9: Single-Column Indexes

Path 10: Bounded Range Search on Indexed Columns

Path 11: Unbounded Range Search on Indexed Columns

Path 12: Sort-Merge Join

Path 13: MAX or MIN of Indexed Column

Path 14: ORDER BY on Indexed Column

Path 15: Full Table Scan

Each of the following sections describes an access path, discusses when it is

available, and shows the output generated for it by the EXPLAIN PLAN statement.

Path 1: Single Row by Rowid
This access path is available only if the statement’s WHERE clause identifies the

selected rows by rowid or with the CURRENT OF CURSOR embedded SQL syntax

supported by the Oracle precompilers. To execute the statement, Oracle accesses the

table by rowid.

Example:

SELECT * FROM emp WHERE ROWID = ’AAAA7bAA5AAAA1UAAA’;

The EXPLAIN PLAN output for this statement might look like this:

Rule-Based Optimizer (RBO)

4-36 Oracle8i Designing and Tuning for Performance

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP

Path 2: Single Row by Cluster Join
This access path is available for statements that join tables stored in the same cluster

if both of the following conditions are true:

■ The statement’s WHERE clause contains conditions that equate each column of

the cluster key in one table with the corresponding column in the other table.

■ The statement’s WHERE clause also contains a condition that guarantees that the

join returns only one row. Such a condition is likely to be an equality condition

on the column(s) of a unique or primary key.

These conditions must be combined with AND operators. To execute the statement,

Oracle performs a nested loops operation.

Example: In the following statement, the emp and dept tables are clustered on the

deptno column, and the empno column is the primary key of the emp table:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND emp.empno = 7900;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS BY ROWID EMP
 INDEX UNIQUE SCAN PK_EMP
 TABLE ACCESS CLUSTER DEPT

Pk_emp is the name of an index that enforces the primary key.

Path 3: Single Row by Hash Cluster Key with Unique or Primary Key
This access path is available if both of the following conditions are true:

See Also: For information on the nested loops operation, see

"Nested Loops (NL) Join" on page 4-50.

Rule-Based Optimizer (RBO)

The Optimizer 4-37

■ The statement’s WHERE clause uses all columns of a hash cluster key in equality

conditions. For composite cluster keys, the equality conditions must be

combined with AND operators.

■ The statement is guaranteed to return only one row, because the columns that

make up the hash cluster key also make up a unique or primary key.

To execute the statement, Oracle applies the cluster’s hash function to the hash

cluster key value specified in the statement to obtain a hash value. Oracle then uses

the hash value to perform a hash scan on the table.

Example: In the following statement, the orders and line_items tables are stored

in a hash cluster, and the orderno column is both the cluster key and the primary

key of the orders table:

SELECT *
 FROM orders
 WHERE orderno = 65118968;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS HASH ORDERS

Path 4: Single Row by Unique or Primary Key
This access path is available if the statement’s WHERE clause uses all columns of a

unique or primary key in equality conditions. For composite keys, the equality

conditions must be combined with AND operators. To execute the statement, Oracle

performs a unique scan on the index on the unique or primary key to retrieve a

single rowid, and then accesses the table by that rowid.

Example: In the following statement, the empno column is the primary key of the

emp table:

SELECT *
 FROM emp
 WHERE empno = 7900;

The EXPLAIN PLAN output for this statement might look like this:

Rule-Based Optimizer (RBO)

4-38 Oracle8i Designing and Tuning for Performance

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX UNIQUE SCAN PK_EMP

Pk_emp is the name of the index that enforces the primary key.

Path 5: Clustered Join
This access path is available for statements that join tables stored in the same cluster

if the statement’s WHERE clause contains conditions that equate each column of the

cluster key in one table with the corresponding column in the other table. For a

composite cluster key, the equality conditions must be combined with AND
operators. To execute the statement, Oracle performs a nested loops operation.

Example: In the following statement, the emp and dept tables are clustered on the

deptno column:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS FULL DEPT
 TABLE ACCESS CLUSTER EMP

Path 6: Hash Cluster Key
This access path is available if the statement’s WHERE clause uses all the columns of

a hash cluster key in equality conditions. For a composite cluster key, the equality

conditions must be combined with AND operators. To execute the statement, Oracle

applies the cluster’s hash function to the hash cluster key value specified in the

statement to obtain a hash value. Oracle then uses this hash value to perform a hash

scan on the table.

See Also: For information on nested loops operations, see

"Nested Loops (NL) Join" on page 4-50.

Rule-Based Optimizer (RBO)

The Optimizer 4-39

Example: In the following statement, the orders and line_items tables are stored

in a hash cluster, and the orderno column is the cluster key:

SELECT *
 FROM line_items
 WHERE orderno = 65118968;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS HASH LINE_ITEMS

Path 7: Indexed Cluster Key
This access path is available if the statement’s WHERE clause uses all the columns of

an indexed cluster key in equality conditions. For a composite cluster key, the

equality conditions must be combined with AND operators.

To execute the statement, Oracle performs a unique scan on the cluster index to

retrieve the rowid of one row with the specified cluster key value. Oracle then uses

that rowid to access the table with a cluster scan. Because all rows with the same

cluster key value are stored together, the cluster scan requires only a single rowid to

find them all.

Example: In the following statement, the emp table is stored in an indexed cluster,

and the deptno column is the cluster key:

SELECT * FROM emp
 WHERE deptno = 10;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS CLUSTER EMP
 INDEX UNIQUE SCAN PERS_INDEX

Pers_index is the name of the cluster index.

Path 8: Composite Index
This access path is available if the statement’s WHERE clause uses all columns of a

composite index in equality conditions combined with AND operators. To execute

Rule-Based Optimizer (RBO)

4-40 Oracle8i Designing and Tuning for Performance

the statement, Oracle performs a range scan on the index to retrieve rowids of the

selected rows, and then accesses the table by those rowids.

Example: In the following statement, there is a composite index on the job and

deptno columns:

SELECT *
 FROM emp
 WHERE job = ’CLERK’
 AND deptno = 30;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN JOB_DEPTNO_INDEX

Job_deptno_index is the name of the composite index on the job and deptno
columns.

Path 9: Single-Column Indexes
This access path is available if the statement’s WHEREclause uses the columns of one

or more single-column indexes in equality conditions. For multiple single-column

indexes, the conditions must be combined with AND operators.

If the WHERE clause uses the column of only one index, then Oracle executes the

statement by performing a range scan on the index to retrieve the rowids of the

selected rows, and then accesses the table by these rowids.

Example 1: In the following statement, there is an index on the job column of the

emp table:

SELECT *
 FROM emp
 WHERE job = ’ANALYST’;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN JOB_INDEX

Rule-Based Optimizer (RBO)

The Optimizer 4-41

Job_index is the index on emp.job .

If the WHERE clauses uses columns of many single-column indexes, then Oracle

executes the statement by performing a range scan on each index to retrieve the

rowids of the rows that satisfy each condition. Oracle then merges the sets of

rowids to obtain a set of rowids of rows that satisfy all conditions. Oracle then

accesses the table using these rowids.

Oracle can merge up to five indexes. If the WHEREclause uses columns of more than

five single-column indexes, then Oracle merges five of them, accesses the table by

rowid, and then tests the resulting rows to determine whether they satisfy the

remaining conditions before returning them.

Example 2: In the following statement, there are indexes on both the job and

deptno columns of the emp table:

SELECT *
 FROM emp
 WHERE job = ’ANALYST’
 AND deptno = 20;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 AND-EQUAL
 INDEX RANGE SCAN JOB_INDEX
 INDEX RANGE SCAN DEPTNO_INDEX

The AND-EQUAL operation merges the rowids obtained by the scans of the job_
index and the deptno_index , resulting in a set of rowids of rows that satisfy the

query.

Path 10: Bounded Range Search on Indexed Columns
This access path is available if the statement’s WHERE clause contains a condition

that uses either the column of a single-column index or one or more columns that

make up a leading portion of a composite index:

column = expr

column >[=] expr AND column <[=] expr

Rule-Based Optimizer (RBO)

4-42 Oracle8i Designing and Tuning for Performance

column BETWEEN expr AND expr

column LIKE ’c%’

Each of these conditions specifies a bounded range of indexed values that are

accessed by the statement. The range is said to be bounded because the conditions

specify both its least value and its greatest value. To execute such a statement,

Oracle performs a range scan on the index, and then accesses the table by rowid.

This access path is not available if the expression expr references the indexed

column.

Example 1: In the following statement, there is an index on the sal column of the

emp table:

SELECT *
 FROM emp
 WHERE sal BETWEEN 2000 AND 3000;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN SAL_INDEX

Sal_index is the name of the index on emp.sal .

Example 2: In the following statement, there is an index on the ename column of the

emp table:

SELECT *
 FROM emp
 WHERE ename LIKE ’S%’;

Path 11: Unbounded Range Search on Indexed Columns
This access path is available if the statement’s WHERE clause contains one of the

following conditions that use either the column of a single-column index or one or

more columns of a leading portion of a composite index:

WHERE column >[=] expr

WHERE column <[=] expr

Rule-Based Optimizer (RBO)

The Optimizer 4-43

Each of these conditions specifies an unbounded range of index values accessed by

the statement. The range is said to be unbounded, because the condition specifies

either its least value or its greatest value, but not both. To execute such a statement,

Oracle performs a range scan on the index, and then accesses the table by rowid.

Example 1: In the following statement, there is an index on the sal column of the

emp table:

SELECT *
 FROM emp
 WHERE sal > 2000;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN SAL_INDEX

Example 2: In the following statement, there is a composite index on the order and

line columns of the line_items table:

SELECT *
 FROM line_items
 WHERE order > 65118968;

The access path is available, because the WHERE clause uses the order column, a

leading portion of the index.

Example 3: This access path is not available in the following statement, in which

there is an index on the order and line columns:

SELECT *
 FROM line_items
 WHERE line < 4;

The access path is not available because the WHERE clause only uses the line
column, which is not a leading portion of the index.

Path 12: Sort-Merge Join
This access path is available for statements that join tables that are not stored

together in a cluster if the statement’s WHEREclause uses columns from each table in

Rule-Based Optimizer (RBO)

4-44 Oracle8i Designing and Tuning for Performance

equality conditions. To execute such a statement, Oracle uses a sort-merge

operation. Oracle can also use a nested loops operation to execute a join statement.

Example: In the following statement, the emp and dept tables are not stored in the

same cluster:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 MERGE JOIN
 SORT JOIN
 TABLE ACCESS FULL EMP
 SORT JOIN
 TABLE ACCESS FULL DEPT

Path 13: MAX or MIN of Indexed Column
This access path is available for a SELECT statement, and all of the following

conditions are true:

■ The query uses the MAX or MIN function to select the maximum or minimum

value of either the column of a single-column index or the leading column of a

composite index. The index cannot be a cluster index. The argument to the MAX
or MIN function can be any expression involving the column, a constant, or the

addition operator (+), the concatenation operation (||), or the CONCATfunction.

■ There are no other expressions in the select list.

■ The statement has no WHERE clause or GROUP BY clause.

To execute the query, Oracle performs a range scan of the index to find the

maximum or minimum indexed value. Because only this value is selected, Oracle

need not access the table after scanning the index.

Example: In the following statement, there is an index on the sal column of the emp
table:

See Also: For information on these operations, see "Optimizing

Join Statements" on page 4-49.

Rule-Based Optimizer (RBO)

The Optimizer 4-45

SELECT MAX(sal) FROM emp;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 AGGREGATE GROUP BY
 INDEX RANGE SCAN SAL_INDEX

Path 14: ORDER BY on Indexed Column
This access path is available for a SELECT statement, and all of the following

conditions are true:

■ The query contains an ORDER BY clause that uses either the column of a

single-column index or a leading portion of a composite index. The index

cannot be a cluster index.

■ There is a PRIMARY KEY or NOT NULL integrity constraint that guarantees that

at least one of the indexed columns listed in the ORDER BY clause contains no

nulls.

■ The NLS_SORT parameter is set to BINARY.

To execute the query, Oracle performs a range scan of the index to retrieve the

rowids of the selected rows in sorted order. Oracle then accesses the table by these

rowids.

Example: In the following statement, there is a primary key on the empno column of

the emp table:

SELECT *
 FROM emp
 ORDER BY empno;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN PK_EMP

Pk_emp is the name of the index that enforces the primary key. The primary key

ensures that the column does not contain nulls.

Rule-Based Optimizer (RBO)

4-46 Oracle8i Designing and Tuning for Performance

Path 15: Full Table Scan
This access path is available for any SQL statement, regardless of its WHERE clause

conditions, except when its FROM clause contains SAMPLE or SAMPLE BLOCK.

Note that the full table scan is the lowest ranked access path on the list. This means

that the RBO always chooses an access path that uses an index if one is available,

even if a full table scan might execute faster.

The following conditions make index access paths unavailable:

■ column1 > column2

■ column1 < column2

■ column1 >= column2

■ column1 <= column2

where column1 and column2 are in the same table.

■ column IS NULL

■ column IS NOT NULL

■ column NOT IN

■ column != expr

■ column LIKE ’%pattern’

regardless of whether column is indexed.

■ expr = expr2

where expr is an expression that operates on a column with an operator or function,

regardless of whether the column is indexed.

■ NOT EXISTS subquery

■ ROWNUM pseudocolumn in a view

■ Any condition involving a column that is not indexed

Any SQL statement that contains only these constructs and no others that make

index access paths available must use full table scans.

Example: The following statement uses a full table scan to access the emp table:

SELECT *
 FROM emp;

Overview of Optimizer Operations

The Optimizer 4-47

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS FULL EMP

Overview of Optimizer Operations
This section describes the types of SQL statements that can be optimized and

summarizes the operations performed by the optimizer.

Types of SQL Statements
Oracle optimizes the following types of SQL statements:

Simple statement An INSERT, UPDATE, DELETE, or SELECT statement that

involves only a single table.

Simple query Another name for a SELECT statement.

Join A query that selects data from more than one table. A join is

characterized by multiple tables in the FROM clause. Oracle

pairs the rows from these tables using the condition specified

in the WHERE clause and returns the resulting rows. This

condition is called the join condition and usually compares

columns of all the joined tables.

Equijoin A join condition containing an equality operator.

Non-equijoin A join condition containing something other than an equality

operator.

Outer join A join condition using the outer join operator (+) with one or

more columns of one of the tables. Oracle returns all rows that

meet the join condition. Oracle also returns all rows from the

table without the outer join operator for which there are no

matching rows in the table with the outer join operator.

Overview of Optimizer Operations

4-48 Oracle8i Designing and Tuning for Performance

Optimizer Operations
For any SQL statement processed by Oracle, the optimizer does the following:

Cartesian product A join with no join condition results in a Cartesian product, or

a cross product. A Cartesian product is the set of all possible

combinations of rows drawn one from each table. In other

words, for a join of two tables, each row in one table is

matched in turn with every row in the other. A Cartesian

product for more than two tables is the result of pairing each

row of one table with every row of the Cartesian product of

the remaining tables.

All other kinds of joins are subsets of Cartesian products

effectively created by deriving the Cartesian product and then

excluding rows that fail the join condition.

Complex

statement

An INSERT, UPDATE, DELETE, or SELECT statement that

contains a subquery, which is a form of the SELECT statement

within another statement that produces a set of values for

further processing within the statement. The outer portion of

the complex statement that contains a subquery is called the

parent statement.

Compound query A query that uses set operators (UNION, UNION ALL,
INTERSECT, or MINUS) to combine two or more simple or

complex statements. Each simple or complex statement in a

compound query is called a component query.

Statement

accessing views

Simple, join, complex, or compound statement that accesses

one or more views as well as tables.

Distributed

statement

A statement that accesses data on two or more distinct nodes

of a distributed database. A remote statement accesses data on

one remote node of a distributed database.

1 Evaluation of

expressions and

conditions

The optimizer first evaluates expressions and conditions

containing constants as fully as possible. (See "Evaluation of

Expressions and Conditions" on page 4-65.)

2 Statement

transformation

For complex statements involving, for example, correlated

subqueries, the optimizer may transform the original

statement into an equivalent join statement. (See

"Transforming and Optimizing Statements" on page 4-71.)

Optimizing Joins

The Optimizer 4-49

Optimizing Joins
This section discusses how the Oracle optimizer executes SQL statements that

contain joins, anti-joins, and semi-joins. It also describes how the optimizer can use

bitmap indexes to execute star queries, which join a fact table to multiple dimension

tables.

Optimizing Join Statements
To choose an execution plan for a join statement, the optimizer must make these

interrelated decisions:

3 View merging For SQL statements that access a view, the optimizer often

merges the query in the statement with that in the view, and

then optimizes the result. (See "Optimizing Statements That

Access Views" on page 4-76.)

4 Choice of

optimizer

approaches

The optimizer chooses either a cost-based or rule-based

approach and determines the goal of optimization. (See

"Optimizing Joins" on page 4-49.)

5 Choice of access

paths

For each table accessed by the statement, the optimizer

chooses one or more of the available access paths to obtain

the table’s data. (See "Access Paths for the CBO" on

page 4-20.)

6 Choice of join

orders

For a join statement that joins more than two tables, the

optimizer chooses which pair of tables is joined first, and

then which table is joined to the result, and so on.

7 Choice of join

operations

For any join statement, the optimizer chooses an operation to

use to perform the join.

Access Paths As for simple statements, the optimizer must choose an access

path to retrieve data from each table in the join statement. (see

"Access Paths for the RBO" on page 4-34 and "Access Paths for

the CBO" on page 4-20.)

Optimizing Joins

4-50 Oracle8i Designing and Tuning for Performance

Join Operations

Nested Loops (NL) Join
To perform a nested loops join, Oracle performs the following steps:

1. The optimizer chooses one of the tables as the outer table, or the driving table. The

other table is called the inner table.

2. For each row in the outer table, Oracle finds all rows in the inner table that

satisfy the join condition.

3. Oracle combines the data in each pair of rows that satisfy the join condition and

returns the resulting rows.

For example, consider table A and B. Each row of B is joined back to A.

For rows 1, 2, 3,n-1, n in B, each row in B is joined to each row in A

For rows 1, 2, 3, n-1, n in A

Total selectivity = selectivity (A) * selectivity (B)

Figure 4–4 shows the execution plan for the following statement using a nested

loops join:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

Join Operations To join each pair of row sources, Oracle must perform one of

these operations:

■ Nested Loops (NL) Join

■ Sort-Merge Join

■ Hash Join (not available with the RBO)

■ Cluster Join

Join Order To execute a statement that joins more than two tables, Oracle

joins two of the tables, and then joins the resulting row source

to the next table. This process is continued until all tables are

joined into the result.

Optimizing Joins

The Optimizer 4-51

Figure 4–4 Nested Loops Join

To execute this statement, Oracle performs the following steps:

■ Step 2 accesses the outer table (emp) with a full table scan.

■ For each row returned by step 2, step 4 uses the emp.deptno value to perform a

unique scan on the pk_dept index.

■ Step 3 uses the rowid from step 4 to locate the matching row in the inner table

(dept).

■ Oracle combines each row returned by step 2 with the matching row returned

by step 4 and returns the result.

Sort-Merge Join
Oracle can only perform a sort-merge join for an equijoin. To perform a sort-merge

join, Oracle performs the following steps:

TABLE ACCESS
(FULL)

emp

2 3

TABLE ACCESS
(BY ROWID)

dept

4

INDEX
(UNIQUE SCAN)

pk_dept

1

NESTED LOOPS

Optimizing Joins

4-52 Oracle8i Designing and Tuning for Performance

1. Oracle sorts each row source to be joined if they have not been sorted already

by a previous operation. The rows are sorted on the values of the columns used

in the join condition.

2. Oracle merges the two sources so that each pair of rows, one from each source,

that contain matching values for the columns used in the join condition are

combined and returned as the resulting row source.

Figure 4–5 shows the execution plan for this statement using a sort-merge join:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

Figure 4–5 Sort-Merge Join

To execute this statement, Oracle performs the following steps:

■ Steps 3 and 5 perform full table scans of the emp and dept tables.

3

TABLE ACCESS
(FULL)

dept

SORT
(JOIN)

2 4

SORT
(JOIN)

5

TABLE ACCESS
(FULL)

emp

1

MERGE JOIN

Optimizing Joins

The Optimizer 4-53

■ Steps 2 and 4 sort each row source separately.

■ Step 1 merges the sources from steps 2 and 4 together, combining each row

from step 2 with each matching row from step 4, and returns the resulting row

source.

Example 2 All relevant table A rows are fetched, sorted, and placed in a sort area.

The resulting data is:

Table A
1
5
8
11

All relevant table B rows are fetched, sorted, and placed in a sort area. The resulting

data is:

Table B
2
4
5
7

A merge is then performed using a merge join algorithm to produce the resulting

data:

Merged Data from A and B
1
2
4
5
7
8
11

Hash Join
Oracle can only perform a hash join for an equijoin. Hash join is not available with

the RBO. You must enable hash join optimization, using the initialization parameter

HASH_JOIN_ENABLED (which can be set with the ALTER SESSIONstatement) or

the USE_HASH hint.

To perform a hash join, Oracle performs the following steps:

Optimizing Joins

4-54 Oracle8i Designing and Tuning for Performance

1. Oracle performs a full table scan on each of the tables and splits each into as

many partitions as possible based on the available memory.

2. Oracle builds a hash table from one of the partitions (if possible, Oracle selects a

partition that fits into available memory). Oracle then uses the corresponding

partition in the other table to probe the hash table. All partition pairs that do

not fit into memory are placed onto disk.

3. For each pair of partitions (one from each table), Oracle uses the smaller one to

build a hash table and the larger one to probe the hash table.

Figure 4–6 shows the execution plan for this statement using a hash join:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

Figure 4–6 Hash Join

To execute this statement, Oracle performs the following steps:

■ Steps 2 and 3 perform full table scans of the emp and dept tables.

■ Step 1 builds a hash table out of the rows coming from step 2 and probes it with

each row coming from step 3.

The initialization parameter HASH_AREA_SIZE controls the amount of memory

used for hash join operations and the initialization parameter HASH_MULTIBLOCK_

TABLE ACCESS
(FULL)

dept

2 3

TABLE ACCESS
(FULL)

emp

1

HASH JOIN

Optimizing Joins

The Optimizer 4-55

IO_COUNT controls the number of blocks a hash join operation should read and

write concurrently.

Example 2 Consider a hash join of table A and B, where table B is the inner table. If

the column value of NUM_DISTINCT data from the DBA_TAB_COLUMN dictionary

table is small, then this implies that most of the rows have the same column value.

For example, the table emp has a gender column with two distinct values: male

and female. It is assumed that queries on the gender column have a selectivity of

one divided by two, or 50%. This means that half of the table rows are fetched. In

this particular case, a hash join is most efficient.

Cluster Join
Oracle can perform a cluster join only for an equijoin that equates the cluster key

columns of two tables in the same cluster. In a cluster, rows from both tables with

the same cluster key values are stored in the same blocks, so Oracle only accesses

those blocks.

Figure 4–7 shows the execution plan for this statement in which the emp and dept
tables are stored together in the same cluster:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

See Also: For more information about the USE_HASH hint, see

Chapter 7, "Using Optimizer Hints".

See Also: For more information, see "Verifying Column Statistics"

in Chapter 8, "Gathering Statistics".

Note: The optimizer can use either a full compute (e.g., full table

scan) or it can estimate by using a sample of the data. The problem

with estimation based on data sampling is that the sample rows

selected from data blocks could all be skewed. If there are 8 million

rows in the table, then the optimizer may only consider a random

subset and generate statistics based on that subset.

Optimizing Joins

4-56 Oracle8i Designing and Tuning for Performance

Figure 4–7 Cluster Join

To execute this statement, Oracle performs the following steps:

■ Step 2 accesses the outer table (dept) with a full table scan.

■ For each row returned by step 2, step 3 uses the dept .deptno value to find the

matching rows in the inner table (emp) with a cluster scan.

A cluster join is nothing more than a nested loops join involving two tables that are

stored together in a cluster. Because each row from the dept table is stored in the

same data blocks as the matching rows in the emp table, Oracle can access matching

rows most efficiently.

How the Optimizer Chooses the Join Method
The optimizer costs each join method and chooses the method with the least cost. If

a join returns many rows, then the optimizer considers the following three factors:

■ A nested loops join (NL) is inefficient when a join returns a large number of

rows [typically, more than 10,000 rows is considered large], and the optimizer

may choose not to use it.

The cost of a nested loops join = access cost of A + (access cost of B * number of

rows from A)

■ If you are using the RBO, then a merge join is the most efficient join when a join

returns a large number or rows.

TABLE ACCESS
(FULL)

dept

2 3

TABLE ACCESS
(CLUSTER)

emp

1

NESTED LOOPS

Optimizing Joins

The Optimizer 4-57

The cost of a merge join = access cost of A + access cost of B + (sort cost of A +

sort cost of B)

An exception is when the data is pre-sorted. In the pre-sorted case, merge join

costs = access cost of A + access cost of B where (sort cost of A + sort cost of B)

= 0.

■ If you are using the CBO, then a hash join is the most efficient join when a join

returns a large number or rows.

Estimated costs to perform a hash join = (access cost of A * number of hash

partitions of B) + access cost of B

Forcing the Join Order
The following example illustrates the use of the ORDERED hint, which specifies the

join order that the optimizer should use when joining tables. The ORDERED hint

causes the join order to proceed in the order that the tables are listed in the FROM
clause. In this example, the optimizer will start with the table jl_br_journals
first, followed by jl_br_balances , followed by gl_code_combinations , etc.

When using the ORDERED hint, it is important that the tables in the FROM clause are

listed in the correct order, so as to prevent Cartesian joins.

SELECT /*+ ORDERED */
 glcc.segment1||' '||glcc.segment2||' '||glcc.segment3||' '
 ||glcc.segment4||' ' ||glcc.segment5 account,
 glcc.code_combination_id ccid, REPLACE(SUBSTR(glf.description,1,40),'.',' '),
 b.application_id, b.set_of_books_id, b.personnel_id, p.vendor_id
FROM jl_br_journals j,
 jl_br_balances b,
 gl_code_combinations glcc,
 fnd_flex_values_vl glf,
 gl_periods gp,
 gl_sets_of_books gsb,
 po_vendors p
WHERE j.application_id = b.application_id(+) AND
 j.set_of_books_id = b.set_of_books_id(+) AND
j.code_combination_id = b.code_combination_id(+) AND
 j.personnel_id = b.personnel_id(+) AND j.period_name = b.period_name(+) AND
 j.code_combination_id= glcc.code_combination_id AND j.period_name = gp.period_name AND
 j.set_of_books_id = gsb.set_of_books_id AND gp.period_set_name = gsb.period_set_name AND
 glcc.segment1 || '' = '01' AND glf.flex_value_set_id||'' = :c_account_vs AND
 glcc.segment3 = glf.flex_value AND gp.start_date = add_months('01-SEP-98',-1) AND
 gp.period_set_name = gsb.period_set_name AND j.application_id = 200 AND
 j.set_of_books_id = 225 AND j.personnel_id = p.vendor_id
GROUP BY glcc.segment1||' '||glcc.segment2||' '||glcc.segment3||
 ' '||glcc.segment4||' '||glcc.segment5,

Optimizing Joins

4-58 Oracle8i Designing and Tuning for Performance

 glcc.code_combination_id, REPLACE(SUBSTR(glf.description,1,40),'.',' '),
 b.application_id, b.set_of_books_id, b.personnel_id, p.vendor_id

Cost=13 SELECT STATEMENT
Cost=13 SORT GROUP BY
Cost=11 NESTED LOOPS
Cost=10 NESTED LOOPS
Cost=9 NESTED LOOPS
Cost=7 NESTED LOOPS
Cost=6 NESTED LOOPS
Cost=3 NESTED LOOPS
Cost=2 NESTED LOOPS OUTER
Cost=1 TABLE ACCESS BY INDEX ROWID JL_BR_JOURNALS_ALL
Cost=2 INDEX RANGE SCAN JL_BR_JOURNALS_U1:
Cost=1 TABLE ACCESS FULL JL_BR_BALANCES_ALL
Cost=1 TABLE ACCESS BY INDEX ROWID GL_CODE_COMBINATIONS
Cost= INDEX UNIQUE SCAN GL_CODE_COMBINATIONS_U1:
Cost=3 TABLE ACCESS BY INDEX ROWID FND_FLEX_VALUES
Cost=2 INDEX RANGE SCAN FND_FLEX_VALUES_N1:
Cost=1 TABLE ACCESS BY INDEX ROWID FND_FLEX_VALUES_TL
Cost= INDEX UNIQUE SCAN FND_FLEX_VALUES_TL_U1:
Cost=2 TABLE ACCESS BY INDEX ROWID GL_PERIODS
Cost=1 INDEX RANGE SCAN GL_PERIODS_N1:
Cost=1 TABLE ACCESS BY INDEX ROWID GL_SETS_OF_BOOKS
Cost= INDEX UNIQUE SCAN GL_SETS_OF_BOOKS_U2:
Cost=1 TABLE ACCESS BY INDEX ROWID PO_VENDORS
Cost= INDEX UNIQUE SCAN PO_VENDORS_U1:

Choosing Execution Plans for Join Statements
This section describes how the optimizer chooses an execution plan for a join

statement:

■ Choosing Execution Plans for Joins with the CBO

■ Choosing Execution Plans for Joins with the RBO

The following considerations apply to both the cost-based and rule-based

approaches:

■ The optimizer first determines whether joining two or more of the tables

definitely results in a row source containing at most one row. The optimizer

recognizes such situations based on UNIQUE and PRIMARY KEY constraints on

the tables. If such a situation exists, then the optimizer places these tables first

in the join order. The optimizer then optimizes the join of the remaining set of

tables.

Optimizing Joins

The Optimizer 4-59

■ For join statements with outer join conditions, the table with the outer join

operator must come after the other table in the condition in the join order. The

optimizer does not consider join orders that violate this rule.

Choosing Execution Plans for Joins with the CBO
With the CBO, the optimizer generates a set of execution plans based on the

possible join orders, join operations, and available access paths. The optimizer then

estimates the cost of each plan and chooses the one with the lowest cost. The

optimizer estimates costs in these ways:

■ The cost of a nested loops operation is based on the cost of reading each

selected row of the outer table and each of its matching rows of the inner table

into memory. The optimizer estimates these costs using the statistics in the data

dictionary.

■ The cost of a sort-merge join is based largely on the cost of reading all the

sources into memory and sorting them.

■ The optimizer also considers other factors when determining the cost of each

operation. For example:

– A smaller sort area size is likely to increase the cost for a sort-merge join

because sorting takes more CPU time and I/O in a smaller sort area. Sort

area size is specified by the initialization parameter SORT_AREA_SIZE.

– A larger multiblock read count is likely to decrease the cost for a sort-merge

join in relation to a nested loops join. If a large number of sequential blocks

can be read from disk in a single I/O, then an index on the inner table for

the nested loops join is less likely to improve performance over a full table

scan. The multiblock read count is specified by the initialization parameter

DB_FILE_MULTIBLOCK_READ_COUNT.

– For join statements with outer join conditions, the table with the outer join

operator must come after the other table in the condition in the join order.

The optimizer does not consider join orders that violate this rule.

With the CBO, the optimizer’s choice of join orders can be overridden with the

ORDERED hint. If the ORDERED hint specifies a join order that violates the rule for

outer join, then the optimizer ignores the hint and chooses the order. You can also

override the optimizer’s choice of join operations with hints.

See Also: For more information on using hints, see Chapter 7,

"Using Optimizer Hints".

Optimizing Joins

4-60 Oracle8i Designing and Tuning for Performance

Choosing Execution Plans for Joins with the RBO
With the rule-based approach, the optimizer performs the following steps to choose

an execution plan for a statement that joins R tables:

1. The optimizer generates a set of R join orders, each with a different table as the

first table. The optimizer generates each potential join order using this

algorithm:

a. To fill each position in the join order, the optimizer chooses the table with

the most highly ranked available access path according to the ranks for

access paths described in Chapter 4, "The Optimizer". The optimizer repeats

this step to fill each subsequent position in the join order.

b. For each table in the join order, the optimizer also chooses the operation

with which to join the table to the previous table or row source in the order.

The optimizer does this by "ranking" the sort-merge operation as access

path 12 and applying these rules:

– If the access path for the chosen table is ranked 11 or better, then the

optimizer chooses a nested loops operation using the previous table or row

source in the join order as the outer table.

– If the access path for the table is ranked lower than 12, and if there is an

equijoin condition between the chosen table and the previous table or row

source in join order, then the optimizer chooses a sort-merge operation.

– If the access path for the chosen table is ranked lower than 12, and if there is

not an equijoin condition, then the optimizer chooses a nested loops

operation with the previous table or row source in the join order as the

outer table.

2. The optimizer then chooses among the resulting set of execution plans. The goal

of the optimizer’s choice is to maximize the number of nested loops join

operations in which the inner table is accessed using an index scan. Because a

nested loops join involves accessing the inner table many times, an index on the

inner table can greatly improve the performance of a nested loops join.

Usually, the optimizer does not consider the order in which tables appear in the

FROM clause when choosing an execution plan. The optimizer makes this choice

by applying the following rules in order:

a. The optimizer chooses the execution plan with the fewest nested-loops

operations in which the inner table is accessed with a full table scan.

b. If there is a tie, then the optimizer chooses the execution plan with the

fewest sort-merge operations.

Optimizing Joins

The Optimizer 4-61

c. If there is still a tie, then the optimizer chooses the execution plan for which

the first table in the join order has the most highly ranked access path:

– If there is a tie among multiple plans whose first tables are accessed by the

single-column indexes access path, then the optimizer chooses the plan

whose first table is accessed with the most merged indexes.

– If there is a tie among multiple plans whose first tables are accessed by

bounded range scans, then the optimizer chooses the plan whose first table

is accessed with the greatest number of leading columns of the composite

index.

d. If there is still a tie, then the optimizer chooses the execution plan for which

the first table appears later in the query’s FROM clause.

Optimizing Anti-Joins and Semi-Joins
An anti-join returns rows from the left side of the predicate for which there is no

corresponding row on the right side of the predicate. That is, it returns rows that

fail to match (NOT IN) the subquery on the right side. For example, an anti-join can

select a list of employees who are not in a particular set of departments:

SELECT * FROM emp
 WHERE deptno NOT IN
 (SELECT deptno FROM dept
 WHERE loc = ’HEADQUARTERS’);

The optimizer uses a nested loops algorithm for NOT IN subqueries by default,

unless the initialization parameter ALWAYS_ANTI_JOIN is set to MERGE or HASH
and various required conditions are met that allow the transformation of the NOT
IN subquery into a sort-merge or hash anti-join. You can place a MERGE_AJ or

HASH_AJ hint in the NOT IN subquery to specify which algorithm the optimizer

should use.

A semi-join returns rows that match an EXISTS subquery, without duplicating rows

from the left side of the predicate when multiple rows on the right side satisfy the

criteria of the subquery. For example:

Optimizing Joins

4-62 Oracle8i Designing and Tuning for Performance

SELECT * FROM dept
 WHERE EXISTS
 (SELECT * FROM emp
 WHERE dept.ename = emp.ename
 AND emp.bonus > 5000);

In this query, only one row needs to be returned from dept even though many

rows in emp might match the subquery. If there is no index on the bonus column in

emp, then a semi-join can be used to improve query performance.

The optimizer uses a nested loops algorithm for EXISTS subqueries by default,

unless the initialization parameter ALWAYS_SEMI_JOIN is set to MERGE or HASH
and various required conditions are met. You can place a MERGE_SJ or HASH_SJ
hint in the EXISTS subquery to specify which algorithm the optimizer should use.

Optimizing Star Queries
One type of data warehouse design centers around what is known as a star schema,

which is characterized by one or more very large fact tables that contain the primary

information in the data warehouse and a number of much smaller dimension tables

(or lookup tables), each of which contains information about the entries for a

particular attribute in the fact table.

A star query is a join between a fact table and a number of lookup tables. Each

lookup table is joined to the fact table using a primary-key to foreign-key join, but

the lookup tables are not joined to each other.

The CBO recognizes star queries and generates efficient execution plans for them.

(Star queries are not recognized by the RBO.)

A typical fact table contains keys and measures. For example, a simple fact table

might contain the measure Sales, and keys Time, Product, and Market. In this case

there would be corresponding dimension tables for Time, Product, and Market. The

Product dimension table, for example, would typically contain information about

each product number that appears in the fact table.

A star join is a primary-key to foreign-key join of the dimension tables to a fact table.

The fact table normally has a concatenated index on the key columns to facilitate

this type of join or a separate bitmap index on each key column.

See Also: For information about optimizer hints, see Chapter 7,

"Using Optimizer Hints".

See Also: For more information about tuning star queries, see

Oracle8i Data Warehousing Guide.

Optimizing Statements that Use Common Subexpressions

The Optimizer 4-63

Optimizing Statements that Use Common Subexpressions
Common subexpression elimination is an optimization heuristic that identifies,

removes, and collects common subexpression from disjunctive (i.e., OR) branches of

a query. In most cases, it results in the reduction of the number of joins that would

be performed.

Common subexpression elimination is enabled with initialization parameter

OPTIMIZER_FEATURES_ENABLE or by setting the _ELIMINATE_COMMON_
SUBEXPR parameter to TRUE.

A query is considered valid for common sub-expression elimination if its WHERE
clause is in following form:

1. The top-level must be a disjunction; that is, a list of ORed logs.

2. Each disjunct must be either a simple predicate or a conjunction; that is, a list of

ANDed logs.

3. Each conjunct must be either a simple predicate or a disjunction of simple

predicates. (A predicate is considered simple if it does not contain AND or OR.)

4. An expression is considered common if it appears in all the disjunctive

branches of the query.

Examples of Common Subexpression Elimination
The following query finds names of employees who work in a department located

in L.A. and who make more than 40K or who are accountants.

SELECT emp.ename
FROM emp E, dept D
WHERE (D.deptno = E.deptno AND E.position = 'Accountant' AND D.location ='L.A.')

OR
E.deptno = D.deptno AND E.sal > 40000 AND D.location = 'L.A.');

The following query contains common subexpressions in its two disjunctive

branches. The elimination of the common subexpressions transforms this query into

the following query, thereby reducing the number of joins from two to one.

SELECT emp.ename FROM emp E, dept D
WHERE (D.deptno = E.deptno AND D.location = 'L.A.')

AND (E.position = 'Accountant' OR E.sal > 40000);

The following query contains common subexpression in its three disjunctive

branches:

Optimizing Statements that Use Common Subexpressions

4-64 Oracle8i Designing and Tuning for Performance

SELECT SUM (l_extendedprice* (1 - l_discount))
FROM PARTS, LINEITEM
WHERE (p_partkey = l_partkey

AND p_brand = 'Brand#12'
AND p_container IN ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')
AND l_quantity >= 1 AND l_quantity <= 1 + 10
AND p_size >= 1 AND p_size <= 5
AND l_shipmode IN ('AIR', 'REG AIR')
AND l_shipinstruct = 'DELIVER IN PERSON')

OR (l_partkey = p_partkey)
AND p_brand = 'Brand#23'
AND p_container IN ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')
AND l_quantity >= 10 AND l_quantity <= 10 + 10
AND p_size >= 1 AND p_size <= 10 AND p_size BETWEEN 1 AND 10
AND l_shipmode IN ('AIR', 'REG AIR')
AND l_shipinstruct = 'DELIVER IN PERSON')

OR (p_partkey = l_partkey
AND p_brand = 'Brand#34'
AND p_container IN ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')
AND l_quantity >= 20 AND l_quantity <= 20 + 10
AND p_size >= 1 AND p_size <= 15
AND l_shipmode IN ('AIR', 'REG AIR')
AND l_shipinstruct = 'DELIVER IN PERSON');

The above query is transformed by common subexpression elimination as the

following, thereby reducing the number joins from three down to one.

SELECT SUM (l_extendedprice* (1 - l_discount))
FROM PARTS, LINEITEM
WHERE (p_partkey = l_partkey /* these are the four common subexpressions */

AND p_size >= 1
AND l_shipmode IN ('AIR', 'REG AIR')
AND l_shipinstruct = 'DELIVER IN PERSON')
AND

((p_brand = 'Brand#12'
AND p_container IN ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')
AND l_quantity >= 1 AND l_quantity <= 1 + 10
AND p_size <= 5)

OR (p_brand = 'Brand#23'
AND p_container IN ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')
AND l_quantity >= 10 AND l_quantity <= 10 + 10
AND p_size <= 10)

OR (p_brand = 'Brand#34'
AND p_container IN ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')
AND l_quantity >= 20 AND l_quantity <= 20 + 10

Evaluation of Expressions and Conditions

The Optimizer 4-65

AND p_size <= 15));

Evaluation of Expressions and Conditions
The optimizer fully evaluates expressions whenever possible and translates certain

syntactic constructs into equivalent constructs. The reason for this is either that

Oracle can more quickly evaluate the resulting expression than the original

expression, or that the original expression is merely a syntactic equivalent of the

resulting expression. Different SQL constructs can sometimes operate identically

(for example, = ANY (subquery) and IN (subquery)); Oracle maps these to a single

construct.

This section discusses how the optimizer evaluates expressions and conditions that

contain the following:

■ Constants

■ LIKE Operator

■ IN Operator

■ ANY or SOME Operator

■ ALL Operator

■ BETWEEN Operator

■ NOT Operator

■ Transitivity

■ DETERMINISTIC Functions

Constants
Computation of constants is performed only once, when the statement is optimized,

rather than each time the statement is executed.

For example, the following conditions test for monthly salaries greater than 2000:

sal > 24000/12

sal > 2000

sal*12 > 24000

Evaluation of Expressions and Conditions

4-66 Oracle8i Designing and Tuning for Performance

If a SQL statement contains the first condition, then the optimizer simplifies it into

the second condition.

LIKE Operator
The optimizer simplifies conditions that use the LIKE comparison operator to

compare an expression with no wildcard characters into an equivalent condition

that uses an equality operator instead. For example, the optimizer simplifies the

first condition below into the second:

ename LIKE ’SMITH’

ename = ’SMITH’

The optimizer can simplify these expressions only when the comparison involves

variable-length datatypes. For example, if ename was of type CHAR(10), then the

optimizer cannot transform the LIKE operation into an equality operation due to

the equality operator following blank-padded semantics and LIKE not following

blank-padded semantics.

IN Operator
The optimizer expands a condition that uses the IN comparison operator to an

equivalent condition that uses equality comparison operators and OR logical

operators. For example, the optimizer expands the first condition below into the

second:

ename IN (’SMITH’, ’KING’, ’JONES’)

ename = ’SMITH’ OR ename = ’KING’ OR ename = ’JONES’

Note: The optimizer does not simplify expressions across

comparison operators: in the examples above, the optimizer does

not simplify the third expression into the second. For this reason,

application developers should write conditions that compare

columns with constants whenever possible, rather than conditions

with expressions involving columns.

See Also: For more information, see "Example 2: IN Subquery" on

page 4-79.

Evaluation of Expressions and Conditions

The Optimizer 4-67

ANY or SOME Operator
The optimizer expands a condition that uses the ANY or SOME comparison operator

followed by a parenthesized list of values into an equivalent condition that uses

equality comparison operators and ORlogical operators. For example, the optimizer

expands the first condition below into the second:

sal > ANY (:first_sal, :second_sal)

sal > :first_sal OR sal > :second_sal

The optimizer transforms a condition that uses the ANY or SOME operator followed

by a subquery into a condition containing the EXISTS operator and a correlated

subquery. For example, the optimizer transforms the first condition below into the

second:

x > ANY (SELECT sal
 FROM emp
 WHERE job = ’ANALYST’)

EXISTS (SELECT sal
 FROM emp
 WHERE job = ’ANALYST’
 AND x > sal)

ALL Operator
The optimizer expands a condition that uses the ALL comparison operator followed

by a parenthesized list of values into an equivalent condition that uses equality

comparison operators and AND logical operators. For example, the optimizer

expands the first condition below into the second:

sal > ALL (:first_sal, :second_sal)

sal > :first_sal AND sal > :second_sal

The optimizer transforms a condition that uses the ALL comparison operator

followed by a subquery into an equivalent condition that uses the ANY comparison

operator and a complementary comparison operator. For example, the optimizer

transforms the first condition below into the second:

x > ALL (SELECT sal
 FROM emp
 WHERE deptno = 10)

Evaluation of Expressions and Conditions

4-68 Oracle8i Designing and Tuning for Performance

NOT (x <= ANY (SELECT sal
 FROM emp
 WHERE deptno = 10))

The optimizer then transforms the second query into the following query using the

rule for transforming conditions with the ANY comparison operator followed by a

correlated subquery:

NOT EXISTS (SELECT sal
 FROM emp
 WHERE deptno = 10
 AND x <= sal)

BETWEEN Operator
The optimizer always replaces a condition that uses the BETWEEN comparison

operator with an equivalent condition that uses the >= and <= comparison

operators. For example, the optimizer replaces the first condition below with the

second:

sal BETWEEN 2000 AND 3000

sal >= 2000 AND sal <= 3000

NOT Operator
The optimizer simplifies a condition to eliminate the NOT logical operator. The

simplification involves removing the NOT logical operator and replacing a

comparison operator with its opposite comparison operator. For example, the

optimizer simplifies the first condition below into the second one:

NOT deptno = (SELECT deptno FROM emp WHERE ename = ’TAYLOR’)

deptno <> (SELECT deptno FROM emp WHERE ename = ’TAYLOR’)

Often, a condition containing the NOTlogical operator can be written many different

ways. The optimizer attempts to transform such a condition so that the

subconditions negated by NOTs are as simple as possible, even if the resulting

condition contains more NOTs. For example, the optimizer simplifies the first

condition below into the second, and then into the third.

NOT (sal < 1000 OR comm IS NULL)
NOT sal < 1000 AND comm IS NOT NULL
sal >= 1000 AND comm IS NOT NULL

Evaluation of Expressions and Conditions

The Optimizer 4-69

Transitivity
If two conditions in the WHERE clause involve a common column, then the

optimizer can sometimes infer a third condition using the transitivity principle. The

optimizer can then use the inferred condition to optimize the statement. The

inferred condition could potentially make available an index access path that was

not made available by the original conditions.

Imagine a WHERE clause containing two conditions of these forms:

WHERE column1 comp_oper constant
 AND column1 = column2

In this case, the optimizer infers the condition:

column2 comp_oper constant

where:

Example: In the following query, the WHERE clause contains two conditions, each of

which uses the emp.deptno column:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = 20
 AND emp.deptno = dept.deptno;

Using transitivity, the optimizer infers this condition:

dept.deptno = 20

If an index exists on the dept .deptno column, then this condition makes available

access paths using that index.

Note: Transitivity is used only by the CBO.

comp_oper Any of the comparison operators =, !=, ^=, <, <>, >, <=, or >=.

constant Any constant expression involving operators, SQL functions,

literals, bind variables, and correlation variables.

Evaluation of Expressions and Conditions

4-70 Oracle8i Designing and Tuning for Performance

DETERMINISTIC Functions
In some cases, the optimizer can use a previously calculated value, rather than

executing a user-written function. This is only safe for functions that behave in a

restricted manner. The function must always return the same output return value

for any given set of input argument values.

The function's result must not differ because of differences in the content of package

variables or the database, or session parameters such as the NLS parameters.

Furthermore, if the function is redefined in the future, then its output return value

must still be the same as that calculated with the prior definition for any given set of

input argument values. Finally, there must be no meaningful side-effects such that

using a precalculated value instead of executing the function again would alter the

application.

The creator of a function can promise to the Oracle server that the function behaves

according to these restrictions by using the keyword DETERMINISTIC when

declaring the function with a CREATE FUNCTION statement or in a CREATE
PACKAGE or CREATE TYPE statement. The server does not attempt to verify this

declaration—even a function that obviously manipulates the database or package

variables can be declared DETERMINISTIC. It is the programmer's responsibility to

use this keyword only when appropriate.

Calls to a DETERMINISTIC function may be replaced by the use of an already

calculated value when the function is called multiple times within the same query,

or if there is a function-based index or a materialized view defined that includes a

relevant call to the function.

Note: The optimizer only infers conditions that relate columns to

constant expressions, rather than columns to other columns.

Imagine a WHERE clause containing two conditions of these forms:

WHERE column1 comp_oper column3
 AND column1 = column2

In this case, the optimizer does not infer this condition:

column2 comp_oper column3

Transforming and Optimizing Statements

The Optimizer 4-71

Transforming and Optimizing Statements
SQL is a very flexible query language; there are often many statements you could

use to achieve the same goal. Sometimes, the optimizer transforms one such

statement into another that achieves the same goal if the second statement can be

executed more efficiently.

This section discusses the following topics:

■ Transforming ORs into Compound Queries

■ Transforming Complex Statements into Join Statements

■ Optimizing Statements That Access Views

■ Optimizing Compound Queries

■ Optimizing Distributed Statements

Transforming ORs into Compound Queries
If a query contains a WHERE clause with multiple conditions combined with OR
operators, then the optimizer transforms it into an equivalent compound query that

uses the UNION ALL set operator if this makes it execute more efficiently:

■ If each condition individually makes an index access path available, then the

optimizer can make the transformation. The optimizer then chooses an

execution plan for the resulting statement that accesses the table multiple times

using the different indexes, and then puts the results together.

See Also:

■ For more information on DETERMINISTIC functions, see

Oracle8i Application Developer’s Guide - Fundamentals.

■ For descriptions of CREATE FUNCTION, CREATE INDEX, and

CREATE MATERIALIZED VIEW, see Oracle8i SQL Reference.

■ For a description of function-based indexes, see Oracle8i
Concepts.

■ For detailed information about materialized views, see Oracle8i
Data Warehousing Guide.

See Also: For additional information about optimizing statements

that contain joins, semi-joins, or anti-joins, see "Optimizing Joins"

on page 4-49.

Transforming and Optimizing Statements

4-72 Oracle8i Designing and Tuning for Performance

■ If any condition requires a full table scan because it does not make an index

available, then the optimizer does not transform the statement. The optimizer

chooses a full table scan to execute the statement, and Oracle tests each row in

the table to determine whether it satisfies any of the conditions.

■ For statements that use the CBO, the optimizer may use statistics to determine

whether to make the transformation by estimating and then comparing the

costs of executing the original statement versus the resulting statement.

■ The CBO does not use the OR transformation for IN -lists or ORs on the same

column; instead, it uses the INLIST iterator operator.

Example: In the following query, the WHERE clause contains two conditions

combined with an OR operator:

SELECT *
 FROM emp
 WHERE job = ’CLERK’
 OR deptno = 10;

If there are indexes on both the job and deptno columns, then the optimizer may

transform this query into the equivalent query below:

SELECT *
 FROM emp
 WHERE job = ’CLERK’
UNION ALL
SELECT *
 FROM emp
 WHERE deptno = 10
 AND job <> ’CLERK’;

When the CBO is deciding whether to make a transformation, the optimizer

compares the cost of executing the original query using a full table scan with that of

executing the resulting query.

With the RBO, the optimizer makes this UNION ALL transformation, because each

component query of the resulting compound query can be executed using an index.

The RBO assumes that executing the compound query using two index scans is

faster than executing the original query using a full table scan.

See Also: For information on access paths and how indexes make

them available, see the "Access Paths for the RBO" section on

page 4-34 and "How the CBO Chooses an Access Path" on

page 4-25.

Transforming and Optimizing Statements

The Optimizer 4-73

The execution plan for the transformed statement might look like the illustration in

Figure 4–8.

Figure 4–8 Execution Plan for a Transformed Query Containing OR

To execute the transformed query, Oracle performs the following steps:

■ Steps 3 and 5 scan the indexes on the job and deptno columns using the

conditions of the component queries. These steps obtain rowids of the rows that

satisfy the component queries.

■ Steps 2 and 4 use the rowids from steps 3 and 5 to locate the rows that satisfy

each component query.

■ Step 1 puts together the row sources returned by steps 2 and 4.

If either of the job or deptno columns is not indexed, then the optimizer does not

even consider the transformation, because the resulting compound query would

require a full table scan to execute one of its component queries. Executing the

TABLE ACCESS
(BY ROWID)

emp

2 4

TABLE ACCESS
(BY ROWID)

emp

5

INDEX
(RANGE SCAN)

job_index

3

INDEX
(RANGE SCAN)
deptno_index

1

CONCATENATION

Transforming and Optimizing Statements

4-74 Oracle8i Designing and Tuning for Performance

compound query with a full table scan in addition to an index scan could not

possibly be faster than executing the original query with a full table scan.

Example: The following query assumes that there is an index on the ename column

only:

SELECT *
 FROM emp
 WHERE ename = ’SMITH’
 OR sal > comm;

Transforming the query above would result in the compound query below:

SELECT *
 FROM emp
 WHERE ename = ’SMITH’
UNION ALL
SELECT *
 FROM emp
 WHERE sal > comm;

Because the condition in the WHERE clause of the second component query (sal >

comm) does not make an index available, the compound query requires a full table

scan. For this reason, the optimizer does not make the transformation, and it

chooses a full table scan to execute the original statement.

Transforming Complex Statements into Join Statements
To optimize a complex statement, the optimizer chooses one of the following:

■ Transform the complex statement into an equivalent join statement, and then

optimize the join statement.

■ Optimize the complex statement as it is.

The optimizer transforms a complex statement into a join statement whenever the

resulting join statement is guaranteed to return exactly the same rows as the

complex statement. This transformation allows Oracle to execute the statement by

taking advantage of join optimizer techniques described in "Optimizing Joins" on

page 4-49.

The following complex statement selects all rows from the accounts table whose

owners appear in the customers table:

Transforming and Optimizing Statements

The Optimizer 4-75

SELECT *
 FROM accounts
 WHERE custno IN
 (SELECT custno FROM customers);

If the custno column of the customers table is a primary key or has a UNIQUE
constraint, then the optimizer can transform the complex query into the following

join statement that is guaranteed to return the same data:

SELECT accounts.*
 FROM accounts, customers
 WHERE accounts.custno = customers.custno;

The execution plan for this statement might look like Figure 4–9.

Figure 4–9 Execution Plan for a Nested Loops Join

To execute this statement, Oracle performs a nested-loops join operation.

If the optimizer cannot transform a complex statement into a join statement, then

the optimizer chooses execution plans for the parent statement and the subquery as

though they were separate statements. Oracle then executes the subquery and uses

the rows it returns to execute the parent query.

See Also: For information on nested loops joins, see "Optimizing

Joins" on page 4-49.

TABLE ACCESS
(FULL)

accounts

2 3

INDEX ACCESS
(UNIQUE SCAN)
pk_customers

1

NESTED LOOPS

Transforming and Optimizing Statements

4-76 Oracle8i Designing and Tuning for Performance

The following complex statement returns all rows from the accounts table that

have balances greater than the average account balance:

SELECT *
 FROM accounts
 WHERE accounts.balance >
 (SELECT AVG(balance) FROM accounts);

No join statement can perform the function of this statement, so the optimizer does

not transform the statement.

Optimizing Statements That Access Views
To optimize a statement that accesses a view, the optimizer chooses one of the

following:

■ Transform the statement into an equivalent statement that accesses the view’s

base tables, then optimize the resulting statement. The optimizer can use one of

the following techniques to transform the statement:

– Merge the view’s query into the referencing query block in the accessing

statement.

– Push the predicate of the referencing query block inside the view (for an

non-mergeable view).

■ Issue the view’s query, collecting all the returned rows, and then access this set

of rows with the original statement as though it were a table. (See "Accessing

the View’s Rows with the Original Statement" on page 4-88.)

Merging the View’s Query into the Statement
To merge the view’s query into a referencing query block in the accessing

statement, the optimizer replaces the name of the view with the names of its base

tables in the query block and adds the condition of the view’s query’s WHERE clause

to the accessing query block’s WHERE clause.

This optimization applies to select-project-join views, which are views that contain

only selections, projections, and joins—that is, views that do not contain set

operators, aggregate functions, DISTINCT , GROUP BY, CONNECT BY, and so on (as

described in "Mergeable and Non-mergeable Views" on page 4-77).

Note: Complex queries whose subqueries contain aggregate

functions such as AVG cannot be transformed into join statements.

Transforming and Optimizing Statements

The Optimizer 4-77

Example: The following view is of all employees who work in department 10:

CREATE VIEW emp_10
 AS SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp
 WHERE deptno = 10;

The following query accesses the view. The query selects the IDs greater than 7800

of employees who work in department 10:

SELECT empno
 FROM emp_10
 WHERE empno > 7800;

The optimizer transforms the query into the following query that accesses the

view’s base table:

SELECT empno
 FROM emp
 WHERE deptno = 10
 AND empno > 7800;

If there are indexes on the deptno or empno columns, then the resulting WHERE
clause makes them available.

Mergeable and Non-mergeable Views The optimizer can merge a view into a referencing

query block when the view has one or more base tables, provided the view does not

contain the following:

■ Set operators (UNION, UNION ALL, INTERSECT, MINUS)

■ A CONNECT BY clause

■ A ROWNUM pseudocolumn

■ Aggregate functions (AVG, COUNT, MAX, MIN, SUM) in the select list

When a view contains one of the following structures, it can be merged into a

referencing query block only if complex view merging (described below) is enabled:

■ A GROUP BY clause

■ A DISTINCT operator in the select list

View merging is not possible for a view that has multiple base tables if it is on the

right side of an outer join. However, if a view on the right side of an outer join has

only one base table, then the optimizer can use complex view merging, even if an

expression in the view can return a non-null value for a NULL.

Transforming and Optimizing Statements

4-78 Oracle8i Designing and Tuning for Performance

Complex View Merging If a view’s query contains a GROUP BY clause or DISTINCT
operator in the select list, then the optimizer can merge the view’s query into the

accessing statement only if complex view merging is enabled. Complex merging can

also be used to merge an IN subquery into the accessing statement if the subquery

is uncorrelated (see "Example 2: IN Subquery" on page 4-79).

Complex merging is not cost-based—it must be enabled with the initialization

parameter OPTIMIZER_FEATURES_ENABLE, the MERGE hint, or the parameter _

COMPLEX_VIEW_MERGING. Without this hint or parameter setting, the optimizer

uses another approach (see "Pushing the Predicate into the View" on page 4-79).

Example 1: View with a GROUP BY Clause The view avg_salary_view contains the

average salaries for each department:

CREATE VIEW avg_salary_view AS
 SELECT deptno, AVG(sal) AS avg_sal_dept,
 FROM emp
 GROUP BY deptno;

If complex view merging is enabled, then the optimizer can transform the following

query, which finds the average salaries of departments in London:

SELECT dept.loc, avg_sal_dept
 FROM dept, avg_salary_view
 WHERE dept.deptno = avg_salary_view.deptno
 AND dept.loc = ’London’;

into the following query:

SELECT dept.loc, AVG(sal)
 FROM dept, emp
 WHERE dept.deptno = emp.deptno
 AND dept.loc = ’London’
 GROUP BY dept.rowid, dept.loc;

The transformed query accesses the view’s base table, selecting only the rows of

employees who work in London and grouping them by department.

See Also: For more information, see "Optimizing Joins" on

page 4-49.

See Also: For details about the MERGE and NO_MERGE hints, see

Chapter 7, "Using Optimizer Hints".

Transforming and Optimizing Statements

The Optimizer 4-79

Example 2: IN Subquery Complex merging can be used for an IN clause with a

non-correlated subquery, as well as for views. The view min_salary_view
contains the minimum salaries for each department:

SELECT deptno, MIN(sal)
 FROM emp
 GROUP BY deptno;

If complex merging is enabled, then the optimizer can transform the following

query, which finds all employees who earn the minimum salary for their

department in London:

SELECT emp.ename, emp.sal
 FROM emp, dept
 WHERE (emp.deptno, emp.sal) IN min_salary_view
 AND emp.deptno = dept.deptno
 AND dept.loc = ’London’;

into the following query (where e1 and e2 represent the emp table as it is

referenced in the accessing query block and the view’s query block, respectively):

SELECT e1.ename, e1.sal
 FROM emp e1, dept, emp e2
 WHERE e1.deptno = dept.deptno
 AND dept.loc = ’London’
 AND e1.deptno = e2.deptno
 GROUP BY e1.rowid, dept.rowid, e1.ename, e1.sal
 HAVING e1.sal = MIN(e2.sal);

Pushing the Predicate into the View
The optimizer can transform a query block that accesses a non-mergeable view by

pushing the query block’s predicates inside the view’s query.

Example 1: The two_emp_tables view is the union of two employee tables. The

view is defined with a compound query that uses the UNION set operator:

CREATE VIEW two_emp_tables
 (empno, ename, job, mgr, hiredate, sal, comm, deptno) AS
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp1
 UNION
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp2;

Transforming and Optimizing Statements

4-80 Oracle8i Designing and Tuning for Performance

The following query accesses the view. The query selects the IDs and names of all

employees in either table who work in department 20:

SELECT empno, ename
 FROM two_emp_tables
 WHERE deptno = 20;

Because the view is defined as a compound query, the optimizer cannot merge the

view’s query into the accessing query block. Instead, the optimizer can transform

the accessing statement by pushing its predicate, the WHERE clause condition

(deptno = 20), into the view’s compound query.

The resulting statement looks like the following:

SELECT empno, ename
 FROM (SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp1
 WHERE deptno = 20
 UNION
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp2
 WHERE deptno = 20);

If there is an index on the deptno column, then the resulting WHEREclauses make it

available.

Figure 4–10 shows the execution plan of the resulting statement.

Transforming and Optimizing Statements

The Optimizer 4-81

Figure 4–10 Accessing a View Defined with the UNION Set Operator

TABLE ACCESS
(FULL)
emp1

5 6

TABLE ACCESS
(FULL)
emp2

4

UNION-ALL

3

SORT
(UNIQUE)

2

PROJECTION

1

VIEW
two_emp_tables

Transforming and Optimizing Statements

4-82 Oracle8i Designing and Tuning for Performance

To execute this statement, Oracle performs the following steps:

■ Steps 5 and 6 perform full scans of the emp1 and emp2 tables.

■ Step 4 performs a UNION-ALL operation returning all rows returned by either

step 5 or step 6, including all copies of duplicates.

■ Step 3 sorts the result of step 4, eliminating duplicate rows.

■ Step 2 extracts the desired columns from the result of step 3.

■ Step 1 indicates that the view’s query was not merged into the accessing query.

Example 2: The view emp_group_by_deptno contains the department number,

average salary, minimum salary, and maximum salary of all departments that have

employees:

CREATE VIEW emp_group_by_deptno
 AS SELECT deptno,
 AVG(sal) avg_sal,
 MIN(sal) min_sal,
 MAX(sal) max_sal
 FROM emp
 GROUP BY deptno;

The following query selects the average, minimum, and maximum salaries of

department 10 from the emp_group_by_deptno view:

SELECT *
 FROM emp_group_by_deptno
 WHERE deptno = 10;

The optimizer transforms the statement by pushing its predicate (the WHERE clause

condition) into the view’s query. The resulting statement looks like the following:

SELECT deptno,
 AVG(sal) avg_sal,
 MIN(sal) min_sal,
 MAX(sal) max_sal,
 FROM emp
 WHERE deptno = 10
 GROUP BY deptno;

If there is an index on the deptno column, then the resulting WHEREclause makes it

available. Figure 4–11 shows the execution plan for the resulting statement. The

execution plan uses an index on the deptno column.

Transforming and Optimizing Statements

The Optimizer 4-83

Figure 4–11 Accessing a View Defined with a GROUP BY Clause

To execute this statement, Oracle performs the following operations:

■ Step 4 performs a range scan on the index emp_deptno_index (an index on

the deptno column of the emp table) to retrieve the rowids of all rows in the

emp table with a deptno value of 10.

■ Step 3 accesses the emp table using the rowids retrieved by step 4.

4

INDEX
(RANGE SCAN)

emp_deptno
_index

3

TABLE ACCESS
(BY ROWID)

emp

2

SORT
(GROUP BY)

1

VIEW
emp_group_by

_deptno

Transforming and Optimizing Statements

4-84 Oracle8i Designing and Tuning for Performance

■ Step 2 sorts the rows returned by step 3 to calculate the average, minimum, and

maximum sal values.

■ Step 1 indicates that the view’s query was not merged into the accessing query.

Applying an Aggregate Function to the View The optimizer can transform a query that

contains an aggregate function (AVG, COUNT, MAX, MIN, SUM) by applying the

function to the view’s query.

Example: The following query accesses the emp_group_by_deptno view defined

in the previous example. This query derives the averages for the average

department salary, the minimum department salary, and the maximum department

salary from the employee table:

SELECT AVG(avg_sal), AVG(min_sal), AVG(max_sal)
 FROM emp_group_by_deptno;

The optimizer transforms this statement by applying the AVG aggregate function to

the select list of the view’s query:

SELECT AVG(AVG(sal)), AVG(MIN(sal)), AVG(MAX(sal))
 FROM emp
 GROUP BY deptno;

Figure 4–12 shows the execution plan of the resulting statement.

Transforming and Optimizing Statements

The Optimizer 4-85

Figure 4–12 Applying Aggregate Functions to a View Defined with GROUP BY Clause

To execute this statement, Oracle performs these operations:

■ Step 4 performs a full scan of the emp table.

■ Step 3 sorts the rows returned by step 4 into groups based on their deptno
values and calculates the average, minimum, and maximum sal value of each

group.

■ Step 2 indicates that the view’s query was not merged into the accessing query.

4

TABLE ACCESS
(FULL)

emp

3

SORT
(GROUP BY)

2

VIEW
emp_group_by

_deptno

1

AGGREGATE
(GROUP BY)

Transforming and Optimizing Statements

4-86 Oracle8i Designing and Tuning for Performance

■ Step 1 calculates the averages of the values returned by step 2.

Views in Outer Joins
For a view that is on the right side of an outer join, the optimizer can use one of two

methods, depending on how many base tables the view accesses:

■ If the view has only one base table, then the optimizer can use view merging.

■ If the view has multiple base tables, then the optimizer can push the join predicate
into the view.

Merging a View That Has a Single Base Table A view that has one base table and is on

the right side of an outer join can be merged into the query block of an accessing

statement. (See "Merging the View’s Query into the Statement" on page 4-76.) View

merging is possible even if an expression in the view can return a non-null value for

a NULL.

Example: Consider the view name_view , which concatenates first and last names

from the emp table:

CREATE VIEW name_view
 AS SELECT emp.firstname || emp.lastname AS emp_fullname, emp.deptno
 FROM emp;

and consider this outer join statement, which finds the names of all employees in

London and their departments, as well as any departments that have no employees:

SELECT dept.deptno, name_view.emp_fullname
 FROM emp_fullname, dept
 WHERE dept.deptno = name_view.deptno(+)
 AND dept.loc = ’London’;

The optimizer merges the view’s query into the outer join statement. The resulting

statement looks like this:

SELECT dept.deptno, DECODE(emp.rowid, NULL, NULL, emp.firstname || emp.lastname)
 FROM emp, dept
 WHERE dept.deptno = emp.deptno(+)
 AND dept.loc = ’London’;

The transformed statement selects only the employees who work in London.

Pushing the Join Predicate into a View That Has Multiple Base Tables For a view with

multiple base tables on the right side of an outer join, the optimizer can push the

Transforming and Optimizing Statements

The Optimizer 4-87

join predicate into the view (see "Pushing the Predicate into the View" on page 4-79)

if the initialization parameter _PUSH_JOIN_PREDICATE is set to TRUE or the

accessing query contains the PUSH_PRED hint.

Pushing a join predicate is a cost-based transformation that can enable more

efficient access path and join methods, such as transforming hash joins into nested

loops joins, and full table scans to index scans.

Example 1: Consider the view london_emp , which selects the employees who work

in London:

CREATE VIEW london_emp
 AS SELECT emp.ename
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND dept.loc = ’London’;

and consider this outer join statement, which finds the engineers and accountants

working in London who received bonuses:

SELECT bonus.job, london_emp.ename
 FROM bonus, london_emp
 WHERE bonus.job IN (’engineer’, ’accountant’)
 AND bonus.ename = london_emp.ename(+);

The optimizer pushes the outer join predicate into the view. The resulting statement

(which does not conform to standard SQL syntax) looks like this:

SELECT bonus.job, london_emp.ename
 FROM bonus, (SELECT emp.ename FROM emp, dept
 WHERE bonus.ename = london_emp.ename(+)
 AND emp.deptno = dept.deptno
 AND dept.loc = ’London’)
 WHERE bonus.job IN (’engineer’, ’accountant’);

Example 2: Consider the following example:

See Also: For information about optimizer hints, see Chapter 7,

"Using Optimizer Hints".

Transforming and Optimizing Statements

4-88 Oracle8i Designing and Tuning for Performance

SELECT 'PAYMENT' c_tx_type, c.check_id c_tx_id, 1 c_je_header_id,
c.status_lookup_code, c_tx_status, DECODE(:c_bank_curr_dsp,:c_gl_currency_
code, NVL(c.base_amount,NVL(c.amount,0)), NVL(c.amount,0)) c_tx_ba_amount,
DECODE(SIGN(:c_julian_as_of_date -
TO_CHAR(c.check_date,'J')),-1, DECODE(:c_bank_curr_dsp,:c_gl_currency_code,
NVL(c.base_amount,NVL(c.amount,0)), NVL(c.amount,0)),0) c_tx_ba_future_
amount, NULL c_tx_dr_cr, cs.future_pay_code_combination_id c_tx_clearing_
ccid, NVL(c.exchange_rate, 0) c_tx_exchange_rate

FROM ap_checks c,
 ap_check_stocks cs
WHERE (c.check_stock_id(+) = cs.check_stock_id) AND
 (:c_sl_reference_type = 'PAYMENT') AND
 (:c_sl_reference_id= c.check_id) AND (:c_sl_je_header_id = 1);

Without pushing the join predicate: 41 minutes, 1,492,141 buffer gets, 125,202 disk

reads

Cost=20003 SELECT STATEMENT
Cost= FILTER
Cost= FILTER
Cost= NESTED LOOPS OUTER
Cost=1 TABLE ACCESS FULL AP_CHECK_STOCKS_ALL
Cost=20002 TABLE ACCESS FULL AP_CHECKS_ALL

After pushing the join predicate: 0.01 seconds, 6 buffer gets, 5 disk reads

Cost=4 SELECT STATEMENT
Cost= FILTER
Cost=4 NESTED LOOPS OUTER
Cost=3 TABLE ACCESS BY INDEX ROWID AP_CHECKS_ALL
Cost=2 INDEX UNIQUE SCAN AP_CHECKS_U1:
Cost=1 TABLE ACCESS BY INDEX ROWID AP_CHECK_STOCKS_ALL
Cost= INDEX UNIQUE SCAN AP_CHECK_STOCKS_U1:

Accessing the View’s Rows with the Original Statement
The optimizer cannot transform all statements that access views into equivalent

statements that access base table(s). For example, if a query accesses a ROWNUM
pseudocolumn in a view, then the view cannot be merged into the query, and the

query’s predicate cannot be pushed into the view.

To execute a statement that cannot be transformed into one that accesses base

tables, Oracle issues the view’s query, collects the resulting set of rows, and then

accesses this set of rows with the original statement as though it were a table.

Transforming and Optimizing Statements

The Optimizer 4-89

Example: Consider the emp_group_by_deptno view defined in the previous

section:

CREATE VIEW emp_group_by_deptno
 AS SELECT deptno,
 AVG(sal) avg_sal,
 MIN(sal) min_sal,
 MAX(sal) max_sal
 FROM emp
 GROUP BY deptno;

The following query accesses the view. The query joins the average, minimum, and

maximum salaries from each department represented in this view and to the name

and location of the department in the dept table:

SELECT emp_group_by_deptno.deptno, avg_sal, min_sal,
 max_sal, dname, loc
 FROM emp_group_by_deptno, dept
 WHERE emp_group_by_deptno.deptno = dept.deptno;

Because there is no equivalent statement that accesses only base tables, the

optimizer cannot transform this statement. Instead, the optimizer chooses an

execution plan that issues the view’s query and then uses the resulting set of rows

as it would the rows resulting from a table access.

Figure 4–13 shows the execution plan for this statement.

See Also: For more information on how Oracle performs a nested

loops join operation, see "Optimizing Joins" on page 4-49.

Transforming and Optimizing Statements

4-90 Oracle8i Designing and Tuning for Performance

Figure 4–13 Joining a View Defined with a GROUP BY Clause to a Table

To execute this statement, Oracle performs the following operations:

■ Step 4 performs a full scan of the emp table.

■ Step 3 sorts the results of step 4 and calculates the average, minimum, and

maximum sal values selected by the query for the emp_group_by_deptno
view.

■ Step 2 used the data from the previous two steps for a view.

VIEW
emp_group_by

_deptno

2 5

TABLE ACCESS
(BY ROWID)

dept

6

INDEX
(UNIQUE SCAN)

pk_dept

4

TABLE ACCESS
(FULL)

emp

3

SORT
(GROUP BY)

1

NESTED LOOPS

Transforming and Optimizing Statements

The Optimizer 4-91

■ For each row returned by step 2, step 6 uses the deptno value to perform a

unique scan of the pk_dept index.

■ Step 5 uses each rowid returned by step 6 to locate the row in the deptno table

with the matching deptno value.

■ Oracle combines each row returned by step 2 with the matching row returned

by step 5 and returns the result.

Optimizing Compound Queries
To choose the execution plan for a compound query, the optimizer chooses an

execution plan for each of its component queries, and then combines the resulting

row sources with the union, intersection, or minus operation, depending on the set

operator used in the compound query.

Figure 4–14 shows the execution plan for the following statement, which uses the

UNION ALLoperator to select all occurrences of all parts in either the orders1 table

or the orders2 table:

SELECT part FROM orders1
UNION ALL
SELECT part FROM orders2;

Figure 4–14 Compound Query with UNION ALL Set Operator

To execute this statement, Oracle performs the following steps:

TABLE ACCESS
(FULL)
orders1

2 3

TABLE ACCESS
(FULL)
orders2

1

UNION-ALL

Transforming and Optimizing Statements

4-92 Oracle8i Designing and Tuning for Performance

■ Steps 2 and 3 perform full table scans on the orders1 and orders2 tables.

■ Step 1 performs a UNION-ALL operation returning all rows that are returned by

either step 2 or step 3 including all copies of duplicates.

Figure 4–15 shows the execution plan for the following statement, which uses the

UNION operator to select all parts that appear in either the orders1 or orders2
table:

SELECT part FROM orders1
UNION
SELECT part FROM orders2;

Figure 4–15 Compound Query with UNION Set Operator

This execution plan is identical to the one for the UNION-ALL operator shown in

Figure 4–14 on page 4-91, except that in this case, Oracle uses the SORT operation to

eliminate the duplicates returned by the UNION-ALL operation.

TABLE ACCESS
(FULL)
orders1

3 4

TABLE ACCESS
(FULL)
orders2

2

UNION-ALL

1

SORT
(UNIQUE)

Transforming and Optimizing Statements

The Optimizer 4-93

Figure 4–16 shows the execution plan for the following statement, which uses the

INTERSECT operator to select only those parts that appear in both the orders1
and orders2 tables:

SELECT part FROM orders1
INTERSECT
SELECT part FROM orders2;

Figure 4–16 Compound Query with INTERSECT Set Operator

To execute this statement, Oracle performs the following steps:

■ Steps 3 and 5 perform full table scans of the orders1 and orders2 tables.

■ Steps 2 and 4 sort the results of steps 3 and 5, eliminating duplicates in each

row source.

■ Step 1 performs an INTERSECTION operation that returns only rows that are

returned by both steps 2 and 4.

3

TABLE ACCESS
(FULL)
orders1

SORT
(UNIQUE)

2 4

SORT
(UNIQUE)

5

TABLE ACCESS
(FULL)
orders2

1

INTERSECTION

Transforming and Optimizing Statements

4-94 Oracle8i Designing and Tuning for Performance

Optimizing Distributed Statements
The optimizer chooses execution plans for SQL statements that access data on

remote databases in much the same way that it chooses executions for statements

that access only local data:

■ If all the tables accessed by a SQL statement are collocated on the same remote

database, then Oracle sends the SQL statement to that remote database. The

remote Oracle instance executes the statement and sends only the results back

to the local database.

■ If a SQL statement accesses tables that are located on different databases, then

Oracle decomposes the statement into individual fragments, each of which

accesses tables on a single database. Oracle then sends each fragment to the

database that it accesses. The remote Oracle instance for each of these databases

executes its fragment and returns the results to the local database, where the

local Oracle instance may perform any additional processing the statement

requires.

When choosing a cost-based execution plan for a distributed statement, the

optimizer considers the available indexes on remote databases just as it does

indexes on the local database. The optimizer also considers statistics on remote

databases for the CBO. Furthermore, the optimizer considers the location of data

when estimating the cost of accessing it. For example, a full scan of a remote table

has a greater estimated cost than a full scan of an identical local table.

For a rule-based execution plan, the optimizer does not consider indexes on

remote tables.

See Also: For more information on tuning distributed queries, see

Chapter 9, "Optimizing SQL Statements".

Using EXPLAIN PLAN 5-1

5
Using EXPLAIN PLAN

This chapter introduces execution plans, describes the SQL statement EXPLAIN
PLAN, and explains how to interpret its output. This chapter also discusses plan

stability features and the use of stored outlines to preserve your tuning investment

for particular SQL statements. This chapter provides procedures for managing

outlines to control application performance characteristics.

This chapter contains the following sections:

■ Understanding EXPLAIN PLAN

■ Creating the Output Table

■ Displaying PLAN_TABLE Output

■ Output Table Columns

■ Bitmap Indexes and EXPLAIN PLAN

■ EXPLAIN PLAN and Partitioned Objects

■ EXPLAIN PLAN Restrictions

See Also: For the syntax of EXPLAIN PLAN, see the Oracle8i SQL
Reference.

Understanding EXPLAIN PLAN

5-2 Oracle8i Designing and Tuning for Performance

Understanding EXPLAIN PLAN
The EXPLAIN PLAN statement displays execution plans chosen by the Oracle

optimizer for SELECT, UPDATE, INSERT, and DELETE statements. A statement’s

execution plan is the sequence of operations Oracle performs to execute the

statement. The components of execution plans include:

■ An ordering of the tables referenced by the statement.

■ An access method for each table mentioned in the statement.

■ A join method for tables affected by join operations in the statement.

EXPLAIN PLANoutput shows how Oracle executes SQL statements. EXPLAIN PLAN
results alone, however, cannot differentiate between well-tuned statements and

those that perform poorly. For example, if EXPLAIN PLAN output shows that a

statement uses an index, then this does not mean the statement runs efficiently.

Sometimes using indexes can be extremely inefficient. It is best to use EXPLAIN
PLAN to determine an access plan, and later prove that it is the optimal plan

through testing.

When evaluating a plan, always examine the statement’s actual resource

consumption. For best results, use the Oracle Trace or SQL trace facility and

TKPROF to examine individual SQL statement performance.

See Also: Chapter 6, "Using SQL Trace and TKPROF" and

Chapter 14, "Using Oracle Trace".

Creating the Output Table

Using EXPLAIN PLAN 5-3

Creating the Output Table
Before issuing an EXPLAIN PLAN statement, create a table to hold its output. Use

one of the following approaches:

■ Run the SQL script UTLXPLAN.SQL to create a sample output table called

PLAN_TABLE in your schema. The exact name and location of this script

depends on your operating system. For example, on Sun Solaris, the

UTLXPLAN.SQLis located under $ORACLE_HOME/rdbms/admin . PLAN_TABLE
is the default table into which the EXPLAIN PLAN statement inserts rows

describing execution plans.

■ Issue a CREATE TABLE statement to create an output table with any name you

choose. When you issue an EXPLAIN PLAN statement, you can direct its output

to this table.

Any table used to store the output of the EXPLAIN PLAN statement must have the

same column names and datatypes as the PLAN_TABLE:

CREATE TABLE PLAN_TABLE (
STATEMENT_ID VARCHAR2(30),
TIMESTAMP DATE,
REMARKS VARCHAR2(80),
OPERATION VARCHAR2(30),
OPTIONS VARCHAR2(30),
OBJECT_NODE VARCHAR2(128),
OBJECT_OWNER VARCHAR2(30),
OBJECT_NAME VARCHAR2(30),
OBJECT_INSTANCE NUMERIC,
OBJECT_TYPE VARCHAR2(30),
OPTIMIZER VARCHAR2(255),
SEARCH_COLUMNS NUMBER,
ID NUMERIC,
PARENT_ID NUMERIC,
POSITION NUMERIC,
COST NUMERIC,
CARDINALITY NUMERIC,
BYTES NUMERIC,
OTHER_TAG VARCHAR2(255),
PARTITION_START VARCHAR2(255),
PARTITION_STOP VARCHAR2(255),
PARTITION_ID NUMERIC,
OTHER LONG,
DISTRIBUTION VARCHAR2(30));

Displaying PLAN_TABLE Output

5-4 Oracle8i Designing and Tuning for Performance

Displaying PLAN_TABLE Output
Display the most recent plan table output using the following scripts:

■ UTLXPLS.SQL - Shows plan table output for serial processing.

■ UTLXPLP.SQL - Shows plan table output with parallel execution columns.

The row source count values in EXPLAIN PLAN output identify the number of rows

processed by each step in the plan. This helps you identify inefficiencies in the

query; for example, the row source with an access plan that is performing inefficient

operations.

Output Table Columns
The PLAN_TABLE used by the EXPLAIN PLAN statement contains the following

columns:

Table 5–1 PLAN_TABLE Columns (Page 1 of 3)

Column Description

STATEMENT_ID The value of the optional STATEMENT_ID parameter specified in the
EXPLAIN PLAN statement.

TIMESTAMP The date and time when the EXPLAIN PLAN statement was issued.

REMARKS Any comment (of up to 80 bytes) you want to associate with each step of
the explained plan. If you need to add or change a remark on any row of
the PLAN_TABLE, then use the UPDATE statement to modify the rows of
the PLAN_TABLE.

OPERATION The name of the internal operation performed in this step. In the first
row generated for a statement, the column contains one of the following
values:

DELETE STATEMENT
INSERT STATEMENT
SELECT STATEMENT
UPDATE STATEMENT

See Table 5–4 for more information on values for this column.

OPTIONS A variation on the operation described in the OPERATION column.

See Table 5–4 for more information on values for this column.

OBJECT_NODE The name of the database link used to reference the object (a table name
or view name). For local queries using parallel execution, this column
describes the order in which output from operations is consumed.

Output Table Columns

Using EXPLAIN PLAN 5-5

OBJECT_OWNER The name of the user who owns the schema containing the table or
index.

OBJECT_NAME The name of the table or index.

OBJECT_INSTANCE A number corresponding to the ordinal position of the object as it
appears in the original statement. The numbering proceeds from left to
right, outer to inner with respect to the original statement text. View
expansion results in unpredictable numbers.

OBJECT_TYPE A modifier that provides descriptive information about the object; for
example, NON-UNIQUE for indexes.

OPTIMIZER The current mode of the optimizer.

SEARCH_COLUMNSNot currently used.

ID A number assigned to each step in the execution plan.

PARENT_ID The ID of the next execution step that operates on the output of the ID
step.

POSITION The order of processing for steps that all have the same PARENT_ID.

COST The cost of the operation as estimated by the optimizer’s cost-based
approach. For statements that use the rule-based approach, this column
is null. Cost is not determined for table access operations. The value of
this column does not have any particular unit of measurement, it is
merely a weighted value used to compare costs of execution plans.

CARDINALITY The estimate by the cost-based approach of the number of rows
accessed by the operation.

BYTES The estimate by the cost-based approach of the number of bytes
accessed by the operation.

OTHER_TAG Describes the contents of the OTHER column. See Table 5–2 for more
information on the possible values for this column.

Table 5–1 PLAN_TABLE Columns (Page 2 of 3)

Output Table Columns

5-6 Oracle8i Designing and Tuning for Performance

PARTITION_START The start partition of a range of accessed partitions. It can take one of the
following values:

n indicates that the start partition has been identified by the SQL
compiler, and its partition number is given by n.

KEY indicates that the start partition will be identified at execution time
from partitioning key values.

ROW LOCATION indicates that the start partition (same as the stop
partition) will be computed at execution time from the location of each
record being retrieved. The record location is obtained by a user or from
a global index.

INVALID indicates that the range of accessed partitions is empty.

PARTITION_STOP The stop partition of a range of accessed partitions. It can take one of the
following values:

n indicates that the stop partition has been identified by the SQL
compiler, and its partition number is given by n.

KEY indicates that the stop partition will be identified at execution time
from partitioning key values.

ROW LOCATION indicates that the stop partition (same as the start
partition) will be computed at execution time from the location of each
record being retrieved. The record location is obtained by a user or from
a global index.

INVALID indicates that the range of accessed partitions is empty.

PARTITION_ID The step that has computed the pair of values of the PARTITION_
START and PARTITION_STOP columns.

OTHER Other information that is specific to the execution step that a user may
find useful.

DISTRIBUTION Stores the method used to distribute rows from producer query servers
to consumer query servers.

See Table 5–3 for more information on the possible values for this
column. For more information about consumer and producer query
servers, see Oracle8i Concepts.

Table 5–1 PLAN_TABLE Columns (Page 3 of 3)

Output Table Columns

Using EXPLAIN PLAN 5-7

Table 5–2 describes the values that may appear in the OTHER_TAG column.

Table 5–2 Values of OTHER_TAG Column of the PLAN_TABLE

OTHER_TAG Text
(examples) Meaning Interpretation

blank Serial execution.

SERIAL_FROM_REMOTE
(S -> R)

Serial from remote Serial execution at a remote site.

SERIAL_TO_PARALLEL
(S -> P)

Serial to parallel Serial execution; output of step is
partitioned or broadcast to parallel
execution servers.

PARALLEL_TO_PARALLEL
(P - > P)

Parallel to parallel Parallel execution; output of step is
repartitioned to second set of parallel
execution servers.

PARALLEL_TO_SERIAL
(P -> S)

Parallel to serial Parallel execution; output of step is
returned to serial "query coordinator"
process.

PARALLEL_COMBINED_
WITH_PARENT
(PWP)

Parallel combined
with parent

Parallel execution; output of step goes to
next step in same parallel process. No
interprocess communication to parent.

PARALLEL_COMBINED_
WITH_CHILD
(PWC)

Parallel combined
with child

Parallel execution; input of step comes
from prior step in same parallel process.
No interprocess communication from child.

Output Table Columns

5-8 Oracle8i Designing and Tuning for Performance

Table 5–3 describes the values that can appear in the DISTRIBUTION column:

Table 5–3 Values of DISTRIBUTION Column of the PLAN_TABLE

DISTRIBUTION Text Interpretation

PARTITION (ROWID) Maps rows to query servers based on the partitioning of a table or
index using the rowid of the row to UPDATE/DELETE.

PARTITION (KEY) Maps rows to query servers based on the partitioning of a table or
index using a set of columns. Used for partial partition-wise join,
PARALLEL INSERT, CREATE TABLE AS SELECT of a partitioned
table, and CREATE PARTITIONED GLOBAL INDEX.

HASH Maps rows to query servers using a hash function on the join key.
Used for PARALLEL JOIN or PARALLEL GROUP BY.

RANGE Maps rows to query servers using ranges of the sort key. Used
when the statement contains an ORDER BY clause.

ROUND-ROBIN Randomly maps rows to query servers.

BROADCAST Broadcasts the rows of the entire table to each query server. Used
for a parallel join when one table is very small compared to the
other.

QC (ORDER) The query coordinator consumes the input in order, from the first
to the last query server. Used when the statement contains an
ORDER BY clause.

QC (RANDOM) The query coordinator consumes the input randomly. Used when
the statement does not have an ORDER BY clause.

Output Table Columns

Using EXPLAIN PLAN 5-9

Table 5–4 lists each combination of OPERATION and OPTION produced by the

EXPLAIN PLAN statement and its meaning within an execution plan.

Table 5–4 OPERATION and OPTION Values Produced by EXPLAIN PLAN (Page 1 of 4)

Operation Option Description

AND-EQUAL Operation accepting multiple sets of rowids, returning the
intersection of the sets, eliminating duplicates. Used for the
single-column indexes access path.

CONVERSION TOROWIDS converts bitmap representations to actual
rowids that can be used to access the table.

FROM ROWIDS converts the rowids to a bitmap
representation.

COUNTreturns the number of rowids if the actual values are
not needed.

INDEX SINGLE VALUE looks up the bitmap for a single key value
in the index.

RANGE SCAN retrieves bitmaps for a key value range.

FULL SCANperforms a full scan of a bitmap index if there is
no start or stop key.

MERGE Merges several bitmaps resulting from a range scan into one
bitmap.

MINUS Subtracts bits of one bitmap from another. Row source is
used for negated predicates. Can be used only if there are
nonnegated predicates yielding a bitmap from which the
subtraction can take place. An example appears in "Bitmap
Indexes and EXPLAIN PLAN" on page 5-13.

OR Computes the bitwise OR of two bitmaps.

CONNECT BY Retrieves rows in hierarchical order for a query containing a
CONNECT BY clause.

CONCATENATION Operation accepting multiple sets of rows returning the
union-all of the sets.

COUNT Operation counting the number of rows selected from a
table.

STOPKEY Count operation where the number of rows returned is
limited by the ROWNUM expression in the WHERE clause.

DOMAIN INDEX Retrieval of one or more rowids from a domain index.

Output Table Columns

5-10 Oracle8i Designing and Tuning for Performance

FILTER Operation accepting a set of rows, eliminates some of them,
and returns the rest.

FIRST ROW Retrieval on only the first row selected by a query.

FOR UPDATE Operation retrieving and locking the rows selected by a
query containing a FOR UPDATE clause.

HASH JOIN

(These are join
operations.)

Operation joining two sets of rows and returning the result.

ANTI Hash anti-join.

SEMI Hash semi-join.

INDEX

(These are
access
methods.)

UNIQUE
SCAN

Retrieval of a single rowid from an index.

RANGE SCAN Retrieval of one or more rowids from an index. Indexed
values are scanned in ascending order.

RANGE SCAN
DESCENDING

Retrieval of one or more rowids from an index. Indexed
values are scanned in descending order.

INLIST
ITERATOR

Iterates over the operation below it for each value in the
IN -list predicate.

INTERSECTION Operation accepting two sets of rows and returning the
intersection of the sets, eliminating duplicates.

MERGE JOIN

(These are join
operations.)

Operation accepting two sets of rows, each sorted by a
specific value, combining each row from one set with the
matching rows from the other, and returning the result.

OUTER Merge join operation to perform an outer join statement.

ANTI Merge anti-join.

SEMI Merge semi-join.

CONNECT BY Retrieval of rows in hierarchical order for a query
containing a CONNECT BY clause.

MINUS Operation accepting two sets of rows and returning rows
appearing in the first set but not in the second, eliminating
duplicates.

Table 5–4 OPERATION and OPTION Values Produced by EXPLAIN PLAN (Page 2 of 4)

Operation Option Description

Output Table Columns

Using EXPLAIN PLAN 5-11

NESTED LOOPS

(These are join
operations.)

Operation accepting two sets of rows, an outer set and an
inner set. Oracle compares each row of the outer set with
each row of the inner set, returning rows that satisfy a
condition.

OUTER Nested loops operation to perform an outer join statement.

PARTITION SINGLE Access one partition.

ITERATOR Access many partitions (a subset).

ALL Access all partitions.

INLIST Similar to iterator, but based on an IN -list predicate.

INVALID Indicates that the partition set to be accessed is empty.

Iterates over the operation below it, for each partition in the
range given by the PARTITION_START and PARTITION_
STOP columns.

PARTITION describes partition boundaries applicable to a
single partitioned object (table or index) or to a set of
equi-partitioned objects (a partitioned table and its local
indexes). The partition boundaries are provided by the
values of PARTITION_STARTand PARTITION_STOPof the
PARTITION. Refer to Table 5–1 for valid values of partition
start/stop.

REMOTE Retrieval of data from a remote database.

SEQUENCE Operation involving accessing values of a sequence.

SORT AGGREGATERetrieval of a single row that is the result of applying a
group function to a group of selected rows.

UNIQUE Operation sorting a set of rows to eliminate duplicates.

GROUP BY Operation sorting a set of rows into groups for a query with
a GROUP BY clause.

JOIN Operation sorting a set of rows before a merge-join.

ORDER BY Operation sorting a set of rows for a query with an ORDER
BY clause.

Table 5–4 OPERATION and OPTION Values Produced by EXPLAIN PLAN (Page 3 of 4)

Operation Option Description

Output Table Columns

5-12 Oracle8i Designing and Tuning for Performance

TABLE ACCESS

(These are
access
methods.)

FULL Retrieval of all rows from a table.

CLUSTER Retrieval of rows from a table based on a value of an
indexed cluster key.

HASH Retrieval of rows from table based on hash cluster key
value.

BY ROWID Retrieval of a row from a table based on its rowid.

BY USER
ROWID

 If the table rows are located using user-supplied rowids.

BY INDEX
ROWID

If the table is nonpartitioned and rows are located using
index(es).

BY GLOBAL
INDEX
ROWID

If the table is partitioned and rows are located using only
global indexes.

BY LOCAL
INDEX
ROWID

If the table is partitioned and rows are located using one or
more local indexes and possibly some global indexes.

Partition Boundaries:

The partition boundaries may have been computed by:

A previous PARTITION step, in which case the
PARTITION_START and PARTITION_STOP column values
replicate the values present in the PARTITION step, and the
PARTITION_ID contains the ID of the PARTITION step.
Possible values for PARTITION_START and PARTITION_
STOP are NUMBER(n), KEY, INVALID .

The TABLE ACCESS or INDEX step itself, in which case the
PARTITION_ID contains the ID of the step. Possible values
for PARTITION_START and PARTITION_STOP are
NUMBER(n), KEY, ROW LOCATION (TABLE ACCESS only),
and INVALID .

UNION Operation accepting two sets of rows and returns the union
of the sets, eliminating duplicates.

VIEW Operation performing a view’s query and then returning
the resulting rows to another operation.

Table 5–4 OPERATION and OPTION Values Produced by EXPLAIN PLAN (Page 4 of 4)

Operation Option Description

Bitmap Indexes and EXPLAIN PLAN

Using EXPLAIN PLAN 5-13

Bitmap Indexes and EXPLAIN PLAN
Index row sources using bitmap indexes appear in the EXPLAIN PLAN output with

the word BITMAP indicating the type of the index. Consider the following sample

query and plan:

EXPLAIN PLAN FOR
SELECT * FROM t
WHERE c1 = 2
AND c2 <> 6
OR c3 BETWEEN 10 AND 20;

SELECT STATEMENT
 TABLE ACCESS T BY INDEX ROWID
 BITMAP CONVERSION TO ROWID
 BITMAP OR
 BITMAP MINUS
 BITMAP MINUS
 BITMAP INDEX C1_IND SINGLE VALUE
 BITMAP INDEX C2_IND SINGLE VALUE
 BITMAP INDEX C2_IND SINGLE VALUE
 BITMAP MERGE
 BITMAP INDEX C3_IND RANGE SCAN

In this example, the predicate c1 =2 yields a bitmap from which a subtraction can

take place. From this bitmap, the bits in the bitmap for c2 = 6 are subtracted. Also,

the bits in the bitmap for c2 IS NULL are subtracted, explaining why there are two

MINUS row sources in the plan. The NULL subtraction is necessary for semantic

correctness unless the column has a NOT NULL constraint. The TO ROWIDS option is

used to generate the ROWIDs that are necessary for the table access.

Note: Access methods and join operations are discussed in

Oracle8i Concepts.

EXPLAIN PLAN and Partitioned Objects

5-14 Oracle8i Designing and Tuning for Performance

EXPLAIN PLAN and Partitioned Objects
Use EXPLAIN PLAN to see how Oracle accesses partitioned objects for specific

queries.

Partitions accessed after pruning are shown in the PARTITION START and

PARTITION STOP columns. The row source name for the range partition is

"PARTITION RANGE". For hash partitions, the row source name is PARTITION
HASH.

A join is implemented using partial partition-wise join if the DISTRIBUTION
column of the plan table of one of the joined tables contains PARTITION(KEY).

Partial partition-wise join is possible if one of the joined tables is partitioned on its

join column and the table is parallelized.

A join is implemented using full partition-wise join if the partition row source

appears before the join row source in the EXPLAIN PLANoutput. Full partition-wise

joins are possible only if both joined tables are equi-partitioned on their respective

join columns. Examples of execution plans for several types of partitioning follow.

Displaying Range and Hash Partitioning with EXPLAIN PLAN
Consider the following table, emp_range , partitioned by range on hiredate to

illustrate how pruning is displayed. Assume that the tables emp and dept from a

standard Oracle schema exist.

CREATE TABLE emp_range
PARTITION BY RANGE(hiredate)
(

PARTITION emp_p1 VALUES LESS THAN (TO_DATE(’1-JAN-1991’,’DD-MON-YYYY’)),
PARTITION emp_p2 VALUES LESS THAN (TO_DATE(’1-JAN-1993’,’DD-MON-YYYY’)),
PARTITION emp_p3 VALUES LESS THAN (TO_DATE(’1-JAN-1995’,’DD-MON-YYYY’)),
PARTITION emp_p4 VALUES LESS THAN (TO_DATE(’1-JAN-1997’,’DD-MON-YYYY’)),
PARTITION emp_p5 VALUES LESS THAN (TO_DATE(’1-JAN-1999’,’DD-MON-YYYY’))

)
AS SELECT * FROM emp;

Example 1a
EXPLAIN PLAN FOR SELECT * FROM emp_range;

Enter the following to display the EXPLAIN PLAN output:

@?/RDBMS/ADMIN/UTLXPLS

Oracle displays something similar to:

EXPLAIN PLAN and Partitioned Objects

Using EXPLAIN PLAN 5-15

Plan Table

| Operation | Name | Rows | Bytes| Cost | Pstart | Pstop|

SELECT STATEMENT		105	8K	1		
PARTITION RANGE ALL					1	5
TABLE ACCESS FULL	EMP_RANGE	105	8K	1	1	5

6 rows selected.

A partition row source is created on top of the table access row source. It iterates

over the set of partitions to be accessed.

In example 1a, the partition iterator covers all partitions (option ALL), because a

predicate was not used for pruning. The PARTITION_START and PARTITION_

STOP columns of the plan table show access to all partitions from 1 to 5.

Example 2a
EXPLAIN PLAN FOR SELECT * FROM emp_range
WHERE hiredate >= TO_DATE(’1-JAN-1995’,’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT		3	54	1		
PARTITION RANGE ITERATOR					4	5
TABLE ACCESS FULL	EMP_RANGE	3	54	1	4	5
--
6 rows selected.

In example 2a, the partition row source iterates from partition 4 to 5, because we

prune the other partitions using a predicate on hiredate .

Example 3a
EXPLAIN PLAN FOR SELECT * FROM emp_range
WHERE hiredate < TO_DATE(’1-JAN-1991’,’DD-MON-YYYY’);

EXPLAIN PLAN and Partitioned Objects

5-16 Oracle8i Designing and Tuning for Performance

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
| SELECT STATEMENT | | 2 | 36 | 1 | | |
| TABLE ACCESS FULL |EMP_RANGE | 2 | 36 | 1 | 1 | 1 |
--
5 rows selected.

In example 3a, only partition 1 is accessed and known at compile time; thus, there is

no need for a partition row source.

Plans for Hash Partitioning
Oracle displays the same information for hash partitioned objects, except that the

partition row source name is PARTITION HASH instead of PARTITION RANGE.
Also, with hash partitioning, pruning is only possible using equality or IN -list

predicates.

Pruning Information with Composite Partitioned Objects
To illustrate how Oracle displays pruning information for composite partitioned

objects, consider the table emp_comp that is range partitioned on hiredate and

subpartitioned by hash on deptno .

CREATE TABLE emp_comp PARTITION BY RANGE(hiredate) SUBPARTITION BY HASH(deptno)
SUBPARTITIONS 3
(

PARTITION emp_p1 VALUES LESS THAN (TO_DATE(’1-JAN-1991’,’DD-MON-YYYY’)),
PARTITION emp_p2 VALUES LESS THAN (TO_DATE(’1-JAN-1993’,’DD-MON-YYYY’)),
PARTITION emp_p3 VALUES LESS THAN (TO_DATE(’1-JAN-1995’,’DD-MON-YYYY’)),
PARTITION emp_p4 VALUES LESS THAN (TO_DATE(’1-JAN-1997’,’DD-MON-YYYY’)),
PARTITION emp_p5 VALUES LESS THAN (TO_DATE(’1-JAN-1999’,’DD-MON-YYYY’))

)
AS SELECT * FROM emp;

Example 1b
EXPLAIN PLAN FOR SELECT * FROM emp_comp;

EXPLAIN PLAN and Partitioned Objects

Using EXPLAIN PLAN 5-17

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart | Pstop |
--
SELECT STATEMENT		105	8K	1		
PARTITION RANGE ALL					1	5
PARTITION HASH ALL					1	3
TABLE ACCESS FULL	EMP_COMP	105	8K	1	1	15
--
7 rows selected.

Example 1b shows the plan when Oracle accesses all subpartitions of all partitions

of a composite object. Two partition row sources are used for that purpose: a range

partition row source to iterate over the partitions and a hash partition row source to

iterate over the subpartitions of each accessed partition.

In example 1b, because no pruning is performed, the range partition row source

iterates from partition 1 to 5. Within each partition, the hash partition row source

iterates over subpartitions 1 to 3 of the current partition. As a result, the table access

row source accesses subpartitions 1 to 15. In other words, it accesses all

subpartitions of the composite object.

Example 2b
EXPLAIN PLAN FOR SELECT * FROM emp_comp
WHERE hiredate = TO_DATE(’15-FEB-1997’, ’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT		1	96	1		
PARTITION HASH ALL					1	3
TABLE ACCESS FULL	EMP_COMP	1	96	1	13	15
--
6 rows selected.

In example 2b, only the last partition, partition 5, is accessed. This partition is

known at compile time, so we do not need to show it in the plan. The hash partition

row source shows accessing of all subpartitions within that partition; that is,

subpartitions 1 to 3, which translates into subpartitions 13 to 15 of the emp_comp
table.

EXPLAIN PLAN and Partitioned Objects

5-18 Oracle8i Designing and Tuning for Performance

Example 3b
EXPLAIN PLAN FOR SELECT * FROM emp_comp WHERE deptno = 20;

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT		2	200	1		
PARTITION RANGE ALL					1	5
TABLE ACCESS FULL	EMP_COMP	2	200	1		
--
6 rows selected.

In example 3b, the predicate deptno = 20 enables pruning on the hash dimension

within each partition, so Oracle only needs to access a single subpartition. The

number of that subpartition is known at compile time, so the hash partition row

source is not needed.

Example 4b
VARIABLE dno NUMBER;
EXPLAIN PLAN FOR SELECT * FROM emp_comp WHERE deptno = :dno;

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT		2	200	1		
PARTITION RANGE ALL					1	5
PARTITION HASH SINGLE					KEY	KEY
TABLE ACCESS FULL	EMP_COMP	2	200	1		
--
7 rows selected.

Example 4b is the same as example 3b, except that deptno = 20 has been replaced

by deptno = :dno . In this case, the subpartition number is unknown at compile

time, and a hash partition row source is allocated. The option is SINGLE for that

row source, because Oracle accesses only one subpartition within each partition.

The PARTITION_START and PARTITION_STOP is set to KEY. This means that

Oracle determines the number of the subpartition at run time.

EXPLAIN PLAN and Partitioned Objects

Using EXPLAIN PLAN 5-19

Partial Partition-wise Joins

Example 1c
In this example, emp_range is joined on the partitioning column and is

parallelized. This enables use of partial partition-wise join, because the dept table

is not partitioned. Oracle dynamically partitions the dept table before the join.

ALTER TABLE emp PARALLEL 2;
STATEMENT PROCESSED.

ALTER TABLE dept PARALLEL 2;
STATEMENT PROCESSED.

To show the plan for the query, enter:

EXPLAIN PLAN FOR SELECT /*+ ORDERED USE_HASH(D) */ ename, dname
FROM emp_range e, dept d
WHERE e.deptno = d.deptno

AND e.hiredate > TO_DATE(’29-JUN-1996’,’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | TQ |IN-OUT| PQ Distrib | Pstart| Pstop |
--
SELECT STATEMENT		1	51	3					
HASH JOIN		1	51	3	2,02	P->S	QC (RANDOM)		
PARTITION RANGE ITERATOR					2,02	PCWP		4	5
TABLE ACCESS FULL	EMP_RANGE	3	87	1	2,00	PCWP		4	5
TABLE ACCESS FULL	DEPT	21	462	1	2,01	P->P	PART (KEY)		
--
8 rows selected.

The plan shows that the optimizer selects partition-wise join, because the DIST
column contains the text PART (KEY), or partition key.

Example 2c
In example 2c, emp_comp is joined on its hash partitioning column, deptno , and is

parallelized. This enables use of partial partition-wise join, because the dept table

is not partitioned. Again, Oracle dynamically partitions the dept table.

ALTER TABLE emp_comp PARALLEL 2;
STATEMENT PROCESSED.

EXPLAIN PLAN FOR SELECT /*+ ORDERED USE_HASH(D) */ ename, dname
FROM emp_comp e, dept d
WHERE e.deptno = d.deptno
AND e.hiredate > TO_DATE(’13-MAR-1995’,’DD-MON-YYYY’);

EXPLAIN PLAN and Partitioned Objects

5-20 Oracle8i Designing and Tuning for Performance

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | TQ |IN-OUT| PQ Distrib | Pstart| Pstop |
--
SELECT STATEMENT		1	51	3					
HASH JOIN		1	51	3	0,01	P->S	QC (RANDOM)		
PARTITION RANGE ITERATOR					0,01	PCWP		4	5
PARTITION HASH ALL					0,01	PCWP		1	3
TABLE ACCESS FULL	EMP_COMP	3	87	1	0,01	PCWP		10	15
TABLE ACCESS FULL	DEPT	21	462	1	0,00	P->P	PART (KEY)		
--
9 rows selected.

Full Partition-wise Joins
In the following example, emp_comp and dept_hash are joined on their hash

partitioning columns. This enables use of full partition-wise join. The PARTITION
HASH row source appears on top of the join row source in the plan table output.

To create the table dept_hash , enter:

CREATE TABLE dept_hash
PARTITION BY HASH(deptno)
PARTITIONS 3
PARALLEL
AS SELECT * FROM dept;

To show the plan for the query, enter:

EXPLAIN PLAN FOR SELECT /*+ ORDERED USE_HASH(D) */ ename, dname
FROM emp_comp e, dept_hash d
WHERE e.deptno = d.deptno

AND e.hiredate > TO_DATE(’29-JUN-1996’,’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | TQ |IN-OUT| PQ Distrib | Pstart| Pstop |
--
SELECT STATEMENT		2	102	2					
PARTITION HASH ALL					4,00	PCWP		1	3
HASH JOIN		2	102	2	4,00	P->S	QC (RANDOM)		
PARTITION RANGE ITERATOR					4,00	PCWP		4	5
TABLE ACCESS FULL	EMP_COMP	3	87	1	4,00	PCWP		10	15
TABLE ACCESS FULL	DEPT_HASH	63	1K	1	4,00	PCWP		1	3
--
9 rows selected.

EXPLAIN PLAN and Partitioned Objects

Using EXPLAIN PLAN 5-21

INLIST ITERATOR and EXPLAIN PLAN
An INLIST ITERATOR operation appears in the EXPLAIN PLAN output if an index

implements an IN -list predicate. For example, for the query:

SELECT * FROM emp WHERE empno IN (7876, 7900, 7902);

The EXPLAIN PLAN output appears as follows:

OPERATION OPTIONS OBJECT_NAME
---------------- --------------- --------------
SELECT STATEMENT
INLIST ITERATOR
TABLE ACCESS BY ROWID EMP
INDEX RANGE SCAN EMP_EMPNO

The INLIST ITERATOR operation iterates over the operation below it for each

value in the IN -list predicate. For partitioned tables and indexes, the three possible

types of IN -list columns are described in the following sections.

Index Column
If the IN -list column empno is an index column but not a partition column, then the

plan is as follows (the IN -list operator appears above the table operation but below

the partition operation):

OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP
---------------- ------------ ----------- --------------- --------------
SELECT STATEMENT
PARTITION INLIST KEY(INLIST) KEY(INLIST)
INLIST ITERATOR
TABLE ACCESS BY ROWID EMP KEY(INLIST) KEY(INLIST)
INDEX RANGE SCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)

The KEY(INLIST) designation for the partition start and stop keys specifies that an

IN -list predicate appears on the index start/stop keys.

Index and Partition Column
If empno is an indexed and a partition column, then the plan contains an INLIST
ITERATOR operation above the partition operation:

EXPLAIN PLAN and Partitioned Objects

5-22 Oracle8i Designing and Tuning for Performance

OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP
---------------- ------------ ----------- --------------- --------------
SELECT STATEMENT
INLIST ITERATOR
PARTITION ITERATOR KEY(INLIST) KEY(INLIST)
TABLE ACCESS BY ROWID EMP KEY(INLIST) KEY(INLIST)
INDEX RANGE SCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)

Partition Column
If empno is a partition column and there are no indexes, then no INLIST ITERATOR
operation is allocated:

OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP
---------------- ------------ ----------- --------------- --------------
SELECT STATEMENT
PARTITION KEY(INLIST) KEY(INLIST)
TABLE ACCESS BY ROWID EMP KEY(INLIST) KEY(INLIST)
INDEX RANGE SCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)

If emp_empno is a bitmap index, then the plan is as follows:

OPERATION OPTIONS OBJECT_NAME
---------------- --------------- --------------
SELECT STATEMENT
INLIST ITERATOR
TABLE ACCESS BY INDEX ROWID EMP
BITMAP CONVERSION TO ROWIDS
BITMAP INDEX SINGLE VALUE EMP_EMPNO

Domain Indexes and EXPLAIN PLAN
You can also use EXPLAIN PLAN to derive user-defined CPU and I/O costs for

domain indexes. EXPLAIN PLAN displays these statistics in the OTHER column of

PLAN_TABLE.

For example, assume table emphas user-defined operator CONTAINSwith a domain

index emp_resume on the resume column, and the index type of emp_resume
supports the operator CONTAINS. Then the query:

SELECT * FROM emp WHERE CONTAINS(resume, ’Oracle’) = 1

might display the following plan:

EXPLAIN PLAN Restrictions

Using EXPLAIN PLAN 5-23

OPERATION OPTIONS OBJECT_NAME OTHER
----------------- ----------- ------------ ----------------
SELECT STATEMENT
TABLE ACCESS BY ROWID EMP
DOMAIN INDEX EMP_RESUME CPU: 300, I/O: 4

EXPLAIN PLAN Restrictions
Oracle does not support EXPLAIN PLAN for statements performing implicit type

conversion of date bind variables. With bind variables in general, the EXPLAIN
PLAN output may not represent the real execution plan.

From the text of a SQL statement, TKPROF cannot determine the types of the bind

variables. It assumes that the type is CHARACTER, and gives an error message if this

is not the case. You can avoid this limitation by putting appropriate type

conversions in the SQL statement.

See Also: Chapter 6, "Using SQL Trace and TKPROF".

EXPLAIN PLAN Restrictions

5-24 Oracle8i Designing and Tuning for Performance

Using SQL Trace and TKPROF 6-1

6
Using SQL Trace and TKPROF

The SQL trace facility and TKPROF are two basic performance diagnostic tools that

can help you monitor and tune applications running against the Oracle Server.

This chapter contains the following sections:

■ Understanding SQL Trace and TKPROF

■ Using the SQL Trace Facility and TKPROF

■ Avoiding Pitfalls in TKPROF Interpretation

■ TKPROF Output Example

Understanding SQL Trace and TKPROF

6-2 Oracle8i Designing and Tuning for Performance

Understanding SQL Trace and TKPROF
The SQL trace facility and TKPROF let you accurately assess the efficiency of the

SQL statements your application runs. For best results, use these tools with

EXPLAIN PLAN, rather than using EXPLAIN PLAN alone.

Understanding the SQL Trace Facility
The SQL trace facility provides performance information on individual SQL

statements. It generates the following statistics for each statement:

■ Parse, execute, and fetch counts

■ CPU and elapsed times

■ Physical reads and logical reads

■ Number of rows processed

■ Misses on the library cache

■ Username under which each parse occurred

■ Each commit and rollback

You can enable the SQL trace facility for a session or for an instance. When the SQL

trace facility is enabled, performance statistics for all SQL statements executed in a

user session or in the instance are placed into trace files.

The additional overhead of running the SQL trace facility against an application

with performance problems is normally insignificant, compared with the inherent

overhead caused by the application’s inefficiency.

Note: Try to enable SQL trace only for statistics collection, and on

specific sessions. If you must enable the facility on an entire

production environment, then you can minimize performance

impact with the following:

■ Maintain at least 25% idle CPU capacity.

■ Maintain adequate disk space for the USER_DUMP_DEST
location.

■ Stripe disk space over sufficient disks.

Using the SQL Trace Facility and TKPROF

Using SQL Trace and TKPROF 6-3

Understanding TKPROF
You can run the TKPROF program to format the contents of the trace file and place

the output into a readable output file. Optionally, TKPROF can also:

■ Determine the execution plans of SQL statements.

■ Create a SQL script that stores the statistics in the database.

TKPROF reports each statement executed with the resources it has consumed, the

number of times it was called, and the number of rows which it processed. This

information lets you easily locate those statements that are using the greatest

resource. With experience or with baselines available, you can assess whether the

resources used are reasonable given the work done.

Using the SQL Trace Facility and TKPROF
Follow these steps to use the SQL trace facility and TKPROF:

1. Set initialization parameters for trace file management.

See "Step 1: Setting Initialization Parameters for Trace File Management" on

page 6-4.

2. Enable the SQL trace facility for the desired session, and run your application.

This step produces a trace file containing statistics for the SQL statements

issued by the application.

See "Step 2: Enabling the SQL Trace Facility" on page 6-5.

3. Run TKPROF to translate the trace file created in Step 2 into a readable output

file. This step can optionally create a SQL script that can be used to store the

statistics in a database.

See "Step 3: Formatting Trace Files with TKPROF" on page 6-6.

4. Interpret the output file created in Step 3.

See "Step 4: Interpreting TKPROF Output" on page 6-11.

5. Optionally, run the SQL script produced in Step 3 to store the statistics in the

database.

See "Step 5: Storing SQL Trace Facility Statistics" on page 6-16.

In the following sections, each of these steps is discussed in depth.

Using the SQL Trace Facility and TKPROF

6-4 Oracle8i Designing and Tuning for Performance

Step 1: Setting Initialization Parameters for Trace File Management
When the SQL trace facility is enabled for a session, Oracle generates a trace file

containing statistics for traced SQL statements for that session. When the SQL trace

facility is enabled for an instance, Oracle creates a separate trace file for each process.

Before enabling the SQL trace facility, you should:

1. Check settings of the TIMED_STATISTICS , MAX_DUMP_FILE_SIZE, and

USER_DUMP_DEST initialization parameters.

2. Devise a way of recognizing the resulting trace file.

Be sure you know how to distinguish the trace files by name. Oracle writes

them to the user dump destination specified by USER_DUMP_DEST. However,

this directory may soon contain many hundreds of files, usually with generated

names. It may be difficult to match trace files back to the session or process that

created them. You can tag trace files by including in your programs a statement

like SELECT ’program name ’ FROM DUAL. You can then trace each file back to

the process that created it.

Table 6–1 SQL Trace Facility Dynamic Initialization Parameters

Parameter Description

TIMED_STATISTICS This enables and disables the collection of timed statistics, such as
CPU and elapsed times, by the SQL trace facility, as well as the
collection of various statistics in the dynamic performance tables.
The default value of false disables timing. A value of true enables
timing. Enabling timing causes extra timing calls for low-level
operations. This is a dynamic parameter. It is also a session
parameter.

MAX_DUMP_FILE_SIZE When the SQL trace facility is enabled at the instance level, every call
to the server produces a text line in a file in your operating system’s
file format. The maximum size of these files (in operating system
blocks) is limited by this initialization parameter. The default is 500.
If you find that your trace output is truncated, then increase the
value of this parameter before generating another trace file. This is a
dynamic parameter. It is also a session parameter.

USER_DUMP_DEST This must fully specify the destination for the trace file according to
the conventions of your operating system. The default value is the
default destination for system dumps on your operating system.This
value can be modified with ALTER SYSTEM SET USER_DUMP_DEST=
newdir. This is a dynamic parameter. It is also a session parameter.

Using the SQL Trace Facility and TKPROF

Using SQL Trace and TKPROF 6-5

3. If your operating system retains multiple versions of files, then be sure your

version limit is high enough to accommodate the number of trace files you

expect the SQL trace facility to generate.

4. The generated trace files may be owned by an operating system user other than

yourself. This user must make the trace files available to you before you can use

TKPROF to format them.

Step 2: Enabling the SQL Trace Facility
To enable the SQL trace facility for your current session, enter the following:

ALTER SESSION SET SQL_TRACE = true;

Alternatively, you can enable the SQL trace facility for your session by using the

DBMS_SESSION.SET_SQL_TRACE procedure.

You can enable SQL trace in another session by using the DBMS_SYSTEM.SET_SQL_
TRACE_IN_SESSION procedure.

To disable the SQL trace facility for your session, enter:

ALTER SESSION SET SQL_TRACE = false;

The SQL trace facility is automatically disabled for your session when your

application disconnects from Oracle.

To enable the SQL trace facility for your instance, set the value of the SQL_TRACE
initialization parameter to true . Statistics are collected for all sessions.

Caution: Because running the SQL trace facility increases system

overhead, you should enable it only when tuning your SQL

statements, and disable it when you are finished.

Setting SQL_TRACE to true can have a severe performance impact.

For more information, see Oracle8i Reference.

Note: You may need to modify your application to contain the

ALTER SESSION statement. For example, to issue the ALTER
SESSION statement in Oracle Forms, invoke Oracle Forms using

the -s option, or invoke Oracle Forms (Design) using the

statistics option. For more information on Oracle Forms, see

the Oracle Forms Reference.

Using the SQL Trace Facility and TKPROF

6-6 Oracle8i Designing and Tuning for Performance

ALTER SYSTEM SET SQL_TRACE = true;

After the SQL trace facility has been enabled for the instance, you can disable it for

the instance by entering:

ALTER SYSTEM SET SQL_TRACE = false;

Step 3: Formatting Trace Files with TKPROF
TKPROF accepts as input a trace file produced by the SQL trace facility, and it

produces a formatted output file. TKPROF can also be used to generate execution

plans.

After the SQL trace facility has generated a number of trace files, you can:

■ Run TKPROF on each individual trace file, producing a number of formatted

output files, one for each session.

■ Concatenate the trace files, and then run TKPROF on the result to produce a

formatted output file for the entire instance.

TKPROF does not report COMMITs and ROLLBACKs that are recorded in the trace

file.

Sample TKPROF Output
Sample output from TKPROF is as follows:

SELECT * FROM emp, dept
WHERE emp.deptno = dept.deptno;

call count cpu elapsed disk query current rows
---- ------- ------- --------- -------- -------- ------- ------
Parse 1 0.16 0.29 3 13 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.03 0.26 2 2 4 14

Misses in library cache during parse: 1
Parsing user id: (8) SCOTT

Rows Execution Plan
------- ---

14 MERGE JOIN
 4 SORT JOIN
 4 TABLE ACCESS (FULL) OF ’DEPT’
14 SORT JOIN
14 TABLE ACCESS (FULL) OF ’EMP’

Using the SQL Trace Facility and TKPROF

Using SQL Trace and TKPROF 6-7

For this statement, TKPROF output includes the following information:

■ The text of the SQL statement.

■ The SQL trace statistics in tabular form.

■ The number of library cache misses for the parsing and execution of the

statement.

■ The user initially parsing the statement.

■ The execution plan generated by EXPLAIN PLAN.

TKPROF also provides a summary of user level statements and recursive SQL calls

for the trace file.

Using the SQL Trace Facility and TKPROF

6-8 Oracle8i Designing and Tuning for Performance

Syntax of TKPROF
Invoke TKPROF using the following syntax:

If you invoke TKPROF without arguments, then online help is displayed.

Use the following arguments with TKPROF:

Table 6–2 TKPROF Arguments

Argument Meaning

filename1 Specifies the input file, a trace file containing statistics produced by the SQL trace facility.
This file can be either a trace file produced for a single session, or a file produced by
concatenating individual trace files from multiple sessions.

filename2 Specifies the file to which TKPROF writes its formatted output.

TKPROF filename1 filename2
SORT =

option

(option

,

)

tkprof_command

PRINT = integer AGGREGATE =

YES

NO
INSERT = filename3

TABLE = schema.table
EXPLAIN = user/password

RECORD = filename

SYS =

YES

NO

Using the SQL Trace Facility and TKPROF

Using SQL Trace and TKPROF 6-9

SORT Sorts traced SQL statements in descending order of specified sort option before listing them
into the output file. If more than one option is specified, then the output is sorted in
descending order by the sum of the values specified in the sort options. If you omit this
parameter, then TKPROF lists statements into the output file in order of first use. Sort options
are listed below:

PRSCNT Number of times parsed.

PRSCPU CPU time spent parsing.

PRSELA Elapsed time spent parsing.

PRSDSK Number of physical reads from disk during parse.

PRSQRY Number of consistent mode block reads during parse.

PRSCU Number of current mode block reads during parse.

PRSMIS Number of library cache misses during parse.

EXECNT Number of executes.

EXECPU CPU time spent executing.

EXEELA Elapsed time spent executing.

EXEDSK Number of physical reads from disk during execute.

EXEQRY Number of consistent mode block reads during execute.

EXECU Number of current mode block reads during execute.

EXEROW Number of rows processed during execute.

EXEMIS Number of library cache misses during execute.

FCHCNT Number of fetches.

FCHCPU CPU time spent fetching.

FCHELA Elapsed time spent fetching.

FCHDSK Number of physical reads from disk during fetch.

FCHQRY Number of consistent mode block reads during fetch.

FCHCU Number of current mode block reads during fetch.

FCHROW Number of rows fetched.

PRINT Lists only the first integer sorted SQL statements from the output file. If you omit this
parameter, then TKPROF lists all traced SQL statements. This parameter does not affect the
optional SQL script. The SQL script always generates insert data for all traced SQL
statements.

Table 6–2 TKPROF Arguments

Using the SQL Trace Facility and TKPROF

6-10 Oracle8i Designing and Tuning for Performance

TKPROF Statement Examples
This section provides two brief examples of TKPROF usage. For an complete

example of TKPROF output, see "TKPROF Output Example" on page 6-22.

Example 1 If you are processing a large trace file using a combination of SORT
parameters and the PRINT parameter, then you can produce a TKPROF output file

AGGREGATE If you specify AGGREGATE = NO, then TKPROF does not aggregate multiple users of the same
SQL text.

INSERT Creates a SQL script that stores the trace file statistics in the database. TKPROF creates this
script with the name filename3 . This script creates a table and inserts a row of statistics for
each traced SQL statement into the table.

SYS Enables and disables the listing of SQL statements issued by the user SYS, or recursive SQL
statements, into the output file. The default value of YES causes TKPROF to list these
statements. The value of NO causes TKPROF to omit them. This parameter does not affect the
optional SQL script. The SQL script always inserts statistics for all traced SQL statements,
including recursive SQL statements.

TABLE Specifies the schema and name of the table into which TKPROF temporarily places execution
plans before writing them to the output file. If the specified table already exists, then TKPROF
deletes all rows in the table, uses it for the EXPLAIN PLAN statement (which writes more
rows into the table), and then deletes those rows. If this table does not exist, then TKPROF
creates it, uses it, and then drops it.

The specified user must be able to issue INSERT, SELECT, and DELETEstatements against the
table. If the table does not already exist, then the user must also be able to issue CREATE
TABLE and DROP TABLE statements. For the privileges to issue these statements, see the
Oracle8i SQL Reference.

This option allows multiple individuals to run TKPROF concurrently with the same user in
the EXPLAIN value. These individuals can specify different TABLE values and avoid
destructively interfering with each other’s processing on the temporary plan table.

If you use the EXPLAIN parameter without the TABLEparameter, then TKPROFuses the table
PROF$PLAN_TABLE in the schema of the user specified by the EXPLAIN parameter. If you
use the TABLE parameter without the EXPLAIN parameter, then TKPROF ignores the TABLE
parameter.

EXPLAIN Determines the execution plan for each SQL statement in the trace file and writes these
execution plans to the output file. TKPROF determines execution plans by issuing the
EXPLAIN PLAN statement after connecting to Oracle with the user and password specified in
this parameter. The specified user must have CREATE SESSION system privileges. TKPROF
takes longer to process a large trace file if the EXPLAIN option is used.

RECORD Creates a SQL script with the specified filename with all of the nonrecursive SQL in the trace
file. This can be used to replay the user events from the trace file.

Table 6–2 TKPROF Arguments

Using the SQL Trace Facility and TKPROF

Using SQL Trace and TKPROF 6-11

containing only the highest resource-intensive statements. For example, the

following statement prints the ten statements in the trace file that have generated

the most physical I/O:

TKPROF ora53269.trc ora53269.prf SORT = (PRSDSK, EXEDSK, FCHDSK) PRINT = 10

Example 2 This example runs TKPROF, accepts a trace file named dlsun12_jane_
fg_sqlplus_007 .trc , and writes a formatted output file named outputa .prf :

TKPROF dlsun12_jane_fg_sqlplus_007.trc OUTPUTA.PRF
EXPLAIN=scott/tiger TABLE=scott.temp_plan_table_a INSERT=STOREA.SQL SYS=NO
SORT=(EXECPU,FCHCPU)

This example is likely to be longer than a single line on your screen and you may

need to use continuation characters, depending on your operating system.

Note the other parameters in this example:

■ The EXPLAIN value causes TKPROF to connect as the user scott and use the

EXPLAIN PLAN statement to generate the execution plan for each traced SQL

statement. You can use this to get access paths and row source counts.

■ The TABLE value causes TKPROF to use the table temp_plan_table_a in the

schema scott as a temporary plan table.

■ The INSERT value causes TKPROFto generate a SQL script named STOREA.SQL
that stores statistics for all traced SQL statements in the database.

■ The SYS parameter with the value of NO causes TKPROF to omit recursive SQL

statements from the output file. In this way you can ignore internal Oracle

statements such as temporary table operations.

■ The SORT value causes TKPROF to sort the SQL statements in order of the sum

of the CPU time spent executing and the CPU time spent fetching rows before

writing them to the output file. For greatest efficiency, always use SORT
parameters.

Step 4: Interpreting TKPROF Output
This section provides pointers for interpreting TKPROF output.

■ Tabular Statistics

■ Library Cache Misses

■ Statement Truncation

Using the SQL Trace Facility and TKPROF

6-12 Oracle8i Designing and Tuning for Performance

■ User Issuing the SQL Statement

■ Execution Plan

■ Deciding Which Statements to Tune

While TKPROF provides a very useful analysis, the most accurate measure of

efficiency is the actual performance of the application in question. At the end of the

TKPROF output is a summary of the work done in the database engine by the

process during the period that the trace was running.

Tabular Statistics
TKPROF lists the statistics for a SQL statement returned by the SQL trace facility in

rows and columns. Each row corresponds to one of three steps of SQL statement

processing. Statistics are identified by the value of the CALL column:

The other columns of the SQL trace facility output are combined statistics for all

parses, all executes, and all fetches of a statement. The sum of query and current
is the total number of buffers accessed.

PARSE This translates the SQL statement into an execution plan, including

checks for proper security authorization and checks for the existence of

tables, columns, and other referenced objects.

EXECUTE This is the actual execution of the statement by Oracle. For INSERT,

UPDATE, and DELETE statements, this modifies the data. For SELECT
statements, this identifies the selected rows.

FETCH This retrieves rows returned by a query. Fetches are only performed for

SELECT statements.

COUNT Number of times a statement was parsed, executed, or fetched.

CPU Total CPU time in seconds for all parse, execute, or fetch calls for

the statement. This value is zero (0) if TIMED_STATISTICS is not

turned on.

ELAPSED Total elapsed time in seconds for all parse, execute, or fetch calls

for the statement. This value is zero (0) if TIMED_STATISTICS is

not turned on.

DISK Total number of data blocks physically read from the datafiles on

disk for all parse, execute, or fetch calls.

Using the SQL Trace Facility and TKPROF

Using SQL Trace and TKPROF 6-13

Statistics about the processed rows appear in the ROWS column.

For SELECTstatements, the number of rows returned appears for the fetch step. For

UPDATE, DELETE, and INSERT statements, the number of rows processed appears

for the execute step.

Resolution of Statistics
Timing statistics have a resolution of one hundredth of a second; therefore, any

operation on a cursor that takes a hundredth of a second or less may not be timed

accurately. Keep this in mind when interpreting statistics. In particular, be careful

when interpreting the results from simple queries that execute very quickly.

Recursive Calls
Sometimes, in order to execute a SQL statement issued by a user, Oracle must issue

additional statements. Such statements are called recursive calls or recursive SQL
statements. For example, if you insert a row into a table that does not have enough

space to hold that row, then Oracle makes recursive calls to allocate the space

dynamically. Recursive calls are also generated when data dictionary information is

not available in the data dictionary cache and must be retrieved from disk.

QUERY Total number of buffers retrieved in consistent mode for all parse,

execute, or fetch calls. Buffers are usually retrieved in consistent

mode for queries.

CURRENT Total number of buffers retrieved in current mode. Buffers are

retrieved in current mode for statements such as INSERT,

UPDATE, and DELETE.

ROWS Total number of rows processed by the SQL statement. This total

does not include rows processed by subqueries of the SQL

statement.

Note: The row source counts are displayed when a cursor is

closed. In SQL*Plus, there is only one user cursor, so each statement

executed causes the previous cursor to be closed; for this reason,

the row source counts are displayed. PL/SQL has its own cursor

handling and does not close child cursors when the parent cursor is

closed. Exiting (or reconnecting) causes the counts to be displayed.

Using the SQL Trace Facility and TKPROF

6-14 Oracle8i Designing and Tuning for Performance

If recursive calls occur while the SQL trace facility is enabled, then TKPROF
produces statistics for the recursive SQL statements and marks them clearly as

recursive SQL statements in the output file. You can suppress the listing of Oracle

internal recursive calls (e.g., space management) in the output file by setting the

SYScommand-line parameter to NO. The statistics for a recursive SQL statement are

included in the listing for that statement, not in the listing for the SQL statement

that caused the recursive call. So, when you are calculating the total resources

required to process a SQL statement, you should consider the statistics for that

statement as well as those for recursive calls caused by that statement.

Library Cache Misses
TKPROF also lists the number of library cache misses resulting from parse and

execute steps for each SQL statement. These statistics appear on separate lines

following the tabular statistics. If the statement resulted in no library cache misses,

then TKPROF does not list the statistic. In "Sample TKPROF Output" on page 6-6,

the statement resulted in one library cache miss for the parse step, and no misses for

the execute step.

Statement Truncation
The following SQL statements are truncated to 25 characters in the SQL trace file:

SET ROLE
GRANT
ALTER USER
ALTER ROLE
CREATE USER
CREATE ROLE

User Issuing the SQL Statement
TKPROF also lists the user ID of the user issuing each SQL statement. If the SQL

trace input file contained statistics from multiple users and the statement was

issued by more than one user, then TKPROF lists the ID of the last user to parse the

statement. The user ID of all database users appears in the data dictionary in the

column ALL_USERS.USER_ID.

Note: Recursive SQL statistics are not included for SQL-level

operations. However, recursive SQL statistics are included for

operations done below the SQL level, such as triggers. For more

information, see "The Trigger Trap" on page 6-22.

Using the SQL Trace Facility and TKPROF

Using SQL Trace and TKPROF 6-15

Execution Plan
If you specify the EXPLAIN parameter on the TKPROF statement line, then TKPROF
uses the EXPLAIN PLAN statement to generate the execution plan of each SQL

statement traced. TKPROF also displays the number of rows processed by each step

of the execution plan.

Deciding Which Statements to Tune
You need to find which SQL statements use the most CPU or disk resource.

If the TIMED_STATISTICS parameter is on, then you can find high CPU activity in

the CPU column. If TIMED_STATISTICS is not on, then check the QUERY and

CURRENT columns.

With the exception of locking problems and inefficient PL/SQL loops, neither the

CPU time nor the elapsed time are necessary to find problem statements. The key is

the number of block visits, both query (that is, subject to read consistency) and

current (that is, not subject to read consistency). Segment headers and blocks that

are going to be updated are always acquired in current mode, but all query and

subquery processing requests the data in query mode. These are precisely the same

measures as the instance statistics CONSISTENT GETS and DB BLOCK GETS.

You can find high disk activity in the disk column.

The following listing shows TKPROF output for one SQL statement as it appears in

the output file:

Note: Trace files generated immediately after instance startup

contain data that reflects the activity of the startup process. In

particular, they reflect a disproportionate amount of I/O activity as

caches in the system global area (SGA) are filled. For the purposes

of tuning, ignore such trace files.

See Also: Chapter 5, "Using EXPLAIN PLAN" has more

information on interpreting execution plans.

See Also: For examples of finding resource intensive statements,

see "TKPROF Statement Examples" on page 6-10.

Using the SQL Trace Facility and TKPROF

6-16 Oracle8i Designing and Tuning for Performance

SELECT *
FROM emp, dept
WHERE emp.deptno = dept.deptno;

call count cpu elapsed disk query current rows
---- ------- ------- --------- -------- -------- ------- ------
Parse 11 0.08 0.18 0 0 0 0
Execute 11 0.23 0.66 0 3 6 0
Fetch 35 6.70 6.83 100 12326 2 824
--
total 57 7.01 7.67 100 12329 8 826

Misses in library cache during parse: 0

If it is acceptable to have 7.01 CPU seconds and to retrieve 824 rows, then you need

not look any further at this trace output. In fact, a major use of TKPROF reports in a

tuning exercise is to eliminate processes from the detailed tuning phase.

You can also see that 10 unnecessary parse call were made (because there were 11

parse calls for this one statement) and that array fetch operations were performed.

You know this because more rows were fetched than there were fetches performed.

Step 5: Storing SQL Trace Facility Statistics
You may want to keep a history of the statistics generated by the SQL trace facility

for your application, and compare them over time. TKPROF can generate a SQL

script that creates a table and inserts rows of statistics into it. This script contains:

■ A CREATE TABLE statement that creates an output table named TKPROF_
TABLE.

■ INSERT statements that add rows of statistics, one for each traced SQL

statement, to the TKPROF_TABLE.

After running TKPROF, you can run this script to store the statistics in the database.

Generating the TKPROF Output SQL Script
When you run TKPROF, use the INSERT parameter to specify the name of the

generated SQL script. If you omit this parameter, then TKPROF does not generate a

script.

Using the SQL Trace Facility and TKPROF

Using SQL Trace and TKPROF 6-17

Editing the TKPROF Output SQL Script
After TKPROF has created the SQL script, you may want to edit the script before

running it. If you have already created an output table for previously collected

statistics and you want to add new statistics to this table, then remove the CREATE
TABLE statement from the script. The script then inserts the new rows into the

existing table.

If you have created multiple output tables, perhaps to store statistics from different

databases in different tables, then edit the CREATE TABLE and INSERT statements

to change the name of the output table.

Querying the Output Table
The following CREATE TABLE statement creates the TKPROF_TABLE:

CREATE TABLE TKPROF_TABLE (
DATE_OF_INSERT DATE,
CURSOR_NUM NUMBER,
DEPTH NUMBER,
USER_ID NUMBER,
PARSE_CNT NUMBER,
PARSE_CPU NUMBER,
PARSE_ELAP NUMBER,
PARSE_DISK NUMBER,
PARSE_QUERY NUMBER,
PARSE_CURRENT NUMBER,
PARSE_MISS NUMBER,
EXE_COUNT NUMBER,
EXE_CPU NUMBER,
EXE_ELAP NUMBER,
EXE_DISK NUMBER,
EXE_QUERY NUMBER,
EXE_CURRENT NUMBER,
EXE_MISS NUMBER,
EXE_ROWS NUMBER,
FETCH_COUNT NUMBER,
FETCH_CPU NUMBER,
FETCH_ELAP NUMBER,
FETCH_DISK NUMBER,
FETCH_QUERY NUMBER,
FETCH_CURRENT NUMBER,
FETCH_ROWS NUMBER,
CLOCK_TICKS NUMBER,
SQL_STATEMENT LONG);

Using the SQL Trace Facility and TKPROF

6-18 Oracle8i Designing and Tuning for Performance

Most output table columns correspond directly to the statistics that appear in the

formatted output file. For example, the PARSE_CNT column value corresponds to

the count statistic for the parse step in the output file.

These columns help you identify a row of statistics:

The output table does not store the statement’s execution plan. The following query

returns the statistics from the output table. These statistics correspond to the

formatted output shown in the section "Sample TKPROF Output" on page 6-6.

SELECT * FROM TKPROF_TABLE;

Oracle responds with something similar to:

DATE_OF_INSERT CURSOR_NUM DEPTH USER_ID PARSE_CNT PARSE_CPU PARSE_ELAP
-------------- ---------- ----- ------- --------- --------- ----------
21-DEC-1998 1 0 8 1 16 22

PARSE_DISK PARSE_QUERY PARSE_CURRENT PARSE_MISS EXE_COUNT EXE_CPU
---------- ----------- ------------- ---------- --------- -------
 3 11 0 1 1 0

SQL_STATEMENT This is the SQL statement for which the SQL trace facility collected

the row of statistics. Because this column has datatype LONG, you

cannot use it in expressions or WHERE clause conditions.

DATE_OF_INSERT This is the date and time when the row was inserted into the table. This

value is not exactly the same as the time the statistics were collected by

the SQL trace facility.

DEPTH This indicates the level of recursion at which the SQL statement

was issued. For example, a value of 0 indicates that a user issued

the statement. A value of 1 indicates that Oracle generated the

statement as a recursive call to process a statement with a value of

0 (a statement issued by a user). A value of n indicates that Oracle

generated the statement as a recursive call to process a statement with a

value of n-1.

USER_ID This identifies the user issuing the statement. This value also

appears in the formatted output file.

CURSOR_NUM Oracle uses this column value to keep track of the cursor to which

each SQL statement was assigned.

Avoiding Pitfalls in TKPROF Interpretation

Using SQL Trace and TKPROF 6-19

EXE_ELAP EXE_DISK EXE_QUERY EXE_CURRENT EXE_MISS EXE_ROWS FETCH_COUNT
-------- -------- --------- ----------- -------- -------- -----------
 0 0 0 0 0 0 1

FETCH_CPU FETCH_ELAP FETCH_DISK FETCH_QUERY FETCH_CURRENT FETCH_ROWS
--------- ---------- ---------- ----------- ------------- ----------
 2 20 2 2 4 10

SQL_STATEMENT

SELECT * FROM EMP, DEPT WHERE EMP.DEPTNO = DEPT.DEPTNO

Avoiding Pitfalls in TKPROF Interpretation
This section describes some fine points of TKPROF interpretation:

■ The Argument Trap

■ The Read Consistency Trap

■ The Schema Trap

■ The Time Trap

■ The Trigger Trap

The Argument Trap
If you are not aware of the values being bound at run time, then it is possible to fall

into the "argument trap". EXPLAIN PLAN cannot determine the type of a bind

variable from the text of SQL statements, and it always assumes that the type is

varchar . If the bind variable is actually a number or a date, then TKPROF can

cause implicit data conversions, which can cause inefficient plans to be executed. To

avoid this, you should experiment with different data types in your query.

The Read Consistency Trap
The next example illustrates the read consistency trap. Without knowing that an

uncommitted transaction had made a series of updates to the NAME column it is

very difficult to see why so many block visits would be incurred.

See Also: "EXPLAIN PLAN Restrictions" on page 5-23 has

information about TKPROF and bind variables.

Avoiding Pitfalls in TKPROF Interpretation

6-20 Oracle8i Designing and Tuning for Performance

Cases like this are not normally repeatable: if the process were run again, it is

unlikely that another transaction would interact with it in the same way.

SELECT name_id
FROM cq_names
WHERE name = ’FLOOR’;

call count cpu elapsed disk query current rows
---- ----- --- ------- ---- ----- ------- ----
Parse 1 0.10 0.18 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.11 0.21 2 101 0 1

Misses in library cache during parse: 1
Parsing user id: 01 (USER1)

Rows Execution Plan
---- --------- ----
 0 SELECT STATEMENT
 1 TABLE ACCESS (BY ROWID) OF ’CQ_NAMES’
 2 INDEX (RANGE SCAN) OF ’CQ_NAMES_NAME’ (NON_UNIQUE)

The Schema Trap
This example shows an extreme (and thus easily detected) example of the schema

trap. At first, it is difficult to see why such an apparently straightforward indexed

query needs to look at so many database blocks, or why it should access any blocks

at all in current mode.

SELECT name_id
FROM cq_names
WHERE name = ’FLOOR’;

call count cpu elapsed disk query current rows
-------- ------- -------- --------- ------- ------ ------- ----
Parse 1 0.06 0.10 0 0 0 0
Execute 1 0.02 0.02 0 0 0 0
Fetch 1 0.23 0.30 31 31 3 1

Misses in library cache during parse: 0
Parsing user id: 02 (USER2)

Avoiding Pitfalls in TKPROF Interpretation

Using SQL Trace and TKPROF 6-21

Rows Execution Plan
------- ---
 0 SELECT STATEMENT
 2340 TABLE ACCESS (BY ROWID) OF ’CQ_NAMES’
 0 INDEX (RANGE SCAN) OF ’CQ_NAMES_NAME’ (NON-UNIQUE)

Two statistics suggest that the query may have been executed with a full table scan.

These statistics are the current mode block visits, plus the number of rows

originating from the Table Access row source in the execution plan. The explanation

is that the required index was built after the trace file had been produced, but

before TKPROF had been run.

Generating a new trace file gives the data below:

SELECT name_id
FROM cq_names
WHERE name = ’FLOOR’;

call count cpu elapsed disk query current rows
----- ------ ------ -------- ----- ------ ------- -----
Parse 1 0.01 0.02 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 2 0 1

Misses in library cache during parse: 0
Parsing user id: 02 (USER2)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT
 1 TABLE ACCESS (BY ROWID) OF ’CQ_NAMES’
 2 INDEX (RANGE SCAN) OF ’CQ_NAMES_NAME’ (NON-UNIQUE)

One of the marked features of this correct version is that the parse call took 10

milliseconds of CPU time and 20 milliseconds of elapsed time, but the query

apparently took no time at all to execute and perform the fetch. These anomalies

arise because the clock tick of 10 milliseconds is too long relative to the time taken

to execute and fetch the data. In such cases, it is important to get lots of executions

of the statements, so that you have statistically valid numbers.

The Time Trap
Sometimes, as in the following example, you may wonder why a particular query

has taken so long.

TKPROF Output Example

6-22 Oracle8i Designing and Tuning for Performance

UPDATE cq_names SET ATTRIBUTES = lower(ATTRIBUTES)
WHERE ATTRIBUTES = :att

call count cpu elapsed disk query current rows
-------- ------- -------- --------- -------- -------- ------- ----------
Parse 1 0.06 0.24 0 0 0 0
Execute 1 0.62 19.62 22 526 12 7
Fetch 0 0.00 0.00 0 0 0 0

Misses in library cache during parse: 1
Parsing user id: 02 (USER2)

Rows Execution Plan
------- ---
 0 UPDATE STATEMENT
 2519 TABLE ACCESS (FULL) OF ’CQ_NAMES’

Again, the answer is interference from another transaction. In this case, another

transaction held a shared lock on the table cq_names for several seconds before

and after the update was issued. It takes a fair amount of experience to diagnose

that interference effects are occurring. On the one hand, comparative data is

essential when the interference is contributing only a short delay (or a small

increase in block visits in the previous example). On the other hand, if the

interference is contributing only a modest overhead, and the statement is essentially

efficient, then its statistics may never have to be subjected to analysis.

The Trigger Trap
The resources reported for a statement include those for all of the SQL issued while

the statement was being processed. Therefore, they include any resources used

within a trigger, along with the resources used by any other recursive SQL (such as

that used in space allocation). With the SQL trace facility enabled, TKPROF reports

these resources twice. Avoid trying to tune the DML statement if the resource is

actually being consumed at a lower level of recursion.

You may need to inspect the raw trace file to see exactly where the resource is being

expended. The entries for recursive SQL follow the PARSING IN CURSOR entry for

the user’s statement. Within the trace file, the order is less easily defined.

TKPROF Output Example
This section provides an extensive example of TKPROF output. Portions have been

edited out for the sake of brevity.

TKPROF Output Example

Using SQL Trace and TKPROF 6-23

Header
Copyright (c) Oracle Corporation 1979, 1999. All rights reserved.
Trace file: v80_ora_2758.trc
Sort options: default
**
count = number of times OCI procedure was executed
cpu = cpu time in seconds executing
elapsed = elapsed time in seconds executing
disk = number of physical reads of buffers from disk
query = number of buffers gotten for consistent read
current = number of buffers gotten in current mode (usually for update)
rows = number of rows processed by the fetch or execute call
**
The following statement encountered a error during parse:
select deptno, avg(sal) from emp e group by deptno
 having exists (select deptno from dept
 where dept.deptno = e.deptno
 and dept.budget > avg(e.sal)) order by 1
Error encountered: ORA-00904
**

Body
ALTER SESSION SET SQL_TRACE = true
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 0 0.00 0.00 0 0 0 0
Execute 1 0.00 0.10 0 0 0 0
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 1 0.00 0.10 0 0 0 0
Misses in library cache during parse: 0
Misses in library cache during execute: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
**
SELECT emp.ename, dept.dname
FROM emp, dept
 WHERE emp.deptno = dept.deptno

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.11 0.13 2 0 1 0
Execute 1 0.00 0.00 0 0 0 0

TKPROF Output Example

6-24 Oracle8i Designing and Tuning for Performance

Fetch 1 0.00 0.00 2 2 4 14
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.11 0.13 4 2 5 14
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 14 MERGE JOIN
 4 SORT (JOIN)
 4 TABLE ACCESS (FULL) OF ’DEPT’
 14 SORT (JOIN)
 14 TABLE ACCESS (FULL) OF ’EMP’

**
SELECT a.ename name, b.ename manager
FROM emp a, emp b
 WHERE a.mgr = b.empno(+)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.01 0.01 1 50 2 14
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.02 0.02 1 50 2 14
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 01 (USER01)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 13 NESTED LOOPS (OUTER)
 14 TABLE ACCESS (FULL) OF ’EMP’
 13 TABLE ACCESS (BY ROWID) OF ’EMP’
 26 INDEX (RANGE SCAN) OF ’EMP_IND’ (NON-UNIQUE)
**
SELECT ename, job, sal
FROM emp
WHERE sal =
 (SELECT max(sal)
 FROM emp)

call count cpu elapsed disk query current rows

TKPROF Output Example

Using SQL Trace and TKPROF 6-25

------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 12 4 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.00 0.00 0 12 4 1
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 01 (USER01)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 14 FILTER
 14 TABLE ACCESS (FULL) OF ’EMP’
 14 SORT (AGGREGATE)
 14 TABLE ACCESS (FULL) OF ’EMP’
**
SELECT deptno
FROM emp
WHERE job = ’clerk’
GROUP BY deptno
HAVING COUNT(*) >= 2

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 1 1 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.00 0.00 0 1 1 0
Misses in library cache during parse: 13
Optimizer goal: CHOOSE
Parsing user id: 01 (USER01)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 0 FILTER
 0 SORT (GROUP BY)
 14 TABLE ACCESS (FULL) OF ’EMP’
**
SELECT dept.deptno, dname, job, ename
FROM dept,emp
WHERE dept.deptno = emp.deptno(+)
ORDER BY dept.deptno

TKPROF Output Example

6-26 Oracle8i Designing and Tuning for Performance

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 3 3 10
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.00 0.00 0 3 3 10
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 01 (USER01)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 14 MERGE JOIN (OUTER)
 4 SORT (JOIN)
 4 TABLE ACCESS (FULL) OF ’DEPT’
 14 SORT (JOIN)
 14 TABLE ACCESS (FULL) OF ’EMP’
**
SELECT grade, job, ename, sal
FROM emp, salgrade
WHERE sal BETWEEN losal AND hisal
ORDER BY grade, job

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.04 0.06 2 16 1 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.01 0.01 1 10 12 10
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.05 0.07 3 26 13 10
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 14 SORT (ORDER BY)
 14 NESTED LOOPS
 5 TABLE ACCESS (FULL) OF ’SALGRADE’
 70 TABLE ACCESS (FULL) OF ’EMP’
**
SELECT LPAD(’ ’,level*2)||ename org_chart, level, empno, mgr, job, deptno
FROM emp
CONNECT BY prior empno = mgr

TKPROF Output Example

Using SQL Trace and TKPROF 6-27

START WITH ename = ’clark’
 OR ename = ’blake’
ORDER BY deptno

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.01 0.01 0 1 2 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.02 0.02 0 1 2 0
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 0 SORT (ORDER BY)
 0 CONNECT BY
 14 TABLE ACCESS (FULL) OF ’EMP’
 0 TABLE ACCESS (BY ROWID) OF ’EMP’
 0 TABLE ACCESS (FULL) OF ’EMP’
**
CREATE TABLE TKOPTKP (a number, b number)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.01 0.01 1 0 1 0
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 0.01 0.01 1 0 1 0
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 CREATE TABLE STATEMENT GOAL: CHOOSE

**
INSERT INTO TKOPTKP
VALUES (1,1)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------

TKPROF Output Example

6-28 Oracle8i Designing and Tuning for Performance

Parse 1 0.07 0.09 0 0 0 0
Execute 1 0.01 0.20 2 2 3 1
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 0.08 0.29 2 2 3 1
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 INSERT STATEMENT GOAL: CHOOSE

**
INSERT INTO TKOPTKP SELECT * FROM TKOPTKP

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.02 0.02 0 2 3 11
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 0.02 0.02 0 2 3 11
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 INSERT STATEMENT GOAL: CHOOSE
 12 TABLE ACCESS (FULL) OF ’TKOPTKP’
**
SELECT *
FROM TKOPTKP
WHERE a > 2

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 1 2 10
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.01 0.01 0 1 2 10
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan

TKPROF Output Example

Using SQL Trace and TKPROF 6-29

------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 24 TABLE ACCESS (FULL) OF ’TKOPTKP’
**

Summary
OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 18 0.40 0.53 30 182 3 0
Execute 19 0.05 0.41 3 7 10 16
Fetch 12 0.05 0.06 4 105 66 78
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 49 0.50 1.00 37 294 79 94
Misses in library cache during parse: 18
Misses in library cache during execute: 1

OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 69 0.49 0.60 9 12 8 0
Execute 103 0.13 0.54 0 0 0 0
Fetch 213 0.12 0.27 40 435 0 162
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 385 0.74 1.41 49 447 8 162
Misses in library cache during parse: 13
 19 user SQL statements in session.
 69 internal SQL statements in session.
 88 SQL statements in session.
 17 statements EXPLAINed in this session.
**
Trace file: v80_ora_2758.trc
Trace file compatibility: 7.03.02
Sort options: default
 1 session in tracefile.
 19 user SQL statements in trace file.
 69 internal SQL statements in trace file.
 88 SQL statements in trace file.
 41 unique SQL statements in trace file.
 17 SQL statements EXPLAINed using schema:
 SCOTT.prof$plan_table
 Default table was used.
 Table was created.
 Table was dropped.

TKPROF Output Example

6-30 Oracle8i Designing and Tuning for Performance

 1017 lines in trace file.

Using Optimizer Hints 7-1

7
Using Optimizer Hints

This chapter offers recommendations on how to use cost-based optimizer hints to

enhance Oracle performance.

This chapter contains the following sections:

■ Understanding Hints

■ Using Hints

Understanding Hints

7-2 Oracle8i Designing and Tuning for Performance

Understanding Hints
As an application designer, you may know information about your data that the

optimizer does not know. For example, you may know that a certain index is more

selective for certain queries. Based on this information, you may be able to choose a

more efficient execution plan than the optimizer. In such a case, use hints to force

the optimizer to use the optimal execution plan.

Hints allow you to make decisions usually made by the optimizer. You can use

hints to specify the following:

■ The optimization approach for a SQL statement.

■ The goal of the cost-based optimizer for a SQL statement.

■ The access path for a table accessed by the statement.

■ The join order for a join statement.

■ A join operation in a join statement.

Hints provide a mechanism to direct the optimizer to choose a certain query

execution plan based on the following criteria:

■ Join order

■ Join method

■ Access method

■ Parallelization

Hints (except for the RULE hint) invoke the cost-based optimizer (CBO). If you have

not gathered statistics, then defaults are used.

Specifying Hints
Hints apply only to the optimization of the statement block in which they appear. A

statement block is any one of the following statements or parts of statements:

■ A simple SELECT, UPDATE, or DELETE statement.

Note: The use of hints involves extra code that must also be

managed, checked, and controlled.

See Also: For more information on default values, see Chapter 8,

"Gathering Statistics".

Understanding Hints

Using Optimizer Hints 7-3

■ A parent statement or subquery of a complex statement.

■ A part of a compound query.

For example, a compound query consisting of two component queries combined by

the UNION operator has two statement blocks, one for each component query. For

this reason, hints in the first component query apply only to its optimization, not to

the optimization of the second component query.

You can send hints for a SQL statement to the optimizer by enclosing them in a

comment within the statement.

A statement block can have only one comment containing hints. This comment can

only follow the SELECT, UPDATE, or DELETE keyword.

The syntax diagrams show the syntax for hints contained in both styles of

comments that Oracle supports within a statement block.

or:

where:

See Also: For more information on comments, see Oracle8i SQL
Reference.

Exception: The APPEND hint follows the INSERT keyword.

SELECT

INSERT

UPDATE

DELETE

/*+
hint

text
*/

SELECT

INSERT

UPDATE

DELETE

– – +
hint

text

Understanding Hints

7-4 Oracle8i Designing and Tuning for Performance

If you specify hints incorrectly, then Oracle ignores them, but does not return an

error:

■ Oracle ignores hints if the comment containing them does not follow a DELETE,
SELECT, or UPDATE keyword.

■ Oracle ignores hints containing syntax errors, but considers other correctly

specified hints within the same comment.

■ Oracle ignores combinations of conflicting hints, but considers other hints

within the same comment.

■ Oracle ignores hints in all SQL statements in those environments that use

PL/SQL version 1, such as Forms version 3 triggers, Oracle Forms 4.5, and

Oracle Reports 2.5. Note: These hints can be passed to the server, but the server

ignores them.

Other conditions specific to index type appear later in this chapter.

The optimizer recognizes hints only when using the cost-based approach. If you

include a hint (except the RULE hint) in a statement block, then the optimizer

automatically uses the cost-based approach.

Specifying a Full Set of Hints
When using hints, in some cases, you may need to specify a full set of hints, so as to

ensure the optimal execution plan. For example, if you have a very complex query,

which consists of many table joins, and if you specify only the INDEX hint for a

given table, then the optimizer needs to determine the remaining access paths to be

used, as well as the corresponding join methods. Therefore, even though you gave

the INDEX hint, the optimizer may not necessarily use that hint, because the

DELETE
SELECT
UPDATE

Is a keyword that begins a statement block. Comments containing hints

can appear only after these keywords.

+ Causes Oracle to interpret the comment as a list of hints. The plus sign

must immediately follow the comment delimiter (no space is permitted).

hint Is one of the hints discussed in this section. If the comment contains

multiple hints, then each pair of hints must be separated by at least one

space.

text Is other commenting text that can be interspersed with the hints.

See Also: the "Using Hints" section on page 7-6 shows the syntax

of each hint.

Understanding Hints

Using Optimizer Hints 7-5

optimizer may have determined that the requested index cannot be used due to the

join methods and access paths selected by the optimizer. In this particular example,

we have specified the exact join order to be used, via the ORDERED hint, as well as

the join methods to be used on the different tables.

SELECT /*+ ORDERED INDEX (b, jl_br_balances_n1) USE_NL (j b)
 USE_NL (glcc glf) USE_MERGE (gp gsb) */
 b.application_id ,
 b.set_of_books_id ,
 b.personnel_id,
 p.vendor_id Personnel,
 p.segment1 PersonnelNumber,
 p.vendor_name Name
FROM jl_br_journals j,
 jl_br_balances b,
 gl_code_combinations glcc,
 fnd_flex_values_vl glf,
 gl_periods gp,
 gl_sets_of_books gsb,
 po_vendors p
WHERE

Using Hints Against Views
By default, hints do not propagate inside a complex view. For example, if you

specify a hint in your query that selects against a complex view, then that hint is not

honored, because it is not pushed inside the view.

Unless the hints are inside the base view, they may not be honored from a query

against the view.

Local vs. Global Hints
Table hints (i.e., hints that specify a table) normally refer to tables in the DELETE,
SELECT, or UPDATE statement in which the hint occurs, not to tables inside any

views or subqueries referenced by the statement. When you want to specify hints

for tables that appear inside views or subqueries, Oracle recommends using global

hints instead of embedding the hint in the view or subquery. Any table hint

described in this chapter can be transformed into a global hint by using an extended

syntax for the table name.

Note: If the view is a single-table, then the hint is not propagated.

Using Hints

7-6 Oracle8i Designing and Tuning for Performance

Using Hints

Hints for Optimization Approaches and Goals
The hints described in this section allow you to choose between the cost-based and

the rule-based optimization approaches. With the cost-based approach, this also

includes the goal of best throughput or best response time.

■ ALL_ROWS

■ FIRST_ROWS

■ CHOOSE

■ RULE

If a SQL statement has a hint specifying an optimization approach and goal, then

the optimizer uses the specified approach regardless of the presence or absence of

statistics, the value of the OPTIMIZER_MODE initialization parameter, and the

OPTIMIZER_MODE parameter of the ALTER SESSION statement.

ALL_ROWS
The ALL_ROWS hint explicitly chooses the cost-based approach to optimize a

statement block with a goal of best throughput (that is, minimum total resource

consumption).

The syntax of this hint is as follows:

For example, the optimizer uses the cost-based approach to optimize this statement

for best throughput:

See Also: For information on how to create global hints, see

"Global Hints" on page 7-37.

Note: The optimizer goal applies only to queries submitted

directly. Use hints to determine the access path for any SQL

statements submitted from within PL/SQL. The ALTER SESSION...
SET OPTIMIZER_MODE statement does not affect SQL that is run

from within PL/SQL.

/*+ ALL_ROWS */

Using Hints

Using Optimizer Hints 7-7

SELECT /*+ ALL_ROWS */ empno, ename, sal, job
FROM emp
WHERE empno = 7566;

FIRST_ROWS
The FIRST_ROWS hint explicitly chooses the cost-based approach to optimize a

statement block with a goal of best response time (minimum resource usage to

return first row).

This hint causes the optimizer to make the following choices:

■ If an index scan is available, then the optimizer may choose it over a full table

scan.

■ If an index scan is available, then the optimizer may choose a nested loops join

over a sort-merge join whenever the associated table is the potential inner table

of the nested loops.

■ If an index scan is made available by an ORDER BY clause, then the optimizer

may choose it to avoid a sort operation.

The syntax of this hint is as follows:

For example, the optimizer uses the cost-based approach to optimize this statement

for best response time:

SELECT /*+ FIRST_ROWS */ empno, ename, sal, job
FROM emp
WHERE empno = 7566;
The optimizer ignores this hint in DELETE and UPDATE statement blocks and in

SELECT statement blocks that contain any of the following syntax:

■ Set operators (UNION, INTERSECT, MINUS, UNION ALL)

■ GROUP BY clause

■ FOR UPDATE clause

■ Aggregate functions

■ DISTINCT operator

These statements cannot be optimized for best response time, because Oracle must

retrieve all rows accessed by the statement before returning the first row. If you

/*+ FIRST_ROWS */

Using Hints

7-8 Oracle8i Designing and Tuning for Performance

specify this hint in any of these statements, then the optimizer uses the cost-based

approach and optimizes for best throughput.

If you specify either the ALL_ROWS or the FIRST_ROWS hint in a SQL statement,

and if the data dictionary does not have statistics about tables accessed by the

statement, then the optimizer uses default statistical values (such as allocated

storage for such tables) to estimate the missing statistics and, subsequently, to

choose an execution plan.

These estimates may not be as accurate as those gathered by the DBMS_STATS
package. Therefore, use the DBMS_STATS package to gather statistics. If you specify

hints for access paths or join operations along with either the ALL_ROWS or FIRST_
ROWS hint, then the optimizer gives precedence to the access paths and join

operations specified by the hints.

CHOOSE
The CHOOSE hint causes the optimizer to choose between the rule-based and

cost-based approaches for a SQL statement. The optimizer bases its selection on the

presence of statistics for the tables accessed by the statement. If the data dictionary

has statistics for at least one of these tables, then the optimizer uses the cost-based

approach and optimizes with the goal of best throughput. If the data dictionary

does not have statistics for these tables, then it uses the rule-based approach.

The syntax of this hint is as follows:

Example

SELECT /*+ CHOOSE */ empno, ename, sal, job
FROM emp
WHERE empno = 7566;

RULE
The RULE hint explicitly chooses rule-based optimization for a statement block. It

also makes the optimizer ignore other hints specified for the statement block. The

syntax of this hint is as follows:

Example The optimizer uses the rule-based approach for this statement:

/*+ CHOOSE */

/*+ RULE */

Using Hints

Using Optimizer Hints 7-9

SELECT --+ RULE
empno, ename, sal, job
FROM emp
WHERE empno = 7566;

The RULE hint, along with the rule-based approach, may not be supported in future

releases of Oracle.

Hints for Access Methods
Each hint described in this section suggests an access method for a table.

■ FULL

■ ROWID

■ CLUSTER

■ HASH

■ INDEX

■ INDEX_ASC

■ INDEX_COMBINE

■ INDEX_JOIN

■ INDEX_DESC

■ INDEX_FFS

■ NO_INDEX

■ AND_EQUAL

■ USE_CONCAT

■ NO_EXPAND

■ REWRITE

■ NOREWRITE

Specifying one of these hints causes the optimizer to choose the specified access

path only if the access path is available based on the existence of an index or cluster

and on the syntactic constructs of the SQL statement. If a hint specifies an

unavailable access path, then the optimizer ignores it.

Using Hints

7-10 Oracle8i Designing and Tuning for Performance

You must specify the table to be accessed exactly as it appears in the statement. If

the statement uses an alias for the table, then use the alias rather than the table

name in the hint. The table name within the hint should not include the schema

name if the schema name is present in the statement.

FULL
The FULL hint explicitly chooses a full table scan for the specified table. The syntax

of this hint is as follows:

where table specifies the name or alias of the table on which the full table scan is

to be performed. If your statement does not use aliases, then the table name is the

default alias.

Example Oracle performs a full table scan on the accounts table to execute this

statement, even if there is an index on the accno column that is made available by

the condition in the WHERE clause:

SELECT /*+ FULL(A) don’t use the index on accno */ accno, bal
FROM accounts a
WHERE accno = 7086854;

Note: For access path hints, Oracle ignores the hint if you specify

the SAMPLE option in the FROM clause of a SELECT statement. For

more information on the SAMPLE option, see Oracle8i Concepts and

Oracle8i Reference.

Note: Because the accounts table has alias "a", the hint must

refer to the table by its alias rather than by its name. Also, do not

specify schema names in the hint even if they are specified in the

FROM clause.

/* FULL (
table

table_alias
) */

Using Hints

Using Optimizer Hints 7-11

ROWID
The ROWID hint explicitly chooses a table scan by rowid for the specified table. The

syntax of the ROWID hint is:

where table specifies the name or alias of the table on which the table access by

rowid is to be performed.

Example

SELECT /*+ROWID(emp)*/ *
FROM emp
WHERE rowid > 'AAAAtkAABAAAFNTAAA' AND empno = 155;

CLUSTER
The CLUSTER hint explicitly chooses a cluster scan to access the specified table. It

applies only to clustered objects. The syntax of the CLUSTER hint is:

where table specifies the name or alias of the table to be accessed by a cluster scan.

Example

SELECT --+ CLUSTER
emp.ename, deptno
FROM emp, dept
WHERE deptno = 10

AND emp.deptno = dept.deptno;

HASH
The HASH hint explicitly chooses a hash scan to access the specified table. It applies

only to tables stored in a cluster. The syntax of the HASH hint is:

where table specifies the name or alias of the table to be accessed by a hash scan.

/* ROWID (table) */

/* CLUSTER (table) */

/* HASH (table) */

Using Hints

7-12 Oracle8i Designing and Tuning for Performance

INDEX
The INDEX hint explicitly chooses an index scan for the specified table. You can use

the INDEX hint for domain, B*-tree, and bitmap indexes. However, Oracle

recommends using INDEX_COMBINE rather than INDEX for bitmap indexes,

because it is a more versatile hint.

The syntax of the INDEX hint is:

where:

This hint may optionally specify one or more indexes:

■ If this hint specifies a single available index, then the optimizer performs a scan

on this index. The optimizer does not consider a full table scan or a scan on

another index on the table.

■ If this hint specifies a list of available indexes, then the optimizer considers the

cost of a scan on each index in the list and then performs the index scan with

the lowest cost. The optimizer may also choose to scan multiple indexes from

this list and merge the results, if such an access path has the lowest cost. The

optimizer does not consider a full table scan or a scan on an index not listed in

the hint.

■ If this hint specifies no indexes, then the optimizer considers the cost of a scan

on each available index on the table and then performs the index scan with the

lowest cost. The optimizer may also choose to scan multiple indexes and merge

the results, if such an access path has the lowest cost. The optimizer does not

consider a full table scan.

For example, consider this query that selects the name, height, and weight of all

male patients in a hospital:

SELECT name, height, weight
FROM patients
WHERE sex = ’m’;

table Specifies the name or alias of the table associated with the index to

be scanned.

index Specifies an index on which an index scan is to be performed.

/*+ INDEX (table
index

) */

Using Hints

Using Optimizer Hints 7-13

Assume that there is an index on the SEXcolumn, and that this column contains the

values m and f . If there are equal numbers of male and female patients in the

hospital, then the query returns a relatively large percentage of the table’s rows, and

a full table scan is likely to be faster than an index scan. However, if a very small

percentage of the hospital’s patients are male, then the query returns a relatively

small percentage of the table’s rows, and an index scan is likely to be faster than a

full table scan.

Barring the use of frequency histograms, the number of occurrences of each distinct

column value is not available to the optimizer. The cost-based approach assumes

that each value has an equal probability of appearing in each row. For a column

having only two distinct values, the optimizer assumes each value appears in 50%

of the rows, so the cost-based approach is likely to choose a full table scan rather

than an index scan.

If you know that the value in the WHERE clause of your query appears in a very

small percentage of the rows, then you can use the INDEX hint to force the

optimizer to choose an index scan. In this statement, the INDEX hint explicitly

chooses an index scan on the sex_index , the index on the sex column:

SELECT /*+ INDEX(patients sex_index) use sex_index because there are few
male patients */ name, height, weight

FROM patients
WHERE sex = ’m’;

The INDEX hint applies to IN -list predicates; it forces the optimizer to use the

hinted index, if possible, for an IN -list predicate. Multi-column IN -lists will not use

an index.

INDEX_ASC
The INDEX_ASC hint explicitly chooses an index scan for the specified table. If the

statement uses an index range scan, then Oracle scans the index entries in ascending

order of their indexed values. The syntax of the INDEX_ASC hint is:

Each parameter serves the same purpose as in the INDEX hint.

Because Oracle’s default behavior for a range scan is to scan index entries in

ascending order of their indexed values, this hint does not specify anything more

than the INDEX hint. However, you may want to use the INDEX_ASChint to specify

ascending range scans explicitly, should the default behavior change.

/*+ INDEX_ASC (table
index

) */

Using Hints

7-14 Oracle8i Designing and Tuning for Performance

INDEX_COMBINE
The INDEX_COMBINE hint explicitly chooses a bitmap access path for the table. If

no indexes are given as arguments for the INDEX_COMBINEhint, then the optimizer

uses whatever Boolean combination of bitmap indexes has the best cost estimate for

the table. If certain indexes are given as arguments, then the optimizer tries to use

some Boolean combination of those particular bitmap indexes. The syntax of

INDEX_COMBINE is:

Example

SELECT /*+INDEX_COMBINE(emp sal_bmi hiredate_bmi)*/ *
FROM emp
WHERE sal < 50000 AND hiredate < '01-JAN-1990';

INDEX_JOIN
The INDEX_JOIN hint explicitly instructs the optimizer to use an index join as an

access path. For the hint to have a positive effect, a sufficiently small number of

indexes must exist that contain all the columns required to resolve the query.

where:

Example

SELECT /*+INDEX_JOIN(emp sal_bmi hiredate_bmi)*/ sal, hiredate
FROM emp
WHERE sal < 50000;

table Specifies the name or alias of the table associated with the index to

be scanned.

index Specifies an index on which an index scan is to be performed.

/*+ INDEX_COMBINE (table
index

) */

/*+ INDEX_JOIN (table
index

) */

Using Hints

Using Optimizer Hints 7-15

INDEX_DESC
The INDEX_DESC hint explicitly chooses an index scan for the specified table. If the

statement uses an index range scan, then Oracle scans the index entries in

descending order of their indexed values. The syntax of the INDEX_DESC hint is:

Each parameter serves the same purpose as in the INDEX hint.

INDEX_FFS
This hint causes a fast full index scan to be performed rather than a full table scan.

The syntax of INDEX_FFS is:

Example

SELECT /*+INDEX_FFS(emp emp_empno)*/ empno
FROM emp
WHERE empno > 200;

NO_INDEX
The NO_INDEX hint explicitly disallows a set of indexes for the specified table. The

syntax of the NO_INDEX hint is:

■ If this hint specifies a single available index, then the optimizer does not

consider a scan on this index. Other indexes not specified are still considered.

■ If this hint specifies a list of available indexes, then the optimizer does not

consider a scan on any of the specified indexes. Other indexes not specified in

the list are still considered.

See Also: "Using Fast Full Index Scans" on page 12-8.

/*+ INDEX_DESC (table
index

) */

/*+ INDEX_FFS (table
index

) */

/*+ NO_INDEX (table
index

) */

Using Hints

7-16 Oracle8i Designing and Tuning for Performance

■ If this hint specifies no indexes, then the optimizer does not consider a scan on

any index on the table. This behavior is the same as a NO_INDEX hint that

specifies a list of all available indexes for the table.

The NO_INDEX hint applies to function-based, B*-tree, bitmap, cluster, or domain

indexes.

If a NO_INDEX hint and an index hint (INDEX, INDEX_ASC, INDEX_DESC, INDEX_
COMBINE, or INDEX_FFS) both specify the same indexes, then both the NO_INDEX
hint and the index hint are ignored for the specified indexes and the optimizer

considers the specified indexes.

Example

SELECT /*+NO_INDEX(emp emp_empno)*/ empno
FROM emp
WHERE empno > 200;

AND_EQUAL
The AND_EQUAL hint explicitly chooses an execution plan that uses an access path

that merges the scans on several single-column indexes. The syntax of the AND_
EQUAL hint is:

where:

USE_CONCAT
The USE_CONCAT hint forces combined OR conditions in the WHERE clause of a

query to be transformed into a compound query using the UNION ALL set operator.

Normally, this transformation occurs only if the cost of the query using the

concatenations is cheaper than the cost without them.

table Specifies the name or alias of the table associated with the indexes

to be merged.

index Specifies an index on which an index scan is to be performed. You

must specify at least two indexes. You cannot specify more than

five.

/*+ AND_EQUAL (table index index
index index index

) */

Using Hints

Using Optimizer Hints 7-17

The USE_CONCAT hint turns off IN -list processing and OR-expands all disjunctions,

including IN -lists. The syntax of this hint is:

Example

SELECT /*+USE_CONCAT*/ *
FROM emp
WHERE empno > 50 OR sal < 50000;

NO_EXPAND
The NO_EXPAND hint prevents the cost-based optimizer from considering

OR-expansion for queries having OR conditions or IN -lists in the WHERE clause.

Usually, the optimizer considers using OR expansion and uses this method if it

decides the cost is lower than not using it. The syntax of this hint is:

Example

SELECT /*+NO_EXPAND*/ *
FROM emp
WHERE empno = 50 OR empno = 100;

REWRITE
Use the REWRITE hint with or without a view list. If you use REWRITE with a view

list and the list contains an eligible materialized view, then Oracle uses that view

regardless of its cost. Oracle does not consider views outside of the list. If you do

not specify a view list, then Oracle searches for an eligible materialized view and

always uses it regardless of its cost.

The syntax of this hint is:

/*+ USE_CONCAT */

/*+ NO_EXPAND */

/*+ REWRITE
(view

,

)
*/

Using Hints

7-18 Oracle8i Designing and Tuning for Performance

NOREWRITE
Use the NOREWRITE hint on any query block of a request. This hint disables query

rewrite for the query block, overriding the setting of the parameter QUERY_
REWRITE_ENABLED. The syntax of this hint is:

Hints for Join Orders
The hints in this section suggest join orders:

■ ORDERED

■ STAR

ORDERED
The ORDERED hint causes Oracle to join tables in the order in which they appear in

the FROM clause. The syntax of this hint is:

For example, this statement joins table TAB1 to table TAB2 and then joins the result

to table TAB3:

SELECT /*+ ORDERED */ tab1.col1, tab2.col2, tab3.col3
FROM tab1, tab2, tab3
WHERE tab1.col1 = tab2.col1

AND tab2.col1 = tab3.col1;

If you omit the ORDERED hint from a SQL statement performing a join, then the

optimizer chooses the order in which to join the tables. You may want to use the

ORDERED hint to specify a join order if you know something about the number of

rows selected from each table that the optimizer does not. Such information allows

you to choose an inner and outer table better than the optimizer could.

See Also: For more information on materialized views, see

Oracle8i Concepts and Oracle8i Application Developer’s Guide -
Fundamentals.

/*+ NOREWRITE */

/*+ ORDERED */

Using Hints

Using Optimizer Hints 7-19

STAR
The STAR hint forces a star query plan to be used, if possible. A star plan has the

largest table in the query last in the join order and joins it with a nested loops join

on a concatenated index. The STAR hint applies when there are at least three tables,

the large table’s concatenated index has at least three columns, and there are no

conflicting access or join method hints. The optimizer also considers different

permutations of the small tables.

The syntax of this hint is:

Usually, if you analyze the tables, then the optimizer selects an efficient star plan.

You can also use hints to improve the plan. The most precise method is to order the

tables in the FROM clause in the order of the keys in the index, with the large table

last. Then use the following hints:

/*+ ORDERED USE_NL(FACTS) INDEX(facts fact_concat) */

Where facts is the table and fact_concat is the index. A more general method

is to use the STAR hint.

Hints for Join Operations
Each hint described in this section suggests a join operation for a table.

■ USE_NL

■ USE_MERGE

■ USE_HASH

■ DRIVING_SITE

■ LEADING

■ HASH_AJ and MERGE_AJ

■ HASH_SJ and MERGE_SJ

You must specify a table to be joined exactly as it appears in the statement. If the

statement uses an alias for the table, then you must use the alias rather than the

table name in the hint. The table name within the hint should not include the

schema name, if the schema name is present in the statement.

See Also: Oracle8i Concepts for more information about star plans.

/*+ STAR */

Using Hints

7-20 Oracle8i Designing and Tuning for Performance

Use of the USE_NL and USE_MERGE hints is recommended with the ORDERED hint.

Oracle uses these hints when the referenced table is forced to be the inner table of a

join, and they are ignored if the referenced table is the outer table.

USE_NL
The USE_NL hint causes Oracle to join each specified table to another row source

with a nested loops join using the specified table as the inner table. The syntax of

the USE_NL hint is:

where table is the name or alias of a table to be used as the inner table of a nested

loops join.

For example, consider this statement, which joins the accounts and customers
tables. Assume that these tables are not stored together in a cluster:

SELECT accounts.balance, customers.last_name, customers.first_name
FROM accounts, customers
WHERE accounts.custno = customers.custno;

Because the default goal of the cost-based approach is best throughput, the

optimizer chooses either a nested loops operation or a sort-merge operation to join

these tables, depending on which is likely to return all the rows selected by the

query more quickly.

However, you may want to optimize the statement for best response time, or the

minimal elapsed time necessary to return the first row selected by the query, rather

than best throughput. If so, then you can force the optimizer to choose a nested

loops join by using the USE_NL hint. In this statement, the USE_NL hint explicitly

chooses a nested loops join with the customers table as the inner table:

SELECT /*+ ORDERED USE_NL(customers) to get first row faster */
accounts.balance, customers.last_name, customers.first_name
FROM accounts, customers
WHERE accounts.custno = customers.custno;

In many cases, a nested loops join returns the first row faster than a sort-merge join.

A nested loops join can return the first row after reading the first selected row from

one table and the first matching row from the other and combining them, while a

sort-merge join cannot return the first row until after reading and sorting all

/*+ USE_NL (table) */

Using Hints

Using Optimizer Hints 7-21

selected rows of both tables and then combining the first rows of each sorted row

source.

USE_MERGE
The USE_MERGE hint causes Oracle to join each specified table with another row

source with a sort-merge join. The syntax of the USE_MERGE hint is:

where table is a table to be joined to the row source resulting from joining the

previous tables in the join order using a sort-merge join.

Example

SELECT /*+USE_MERGE(emp dept)*/ *
FROM emp, dept
WHERE emp.deptno = dept.deptno;

USE_HASH
The USE_HASH hint causes Oracle to join each specified table with another row

source with a hash join. The syntax of the USE_HASH hint is:

where table is a table to be joined to the row source resulting from joining the

previous tables in the join order using a hash join.

Example

SELECT /*+use_hash(emp dept)*/ *
FROM emp, dept
WHERE emp.deptno = dept.deptno;

/*+ USE_MERGE (table) */

/*+ USE_HASH (table) */

Using Hints

7-22 Oracle8i Designing and Tuning for Performance

DRIVING_SITE
The DRIVING_SITE hint forces query execution to be done at a different site than

that selected by Oracle. This hint can be used with either rule-based or cost-based

optimization. The syntax of this hint is:

where table is the name or alias for the table at which site the execution should

take place.

Example

SELECT /*+DRIVING_SITE(dept)*/ *
FROM emp, dept@rsite
WHERE emp.deptno = dept.deptno;

If this query is executed without the hint, then rows from dept are sent to the local

site, and the join is executed there. With the hint, the rows from emp are sent to the

remote site, and the query is executed there, returning the result to the local site.

This hint is useful if you are using distributed query optimization.

LEADING
The LEADING hint causes Oracle to use the specified table as the first table in the

join order. The syntax of the hint is:

Where table is the name or alias of a table to be used as the first table in the join

order.

If you specify two or more LEADING hints on different tables, then all of them are

ignored. If you specify the ORDERED hint, then it overrides all LEADING hints.

HASH_AJ and MERGE_AJ
As illustrated in Figure 7–1, the SQL IN predicate can be evaluated using a join to

intersect two sets. Thus emp.deptno can be joined to dept .deptno to yield a list of

employees in a set of departments.

See Also: Oracle8i Distributed Database Systems

/*+ DRIVING_SITE (table) */

/*+ LEADING (table) */

Using Hints

Using Optimizer Hints 7-23

Figure 7–1 Parallel Hash Anti-join

Alternatively, the SQL NOT IN predicate can be evaluated using an anti-join to

subtract two sets. Thus emp.deptno can be anti-joined to dept .deptno to select all

employees who are not in a set of departments, and you can get a list of all

employees who are not in the Shipping or Receiving departments.

For a specific query, place the MERGE_AJ or HASH_AJ hints into the NOT IN
subquery. MERGE_AJ uses a sort-merge anti-join and HASH_AJ uses a hash

anti-join.

For example:

SELECT * FROM emp
WHERE ename LIKE ’J%’

AND deptno IS NOT NULL
AND deptno NOT IN (SELECT /*+ HASH_AJ */ deptno

FROM dept
WHERE deptno IS NOT NULL
AND loc = ’DALLAS’);

If you want the anti-join transformation always to occur if the conditions in the

previous section are met, then set the ALWAYS_ANTI_JOIN initialization parameter

to MERGE or HASH. The transformation to the corresponding anti-join type then

takes place whenever possible.

HASH_SJ and MERGE_SJ
For a specific query, place the HASH_SJ or MERGE_SJ hint into the EXISTS
subquery. HASH_SJ uses a hash semi-join and MERGE_SJ uses a sort merge

semi-join. For example:

EMP DEPT EMP DEPT

IN, JOIN NOT IN, ANTI-JOIN

Employees in
(Shipping, Receiving)

Employees not in
(Shipping, Receiving)

Using Hints

7-24 Oracle8i Designing and Tuning for Performance

SELECT * FROM dept
WHERE exists (SELECT /*+HASH_SJ*/ *
 FROM emp
 WHERE emp.deptno = dept.deptno
 AND sal > 200000);

This converts the subquery into a special type of join between t1 and t2 that

preserves the semantics of the subquery. That is, even if there is more than one

matching row in t2 for a row in t1 , the row in t1 is returned only once.

A subquery is evaluated as a semi-join only with these limitations:

■ There can only be one table in the subquery.

■ The outer query block must not itself be a subquery.

■ The subquery must be correlated with an equality predicate.

■ The subquery must have no GROUP BY, CONNECT BY, or ROWNUM references.

If you want the semi-join transformation always to occur if the conditions in the

previous section are met, then set the ALWAYS_SEMI_JOIN initialization parameter

to HASH or MERGE. The transformation to the corresponding semi-join type then

takes place whenever possible.

Hints for Parallel Execution
The hints described in this section determine how statements are parallelized or not

parallelized when using parallel execution.

■ PARALLEL

■ NOPARALLEL

■ PQ_DISTRIBUTE

■ APPEND

■ NOAPPEND

■ PARALLEL_INDEX

■ NOPARALLEL_INDEX

See Also: For more information on parallel execution, see Oracle8i
Data Warehousing Guide.

Using Hints

Using Optimizer Hints 7-25

PARALLEL
The PARALLEL hint lets you specify the desired number of concurrent servers that

can be used for a parallel operation. The hint applies to the INSERT, UPDATE, and

DELETE portions of a statement as well as to the table scan portion.

If any parallel restrictions are violated, then the hint is ignored. The syntax is:

The PARALLEL hint must use the table alias if an alias is specified in the query. The

hint can then take two values separated by commas after the table name. The first

value specifies the degree of parallelism for the given table, the second value

specifies how the table is to be split among the instances of a parallel server.

Specifying DEFAULT or no value signifies that the query coordinator should

examine the settings of the initialization parameters (described in a later section) to

determine the default degree of parallelism.

In the following example, the PARALLEL hint overrides the degree of parallelism

specified in the emp table definition:

SELECT /*+ FULL(scott_emp) PARALLEL(scott_emp, 5) */ ename
FROM scott.emp scott_emp;

In the next example, the PARALLEL hint overrides the degree of parallelism

specified in the emp table definition and tells the optimizer to use the default degree

of parallelism determined by the initialization parameters. This hint also specifies

that the table should be split among all of the available instances, with the default

degree of parallelism on each instance.

SELECT /*+ FULL(scott_emp) PARALLEL(scott_emp, DEFAULT,DEFAULT) */ ename
FROM scott.emp scott_emp;

Note: The number of servers that can be used is twice the value in

the PARALLEL hint if sorting or grouping operations also take

place.

/*+ PARALLEL (table

, integer

, DEFAULT

,

, integer

, DEFAULT

) */

Using Hints

7-26 Oracle8i Designing and Tuning for Performance

NOPARALLEL
You can use the NOPARALLELhint to override a PARALLELspecification in the table

clause. In general, hints take precedence over table clauses. The syntax of this hint

is:

The following example illustrates the NOPARALLEL hint:

SELECT /*+ NOPARALLEL(scott_emp) */ ename
FROM scott.emp scott_emp;

PQ_DISTRIBUTE
Use the PQ_DISTRIBUTE hint to improve parallel join operation performance. Do

this by specifying how rows of joined tables should be distributed among producer

and consumer query servers. Using this hint overrides decisions the optimizer

would normally make.

Use the EXPLAIN PLAN statement to identify the distribution chosen by the

optimizer. The optimizer ignores the distribution hint if both tables are serial.

The syntax of this hint is:

where:

There are six combinations for table distribution. Only a subset of distribution

method combinations for the joined tables is valid, as explained in Table 7–1.

See Also: For more information on how Oracle parallelizes join

operations, see Oracle8i Concepts.

table_name Name or alias of a table to be used as the inner table of a join.

outer_distribution The distribution for the outer table.

inner_distribution The distribution for the inner table.

/*+ NOPARALLEL (table) */

PQ_DISTRIBUTE (table_name
,

outer_distribution , inner_distribution)

Using Hints

Using Optimizer Hints 7-27

Table 7–1 Distribution Hint Combinations

Distribution Interpretation

Hash, Hash Maps the rows of each table to consumer query servers using
a hash function on the join keys. When mapping is complete,
each query server performs the join between a pair of
resulting partitions. This hint is recommended when the
tables are comparable in size and the join operation is
implemented by hash-join or sort-merge join.

Broadcast, None All rows of the outer table are broadcast to each query server.
The inner table rows are randomly partitioned. This hint is
recommended when the outer table is very small compared
to the inner table. A rule-of-thumb is: Use the Broadcast/None
hint if the size of the inner table * number of query servers > size of
the outer table.

None, Broadcast All rows of the inner table are broadcast to each consumer
query server. The outer table rows are randomly partitioned.
This hint is recommended when the inner table is very small
compared to the outer table. A rule-of-thumb is: Use the
None/Broadcast hint if the size of the inner table * number of query
servers < size of the outer table.

Partition, None Maps the rows of the outer table using the partitioning of the
inner table. The inner table must be partitioned on the join
keys. This hint is recommended when the number of
partitions of the outer table is equal to or nearly equal to a
multiple of the number of query servers, for example, 14
partitions and 15 query servers.

Note: The optimizer ignores this hint if the inner table is not
partitioned or not equijoined on the partitioning key.

None, Partition Maps the rows of the inner table using the partitioning of the
outer table. The outer table must be partitioned on the join
keys. This hint is recommended when the number of
partitions of the outer table is equal to or nearly equal to a
multiple of the number of query servers, for example, 14
partitions and 15 query servers.

Note: The optimizer ignores this hint if the outer table is not
partitioned or not equijoined on the partitioning key.

None, None Each query server performs the join operation between a pair
of matching partitions, one from each table. Both tables must
be equi-partitioned on the join keys.

Using Hints

7-28 Oracle8i Designing and Tuning for Performance

Examples Given two tables, R and S, that are joined using a hash-join, the following

query contains a hint to use hash distribution:

SELECT <column_list> /*+ORDERED PQ_DISTRIBUTE(s HASH, HASH) USE_HASH (s)*/
FROM r,s
WHERE r.c=s.c;

To broadcast the outer table r , the query should be:

SELECT <column list> /*+ORDERED PQ_DISTRIBUTE(s BROADCAST, NONE) USE_HASH (s) */
FROM r,s
WHERE r.c=s.c;

APPEND
When you use the APPEND hint for INSERT, data is simply appended to a table.

Existing free space in the blocks currently allocated to the table is not used. The

syntax of this hint is:

If INSERT is parallelized using the PARALLEL hint or clause, then append mode is

used by default. You can use NOAPPEND to override append mode. The APPEND
hint applies to both serial and parallel insert.

The append operation is performed in LOGGING or NOLOGGING mode, depending

on whether the [NO] option is set for the table in question. Use the ALTER TABLE...
[NO]LOGGING statement to set the appropriate value.

NOAPPEND
Use NOAPPEND to override append mode.

Note: Certain restrictions apply to the APPEND hint; these are

detailed in Oracle8i Concepts. If any of these restrictions are violated,

then the hint is ignored.

INSERT /*+

APPEND

NOAPPEND PARALLEL....

,
*/

Using Hints

Using Optimizer Hints 7-29

PARALLEL_INDEX
Use the PARALLEL_INDEXhint to specify the desired number of concurrent servers

that can be used to parallelize index range scans for partitioned indexes. The syntax

of the PARALLEL_INDEX hint is:

where:

The hint can take two values separated by commas after the table name. The first

value specifies the degree of parallelism for the given table. The second value

specifies how the table is to be split among the instances of a parallel server.

Specifying DEFAULTor no value signifies the query coordinator should examine the

settings of the initialization parameters (described in a later section) to determine

the default degree of parallelism.

Example

SELECT /*+ PARALLEL_INDEX(table1, index1, 3, 2) +/

In this example, there are 3 parallel execution processes to be used on each of 2

instances.

table Specifies the name or alias of the table associated with the index to

be scanned.

index Specifies an index on which an index scan is to be performed

(optional).

/*+ PARALLEL_INDEX (table
index

,

, integer

, DEFAULT

,

, integer

, DEFAULT

) */

Using Hints

7-30 Oracle8i Designing and Tuning for Performance

NOPARALLEL_INDEX
Use the NOPARALLEL_INDEX hint to override a PARALLEL attribute setting on an

index. In this way you can avoid a parallel index scan operation. The syntax of this

hint is:

Additional Hints
Several additional hints are included in this section:

■ CACHE

■ NOCACHE

■ MERGE

■ NO_MERGE

■ UNNEST

■ NO_UNNEST

■ PUSH_PRED

■ NO_PUSH_PRED

■ PUSH_SUBQ

■ STAR_TRANSFORMATION

■ ORDERED_PREDICATES

CACHE
The CACHE hint specifies that the blocks retrieved for this table are placed at the

most recently used end of the LRU list in the buffer cache when a full table scan is

performed. This option is useful for small lookup tables. The syntax of this hint is:

In the following example, the CACHE hint overrides the table’s default caching

specification:

/*+ NOPARALLEL_INDEX (table
index

,

) */

/*+ CACHE (table) */

Using Hints

Using Optimizer Hints 7-31

SELECT /*+ FULL (scott_emp) CACHE(scott_emp) */ ename
FROM scott.emp scott_emp;

NOCACHE
The NOCACHE hint specifies that the blocks retrieved for this table are placed at the

least recently used end of the LRU list in the buffer cache when a full table scan is

performed. This is the normal behavior of blocks in the buffer cache. The syntax of

this hint is:

Example

SELECT /*+ FULL(scott_emp) NOCACHE(scott_emp) */ ename
FROM scott.emp scott_emp;

MERGE
If a view's query contains a GROUP BY clause or DISTINCT operator in the select

list, then the optimizer can merge the view's query into the accessing statement only

if complex view merging is enabled. Complex merging can also be used to merge an

IN subquery into the accessing statement, if the subquery is uncorrelated.

Complex merging is not cost-based--that is, the accessing query block must include

the MERGE hint. Without this hint, the optimizer uses another approach.

Merge a view on a per-query basis by using the MERGE hint. The syntax of this hint

is:

Example

SELECT /*+MERGE(v)*/ e1.ename, e1.sal, v.avg_sal
FROM emp e1,
 (SELECT deptno, avg(sal) avg_sal
 FROM emp e2

Note: The CACHEand NOCACHEhints affect system statistics "table

scans(long tables)" and "table scans(short tables)", as shown in the

V$SYSSTAT view.

/*+ NOCACHE (table) */

/*+ MERGE (table) */

Using Hints

7-32 Oracle8i Designing and Tuning for Performance

 GROUP BY deptno) v
WHERE e1.deptno = v.deptno AND e1.sal > v.avg_sal;

NO_MERGE
The NO_MERGE hint causes Oracle not to merge mergeable views. The syntax of the

NO_MERGE hint is:

This hint lets the user have more influence over the way in which the view is

accessed.

Example

SELECT /*+NO_MERGE(dallasdept)*/ e1.ename, dallasdept.dname
FROM emp e1,
 (SELECT deptno, dname
 FROM dept
 WHERE loc = 'DALLAS') dallasdept
WHERE e1.deptno = dallasdept.deptno;

This causes view v not to be merged.

When the NO_MERGE hint is used without an argument, it should be placed in the

view query block. When NO_MERGE is used with the view name as an argument, it

should be placed in the surrounding query.

UNNEST
Setting the UNNEST_SUBQUERY session parameter to TRUE enables subquery

unnesting. Subquery unnesting unnests and merges the body of the subquery into

the body of the statement that contains it, allowing the optimizer to consider them

together when evaluating access paths and joins.

UNNEST_SUBQUERY first verifies if the statement is valid. If the statement is not

valid, then subquery unnesting cannot proceed. The statement must then must pass

a heuristic test.

Note: This example requires complex view merging to be enabled.

/*+ NO_MERGE (table) */

Using Hints

Using Optimizer Hints 7-33

The UNNEST hint checks the subquery block for validity only. If it is valid, then

subquery unnesting is enabled without Oracle checking the heuristics.

NO_UNNEST
If you enabled subquery unnesting with the UNNEST_SUBQUERY parameter, then

the NO_UNNEST hint turns it off for specific subquery blocks.

Example

The following examples show situations where it might not be optimal to enable

subquery unnesting.

SELECT *
FROM t_4k, t_5k
WHERE t_5k.ten = t_4k.thousand AND t_4k.thousand < 10

AND t_5k.unique3 < 10
AND t_5k.thousand < ALL (SELECT /*+ NO_UNNEST */ z_4k.thousand

FROM z_4k
WHERE z_4k.ten < t_4k.hundred);

SELECT SUM(l_extendedprice)
FROM lineitem, parts
WHERE p_partkey = l_partkey and p_brand = ’Brand#23’

AND p_container = ’MED BOX’
AND l_quantity < (SELECT AVG (l_quantity)

FROM lineitem
WHERE l_partkey = p_partkey);

See Also: For more information on unnesting nested subqueries

and the conditions that make a subquery block valid, see the

Oracle8i SQL Reference. For more information on the UNNEST_
SUBQUERY parameter and managing views, see Chapter 9,

"Optimizing SQL Statements".

Note: The hints HASH_SJ, HASH_AJ, MERGE_SJ, and MERGE_AJ
take precedence over this hint.

Using Hints

7-34 Oracle8i Designing and Tuning for Performance

PUSH_PRED
Use the PUSH_PRED hint to force pushing of a join predicate into the view. The

syntax of this hint is:

Example

SELECT /*+ PUSH_PRED(v) */ t1.x, v.y
FROM t1

(SELECT t2.x, t3.y
FROM t2, t3
WHERE t2.x = t3.x) v

WHERE t1.x = v.x and t1.y = 1;

NO_PUSH_PRED
Use the NO_PUSH_PRED hint to prevent pushing of a join predicate into the view.

The syntax of this hint is:

PUSH_SUBQ
The PUSH_SUBQ hint causes non-merged subqueries to be evaluated at the earliest

possible place in the execution plan. Normally, subqueries that are not merged are

executed as the last step in the execution plan. If the subquery is relatively

inexpensive and reduces the number of rows significantly, then it improves

performance to evaluate the subquery earlier.

The hint has no effect if the subquery is applied to a remote table or one that is

joined using a merge join. The syntax of this hint is:

STAR_TRANSFORMATION
The STAR_TRANSFORMATION hint makes the optimizer use the best plan in which

the transformation has been used. Without the hint, the optimizer could make a

cost-based decision to use the best plan generated without the transformation,

instead of the best plan for the transformed query.

/*+ PUSH_PRED (table) */

/*+ NO_PUSH_PRED (table) */

/*+ PUSH_SUBQ */

Using Hints

Using Optimizer Hints 7-35

Even if the hint is given, there is no guarantee that the transformation will take

place. The optimizer only generates the subqueries if it seems reasonable to do so. If

no subqueries are generated, then there is no transformed query, and the best plan

for the untransformed query is used, regardless of the hint.

The syntax of this hint is:

ORDERED_PREDICATES
The ORDERED_PREDICATES hint forces the optimizer to preserve the order of

predicate evaluation, except for predicates used as index keys. Use this hint in the

WHERE clause of SELECT statements.

If you do not use the ORDERED_PREDICATES hint, then Oracle evaluates all

predicates in the order specified by the following rules. Predicates:

■ Without user-defined functions, type methods, or subqueries are evaluated

first, in the order specified in the WHERE clause.

■ With user-defined functions and type methods that have user-computed costs

are evaluated next, in increasing order of their cost.

■ With user-defined functions and type methods without user-computed costs

are evaluated next, in the order specified in the WHERE clause.

■ Not specified in the WHERE clause (for example, predicates transitively

generated by the optimizer) are evaluated next.

■ With subqueries are evaluated last in the order specified in the WHERE clause.

See Also: Oracle8i Concepts has a full discussion of star

transformation. Also, the Oracle8i Reference describes STAR_
TRANSFORMATION_ENABLED; this parameter causes the optimizer

to consider performing a star transformation.

Note: As mentioned, you cannot use the ORDERED_PREDICATES
hint to preserve the order of predicate evaluation on index keys.

/*+ STAR_TRANSFORMATION */

Using Hints

7-36 Oracle8i Designing and Tuning for Performance

The syntax of this hint is:

Using Hints with Views
Oracle does not encourage you to use hints inside or on views (or subqueries). This

is because you can define views in one context and use them in another. However,

such hints can result in unexpected plans. In particular, hints inside views or on

views are handled differently depending on whether the view is mergeable into the

top-level query.

Should you decide, nonetheless, to use hints with views, the following sections

describe the behavior in each case.

■ Hints and Mergeable Views

■ Hints and Nonmergeable Views

If you want to specify a hint for a table in a view or subquery, then the global hint

syntax is recommended. The following section describes this in detail.

■ Global Hints

Hints and Mergeable Views
This section describes hint behavior with mergeable views.

Optimization Approaches and Goal Hints Optimization approach and goal hints can

occur in a top-level query or inside views.

■ If there is such a hint in the top-level query, then that hint is used regardless of

any such hints inside the views.

■ If there is no top-level optimizer mode hint, then mode hints in referenced

views are used as long as all mode hints in the views are consistent.

■ If two or more mode hints in the referenced views conflict, then all mode hints

in the views are discarded and the session mode is used, whether default or

user-specified.

See Also: Oracle8i Concepts

/*+ ORDERED_PREDICATES */

Using Hints

Using Optimizer Hints 7-37

Access Method and Join Hints on Views Access method and join hints on referenced

views are ignored unless the view contains a single table (or references another

view with a single table). For such single-table views, an access method hint or a

join hint on the view applies to the table inside the view.

Access Method and Join Hints Inside Views Access method and join hints can appear in

a view definition.

■ If the view is a subquery (that is, if it appears in the FROM clause of a SELECT
statement), then all access method and join hints inside the view are preserved

when the view is merged with the top-level query.

■ For views that are not subqueries, access method and join hints in the view are

preserved only if the top-level query references no other tables or views (that is,

if the FROM clause of the SELECT statement contains only the view).

Parallel Execution Hints on Views PARALLEL, NOPARALLEL, PARALLEL_INDEX and

NOPARALLEL_INDEX hints on views are always recursively applied to all the tables

in the referenced view. Parallel execution hints in a top-level query override such

hints inside a referenced view.

Parallel Execution Hints Inside Views PARALLEL, NOPARALLEL, PARALLEL_INDEXand

NOPARALLEL_INDEX hints inside views are preserved when the view is merged

with the top-level query. Parallel execution hints on the view in a top-level query

override such hints inside a referenced view.

Hints and Nonmergeable Views
With non-mergeable views, optimization approach and goal hints inside the view

are ignored: the top-level query decides the optimization mode.

Because non-mergeable views are optimized separately from the top-level query,

access method and join hints inside the view are always preserved. For the same

reason, access method hints on the view in the top-level query are ignored.

However, join hints on the view in the top-level query are preserved because, in this

case, a non-mergeable view is similar to a table.

Global Hints
Table hints (i.e., hints that specify a table) normally refer to tables in the DELETE,
SELECT, or UPDATE statement in which the hint occurs, not to tables inside any

views or subqueries referenced by the statement. When you want to specify hints

for tables that appear inside views or subqueries, you should use global hints

Using Hints

7-38 Oracle8i Designing and Tuning for Performance

instead of embedding the hint in the view or subquery. You can transform any table

hint in this chapter into a global hint by using an extended syntax for the table

name, as described below.

Consider the following view definitions and SELECT statement:

CREATE VIEW v1 AS
SELECT *
FROM emp
WHERE empno < 100;

CREATE VIEW v2 AS
SELECT v1.empno empno, dept.deptno deptno
FROM v1, dept
WHERE v1.deptno = dept.deptno;

SELECT /*+ INDEX(v2.v1.emp emp_empno) FULL(v2.dept) */ *
FROM v2
WHERE deptno = 20;

The view V1 retrieves all employees whose employee number is less than 100. The

view V2 performs a join between the view V1 and the department table. The

SELECT statement retrieves rows from the view V2 restricting it to the department

whose number is 20.

There are two global hints in the SELECTstatement. The first hint specifies an index

scan for the employee table referenced in the view V1, which is referenced in the

view V2. The second hint specifies a full table scan for the department table

referenced in the view V2. Note the dotted syntax for the view tables.

A hint such as:

INDEX(emp emp_empno)

in the SELECT statement is ignored because the employee table does not appear in

the FROM clause of the SELECT statement.

The global hint syntax also applies to unmergeable views. Consider the following

SELECT statement:

SELECT /*+ NO_MERGE(v2) INDEX(v2.v1.emp emp_empno) FULL(v2.dept) */ *
FROM v2
WHERE deptno = 20;

It causes V2 not to be merged, and specifies access path hints for the employee and

department tables. These hints are pushed down into the (nonmerged) view V2.

Using Hints

Using Optimizer Hints 7-39

If a global hint references a UNION or UNION ALL view, then the hint is applied to

the first branch that contains the hinted table. Consider the INDEX hint in the

following SELECT statement:

SELECT /*+ INDEX(v.emp emp_empno) */ *
FROM (SELECT *

FROM emp
WHERE empno < 50
UNION ALL
SELECT *
FROM emp
WHERE empno > 1000) v

WHERE deptno = 20;

The INDEX hint applies to the employee table in the first branch of the UNION ALL
view v, not to the employee table in the second branch.

Using Hints

7-40 Oracle8i Designing and Tuning for Performance

Gathering Statistics 8-1

8
Gathering Statistics

This chapter explains why statistics are important for the cost-based optimizer, and

how to gather and use statistics.

This chapter contains the following sections:

■ Understanding Statistics

■ Generating Statistics

■ Using Statistics

■ Using Histograms

Understanding Statistics

8-2 Oracle8i Designing and Tuning for Performance

Understanding Statistics
The cost-based optimization approach uses statistics to calculate the selectivity of

predicates and to estimate the cost of each execution plan. Selectivity is the fraction

of rows in a table that the SQL statement’s predicate chooses. The optimizer uses

the selectivity of a predicate to estimate the cost of a particular access method and

to determine the optimal join order.

Statistics quantify the data distribution and storage characteristics of tables,

columns, indexes, and partitions. The optimizer uses these statistics to estimate how

much I/O and memory are required to execute a SQL statement using a particular

execution plan. The statistics are stored in the data dictionary, and they can be

exported from one database and imported into another (for example, to transfer

production statistics to a test system to simulate the real environment, even though

the test system may only have small samples of data).

You must gather statistics on a regular basis to provide the optimizer with

information about schema objects. New statistics should be gathered after a schema

object’s data or structure are modified in ways that make the previous statistics

inaccurate. For example, after loading a significant number of rows into a table, you

should collect new statistics on the number of rows. After updating data in a table,

you do not need to collect new statistics on the number of rows but you might need

new statistics on the average row length.

Statistics can be generated with the ANALYZE statement or with the package DBMS_
STATS.

The statistics generated include the following:

■ Table statistics

– Number of rows

– Number of blocks

– Number of empty blocks

– Average row length

■ Column statistics

– Number of distinct values (NDV) in column

– Number of nulls in column

– Data distribution (histogram)

■ Index statistics

Generating Statistics

Gathering Statistics 8-3

– Number of leaf blocks

– Levels

– Clustering factor

Generating Statistics
Because the cost-based approach relies on statistics, you should generate statistics

for all tables and clusters and all types of indexes accessed by your SQL statements

before using the cost-based approach. If the size and data distribution of your tables

change frequently, then you should generate these statistics regularly to ensure the

statistics accurately represent the data in the tables.

Oracle generates statistics using the following techniques:

■ Estimation based on random data sampling

■ Exact computation

■ User-defined statistics collection methods

To perform an exact computation, Oracle requires enough space to perform a scan

and sort of the table. If there is not enough space in memory, then temporary space

may be required. For estimations, Oracle requires enough space to perform a scan

and sort of only the rows in the requested sample of the table. For indexes,

computation does not take up as much time or space, so it is best to perform a full

computation.

Some statistics are always computed exactly, such as the number of data blocks

currently containing data in a table or the depth of an index from its root block to its

leaf blocks.

Use estimation for tables and clusters rather than computation, unless you need

exact values. Because estimation rarely sorts, it is often much faster than

computation, especially for large tables.

To estimate statistics, Oracle selects a random sample of data. You can specify the

sampling percentage and whether sampling should be based on rows or blocks.

■ Row sampling reads rows without regard to their physical placement on disk.

This provides the most random data for estimates, but it can result in reading

more data than necessary. For example, in the worst case a row sample might

select one row from each block, requiring a full scan of the table or index.

■ Block sampling reads a random sample of blocks and uses all of the rows in those

blocks for estimates. This reduces the amount of I/O activity for a given sample

Generating Statistics

8-4 Oracle8i Designing and Tuning for Performance

size, but it can reduce the randomness of the sample if rows are not randomly

distributed on disk. Block sampling is not available for index statistics.

When you generate statistics for a table, column, or index, if the data dictionary

already contains statistics for the object, then Oracle updates the existing statistics.

Oracle also invalidates any currently parsed SQL statements that access the object.

The next time such a statement executes, the optimizer automatically chooses a new

execution plan based on the new statistics. Distributed statements issued on remote

databases that access the analyzed objects use the new statistics the next time Oracle

parses them.

When you associate a statistics type with a column or domain index, Oracle calls the

statistics collection method in the statistics type if you analyze the column or

domain index.

Statistics for Partitioned Schema Objects
Partitioned schema objects may contain multiple sets of statistics. They can have

statistics which refer to the entire schema object as a whole (global statistics), they

can have statistics which refer to an individual partition, and they can have

statistics which refer to an individual subpartition of a composite partitioned object.

Unless the query predicate narrows the query to a single partition, the optimizer

uses the global statistics. Because most queries are not likely to be this restrictive, it

is most important to have accurate global statistics. Intuitively, it may seem that

generating global statistics from partition-level statistics should be straightforward;

however, this is only true for some of the statistics. For example, it is very difficult

to figure out the number of distinct values for a column from the number of distinct

values found in each partition because of the possible overlap in values. Therefore,

actually gathering global statistics with the DBMS_STATS package is highly

recommended, rather than calculating them with the ANALYZE statement.

Using the ANALYZE Statement
The ANALYZE statement can generate statistics for cost-based optimization.

However, using ANALYZE for this purpose is not recommended because of various

restrictions, for example:

■ ANALYZE always runs serially.

Note: Oracle currently does not gather global histogram statistics.

Generating Statistics

Gathering Statistics 8-5

■ ANALYZE calculates global statistics for partitioned tables and indexes instead

of gathering them directly. This can lead to inaccuracies for some statistics, such

as the number of distinct values.

– For partitioned tables and indexes, ANALYZE gathers statistics for the

individual partitions and then calculates the global statistics from the

partition statistics.

– For composite partitioning, ANALYZE gathers statistics for the subpartitions

and then calculates the partition statistics and global statistics from the

subpartition statistics.

■ ANALYZE cannot overwrite or delete some of the values of statistics that were

gathered by DBMS_STATS.

ANALYZE can gather additional information that is not used by the optimizer, such

as information about chained rows and the structural integrity of indexes, tables,

and clusters. DBMS_STATS does not gather this information.

Using the DBMS_STATS Package
The PL/SQL package DBMS_STATS lets you generate and manage statistics for

cost-based optimization. You can use this package to gather, modify, view, and

delete statistics. You can also use this package to store sets of statistics.

The DBMS_STATS package can gather statistics on indexes, tables, columns, and

partitions, as well as statistics on all schema objects in a schema or database. It does

not gather cluster statistics—you can use DBMS_STATS to gather statistics on the

individual tables instead of the whole cluster.

The statistics-gathering operations can run either serially or in parallel. Whenever

possible, DBMS_STATS calls a parallel query to gather statistics with the specified

degree of parallelism; otherwise, it calls a serial query or the ANALYZE statement.

Index statistics are not gathered in parallel.

For partitioned tables and indexes, DBMS_STATS can gather separate statistics for

each partition as well as global statistics for the entire table or index. Similarly, for

composite partitioning DBMS_STATScan gather separate statistics for subpartitions,

partitions, and the entire table or index. Depending on the SQL statement being

optimized, the optimizer may choose to use either the partition (or subpartition)

statistics or the global statistics.

See Also: For detailed information about the ANALYZEstatement,

see Oracle8i SQL Reference.

Generating Statistics

8-6 Oracle8i Designing and Tuning for Performance

DBMS_STATS gathers statistics only for cost-based optimization; it does not gather

other statistics. For example, the table statistics gathered by DBMS_STATS include

the number of rows, number of blocks currently containing data, and average row

length but not the number of chained rows, average free space, or number of

unused data blocks.

Gathering Statistics with the DBMS_STATS Package
Table 8–1 lists the procedures in the DBMS_STATS package for gathering statistics:

Gathering Index Statistics
Oracle can gather some statistics automatically while creating or rebuilding a

B*-tree or bitmap index. The COMPUTE STATISTICS option of CREATE INDEX or

ALTER INDEX ... REBUILD enables this gathering of statistics.

Note: Currently, the DBMS_STATS package does not call statistics

collection methods associated with individual columns. Use the

ANALYZE statement to gather such information.

See Also: For more information about the DBMS_STATS package,

see Oracle8i Supplied PL/SQL Packages Reference. For more

information about user-defined statistics, see the Oracle8i Data
Cartridge Developer’s Guide.

Table 8–1 Statistics Gathering Procedures in the DBMS_STATS Package

Procedure Description

GATHER_INDEX_STATS Collects index statistics.

GATHER_TABLE_STATS Collects table, column, and index statistics.

GATHER_SCHEMA_STATS Collects statistics for all objects in a schema.

GATHER_DATABASE_STATS Collects statistics for all objects in a database.

See Also: For syntax and examples of all DBMS_STATS
procedures, see Oracle8i Supplied PL/SQL Packages Reference.

Generating Statistics

Gathering Statistics 8-7

The statistics that Oracle gathers for the COMPUTE STATISTICS option depend on

whether the index is partitioned or nonpartitioned.

■ For a nonpartitioned index, Oracle gathers index, table, and column statistics

while creating or rebuilding the index. In a concatenated-key index, the column

statistics refer only to the leading column of the key.

■ For a partitioned index, Oracle does not gather any table or column statistics

while creating the index or rebuilding its partitions.

– While creating a partitioned index, Oracle gathers index statistics for each

partition and for the entire index. If the index uses composite partitioning,

then Oracle also gathers statistics for each subpartition.

– While rebuilding a partition or subpartition of an index, Oracle gathers

index statistics only for that partition or subpartition.

To ensure correctness of the statistics Oracle always uses base tables when creating

an index with the COMPUTE STATISTICS option, even if another index is available

that could be used to create the index.

If you do not use the COMPUTE STATISTICS clause, or if you have made major

DML changes, then use the DBMS_STATS.GATHER_INDEX_STATS procedure to

collect index statistics. The GATHER_INDEX_STATS procedure does not run in

parallel.

Using this procedure is equivalent to running the following:

ANALYZE INDEX [ownname.]indname [PARTITION partname] COMPUTE STATISTICS |
ESTIMATE STATISTICS SAMPLE estimate_percent PERCENT

Gathering New Optimizer Statistics
Before gathering new statistics for a particular schema, use the DBMS_
STATS.EXPORT_SCHEMA_STATS procedure to extract and save existing statistics.

Then, use DBMS_STATS.GATHER_SCHEMA_STATS to gather new statistics. You can

implement both of these with a single call to the GATHER_SCHEMA_STATS
procedure.

Note: COMPUTE STATISTICS always gathers exact statistics.

See Also: For more information about the COMPUTE STATISTICS
clause, see the Oracle8i SQL Reference.

Generating Statistics

8-8 Oracle8i Designing and Tuning for Performance

If key SQL statements experience significant performance degradation, then either

gather statistics again using a larger sample size, or perform the following steps:

1. Use DBMS_STATS.EXPORT_SCHEMA_STATS to save the new statistics.

2. Use DBMS_STATS.IMPORT_SCHEMA_STATS to restore the old statistics. The

application is now ready to run again.

You may want to use the new statistics if they result in improved performance for

the majority of SQL statements, and if the number of problem SQL statements is

small. In this case, do the following:

1. Create a stored outline for each problematic SQL statement using the old

statistics.

2. Use DBMS_STATS.IMPORT_SCHEMA_STATS to restore the new statistics. Your

application is now ready to run with the new statistics. However, you will

continue to achieve the previous performance levels for the problem SQL

statements.

Gathering Automated Statistics
You can automatically gather statistics or create lists of tables that have stale or no

statistics.

To automatically gather statistics, run the DBMS_STATS.GATHER_SCHEMA_STATS
and DBMS_STATS.GATHER_DATABASE_STATS procedures with the OPTIONS and

objlist parameters. Use the following values for the options parameter:

The objlist parameter identifies an output parameter for the LIST STALE and

LIST EMPTYoptions. The objlist parameter is of type DBMS_STATS.OBJECTTAB.

See Also: Stored outlines are pre-compiled execution plans that

Oracle can use to mimic proven application performance

characteristics. For more information, see Chapter 10, "Using Plan

Stability".

GATHER STALE Gathers statistics on tables with stale statistics.

GATHER Gathers statistics on all tables. (default)

GATHER EMPTY Gathers statistics only on tables without statistics.

LIST STALE Creates a list of tables with stale statistics.

LIST EMPTY Creates a list of tables that do not have statistics.

Generating Statistics

Gathering Statistics 8-9

Designating Tables for Monitoring and Automated Statistics Gathering To automatically

gather statistics for a particular table, enable the monitoring attribute using the

MONITORING keyword. This keyword is part of the CREATE TABLE and ALTER
TABLE statement syntax.

After it is enabled, Oracle monitors the table for DML activity. This includes the

approximate number of inserts, updates, and deletes for that table since the last

time statistics were gathered. Oracle uses this data to identify tables with stale

statistics.

View the data Oracle obtains from monitoring these tables by querying the USER_
TAB_MODIFICATIONS view.

To disable monitoring of a table, use the NOMONITORING keyword.

Enabling Automated Statistics Gathering The GATHER STALE option only gathers

statistics for tables that have stale statistics and for which you have enabled the

MONITORING attribute. To enable monitoring for tables, use the MONITORING
keyword of the CREATE TABLE and ALTER TABLE statements, as described in

"Designating Tables for Monitoring and Automated Statistics Gathering" on

page 8-9.

The GATHER STALE option maintains up-to-date statistics for the cost-based

optimizer. Using this option at regular intervals also avoids the overhead associated

with using the ANALYZEstatement on all tables at one time. The GATHERoption can

incur much more overhead, because this option generally gathers statistics for a

greater number of tables than GATHER STALE.

Use a script or job scheduling tool for the GATHER_SCHEMA_STATS and GATHER_
DATABASE_STATS procedures to establish a frequency of statistics collection that is

appropriate for your application. The frequency of collection intervals should

balance the task of providing accurate statistics for the optimizer against the

processing overhead incurred by the statistics collection process.

Note: There may be a few hours delay while Oracle propagates

information to this view.

See Also: For more information about the CREATE TABLE and

ALTER TABLE syntax and the MONITORING and NOMONITORING
keywords, see the Oracle8i SQL Reference.

Generating Statistics

8-10 Oracle8i Designing and Tuning for Performance

Creating Lists of Tables with Stale or No Statistics You can use the GATHER_SCHEMA_
STATS and GATHER_DATABASE_STATS procedures to create a list of tables with

stale statistics. Use this list to identify tables for which you want to manually gather

statistics.

You can also use these procedures to create a list of tables with no statistics. Use this

list to identify tables for which you want to gather statistics, either automatically or

manually.

Preserving Versions of Statistics
You can preserve versions of statistics for tables by specifying the stattab ,

statid , and statown parameters in the DBMS_STATS package. Use stattab to

identify a destination table for archiving previous versions of statistics. Further

identify these versions using statid to denote the date and time the version was

made. Use statown to identify a destination schema if it is different from the

schema(s) of the actual tables. You must first create such a table using the CREATE_
STAT_TABLE procedure of the DBMS_STATS package.

Statistics Data
Statistics includes the following data:

■ Physical description of tables, for example, columns:

– NUM_ROWS

– BLOCKS

– AVGRLEN

■ Descriptions of attributes, for example, columns:

– DISTINCT VALUES

– LOWVAL

– HIGHVAL

Data Distribution
These attributes help you determine how the data is distributed across your tables.

The optimizer assumes that the data is uniformly distributed. The actual data

distribution in your tables can be easily analyzed by viewing the appropriate

See Also: For more information on DBMS_STATS procedures and

parameters, see Oracle8i Supplied PL/SQL Packages Reference.

Generating Statistics

Gathering Statistics 8-11

dictionary table, as described in DBA_TABLES for tables and DBA_TAB_COLUMNS
for column statistics.

Attribute Skew
Histograms can be used to determine attribute skew. Descriptions of available

access methods, for example, columns:

– HEIGHT

– LEAF BLOCK

– DISTINCT KEYS

– CLUSTERING FACTOR

– LEAF BLOCKS PER KEY

– DB BLOCKS PER KEY

Missing Statistics
When statistics do not exist, the optimizer uses the following default values.

Table 8–2 shows the defaults you can expect when statistics are missing.

See Also: For more information on histograms, see "Using

Histograms" on page 8-17.

Table 8–2 Default Table and Index Values When Statistics are Missing

Statistic Default Value Used by Optimizer

Tables

■ Cardinality

■ Avg. row len

■ No. of blocks

■ Remote cardinality

■ Remote average row length

100 rows

20 bytes

100

2000 rows

100 bytes

Using Statistics

8-12 Oracle8i Designing and Tuning for Performance

Using Statistics
This section provides guidelines on how to use and view the statistics. This

includes:

■ Managing Statistics

■ Verifying Table Statistics

■ Verifying Index Statistics

■ Verifying Column Statistics

■ Using Histograms

Managing Statistics
This section describes statistics tables and lists the views that display information

about statistics stored in the data dictionary.

Statistics Tables
The DBMS_STATS package enables you to store statistics in a statistics table. You can

transfer the statistics for a column, table, index, or schema into a statistics table and

subsequently restore those statistics to the data dictionary. The optimizer does not

use statistics that are stored in a statistics table.

Statistics tables enable you to experiment with different sets of statistics. For

example, you can back up a set of statistics before you delete them, modify them, or

generate new statistics. You can then compare the performance of SQL statements

optimized with different sets of statistics, and if the statistics stored in a table give

the best performance, you can restore them to the data dictionary.

Indexes

■ Levels

■ Leaf blocks

■ Leaf blocks/key

■ Data blocks/key

■ Distinct keys

■ Clustering factor

1

25

1

1

100

800 (8*no. of blocks)

Table 8–2 Default Table and Index Values When Statistics are Missing

Statistic Default Value Used by Optimizer

Using Statistics

Gathering Statistics 8-13

A statistics table can keep multiple distinct sets of statistics, or you can create

multiple statistics tables to store distinct sets of statistics separately.

Viewing Statistics
You can use the DBMS_STATS package to view the statistics stored in the data

dictionary or in a statistics table.

You can also query these data dictionary views for statistics in the data dictionary:

■ USER_TABLES, ALL_TABLES, and DBA_TABLES

■ USER_TAB_COLUMNS, ALL_TAB_COLUMNS, and DBA_TAB_COLUMNS

■ USER_INDEXES, ALL_INDEXES, and DBA_INDEXES

■ USER_CLUSTERS and DBA_CLUSTERS

■ USER_TAB_PARTITIONS, ALL_TAB_PARTITIONS, and DBA_TAB_
PARTITIONS

■ USER_TAB_SUBPARTITIONS, ALL_TAB_SUBPARTITIONS, and DBA_TAB_
SUBPARTITIONS

■ USER_IND_PARTITIONS, ALL_IND_PARTITIONS , and DBA_IND_
PARTITIONS

■ USER_IND_SUBPARTITIONS, ALL_IND_SUBPARTITIONS, and DBA_IND_
SUBPARTITIONS

■ USER_PART_COL_STATISTICS, ALL_PART_COL_STATISTICS, and DBA_
PART_COL_STATISTICS

■ USER_SUBPART_COL_STATISTICS, ALL_SUBPART_COL_STATISTICS, and

DBA_SUBPART_COL_STATISTICS

Verifying Table Statistics
To verify that the table statistics are available, execute the following statement

against DBA_TABLES:

SQL> SELECT TABLE_NAME, NUM_ROWS, BLOCKS, AVG_ROW_LEN,
 TO_CHAR(LAST_ANALYZED, ’MM/DD/YYYY HH24:MI:SS’)
 FROM DBA_TABLES
 WHERE TABLE_NAME IN (’SO_LINES_ALL’,’SO_HEADERS_ALL’);

See Also: For information on the statistics in these views, see

Oracle8i Reference.

Using Statistics

8-14 Oracle8i Designing and Tuning for Performance

This returns the following typical data:

TABLE_NAME NUM_ROWS BLOCKS AVH_ROW_LEN LAST_ANALYZED
------------------------ -------- ------- ----------- -------------
SO_HEADERS_ALL 1632264 207014 449 07/29/1999 00:59:51
SO_LINES_ALL 10493845 1922196 663 07/29/1999 01:16:09

Verifying Index Statistics
To verify that index statistics are available and assist you in determining which are

the best indexes to use in your application, execute the following statement against

the dictionary DBA_INDEXES table:

SQL> SELECT INDEX_NAME "NAME", NUM_ROWS, DISTINCT_KEYS "DISTINCT",
 LEAF_BLOCKS, CLUSTERING_FACTOR "CF",
 AVG_LEAF_BLOCKS_PER_KEY "ALFBPKEY"
 FROM DBA_INDEXES
 WHERE TABLE_NAME ="AP_INVOICES_ALL"
 ORDER BY INDEX_NAME;

This returns the following typical data:

NAME NUM_ROWS DISTINCT LEAF_BLOCKS CF ALFBKEY
---------------------- ---------- -------- ----------- ------- -------
AP_INVOICES_N1 18941 80712 17060 431230 1
AP_INVOICES_N3 14995 2 21403 186450 10701
AP_INVOICES_N4 13196 439859 18669 2889596 1
AP_INVOICES_N5 9734 291 24145 1543140 82
AP_INVOICES_N6 18816 1567987 22708 2579791 1
AP_INVOICES_N9 9216 3 23271 264048 7757
AP_INVOICES_U1 10892 2861077 17074 342793 1
AP_INVOICES_U2 17176 3084212 28910 2499547 1

Optimizer Index Determination Criteria
The optimizer uses the following criteria when determining which index to use:

■ Number of rows in the index (cardinality)

■ Number of distinct keys. These define the selectivity of the index.

■ Level or height of the index. This indicates how deeply the data ’probe’ must

search in order to find the data.

■ Number of leaf blocks. This is the number of I/Os needed to find the desired

rows of data.

Using Statistics

Gathering Statistics 8-15

■ Clustering factor (CF). This is the colocation amount of the index block relative

to data blocks. The higher the CF the more likely the optimizer is to select this

index.

Usage Notes
Use the following notes to assist you in deciding whether you have chosen an

appropriate index for your table, data, and query:

DISTINCT Consider index ap_invoices_n3 , the number of distinct keys, is 2. The

resulting selectivity based on index ap_invoices_n3 is poor, and the optimizer is

not likely to use this index. Using this index fetches 50% of the data in the table. In

this case, a full table scan is cheaper than using index ap_invoices_n3 .

Index Cost Tie The optimizer uses alphabetic determination: If the optimizer

determines that the selectivity, cost, and cardinality of two finalist indexes is the

same, then it uses the two indexes’ names as the deciding factor. It chooses the

index with name beginning with a lower alphabetic letter or number.

Verifying Column Statistics
To verify that column statistics are available, execute the following statement

against the dictionary’s DBA_TAB_COLUMNS view:

SQL> SELECT COLUMN_NAME, NUM_DISTINCT, NUM_NULLS, NUM_BUCKETS, DENSITY
FROM DBA_TAB_COLUMNS
WHERE TABLE_NAME ="PA_EXPENDITURE_ITEMS_ALL"
ORDER BY COLUMN_NAME;

This returns the following data:

COLUMN_NAME NUM_DISTINCT NUM_NULLS NUM_BUCKETS DENSITY
------------------------------ ------------ ---------- ----------- ----------
BURDEN_COST 4300 71957 1 .000232558
BURDEN_COST_RATE 675 7376401 1 .001481481
CONVERTED_FLAG 1 16793903 1 1
COST_BURDEN_DISTRIBUTED_FLAG 2 15796 1 .5
COST_DISTRIBUTED_FLAG 2 0 1 .5
COST_IND_COMPILED_SET_ID 87 6153143 1 .011494253
EXPENDITURE_ID 1171831 0 1 8.5337E-07
TASK_ID 8648 0 1 .000115634
TRANSFERRED_FROM_EXP_ITEM_ID 1233787 15568891 1 8.1051E-07

Verifying column statistics are especially important for the following schema:

Using Statistics

8-16 Oracle8i Designing and Tuning for Performance

■ Join conditions

■ When the WHERE clause includes a column(s) with a bind variable, for example:

column x = :variable_y

In these cases, the stored column statistics can be used to get a representative

Cardinality estimation for the given expression.

Consider the data returned in the above example.

NUM_DISTINCT Column Statistic

Low Column CONVERTED_FLAG: NUM_DISTINCT = 1. In this case this column has

only one value. If in the WHERE clause, then there is a bind variable on column

CONVERTED_FLAG = :variable_y , say. If CONVERTED_FLAG is low, as the case in

this example, then this leads to poor selectivity and CONVERTED_FLAG is a poor

candidate to be used as the index.

Column COST_BURDEN_DISTRIBUTED_FLAG: NUM_DISTINCT = 2. Likewise, this

is low. COST_BURDEN_DISTRIBUTED_FLAG is not a good candidate for index

unless there is much skew. If there is data skew of, say, 90%, then 90% of the data

has one particular value and 10% of the data has another value. If the query only

needs to access the 10%, then a histogram would be needed on that column in order

for the optimizer to recognize the skew and utilize an index on this column.

High NUM_DISTINCT is more than one million for column EXPEDITURE_ID. If

there is a bind variable on column EXPENDITURE_ID, then this leads to high

selectivity (implying high density of data on this column). In other words,

EXPENDITURE_ID is a good candidate to be used as the index.

NUM_NULL Column Statistic
NUM_NULLS indicates the number of null statistics.

Low For example, if a single column index has few null, such as the COST_
DISTRIBUTED_FLAGcolumn, then if this column is used as the index, the resulting

data set will be large.

High If there are many nulls on a particular column, such as the CONVERTED_FLAG
column, then if this column is used as the index, the resulting data set will be small.

This means that COST_DISTRIBUTED_FLAG would be a more appropriate column

to index.

Using Histograms

Gathering Statistics 8-17

DENSITY Column Statistic
This indicates how dense the values of that column are.

Column Statistics and Join Methods
Column statistics are useful to help determine the most efficient join method,

which, in turn, is also based on the number of rows returned.

Using Histograms
The cost-based optimizer uses data value histograms to get accurate estimates of the

distribution of column data. A histogram partitions the values in the column into

bands, so that all column values in a band fall within the same range. Histograms

provide improved selectivity estimates in the presence of data skew, resulting in

optimal execution plans with nonuniform data distributions.

One of the fundamental capabilities of the cost-based optimizer is determining the

selectivity of predicates that appear in queries. Selectivity estimates are used to

decide when to use an index and the order in which to join tables. Most attribute

domains (a table’s columns) are not uniformly distributed.

The cost-based optimizer uses height-based histograms on specified attributes to

describe the distributions of nonuniform domains. In a height-based histogram, the

column values are divided into bands so that each band contains approximately the

same number of values. The useful information that the histogram provides, then, is

where in the range of values the endpoints fall.

Consider a column C with values between 1 and 100 and a histogram with 10

buckets. If the data in C is uniformly distributed, then the histogram would look

like this, where the numbers are the endpoint values:

The number of rows in each bucket is one tenth the total number of rows in the

table. Four-tenths of the rows have values between 60 and 100 in this example of

uniform distribution.

See Also: For more information, see "Types of Histograms" on

page 8-19.

1 10 20 30 40 50 60 70 80 90 100

Using Histograms

8-18 Oracle8i Designing and Tuning for Performance

If the data is not uniformly distributed, then the histogram might look like this:

In this case, most of the rows have the value 5 for the column. In this example, only

1/10 of the rows have values between 60 and 100.

When to Use Histograms
Histograms can affect performance and should be used only when they

substantially improve query plans. In general, you should create histograms on

columns that are frequently used in WHERE clauses of queries and have a highly

skewed data distribution. For many applications, it is appropriate to create

histograms for all indexed columns because indexed columns typically are the

columns most often used in WHERE clauses.

Histograms are persistent objects, so there is a maintenance and space cost for using

them. You should compute histograms only for columns that you know have highly

skewed data distribution. For uniformly distributed data, the cost-based optimizer

can make fairly accurate guesses about the cost of executing a particular statement

without the use of histograms.

Histograms, like all other optimizer statistics, are static. They are useful only when

they reflect the current data distribution of a given column. (The data in the column

can change as long as the distribution remains constant.) If the data distribution of a

column changes frequently, you must recompute its histogram frequently.

Histograms are not useful for columns with the following characteristics:

■ All predicates on the column use bind variables.

■ The column data is uniformly distributed.

■ The column is not used in WHERE clauses of queries.

■ The column is unique and is used only with equality predicates.

Creating Histograms
You generate histograms by using the DBMS_STATS package or the ANALYZE
statement. You can generate histograms for columns of a table or partition.

Histogram statistics are not collected in parallel.

1 5 5 5 5 10 10 20 35 60 100

Using Histograms

Gathering Statistics 8-19

For example, to create a 10-bucket histogram on the SAL column of the emp table,

issue the following statement:

EXECUTE DBMS_STATS.GATHER_TABLE_STATS
(’scott’,’emp’, METHOD_OPT => ’FOR COLUMNS SIZE 10 sal’);

The SIZE keyword declares the maximum number of buckets for the histogram.

You would create a histogram on the SAL column if there was an unusually high

number of employees with the same salary and few employees with other salaries.

You can also collect histograms for a single partition of a table.

Choosing the Number of Buckets for a Histogram
The default number of buckets for a histogram is 75. This value provides an

appropriate level of detail for most data distributions. However, because the

number of buckets in the histogram, also known as ’the sampling rate’, and the data

distribution both affect a histogram’s usefulness, you may need to experiment with

different numbers of buckets to obtain optimal results.

If the number of frequently occurring distinct values in a column is relatively small,

then set the number of buckets to be greater than that number.

Types of Histograms
There are two types of histograms:

■ Height-Based Histograms

■ Value-Based Histograms

Height-Based Histograms
Height-based histograms place approximately the same number of values into each

range, so that the endpoints of the range are determined by how many values are in

that range.

Consider that a table’s query results in the following four sample values: 4, 18, 30,

and 35.

For a height-based histogram, we consider each of these values to occupy a portion

of one bucket, in proportion to their size. The resulting selectivity is computed with

the following formula:

See Also: For more information on the DBMS_STATSpackage, see

Oracle8i Supplied PL/SQL Packages Reference.

Using Histograms

8-20 Oracle8i Designing and Tuning for Performance

S = Height(35)/ Height(4 + 18 + 30 + 35)

Value-Based Histograms
Consider the same four sample values in the example above. In a value-based

histogram a bucket is used to represent each of the four distinct values. In other

words, one bucket represents 4, one bucket represents 18, another represents 30,

and another represents 35. The resulting selectivity is computed with the following

formula:

S = [#rows (35)/(#rows(4) + #rows(18) + #rows(30) + #rows(35))]/ #buckets

If there are many different values anticipated for a particular column of your table,

it is preferable to use the value-based histogram rather than the height-based

histogram. This is because if there is much data skew in the height, then the skew

can offset the selectivity calculation and give a non-representative selectivity value.

Histogram Example
The following example illustrates the use of a histogram in order to improve the

execution plan and demonstrate the skewed behavior of the s6 indexed column.

UPDATE so_lines l
SET open_flag=null,
 s6=10,
 s6_date=sysdate,
WHERE l.line_type_code in ('REGULAR','DETAIL','RETURN') AND
 l.open_flag||'' = 'Y'AND NVL(l.shipped_quantity, 0)=0 OR
 NVL(l.shipped_quantity, 0) != 0 AND

l.shipped_quantity +NVL(l.cancelled_quantity, 0)= l.ordered_quantity)) AND
 l.s6=18

This query shows the skewed distribution of data values for s6 . In this case, there

are two distinct non-null values: 10 and 18. The majority of the rows consists of s6
= 10 (1,589,464), while a small amount of rows consist of s6 = 18 (13,091).

S6: COUNT(*)
======================
10 1,589,464
18 13,091
NULL 21,889

The selectivity of column s6 , where s6 = 18:

S = 13,091 / (13,091 + 1,589,464) = 0.008

Using Histograms

Gathering Statistics 8-21

■ If No Histogram is Used: Then the selectivity of column s6 is assumed to be 50%,

uniformly distributed across 10 and 18. This is not selective; therefore, s6 is not

an ideal choice for use as an index.

■ If a Histogram is Used: Then the data distribution information is stored in the

dictionary. This allows the optimizer to use this information and compute the

correct selectivity based on the data distribution. In the above example, the

selectivity, based on the histogram data, is 0.008. This a relatively high, or good,

selectivity, which indicates to the optimizer to use an index on column s6 in the

execution plan.

Viewing Histograms
You can view histogram information with the following data dictionary views:

■ USER_HISTOGRAMS, ALL_HISTOGRAMS, and DBA_HISTOGRAMS

■ USER_PART_HISTOGRAMS, ALL_PART_HISTOGRAMS, and DBA_PART_
HISTOGRAMS

■ USER_SUBPART_HISTOGRAMS, ALL_SUBPART_HISTOGRAMS, and DBA_
SUBPART_HISTOGRAMS

■ TAB_COLUMNS

Number of Rows View the following DBA_HISTOGRAMS dictionary table for the

number of buckets; i.e., the number of rows, for each column:

■ ENDPOINT_NUMBER

■ ENDPOINT_VALUE

Verifying Histogram Statistics
To verify that histogram statistics are available, execute the following statement

against the dictionary’s DBA_HISTOGRAMS table:

SQL> SELECT ENDPOINT_NUMBER, ENDPOINT_VALUE
 FROM DBA_HISTOGRAMS
 WHERE TABLE_NAME ="SO_LINES_ALL" AND COLUMN_NAME="S2";

This returns the following typical data:

See Also: For column descriptions of data dictionary views, as

well as histogram use and restrictions, see Oracle8i Reference.

Using Histograms

8-22 Oracle8i Designing and Tuning for Performance

ENDPOINT_NUMBER ENDPOINT_VALUE
--------------- ---------------
 1365 4
 1370 5
 2124 8
 2228 18

Consider the difference between two ENDPOINT_NUMBER values, such as 1370 -

1365 = 5. This indicates that 5 values are represented in the bucket containing the

endpoint 1365.

If endpoint numbers are very different, then this implies the use of more buckets,

where one row corresponds to one bucket.

Optimizing SQL Statements 9-1

9
Optimizing SQL Statements

This chapter describes how Oracle optimizes Structured Query Language (SQL)

using the cost-based optimizer (CBO).

This chapter contains the following sections:

■ Approaches to SQL Statement Tuning

■ Tuning Goals

■ Best Practices

■ SQL Tuning Tips

■ Using EXISTS versus IN

■ Trouble Shooting

■ Tuning Distributed Queries

Note: Although some Oracle tools and applications mask the use

of SQL, all database operations are performed using SQL. Any

other data access method circumvents the security built into Oracle

and potentially compromises data security and integrity.

Approaches to SQL Statement Tuning

9-2 Oracle8i Designing and Tuning for Performance

Approaches to SQL Statement Tuning
This section describes five ways you can improve SQL statement efficiency:

■ Restructuring the Indexes

■ Restructuring the Statement

■ Modifying or Disabling Triggers

■ Restructuring the Data

■ Keeping Statistics Current and Using Plan Stability to Preserve Execution Plans

Restructuring the Indexes
Restructuring the indexes is a good starting point, because it has more impact on

the application than does restructuring the statement or the data.

■ Remove nonselective indexes to speed the DML.

■ Index performance-critical access paths.

■ Consider hash clusters, but watch uniqueness.

■ Consider index clusters only if the cluster keys are similarly sized.

Do not use indexes as a panacea. Application developers sometimes think that

performance will improve if they write more indexes. If a single programmer

creates an appropriate index, then this might indeed improve the application’s

performance. However, if 50 programmers each create an index, then application

performance will probably be hampered!

Restructuring the Statement
After restructuring the indexes, you can try restructuring the statement. Rewriting

an inefficient SQL statement is often easier than repairing it. If you understand the

purpose of a given statement, then you may be able to quickly and easily write a

new statement that meets the requirement.

Note: The guidelines described in this section are oriented to

production SQL that will be executed frequently. Most of the

techniques that are discouraged here can legitimately be employed

in ad hoc statements or in applications run infrequently where

performance is not critical.

Approaches to SQL Statement Tuning

Optimizing SQL Statements 9-3

Consider Alternative SQL Syntax
Because SQL is a flexible language, more than one SQL statement may meet the

needs of your application. Although two SQL statements may produce the same

result, Oracle may process one faster than the other. You can use the results of the

EXPLAIN PLAN statement to compare the execution plans and costs of the two

statements and determine which is more efficient.

This example shows the execution plans for two SQL statements that perform the

same function. Both statements return all the departments in the dept table that

have no employees in the emp table. Each statement searches the emp table with a

subquery. Assume there is an index, deptno_index , on the deptno column of the

emp table.

The first statement and its execution plan:

SELECT dname, deptno
 FROM dept
 WHERE deptno NOT IN
 (SELECT deptno FROM emp);

Figure 9–1 Execution Plan with Two Full Table Scans

Step 3 of the output indicates that Oracle executes this statement by performing a

full table scan of the emp table despite the index on the deptno column. This full

table scan can be a time-consuming operation. Oracle does not use the index,

because the subquery that searches the emp table does not have a WHERE clause that

makes the index available.

TABLE ACCESS
(FULL)
dept

2 3

TABLE ACCESS
(FULL)

emp

1

FILTER

Approaches to SQL Statement Tuning

9-4 Oracle8i Designing and Tuning for Performance

However, this SQL statement selects the same rows by accessing the index:

SELECT dname, deptno
FROM dept
WHERE NOT EXISTS

(SELECT deptno
FROM emp
WHERE dept.deptno = emp.deptno);

Figure 9–2 Execution Plan with a Full Table Scan and an Index Scan

The WHERE clause of the subquery refers to the deptno column of the emp table, so

the index deptno_index is used. The use of the index is reflected in step 3 of the

execution plan. The index range scan of deptno_index takes less time than the

full scan of the emp table in the first statement. Furthermore, the first query

performs one full scan of the emp table for every deptno in the dept table. For

these reasons, the second SQL statement is faster than the first.

If you have statements in your applications that use the NOT IN operator, as the first

query in this example does, then you should consider rewriting them so that they

use the NOT EXISTS operator. This would allow such statements to use an index, if

one exists.

Note: Alternative SQL syntax is effective only with the rule-based

optimizer.

TABLE ACCESS
(FULL)
dept

2 3

TABLE ACCESS
(RANGE SCAN)
deptno_index

1

FILTER

Approaches to SQL Statement Tuning

Optimizing SQL Statements 9-5

Compose Predicates Using AND and =
Use equijoins whenever possible. Without exception, statements that perform

equijoins on untransformed column values are the easiest to tune.

Choose an Advantageous Join Order
Join order can have a significant effect on performance. The main objective of SQL

tuning is to avoid performing unnecessary work to access rows that do not affect

the result. This leads to three general rules:

■ Avoid a full-table scan if it is more efficient to get the required rows through an

index.

■ Avoid using an index that fetches 10,000 rows from the driving table if you

could instead use another index that fetches 100 rows.

■ Choose the join order so as to join fewer rows to tables later in the join order.

The following example shows how to tune join order effectively:

SELECT info
FROM taba a, tabb b, tabc c
WHERE a.acol BETWEEN :alow AND :ahigh

AND b.bcol BETWEEN :blow AND :bhigh
AND c.ccol BETWEEN :clow AND :chigh
AND a.key1 = b.key1
AND a.key2 = c.key2;

1. Choose the driving table and the driving index (if any).

The first three conditions in the example above are filter conditions applying to

only a single table each. The last two conditions are join conditions.

Filter conditions dominate the choice of driving table and index. In general, the

driving table should be the one containing the filter condition that eliminates

the highest percentage of the table. Thus, if the range of :alow to :ahigh is

narrow compared with the range of acol , but the ranges of :b* and :c* are

relatively large, then taba should be the driving table, all else being equal.

2. Choose the right indexes.

After you know your driving table, choose the most selective index available to

drive into that table. Alternatively, choose a full table scan if that would be

more efficient. From there, the joins should all happen through the join indexes,

the indexes on the primary or foreign keys used to connect that table to an

earlier table in the join tree. Rarely should you use the indexes on the non-join

Approaches to SQL Statement Tuning

9-6 Oracle8i Designing and Tuning for Performance

conditions, except for the driving table. Thus, after taba is chosen as the

driving table, you should use the indexes on b.key1 and c .key2 to drive into

tabb and tabc , respectively.

3. Choose the best join order, driving to the best unused filters earliest.

The work of the following join can be reduced by first joining to the table with

the best still-unused filter. Thus, if "bcol BETWEEN..." is more restrictive (rejects

a higher percentage of the rows seen) than "ccol between ...", the last join can

be made easier (with fewer rows) if tabb is joined before tabc .

Use Untransformed Column Values
Use untransformed column values. For example, use:

WHERE a.order_no = b.order_no

Rather than:

WHERE TO_NUMBER (SUBSTR(a.order_no, instr(b.order_no, ’.’) - 1))
= TO_NUMBER (SUBSTR(a.order_no, instr(b.order_no, ’.’) - 1))

Do not use SQL functions in predicate clauses or WHERE clauses. The use of an

aggregate function, especially in a subquery, often indicates that you could have

held a derived value on a master record.

Avoid Mixed-Type Expressions
Avoid mixed-mode expressions, and beware of implicit type conversions. When

you want to use an index on the VARCHAR2column charcol , but the WHEREclause

looks like this:

AND charcol = <numexpr>

Where numexpr is an expression of number type (for example, 1,

USERENV('SESSIONID'), numcol , numcol +0,...), Oracle translates that expression

into:

AND TO_NUMBER(charcol) = numexpr

This has the following consequences:

■ Any expression using a column, such as a function having the column as its

argument, causes the optimizer to ignore the possibility of using an index on

that column, even a unique index.

Approaches to SQL Statement Tuning

Optimizing SQL Statements 9-7

■ If the system processes even a single row having charcol as a string of

characters that does not translate to a number, then an error is returned.

You can avoid this problem by replacing the top expression with the explicit

conversion:

AND charcol = TO_CHAR(<numexpr>)

Alternatively, make all type conversions explicit. The statement:

numcol = charexpr

allows use of an index on numcol , because the default conversion is always

character-to-number. This behavior, however, is subject to change. Making type

conversions explicit also makes it clear that charexpr should always translate to a

number.

Write Separate SQL Statements for Specific Values
SQL is not a procedural language. Using one piece of SQL to do many different

things is not a good idea: it usually results in a less-than-optimal result for each

task. If you want SQL to accomplish different things, then write two different

statements rather than writing one statement that will do different things

depending on the parameters you give it.

Optimization (determining the execution plan) takes place before the database

knows what values will be substituted into the query. An execution plan should

not, therefore, depend on what those values are. For example:

SELECT info
FROM tables
WHERE ...

AND somecolumn BETWEEN DECODE(:loval, 'ALL', somecolumn, :loval)
AND DECODE(:hival, 'ALL', somecolumn, :hival);

Written as shown, the database cannot use an index on the somecolumn column,

because the expression involving that column uses the same column on both sides

of the BETWEEN.

This is not a problem if there is some other highly selective, indexable condition you

can use to access the driving table. Often, however, this is not the case. Frequently,

you may want to use an index on a condition like that shown, but need to know the

values of :loval , and so on, in advance. With this information, you can rule out the

ALL case, which should not use the index.

Approaches to SQL Statement Tuning

9-8 Oracle8i Designing and Tuning for Performance

If you want to use the index whenever real values are given for :loval and :hival
(that is, if you expect narrow ranges, even ranges where :loval often equals

:hival), then you can rewrite the example in the following logically equivalent

form:

SELECT /* change this half of union all if other half changes */ info
FROM tables
WHERE ...

AND somecolumn BETWEEN :loval AND :hival
AND (:hival != 'ALL' AND :loval != 'ALL')

UNION ALL

SELECT /* Change this half of union all if other half changes. */ info
FROM tables
WHERE ...

AND (:hival = 'ALL' OR :loval = 'ALL');

If you run EXPLAIN PLAN on the new query, then you seem to get both a desirable

and an undesirable execution plan. However, the first condition the database

evaluates for either half of the UNION ALL is the combined condition on whether

:hival and :loval are ALL. The database evaluates this condition before actually

getting any rows from the execution plan for that part of the query.

When the condition comes back false for one part of the UNION ALL query, that part

is not evaluated further. Only the part of the execution plan that is optimum for the

values provided is actually carried out. Because the final conditions on :hival and

:loval are guaranteed to be mutually exclusive, then only one half of the UNION
ALL actually returns rows. (The ALL in UNION ALL is logically valid because of this

exclusivity. It allows the plan to be carried out without an expensive sort to rule out

duplicate rows for the two halves of the query.)

Use Hints to Control Access Paths
Use optimizer hints, such as /*+ORDERED */ to control access paths. This is a better

approach than using traditional techniques or "tricks of the trade" such as CUST_NO
+ 0. For example, use

SELECT /*+ FULL(emp) */ e.ename
FROM emp e
WHERE e.job = ’CLERK';

rather than

SELECT e.ename FROM emp e
WHERE e.job || '' = ’CLERK';

Approaches to SQL Statement Tuning

Optimizing SQL Statements 9-9

Use Care When Using IN and NOT IN with a Subquery
Remember that WHERE (NOT) EXISTS is a useful alternative.

Use Care When Embedding Data Value Lists in Applications
Data value lists are generally a sign that an entity is missing. For example:

WHERE transport IN (’BMW’, ’CITROEN’, ’FORD’, HONDA’)

The real objective in the WHERE clause above is to determine whether the mode of

transport is an automobile, and not to identify a particular make. A reference table

should be available in which transport type = ’AUTOMOBILE’.

Minimize the use of DISTINCT . DISTINCT always creates a sort; all the data must

be instantiated before your results can be returned.

Reduce the Number of Calls to the Database
When appropriate, use INSERT, UPDATE, or DELETE... RETURNING to select and

modify data with a single call. This technique improves performance by reducing

the number of calls to the database.

Use Care When Managing Views
Be careful when joining views, when performing outer joins to views, and when

you consider recycling views.

Use Care When Joining Views The shared SQL area in Oracle reduces the cost of

parsing queries that reference views. In addition, optimizer improvements make the

processing of predicates against views very efficient. Together, these factors make

possible the use of views for ad hoc queries. Despite this, joins to views are not

recommended, particularly joins from one complex view to another.

See Also: For more information on hints, see Chapter 7, "Using

Optimizer Hints".

Note: (NOT) EXISTS is not always equivalent to NOT IN.

See Also: For syntax information on the INSERT, UPDATE, and

DELETE statements, see Oracle8i SQL Reference.

Approaches to SQL Statement Tuning

9-10 Oracle8i Designing and Tuning for Performance

The following example shows a query upon a column which is the result of a

GROUP BY. The entire view is first instantiated, and then the query is run against the

view data.

CREATE VIEW dx(deptno, dname, totsal)
AS SELECT d.deptno, d.dname, e.sum(sal)
FROM emp e, dept d

WHERE e.deptno = d.deptno
GROUP BY deptno, dname

SELECT *
FROM dx
WHERE deptno=10;

Use Care When Unnesting Subqueries Setting the UNNEST_SUBQUERY session

parameter to TRUE enables subquery unnesting. Subquery unnesting unnests and

merges the body of the subquery into the body of the statement that contains it,

allowing the optimizer to consider them together when evaluating access paths and

joins.

This parameter not cost based, and it is not set by default. UNNEST_SUBQUERY first

verifies if the statement is valid. If the statement is not valid, then subquery

unnesting cannot proceed. The statement must then must pass a heuristic test.

The UNNEST hint checks the subquery block for validity only. If it is valid, then

subquery unnesting is enabled without Oracle checking the heuristics. If you

enabled subquery unnesting with the UNNEST_SUBQUERY parameter, then the NO_
UNNEST hint turns it off for specific subquery blocks.

Because subquery unnesting generates views, some views will be merged in the

main query block with complex view merging. When the subquery contains an

aggregate function, it is a good idea to have complex view merging enabled. This

allows the inline view generated by unnesting to be merged in the main query

block.

Use Care When Performing Outer Joins To Views An outer join to a multi-table view can

be problematic. For example, you may start with the usual emp and dept tables

with indexes on e.empno, e.deptno , and d.deptno , and create the following view:

See Also: For more information on unnesting nested subqueries

and the conditions that make a subquery block valid, see the

Oracle8i SQL Reference. For more information on the UNNEST and

NO_UNNEST hints, see Chapter 7, "Using Optimizer Hints".

Approaches to SQL Statement Tuning

Optimizing SQL Statements 9-11

CREATE VIEW empdept (empno, deptno, ename, dname)
AS SELECT e.empno, e.deptno, e.ename, d.dname

FROM dept d, emp e
WHERE e.deptno = d.deptno(+);

You may then construct the simplest possible query to do an outer join into this

view on an indexed column (e.deptno) of a table underlying the view:

SELECT e.ename, d.loc
FROM dept d, empdept e

WHERE d.deptno = e.deptno(+)
AND d.deptno = 20;

The following execution plan results:

QUERY_PLAN
--
MERGE JOIN OUTER
 TABLE ACCESS BY ROWID DEPT
 INDEX UNIQUE SCAN DEPT_U1: DEPTNO
 FILTER
 VIEW EMPDEPT
 NESTED LOOPS OUTER
 TABLE ACCESS FULL EMP
 TABLE ACCESS BY ROWID DEPT
 INDEX UNIQUE SCAN DEPT_U1: DEPTNO

Until both tables of the view are joined, the optimizer does not know whether the

view will generate a matching row. The optimizer must therefore generate all the

rows of the view and perform a MERGE JOIN OUTER with all the rows returned

from the rest of the query. This approach would be extremely inefficient if all you

want is a few rows from a multi-table view with at least one very large table.

Solving the problem in the preceding example is relatively easy. The second

reference to dept is not needed, so you can do an outer join straight to emp. In

other cases, the join need not be an outer join. You can still use the view simply by

getting rid of the (+) on the join into the view.

Do Not Recycle Views Beware of writing a view for one purpose and then using it for

other purposes, to which it may be ill-suited. Consider this example:

SELECT dname
FROM dx
WHERE deptno=10;

Approaches to SQL Statement Tuning

9-12 Oracle8i Designing and Tuning for Performance

You can obtain dname and deptno directly from the dept table. It would be

inefficient to obtain this information by querying the DX view (which was declared

earlier in the present example). To answer the query, the view would perform a join

of the dept and emp tables, even though you do not need any data from the emp
table.

Modifying or Disabling Triggers
Using triggers consumes system resources. If you use too many triggers, then you

may find that performance is adversely affected and you may need to modify or

disable them.

Restructuring the Data
After restructuring the indexes and the statement, you can consider restructuring

the data.

■ Introduce derived values. Avoid GROUP BY in response-critical code.

■ Implement missing entities and intersection tables.

■ Reduce the network load. Migrate, replicate, partition data.

The overall purpose of any strategy for data distribution is to locate each data

attribute such that its value makes the minimum number of network journeys. If the

current number of journeys is excessive, then moving (migrating) the data is a

natural solution.

Often, however, no single location of the data reduces the network load (or message

transmission delays) to an acceptable level. In this case, consider either holding

multiple copies (replicating the data) or holding different parts of the data in

different places (partitioning the data).

Where distributed queries are necessary, it may be effective to code the required

joins with procedures either in PL/SQL within a stored procedure, or within the

user interface code.

When considering a cross-network join, you can either bring the data in from a

remote node and perform the join locally, or you can perform the join remotely. The

option you choose should be determined by the relative volume of data on the

different nodes.

Tuning Goals

Optimizing SQL Statements 9-13

Keeping Statistics Current and Using Plan Stability to Preserve Execution Plans
After you have tuned your application’s SQL statements, consider maintaining

statistics with the useful procedures of the DBMS_STATS package. Also consider

implementing plan stability to maintain application performance characteristics

despite system changes.

Tuning Goals
Structured Query Language (SQL) is used to perform all database operations,

although some Oracle tools and applications simplify or mask its use. This chapter

provides an overview of the issues involved in tuning database operations from the

SQL point-of-view.

This section introduces:

■ Tuning a Serial SQL Statement

■ Tuning Parallel Execution

■ Tuning OLTP Applications

Always approach the tuning of database operations from the standpoint of the

particular goals of your application. Are you tuning serial SQL statements or

parallel operations? Do you have an online transaction processing (OLTP)

application or a data warehousing application?

■ Data warehousing operations process high volumes of data, and they have a

high correlation with the goals of parallel operations.

■ OLTP applications have a large number of concurrent users, and they correlate

more with serial operations.

As a result, these two divergent types of applications have contrasting goals for

tuning as described in Table 9–1.

See Also: For more information on using statistics, see Chapter 8,

"Gathering Statistics". For more information on using plan stability,

see Chapter 10, "Using Plan Stability".

See Also: For more information about tuning PL/SQL

statements, see PL/SQL User’s Guide and Reference.

Tuning Goals

9-14 Oracle8i Designing and Tuning for Performance

Tuning a Serial SQL Statement
The goal of tuning one SQL statement in isolation is: Minimize resource use by the
operation being performed.

You can experiment with alternative SQL syntax without actually modifying your

application. To do this, use the EXPLAIN PLAN statement with the alternative

statement that you are considering, and compare the alternative statement’s

execution plan and cost with that of the existing one. The cost of a SQL statement

appears in the POSITION column of the first row generated by EXPLAIN PLAN. You

must run the application to see which statement can actually be executed more

quickly.

Tuning Parallel Execution
The goal of tuning parallel execution is: Maximize throughput for the given hardware.

If you have a powerful system and a massive, high-priority SQL statement to run,

then parallelize the statement so that it uses all available resources.

Oracle can perform the following operations in parallel:

■ Parallel query

■ Parallel DML (includes INSERT, UPDATE, DELETE; APPEND hint, parallel index

scans)

■ Parallel DDL

■ Parallel recovery

■ Parallel loading

Table 9–1 Contrasting Goals for Tuning

Tuning Situation Goal

Serial SQL Statement Minimize resource use by the operation.

Parallel Operations Maximize throughput for the hardware.

See Also: For more information, see "Approaches to SQL

Statement Tuning" on page 9-2.

Note: Parallel execution is only available with the Oracle8i
Enterprise Edition.

Tuning Goals

Optimizing SQL Statements 9-15

■ Parallel propagation (for replication)

Look for opportunities to parallelize operations in the following situations:

■ Long elapsed time

Whenever an operation you are performing in the database takes a long time,

whether it is a query or a batch job, you may be able to reduce the elapsed time

by using parallel operations.

■ High number of rows processed

You can split rows so that they are not all accessed by a single process.

You can also use parallel execution to access object types within an Oracle database.

For example, you can use parallel execution to access Large Binary Objects (LOBs).

Parallel execution benefits systems if they have all of the following characteristics:

■ Symmetric multi-processors (SMP), clusters, or massively parallel systems.

■ Sufficient I/O bandwidth.

■ Under-utilized or intermittently used CPUs (for example, systems where CPU

usage is typically less than 30%).

■ Sufficient memory to support additional memory-intensive processes, such as

sorts, hashing, and I/O buffers.

If your system lacks any of these characteristics, then parallel execution may not
significantly improve performance. In fact, parallel execution can reduce system

performance on over-utilized systems or systems with small I/O bandwidth.

See Also: For more information about parallel execution, see

Oracle8i Concepts and your platform-specific Oracle documentation.

For information on using the following features, see Oracle8i Data
Warehousing Guide:

■ Setting the degree of parallelism and enabling adaptive

multi-user

■ Tuning parallel execution parameters

■ Creating indexes in parallel

■ Partitioned index scans

■ Using bulk inserts, updates, and deletes

Tuning Goals

9-16 Oracle8i Designing and Tuning for Performance

When to Implement Parallel Execution
Parallel execution provides the best performance improvements in decision support

systems (DSS). However, online transaction processing (OLTP) systems also benefit

from parallel execution; for example, parallel index creation greatly benefits

ecommerce businesses where there is little scheduled downtime.

During the day, most OLTP systems should probably not use parallel execution.

During off-hours, however, parallel execution can effectively process high-volume

batch operations. For example, a bank might use parallelized batch programs to

perform millions of updates to apply interest to accounts.

Tuning OLTP Applications
Tuning OLTP applications mostly involves tuning serial SQL statements. You

should consider two design issues: use of SQL and shared PL/SQL, and use of

different transaction modes.

SQL and Shared PL/SQL
To minimize parsing, use bind variables in SQL statements within OLTP

applications. This way, all users can share the same SQL statements while using

fewer resources for parsing.

Transaction Modes
Sophisticated users can use discrete transactions if performance is of the utmost

importance, and if the users are willing to design the application accordingly.

Serializable transactions can be used if the application must be ANSI compatible.

Because of the overhead inherent in serializable transactions, Oracle strongly

recommends the use of read-committed transactions instead.

Triggers
If excessive use of triggers degrades system performance, then modify the

conditions under which triggers fire by executing the CREATE TRIGGERor CREATE
OR REPLACE TRIGGER statements. You can also turn off triggers with the ALTER
TRIGGER statement.

See Also: For more information on tuning data warehouse

applications, see Oracle8i Data Warehousing Guide.

See Also: For more information, see Chapter 17, "Transaction

Modes".

Best Practices

Optimizing SQL Statements 9-17

Best Practices
This section documents the best practices for developing and tuning SQL with the

cost-based optimizer (CBO). This includes the following:

■ Avoiding Rule-Based Optimizer Techniques

■ Index Cost

■ Optimizing SQL Statements

■ Avoiding Complex Expressions

■ Optimizing SQL Statements

■ Handling Complex Logic in the Application

Avoiding Rule-Based Optimizer Techniques
The traditional RBO tuning techniques include:

■ Disabling indexes

– col+0 or col || ‘‘

– Wrap function around column, such as NVL (col, -999) or TO_NUMBER

Because the CBO is cost based, it is not necessary to force or disable a particular

index. The CBO chooses the access path with the best cost.

■ Working the table order in the FROM clause.

The CBO chooses the most efficient join order based on cost after permuting the

possible join graphs. Hence, there is no need, or benefit, to ordering the FROM
clause under the CBO.

Index Cost
In the following example, the CBO may choose a full table scan if the index probe

on employee_num is too costly (e.g., the estimated cardinality for employees

having employee numbers beginning with 20 is high).

Note: Excessive use of triggers for frequent events such as logons,

logoffs, and error events can degrade performance, because these

events affect all users.

Best Practices

9-18 Oracle8i Designing and Tuning for Performance

SELECT employee_num, full_name NAME, employee_id
FROM mtl_employees_current_view
WHERE (employee_num LIKE '20%') AND
 (organization_id = :1)
ORDER BY employee_num;

Analyzing Object Statistics
The object statistics include the following:

■ Column statistics

■ Data skew

■ Table statistics

■ Index statistics

■ Partition statistics

The following example illustrates the cost model and selectivity of a query which,

under the RBO, used an inefficient index. The CBO chooses a more efficient plan.

SELECT item.expenditure_item_id
FROM pa_tasks t,
 pa_expenditures exp,
 pa_expenditure_types etype,
 pa_expenditure_items item
WHERE
TRUNC(exp.expenditure_ending_date)<=TRUNC(NVL(TO_DATE(:b0),
exp.expenditure_ending_date))
 AND exp.expenditure_status_code||''='APPROVED'
 AND exp.expenditure_group=NVL(:b1,exp.expenditure_group)
 AND exp.expenditure_id=item.expenditure_id
 AND (NVL(item.request_id,(:b2+1))<>:b2 OR item.cost_dist_rejection_code IS
NULL)
 AND item.cost_distributed_flag='N' and t.task_id=item.task_id
 AND t.project_id=DECODE(:b4,0,T.project_id,:b4)
 AND item.expenditure_type=etype.expenditure_type
 AND etype.system_linkage_function||''=:b6
 ORDER BY item.expenditure_item_date;
COST DISTRIBUTED FLAG
C 7
N 80,251
Y 16,534,822

Best Practices

Optimizing SQL Statements 9-19

Rule Plan
Cost= SELECT STATEMENT
COUNT(*)
Cost= SORT ORDER BY
===================================
Cost= NESTED LOOPS
Cost= NESTED LOOPS
Cost= NESTED LOOPS
Cost= TABLE ACCESS BY INDEX ROWID PA_EXPENDITURE_ITEMS_ALL
Cost= INDEX RANGE SCAN PA_EXPENDITURE_ITEMS_N3: COST_DISTRIBUTED_
FLAG
Cost= TABLE ACCESS BY INDEX ROWID PA_EXPENDITURE_TYPES
Cost= INDEX UNIQUE SCAN PA_EXPENDITURE_TYPES_U1: EXPENDITURE_TYPE
Cost= TABLE ACCESS BY INDEX ROWID PA_EXPENDITURES_ALL
Cost= INDEX UNIQUE SCAN PA_EXPENDITURES_U1: EXPENDITURE_ID
Cost= TABLE ACCESS BY INDEX ROWID PA_TASKS
Cost= INDEX UNIQUE SCAN PA_TASKS_U1: TASK_ID

CBO Plan (default)
Cost=6503 SELECT STATEMENT
Cost=6503 SORT ORDER BY
Cost=6489 NESTED LOOPS
Cost=6487 NESTED LOOPS
Cost=6478 MERGE JOIN CARTESIAN
Cost=6477 TABLE ACCESS FULL PA_EXPENDITURES_ALL
Cost=1 SORT JOIN
Cost=1 TABLE ACCESS FULL PA_EXPENDITURE_TYPES
Cost=9 TABLE ACCESS BY INDEX ROWID PA_EXPENDITURE_ITEMS_ALL
Cost=4 INDEX RANGE SCAN PA_EXPENDITURE_ITEMS_N1: EXPENDITURE_ID
Cost=2 TABLE ACCESS BY INDEX ROWID PA_TASKS
Cost=1 INDEX UNIQUE SCAN PA_TASKS_U1: TASK_ID

Force Rule Plan Using Hints
This illustrates that the cost of the RBO plan is significantly higher than that of the

the default CBO generated plan.

Cost=592532 SELECT STATEMENT
Cost=592532 SORT ORDER BY
Cost=592518 NESTED LOOPS
Cost=592516 NESTED LOOPS
Cost=587506 NESTED LOOPS
Cost=504831 TABLE ACCESS BY INDEX ROWID PA_EXPENDITURE_ITEMS_ALL
Cost=32573 INDEX RANGE SCAN PA_EXPENDITURE_ITEMS_N3:

Best Practices

9-20 Oracle8i Designing and Tuning for Performance

Cost=1 TABLE ACCESS BY INDEX ROWID PA_EXPENDITURE_TYPES
Cost= INDEX UNIQUE SCAN PA_EXPENDITURE_TYPES_U1:
Cost=2 TABLE ACCESS BY INDEX ROWID PA_EXPENDITURES_ALL
Cost=1 INDEX UNIQUE SCAN PA_EXPENDITURES_U1:
Cost=2 TABLE ACCESS BY INDEX ROWID PA_TASKS
Cost=1 INDEX UNIQUE SCAN PA_TASKS_U1:

Rewrite SQL
In order to avoid the full table scan, the query can be rewritten in order to optimize

by using a more selective filter. In this case, the expenditure group is rather

selective, but the NVL() function prevented an index from being used.

SELECT item.expenditure_item_id
FROM pa_tasks t,
 pa_expenditures exp,
 pa_expenditure_types etype,
 pa_expenditure_items item
WHERE
TRUNC(exp.expenditure_ending_date)<=TRUNC(NVL(TO_DATE(:b0),
exp.expenditure_ending_date))
 AND exp.expenditure_status_code||''='APPROVED'
 AND exp.expenditure_group=:b1

AND exp.expenditure_id=item.expenditure_id
 AND (NVL(item.request_id,(:b2+1))<>:b2 OR item.cost_dist_rejection_code IS
NULL)
 AND item.cost_distributed_flag='N' and t.task_id=item.task_id
 AND t.project_id=DECODE(:b4,0,t.project_id,:b4)
 AND item.expenditure_type=etype.expenditure_type
 AND etype.system_linkage_function||''=:b6
 ORDER BY item.expenditure_item_date

New CBO Plan
Cost=32 SELECT STATEMENT
Cost=32 SORT ORDER BY
Cost=18 NESTED LOOPS
Cost=16 NESTED LOOPS
Cost=7 MERGE JOIN CARTESIAN
Cost=1 TABLE ACCESS FULL PA_EXPENDITURE_TYPES
Cost=6 SORT JOIN
Cost=6 TABLE ACCESS BY INDEX ROWID PA_EXPENDITURES_ALL
Cost=2 INDEX RANGE SCAN PA_EXPENDITURES_N3: EXPENDITURE_GROUP
Cost=9 TABLE ACCESS BY INDEX ROWID PA_EXPENDITURE_ITEMS_ALL
Cost=4 INDEX RANGE SCAN PA_EXPENDITURE_ITEMS_N1: EXPENDITURE_ID
Cost=2 TABLE ACCESS BY INDEX ROWID PA_TASKS

Best Practices

Optimizing SQL Statements 9-21

Cost=1 INDEX UNIQUE SCAN PA_TASKS_U1: TASK_ID

Avoiding Complex Expressions
Avoid the following kind of complex expressions:

■ col1 = NVL (:b1 ,col1)

■ NVL (col1,-999) = ….

■ TO_DATE(), TO_NUMBER(), etc.

These expressions prevent the optimizer from assigning valid cardinality or

selectivity estimates, and can in turn affect the overall plan and the join method.

Add the predicate versus using NVL() technique.

For example:

SELECT employee_num, full_name NAME, employee_id
FROM mtl_employees_current_view
WHERE (employee_num = NVL (:b1,employee_num)) AND (organization_id=:1)
ORDER BY employee_num;

Also:

SELECT employee_num, full_name NAME, employee_id
FROM mtl_employees_current_view
WHERE (employee_num = :b1) AND (organization_id=:1)
ORDER BY employee_num;

Avoiding Balloon Tactic for Coding SQL
The balloon tactic is when a developer chooses to write a single complex SQL

statement which incorporates complex application and business logic, as opposed

to writing a few simple queries to achieve the same results. Developing a very large

complex SQL statement has performance implications in terms of sharable memory

and optimization. Coding a few simple queries in place of a single complex query is

a better approach, because the individual SQL statements are easier to optimize and

maintain.

Oracle Forms and Reports are powerful development tools which allow application

logic to be coded using PL/SQL (triggers or program units). This helps reduce the

Note: Although there is a full table scan on the pa_
expenditure_types table, this is only a small lookup table.

SQL Tuning Tips

9-22 Oracle8i Designing and Tuning for Performance

complexity of SQL by allowing complex logic to be handled in the Forms or

Reports. In addition, you can also invoke a server side PL/SQL package which

performs the few SQL statements in place of a single large complex SQL statement.

Because the package is a server-side unit, there are no issues surrounding client to

database round-trips and network traffic.

Handling Complex Logic in the Application
Complex logic should be handled in the application via Oracle Forms triggers,

PL/SQL logic, or C-Code.

For example:

SELECT *
FROM ar_addresses_v
WHERE (customer_id=:1)
==
AR_ADDRESSES_V:
SELECT *
FROM AR_LOOKUPS L_CAT,
 FND_TERRITORIES_VL TERR,
 FND_LANGUAGES_VL LANG,
 RA_SITE_USES SU_SHIP,
 RA_SITE_USES SU_STMT,
 RA_SITE_USES SU_DUN,
 RA_SITE_USES SU_LEGAL,
 RA_SITE_USES SU_BILL,
 RA_SITE_USES SU_MARKET,
 RA_ADDRESSES ADDR

The following steps were taken to improve the above query, which accessed a

complex view with many outer joins:

■ Rewrote the SQL statement and eliminated 6 table joins.

■ Added a Forms post query trigger to populate address type fields.

■ Reduced the number of rows processed.

SQL Tuning Tips
Table 9–2 lists recommended tuning tips you should implement during your SQL

statement design phase:

SQL Tuning Tips

Optimizing SQL Statements 9-23

Table 9–2 SQL Tuning Tips

SQL Tuning Tip Notes

Do the same work faster, or do
less work. Tun by selectivity.

Aim to have the least rows selected. This leads to less
work and less time taken by SQL execution. It also
reduces parse times.

Decompose join layers. Analyze the joins one by one and check that their use
makes sense in each circumstance. See Chapter 4, "The
Optimizer" .

Examine the underlying views. If your query accesses a view, or joins with a view, then
you should examine the view thoroughly to determine
if the view is optimized, or if your query even needs all
the complexity from the view.

Do not be afraid of full table
scans, especially for small tables.

Full table scans may make sense and be cheaper than
index scans in certain situations, like with smaller
tables or non-selective indexes.

Examine the execution plan in
detail.

Index access and NL joins may not be optimal. For
example, the query could be returning too many rows
for this particular join type.

Do the math for long-running
queries:

■ For example a query may
need to run in 3 minutes

■ The query joins so_lines and
so_ headers table

Verify the following:

■ selectivity of so_headers is 5%

■ selectivity of so_lines is 15%

■ so_headers = 1GB, so_lines = 25GB

■ Data working set (resultant set)=3.04GB

■ Throughput needed = 22MB/second

In other words, your expectations of needing the query
to run in 3 minutes could be too high, depending on
the system configuration.

Monitor disk reads and buffer gets For instructions on how to do this, see "Disk Reads and
Buffer Gets" on page 9-27.

Joins

* Review the outer joins

* Replace join with sub-query

For advice on how to do this, see "Choose an
Advantageous Join Order" on page 9-5.

Choosing EXISTS or IN For advice on how to decide, see "Using EXISTS versus
IN" on page 9-28.

Predicate collapsing See "Predicate Collapsing" on page 9-24.

Tune for the typical case See "Tuning for the Typical Case" on page 9-25.

SQL Tuning Tips

9-24 Oracle8i Designing and Tuning for Performance

Using EXPLAIN PLAN on All Queries
It is important that you generate and review execution plans for all your SQL

statements to ensure optimal performance.

Predicate Collapsing
Predicate collapsing occurs when a column predicate involves more than one bind

variable. An expression of the form [col = DECODE (:b1,’’,:b3,col)] is a an

example of predicate collapsing. This implies that if the bind variable 1 is null, then

the bind variable 3 should be used; otherwise, the expression will result in [col =
col] . This prevents the optimizer from utilizing the index on the "col " column due

to the decode construct.

The following example demonstrates how predicate collapsing is used to collapse a

name bind variable with the delivery_id bind variable in a single filter. As can

be seen from the EXPLAIN PLAN, this results in a full table scan on the wsh_

deliveries table because of the NVL() construct on the delivery_id column, as

well as the DECODE() construct on the name column.

SELECT delivery_id, planned_departure_id, organization_id, status_code
FROM wsh_deliveries
WHERE delivery_id = NVL(:b1,delivery_id) AND name = DECODE(:b1,’’,:b3, NAME)
ORDER BY UPPER(HRE.full_name)

PLAN:

Cost=2090 SELECT STATEMENT
Cost=2090 TABLE ACCESS FULL WSH_DELIVERIES

This query can be rewritten using a UNION to short-circuit one-side of the UNION
based on the bind variable values. For example, if the delivery_id bind is

supplied, only the first branch of the UNION is executed.

If a value for the name bind variable is supplied, then the second branch of the

UNION is executed. In either case, both sides of the UNION use rather selective

indexes on either the delivery_id column or the name column. This is much

more efficient than the original query which performed a full table scan.

See Also: For more information on execution plans, see

Chapter 5, "Using EXPLAIN PLAN".

SQL Tuning Tips

Optimizing SQL Statements 9-25

SELECT delivery_id, planned_departure_id, organization_id, status_code
FROM wsh_deliveries
WHERE delivery_id = :b1 AND (:b1 IS NOT NULL)
UNION
SELECT delivery_id, planned_departure_id, organization_id, status_code
FROM wsh_deliveries
WHERE name = :b2 AND (:b1 is null)

Cost=34 SELECT STATEMENT
Cost=34 SORT UNIQUE
Cost= UNION-ALL
Cost= FILTER
Cost=3 TABLE ACCESS BY INDEX ROWID WSH_DELIVERIES
Cost=2 INDEX UNIQUE SCAN WSH_DELIVERIES_U1: DELIVERY_ID
Cost= FILTER
Cost=3 TABLE ACCESS BY INDEX ROWID WSH_DELIVERIES
Cost=2 INDEX UNIQUE SCAN WSH_DELIVERIES_U2: NAME

Tuning for the Typical Case
The following example illustrates how a query can be optimized for the general

case. Specifically, this purchasing query determines the list of approvers which can

approve a purchase order for a given organizational structure. However, in most

cases, the end user provides the approver name via a name pattern, and, therefore,

it is not necessary to scan all the approvers.

SELECT COUNT(*), COUNT(DISTINCT HR.employee_id), HR.full_name,
 HR.employee_num, HR.employee_id
FROM hr_employees_current_v HR,

(SELECT DISTINCT PEH.superior_id
FROM po_employee_hierarchies PEH
WHERE PEH.position_structure_id = :1
AND PEH.employee_id > 0) PEHV WHERE PEHV.superior_id = HR.employee_id
AND (:2 = ’Y’ OR (:3 = ’N’ AND HR.employee_id != :4))

GROUP BY full_name, employee_num, employee_id
ORDER BY full_name

call count cpu elapsed disk query current ros
------- ------ -------- ---------- ---------- ---------- ---------- ---------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 42 39.34 39.51 3756 7752 3 82
------- ------ -------- ---------- ---------- ---------- ---------- ---------
total 44 39.34 39.51 3756 7752 3 82

SQL Tuning Tips

9-26 Oracle8i Designing and Tuning for Performance

SELECT STATEMENT GOAL: ALL_ROWS
 SORT (GROUP BY)
 FILTER
 NESTED LOOPS
 NESTED LOOPS
 VIEW
 SORT (UNIQUE)
 INDEX GOAL: ANALYZED (RANGE SCAN) OF
’PO_EMPLOYEE_HIERARCHIES_U1’ (UNIQUE)
 TABLE ACCESS GOAL: ANALYZED (BY INDEX ROWID) OF
’PER_ALL_PEOPLE_F’
 INDEX (RANGE SCAN) OF ’PER_PEOPLE_F_PK’ (UNIQUE)
 TABLE ACCESS GOAL: ANALYZED (BY INDEX ROWID) OF
’PER_ALL_ASSIGNMENTS_F’
 INDEX GOAL: ANALYZED (RANGE SCAN) OF
’PER_ASSIGNMENTS_F_N12’ (NON-UNIQUE)
 SORT (AGGREGATE)
 TABLE ACCESS GOAL: ANALYZED (FULL) OF
’FINANCIALS_SYSTEM_PARAMS_ALL’

SELECT COUNT(*), COUNT(DISTINCT HR.employee_id), HR.full_name,
 HR.employee_num, HR.employee_id
FROM hr_employees_current_v HR
WHERE (full_name LIKE NVL(:1,’’)||’%’)
AND (NVL(:2, ’N’) = ’Y’ OR (NVL(:3,’N’) = ’N’
AND HR.employee_id !=:4)) AND EXISTS

(SELECT PEH.superior_id
FROM po_employee_hierarchies PEH
WHERE PEH.position_structure_id = :5
AND PEH.superior_id = HR.employee_id)

GROUP BY full_name, employee_num, employee_id
ORDER BY full_name

call count cpu elapsed disk query current ros
------- ------ -------- ---------- ---------- ---------- ---------- ---------
Parse 0 0.00 0.00 0 0 0 0
Execute 1 0.00 0.01 0 0 0 0
Fetch 1 0.03 0.09 29 39 3 2
------- ------ -------- ---------- ---------- ---------- ---------- ---------
total 2 0.03 0.10 29 39 3 2

SQL Tuning Tips

Optimizing SQL Statements 9-27

SELECT STATEMENT GOAL: ALL_ROWS
 SORT (GROUP BY)
 FILTER
 NESTED LOOPS
 TABLE ACCESS GOAL: ANALYZED (BY INDEX ROWID) OF’PER_ALL_PEOPLE_F’

 INDEX GOAL: ANALYZED (RANGE SCAN) OF’PER_PEOPLE_F_N54’
(NON-UNIQUE)
 TABLE ACCESS GOAL: ANALYZED (BY INDEX ROWID)
OF’PER_ALL_ASSIGNMENTS_F’
 INDEX GOAL: ANALYZED (RANGE SCAN) OF’PER_ASSIGNMENTS_F_N12’
(NON-UNIQUE)
 TABLE ACCESS GOAL: ANALYZED (BY INDEX ROWID) OF
’PO_EMPLOYEE_HIERARCHIES_ALL’
 INDEX GOAL: ANALYZED (RANGE SCAN) OF ’PO_EMPLOYEE_HIERARCHIES_N2’
(NON-UNIQUE)
 SORT (AGGREGATE)
 TABLE ACCESS GOAL: ANALYZED (FULL)
OF’FINANCIALS_SYSTEM_PARAMS_ALL’

Disk Reads and Buffer Gets
Monitor disk reads and buffer gets by executing the following statement:

SQL> set autotrace on [explain] [stat]

Typical results returned are shown as follows:

Statistics
--
 70 recursive calls
 0 db block gets

591 consistent gets
 404 physical reads
 0 redo size
 315 bytes sent via SQL*Net to client
 850 bytes received via SQL*Net from client
 3 SQL*Net roundtrips to/from client
 3 sorts (memory)
 0 sorts (disk)
 0 rows processed

If ’consistent gets’ or ’physical reads’ are high relative to the amount of data

returned, then this a sign that the query is expensive and needs to be reviewed for

optimization.

Using EXISTS versus IN

9-28 Oracle8i Designing and Tuning for Performance

For example, if you are expecting less than 1,000 rows back and ’consistent gets’ is

1,000,000 and ’physical reads’ is 10,000, then this query needs to be further

optimized.

Using EXISTS versus IN
This section describes when to use EXISTS and when to use the IN clause in

sub-queries.

Using EXISTS in a SELECT Statement
SELECT COUNT(*)
FROM so_picking_lines_all pl
WHERE (EXISTS (SELECT pld.picking_line_id
 FROM so_picking_line_details pld
 WHERE (pld.picking_line_id=pl.picking_line_id AND
 pld.delivery_id=:b1))
 AND nvl(PL.SHIPPED_QUANTITY,0)>0)

Plan:

Cost=97740 SELECT STATEMENT
Cost= SORT AGGREGATE
Cost= FILTER
Cost=97740 TABLE ACCESS FULL SO_PICKING_LINES_ALL
Cost=4 TABLE ACCESS BY INDEX ROWID SO_PICKING_LINE_DETAILS
Cost=3 INDEX RANGE SCAN SO_PICKING_LINE_DETAILS_N3:

In this example, the use of EXISTS results in a full table scan because there is no

selective criteria on the outer query. In this case, an IN operator is more appropriate.

The IN operator enables Oracle to drive off of the delivery_id index, which is

rather selective.

Using IN in a SELECT Statement with Nested Loop Join
SELECT COUNT(*)
FROM so_picking_lines_all pl
WHERE pl.picking_line_id in (SELECT pld.picking_line_id
 FROM so_picking_line_details pld
 WHERE pld.delivery_id=:b1)
 AND PL.SHIPPED_QUANTITY>0

Plan:

Trouble Shooting

Optimizing SQL Statements 9-29

Cost=265 SELECT STATEMENT
Cost= SORT AGGREGATE
Cost=265 NESTED LOOPS
Cost=19 VIEW
Cost=19 SORT UNIQUE
Cost=4 TABLE ACCESS BY INDEX ROWID SO_PICKING_LINE_DETAILS
Cost=3 INDEX RANGE SCAN SO_PICKING_LINE_DETAILS_N3:
Cost=2 TABLE ACCESS BY INDEX ROWID SO_PICKING_LINES_ALL
Cost=1 INDEX UNIQUE SCAN SO_PICKING_LINES_U1:

This is another example where IN is more appropriate than EXISTS.

Using EXISTS in an UPDATE Statement
UPDATE so_sales_credits_interface sc
SET request_id=:b0
WHERE request_id IS NULL AND error_flag IS NULL AND
 interface_status IS NULL AND
 EXISTS (SELECT NULL
 FROM so_headers_interface i
 WHERE sc.original_system_reference=i.original_system_reference AND
 sc.order_source_id=i.order_source_id AND i.request_id=:b0)

Plan:

Cost=1459 UPDATE STATEMENT
Cost= UPDATE SO_SALES_CREDITS_INTERFACE
Cost= FILTER
Cost=1459 TABLE ACCESS FULL SO_SALES_CREDITS_INTERFACE
Cost=2 TABLE ACCESS BY INDEX ROWID SO_HEADERS_INTERFACE_ALL
Cost=1 INDEX UNIQUE SCAN SO_HEADERS_INTERFACE_U1:

In this example, the use of EXISTS results in a full table scan because there is no

selective criteria on the outer query. In this case, an IN operator is more appropriate.

The IN operator enables Oracle to drive off of the request_id index, which is

rather selective.

Trouble Shooting
This section documents the steps and procedures involved with diagnosing a CBO

execution plan for a given SQL statement:

■ Generate SQL trace

■ Review EXPLAIN PLAN

Tuning Distributed Queries

9-30 Oracle8i Designing and Tuning for Performance

■ Verify statistics

■ Try hints to obtain correct plan

Tuning Distributed Queries
Oracle supports transparent distributed queries to access data from multiple

databases. It also provides many other distributed features, such as transparent

distributed transactions and a transparent, fully automatic two-phase commit. This

section explains how the Oracle8i optimizer decomposes SQL statements and how

this affects the performance of distributed queries. The section also provides

guidelines on how to influence the optimizer and avoid performance bottlenecks.

This section contains the following sections:

■ Remote and Distributed Queries

■ Distributed Query Restrictions

■ Transparent Gateways

■ Optimizing Performance of Distributed Queries

Remote and Distributed Queries
If a SQL statement references one or more remote tables, then the optimizer first

determines whether all remote tables are located at the same site. If all tables are

located at the same remote site, then Oracle sends the entire query to the remote site

for execution. The remote site sends the resulting rows back to the local site. This is

called a remote SQL statement. If the tables are located at more than one site, then

the optimizer decomposes the query into separate SQL statements to access each of

the remote tables. This is called a distributed SQL statement. The site where the

query is executed, called the driving site, is usually the local site.

This section describes:

■ Remote Data Dictionary Information

■ Remote SQL Statements

■ Distributed SQL Statements

■ EXPLAIN PLAN and SQL Decomposition

■ Partition Views

Tuning Distributed Queries

Optimizing SQL Statements 9-31

Remote Data Dictionary Information
If a SQL statement references multiple tables, then the optimizer must determine

which columns belong to which tables before it can decompose the SQL statement.

For example:

SELECT dname, ename
FROM dept, emp@remote
WHERE dept.deptno = emp.deptno

The optimizer must first determine that the dname column belongs to the dept
table and the ename column to the emp table. After the optimizer has the data

dictionary information of all remote tables, it can build the decomposed SQL

statements.

Column and table names in decomposed SQL statements appear between double

quotes. You must enclose in double quotes any column and table names that

contain special characters, reserved words, or spaces.

This mechanism also replaces an asterisk (*) in the select list with the actual column

names. For example:

SELECT *
FROM dept@remote;

Results in the decomposed SQL statement

SELECT a1."DEPTNO", a1."DNAME", a1."LOC"
FROM "DEPT" a1;

Remote SQL Statements
If the entire SQL statement is sent to the remote database, then the optimizer uses

table aliases A1, A2, and so on, for all tables and columns in the query, in order to

avoid possible naming conflicts. For example:

SELECT dname, ename
FROM dept@remote, emp@remote
WHERE dept.deptno = emp.deptno;

This is sent to the remote database as the following:

Note: For simplicity, double quotes are not used in the remainder

of this chapter.

Tuning Distributed Queries

9-32 Oracle8i Designing and Tuning for Performance

SELECT a2.dname, a1.ename
FROM dept a2, emp a1
WHERE a1.deptno = a2.deptno;

Distributed SQL Statements
When a query accesses data on one or more databases, one site drives the execution

of the query. This is known as the driving site; it is here that the data is joined,

grouped, and ordered. By default, the local Oracle server is the driving site. A hint

called DRIVING_SITE enables you to manually specify the driving site.

The decomposition of SQL statements is important, because it determines the

number of records or even tables that must be sent through the network. A

knowledge of how the optimizer decomposes SQL statements can help you achieve

optimum performance for distributed queries.

If a SQL statement references one or more remote tables, then the optimizer must

decompose the SQL statement into separate queries to be executed on the different

databases. For example:

SELECT dname, ename
FROM dept, emp@remote
WHERE dept.deptno = emp.deptno;

This could be decomposed into the following:

SELECT deptno, dname
FROM dept;

Which is executed locally, and:

SELECT deptno, ename
FROM emp;

Which is sent to the remote database. The data from both tables is joined locally. All

this is done automatically and transparently for the user or application.

In some cases, however, it might be better to send the local table to the remote

database and join the two tables on the remote database. This can be achieved either

by creating a view or by using the DRIVING_SITE hint. If you decide to create a

view on the remote database, then a database link from the remote database to the

local database is also needed.

For example (on the remote database):

Tuning Distributed Queries

Optimizing SQL Statements 9-33

CREATE VIEW dept_emp AS
SELECT dname, ename
FROM dept@local, emp
WHERE dept.deptno = emp.deptno;

Next, select from the remote view instead of the local and remote tables:

SELECT *
FROM dept_emp@remote;

Now, the local dept table is sent through the network to the remote database,

joined on the remote database with the emp table, and the result is sent back to the

local database.

Rule-Based Optimization The rule-based optimizer does not have information about

indexes for remote tables. It never, therefore, generates a nested loops join between

a local table and a remote table with the local table as the outer table in the join. It

uses either a nested loops join with the remote table as the outer table or a sort

merge join, depending on the indexes available for the local table.

Cost-Based Optimization The cost-based optimizer can consider more execution plans

than the rule-based optimizer. The cost-based optimizer knows whether indexes on

remote tables are available, and in which cases it makes sense to use them. The

cost-based optimizer considers index access of the remote tables as well as full table

scans, whereas the rule-based optimizer considers only full table scans.

The particular execution plan and table access that the cost-based optimizer chooses

depends on the table and index statistics. For example:

SELECT dname, ename
FROM dept, emp@remote
WHERE dept.deptno = emp.deptno

Here, the optimizer might choose the local dept table as the driving table, and

access the remote emp table using an index; so the decomposed SQL statement

becomes the following:

SELECT ename FROM emp
WHERE deptno = :1

This decomposed SQL statement is used for a nested loops operation.

See Also: For details about the DRIVING_SITE hint, see

Chapter 7, "Using Optimizer Hints".

Tuning Distributed Queries

9-34 Oracle8i Designing and Tuning for Performance

Using Views If tables are on more than one remote site, then it can be more effective

to create a view than to use the DRIVING_SITE hint. If not all tables are on the

same remote database, then the optimizer accesses each remote table separately. For

example:

SELECT d.dname, e1.ename, e2.job
FROM dept d, emp@remote e1, emp@remote e2
WHERE d.deptno = e1.deptno

AND e1.mgr = e2.empno;

This results in the decomposed SQL statements:

SELECT empno, ename
FROM emp;

and:

SELECT ename, mgr, deptno
FROM emp;

To join the two emp tables remotely, create a view with the join of the remote tables

on the remote database. For example (on the remote database):

CREATE VIEW emps AS
SELECT e1.deptno, e1.ename, e2.job
FROM emp e1, emp e2
WHERE e1.mgr = e2.empno;

Now, select from the remote view, instead of the remote tables:

SELECT d.dname, e.ename, e.job
FROM dept d, emps@remote e
WHERE d.deptno = e.deptno;

This results in the decomposed SQL statement:

SELECT deptno, ename, job
FROM emps;

Using Hints In a distributed query, all hints are supported for local tables. For

remote tables, however, you can use only join order and join operation hints. (Hints

for access methods, parallel hints, and so on, have no effect.) For remote mapped

queries, all hints are supported.

See Also: For more information on hints for join orders and hints

for join operations, see Chapter 7, "Using Optimizer Hints".

Tuning Distributed Queries

Optimizing SQL Statements 9-35

EXPLAIN PLAN and SQL Decomposition
EXPLAIN PLAN gives information not only about the overall execution plan of SQL

statements, but also about the way in which the optimizer decomposes SQL

statements. EXPLAIN PLAN stores information in the PLAN_TABLE table. If remote

tables are used in a SQL statement, then the OPERATION column contains the value

REMOTE to indicate that a remote table is referenced, and the OTHER column

contains the decomposed SQL statement that will be sent to the remote database.

For example:

EXPLAIN PLAN FOR SELECT DNAME FROM DEPT@REMOTE
SELECT OPERATION, OTHER FROM PLAN_TABLE

OPERATION OTHER
--------- -------------------------------------
REMOTE SELECT A1."DNAME" FROM "DEPT" A1

Note the table alias and the double quotes around the column and table names.

Partition Views
Partition views coalesce tables that have the same structure, but that contain

different partitions of data. Partition views are supported for distributed databases

where each partition resides on a database, and the data in each partition has

common geographical properties.

When a query is executed on a partition view, and when the query contains a

predicate that contains the result set to a subset of the view’s partitions, the

optimizer chooses a plan which skips partitions that are not needed for the query.

This partition elimination takes place at run time, when the execution plan

references all partitions.

Partition views were the only form of partitioning available in Oracle7 Release 7.3.

They are not recommended for new applications in Oracle8i. Partition views that

were created for Oracle7 databases can be converted to partitioned tables by using

the EXCHANGE PARTITION option of the ALTER TABLE statement.

See Also: For more information on EXPLAIN PLAN, see

Chapter 5, "Using EXPLAIN PLAN".

Note: Oracle8i supports partition views only for distributed

queries and for backwards compatibility with Oracle7 Release 7.3.

Future releases of Oracle will not support partition views.

Tuning Distributed Queries

9-36 Oracle8i Designing and Tuning for Performance

Using UNION ALL to Skip Partitions There are circumstances under which a UNION ALL
view enables the optimizer to skip partitions. The Oracle server that contains the

partition view must conform to the following rules:

■ The PARTITION_VIEW_ENABLED initialization parameter is set to true .

■ The cost-based optimizer is used.

Within a UNION ALL view, there are multiple select statements, and each of these is

called a branch. A UNION ALL view is a partition view if each select statement it

defines conforms to the following rules:

■ The branch has exactly one table in the FROM clause.

■ The branch contains a WHERE clause that defines the subset of data from the

partition that is contained in the view.

■ None of the following are used within the branch: WHERE clause with subquery,

GROUP BY, aggregate functions, DISTINCT , ROWNUM, or CONNECT BY/START
WITH.

■ The SELECT list of each branch is * or an explicit expansion of "*". The FROM
clause should be either the base table or a view of the base table that contains all

the columns in the base table.

See Also:

■ For instructions on converting partition views to partitioned

tables, see Oracle8i Administrator’s Guide.

■ For instructions on migrating from partition views to

partitioned tables, see Oracle8i Migration.

■ For general information on partition views and partitioned

tables, see Oracle8i Concepts.

Note: To use the cost-based optimizer, you must analyze all tables

used in the UNION ALL views. Alternatively, you can use a hint or

set the parameter OPTIMIZER_MODE to ALL_ROWS or FIRST_ROW.
To set OPTIMIZER_MODEor PARTITION_VIEW_ENABLED, you can

also use the ALTER SESSION statement.

Tuning Distributed Queries

Optimizing SQL Statements 9-37

■ The column names and column datatypes for all branches in the UNION ALL
view are exactly the same.

■ All tables used in the branch must have indexes (if any) on the same columns

and number of columns.

Partition elimination is based on column transitivity with constant predicates. The

WHERE clause used in the query that accesses the partition view is pushed down to

the WHERE clause of each of the branches in the UNION ALL view definition. For

example:

SELECT * FROM emp_view
WHERE deptno=30;

Where the view emp_view is defined as the following:

SELECT * FROM emp@d10 WHERE deptno=10
UNION ALL

SELECT * FROM emp@d20 WHERE deptno=20
UNION ALL

SELECT * FROM emp@d30 WHERE deptno=30
UNION ALL

SELECT * FROM emp@d40 WHERE deptno=40

The "WHERE deptno=30" predicate used in the query is pushed down to the

queries in the UNION ALL view. For a WHERE clause such as "WHERE deptno=10
and deptno =30", the optimizer applies transitivity rules to generate an extra

predicate of "10=30". This extra predicate is always false; thus, the table (emp@d10)

need not be accessed.

Transitivity applies to predicates which conform to the following rules:

■ The predicates in the WHERE clause for each branch are of the form:

RELATION AND RELATION ...

where relation is of the form

COLUMN_NAME RELOP CONSTANT_EXPRESSION

and relop is one of =, !=, >, >=, <, <=

■ At least one predicate in the query referencing the view exists in the same form.

Note: BETWEEN ... AND is allowed by these rules, but IN is not.

Tuning Distributed Queries

9-38 Oracle8i Designing and Tuning for Performance

EXPLAIN PLAN Output To confirm that the system recognizes a partition view, check

the EXPLAIN PLAN output. The following operations appear in the OPERATIONS
column of the EXPLAIN PLAN output, if a query was executed on a partition view:

If PARTITION does not appear in the option column of the UNION-ALL operation,

then the partition view was not recognized, and no partitions were eliminated.

Make sure that the UNION ALL view adheres to the rules defined in "Using UNION

ALL to Skip Partitions" on page 9-36.

Partition View Example The following example shows the partition view customer
partitioned into two partitions: the east database contains the East Coast

customers, and the west database contains the West Coast customers.

The west database contains the following table customer_west :

CREATE TABLE customer_west
 (cust_no NUMBER CONSTRAINT CUSTOMER_WEST_PK PRIMARY KEY,
 cname VARCHAR2(10),
 location VARCHAR2(10)
);

The east database contains the database customer_east :

CREATE TABLE customer_east
 (cust_no NUMBER CONSTRAINT CUSTOMER_EAST_PK PRIMARY KEY,
 cname VARCHAR2(10),
 location VARCHAR2(10)
);

The following partition view is created at the east database (you could create a

similar view at the west database):

VIEW This should include the optimizer cost in the COST column.

UNION-ALL This should specify PARTITION in the OPTION column.

FILTER When an operation is a child of the UNION-ALL operation, this

indicates that a constant predicate was generated that will always

be false . The partition is eliminated.

Tuning Distributed Queries

Optimizing SQL Statements 9-39

CREATE VIEW customer AS
SELECT *
FROM customer_east
WHERE location='EAST'
UNION ALL
SELECT *
FROM customer_west@west
WHERE location='WEST';

If you execute the following statement, then notice that the customer_west table

in the west database is not accessed:

EXPLAIN PLAN FOR SELECT * FROM customer WHERE location='EAST';

As shown in the EXPLAIN PLAN output, the optimizer recognizes that the

customer_west partition need not be accessed:

SELECT LPAD(' ',LEVEL*3-3)||OPERATION OPERATION,COST,OPTIONS,
OBJECT_NODE, OTHER
FROM PLAN_TABLE
CONNECT BY PARENT_ID = PRIOR ID
START WITH PARENT_ID IS NULL

OPERATION COST OPTIONS OBJECT_NOD OTHER
------------------------- ---- ---------- ---------- -------------------------
SELECT STATEMENT 1
 VIEW 1
 UNION-ALL PARTITION
 TABLE ACCESS 1 FULL
 FILTER
 REMOTE 1 WEST.WORLD SELECT "CUST_NO","CNAME",
 "LOCATION" FROM "CUSTOMER
 _WEST" "CUSTOMER_WEST" WH
 ERE "LOCATION"='EAST' AND
 "LOCATION"='WEST'

Note: The east database still needs column name and column

datatype information for the customer_west table; therefore, it

still needs a connection to the WEST database. In addition, the

cost-based optimizer must be used. You could do this by issuing

the following statement:

ALTER SESSION SET OPTIMIZER_MODE=ALL_ROWS

Tuning Distributed Queries

9-40 Oracle8i Designing and Tuning for Performance

Distributed Query Restrictions
Distributed queries within the same version of Oracle have the following

restrictions:

■ The cost-based optimizer should be used for distributed queries. The rule-based

optimizer does not generate nested loop joins between remote and local tables

when the tables are joined with equijoins.

■ In the cost-based optimizer, no more than 20 indexes per remote table are

considered when generating query plans. The order of the indexes varies; if the

20-index limitation is exceeded, then random variation in query plans may

result.

■ Reverse indexes on remote tables are not visible to the optimizer. This can

prevent nested-loop joins from being used for remote tables if there is an

equijoin using a column with only a reverse index.

■ The cost-based optimizer cannot recognize that a remote object is partitioned.

Thus, the optimizer may generate less than optimal plans for remote

partitioned objects, particularly when partition pruning would have been

possible, had the object been local.

■ Remote views are not merged, and the optimizer has no statistics for them. It is

best to replicate all mergeable views at all sites to obtain good query plans. (See

the next restriction.)

■ Neither the cost-based nor the rule-based optimizer can execute joins remotely.

All joins are executed at the driving site. This can affect performance for

CREATE TABLE ... AS SELECT if all the tables in the select list are remote. In this

case, you should create a view for the SELECT statement at the remote site.

Transparent Gateways
The Transparent Gateways transparently access data from a non-Oracle system

(relational databases, hierarchical databases, file systems, and so on), just as if it

were another Oracle database.

Optimizing Heterogeneous Distributed SQL Statements
When a SQL statement accesses data from non-Oracle systems, it is said to be a

heterogeneous distributed SQL statement. To optimize heterogeneous distributed

SQL statements, follow the same guidelines as for optimizing distributed SQL

statements that access Oracle databases only. However, you must consider that the

Tuning Distributed Queries

Optimizing SQL Statements 9-41

non-Oracle system usually does not support all the functions and operators that

Oracle8i supports.

The Transparent Gateways tell Oracle (at connect time) which functions and

operators they do support. If the other data source does not support a function or

operator, then Oracle performs that function or operator. In this case, Oracle obtains

the data from the other data source and applies the function or operator locally. This

affects the way in which the SQL statements are decomposed and can affect

performance, especially if Oracle is not on the same machine as the other data

source.

Gateways and Partition Views
You can use partition views with Oracle Transparent Gateways release 8 or higher.

Make sure you adhere to the rules that are defined in "Using UNION ALL to Skip

Partitions" on page 9-36. In particular:

■ The cost-based optimizer must be used, by using hints or setting the parameter

OPTIMIZER_MODE to ALL_ROWS or FIRST_ROWS.

■ Indexes used for each partition must be the same. Consult your gateway-

specific documentation to find out whether the gateway sends index

information of the non-Oracle system to the Oracle Server. If the gateway sends

index information to the optimizer, then make sure that each partition uses the

same number of indexes, and that you have indexed the same columns. If the

gateway does not send index information, then the Oracle optimizer is not

aware of the indexes on partitions. Indexes are, therefore, considered to be the

same for each partition in the non-Oracle system. If one partition resides on an

Oracle server, then you cannot have an index defined on that partition.

■ The column names and column datatypes for all branches in the UNION ALL
view must be the same. Non-Oracle system datatypes are mapped onto Oracle

datatypes. Make sure that the datatypes of each partition that reside in the

different non-Oracle systems all map to the same Oracle datatype. To see how

datatypes are mapped onto Oracle datatypes, execute a DESCRIBE statement in

SQL*Plus.

Optimizing Performance of Distributed Queries
You can improve performance of distributed queries in several ways:

■ Choose the best SQL statement.

In many cases, there are several SQL statements which can achieve the same

result. If all tables are on the same database, then the difference in performance

Tuning Distributed Queries

9-42 Oracle8i Designing and Tuning for Performance

between these SQL statements might be minimal; but, if the tables are located

on different databases, then the difference in performance might be more

significant.

■ Use the cost-based optimizer.

The cost-based optimizer uses indexes on remote tables, considers more

execution plans than the rule-based optimizer, and generally gives better

results. With the cost-based optimizer, performance of distributed queries is

generally satisfactory. Only in rare occasions is it necessary to change SQL

statements, create views, or use procedural code.

■ Use views.

In some situations, views can be used to improve performance of distributed

queries. For example:

– Joining several remote tables on the remote database.

– Sending a different table through the network.

– Using procedural code.

In some rare occasions, it can be more efficient to replace a distributed query by

procedural code, such as a PL/SQL procedure or a precompiler program. This

option is mentioned here only for completeness, not because it is often needed.

Using Plan Stability 10-1

10
Using Plan Stability

This chapter describes how to use plan stability to preserve performance

characteristics.

This chapter contains the following sections:

■ Using Plan Stability to Preserve Execution Plans

■ Plan Stability Procedures for the Cost-Based Optimizer

Using Plan Stability to Preserve Execution Plans

10-2 Oracle8i Designing and Tuning for Performance

Using Plan Stability to Preserve Execution Plans
Plan stability prevents certain database environment changes from affecting the

performance characteristics of your applications. Such changes include changes in

optimizer statistics, changes to the optimizer mode settings, and changes to

parameters affecting the sizes of memory structures, such as SORT_AREA_SIZE,
and BITMAP_MERGE_AREA_SIZE. Plan stability is most useful when you cannot

risk any performance changes in your applications.

Plan stability preserves execution plans in stored outlines. Oracle can create a stored

outline for one or all SQL statements. The optimizer then generates equivalent

execution plans from the outlines when you enable the use of stored outlines.

The plans Oracle maintains in stored outlines remain consistent despite changes to

your system’s configuration or statistics. Using stored outlines also stabilizes the

generated execution plan if the optimizer changes in subsequent Oracle releases.

You can also group outlines into categories and control which category of outlines

Oracle uses to simplify outline administration and deployment.

Plan stability also facilitates migration from the rule-based optimizer to the

cost-based optimizer when you upgrade to a new Oracle release.

Hints and Exact Text Matching
The degree to which plan stability controls execution plans is dictated by how much

Oracle’s hint mechanism controls execution plans, because Oracle uses hints to

record stored plans. Plan stability also relies on "exact text matching" of queries

when determining whether a query has a stored outline.

There is a one-to-one correspondence between SQL text and its stored outline. If

you specify a different literal in a predicate, then a different outline applies. To

avoid this, replace literals in your applications with bind variables. This gives your

SQL statements the exact textual match for outline sharing.

Note: If you develop applications for mass distribution, then you

can use stored outlines to ensure that all your customers access the

same execution plans.

See Also: For more information on how Oracle matches SQL

statements to outlines, see "Matching SQL Statements with

Outlines" on page 10-3.

Using Plan Stability to Preserve Execution Plans

Using Plan Stability 10-3

Plan stability relies on preserving execution plans at a point in time when

performance is satisfactory. In many environments, however, attributes for

datatypes such as "dates" or "order numbers" can change rapidly. In these cases,

permanent use of an execution plan may result in performance degradation over

time as the data characteristics change.

This implies that techniques that rely on preserving plans in dynamic environments

are somewhat contrary to the purpose of using cost-based optimization. Cost-based

optimization attempts to produce execution plans based on statistics that accurately

reflect the state of the data. Thus, you must balance the need to control plan

stability with the benefit obtained from the optimizer’s ability to adjust to changes

in data characteristics.

How Outlines Use Hints
An outline consists primarily of a set of hints that is equivalent to the optimizer’s

results for the execution plan generation of a particular SQL statement. When

Oracle creates an outline, plan stability examines the optimization results using the

same data used to generate the execution plan. That is, Oracle uses the input to the

execution plan to generate an outline and not the execution plan itself.

Matching SQL Statements with Outlines
Oracle uses one of two scenarios when compiling SQL statements and matching

them with outlines. The first scenario is that if you disable outline use by setting the

system/session parameter USE_STORED_OUTLINES to FALSE, then Oracle does

not attempt to match SQL text to outlines. The second scenario involves the

following two matching steps.

First, if you specify that Oracle must use a particular outline category, then only

outlines in that category are candidates for matching. Second, if the SQL text of the

incoming statement exactly matches the SQL text in an outline in that category, then

Oracle considers both texts identical, and Oracle uses the outline. Oracle considers

any differences a mismatch.

Note: You cannot modify an outline. The OL$ and OL$HINTS
tables are system tables in the sense that direct manipulation is

prohibited.You can embed hints in SQL statements, but this has no

effect on how Oracle uses outlines. Oracle considers a SQL

statement that you revised with hints to be different from the

original SQL statement stored in the outline.

Using Plan Stability to Preserve Execution Plans

10-4 Oracle8i Designing and Tuning for Performance

Differences include spacing changes, carriage return variations, embedded hints, or

even differences in comment text. These rules are identical to the rules for cursor

matching.

Storing Outlines
Oracle stores outline data in the OL$ table and hint data in the OL$HINTS table.

Unless you remove them, Oracle retains outlines indefinitely.

The only effect outlines have on caching execution plans is that the outline’s

category name is used in addition to the SQL text to identify whether the plan is in

cache. This ensures that Oracle does not use an execution plan compiled under one

category to execute a SQL statement that Oracle should compile under a different

category.

Enabling Plan Stability
Settings for several parameters, especially those ending with the suffix "_ENABLED",
must be consistent across execution environments for outlines to function properly.

These parameters are:

■ QUERY_REWRITE_ENABLED

■ STAR_TRANSFORMATION_ENABLED

■ OPTIMIZER_FEATURES_ENABLE

Creating Outlines
Oracle can automatically create outlines for all SQL statements, or you can create

them for specific SQL statements. In either case, the outlines derive their input from

the optimizer.

Oracle creates stored outlines automatically when you set the parameter CREATE_
STORED_OUTLINES to TRUE. When activated, Oracle creates outlines for all

compiled SQL statements.

Note: You must ensure that schemas in which outlines are to be

created have the CREATE ANY OUTLINE privilege. Otherwise,

despite having turned on the CREATE_STORED_OUTLINE
parameter, you will not find outlines in your database after you run

your application.

Using Plan Stability to Preserve Execution Plans

Using Plan Stability 10-5

You can create stored outlines for specific statements using the CREATE OUTLINE
statement.

Using Category Names For Stored Outlines
Outlines can be categorized to simplify the management task. The CREATE
OUTLINE statement allows for specification of a category, while the DEFAULT
category is chosen if unspecified. Likewise, the CREATE_STORED_OUTLINES
parameter lets you specify a category name, where specifying TRUE produces

outlines in the DEFAULT category.

If you specify a category name using the CREATE_STORED_OUTLINES parameter,

then Oracle assigns all subsequently created outlines to that category until you reset

the category name. Set the parameter to FALSE to suspend outline generation.

If you set CREATE_STORED_OUTLINES to TRUE, or if you use the CREATE
OUTLINE statement without a category name, then Oracle assigns outlines to the

category name of DEFAULT.

Using Stored Outlines
To use stored outlines when Oracle compiles a SQL statement, set the system

parameter USE_STORED_OUTLINES to true or to a category name. If you set USE_
STORED_OUTLINES to true , then Oracle uses outlines in the DEFAULT category. If

you specify a category with the USE_STORED_OUTLINES parameter, then Oracle

uses outlines in that category until you re-set the parameter to another category

See Also: For more information on the CREATE OUTLINE
statement, see the Oracle8i SQL Reference. For information on

moving from the rule-based optimizer to the cost-based optimizer,

see "Using Outlines to Move to the Cost-Based Optimizer" on

page 10-8.

Note: The CREATE_STORED_OUTLINES and USE_STORED_
OUTLINES parameters are system- or session-specific. They are not

initialization parameters. For more information on these

parameters, see the Oracle8i SQL Reference.

Using Plan Stability to Preserve Execution Plans

10-6 Oracle8i Designing and Tuning for Performance

name or until you suspend outline use by setting USE_STORED_OUTLINES to
FALSE. If you specify a category name and Oracle does not find an outline in that

category that matches the SQL statement, then Oracle searches for an outline in the

DEFAULT category.

The designated outlines only control the compilation of SQL statements that have

outlines. If you set USE_STORED_OUTLINES to false , then Oracle does not use

outlines. When you set USE_STORED_OUTLINES to false and you set CREATE_
STORED_OUTLINES to true , Oracle creates outlines but does not use them.

When you activate the use of stored outlines, Oracle always uses the cost-based

optimizer. This is because outlines rely on hints, and to be effective, most hints

require the cost-based optimizer.

Test if an outline is being used with the V$SQL view. Query the OUTLINE_
CATEGORY column in conjunction with the SQL statement. If an outline was

applied, then this column contains the category to which the outline belongs.

Otherwise, it is NULL. For example:

SELECT OUTLINE_CATEGORY
FROM V$SQL
WHERE SQL_TEXT LIKE ’SELECT count(*) FROM emp%’;

Viewing Outline Data
You can access information about outlines and related hint data that Oracle stores

in the data dictionary from the following views:

■ USER_OUTLINES

■ USER_OUTLINE_HINTS

■ ALL_OUTLINES

■ ALL_OUTLINE_HINTS

■ DBA_OUTLINES

■ DBA_OUTLINE_HINTS

Use the following syntax to obtain outline information from the USER_OUTLINES
view, where the outline category is mycat :

SELECT NAME, SQL_TEXT
FROM USER_OUTLINES
WHERE CATEGORY=’mycat’;

Oracle responds by displaying the names and text of all outlines in category mycat .

Using Plan Stability to Preserve Execution Plans

Using Plan Stability 10-7

To see all generated hints for the outline name1, use the following syntax:

SELECT HINT
FROM USER_OUTLINE_HINTS
WHERE NAME=’name1’;

Using the OUTLN_PKG Package to Manage Stored Outlines
The OUTLN_PKG package provides procedures used for managing stored outlines

and their outline categories.

Moving Outline Tables
Oracle creates the USER_OUTLINES and USER_OUTLINE_HINTS views based on

data in the OL$ and OL$HINTS tables respectively. Oracle creates these tables in the

SYS tablespace using a schema called OUTLN. If the outlines use too much space in

the SYS tablespace, then you can move them. To do this, create a separate

tablespace and move the outline tables into it using the following process.

1. Export the OL$ and OL$HINTS tables:

EXP OUTLN/OUTLN FILE = exp_file TABLES = 'OL$' 'OL$HINTS' SILENT=y

2. Remove the previous OL$ and OL$HINTS tables:

CONNECT OUTLN/outln_password;
DROP TABLE OL$;
CONNECT OUTLN/outln_password;
DROP TABLE OL$HINTS;

3. Create a new tablespace for the tables:

CREATE TABLESPACE outln_ts
DATAFILE 'tspace.dat' SIZE 2MB
DEFAULT STORAGE (INITIAL 10KB NEXT 20KB
MINEXTENTS 1 MAXEXTENTS 999 PCTINCREASE 10) ONLINE;

See Also: If necessary, you can use the procedure to move outline

tables from one tablespace to another as described in "Moving

Outline Tables" on page 10-7.

See Also: For detailed information on using OUTLN_PKG
procedures, see Oracle8i Supplied PL/SQL Packages Reference.

Plan Stability Procedures for the Cost-Based Optimizer

10-8 Oracle8i Designing and Tuning for Performance

4. Enter the following statement:

ALTER USER OUTLN DEFALUT TABLESPACE outln_ts;

5. Import the OL$ and OL$HINTS tables:

IMPORT OUTLN/outln_password
FILE=exp_file TABLES = 'OL$' 'OL$HINTS' IGNORE=y SILENT=y

The IMPORT statement re-creates the OL$ and OL$HINTS tables in the schema

named OUTLN, but the schema now resides in a new tablespace called OUTLN_
TS.

Plan Stability Procedures for the Cost-Based Optimizer
This section describes procedures you can use to significantly improve performance

by taking advantage of cost-based optimizer functionality. Plan stability provides a

way to preserve your system’s targeted execution plans with satisfactory

performance while also taking advantage of new cost-based optimizer features for

the rest of your SQL statements.

Topics covered in this section are:

■ Using Outlines to Move to the Cost-Based Optimizer

■ RDBMS Upgrades and the Cost-Based Optimizer

Using Outlines to Move to the Cost-Based Optimizer
If your application was developed using the rule-based optimizer, then a

considerable amount of effort may have gone into manually tuning the SQL

statements to optimize performance. You can use plan stability to leverage the effort

that has already gone into performance tuning by preserving the behavior of the

application when upgrading from rule-based to cost-based optimization.

By creating outlines for an application before switching to cost-based optimization,

the plans generated by the rule-based optimizer can be used, while statements

generated by newly written applications developed after the switch use cost-based

plans. To create and use outlines for an application, use the following process.

Note: Carefully read this procedure and consider its implications before
executing it!

Plan Stability Procedures for the Cost-Based Optimizer

Using Plan Stability 10-9

1. Ensure that schemas in which outlines are to be created have the CREATE ANY
OUTLINE privilege. For example, from SYS:

GRANT CREATE ANY OUTLINE TO <user-name>

2. Execute syntax similar to the following to designate, for example, the RBOCAT
outline category.

ALTER SESSION SET CREATE_STORED_OUTLINES = rbocat;

3. Run your application long enough to capture stored outlines for all important

SQL statements.

4. Suspend outline generation:

ALTER SESSION SET CREATE_STORED_OUTLINES = FALSE;

5. Gather statistics with the DBMS_STATS package.

6. Alter the parameter OPTIMIZER_MODE to CHOOSE.

7. Enter this syntax to make Oracle use the outlines in category RBOCAT:

ALTER SESSION SET USE_STORED_OUTLINES = rbocat;

8. Run the application.

Subject to the limitations of plan stability, access paths for this application's SQL

statements should be unchanged.

RDBMS Upgrades and the Cost-Based Optimizer
When upgrading to a new Oracle release under cost-based optimization, there is

always a possibility that some SQL statements will have their execution plans

changed due to changes in the optimizer. While such changes benefit performance

in the vast majority of cases, you might have some applications that perform well

and where you would consider any changes in their behavior to be an unnecessary

risk. For such applications, you can create outlines before the upgrade using the

following procedure.

Note: If a query was not executed in step 2, then you can capture

the old behavior of the query even after switching to cost-based

optimization. To do this, change the optimizer mode to RULE,

create an outline for the query, and then change the optimizer

mode back to CHOOSE.

Plan Stability Procedures for the Cost-Based Optimizer

10-10 Oracle8i Designing and Tuning for Performance

1. Enter the following syntax to enable outline creation:

ALTER SESSION SET CREATE_STORED_OUTLINES = ALL_QUERIES;

2. Run the application long enough to capture stored outlines for all critical SQL

statements.

3. Enter this syntax to suspend outline generation:

ALTER SESSION SET CREATE_STORED_OUTLINES = FALSE;

4. Upgrade the production system to the new version of the RDBMS.

5. Run the application.

After the upgrade, you can enable the use of stored outlines, or alternatively, you

can use the outlines that were stored as a backup if you find that some statements

exhibit performance degradation after the upgrade.

With the latter approach, you can selectively use the stored outlines for such

problematic statements as follows:

1. For each problematic SQL statement, change the CATEGORY of the associated

stored outline to a category name similar to this:

ALTER OUTLINE outline_name CHANGE CATEGORY TO problemcat;

2. Enter this syntax to make Oracle use outlines from the category "problemcat ".

ALTER SESSION SET USE_STORED_OUTLINES = problemcat;

Upgrading with a Test System
A test system, separate from the production system, can be useful for conducting

experiments with optimizer behavior in conjunction with an upgrade. You can

migrate statistics from the production system to the test system using

import/export. This may alleviate the need to fill the tables in the test system with

data.

You can move outlines between the systems by category. For example, after you

create outlines in the problemcat category, export them by category using the

query-based export option. This is a convenient and efficient way to export only

Note: Carefully read this procedure and consider its implications before
executing it!

Plan Stability Procedures for the Cost-Based Optimizer

Using Plan Stability 10-11

selected outlines from one database to another without exporting all outlines in the

source database. To do this, issue these statements:

EXP OUTLN/outln_password FILE=<exp-file> TABLES= ’OL$’ ’OL$HINTS’
QUERY=’WHERE CATEGORY="problemcat"'

Plan Stability Procedures for the Cost-Based Optimizer

10-12 Oracle8i Designing and Tuning for Performance

Part III
 Application Design Tools for Designers

and DBAs

Part III discusses how to tune your database and the various methods you use to

access data for optimal database performance. The chapters in Part 3 are:

■ Chapter 11, "Overview of Diagnostic Tools"

■ Chapter 12, "Data Access Methods"

■ Chapter 13, "Managing Shared SQL and PL/SQL Areas"

■ Chapter 14, "Using Oracle Trace"

■ Chapter 15, "Dynamic Performance Views"

■ Chapter 16, "Diagnosing System Performance Problems"

■ Chapter 17, "Transaction Modes"

Overview of Diagnostic Tools 11-1

11
Overview of Diagnostic Tools

This chapter introduces the full range of diagnostic tools for monitoring production

systems and determining performance problems.

This chapter contains the following sections:

■ Sources of Data for Tuning

■ Dynamic Performance Views

■ Oracle and SNMP Support

■ EXPLAIN PLAN

■ SQL Trace and TKPROF

■ Supported Scripts

■ Application Registration

■ Oracle Enterprise Manager, Packs, and Applications

■ Oracle Parallel Server Management

■ Independent Tools

Sources of Data for Tuning

11-2 Oracle8i Designing and Tuning for Performance

Sources of Data for Tuning
This section describes the various sources of data for tuning. Many of these sources

may be transient. They include:

■ Data Volumes

■ Online Data Dictionary

■ Operating System Tools

■ Dynamic Performance Tables

■ Oracle Trace and Oracle Trace Data Viewer

■ SQL Trace Facility

■ Alert Log

■ Application Program Output

■ Users

■ Initialization Parameter Files

■ Program Text

■ Design (Analysis) Dictionary

■ Comparative Data

Data Volumes
The tuning data source most often overlooked is the data itself. The data may

contain information about how many transactions were performed and at what

time. The number of rows added to an audit table, for example, can be the best

measure of the amount of useful work done; this is known as "the throughput".

Where such rows contain a timestamp, you can query the table and use a graphics

package to plot throughput against dates and times. Date-stamps and time-stamps

need not be apparent to the rest of the application.

If your application does not contain an audit table, be cautious about adding one as

it could hinder performance. Consider the trade-off between the value of obtaining

the information and the performance cost of doing so.

Sources of Data for Tuning

Overview of Diagnostic Tools 11-3

Online Data Dictionary
The Oracle online data dictionary is a rich source of tuning data when used with the

SQL statement ANALYZE. This statement stores cluster, table, column, and index

statistics within the dictionary, primarily for use by the cost-based optimizer. The

dictionary also defines the indexes available to help (or possibly hinder)

performance.

Operating System Tools
Tools that gather data at the operating system level are primarily useful for

determining scalability, but you should also consult them at an early stage in any

tuning activity. In this way you can ensure that no part of the hardware platform is

saturated. Network monitors are also required in distributed systems, primarily to

check that no network resource is overcommitted. In addition, you can use a simple

mechanism such as the UNIX ping command to establish message turnaround time.

Dynamic Performance Tables
A number of V$ dynamic performance views are available to help you tune your

system and investigate performance problems. They allow you access to memory

structures within the SGA.

Oracle Trace and Oracle Trace Data Viewer
Oracle Trace collects Oracle server event activity that includes all SQL and Wait

events for specific database users. You can use this information to tune your

databases and applications.

SQL Trace Facility
SQL trace files record SQL statements issued by a connected process and the

resources used by these statements. In general, use V$ views to tune the instance

and use SQL trace file output to tune the applications.

See Also: For more information on platform-specific tools, see

your operating system documentation.

See Also: For detailed information about each view, see

Chapter 15, "Dynamic Performance Views" and Oracle8i Concepts.

See Also: For more information about Oracle Trace and Wait

events, see Chapter 14, "Using Oracle Trace".

Sources of Data for Tuning

11-4 Oracle8i Designing and Tuning for Performance

Alert Log
Whenever something unexpected happens in an Oracle environment, check the

alert file to see if there is an entry at or around the time of the event.

Application Program Output
In some projects, all application processes (client-side) are instructed to record their

own resource consumption to an audit trail. Where database calls are being made

through a library, the response time of the client/server mechanism can be

inexpensively recorded at the per-call level using an audit trail mechanism. Even

without these levels of sophistication, which are not expensive to build or to run,

simply preserving resource usages reported by a batch queue manager provides an

excellent source of tuning data.

Users
Users normally provide a stream of information as they encounter performance

problems.

Initialization Parameter Files
It is vital to have accurate data on exactly what the system was instructed to do and

how it was to go about doing it. Some of this data is available from the Oracle

parameter files.

Program Text
Data on what the application was to do is also available from the code of the

programs or procedures where both the program logic and the SQL statements

reside. Server-side code, such as stored procedures, constraints, and triggers, is in

this context part of the same data population as client-side code. Tuners must

frequently work in situations where the program source code is not available, either

as a result of a temporary problem or because the application is a package for which

the source code is not released. In such cases it is still important for the tuner to

acquire program-to-object cross-reference information. For this reason executable

See Also: For more information on SQL trace, see "SQL Trace and

TKPROF" on page 11-6 and Chapter 6, "Using SQL Trace and

TKPROF".

Oracle and SNMP Support

Overview of Diagnostic Tools 11-5

code is a legitimate data source. Fortunately, SQL is held in text even in executable

programs.

Design (Analysis) Dictionary
You can also use the design or analysis dictionary to track intended actions and

resource use of the application. Only where the application has been entirely

produced by code generators, however, can the design dictionary provide data that

would otherwise have to be extracted from programs and procedures.

Comparative Data
Comparative data is invaluable in most tuning situations. Tuning is often conducted

from a cold start at each site; the tuners arrive with whatever expertise and

experience they may have, plus a few tools for extracting the data. Experienced

tuners may recognize similarities in particular situations and attempt to apply a

solution that worked elsewhere. Normally, such diagnoses are purely subjective.

Tuning is easier if baselines exist, such as capacity studies performed for this

application or data from this or another site running the same application with

acceptable performance. The task is then to modify the problematic environment to

more closely resemble the optimized environments.

If no directly relevant data can be found, you can check data from similar platforms

and similar applications to see if they have the same performance profile. There is

no point in trying to tune out a particular effect if it turns out to be ubiquitous.

Dynamic Performance Views
A primary Oracle performance monitoring tool is the dynamic performance views

Oracle provides to monitor your system. These view names begin with "V$". This

section demonstrates their use in performance tuning. The database user SYS owns

these views, and administrators can grant any database user access to them.

However, only some of these views are relevant to tuning your system.

Oracle and SNMP Support
Simple Network Management Protocol (SNMP) enables users to write tools and

applications. SNMP is acknowledged as the standard, open protocol for

See Also: For detailed information about each view, see

Chapter 15, "Dynamic Performance Views" and Oracle8i Reference.

EXPLAIN PLAN

11-6 Oracle8i Designing and Tuning for Performance

heterogeneous management applications. Oracle SNMP support enables Oracle

databases to be discovered on the network and to be identified and monitored by

SNMP-based management applications. Oracle supports several database

management information bases (MIBs): the standard MIB for any database

management system (independent of vendor), and Oracle-specific MIBs that

contain Oracle-specific information. Some statistics mentioned in this manual are

supported by these MIBs, and others are not. If you can obtain a statistic mentioned

through SNMP, then this fact is noted.

EXPLAIN PLAN
EXPLAIN PLAN is a SQL statement listing the access path used by the query

optimizer. Each plan output from the EXPLAIN PLAN statement has a row that

provides the statement type.

You should interpret EXPLAIN PLAN results with some discretion. Just because a

plan does not seem efficient does not necessarily mean the statement runs slowly.

Choose statements for tuning based on their actual resource consumption, not on a

subjective view of their execution plans.

SQL Trace and TKPROF
The SQL trace facility can be enabled for any session. It records in an operating

system text file the resource consumption of every parse, execute, fetch, commit, or

rollback request made to the server by the session. If the TIMED_STATISTICS
parameter is set to true for the session being traced or for the whole system, then

this text file also includes the CPU and elapsed time for each statement.

See Also: For more information, see the Oracle SNMP Support
Reference Guide.

See Also: For more information on EXPLAIN PLAN, see

Chapter 5, "Using EXPLAIN PLAN" and the Oracle8i SQL Reference.

Supported Scripts

Overview of Diagnostic Tools 11-7

TKPROF summarizes the trace files produced by the SQL trace facility, optionally

including the EXPLAIN PLANoutput. TKPROFreports each statement executed with

the resources it has consumed, the number of times it was called, and the number of

rows it processed. So, it is quite easy to locate individual statements that are using

the greatest amount of resources. With experience or with baselines available, you

can gauge whether the resources used are reasonable.

Supported Scripts
Oracle provides many PL/SQL packages, including a good number of SQL*Plus

scripts that support instance tuning. Examples include UTLBSTAT.SQL,
UTLESTAT.SQL, UTLCHN1.SQL, UTLDTREE.SQL, and UTLLOCKT.SQL. Release 8.1.6

also contains the STATSPACK set of scripts.

These statistical scripts support instance management, allowing you to develop

performance history. You can use them to:

■ Remove the need to issue DDL each time statistics are gathered.

■ Separate data gathering from reporting, and let a range of observations be taken

at intervals during a period of representative system operation, and then allow

the statistics to be reported from any start point to any end point.

■ Report a number of indicative ratios that you can use to determine whether the

instance is adequately tuned.

■ Present LRU statistics from the buffer cache in a usable form.

Note: Try to enable SQL trace only for statistics collection, and on

specific sessions. If you must enable the facility on an entire

production environment, then you can minimize performance

impact with the following:

■ Maintain at least 25% idle CPU capacity.

■ Maintain adequate disk space for the USER_DUMP_DEST
location.

■ Stripe disk space over sufficient disks.

See Also: for more information on using SQL trace and TKPROF,
see Chapter 6, "Using SQL Trace and TKPROF".

Application Registration

11-8 Oracle8i Designing and Tuning for Performance

STATSPACKdiffers from the existing UTLBSTAT/UTLESTATperformance scripts in

the following ways:

■ They collect more data, including high resource SQL.

■ Many of the manual calculations which were required with BSTAT/ESTAT
are now provided; for example. the first page contains a summary of instance

performance and load.

■ Permanent tables are created. Each time a new "snapshot" of data is taken, it is

added to these tables, with keys which allow comparison between snapshots.

■ A new user, PERFSTAT, is automatically created. All objects created by this

package are owned by PERFSTAT. This user has limited query-only privileges.

■ Written in PL/SQL and uses SQL*Plus as the reporting tool.

Like UTLBSTAT.SQL and UTLESTAT.SQL, STATSPACK can be found in the ORACLE_
HOME/rdbms/admin/ directory on UNIX and in the ORACLE_
HOME/rdbms81/admin directory on NT.

Application Registration
You can register with the database the name of an application and the actions

performed by that application. The application name and actions are recorded in

the V$SESSION and V$SQLAREA views. Oracle Trace can also collect application

registration data.

Registering an application lets system administrators and tuners track performance

by module. System administrators can also use this information to track resource

usage by module.

Oracle Enterprise Manager, Packs, and Applications
This section covers:

See Also: For more information on registering applications, see

Oracle Enterprise Manager Oracle Trace User’s Guide and Oracle
Enterprise Manager Oracle Trace Developer’s Guide. For more

information on the DBMS_APPLICATION_INFO package, see

Oracle8i Supplied PL/SQL Packages Reference. You can use this

package with Oracle Trace and the SQL trace facility to record

names of executing modules or transactions in the database for

later use when tracking the performance of various modules.

Oracle Enterprise Manager, Packs, and Applications

Overview of Diagnostic Tools 11-9

■ Introduction to Oracle Enterprise Manager

■ Oracle Diagnostics Pack

■ Oracle Capacity Planner

■ Oracle Performance Manager

■ Oracle Advanced Event Tests

■ Oracle Trace Manager

■ Oracle Tuning Pack

■ Oracle Expert

■ Oracle SQL Analyze

■ Oracle Tablespace Manager

■ Oracle Index Tuning Wizard

■ Oracle Auto-Analyze

Introduction to Oracle Enterprise Manager
The Oracle Enterprise Manager (EM) platform is a sophisticated database

systems-management environment. This tool provides comprehensive management

for Oracle environments.

You can use Enterprise Manager to manage the wide range of Oracle

implementations: departmental to enterprise, replication configurations, Web

servers, media servers, and so forth. Oracle Enterprise Manager includes:

■ A centralized console from which you can run administrative tasks and

applications.

■ Support to run the Oracle Enterprise Manager console and database

administration applications from within a Web browser.

■ A lightweight, 3-tier architecture offering unparalleled scalability and failover

capability, assuring constant availability of critical management services.

■ A centralized repository storing management data for any given environment.

Oracle Enterprise Manager supports teams of administrators responsible for

cooperatively managing distributed systems.

■ Common services for event management, service discovery, and job creation

and control.

Oracle Enterprise Manager, Packs, and Applications

11-10 Oracle8i Designing and Tuning for Performance

■ Server-side intelligent agent for remote monitoring of events, running jobs, and

communicating with the management console.

■ Low overhead framework for collecting and managing real-time and historical

performance data.

■ Applications for administering Oracle databases for security, storage, backup,

recovery, import, and software distribution.

■ Layered applications for managing replication, Oracle Parallel Server, and other

Oracle Server configurations.

■ Optional products for monitoring, diagnosing, and planning, known as Oracle

Diagnostics Pack.

■ Optional products for tuning applications, databases, and systems, known as

Oracle Tuning Pack.

■ Optional products for managing Oracle metadata changes, known as Oracle

Change Management Pack.

The Oracle Enterprise Manager packs provide a set of windows-based and

java-based applications built on the Enterprise Manager systems management

technology. The Diagnostics Pack and the Tuning Pack are useful in tuning systems

and are briefly discussed below.

Oracle Diagnostics Pack
The Oracle Diagnostics Pack monitors, diagnoses, and maintains the health of

databases, operating systems, and applications. Both historical and real-time

analysis are used to automatically avoid problems before they occur. The pack

provides powerful capacity planning features enabling you to easily plan and track

future system resource requirements.

Oracle Diagnostics Pack components include Oracle Capacity Planner, Oracle

Performance Manager, Oracle Advanced Event Tests, Oracle Trace Manager, and

Oracle Trace Data Viewer. The following sections describe each component.

Oracle Capacity Planner
Use the Oracle Capacity Planner to collect and analyze historical performance data

for your Oracle database and operating system. Oracle Capacity Planner allows you

to specify the performance data you want to collect, collection intervals, load

See Also: For information on the Change Management Pack, see

Getting Started with Oracle Change Management Pack

Oracle Enterprise Manager, Packs, and Applications

Overview of Diagnostic Tools 11-11

schedules, and data management policies. You can also use Oracle Capacity

Planner's in-depth analyses and reports to explore the collected data, to format it

into easy-to-use graphs and reports, and to analyze it to predict future resource

needs.

Oracle Performance Manager
Oracle Performance Manager captures, computes, and presents performance data

for your database and operating system, allowing you to monitor key metrics

required to effectively use memory, minimize disk I/O, and to avoid resource

contention. It provides a graphical, real-time view of the performance metrics and

lets you drill down into a monitoring view for quick access to detailed data for

performance problem solving. The performance data is captured and displayed in

real-time mode. You can also record the data for replay.

Oracle Performance Manager includes a large set of predefined charts. You can also

create your own charts. The graphical monitor is customizable and extensible. You

can display monitored information in a variety of two- or three-dimensional

graphical views, such as tables, line, bar, cube, and pie charts. You can also

customize the monitoring rate.

In addition, Oracle Performance Manager provides a focused view of database

activity by database session. The Top Sessions chart extracts and analyzes sample

dynamic Oracle performance data by session, automatically determining the top

Oracle users based on a specific selection criteria, such as memory consumption,

CPU usage, or file I/O activity.

Also, the Database Locks chart within Oracle Performance Manager displays

database locks, including details such as the locking user, lock type, object locked,

and mode held and requested.

Oracle Advanced Event Tests
Oracle Diagnostics Pack includes Oracle Advanced Event Tests. This is a set of

agent-monitored host and database events running on the Oracle Event

Management System. You can launch advanced event tests from the console to

automatically detect problems on managed servers. Oracle Advanced Event Tests

includes predefined events for monitoring database services and system events

affecting database performance.

For example, performance-monitoring events include I/O monitoring,

memory-structure performance, and user program-response time. I/O monitoring

covers disk I/O rates and SQL*Net I/O rates. The tool even allows you to specify

an I/O rate threshold; you will receive a warning when this threshold is exceeded.

Oracle Enterprise Manager, Packs, and Applications

11-12 Oracle8i Designing and Tuning for Performance

Memory-structure performance monitoring covers hit rates for the library cache,

data dictionary, and database buffers. In addition, you also have the flexibility of

monitoring any statistic captured by the dynamic performance table, V$SYSSTAT.

You can use Oracle Advanced Event Tests to monitor the status and performance of

Oracle storage structures and to detect problems with excessive CPU utilization,

excessive CPU load or paging, and disk capacity problems.

In addition to alerting an administrator, Oracle Advanced Event Tests also can be

configured to automatically correct the problem event. Using a Fixit Job, a

predetermined action will automatically occur when an event-alert level is reached.

Oracle Trace Manager
Oracle Trace Manager collects significant Oracle server event data, such as all SQL

events and Wait events. SQL events include a complete breakdown of SQL

statement activity, such as the parse, execute, and fetch operations. Data collected

for server events includes resource usage metrics, such as I/O and CPU consumed

by a specific event.

Oracle Trace Data Viewer
Identifying resource-intensive SQL statements is easy with Oracle Trace Data

Viewer. The Oracle Trace Data Viewer summarizes Oracle Trace data, including

SQL statement metrics such as average elapsed time, CPU consumption, and disk

reads per rows fetched.

Oracle Trace collections can be administered through Oracle Trace Manager.

Oracle Tuning Pack
Oracle Tuning Pack optimizes system performance by identifying and tuning major

database and application bottlenecks, such as inefficient SQL, poor data structures,

and improper use of system resources. The pack proactively discovers tuning

opportunities and automatically generates the analysis and required changes to

tune the system. Inherent in the product are powerful teaching tools that train

DBAs how to tune as they work.

Oracle Expert
Oracle Expert provides automated database performance tuning. Performance

problems detected by Oracle Diagnostics Pack and other Oracle monitoring

See Also: For more information on Oracle Trace, see Chapter 14,

"Using Oracle Trace".

Oracle Enterprise Manager, Packs, and Applications

Overview of Diagnostic Tools 11-13

applications can be analyzed and solved with Oracle Expert. Oracle Expert

automates the process of collecting and analyzing data. It contains a rules-based

inference engine that provides "expert" database tuning recommendations,

implementation scripts, and reports.

Oracle SQL Analyze
Oracle SQL Analyze identifies and helps you tune problematic SQL statements. Use

SQL Analyze to detect resource-intensive SQL statements, examine a SQL

statement’s execution plan, benchmark and compare various optimizer modes and

versions of the statement, and generate alternative SQL to improve application

performance.

Oracle Tablespace Manager
Oracle Tablespace Manager identifies and corrects Oracle space management

problems. Oracle Tablespace Manager has three major features: a Tablespace

Allocation graphic, a Tablespace Reorganization tool, and a Tablespace Analyzer

tool.

The Tablespace Allocation graphic on the Segments and Extents Information page

provides a complete picture of the characteristics of all tablespaces associated with a

particular Oracle instance, including tablespace datafiles and segments, total data

blocks, free data blocks, and percentage of free blocks available in the tablespace’s

current storage allocation.

Use the Reorganization tool to rebuild specific objects or an entire tablespace for

improved space usage and increased performance. Use the Analyzer tool to

automatically keep database statistics up-to-date.

Oracle Index Tuning Wizard
Oracle Index Tuning Wizard automatically identifies tables that would benefit from

index changes, determines the best index strategy for each table, presents its

findings for verification, and allows you to implement its recommendations.

Oracle Auto-Analyze
Oracle Auto-Analyze maintains your Oracle database statistics. Auto-Analyze runs

during a user-specified database maintenance period, thereby reducing adverse

performance effects of updating stale statistics. During this maintenance period,

Auto-Analyze checks specific schemas for objects that require updating. It also

prioritizes the order of objects that require updating and updates the statistics. If the

statistics update does not complete during the maintenance period, then

Oracle Parallel Server Management

11-14 Oracle8i Designing and Tuning for Performance

Auto-Analyze maintains the state of the update operation and resumes updating

during the next maintenance period.

Oracle Parallel Server Management
Oracle Parallel Server Management is a comprehensive and integrated system

management solution for the Oracle Parallel Server. Use Oracle Parallel Server

Management to manage multi-instance databases running in heterogeneous

environments through an open client-server architecture.

In addition to managing parallel databases, you can use Oracle Parallel Server

Management to schedule jobs, perform event management, monitor performance,

and obtain statistics to tune parallel databases.

Independent Tools
At some sites, DBAs have designed in-house performance tools. Such tools might

include:

■ Free space monitors to determine whether tables have enough space to extend.

■ Lock monitoring tools.

■ Schema description scripts to show tables and their associated indexes.

■ Tools to show default and temporary tablespaces per user.

You can integrate such programs with Oracle by setting them to run automatically.

See Also: For more information about Oracle Parallel Server

Management, see Oracle Parallel Server Management Configuration
Guide for UNIX and Oracle8i Parallel Server Concepts. For installation

instructions, see your platform-specific installation guide.

Data Access Methods 12-1

12
Data Access Methods

This chapter provides an overview of data access methods that can enhance

performance, and it warns of situations to avoid. This chapter also explains how to

use hints to force various approaches.

This chapter contains the following sections:

■ Using Indexes

■ Using Function-based Indexes

■ Using Bitmap Indexes

■ Using Domain Indexes

■ Using Clusters

■ Using Hash Clusters

Using Indexes

12-2 Oracle8i Designing and Tuning for Performance

Using Indexes
This section describes:

■ When to Create Indexes

■ Tuning the Logical Structure

■ Choosing Columns and Expressions to Index

■ Choosing Composite Indexes

■ Writing Statements that Use Indexes

■ Writing Statements that Avoid Using Indexes

■ Assessing the Value of Indexes

■ Re-creating Indexes

■ Using Nonunique Indexes to Enforce Uniqueness

■ Using Enabled Novalidated Constraints

When to Create Indexes
Indexes improve the performance of queries that select a small percentage of rows

from a table. As a general guideline, create indexes on tables that are queried for

less than 2% or 4% of the table’s rows. This value may be higher in situations where

all data can be retrieved from an index, or where the indexed columns and

expressions can be used for joining to other tables.

This guideline is based on the following assumptions:

■ Rows with the same value for the key on which the query is based are

uniformly distributed throughout the data blocks allocated to the table.

■ Rows in the table are randomly ordered with respect to the key on which the

query is based.

■ The table contains a relatively small number of columns.

■ Most queries on the table have relatively simple WHERE clauses.

■ The cache hit ratio is low and there is no operating system cache.

If these assumptions do not describe the data in your table and the queries that

access it, then an index may only be helpful if your queries typically access at least

25% of the table’s rows.

Using Indexes

Data Access Methods 12-3

Tuning the Logical Structure
Although cost-based optimization helps avoid the use of nonselective indexes

within query execution, the SQL engine must continue to maintain all indexes

defined against a table regardless of whether they are used. Index maintenance can

present a significant CPU and I/O resource demand in any I/O intensive

application. Put another way, building indexes "just in case" is not a good practice;

indexes should not be built until required.

To maintain optimal performance with indexes, drop indexes that your application

is not using. You can find indexes that are not referenced in execution plans by

processing all of your application SQL through EXPLAIN PLAN and capturing the

resulting plans. Unused indexes are typically, though not necessarily, nonselective.

Indexes within an application sometimes have uses that are not immediately

apparent from a survey of statement execution plans. In particular, Oracle uses

"pins" (nontransactional locks) on foreign key indexes to avoid using shared locks

on the child table when enforcing foreign key constraints.

In many applications, a foreign key index never, or rarely, supports a query. In the

example shown in Figure 12–1, the need to locate all of the order lines for a given

product may never arise. However, when no index exists with LINES (PCODE) as its

leading portion (as described in "Choosing Composite Indexes"), then Oracle places

a share lock on the LINES table each time PRODUCTS(PCODE) is updated or deleted.

Such a share lock is a problem only if the PRODUCTS table is subject to frequent

DML.

If this contention arises, then to remove it, the application must either:

■ Accept the additional load of maintaining the index.

■ Accept the risk of running with the constraint disabled.

Using Indexes

12-4 Oracle8i Designing and Tuning for Performance

Figure 12–1 Foreign Key Constraint

Choosing Columns and Expressions to Index
A key is a column or expression on which you can build an index. Follow these

guidelines for choosing index keys to index:

■ Consider indexing keys that are frequently used in WHERE clauses.

■ Consider indexing keys that are frequently used to join tables in SQL

statements. For more information on optimizing joins, see the section "Using

Hash Clusters" on page 12-26.

■ Index keys that have high selectivity. The selectivity of an index is the

percentage of rows in a table having the same value for the indexed key. An

index’s selectivity is optimal if few rows have the same value.

You can determine the selectivity of an index by dividing the number of rows in

the table by the number of distinct indexed values. You can obtain these values

using the ANALYZE statement. Selectivity calculated in this manner should be

interpreted as a percentage.

Indexes with low selectivity can be helpful if the data distribution is skewed so

that one or two values occur much less often than the others. If these values

appear frequently in WHEREclauses, and if column statistics are gathered so that

the optimizer knows which values are rare, then the index can be useful.

Note: Oracle automatically creates indexes, or uses existing

indexes, on the keys and expressions of unique and primary keys

that you define with integrity constraints.

subject to share lock

BuildLines
PK ORDER_NO
PK LINE_NO
FK PCODE

Products
PK PCODE
 QTY_ON_HAND

Design

Orders
PK ORDR_NO

Using Indexes

Data Access Methods 12-5

■ Do not use standard B*-tree indexes on keys or expressions with few distinct

values. Such keys or expressions usually have poor selectivity and therefore do

not optimize performance unless the frequently selected key values appear less

frequently than the other key values. You can use bitmap indexes effectively in

such cases, unless a high concurrency OLTP application is involved.

■ Do not index columns that are frequently modified. UPDATE statements that

modify indexed columns and INSERT and DELETE statements that modify

indexed tables take longer than if there were no index. Such SQL statements

must modify data in indexes as well as data in tables. They also generate

additional undo and redo information.

■ Do not index keys that appear only in WHERE clauses with functions or

operators. A WHERE clause that uses a function (other than MIN or MAX) or an

operator with an indexed key does not make available the access path that uses

the index.

■ Consider indexing foreign keys of referential integrity constraints in cases in

which a large number of concurrent INSERT, UPDATE, and DELETE statements

access the parent and child tables. Such an index allows UPDATEsand DELETEs
on the parent table without share locking the child table.

■ When choosing to index a key, consider whether the performance gain for

queries is worth the performance loss for INSERTs, UPDATEs, and DELETEs
and the use of the space required to store the index. You may want to

experiment by comparing the processing times of your SQL statements with

and without indexes. You can measure processing time with the SQL trace

facility.

Choosing Composite Indexes
A composite index contains more than one key column. Composite indexes can

provide additional advantages over single-column indexes:

See Also: For more information on the effects of foreign keys on

locking, see Oracle8i Application Developer’s Guide - Fundamentals.

Improved selectivity Sometimes two or more columns or expressions, each

with poor selectivity, can be combined to form a

composite index with more accurate selectivity.

Reduced I/O If all columns selected by a query are in a composite

index, then Oracle can return these values from the

index without accessing the table.

Using Indexes

12-6 Oracle8i Designing and Tuning for Performance

A SQL statement can use an access path involving a composite index if the

statement contains constructs that use a leading portion of the index. A leading

portion of an index is a set of one or more columns that were specified first and

consecutively in the list of columns in the CREATE INDEXstatement that created the

index. Consider this CREATE INDEX statement:

CREATE INDEX comp_ind
ON tab1(x, y, z);

These combinations of columns are leading portions of the index: x , xy , and xyz .

These combinations of columns are not leading portions of the index: yz , y, and z .

Follow these guidelines for choosing keys for composite indexes:

■ Consider creating a composite index on keys that are frequently used together

in WHERE clause conditions combined with AND operators, especially if their

combined selectivity is better than the selectivity of either key individually.

■ If several queries select the same set of keys based on one or more key values,

then consider creating a composite index containing all of these keys.

Of course, consider the guidelines associated with the general performance

advantages and trade-offs of indexes described in the previous sections. Follow

these guidelines for ordering keys in composite indexes:

■ Create the index so the keys used in WHERE clauses make up a leading portion.

■ If some keys are used in WHERE clauses more frequently, then be sure to create

the index so that the more frequently selected keys make up a leading portion

to allow the statements that use only these keys to use the index.

■ If all keys are used in WHERE clauses equally often, then ordering these keys

from most selective to least selective in the CREATE INDEX statement best

improves query performance.

■ If all keys are used in the WHERE clauses equally often but the data is physically

ordered on one of the keys, then place that key first in the composite index.

Writing Statements that Use Indexes
Even after you create an index, the optimizer cannot use an access path that uses the

index simply because the index exists. The optimizer can choose such an access

path for a SQL statement only if it contains a construct that makes the access path

available.

Using Indexes

Data Access Methods 12-7

To be sure that a SQL statement can use an access path that uses an index, be sure

that the statement contains a construct that makes such an access path available. If

you are using the cost-based approach, then also generate statistics for the index.

After you have made the access path available for the statement, the optimizer may

or may not choose to use the access path, based on the availability of other access

paths.

If you create new indexes to tune statements, then you can also use the EXPLAIN
PLAN statement to determine whether the optimizer will choose to use these

indexes when the application is run. If you create new indexes to tune a statement

that is currently parsed, then Oracle invalidates the statement. When the statement

is next executed, the optimizer automatically chooses a new execution plan that

could potentially use the new index. If you create new indexes on a remote database

to tune a distributed statement, then the optimizer considers these indexes when

the statement is next parsed.

Also keep in mind that the way you tune one statement may affect the optimizer’s

choice of execution plans for others. For example, if you create an index to be used

by one statement, then the optimizer may choose to use that index for other

statements in your application as well. For this reason, you should re-examine your

application’s performance and rerun the SQL trace facility after you have tuned

those statements that you initially identified for tuning.

Writing Statements that Avoid Using Indexes
In some cases, you may want to prevent a SQL statement from using an access path

that uses an existing index. You may want to do this if you know that the index is

not very selective and that a full table scan would be more efficient. If the statement

contains a construct that makes such an index access path available, then you can

force the optimizer to use a full table scan through one of these methods:

■ You can use the NO_INDEX hint to give the CBO maximum flexibility while

disallowing the use of a certain index.

■ You can use the FULL hint to force the optimizer to choose a full table scan

instead of an index scan.

■ You can use the INDEX, INDEX_COMBINE, or AND_EQUAL hints to force the

optimizer to use one index or a set of listed indexes instead of another.

Assessing the Value of Indexes
To determine whether an index is good, you must first create it, then analyze it, and

use EXPLAIN PLAN on your query to see if the optimizer uses it. If it does, then

Using Indexes

12-8 Oracle8i Designing and Tuning for Performance

keep the index, unless it is expensive to maintain. You can compare the optimizer

cost (in the first row of EXPLAIN PLAN output) of the plans with and without the

index.

Parallel execution uses indexes effectively. It does not perform parallel index range

scans, but it does perform parallel index lookups for parallel nested loop join

execution. If an index is very selective (there are few rows per index entry), then it

may be better to use sequential index lookup than parallel table scan.

Using Fast Full Index Scans
The fast full index scan is an alternative to a full table scan when there is an index

that contains all the keys that are needed for the query. A fast full scan is faster than

a normal full index scan in that it can use multiblock I/O and can be parallelized

just like a table scan. Unlike regular index scans, however, you cannot use keys and

the rows will not necessarily come back in sorted order. The following query and

plan illustrate this feature.

SELECT COUNT(*)
FROM t1, t2
WHERE t1.c1 > 50

AND t1.c2 = t2.c1;

The plan is as follows:

SELECT STATEMENT
SORT AGGREGATE

HASH JOIN
TABLE ACCESS t1 FULL
INDEX t2_c1_idx FAST FULL SCAN

Because index t2_c1_idx contains all columns needed from table t2 , the

optimizer uses a fast full index scan on that index.

Restrictions
Fast full index scans have the following restrictions:

■ At least one indexed column of the table must have the NOT NULL constraint.

■ Fast full index scans are not possible against bitmap indexes.

■ There must be a parallel clause on the index if you want to perform fast full

index scan in parallel. The parallel degree of the index is set independently. The

index does not inherit the degree of parallelism of the table.

Using Indexes

Data Access Methods 12-9

■ Make sure that you have analyzed the index; otherwise, the optimizer may

decide not to use it.

Fast full scan has a special index hint, INDEX_FFS, which has the same format and

arguments as the regular INDEX hint.

Re-creating Indexes
You may want to re-create an index to compact it and minimize fragmented space,

or to change the index’s storage characteristics. When creating a new index that is a

subset of an existing index, or when rebuilding an existing index with new storage

characteristics, Oracle may use the existing index instead of the base table to

improve performance.

However, there are cases where it may be beneficial to use the base table instead of

the existing index. Consider an index on a table on which a lot of DML has been

performed. Because of the DML, the size of the index may increase to the point

where each block is only 50% full, or even less. If the index refers to most of the

columns in the table, then the index could actually be larger than the table. In this

case, it is faster to use the base table rather than the index to re-create the index.

Another option is to create a new index on a subset of the columns of the original

index.

For example, you have a table named cust with columns name, custid , phone ,

addr , balance , and an index named i_cust_custinfo on table columns name,

custid and balance . To create a new index named i_cust_custno on columns

custid and name, you would enter:

CREATE INDEX i_cust_custno ON cust(custid, name);

Oracle automatically uses the existing index (i_cust_custinfo) to create the new

index rather than accessing the entire table. The syntax used is the same as if the

index i_cust_custinfo did not exist.

Similarly, if you have an index on the empno and mgr columns of the emp table,

and if you want to change the storage characteristics of that composite index, then

Oracle can use the existing index to create the new index.

Use the ALTER INDEX ... REBUILD statement to reorganize or compact an existing

index or to change its storage characteristics. The REBUILD statement uses the

existing index as the basis for the new one. All index storage statements are

See Also: For more information on the INDEX_FFS hint, see

Chapter 7, "Using Optimizer Hints".

Using Indexes

12-10 Oracle8i Designing and Tuning for Performance

supported, such as STORAGE (for extent allocation), TABLESPACE (to move the

index to a new tablespace), and INITRANS (to change the initial number of entries).

ALTER INDEX ... REBUILD is usually faster than dropping and re-creating an index,

because this statement uses the fast full scan feature. It reads all the index blocks

using multiblock I/O then discards the branch blocks. A further advantage of this

approach is that the old index is still available for queries while the rebuild is in

progress.

Compacting Indexes
You can coalesce leaf blocks of an index using the ALTER INDEX statement with the

COALESCE option. This allows you to combine leaf levels of an index to free blocks

for re-use. You can also rebuild the index online.

Using Nonunique Indexes to Enforce Uniqueness
You can use an existing nonunique index on a table to enforce uniqueness, either for

UNIQUE constraints or the unique aspect of a PRIMARY KEY constraint. The

advantage of this approach is that the index remains available and valid when the

constraint is disabled. Therefore, enabling a disabled UNIQUE or PRIMARY KEY
constraint does not require rebuilding the unique index associated with the

constraint. This can yield significant time savings on enable operations for large

tables.

Using a nonunique index to enforce uniqueness also lets you eliminate redundant

indexes. You do not need a unique index on a primary key column if that column

already is included as the prefix of a composite index. You can use the existing

index to enable and enforce the constraint. You also save significant space by not

duplicating the index. However, if the existing index is partitioned, then the

partitioning key of the index must also be a subset of the UNIQUE key; otherwise,

Oracle creates an additional unique index to enforce the constraint.

See Also: For more information about the CREATE INDEX and

ALTER INDEX statements, as well as restrictions on re-building

indexes, see Oracle8i SQL Reference.

See Also: For more information about the syntax for this

statement, see Oracle8i SQL Reference and Oracle8i Administrator’s
Guide.

Using Indexes

Data Access Methods 12-11

Using Enabled Novalidated Constraints
An enabled novalidated constraint behaves similarly to an enabled validated

constraint. Placing a constraint in the enabled novalidated state signifies that any

new data entered into the table must conform to the constraint. Existing data is not

checked. Placing a constraint in the enabled novalidated state allows you to enable

the constraint without locking the table.

If you change a constraint from disabled to enabled, then the table must be locked.

No new DML, queries, or DDL can occur because there is no mechanism to ensure

that operations on the table conform to the constraint during the enable operation.

The enabled novalidated state prevents operations violating the constraint from

being performed on the table.

An enabled novalidated constraint can be validated with a parallel, consistent-read

query of the table to determine whether any data violates the constraint. No locking

is performed and the enable operation does not block readers or writers to the table.

In addition, enabled novalidated constraints can be validated in parallel: multiple

constraints can be validated at the same time and each constraint's validity check

can be determined using parallel query.

Use the following approach to create tables with constraints and indexes:

1. Create the tables with the constraints. NOT NULL constraints may be unnamed

and should be created enabled and validated. All other constraints (CHECK,
UNIQUE, PRIMARY KEY, and FOREIGN KEY) should be named and should be

"created disabled".

2. Load old data into the tables.

3. Create all indexes including indexes needed for constraints.

4. Enable novalidate all constraints. Do this to primary keys before foreign keys.

5. Allow users to query and modify data.

6. With a separate ALTER TABLE statement for each constraint, validate all

constraints. Do this to primary keys before foreign keys. For example,

CREATE TABLE t (a NUMBER CONSTRAINT apk PRIMARY KEY DISABLE,
b NUMBER NOT NULL);
CREATE TABLE x (c NUMBER CONSTRAINT afk REFERENCES t DISABLE);

Note: By default, constraints are created in the ENABLED state.

Using Function-based Indexes

12-12 Oracle8i Designing and Tuning for Performance

At this point, use Import or Fast Loader to load data into t .

CREATE UNIQUE INDEX tai ON t (a);
CREATE INDEX tci ON x (c);
ALTER TABLE t MODIFY CONSTRAINT apk ENABLE NOVALIDATE;
ALTER TABLE x MODIFY CONSTRAINT afk ENABLE NOVALIDATE;

Now, users can start performing inserts, updates, deletes, and selects on t .

ALTER TABLE t ENABLE CONSTRAINT apk;
ALTER TABLE x ENABLE CONSTRAINT afk;

Now, the constraints are enabled and validated.

Using Function-based Indexes
A function-based index is an index on an expression. Oracle strongly recommends

using function-based indexes whenever possible. Define function-based indexes

anywhere that you use an index on a column, except for columns with LOBs or

REFs. Nested table columns and object types cannot contain these columns.

You can create function-based indexes for any repeatable SQL function. Oracle

recommends using function-based indexes for range scans and for functions in

ORDER BY clauses.

Function-based indexes are an efficient mechanism for evaluating statements that

contain functions in WHERE clauses. You can create a function-based index to

materialize computational-intensive expressions in the index. This permits Oracle to

bypass computing the value of the expression when processing SELECT and

DELETE statements. When processing INSERT and UPDATE statements, however,

Oracle evaluates the function to process the statement.

See Also: For a complete discussion of integrity constraints, see

Oracle8i Concepts.

Note: You must set the QUERY_REWRITE_ENABLED session

parameter to true to enable function-based indexes for queries. If

QUERY_REWRITE_ENABLEDis false , then function-based indexes

are not used for obtaining the values of an expression in the

function-based index. However, function-based indexes can still be

used for obtaining values in real columns. QUERY_REWRITE_
ENABLED is a session-level and also an instance-level parameter.

Using Bitmap Indexes

Data Access Methods 12-13

For example, if you create the following index:

CREATE INDEX idx ON table_1 (a + b * (c - 1), a, b);

Then, Oracle can use it when processing queries such as:

SELECT a
FROM table_1
WHERE a + b * (c - 1) < 100;

Function-based indexes defined with the UPPER(column_name) or LOWER(column_
name) keywords allow case-insensitive searches. For example, the following index:

CREATE INDEX uppercase_idx ON emp (UPPER(empname));

Facilitates processing queries such as:

SELECT *
FROM emp
WHERE UPPER(empname) = ’MARK’;

You can also use function-based indexes for NLS sort indexes that provide efficient

linguistic collation in SQL statements.

Oracle treats descending indexes as function-based indexes. The columns marked

DESC are sorted in descending order.

Function-based Indexes and Index Organized Tables
Use index organized tables (IOTs) on tables with large, non-key columns to speed

data retrieval. Because IOTs can store key column values in the indexes and

non-key values in the lower leaves of the tree, applications such as those retrieving

large text files, coded with a short key value, like an ISBN, might make use of the

IOT feature.

The secondary index on an IOT can be a function-based index.

Using Bitmap Indexes
This section describes:

■ When to Use Bitmap Indexes

See Also: For more information on the CREATE INDEXstatement,

see Oracle8i SQL Reference.

Using Bitmap Indexes

12-14 Oracle8i Designing and Tuning for Performance

■ Creating Bitmap Indexes

■ Initialization Parameters for Bitmap Indexing

■ Using Bitmap Access Plans on Regular B*-tree Indexes

■ Estimating Bitmap Index Size

■ Bitmap Index Restrictions

When to Use Bitmap Indexes
This section describes three aspects of indexing that you must evaluate when

deciding whether to use bitmap indexing on a given table:

■ Performance Considerations

■ Storage Considerations

■ Maintenance Considerations

Performance Considerations
Bitmap indexes can substantially improve performance of queries with the

following characteristics:

■ The WHERE clause contains multiple predicates on low- or medium-cardinality

columns.

■ The individual predicates on these low- or medium-cardinality columns select a

large number of rows.

■ Bitmap indexes have been created on some or all of these low- or

medium-cardinality columns.

■ The tables being queried contain many rows.

You can use multiple bitmap indexes to evaluate the conditions on a single table.

Bitmap indexes are thus highly advantageous for complex ad hoc queries that

contain lengthy WHERE clauses. Bitmap indexes can also provide optimal

performance for aggregate queries and for optimizing joins in star schemas.

See Also: For more information on bitmap indexing, see Oracle8i
Concepts.

Using Bitmap Indexes

Data Access Methods 12-15

Storage Considerations
Bitmap indexes can provide considerable storage savings over the use of B*-tree

indexes. In databases containing only B*-tree indexes, you must anticipate the

columns that would commonly be accessed together in a single query, and create a

composite B*-tree index on these columns.

Not only would this B*-tree index require a large amount of space, it would also be

ordered. That is, a B*-tree index on (marital_status , region , gender) is

useless for queries that only access region and gender . To completely index the

database, you must create indexes on the other permutations of these columns. For

the simple case of three low-cardinality columns, there are six possible composite

B*-tree indexes. You must consider the trade-offs between disk space and

performance needs when determining which composite B*-tree indexes to create.

Bitmap indexes solve this dilemma. Bitmap indexes can be efficiently combined

during query execution, so three small single-column bitmap indexes can do the job

of six three-column B*-tree indexes.

Bitmap indexes are much more efficient than B*-tree indexes, especially in data

warehousing environments. Bitmap indexes are created not only for efficient space

usage, but also for efficient execution, and the latter is somewhat more important.

Do not create bitmap indexes on unique key columns. However, for columns where

each value is repeated hundreds or thousands of times, a bitmap index typically is

less than 25% of the size of a regular B*-tree index. The bitmaps themselves are

stored in compressed format.

Simply comparing the relative sizes of B*-tree and bitmap indexes is not an accurate

measure of effectiveness, however. Because of their different performance

characteristics, you should keep B*-tree indexes on high-cardinality columns, while

creating bitmap indexes on low-cardinality columns.

Maintenance Considerations
Bitmap indexes benefit data warehousing applications, but they are not appropriate

for OLTP applications with a heavy load of concurrent INSERTs, UPDATEs, and

DELETEs. In a data warehousing environment, data is usually maintained by way

of bulk inserts and updates. Index maintenance is deferred until the end of each

DML operation. For example, if you insert 1000 rows, then the inserted rows are

placed into a sort buffer, and then the updates of all 1000 index entries are batched.

See Also: For more information on optimizing anti-joins and

semi-joins, see Oracle8i Concepts.

Using Bitmap Indexes

12-16 Oracle8i Designing and Tuning for Performance

(This is why SORT_AREA_SIZE must be set properly for good performance with

inserts and updates on bitmap indexes.) Thus, each bitmap segment is updated only

once per DML operation, even if more than one row in that segment changes.

DML and DDL statements, such as UPDATE, DELETE, DROP TABLE, affect bitmap

indexes the same way they do traditional indexes: the consistency model is the

same. A compressed bitmap for a key value is made up of one or more bitmap

segments, each of which is at most half a block in size (but may be smaller). The

locking granularity is one such bitmap segment. This may affect performance in

environments where many transactions make simultaneous updates. If numerous

DML operations have caused increased index size and decreasing performance for

queries, then you can use the ALTER INDEX ... REBUILD statement to compact the

index and restore efficient performance.

A B*-tree index entry contains a single rowid. Therefore, when the index entry is

locked, a single row is locked. With bitmap indexes, an entry can potentially contain

a range of rowids. When a bitmap index entry is locked, the entire range of rowids

is locked. The number of rowids in this range affects concurrency. As the number of

rowids increases in a bitmap segment, concurrency decreases.

Locking issues affect DML operations, and may affect heavy OLTP environments.

Locking issues do not, however, affect query performance. As with other types of

indexes, updating bitmap indexes is a costly operation. Nonetheless, for bulk inserts

and updates where many rows are inserted or many updates are made in a single

statement, performance with bitmap indexes can be better than with regular B*-tree

indexes.

Creating Bitmap Indexes
To create a bitmap index, use the BITMAP keyword in the CREATE INDEX
statement:

CREATE BITMAP INDEX ...

Note: The sorts described above are regular sorts and use the

regular sort area, determined by SORT_AREA_SIZE. The BITMAP_
MERGE_AREA_SIZE and CREATE_BITMAP_AREA_SIZE
parameters described in "Initialization Parameters for Bitmap

Indexing" on page 12-19 only affect the specific operations

indicated by the parameter names.

Using Bitmap Indexes

Data Access Methods 12-17

Multi-column (concatenated) bitmap indexes are supported. They can be defined

over no more than 30 columns. Other SQL statements concerning indexes, such as

DROP, ANALYZE, ALTER, and so on, can refer to bitmap indexes without any extra

keyword.

Index Type
System index views USER_INDEXES, ALL_INDEXES, and DBA_INDEXES indicate

bitmap indexes by the word BITMAP appearing in the TYPE column. A bitmap

index cannot be declared as UNIQUE. A bitmap index on a unique key is useless.

Using Hints
The INDEX hint works with bitmap indexes in the same way as with traditional

indexes.

The INDEX_COMBINE hint identifies the most cost effective indexes for the

optimizer. The optimizer recognizes all indexes that can potentially be combined,

given the predicates in the WHERE clause. However, it may not be cost effective to

use all of them. Oracle recommends using INDEX_COMBINE rather than INDEX for

bitmap indexes, because it is a more versatile hint.

In deciding which of these hints to use, the optimizer includes non-hinted indexes

that appear cost effective, as well as indexes named in the hint. If certain indexes are

given as arguments for the hint, then the optimizer tries to use some combination of

those particular bitmap indexes.

If the hint does not name indexes, then all indexes are considered hinted. Hence, the

optimizer tries to combine as many as is possible given the WHERE clause, without

regard to cost effectiveness. The optimizer always tries to use hinted indexes in the

plan regardless of whether it considers them cost effective.

Performance and Storage Tips
To get optimal performance and disk space usage with bitmap indexes, consider the

following tips:

■ Large block sizes improve the efficiency of storing, and hence, retrieving,

bitmap indexes.

See Also: For information on bitmap index restrictions, see

Oracle8i SQL Reference.

See Also: For more information on the INDEX_COMBINEhint, see

Chapter 7, "Using Optimizer Hints".

Using Bitmap Indexes

12-18 Oracle8i Designing and Tuning for Performance

■ To make compressed bitmaps as small as possible, declare NOT NULL
constraints on all columns that cannot contain null values.

■ Fixed-length datatypes are more amenable to a compact bitmap representation

than variable length datatypes.

This is because Oracle needs to consider the theoretical maximum number of rows

that will fit in a data block when creating bitmap indexes.

Efficient Mapping of Bitmaps to Rowids
Use SQL statements with the ALTER TABLE syntax to optimize the mapping of

bitmaps to rowids. The MINIMIZE RECORDS_PER_BLOCK clause enables this

optimization and the NOMINIMIZE RECORDS_PER_BLOCK clause disables it.

When enabled, Oracle scans the table and determines the maximum number of

records in any block and restricts this table to this maximum number. This enables

bitmap indexes to allocate fewer bits per block and results in smaller bitmap

indexes. The block and record allocation restrictions this statement places on the

table are only beneficial to bitmap indexes. Therefore, Oracle does not recommend

using this mapping on tables that are not heavily indexed with bitmap indexes.

Indexing Null Values
Bitmap indexes index nulls, whereas all other index types do not. Consider, for

example, a table with STATE and PARTY columns, on which you want to perform

the following query:

SELECT COUNT(*)
FROM people
WHERE state=’CA’

AND party !=’D’;

Indexing nulls enables a bitmap minus plan where bitmaps for party equal to D and

NULL are subtracted from state bitmaps equal to CA. The EXPLAIN PLAN output

would look like this:

SELECT STATEMENT
 SORT AGGREGATE

See Also: For more information about bitmap EXPLAIN PLAN
output, see Chapter 5, "Using EXPLAIN PLAN"

See Also: For more information, see "Using Bitmap Indexes" on

page 12-13. For more information on MINIMIZE and NOMINIMIZE
syntax, see Oracle8i SQL Reference.

Using Bitmap Indexes

Data Access Methods 12-19

 BITMAP CONVERSION COUNT
 BITMAP MINUS
 BITMAP MINUS
 BITMAP INDEX SINGLE VALUE STATE_BM
 BITMAP INDEX SINGLE VALUE PARTY_BM
 BITMAP INDEX SINGLE VALUE PARTY_BM

If a NOT NULL constraint existed on party, then the second minus operation (where

party is null) would be left out because it is not needed.

Initialization Parameters for Bitmap Indexing
The following initialization parameters have an effect on performance:

■ CREATE_BITMAP_AREA_SIZE

■ BITMAP_MERGE_AREA_SIZE

■ SORT_AREA_SIZE

CREATE_BITMAP_AREA_SIZE
This parameter determines the amount of memory allocated for bitmap creation.

The default value is 8MB. A larger value may lead to faster index creation. If

cardinality is very small, then you can set a small value for this parameter. For

example, if cardinality is only 2, then the value can be on the order of kilobytes

rather than megabytes. As a general rule, the higher the cardinality, the more

memory is needed for optimal performance. You cannot dynamically alter this

parameter at the system or session level.

BITMAP_MERGE_AREA_SIZE
This parameter determines the amount of memory used to merge bitmaps retrieved

from a range scan of the index. The default value is 1 MB. A larger value should

improve performance because the bitmap segments must be sorted before being

merged into a single bitmap. You cannot dynamically alter this parameter at the

system or session level.

SORT_AREA_SIZE
This parameter must be set properly for good performance with inserts and updates

on bitmap indexes. Thus, each bitmap segment is updated only once per DML

operation, even if more than one row in that segment changes.

Using Bitmap Indexes

12-20 Oracle8i Designing and Tuning for Performance

Using Bitmap Access Plans on Regular B*-tree Indexes
If there is at least one bitmap index on the table, then the optimizer considers using

a bitmap access path using regular B*-tree indexes for that table. This access path

may involve combinations of B*-tree and bitmap indexes, but may not involve any

bitmap indexes at all. However, the optimizer will not generate a bitmap access

path using a single B*-tree index unless instructed to do so by a hint.

To use bitmap access paths for B*-tree indexes, the rowids stored in the indexes

must be converted to bitmaps. After such a conversion, the various Boolean

operations available for bitmaps can be used. As an example, consider the following

query, where there is a bitmap index on column c1 , and regular B*-tree indexes on

columns c2 and c3 .

EXPLAIN PLAN FOR
SELECT COUNT(*)
FROM t
WHERE c1 = 2 AND c2 = 6
OR c3 BETWEEN 10 AND 20;

SELECT STATEMENT
 SORT AGGREGATE
 BITMAP CONVERSION COUNT
 BITMAP OR
 BITMAP AND
 BITMAP INDEX c1_ind SINGLE VALUE
 BITMAP CONVERSION FROM ROWIDS
 INDEX c2_ind RANGE SCAN
 BITMAP CONVERSION FROM ROWIDS
 SORT ORDER BY
 INDEX c3_ind RANGE SCAN

Here, a COUNT option for the BITMAP CONVERSION row source counts the number

of rows matching the query. There are also conversions FROM rowids in the plan to

generate bitmaps from the rowids retrieved from the B*-tree indexes. The

occurrence of the ORDER BY sort in the plan is due to the fact that the conditions on

See Also: For more information on improving bitmap index

efficiency, see "Efficient Mapping of Bitmaps to Rowids" on

page 12-18.

Note: This statement is executed by accessing indexes only, so no

table access is necessary.

Using Bitmap Indexes

Data Access Methods 12-21

column c3 result in more than one list of rowids being returned from the B*-tree

index. These lists are sorted before they can be converted into a bitmap.

Estimating Bitmap Index Size
Although it is not possible to precisely size a bitmap index, you can estimate its size.

This section describes how to determine the size of a bitmap index for a table using

the computed size of a B*-tree index. It also illustrates how cardinality, NOT NULL
constraints, and the number of distinct values affect bitmap size.

To estimate the size of a bitmap index for a given table, extrapolate the size of a

B*-tree index for the table. Use the following approach:

1. Use the standard formula described in Oracle8i Concepts to compute the size of a

B*-tree index for the table.

2. Determine the cardinality of the table data.

3. From the cardinality value, extrapolate the size of a bitmap index, according to

the graph in Figure 12–2 or Figure 12–3.

For a 1 million row table, Figure 12–2 shows index size on columns with different

numbers of distinct values for B*-tree indexes and bitmap indexes. Using

Figure 12–2, you can estimate the size of a bitmap index relative to that of a B*-tree

index for the table. Sizing is not exact: results vary somewhat from table to table.

Randomly distributed data was used to generate the graph. If, in your data,

particular values tend to cluster close together, then you may generate considerably

smaller bitmap indexes than indicated by the graph. Also, bitmap indexes may be

slightly smaller than those in the graph if columns contain NOT NULL constraints.

Figure 12–3 shows similar data for a table with 5 million rows. When cardinality

exceeds 100,000, bitmap index size does not increase as fast as it does in Figure 12–2.

For a table with more rows, there are more repeating values for a given cardinality.

Using Bitmap Indexes

12-22 Oracle8i Designing and Tuning for Performance

Figure 12–2 Extrapolating Bitmap Index Size: 1 Million Row Table

0

5

10

15

20

25

30

B*-tree Index Size

Bitmap Index Size

1,
00

0,
00

0

50
0,

00
0

25
0,

00
0

10
0,

00
0

40
,0

00

10
,0

00

1,
00

0

10
02510542

M
eg

ab
yt

es

Cardinality

Using Bitmap Indexes

Data Access Methods 12-23

Figure 12–3 Extrapolating Bitmap Index Size: 5 Million Row Table

5,
00

0,
00

0

2,
50

0,
00

0

1,
00

0,
00

0

40
0,

00
0

10
0,

00
0

10
,0

00

10
0025

0

10
0504020

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

B*-tree Index Size

Bitmap Index Size

M
eg

ab
yt

es

Cardinality

Using Domain Indexes

12-24 Oracle8i Designing and Tuning for Performance

Bitmap Index Restrictions
Bitmap indexes have the following restrictions:

■ For bitmap indexes with direct load, the SORTED_INDEX flag does not apply.

■ Bitmap indexes are not considered by the rule-based optimizer.

■ Bitmap indexes cannot be used for referential integrity checking.

Using Domain Indexes
Domain indexes are built using the indexing logic supplied by a user-defined

indextype. An indextype provides an efficient mechanism to access data that satisfy

certain operator predicates. Typically, the user-defined indextype is part of an

Oracle option, like the Spatial option.

For example, the SpatialIndextype allows efficient search and retrieval of

spatial data that overlap a given bounding box.

The cartridge determines the parameters you can specify in creating and

maintaining the domain index. Similarly, the performance and storage

characteristics of the domain index are presented in the specific cartridge

documentation.

Refer to the appropriate cartridge documentation for information such as:

■ What datatypes can be indexed?

■ What indextypes are provided?

■ What operators does the indextype support?

■ How can the domain index be created and maintained?

■ How do we efficiently use the operator in queries?

■ What are the performance characteristics?

Note: You can also create index types with the CREATE
INDEXTYPE SQL statement.

See Also: For information about the SpatialIndextype , see

the Oracle Spatial User’s Guide and Reference.

Using Clusters

Data Access Methods 12-25

Using Clusters
A cluster is a group of tables that share the same data blocks because they share

common columns and are often used together.

Follow these guidelines when deciding whether to cluster tables:

■ Cluster tables that are often accessed by your application in join statements.

■ Do not cluster tables if your application joins them only occasionally or

modifies their common column values frequently. Modifying a row’s cluster

key value takes longer than modifying the value in an unclustered table,

because Oracle may have to migrate the modified row to another block to

maintain the cluster.

■ Do not cluster tables if your application often performs full table scans of only

one of the tables. A full table scan of a clustered table can take longer than a full

table scan of an unclustered table. Oracle is likely to read more blocks because

the tables are stored together.

■ Cluster master-detail tables if you often select a master record and then the

corresponding detail records. Detail records are stored in the same data block(s)

as the master record, so they are likely still to be in memory when you select

them, requiring Oracle to perform less I/O.

■ Store a detail table alone in a cluster if you often select many detail records of

the same master. This measure improves the performance of queries that select

detail records of the same master but does not decrease the performance of a

full table scan on the master table.

■ Do not cluster tables if the data from all tables with the same cluster key value

exceeds more than one or two Oracle blocks. To access a row in a clustered

table, Oracle reads all blocks containing rows with that value. If these rows take

up multiple blocks, then accessing a single row could require more reads than

accessing the same row in an unclustered table.

■ Do not cluster tables when the number of rows per cluster key value varies

significantly. This causes space wastage for the low cardinality key value and

collisions for the high cardinality key values. Collisions degrade performance.

Consider the benefits and drawbacks of clusters with respect to the needs of your

application. For example, you may decide that the performance gain for join

statements outweighs the performance loss for statements that modify cluster key

See Also: For more information on clusters, see Oracle8i Concepts.

Using Hash Clusters

12-26 Oracle8i Designing and Tuning for Performance

values. You may want to experiment and compare processing times with your

tables both clustered and stored separately. To create a cluster, use the CREATE
CLUSTER statement.

Using Hash Clusters
Hash clusters group table data by applying a hash function to each row’s cluster

key value. All rows with the same cluster key value are stored together on disk.

Consider the benefits and drawbacks of hash clusters with respect to the needs of

your application. You may want to experiment and compare processing times with

a particular table as it is stored in a hash cluster, and as it is stored alone with an

index. This section describes:

■ When to Use Hash Clusters

■ Creating Hash Clusters

When to Use Hash Clusters
Follow these guidelines for choosing when to use hash clusters:

■ Use hash clusters to store tables often accessed by SQL statements with WHERE
clauses if the WHERE clauses contain equality conditions that use the same

column or combination of columns. Designate this column or combination of

columns as the cluster key.

■ Store a table in a hash cluster if you can determine how much space is required

to hold all rows with a given cluster key value, including rows to be inserted

immediately as well as rows to be inserted in the future.

■ Do not use hash clusters if space in your database is scarce, and you cannot

afford to allocate additional space for rows to be inserted in the future.

■ Do not use a hash cluster to store a constantly growing table if the process of

occasionally creating a new, larger hash cluster to hold that table is impractical.

■ Do not store a table in a hash cluster if your application often performs full

table scans, and you must allocate a great deal of space to the hash cluster in

anticipation of the table growing. Such full table scans must read all blocks

allocated to the hash cluster, even though some blocks may contain few rows.

Storing the table alone would reduce the number of blocks read by full table

scans.

See Also: For more information on creating clusters, see Oracle8i
Application Developer’s Guide - Fundamentals.

Using Hash Clusters

Data Access Methods 12-27

■ Do not store a table in a hash cluster if your application frequently modifies the

cluster key values. Modifying a row’s cluster key value can take longer than

modifying the value in an unclustered table, because Oracle may have to

migrate the modified row to another block to maintain the cluster.

■ Storing a single table in a hash cluster can be useful, regardless of whether the

table is often joined with other tables, provided that hashing is appropriate for

the table based on the previous points in this list.

Creating Hash Clusters
To create a hash cluster, use the CREATE CLUSTER statement with the HASHKEYS
parameter.

When you create a hash cluster, you must use the HASHKEYS parameter of the

CREATE CLUSTER statement to specify the number of hash values for the hash

cluster. For best performance of hash scans, choose a HASHKEYS value that is at

least as large as the number of cluster key values. Such a value reduces the chance

of collisions, or multiple cluster key values resulting in the same hash value.

Collisions force Oracle to test the rows in each block for the correct cluster key value

after performing a hash scan. Collisions reduce the performance of hash scans.

Oracle always rounds up the HASHKEYS value that you specify to the nearest prime

number to obtain the actual number of hash values. This rounding is designed to

reduce collisions.

See Also: For more information on creating hash clusters, see

Oracle8i Application Developer’s Guide - Fundamentals.

Using Hash Clusters

12-28 Oracle8i Designing and Tuning for Performance

Managing Shared SQL and PL/SQL Areas 13-1

13
Managing Shared SQL and PL/SQL Areas

Oracle compares SQL statements and PL/SQL blocks issued directly by users and

applications, as well as recursive SQL statements issued internally by a DDL

statement. If two exact statements are issued, then the SQL or PL/SQL area used to

process the first instance of the statement is shared. This means that it is used for the

processing of the subsequent executions of that same statement. Similar statements

also share SQL areas when the CURSOR_SHARING parameter is set to FORCE.

Shared SQL and PL/SQL areas are shared memory areas. Any Oracle process can

use a shared SQL area. Shared SQL areas reduce memory usage on the database

server, thereby increasing system throughput. Shared SQL and PL/SQL areas age

out of the shared pool according to a "least recently used" (LRU) algorithm, similar

to database buffers. To improve performance and prevent reparsing, you may want

to prevent large SQL or PL/SQL areas from aging out of the shared pool.

This chapter contains the following sections:

■ Comparing SQL Statements and PL/SQL Blocks

■ Keeping Shared SQL and PL/SQL in the Shared Pool

See Also: For more information on similar SQL statements, see

Chapter 19, "Tuning Memory Allocation".

Note: Shared SQL is not recommended with data warehousing

applications. Use literal values in these SQL statements, rather than

bind variables. If you use bind variables, then the optimizer makes

a blanket assumption about the selectivity of the column. However,

if you specify a literal value, then the optimizer can use value

histograms and provide a better access plan.

Comparing SQL Statements and PL/SQL Blocks

13-2 Oracle8i Designing and Tuning for Performance

Comparing SQL Statements and PL/SQL Blocks
This section describes the following:

■ Testing for Identical SQL Statements

■ Aspects of Standardized SQL Formatting

Testing for Identical SQL Statements
Oracle automatically notices when two or more applications send identical SQL

statements or PL/SQL blocks to the database. It does not need to parse a statement

to determine whether it is identical to another statement currently in the shared

pool. Oracle distinguishes identical statements using the following steps:

1. The text string of an issued statement is hashed. If the hash value is the same as

a hash value for an existing SQL statement in the shared pool, then Oracle

proceeds to Step 2.

2. The text string of the issued statement, including case, blanks, and comments, is

compared to all existing SQL statements that were identified in Step 1.

3. The objects referenced in the issued statement are compared to the referenced

objects of all existing statements identified in Step 2. For example, if two users

each have emp tables, then the statement

SELECT * FROM emp;

is not considered identical, because the statement references different tables for

each user.

4. The bind types of bind variables used in a SQL statement must match.

Note: Most Oracle products convert the SQL before passing

statements to the database. Characters are uniformly changed to

upper case, white space is compressed, and bind variables are

renamed so that a consistent set of SQL statements is produced.

Keeping Shared SQL and PL/SQL in the Shared Pool

Managing Shared SQL and PL/SQL Areas 13-3

Aspects of Standardized SQL Formatting
It is neither necessary nor useful to have every user of an application attempt to

write SQL statements in a standardized way. It is unlikely that 300 people writing

ad hoc dynamic statements in standardized SQL generate the same SQL statements.

The chances that they all want to look at exactly the same columns, in exactly the

same tables, in exactly the same order is remote. By contrast, 300 people running the

same application—executing command files—will generate the same SQL

statements.

Within an application, there is a very minimal advantage to having 300 users use

two identical statements; however, there is a major advantage to having one

statement used by 600 users.

Keeping Shared SQL and PL/SQL in the Shared Pool
This section describes two techniques of keeping shared SQL and PL/SQL in the

shared pool:

■ Reserving Space for Large Allocations

■ Preventing Objects from Aging Out

Reserving Space for Large Allocations
A problem can occur if users fill the shared pool, and then a large package ages out.

If someone calls the large package back in, then a significant amount of

maintenance is required to create space for it in the shared pool. You can avoid this

problem by reserving space for large allocations with the SHARED_POOL_
RESERVED_SIZE initialization parameter. This parameter sets aside room in the

shared pool for allocations larger than the value specified by the SHARED_POOL_
RESERVED_SIZE_MIN_ALLOC parameter.

Note: Although Oracle uses segmented codes to reduce the need

for large areas of contiguous memory, performance may improve if

you pin large objects in memory.

See Also: For more information on the SHARED_POOL_
RESERVED_SIZE parameter, see "Tuning the Shared Pool" in

Chapter 19, "Tuning Memory Allocation".

Keeping Shared SQL and PL/SQL in the Shared Pool

13-4 Oracle8i Designing and Tuning for Performance

Preventing Objects from Aging Out
The DBMS_SHARED_POOL package lets you keep objects in shared memory, so that

they do not age out with the normal LRU mechanism. By using the DBMS_SHARED_
POOL package, and by loading the SQL and PL/SQL areas before memory

fragmentation occurs, the objects can be kept in memory. This ensures that memory

is available, and it prevents the sudden, inexplicable slowdowns in user response

time that occur when SQL and PL/SQL areas are accessed after aging out.

When to Use DBMS_SHARED_POOL
■ The procedures provided with the DBMS_SHARED_POOLpackage may be useful

when loading large PL/SQL objects, such as the STANDARD and DIUTIL
packages. When large PL/SQL objects are loaded, user response time is

affected. This is because of the large number of smaller objects that need to age

out of the shared pool to make room (due to memory fragmentation). In some

cases, there may be insufficient memory to load the large objects.

■ DBMS_SHARED_POOL is useful for frequently executed triggers. You may want

to keep compiled triggers on frequently used tables in the shared pool.

■ DBMS_SHARED_POOL also supports sequences. Sequence numbers are lost

when a sequence ages out of the shared pool. DBMS_SHARED_POOL keeps

sequences in the shared pool, thus preventing the loss of sequence numbers.

How to Use DBMS_SHARED_POOL
To use the DBMS_SHARED_POOL package to pin a SQL or PL/SQL area, complete

the following steps.

1. Decide which packages or cursors to pin in memory.

2. Start up the database.

3. Make the call to DBMS_SHARED_POOL.KEEP to pin your objects.

This procedure ensures that your system does not run out of shared memory

before the objects are loaded. By pinning the objects early in the life of the

instance, you prevent memory fragmentation that could result from pinning a

large portion of memory in the middle of the shared pool.

See Also: For more information on using DBMS_SHARED_POOL,

see Oracle8i Supplied PL/SQL Packages Reference.

See Also: For specific information on using DBMS_SHARED_POOL
procedures, see Oracle8i Supplied PL/SQL Packages Reference.

Using Oracle Trace 14-1

14
Using Oracle Trace

This chapter describes how to use Oracle Trace to collect Oracle server event data.

This chapter contains the following sections:

■ Introduction to Oracle Trace

■ Using Oracle Trace Manager

■ Using Oracle Trace Data Viewer

■ Manually Collecting Oracle Trace Data

Introduction to Oracle Trace

14-2 Oracle8i Designing and Tuning for Performance

Introduction to Oracle Trace
Oracle Trace is a general-purpose data collection product and is part of the Oracle

Enterprise Manager systems management product family. The Oracle server uses

Oracle Trace to collect performance and resource utilization data, such as SQL

Parse, Execute, Fetch statistics, and Wait statistics.

Using Oracle Trace Data
Among the many advantages of using Oracle Trace is the integration of Oracle

Trace with many other applications. You can use Oracle Trace data collected for the

Oracle server in the following applications, as shown in Figure 14–1:

■ Oracle Expert

You can use information collected with Oracle Trace as an optional source of

SQL workload data in Oracle Expert. This SQL data is used when

recommending the addition or removal of indexes.

■ Oracle Trace Data Viewer

Oracle Trace Data Viewer is a simple viewer for inspecting Oracle Trace

collections containing SQL and Wait statistics. You can export Oracle Trace Data

to the following products for further analysis:

– SQL Analyze

You can select one or more rows in Data Viewer and save the SQL

statement text to a file that you can import into SQL Analyze. You can then

use SQL Analyze to tune these individual statements.

– Third-Party Tools, such as Microsoft Excel

SQL in Data Viewer can be saved to a CSV (Comma Separated Value) file

for viewing in third-party tools, such as Microsoft Excel.

See Also: For more information, see Oracle Enterprise Manager
Oracle Trace User’s Guide and Oracle Enterprise Manager Oracle Trace
Developer’s Guide. These books contain a complete list of events and

data that you can collect for the Oracle server, as well as

information on how to implement tracing in your own products

and applications.

See Also: For more information, see Database Tuning with the
Oracle Tuning Pack.

Introduction to Oracle Trace

Using Oracle Trace 14-3

Figure 14–1 Integration of Oracle Trace with Other Applications

Importing Oracle Trace Data into Oracle Expert
You can use Oracle Trace to collect workload data for use in the Oracle Expert

application. Oracle Trace collects resource utilization statistics for SQL statements

executing against a database in real time. Oracle Trace allows you to collect data

about all the SQL statements executing against a database during periods of poor

performance.

You control the scheduling and duration of an Oracle Trace collection period. To

obtain SQL workload data for a 15-minute period of poor performance, stop

collection immediately after the poor performance interval ends.

Importing Data Viewer SQL Into Oracle SQL Analyze
While using Data Viewer, you can select one or more rows in the top portion of the

Data View window to save to a file. When you choose SQL (SQL Analyze Format)

from File/Save, a file containing query text is saved. You can then import this *.sql
file into Oracle SQL Analyze for tuning of the selected statements.

Oracle SQL Analyze can show you the execution plan for individual queries and let

you experiment with various optimizer modes and hints.

Oracle Trace
Collected Data

Oracle ExpertOracle Trace
Data Viewer

Microsoft
Excel

Oracle SQL
Analyze

Using Oracle Trace Manager

14-4 Oracle8i Designing and Tuning for Performance

Importing Data Viewer Information into Third-Party Tools
While using Data Viewer, you can select one or more rows in the top portion of the

Data View window to save to a file. When you choose the CSV file format, Oracle

Trace creates a *.csv file that you can load into a third-party tool, such as a

Microsoft Excel spreadsheet.

Using Oracle Trace Manager
Oracle Trace provides a graphical Oracle Trace Manager application to create,

schedule, and administer Oracle Trace collections for products containing Oracle

Trace calls.

The Oracle server has been coded with Oracle Trace API calls to collect both SQL

and Wait statistics with a minimum of overhead. Using the Oracle Trace Manager

graphical user interface you can:

■ Schedule collections.

■ Filter collections by user.

■ Filter collections by type of Wait event.

■ Format collected data to database tables to preserve historical data.

■ View SQL and Wait statistics using Oracle Trace Data Viewer.

Managing Collections
Use and control of Oracle Trace revolves around the concept of a "collection." A

collection is data collected for events that occurred while a product with Oracle

Trace code was running.

With the Oracle Trace Manager, you can schedule and manage collections. When

creating a collection, you define the attributes of the collection, such as the

collection name, the data to be included in the collection, and the start and end

times. The Oracle Trace Manager includes a Collection Wizard that facilitates the

creation and execution of collections.

After you create a collection you can execute it immediately or schedule it to

execute at a specific time or at specified intervals. When a collection executes, it

produces a file containing the data for the products participating in the collection.

You can also use a collection as a template for creating other similar collections.

Using Oracle Trace Manager

Using Oracle Trace 14-5

Collecting Event Data
An event is the occurrence of some activity within a product. Oracle Trace collects

data for predefined events occurring within a software product created with the

Oracle Trace API. That is, the product is embedded with Oracle Trace API calls. An

example of an event is a parse or fetch.

There are two types of events:

■ Point events

Point events represent an instantaneous occurrence of something in the

instrumented product. An example of a point event is an error occurrence.

■ Duration events

Duration events have a beginning and ending. An example of a duration event

is a transaction. Duration events can have other events occur within them; for

example, an error can occur within a transaction.

The Oracle server is instrumented for 13 events. Three of these events are:

■ Database Connection: A point event that records data such as the server login

user name.

■ SQL Parse: One of the series of SQL processing duration events. This event

records a large set of data such as sorts, resource use, and cursor numbers.

■ RowSource: Data about the execution plan, such as SQL operation, position,

object identification, and number of rows processed by a single row source

within an execution plan.

Accessing Collected Data
During a collection, Oracle Trace buffers event data in memory and periodically

writes it to a collection binary file. This method ensures low overhead associated

with the collection process. You can access event data collected in the binary file by

formatting the data to predefined tables which makes the data available for fast,

flexible access. These predefined tables are called "Oracle Trace formatter tables."

Oracle Trace Manager provides a mechanism for formatting collection data

immediately after a collection or at a later time.

When formatting a collection, you identify the database where Oracle Trace

Manager creates the formatted collection as follows:

1. Using Oracle Trace Manager, select a collection to format.

Using Oracle Trace Data Viewer

14-6 Oracle8i Designing and Tuning for Performance

2. Choose the Format statement.

3. Specify a target database where the data is to reside.

The collection you select determines which collection definition file and data

collection file is used. The formatted target database determines where the

formatted collection data is stored.

After the data is formatted, you can access the data using the Oracle Trace Data

Viewer or by using SQL reporting tools and scripts.

Also, you can access event data by running the Detail report from the Oracle Trace

reporting utility. This report provides a basic mechanism for viewing a collection’s

results. You have limited control over what data is reported and how it is presented.

Using Oracle Trace Data Viewer
After using Oracle Trace to collect data, run the Data Viewer by selecting "View

Formatted Data..." from the Oracle Trace Collection menu. Or you can select it

directly from the Oracle Diagnostics Pack toolbar. Data Viewer can compute SQL

and Wait statistics and resource utilization metrics from the raw data that is

collected. After Data Viewer computes statistics, targeting resource intensive SQL

becomes a much simpler task.

Data Viewer computes SQL statistics from data collected by Oracle Trace Manager

for all executions of a query during the collection period. Resource utilization

during a single execution of a SQL statement may be misleading due to other

concurrent activities on the database or node. Combining statistics for all executions

may lend a clearer picture about the typical resource utilization occurring when a

given query is executed.

Oracle Trace Predefined Data Views
SQL and Wait statistics are presented in a comprehensive set of Oracle Trace

predefined data views. Within Wait statistics, a data view is the definition of a query

See Also: For more information about predefined SQL scripts and

the Detail reports, see Oracle Enterprise Manager Oracle Trace
Developer’s Guide.

Note: You can filter out SQL statements executed by SYS.

Using Oracle Trace Data Viewer

Using Oracle Trace 14-7

into the data collected by Oracle Trace. A data view consists of items or statistics to

be returned and optionally a sort order and limit of rows to be returned.

With the data views provided by Data Viewer, you can:

■ Examine important statistical data, for example, elapsed times or

disk-to-logical-read hit rates.

■ Drill down as needed to get additional details about the statement’s execution.

In addition to the predefined data views, you can define your own data views using

the Create Data View Wizard.

After Data Viewer has computed SQL and Wait statistics, a dialog box showing the

available data views appears. SQL Statistic data views are grouped by I/O, Parse,

Elapsed Time, CPU, Row, Sort, and Wait statistics as shown in Figure 14–2. A

description of the selected data view is shown on the right-hand side of the screen.

Using Oracle Trace Data Viewer

14-8 Oracle8i Designing and Tuning for Performance

Figure 14–2 Oracle Trace Data Viewer - Collection Screen

Table 14–1 explains the predefined data views shown in the previous figure as

provided by Oracle Trace.

Using Oracle Trace Data Viewer

Using Oracle Trace 14-9

Table 14–1 Predefined Data Views Provided By Oracle Trace (Page 1 of 5)

View Name Sort By Data Displayed Description

Logical Reads Total number of
logical reads
performed for each
distinct query.

Total number of blocks
read during parses,
executions and fetches.

Logical reads for
parses, executions and
fetches of the query.

Logical data block reads include data block
reads from both memory and disk.

Input/output is one of the most expensive
operations in a database system. I/O intensive
statements can monopolize memory and disk
usage causing other database applications to
compete for these resources.

Disk Reads Queries that incur
the greatest
number of disk
reads.

Disk reads for parses,
executions, and fetches.

Disk reads also known as physical I/O are
database blocks read from disk. The disk read
statistic is incremented once per block read
regardless of whether the read request was for
a multiblock read or a single block read. Most
physical reads load data, index, and rollback
blocks from the disk into the buffer cache.

A physical read count can indicate a high miss
rate within the data buffer cache.

Logical
Reads/Rows
Fetched Ratio

Number of logical
reads divided by
the number of
rows fetched for all
executions of the
current query.

Total logical I/O.

Total number of rows
fetched.

The more blocks accessed relative to the
number of rows actually returned the more
expensive each row is to return.

Can be a rough indication of relative expense
of a query.

Disk
Reads/Rows
Fetched Ratio

Number of disk
reads divided by
the number of
rows fetched for all
executions of the
current query.

Total disk I/O.

Total number of rows
fetched.

The greater the number of blocks read from
disk for each row returned the more expensive
each row is to return.

Can be a rough indication of relative expense
of a query.

Disk
Reads/Executio
n Ratio

Total number of
disk reads per
distinct query
divided by the
number of
executions of that
query.

Total disk I/O.

Logical I/O for the
query as well as the
number of executions
of the query.

Indicates which statements incur the greatest
number of disk reads per execution.

Using Oracle Trace Data Viewer

14-10 Oracle8i Designing and Tuning for Performance

Disk
Reads/Logical
Reads Ratio

Greatest miss rate
ratio of disk to
logical reads.

Individual logical
reads.

Disk reads for the
query as well as the
miss rate.

The miss rate indicates the percentage of times
the Oracle server needed to retrieve a database
block on disk as opposed to locating it in the
data buffer cache in memory.

The miss rate for the data block buffer cache is
derived by dividing the physical reads by the
number of accesses made to the block buffer to
retrieve data in consistent mode plus the
number of blocks accessed through single
block gets.

Memory access is much faster than disk
access, the greater the hit ratio, the better the
performance.

Re-Parse
Frequency

Queries with the
greatest reparse
frequency.

Number of cache
misses.

Total number of parses.

Total elapsed time
parsing.

Total CPU clock ticks
spent parsing.

The Oracle server determines whether there is
an existing shared SQL area containing the
parsed representation of the statement in the
library cache. If so, then the user process uses
this parsed representation and executes the
statement immediately.

If missed in the library cache, then re-check
the statement for syntax, valid objects, and
security. Also, the optimizer must determine a
new execution plan.

The parse count statistic is incremented for
every parse request, regardless of whether the
SQL statement is already in the shared SQL
area.

Parse/Execution
Ratio

Number of parses
divided by the
number executions
per statement.

Individual number of
parses.

Number of executions.

The count of parses to executions should be as
close to one as possible. If there are a high
number of parses per execution, then the
statement has been needlessly reparsed. This
could indicate the lack of use of bind variables
in SQL statements or poor cursor reuse.

Reparsing a query means that the SQL
statement has to be re-checked for syntax,
valid objects and security. Also, a new
execution plan needs to be determined by the
optimizer.

Table 14–1 Predefined Data Views Provided By Oracle Trace (Page 2 of 5)

View Name Sort By Data Displayed Description

Using Oracle Trace Data Viewer

Using Oracle Trace 14-11

Average
Elapsed Time

Greatest average
time spent parsing,
executing and
fetching on behalf
of the query.

Individual averages for
parse, execution and
fetch.

The average elapsed time for all parses,
executions and fetches-per-execution are
computed, then summed for each distinct SQL
statement in the collection.

Total Elapsed
Time

Greatest total
elapsed time spent
parsing, executing
and fetching on
behalf of the query.

Individual elapsed
times for parses,
executions and fetches.

The total elapsed time for all parses,
executions and fetches are computed, then
summed for each distinct SQL statement in
the collection.

Parse Elapsed
Time

Total elapsed time
for all parses
associated with a
distinct SQL
statement.

SQL cache misses.

Elapsed times for
execution and fetching.

Total elapsed time.

During parsing the Oracle server determines
whether there is an existing shared SQL area
containing the parsed representation of the
statement in the library cache. If so, then the
user process uses this parsed representation
and executes the statement immediately.

If missed in the library cache, then the
statement needs to be rechecked for syntax,
valid objects and security. Also, a new
execution plan needs to be determined by the
optimizer.

Execute
Elapsed Time

Greatest total
elapsed time for all
executions
associated with a
distinct SQL
statement.

Total elapsed time.

Individual elapsed
times for parsing and
fetching.

The total elapsed time of all execute events for
all occurrences of the query within an Oracle
Trace collection.

Fetch Elapsed
Time

Greatest total
elapsed time for all
fetches associated
with a distinct SQL
statement.

Number of rows
fetched.

Number of fetches.

Number of executions.

Total elapsed time.

Individual elapsed
times for parsing and
executing.

The total elapsed time spent fetching data on
behalf of all occurrences of the current query
within the Oracle Trace collection.

Table 14–1 Predefined Data Views Provided By Oracle Trace (Page 3 of 5)

View Name Sort By Data Displayed Description

Using Oracle Trace Data Viewer

14-12 Oracle8i Designing and Tuning for Performance

CPU Statistics Total CPU clock
ticks spent parsing,
executing and
fetching on behalf
of the SQL
statement.

CPU clock ticks for
parses, executions and
fetches.

Number of SQL cache
misses and sorts in
memory.

When SQL statements and other types of calls
are made to an Oracle server, a certain amount
of CPU time is necessary to process the call.
Average calls require a small amount of CPU
time. However, a SQL statement involving a
large amount of data, a runaway query, in
memory sorts or excessive reparsing can
potentially consume a large amount of CPU
time.

CPU time displayed is in terms of the number
of CPU clock ticks on the operating system
housing the database.

Number of
Rows Returned

Greatest total
number of rows
returned during
execution and fetch
for the SQL
statement.

Number of rows
returned during the
fetch operation as well
as the execution rows.

Targets queries that manipulate the greatest
number of rows during fetching and
execution. May mean that high gains can be
made by tuning row intensive queries.

Rows
Fetched/Fetch
Count Ratio

Number of rows
fetched divided by
the number of
fetches.

Individual number of
rows fetched.

Number of fetches.

This ratio shows how many rows were fetched
at a time. It may indicate the level to which
array fetch capabilities have been utilized. A
ratio close to one may indicate an opportunity
to optimize code by using array fetches.

Sorts on Disk Queries that did
the greatest
number of sorts on
disk.

Sort statistics for SQL
statements.

Number of in memory
sorts.

Total number of rows
sorted.

Sorts on disk are sorts that could not be
performed in memory, therefore they are more
expensive because memory access is faster
than disk access.

Sorts in
Memory

Queries that did
the greatest
number of sorts in
memory.

Sort statistics for SQL
statements.

Number of disk sorts.

Total number of rows
sorted.

Sorts in memory are sorts that could be
performed completely within the sort buffer in
memory without using the temporary
tablespace segments.

Rows Sorted Queries that sorted
the greatest
number of rows.

Number of in memory
sorts.

Number of sorts on
disk.

Returns sort statistics for SQL statements
ordered by queries that sorted the greatest
number of rows.

Table 14–1 Predefined Data Views Provided By Oracle Trace (Page 4 of 5)

View Name Sort By Data Displayed Description

Using Oracle Trace Data Viewer

Using Oracle Trace 14-13

Viewing Oracle Trace Data
Double clicking on SQL or Wait event data views provided by Data Viewer causes

Oracle Trace to query the collection data and display data sorted by criteria

described in the data view's description.

For example, double clicking the "Disk Reads/Log Reads Ratio" view returns data

sorted by queries with the highest data buffer cache miss rate. This also displays the

individual disk and logical read values.

Double clicking the "Average Elapsed Time" data view returns data sorted by

queries that took the greatest average elapsed time to parse, execute, and fetch. It

also displays the average elapsed times for parsing, execution, and fetching.

Figure 14–3 shows data in the "Average Elapsed Time" data view. Query text and

statistics appear in the top portion of the window. Clicking any column headers

causes the Data Viewer to sort rows by the statistic in that column.

Waits by Total
Wait Time

Highest total wait
time per distinct
type of wait.

Average wait time, total
wait time and number
of waits per wait type.

Waits are sorted by wait description or type
that had the greatest cumulative wait time for
all occurrences of the wait type within the
collection.

Waits by
Average Wait
Time

Highest average
wait time per wait
type.

Average wait time, total
wait time and number
of waits per wait type.

Waits are sorted by wait description or type
that had the greatest average wait time for all
occurrences of the wait type within the
collection.

Waits by Event
Frequency

Frequency of waits
per wait type.

Number of waits per
wait type, average wait
time, and total wait
time.

Waits are sorted by wait events or wait
descriptions that appear most frequently
within the collection.

Table 14–1 Predefined Data Views Provided By Oracle Trace (Page 5 of 5)

View Name Sort By Data Displayed Description

Using Oracle Trace Data Viewer

14-14 Oracle8i Designing and Tuning for Performance

Figure 14–3 Oracle Trace Data Viewer - Data View Screen

The currently selected data view’s SQL text is shown in the lower portion of the

window in the SQL Statement property sheet. Full statistical details about the

currently selected data view also appear in the Details property sheet.

When examining a data view like that shown in Figure 14–3, you can print either of

the following:

■ Data view statistics, located in the top portion of the screen.

■ Current SQL statement text in formatted output plus details on all statistical

data collected for the currently selected query, located in the Details property

page.

Window focus at the time of printing determines which portion of the screen is

printed. For example, if focus is on the top portion of the screen, then the tabular

form of all statistics and SQL for this data view is printed.

Using Oracle Trace Data Viewer

Using Oracle Trace 14-15

SQL Statement Property Page
The SQL Statement property page displays the currently selected query in a

formatted output.

Details Property Page
The Details property page displays a detailed report on statistics for all executions

of a given query within an Oracle Trace collection. Text for the currently selected

SQL statement is posted at the end of the property page.

Example of Details Property Page
Statistics for all parses, executions, and fetches of the SQL statement.

The number of misses in library cache during Parse: 1.000000

Elapsed time statistics for the SQL statement:

Average Elapsed Time: 0.843000
Total Elapsed Time: 0.843000

Total Elapsed Parse: 0.000000
Total Elapsed Execute: 0.843000
Total Elapsed Fetch: 0.000000

Average Elapsed Parse: 0.000000
Average Elapsed Execute: 0.843000
Average Elapsed Fetch: 0.000000

Number of times parse, execute and fetch were called:

Number of Parses: 1
Number of Executions: 1
Number of Fetches: 0

Logical I/O statistics for parse, execute and fetch calls:

Logical I/O for Parses: 1
Logical I/O for Executions: 247
Logical I/O for Fetches: 0
Logical I/O Total: 248

Disk I/O statistics for parse, execute and fetch calls:

Using Oracle Trace Data Viewer

14-16 Oracle8i Designing and Tuning for Performance

Disk I/O for Parses: 0
Disk I/O for Executions: 28
Disk I/O for Fetches: 0
Disk I/O Total: 28

CPU statistics for parse, execute and fetch calls:

CPU for Parses: 0
CPU for Executions: 62500
CPU for Fetches: 0
CPU Total: 62500

Row statistics for execute and fetch calls:

Rows processed during Executions: 104
Rows processed during Fetches: 0
Rows Total: 104

Sort statistics for execute and fetch calls:

Sorts on disk: 0
Sorts in memory: 2
Sort rows: 667

Hit Rate - Disk I/O divided by Logical I/O: 0.112903

Logical I/O performed divided by rows actually processed: 2.384615

Disk I/O performed divided by number of executions: 28.000000

The number of parses divided by number of executions: 1.000000

The number of rows fetched divided by the number of fetches: 0.000000

 INSERT INTO tdv_sql_detail
 (collection_number, sql_text_hash,
 "LIB_CACHE_ADDR")
 SELECT DISTINCT collection_number,
 sql_text_hash,
 "LIB_CACHE_ADDR"
 FROM v_192216243_f_5_e_7_8_0
 WHERE collection_number = :b1;

Using Oracle Trace Data Viewer

Using Oracle Trace 14-17

Getting More Information on a Selected Query
There are two convenient ways to obtain additional data for the currently selected

SQL statement:

■ To modify a data view to add or remove statistics or items, select Modify from

the Data View menu. You may add or remove statistics in the Items property

sheet. These statistics appear as new columns in the data view. The selected

query in Figure 14–3 is:

SELECT COUNT(DISTINCT WAIT_TIME)
FROM WAITS
WHERE COLLECTION_NUMBER = :1;

This query counts distinct values in the wait_time column of the waits table.

By modifying the existing data view you can add other statistics that may be of

interest such as "Execute Rows", which is the number of rows processed during

execution, or "Execute CPU", which is the number of CPU clock ticks during

execution.

You can also remove existing columns, change the sort order, or change the

default number of rows to view. You can save the modified data view. Oracle

stores user-defined data views in the Custom data view container following the

Data Viewer supplied list of SQL and Wait data views.

■ Drill to statistics on all parses, executions and fetches of the selected query by

clicking the Drill icon in the toolbar. The Drill down Data View dialog is

displayed as shown in Figure 14–4.

Using Oracle Trace Data Viewer

14-18 Oracle8i Designing and Tuning for Performance

Figure 14–4 Oracle Trace Data Viewer - Drill Down Data View Screen

Drill-down data views show individual statistics for all parses, executions, and

fetches.

In Figure 14–4 the "Basic Statistics for Parse/Execute/Fetch" drill-down data

view is selected. It displays statistics similar to those from TKPROF.

Note: For more information on TKPROF, see Chapter 11,

"Overview of Diagnostic Tools".

Using Oracle Trace Data Viewer

Using Oracle Trace 14-19

Table 14–2 Drill-down Data Views (Page 1 of 2)

Drill-down Name Sort By Data Displayed Description

Basic Statistics for
Parse/Execute/Fetch

Greatest
elapsed time

For each distinct call:.

CPUs

Elapsed time

Disk I/O

Logical I/O

Number of rows processed

Parse, execution, and fetch statistics
which are similar to statistics from
TKPROF.

CPU Statistics for
Parse/Execute/Fetch

Greatest
number of
CPUs

CPU total

Pagefaults

CPU and pagefault statistics for
parses, executions, and fetches of the
current query.

CPU total is the number of clock ticks
in both user and system mode. The
clock tick granularity is specific to the
operating system on which the
database resides.

I/O Statistics for
Parse/Execute/Fetch

Greatest
number of
disk I/Os

Logical and Disk I/O statistics

Pagefault I/O (number of hard
pagefaults)

Input I/O (number of times the
file system performed input)

Output I/O (number of times
the file system performed
output)

I/O statistics for parses, executions,
and fetches.

Parse Statistics Greatest
elapsed time

Current user identifier

Schema identifiers

Parse statistics, for example, whether
the current statement was missed in
library cache, Oracle optimizer mode,
current user identifier, and schema
identifier.

Manually Collecting Oracle Trace Data

14-20 Oracle8i Designing and Tuning for Performance

Manually Collecting Oracle Trace Data
Though the Oracle Trace Manager is the primary interface to Oracle Trace, you can

optionally force a manual collection of Oracle Trace data. You can do this by using a

command-line interface, editing initialization parameters, or by executing stored

procedures.

Using the Oracle Trace Command-Line Interface
Another option for controlling Oracle Trace server collections is the Oracle Trace

CLI (Command-line Interface). The CLI collects event data for all server sessions

attached to the database at collection start time. Sessions that attach after the

collection is started are excluded from the collection. The CLI is invoked by the

OTRCCOL statement for the following functions:

Row Statistics for
Execute/Fetch

Greatest
number of
rows
returned

Number of rows returned

Number of rows sorted

Number of rows returned
during a full table scan

Execution and fetch row statistics.

Sort Statistics for
Parse/Execute/Fetch

Greatest
elapsed time

Sorts on disk

Sorts in memory

Number of rows sorted

Number of rows returned from a
full table scan

Parse, execution, and fetch sort
statistics.

Wait Parameters Wait_time Description

Wait_time

P1

P2

P3

Investigating waits may help identify
sources of contention.

P1, P2, and P3 parameters are values
that provide more information about
specific wait events. The parameters
are foreign keys to views that are wait
event dependent. For example, for
latch waits, P2 is the latch number that
is a foreign key to V$LATCH.

The meaning of each parameter is
specific to each wait type.

Table 14–2 Drill-down Data Views (Page 2 of 2)

Drill-down Name Sort By Data Displayed Description

Manually Collecting Oracle Trace Data

Using Oracle Trace 14-21

■ OTRCCOL STARTjob_id input_parameter_file

■ OTRCCOL STOPjob_id input_parameter_file

■ OTRCCOL FORMATinput_parameter_file

■ OTRCCOL DCF col_name cdf_file

■ OTRCCOL DFD col_name username password service

The parameter job_id can be any numeric value, but it must be unique and you

must remember this value to stop the collection. The input parameter file contains

specific parameter values required for each function as shown in the following

examples. col_name (collection name) and cdf_file (collection definition file)

are initially defined in the START function input parameter file.

The OTRCCOL START statement invokes a collection based upon parameter values

contained in the input parameter file. For example:

OTRCCOL START 1234 my_start_input_file

Where file my_start_input_file contains the following input parameters:

The server event sets that can be used as values for the fdf_file are ORACLE,
ORACLEC, ORACLED, ORACLEE, and ORACLESM.

The OTRCCOL STOP statement halts a running collection as follows:

OTRCCOL STOP 1234 my_stop_input_file

Where my_stop_input_file contains the collection name and cdf_file name.

The OTRCCOL FORMAT statement formats the binary collection file to Oracle tables.

An example of the FORMAT statement is:

col_name my_collection

dat_file <usually same as collection name>.dat

cdf_file <usually same as collection name>.cdf

fdf_file <server event set>.fdf

regid 1 192216243 0 0 5 <database SID>

See Also: For more information on the server event sets, see

"Using Initialization Parameters to Control Oracle Trace" on

page 14-22.

Manually Collecting Oracle Trace Data

14-22 Oracle8i Designing and Tuning for Performance

OTRCCOL FORMAT my_format_input_file

Where my_format_input_file contains the following input parameters:

A full_format value of 1 produces a full format; a value of 0 produces a partial

format.

The OTRCCOL DCF statement deletes collection files for a specific collection. The

OTRCCOL DFD statement deletes formatted data from the Oracle Trace formatter

tables for a specific collection.

Using Initialization Parameters to Control Oracle Trace
Six parameters are set up by default to control Oracle Trace. By logging into the

administrator account in your database and executing the SHOW PARAMETERS
TRACE statement, you see the following parameters as shown in Table 14–3:

username <database username>

password <database password>

service <database service name>

cdf_file <usually same as collection name>.cdf

full_format <0/1>

See Also: For more information on formatting part or all of an

Oracle Trace collection and for other important information on

creating the Oracle Trace formatting tables prior to running the

format statement, see "Formatting Oracle Trace Data to Oracle

Tables" on page 14-27.

Table 14–3 Oracle Trace Initialization Parameters

Name Type Value

ORACLE_TRACE_COLLECTION_NAME string [null]

ORACLE_TRACE_COLLECTION_PATH string $ORACLE_HOME/otrace/admin/cdf

ORACLE_TRACE_COLLECTION_SIZE integer 5242880

ORACLE_TRACE_ENABLE boolean FALSE

ORACLE_TRACE_FACILITY_NAME string oracled

ORACLE_TRACE_FACILITY_PATH string $ORACLE_HOME/otrace/admin/cdf

Manually Collecting Oracle Trace Data

Using Oracle Trace 14-23

You can modify the Oracle Trace initialization parameters and use them by adding

them to your initialization file.

Enabling Oracle Trace Collections
The ORACLE_TRACE_ENABLE parameter is set to false by default. A value of

FALSE disables any use of Oracle Trace for that Oracle server.

To enable Oracle Trace collections for the server, set the parameter to true . Having

the parameter set to true does not start an Oracle Trace collection, but instead

allows Oracle Trace to be used for that server. You can then start Oracle Trace in one

of the following ways:

■ Using the Oracle Trace Manager application supplied with the Oracle

Diagnostics Pack.

■ Setting the ORACLE_TRACE_COLLECTION_NAME parameter.

When ORACLE_TRACE_ENABLE is set to true , you can start and stop an Oracle

Trace server collection by either using the Oracle Trace Manager application that is

supplied with the Oracle Diagnostics Pack, or you can enter a collection name in the

ORACLE_TRACE_COLLECTION_NAME parameter. The default value for this

parameter is null . A collection name can be up to 16 characters in length. You must

then shut down your database and start it up again to activate the parameters. If a

collection name is specified, then when you start the server, you automatically start

an Oracle Trace collection for all database sessions, which is similar in functionality

to SQL Trace.

To stop the collection that was started using the ORACLE_TRACE_COLLECTION_
NAME parameter, shut down the server instance and reset the ORACLE_TRACE_
COLLECTION_NAME to null . The collection name specified in this value is also

used in two collection output file names: the collection definition file (collection_
name.cdf) and the binary data file (collection_name.dat).

Determining the Event Set that Oracle Trace Collects
The ORACLE_TRACE_FACILITY_NAME initialization parameter specifies the event

set that Oracle Trace collects. The name of the DEFAULT event set is ORACLED. The

ALL event set is ORACLE, the EXPERT event set is ORACLEE, the SUMMARY event set

is ORACLESM, and the CACHEIO event set is ORACLEC.

See Also: This chapter references file path names on UNIX-based

systems. For the exact path on other operating systems, see your

Oracle platform-specific documentation. A complete discussion of

these parameters is provided in Oracle8i Reference.

Manually Collecting Oracle Trace Data

14-24 Oracle8i Designing and Tuning for Performance

After it is restarted, if the database does not begin collecting data, then check the

following:

■ The event set file, identified by ORACLE_TRACE_FACILITY_NAME, with .fdf
appended to it, should be in the directory specified by the ORACLE_TRACE_
FACILITY_PATH initialization parameter. The exact directory that this

parameter specifies is platform-specific.

■ The following files should exist in your Oracle Trace administrative directory:

REGID.DAT, PROCESS.DAT, and COLLECT.DAT. If they do not, then you must

run the OTRCCREFexecutable to create them.

■ The Oracle Trace parameters should be set to the values that you changed in the

initialization file. Use Instance Manager to identify Oracle Trace parameter

settings.

■ Look for an EPC_ERROR.LOG file to see more information about why a

collection failed. Oracle Trace creates the EPC_ERROR.LOG file in the current

default directory of the Oracle Intelligent Agent when it runs the Oracle Trace

Collection Services OTRCCOL image. Depending on whether you are running

Oracle Trace from the Oracle Trace Manager or from the command-line

interface, you can find the EPC_ERROR.LOG file in one of the following

locations:

■ $ORACLE_HOME or $ORACLE_HOME/network/agent on UNIX

■ %ORACLE_HOME%\network\agent or %ORACLE_HOME%\net80\agent
on NT

■ $ORACLE_HOME\rdbmsnn on NT or $ORACLE_HOME\rdbms on UNIX

■ In your current working directory, if you are using the command-line

interface

■ To find the EPC_ERROR.LOG file on UNIX, change directories to the

$ORACLE_HOME directory and execute the statement:

find . -name EPC_ERROR.LOG -print .

■ Look for *.trc files in the directory specified by the USER_DUMP_DEST
initialization parameter. Searching for "epc" in the *.trc files may give

Note: On UNIX, the EPC_ERROR.LOG file name is case sensitive

and is in uppercase.

Manually Collecting Oracle Trace Data

Using Oracle Trace 14-25

errors. These errors and their descriptions are located in the $ORACLE_
HOME/otrace/include/epc.h file.

Using Stored Procedures to Control Oracle Trace
Using the Oracle Trace stored procedures you can invoke an Oracle Trace collection

for your own session or for another session. To collect Oracle Trace data for your

own database session, execute the following stored procedure package syntax:

DBMS_ORACLE_TRACE_USER.SET_ORACLE_TRACE(true/false,
COLLECTION_NAME, SERVER_EVENT_SET)

where:

Example:

EXECUTE DBMS_ORACLE_TRACE_USER.SET_ORACLE_TRACE (true,'MYCOLL','oracle');

true/false Boolean: true to activate, false to deactivate.

COLLECTION_NAME VARCHAR2: collection name (no file extension, eight character

maximum).

SERVER_EVENT_SETVARCHAR2: server event set file name (CONNECT, ORACLE,
ORACLEC, ORACLED, ORACLEE, ORACLSM, SQL_ONLY, SQL_
PLAN, SQL_TXN, SQL_WAITS, or WAITS).

See Table 14–4 for a description of each of these event set file

names.

Table 14–4 Server Event Set File Names

Event Set File
Name (.fdf) Description

CONNECT CONNECT_DISCONNECTevent set. Collects statistics about connects
to the database and disconnects from the database.

ORACLE ALL event set. Collects all statistics for the Oracle Server including
wait events.

ORACLEC CACHEIO event set. Collects caching statistics for buffer cache I/O.

ORACLED Oracle Server DEFAULT event set. Collects statistics for the Oracle

Server.

ORACLEE EXPERT event set. Collects statistics for the Oracle Expert

application.

Manually Collecting Oracle Trace Data

14-26 Oracle8i Designing and Tuning for Performance

To collect Oracle Trace data for a database session other than your own, execute the

following stored procedure package syntax:

DBMS_ORACLE_TRACE_AGENT.SET_ORACLE_TRACE_IN_SESSION
(sid, serial#, true/false, COLLECTION_NAME, SERVER_EVENT_SET)

Where:

Example:

EXECUTE DBMS_ORACLE_TRACE_AGENT.SET_ORACLE_TRACE_IN_SESSION
(8,12,true,'NEWCOLL','oracled');

If the collection does not occur, then check the following:

■ Be sure the server event set file identified by SERVER_EVENT_SETexists. If

there is no full file specification on this field, then the file should be located in

ORACLESM SUMMARY event set. Collects workload statistics for the Summary

Advisor application.

SQL_ONLY SQL_TEXT_ONLY event set. Collects statistics about connects to the
database, disconnects from the database, and SQL text.

SQL_PLAN SQL_STATS_AND_PLANevent set. Collect statistics about connects to the
database, disconnects from the database, SQL statistics, SQL text,
and row source (EXPLAIN PLAN).

SQL_TXN SQL_TXNS_AND_STATS event set. Collects statistics about connects to
the database, disconnects from the database, transactions, SQL text
and statistics, and row source (EXPLAIN PLAN).

SQL_WAITS SQL_AND_WAIT_STATS event set. Collects statistics about connects to
the database, disconnects from the database, row source (EXPLAIN
PLAN), SQL text and statistics, and wait events.

WAITS WAIT_EVENTS event set. Collects statistics about connects to the
database, disconnects from the database, and wait events.

sid Number: session instance from V$SESSION.SID .

serial# Number: session serial number from V$SESSION.SERIAL# .

Table 14–4 Server Event Set File Names (Cont.)

Event Set File
Name (.fdf) Description

Manually Collecting Oracle Trace Data

Using Oracle Trace 14-27

the directory identified by ORACLE_TRACE_FACILITY_PATHin the database

initialization file.

■ The following files should exist in your Oracle Trace admin directory:

REGID.DAT, PROCESS.DAT, and COLLECT.DAT. If they do not, then you must

run the OTRCCREF executable to create them.

■ For Oracle Server release 8.0 and later, the stored procedure packages do not

exist in the database. If the packages do not exist, then run the OTRCSVR.SQL
file (in your Oracle Trace admin directory) to create the packages.

■ The user has the EXECUTE privilege on the stored procedure.

Oracle Trace Collection Results
Running an Oracle Trace collection produces the following collection files:

■ COLLECTION_NAME.CDF is the Oracle Trace collection definition file for your

collection.

■ COLLECTION_NAME.DAT files are the Oracle Trace output files containing the

trace data in binary format.

You can access the Oracle Trace data in the collection files in the following ways:

■ You can create Oracle Trace reports from the binary file.

■ The data can be formatted to Oracle tables for Data Viewer, SQL access, and

reporting.

Formatting Oracle Trace Data to Oracle Tables
You can format Oracle Trace server collection Oracle tables for more flexible access

SQL reporting tools. Oracle Trace produces a separate table for each event collected.

For example, a parse event table is created to store data for all parse events

occurring during a server collection. Before you can format data, you must first set

up the Oracle Trace formatter tables by executing the OTRCFMTC.SQL script on the

server host machine.

Use the following syntax to format an Oracle Trace collection:

Note: Oracle server releases 7.3.4 and later automatically create

the formatter tables.

Manually Collecting Oracle Trace Data

14-28 Oracle8i Designing and Tuning for Performance

OTRCFMT [optional parameters] collection_name.cdf [user/password@database]

If you omit user/password@database , then Oracle prompts you for this

information.

Oracle Trace allows data to be formatted while a collection is occurring. By default,

Oracle Trace formats only the portion of the collection that has not been formatted

previously. If you want to reformat the entire collection file, then use the optional

parameter -f .

Oracle Trace provides several SQL scripts that you can use to access the server

event tables. For more information on server event tables and scripts for accessing

event data and improving event table performance, refer to the Oracle Trace User’s
Guide.

Oracle Trace Statistics Reporting Utility
The Oracle Trace statistics reporting utility displays statistics for all items associated

with each occurrence of a server event. These reports can be quite large. You can

control the report output by using statement parameters. Use the following

statement and optional parameters to produce a report:

OTRCREP [optional parameters] collection_name.CDF

First, you may want to run a report called "PROCESS.txt ". You can produce this

report to provide a listing of specific process identifiers for which you want to run

another report.

You can manipulate the output of the Oracle Trace reporting utility by using the

following optional report parameters:

output_path Specifies a full output path for the report files. If not specified, then

the files are placed in the current directory.

-p Organizes event data by process. If you specify a process ID (pid),

then you have one file with all the events generated by that process

in chronological order. If you omit the process ID, then you have one

file for each process that participated in the collection. The output

files are named collection _Ppid .txt .

Manually Collecting Oracle Trace Data

Using Oracle Trace 14-29

-P Produces a report called collection _PROCESS.txt that lists all

processes that participated in the collection. It does not include event

data. You could produce this report first to determine the specific

processes for which you might want to produce more detailed

reports.

-w# Sets report width, such as -w132. The default is 80 characters.

-l# Sets the number of report lines per page. The default is 63 lines per

page.

-h Suppresses all event and item report headers, producing a shorter

report.

-s Used with Net8 data only. This option creates a file similar to the

SQL*Net Tracing file.

-a Creates a report containing all the events for all products, in the

order they occur in the data collection (.dat) file.

Manually Collecting Oracle Trace Data

14-30 Oracle8i Designing and Tuning for Performance

Dynamic Performance Views 15-1

15
Dynamic Performance Views

Dynamic performance views, or "V$" views, are useful for identifying instance-level

performance problems. All V$ views are listed in the V$FIXED_TABLE view.

V$ view content is provided by underlying X$ tables. The X$ tables are internal

data structures that can be modified by SQL statements. These tables are therefore

only available when an instance is in a NOMOUNT or MOUNT state.

This chapter describes the most useful V$ views for performance tuning. V$ views

are also useful for ad hoc investigation, for example, when users report sudden

response time deterioration.

Although the V$ views belong to user SYS, users other than SYS have read-only

access to V$ views. Oracle populates the V$ views and X$ tables at instance startup.

Their contents are flushed when you shut down the instance.

The X$ tables and their associated V$ views are dynamic, so their contents are

constantly changing. X$ tables retain timing information providing you have set the

initialization parameter TIMED_STATISTICS to true , or if you execute the SQL

statement:

ALTER SYSTEM SET TIMED_STATISTICS=true;

This chapter contains the following sections:

■ Instance-Level Views for Tuning

■ Session-Level or Transient Views for Tuning

■ Current Statistic Values and Rates of Change

See Also: For complete information on all dynamic performance
tables, please see the Oracle8i Reference.

Instance-Level Views for Tuning

15-2 Oracle8i Designing and Tuning for Performance

Instance-Level Views for Tuning
These views concern the instance as a whole and record statistics either since

startup of the instance or (in the case of the SGA statistics) the current values, which

remains constant until altered by some need to reallocate SGA space. Cumulative

statistics are from startup.

The single most important fixed view is V$SYSSTAT, which contains the statistic

name in addition to the value. The values from this table form the basic input to the

instance tuning process.

Table 15–1 Instance Level Views Important for Tuning

View Notes

V$FIXED_TABLE Lists the fixed objects present in the release.

V$INSTANCE Shows the state of the current instance.

V$LATCH Lists statistics for nonparent latches and summary statistics for parent

latches.

V$LIBRARYCACHE Contains statistics about library cache performance and activity.

V$ROLLSTAT Lists the names of all online rollback segments.

V$ROWCACHE Shows statistics for data dictionary activity.

V$SGA Contains summary information on the system global area.

V$SGASTAT Contains detailed information on the system global area.

V$SORT_USAGE Shows the size of the temporary segments and the session creating

them. This information can help you identify which processes are

doing disk sorts.

V$SQLAREA Lists statistics on shared SQL area; contains one row per SQL string.

Provides statistics on SQL statements that are in memory, parsed, and

ready for execution. Text limited to 1000 characters; full text is

available in 64 byte chunks from V$SQLTEXT.

V$SQLTEXT Contains the text of SQL statements belonging to shared SQL cursors

in the SGA.

V$SYSSTAT Contains basic instance statistics.

V$SYSTEM_EVENT Contains information on total waits for an event.

V$WAITSTAT Lists block contention statistics. Updated only when timed statistics

are enabled.

Current Statistic Values and Rates of Change

 Dynamic Performance Views 15-3

Session-Level or Transient Views for Tuning
These views either operate at the session level or primarily concern transient val-

ues. Session data is cumulative from connect time.

The structure of V$SESSION_WAIT makes it easy to check in real time whether any

sessions are waiting, and if so, why. For example:

SELECT SID,EVENT
FROM V$SESSION_WAIT
WHERE WAIT_TIME = 0;

You can then investigate to see whether such waits occur frequently and whether

they can be correlated with other events, such as the use of particular modules.

Current Statistic Values and Rates of Change
This section describes procedures for:

■ Finding the Current Value of a Statistic

■ Finding the Rate of Change of a Statistic

Table 15–2 Session Level Views Important for Tuning

View Notes

V$LOCK Lists the locks currently held by the Oracle8 Server and outstanding

requests for a lock or latch.

V$MYSTAT Shows statistics from your current session.

V$PROCESS Contains information about the currently active processes.

V$SESSION Lists session information for each current session. Links SID to

other session attributes. Contains row lock information.

V$SESSION_EVENT Lists information on waits for an event by a session.

V$SESSION_WAIT Lists the resources or events for which active sessions are waiting,

where WAIT_TIME = 0 for current events.

V$SESSTAT Lists user session statistics. Requires join to V$STATNAME,
V$SESSION.

Current Statistic Values and Rates of Change

15-4 Oracle8i Designing and Tuning for Performance

Finding the Current Value of a Statistic
Key ratios are expressed in terms of instance statistics. For example, the consistent

change ratio is consistent changes divided by consistent gets. The simplest effective

SQL*Plus script for finding the current value of a statistic is of the form:

COL name FORMAT a35
COL value FORMAT 999,999,990
SELECT name, value
FROM V$SYSSTAT S
WHERE lower(NAME) LIKE lower(’%&stat_name%’)
/

You can use the following query, for example, to report all statistics containing the

word "get" in their name:

@STAT GET

It is preferable, however, to use mechanisms that record the change in the statistic(s)

over a known period of time as described in the next section of this chapter.

Finding the Rate of Change of a Statistic
You can adapt the following script to show the rate of change for any statistic, latch,

or event. For a given statistic, this script tells you the number of seconds between

two checks of its value, and its rate of change.

Note: Two LOWER functions in the preceding query make it case

insensitive and allow it to report data from the 11 statistics whose

names start with "CPU" or "DBWR". No other upper-case charac-

ters appear in statistic names.

Current Statistic Values and Rates of Change

 Dynamic Performance Views 15-5

SET VERI OFF
DEFINE secs=0
DEFINE value=0
COL value FORMAT 99,999,999,990 new_value value
COL secs FORMAT a10 new_value secs noprint
COL delta FORMAT 9,999,990
COL delta_time FORMAT 9,990
COL rate FORMAT 999,990.0
COL name FORMAT a30
SELECT name, value, TO_CHAR(sysdate,’sssss’) secs,

(value - &value) delta,
(TO_CHAR(sysdate,’sssss’) - &secs) delta_time,
(value - &value)/ (TO_CHAR(sysdate,’sssss’) - &secs) rate
FROM v$sysstat
WHERE name = ’&&stat_name’

/

Note: Run this script at least twice, because the first time you run

it, it initializes the SQL*Plus variables.

Current Statistic Values and Rates of Change

15-6 Oracle8i Designing and Tuning for Performance

Diagnosing System Performance Problems 16-1

16
Diagnosing System Performance Problems

This chapter provides an overview of factors affecting performance in properly

designed systems. Following the guidelines in this chapter cannot, however,

compensate for poor design!

This chapter contains the following sections:

■ Tuning Factors for Well Designed Existing Systems

■ Insufficient CPU

■ Insufficient Memory

■ I/O Constraints

■ Network Constraints

■ Software Constraints

Note: Later chapters discuss each of these factors in depth.

Tuning Factors for Well Designed Existing Systems

16-2 Oracle8i Designing and Tuning for Performance

Tuning Factors for Well Designed Existing Systems
Figure 16–1 illustrates the factors involved in Oracle system performance for well

designed applications.

Note: Tuning these factors is effective only after you have tuned

the business process and the application, as described in Chapter 2,

"Performance Tuning Methods".

Tuning Factors for Well Designed Existing Systems

Diagnosing System Performance Problems 16-3

Figure 16–1 Major Performance Factors in Well Designed Systems

Performance problems tend to be interconnected rather than isolated and unrelated.

Table 16–1 identifies the key performance factors in existing systems as well as the

areas in which symptoms may appear. For example, buffer cache problems may

show up as CPU, memory, or I/O problems. Therefore, tuning the buffer cache

CPU may improve I/O.

DiskDisk Disk

I/O Channels

Tune the instance

Reduce memory
usage by
sharing SQL

Reduce CPU
service time

Software Issues

Memory Issues

CPU Issues

Network Issues

Reduce number
of packets

Reduce size
of packets

Major Performance Factor Sample Tuning Approach

Evenly distribute
I/O

I/O Issues

Memory Memory Memory Memory

CPU CPU CPU CPU

Network

Oracle8 i
Database

Tuning Factors for Well Designed Existing Systems

16-4 Oracle8i Designing and Tuning for Performance

Table 16–1 Key to Tuning Areas for Existing Systems

ORACLE TUNING AREAS LIMITING RESOURCES

CPU Memory I/O Network Software

Application

 Design/Architecture X X X X X

 DML SQL X X X X X

 Query SQL X X X X X

 Client/server Roundtrips X X

Instance

 Buffer Cache X X X

 Shared Pool X X

 Sort Area X X X

 Physical Structure of
Data/DB File I/O

X X

 Log File I/O X X

 Archiver I/O X X

 Rollback Segments X X

 Locking X X X X

 Backups X X X X

Operating System

 Memory Management X X X

 I/O Management X X X

 Process Management X X

 Network Management X X

Insufficient Memory

Diagnosing System Performance Problems 16-5

Insufficient CPU
In a CPU-bound system, CPU resources might be completely allocated, and service

time could be excessive too. In this situation, you must improve your system’s

processing ability. Alternatively, you could have too much idle time, and the CPU

might not be completely used up. In either case, you need to determine why so

much time is spent waiting.

To determine why there is insufficient CPU, identify how your entire system is

using CPU. Do not rely on identifying how CPU is used by Oracle server processes.

At the beginning of a workday, for example, the mail system may consume a large

amount of available CPU while employees check their messages. Later in the day,

the mail system may be much less of a bottleneck, and its CPU use drops

accordingly.

Workload is a very important factor when evaluating your system’s level of CPU

use. During peak workload hours, 90% CPU use with 10% idle and waiting time

may be understandable and acceptable; 30% utilization at a time of low workload

may also be understandable. However, if your system shows high utilization at

normal workloads, then there is no more room for a "peak workload". You have a

CPU problem if idle time and time waiting for I/O are both close to zero, or less

than 5%, at a normal or low workload.

Insufficient Memory
Sometimes a memory problem may be detected as an I/O problem. There are two

types of memory requirements: Oracle and system. Oracle memory requirements

affect the system requirements. Memory problems may be the cause of paging and

swapping that occurs in the machine. So, make sure your system does not start

paging and swapping. The system should be able to run within the limitations set

by real memory.

System memory requirements for non-Oracle processes plus Oracle memory

requirements should be equal to, or less than, the total available real memory. To

achieve this, reduce the size of some of the Oracle memory structures, such as the

buffer cache, shared pool, or the redo log buffer. On the system level, you can

reduce the number of processes and/or the amount of memory each process uses.

You can also identify which processes are using the most memory. One way to

reduce memory use is by sharing SQL.

See Also: For more information on CPU utilization, see

Chapter 18, "Tuning CPU Resources".

I/O Constraints

16-6 Oracle8i Designing and Tuning for Performance

I/O Constraints
Be sure to distribute I/O evenly across disks and channels. I/O constraints include:

■ Channel bandwidth: the number of I/O channels.

■ Device bandwidth: the number of disks.

■ Device latency: the time elapsed from the initiation of a request to the receipt of

the request; latency is part of the "wait time".

I/O problems may result from hardware limitations. Your system needs enough

disks and SCSI busses to support the transaction throughput you need. You can

evaluate the configuration by calculating the quantity of messages all your disks

and busses can potentially support, and comparing that to the number of messages

required by your peak workload.

If the response time of an I/O becomes excessive, the most common problem is that

wait time has increased (response time = service time + wait time). If wait time

increases, then there are too many I/O requests for this device. If service time

increases, then the I/O requests are larger, so you write more bytes to disk.

The different background processes, such as DBWR, ARCH, and so on, perform

different types of I/O, and each process has different I/O characteristics. Some

processes read and write in the block size of the database, some read and write in

larger chunks. If service time is too high, then stripe the file across different devices.

Mirroring can also be a cause of I/O bottlenecks, unless the data is mirrored to a

destination database that has the same number of disks as the source database.

Network Constraints
Network constraints are similar to I/O constraints. You need to consider:

■ Network bandwidth: Each transaction requires that a certain number of packets

be sent over the network. If you know the number of packets required for one

transaction, then you can compare that to the bandwidth to determine whether

your system is capable of supporting the desired workload.

See Also: For more information on memory, see Chapter 19,

"Tuning Memory Allocation".

See Also: For more information on I/O bottlenecks, see

Chapter 20, "Tuning I/O".

Software Constraints

Diagnosing System Performance Problems 16-7

■ Message rates: You can reduce the number of packets on the network by

batching them, rather than sending many small packets.

■ Transmission time.

As the number of users increases and demand rises, the network can quietly

become the bottleneck in an application. You may spend a lot of time waiting for

network availability. Use available operating system tools to see how busy your

network is.

Software Constraints
Operating system software determines:

■ The maximum number of processes you can support.

■ The maximum number of processes you can connect.

Before you can tune Oracle effectively, you should confirm that the operating

system is performing optimally. Work closely with the hardware and software

system administrators to ensure that Oracle is allocated the proper operating

system resources.

See Also: For more information, see Chapter 22, "Tuning

Networks".

Note: On NT systems, there are no pre-set or configurable

maximum numbers of processes that can be supported or

connected.

See Also: Operating system tuning is different for every platform.

See your operating system documentation, as well as your Oracle

operating system-specific documentation for more information. In

addition, see Chapter 23, "Tuning the Operating System".

Software Constraints

16-8 Oracle8i Designing and Tuning for Performance

Transaction Modes 17-1

17
Transaction Modes

This chapter describes the different modes in which read consistency is performed.

This chapter contains the following sections:

■ Using Discrete Transactions

■ Using Serializable Transactions

Using Discrete Transactions

17-2 Oracle8i Designing and Tuning for Performance

Using Discrete Transactions
You can improve the performance of short, nondistributed transactions by using the

BEGIN_DISCRETE_TRANSACTION procedure. This procedure streamlines

transaction processing so that short transactions can execute faster.

This section describes:

■ Deciding When to Use Discrete Transactions

■ How Discrete Transactions Work

■ Errors During Discrete Transactions

■ Using Discrete Transactions

■ Example

Deciding When to Use Discrete Transactions
Discrete transaction processing is useful for transactions that:

■ Modify only a few database blocks.

■ Never change an individual database block more than once per transaction.

■ Do not modify data likely to be requested by long-running queries.

■ Do not need to see the new value of data after modifying the data.

■ Do not modify tables containing any LONG values.

In deciding to use discrete transactions, you should consider the following factors:

■ Can the transaction be designed to work within the constraints placed on

discrete transactions, as described in "Using Discrete Transactions" on

page 17-3.

■ Does using discrete transactions result in a significant performance

improvement under normal usage conditions?

Discrete transactions can be used concurrently with standard transactions.

Choosing whether to use discrete transactions should be a part of your normal

tuning procedure. Discrete transactions can be used only for a subset of all

transactions, for sophisticated users with advanced application requirements.

However, where speed is the most critical factor, the performance improvements

can justify the design constraints.

Using Discrete Transactions

Transaction Modes 17-3

How Discrete Transactions Work
During a discrete transaction, all changes made to any data are deferred until the

transaction commits. Redo information is generated, but it is stored in a separate

location in memory.

When the transaction issues a commit request, the redo information is written to the

redo log file (along with other group commits), and the changes to the database

block are applied directly to the block. The block is written to the database file in

the usual manner. Control is returned to the application after the commit completes.

Oracle does not need to generate undo information, because the block is not

actually modified until the transaction is committed, and the redo information is

stored in the redo log buffers.

As with other transactions, the uncommitted changes of a discrete transaction are

not visible to concurrent transactions. For regular transactions, undo information is

used to re-create old versions of data for queries that require a consistent view of

the data. Because no undo information is generated for discrete transactions, a

discrete transaction that starts and completes during any query can cause the query

to receive the "snapshot too old" error if the query requests data changed by the

discrete transaction. For this reason, you might avoid performing queries that

access a large subset of a table that is modified by frequent discrete transactions.

Errors During Discrete Transactions
Any errors encountered during processing of a discrete transaction cause the

predefined exception DISCRETE_TRANSACTION_FAILEDto be raised. These errors

include the failure of a discrete transaction to comply with the usage notes outlined

below. (For example, calling BEGIN_DISCRETE_TRANSACTION after a transaction

has begun, or attempting to modify the same database block more than once during

a transaction, raises the exception.)

Using Discrete Transactions
The BEGIN_DISCRETE_TRANSACTION procedure must be called before the first

statement in a transaction. This call to the procedure is effective only for the

duration of the transaction (that is, after the transaction is committed or rolled back,

the next transaction is processed as a standard transaction).

Transactions that use this procedure cannot participate in distributed transactions.

Although discrete transactions cannot see their own changes, you can obtain the old

value and lock the row, using the FOR UPDATE clause of the SELECT statement,

before updating the value.

Using Discrete Transactions

17-4 Oracle8i Designing and Tuning for Performance

Because discrete transactions cannot see their own changes, a discrete transaction

cannot perform inserts or updates on both tables involved in a referential integrity

constraint.

For example, assume that the emp table has a FOREIGN KEY constraint on the

deptno column that refers to the dept table. A discrete transaction cannot attempt

to add a department into the dept table and then add an employee belonging to

that department, because the department is not added to the table until the

transaction commits, and the integrity constraint requires that the department exist

before an insert into the emp table can occur. These two operations must be

performed in separate discrete transactions.

Because discrete transactions can change each database block only once, some

combinations of data manipulation statements on the same table are better suited

for discrete transactions than others. One INSERT statement and one UPDATE
statement used together are the least likely to affect the same block. Multiple

UPDATE statements are also unlikely to affect the same block, depending on the size

of the affected tables. Multiple INSERT statements (or INSERT statements that use

queries to specify values), however, are likely to affect the same database block.

Multiple DML operations performed on separate tables only affect the same

database blocks if the tables are clustered.

Example
An application for checking out library books is an example of a transaction type

that uses the BEGIN_DISCRETE_TRANSACTION procedure. The following

procedure is called by the library application with the book number as the

argument. This procedure checks to see if the book is reserved before allowing it to

be checked out. If more copies of the book have been reserved than are available,

then the status RES is returned to the library application, which calls another

procedure to reserve the book, if desired. Otherwise, the book is checked out, and

the inventory of books available is updated.

Using Discrete Transactions

Transaction Modes 17-5

CREATE PROCEDURE checkout (bookno IN NUMBER (10)
 status OUT VARCHAR(5))
AS
DECLARE
 tot_books NUMBER(3);
 checked_out NUMBER(3);
 res NUMBER(3);
BEGIN
 DBMS_TRANSACTION.BEGIN_DISCRETE_TRANSACTION;
 FOR i IN 1 .. 2 LOOP
 BEGIN
 SELECT total, num_out, num_res
 INTO tot_books, checked_out, res
 FROM books
 WHERE book_num = bookno
 FOR UPDATE;
 IF res >= (tot_books - checked_out)
 THEN
 status := ’RES’;
 ELSE
 UPDATE books SET num_out = checked_out + 1
 WHERE book_num = bookno;
 status := ’AVAIL’
 ENDIF;
 COMMIT;
 EXIT;
 EXCEPTION
 WHEN DBMS_TRANSACTION.DISCRETE_TRANSACTION_FAILED THEN
 ROLLBACK;
 END;
 END LOOP;
END;

For the above loop construct, if the DISCRETE_TRANSACTION_FAILED exception

occurs during the transaction, then the transaction is rolled back, and the loop

executes the transaction again. The second iteration of the loop is not a discrete

transaction, because the ROLLBACK statement ended the transaction; the next

transaction processes as a standard transaction. This loop construct ensures that the

same transaction is attempted again in the event of a discrete transaction failure.

Using Serializable Transactions

17-6 Oracle8i Designing and Tuning for Performance

Using Serializable Transactions
Oracle allows application developers to set the isolation level of transactions. The

isolation level determines what changes the transaction and other transactions can

see. The ISO/ANSI SQL3 specification details the following levels of transaction

isolation.

If you want to set the transaction isolation level, then you must do so before the

transaction begins. Use the SET TRANSACTION ISOLATION LEVEL statement for a

particular transaction, or use the ALTER SESSION SET ISOLATION_LEVEL
statement for all subsequent transactions in the session.

SERIALIZABLE Transactions lose no updates, provide repeatable reads, and

do not experience phantoms. Changes made to a serializable

transaction are visible only to the transaction itself.

READ COMMITTED Transactions do not have repeatable reads, and changes made

in this transaction or other transactions are visible to all

transactions. This is the default transaction isolation.

See Also: Oracle8i SQL Reference for more information on the

syntax of SET TRANSACTION and ALTER SESSION.

PartIV
 Optimizing Instance Performance

Part IV describes how to tune various elements of your database system to optimize

performance of an Oracle instance.

The chapters are:

■ Chapter 18, "Tuning CPU Resources"

■ Chapter 19, "Tuning Memory Allocation"

■ Chapter 20, "Tuning I/O"

■ Chapter 21, "Tuning Resource Contention"

■ Chapter 22, "Tuning Networks"

■ Chapter 23, "Tuning the Operating System"

■ Chapter 24, "Tuning Instance Recovery Performance"

Tuning CPU Resources 18-1

18
Tuning CPU Resources

This chapter describes how to solve CPU resource problems.

This chapter contains the following sections:

■ Understanding CPU Problems

■ Detecting and Solving CPU Problems

■ Solving CPU Problems by Changing System Architectures

Understanding CPU Problems

18-2 Oracle8i Designing and Tuning for Performance

Understanding CPU Problems
To address CPU problems, first establish appropriate expectations for the amount

of CPU resources your system should be using. Then, determine whether sufficient

CPU resources are available, and recognize when your system is consuming too

many resources. Begin by determining the amount of CPU resources the Oracle

instance utilizes with your system in the following three cases:

■ System is idle (when little Oracle and non-Oracle activity exists)

■ System at average workloads

■ System at peak workloads

You can capture various workload snapshots using the UTLBSTAT/UTLESTAT
utility, found in the ORACLE_HOME/rdbms/admin/ directory on UNIX and in the

ORACLE_HOME/rdbms81/admin directory on NT. Operating system tools, such as

vmstat , sar , and iostat on UNIX and Performance Monitor on NT, should be

run during the same time interval as UTLBSTAT/UTLESTAT to provide a

complimentary view of the overall statistics.

Workload is an important factor when evaluating your system's level of CPU

utilization. During peak workload hours, 90% CPU utilization with 10% idle and

waiting time may be acceptable. Even 30% utilization at a time of low workload

may be understandable. However, if your system shows high utilization at normal

workload, then there is no room for a peak workload. For example, Figure 18–1

illustrates workload over time for an application having peak periods at 10:00 AM

and 2:00 PM.

Note: Release 8.1.6 also contains a new package called

STATSPACK that improves on the UTLBSTAT/UTLESTAT process.

For more information, see "Supported Scripts" on page 11-7.

Understanding CPU Problems

Tuning CPU Resources 18-3

Figure 18–1 Average Workload and Peak Workload

This example application has 100 users working 8 hours a day, for a total of 800

hours per day. Each user entering one transaction every 5 minutes translates into

9,600 transactions daily. Over an 8-hour period, the system must support 1,200

transactions per hour, which is an average of 20 transactions per minute. If the

demand rate were constant, then you could build a system to meet this average

workload.

However, usage patterns are not constant—and in this context, 20 transactions per

minute can be understood as merely a minimum requirement. If the peak rate you

need to achieve is 120 transactions per minute, then you must configure a system

that can support this peak workload.

For this example, assume that at peak workload, Oracle uses 90% of the CPU

resource. For a period of average workload, then, Oracle uses no more than about

15% of the available CPU resource, as illustrated in the following equation:

20 tpm/120 tpm * 90% = 15%

Where tpm is transactions per minute.

If the system requires 50% of the CPU resource to achieve 20 tpm, then a problem

exists: the system cannot achieve 120 transactions per minute using 90% of the CPU.

However, if you tuned this system so that it achieves 20 tpm using only 15% of the

Time

F
un

ct
io

na
l D

em
an

d

8:00 10:00 12:00 14:00 16:00

Peak Workload

Average Workload

Detecting and Solving CPU Problems

18-4 Oracle8i Designing and Tuning for Performance

CPU, then, assuming linear scalability, the system might achieve 120 transactions

per minute using 90% of the CPU resources.

As users are added to an application, the workload can rise to what had previously

been peak levels. No further CPU capacity is then available for the new peak rate,

which is actually higher than the previous.

CPU capacity issues can be addressed with the following:

1. Tuning; that is, detecting and solving CPU problems from excessive:

– System CPU Utilization

– Oracle CPU Utilization

2. Increasing hardware capacity, including changing the system architecture.

3. Reducing the impact of peak load use patterns by prioritizing CPU resource

allocation. Oracle’s Database Resource Manager does this by allocating and

managing CPU resources among database users and applications.

Detecting and Solving CPU Problems
If you suspect a problem with CPU usage, check two areas:

■ System CPU Utilization

■ Oracle CPU Utilization

System CPU Utilization
Oracle statistics report CPU use by Oracle sessions only, whereas every process

running on your system affects the available CPU resources. Therefore, tuning

non-Oracle factors can also improve Oracle performance.

Use operating system monitoring tools to determine what processes are running on

the system as a whole. If the system is too heavily loaded, check the memory, I/O,

and process management areas described later in this section.

See Also: For more information about improving your system

architecture, see Chapter 2, "Performance Tuning Methods".

See Also: For more information about Oracle’s Database

Resource Manager, see Oracle8i Concepts and Oracle8i
Administrator’s Guide.

Detecting and Solving CPU Problems

Tuning CPU Resources 18-5

Tools such as sar -u on many UNIX-based systems let you examine the level of

CPU utilization on your entire system. CPU utilization in UNIX is described in

statistics that show user time, system time, idle time, and time waiting for I/O. A

CPU problem exists if idle time and time waiting for I/O are both close to zero (less

than 5%) at a normal or low workload.

On NT, use Performance Monitor to examine CPU utilization. Performance

Manager provides statistics on processor time, user time, privileged time, interrupt

time, and DPC time. (NT Performance Monitor is not the same as Performance

Manager, which is an Oracle Enterprise Manager tool.)

Memory Management
Check the following memory management areas:

Paging and Swapping Use tools such as sar or vmstat on UNIX or Performance

Monitor on NT to investigate the cause of paging and swapping.

Oversize Page Tables On UNIX, if the processing space becomes too large, then it

may result in the page tables becoming too large. This is not an issue on NT.

I/O Management
Check the following I/O management issues:

Thrashing Ensure that your workload fits into memory, so the machine is not

thrashing (swapping and paging processes in and out of memory). The operating

system allocates fixed portions of time during which CPU resources are available to

your process. If the process wastes a large portion of each time period checking to

be sure that it can run and ensuring that all necessary components are in the

machine, then the process may be using only 50% of the time allotted to actually

perform work.

Client/Server Round Trips The latency of sending a message may result in CPU

overload. An application often generates messages that need to be sent through the

network over and over again, resulting in significant overhead before the message

is actually sent. To alleviate this problem, batch the messages and perform the

Note: This section describes how to check system CPU utilization

on most UNIX-based and NT systems. For other platforms, see

your operating system documentation.

Detecting and Solving CPU Problems

18-6 Oracle8i Designing and Tuning for Performance

overhead only once, or reduce the amount of work. For example, you can use array

inserts, array fetches, and so on.

Process Management
Check the following process management issues:

Scheduling and Switching The operating system may spend excessive time

scheduling and switching processes. Examine the way in which you are using the

operating system, because you could be using too many processes. On NT systems,

do not overload your server with too many non-Oracle processes.

Context Switching Due to operating system specific characteristics, your system

could be spending a lot of time in context switches. Context switching can be

expensive, especially with a large SGA. Context switching is not an issue on NT,

which has only one process per instance. All threads share the same page table.

Programmers often create single-purpose processes, exit the process, and create a

new one. Doing this re-creates and destroys the process each time. Such logic uses

excessive amounts of CPU, especially with applications that have large SGAs. This

is because you need to build the page tables each time. The problem is aggravated

when you pin or lock shared memory, because you have to access every page.

For example, if you have a 1 gigabyte SGA, then you may have page table entries

for every 4K, and a page table entry may be 8 bytes. You could end up with

(1G/4K) * 8B entries. This becomes expensive, because you need to continually

make sure that the page table is loaded.

Parallel execution and the multi-threaded server become areas of concern if

MINSERVICE has been set too low (set to 10, for example, when you need 20). For

an application that is performing small lookups, this may not be wise. In this

situation, it becomes inefficient for both the application and the system.

Oracle CPU Utilization
This section explains how to examine the processes running in Oracle. Three

dynamic performance views provide information on Oracle processes:

■ V$SYSSTAT shows Oracle CPU usage for all sessions. The statistic "CPU used

by this session" shows the aggregate CPU used by all sessions.

See Also: For more details on tuning I/O, see Chapter 20,

"Tuning I/O".

Detecting and Solving CPU Problems

Tuning CPU Resources 18-7

■ V$SESSTAT shows Oracle CPU usage per session. You can use this view to

determine which particular session is using the most CPU.

■ V$RSRC_CONSUMER_GROUPshows CPU utilization statistics on a per consumer

group basis, if you are running the Oracle Database Resource Manager.

For example, if you have 8 CPUs, then for any given minute in real time, you have 8

minutes of CPU time available. On NT and UNIX, this can be either user time or

time in system mode (privileged mode on NT). If your process is not running, then it

is waiting. Thus, CPU time utilized by all systems may be greater than one minute

per interval.

At any given moment, you know how much time Oracle has used on the system.

So, if 8 minutes are available and Oracle uses 4 minutes of that time, then you know

that 50% of all CPU time is used by Oracle. If your process is not consuming that

time, then some other process is. You then need to identify the processes that are

using CPU time. If you can, determine why the processes use so much CPU time

and attempt to tune them. Possible areas to research include, but are not limited to,

the following:

■ Reparsing SQL Statements

■ Read Consistency

■ Scalability Limitations Within the Application

■ Wait Detection

■ Latch Contention

Reparsing SQL Statements
When Oracle executes a SQL statement, it parses it to determine whether the syntax

and its contents are correct. This process can consume significant overhead. Once

parsed, Oracle does not parse the statement again unless the parsing information is

aged from the memory cache and is no longer available. Ineffective memory sharing

among SQL statements can result in reparsing. Use the following procedure to

determine whether reparsing is occurring:

■ Get the parse time CPU and CPU figures used by this session from the

"Statistics" section of the estat report or from V$SYSTATS. For example:

SELECT * FROM V$SYSSTAT
WHERE NAME IN('parse time cpu', 'parse time elapsed', 'parse count (hard)');

Now you can detect the general response time on parsing. The more your

application is parsing, the more contention exists, and the more time your

Detecting and Solving CPU Problems

18-8 Oracle8i Designing and Tuning for Performance

system spends waiting. If parse time CPU represents a large percentage of the

CPU time, then time is being spent parsing instead of executing statements. If

this is the case, then it is likely that the application is using literal SQL and not

sharing it, or the shared pool is poorly configured.

■ Query V$SQLAREA to find frequently reparsed statements. For example:

SELECT SQL_TEXT, PARSE_CALLS, EXECUTIONS
FROM V$SQLAREA
ORDER BY PARSE_CALLS;

Tune the statements with the higher numbers of parse calls.

If the parse time CPU is only a small percentage of the total CPU used, then you

should determine where the CPU resources are going. There are several things

you can do to help with this.

1. Find statements with large numbers of buffer gets, because these are

typically heavy on CPU.

The following statement finds SQL statements which frequently access

database buffers. Such statements are probably looking at many rows of

data.

SELECT ADDRESS, HASH_VALUE, BUFFER_GETS, EXECUTIONS,
 BUFFER GETS/EXECUTIONS "GETS/EXEC", SQL_TEXT
FROM V$SQLAREA
WHERE BUFFER_GETS > 50000

AND EXECUTIONS > 0
ORDER BY 3;

This example shows which SQL statements have the most buffer_gets
and use the most CPU. The statements of interest are those with a large

number of gets per execution, especially if execution is high. It is very

beneficial to have an understanding of the application components to know

which statements are expected to be expensive.

Note: The 50000 cut-off value is an arbitrary starting point, and it

should be increased or decreased gradually until the top 10 to 20

statements are listed. This statement does not highlight

CPU-intensive PL/SQL blocks.

Detecting and Solving CPU Problems

Tuning CPU Resources 18-9

2. After candidate statements have been isolated, the full statement text can be

obtained using the following query, substituting relevant values for

ADDRESS and HASH_VALUE pairs. For example:

SELECT SQL_TEXT
FROM V$SQLTEXT
WHERE ADDRESS='&ADDRESS_WANTED'

AND HASH_VALUe=&HASH_VALUE
ORDER BY piece;

The statement can then be explained (using EXPLAIN PLAN) or isolated for

further testing to see how CPU-intensive it really is. If the statement uses

bind variables and if your data is highly skewed, then the statement may

only be CPU-intensive for certain bind values.

3. Find which sessions are responsible for most CPU usage. The following

statement helps locate sessions which have used the most CPU:

SELECT v.SID, SUBSTR(s.NAME,1,30) "Statistic", v.VALUE
FROM V$STATNAME s, V$SESSTAT v
WHERE s.NAME = 'CPU used by this session'

AND v.STATISTIC# = s.STATISTIC#
AND v.VALUE > 0

ORDER BY 3;

After any CPU-intensive sessions have been identified, the V$SESSION
view can be used to get more information. At this stage, it is generally best

to revert to user session tracing (SQL_TRACE) to determine where the CPU

is being used.

4. Trace typical user sessions using the SQL_TRACE option to see how CPU is

apportioned amongst the main application statements.

After these statements have been identified, you have the following three

options for tuning them:

* Rewrite the application so that statements do not continually reparse.

Note: CPU time is cumulative; therefore, a session that has been

connected for several days may appear to be heavier on CPU than

one that has only been connected for a short period of time. Thus, it

is better to write a script to sample the difference in the statistic

between two known points in time, letting you see how much CPU

was used by each session in a known time frame.

Detecting and Solving CPU Problems

18-10 Oracle8i Designing and Tuning for Performance

* Reduce parsing by using the initialization parameter SESSION_
CACHED_CURSORS.

* If the parse count is small, the execute count is small, and the SQL

statements are very similar except for the WHERE clause, then you may

find that hard coded values are being used instead of bind variables.

Use bind variables to reduce parsing.

Read Consistency
Your system may spend excessive time rolling back changes to blocks in order to

maintain a consistent view. Consider the following scenarios:

■ If there are many small transactions and an active long-running query is

running in the background on the same table where the inserts are happening,

then the query may need to roll back many changes.

■ If the number of rollback segments is too small, then your system could also be

spending a lot of time rolling back the transaction table. Your query may have

started long ago; because the number of rollback segments and transaction

tables is very small, your system frequently needs to reuse transaction slots.

A solution is to make more rollback segments, or to increase the commit rate.

For example, if you batch ten transactions and commit them once, then you

reduce the number of transactions by a factor of ten.

■ If your system must scan too many buffers in the foreground to find a free

buffer, then it wastes CPU resources. To alleviate this problem, tune the DBWn
process(es) to write more frequently.

You can also increase the size of the buffer cache to enable the database writer

process(es) to keep up. To find the average number of buffers the system scans

at the end of the least recently used list (LRU) to find a free buffer, use the

following formula:

Note: The average wait time should be close to zero. (V$SYSSTAT
also shows the average wait time per parse.)

See Also: For information on approaches to SQL statement

tuning, see Chapter 9, "Optimizing SQL Statements".

Detecting and Solving CPU Problems

Tuning CPU Resources 18-11

On average, you would expect to see 1 or 2 buffers scanned. If more than this

number are being scanned, then increase the size of the buffer cache or tune the

DBWn process(es).

Use the following formula to find the number of buffers that were dirty at the

end of the LRU:

If many dirty buffers exist, then possibly the DBWn process(es) cannot keep up.

Again, increase the buffer cache size or tune the DBWn process.

Scalability Limitations Within the Application
In most of this CPU tuning discussion, we assume you can achieve linear

scalability, but this is never actually the case. How flat or nonlinear the scalability is

indicates how far away from optimal performance your system is. Problems in your

application might be adversely affecting scalability. Examples of this include too

many indexes, right-hand index problems, too much data in the blocks, or not

properly partitioning the data. These types of contention problems waste CPU

cycles and prevent the application from attaining linear scalability.

Wait Detection
Whenever an Oracle process waits for something, it records it as a wait using one of

a set of predefined wait events. (See V$EVENT_NAME for a list of all wait events).

Some of these events can be considered idle events; i.e., the process is waiting for

work. Other events indicate time spent waiting for a resource or action to complete.

By comparing the relative time spent waiting on each wait event and the "CPU used

by this session" (from above), you can see where the Oracle instance is spending

most of its time. To get an indication of where time is spent, follow these steps:

Note: Query the V$SYSSTAT view to find the values of "free

buffers inspected" and "dirty buffers inspected".

= avg. buffers scanned
"free buffers inspected"

"free buffers requested"
1 +

= dirty buffers
"dirty buffers inspected"

"free buffers inspected"

Detecting and Solving CPU Problems

18-12 Oracle8i Designing and Tuning for Performance

1. Review either the V$SYSTATS view or the wait events section of the

UTLBSTAT/UTLESTAT report.

2. Ignore any idle wait events. Common idle wait events include:

■ Client message

■ SQL*Net message from client

■ SQL*Net more data from client

■ RDBMS IPC message

■ Pipe get

■ Null event

■ PMON timer

■ SMON timer

■ Parallel query dequeue

3. Ignore any wait events that represent a very small percentage of the total time

waited.

4. Add the remaining wait event times, and calculate each one as a percentage of

total time waited.

5. Compare the total time waited with the CPU used by this session figure.

6. Find the event with the largest wait event time. This may be the first item you

want to tune.

Latch Contention
Latch contention is a symptom of CPU problems; it is not usually a cause. To

resolve it, you must locate the latch contention within your application, identify its

cause, and determine which part of your application is poorly written.

In some cases, the spin count may be set too high. It’s also possible that one process

may be holding a latch that another process is attempting to secure. The process

attempting to secure the latch may be endlessly spinning. After a while, this process

may go to sleep and later resume processing and repeat its ineffectual spinning. To

resolve this:

■ Check the Oracle latch statistics. The "latch free" event in V$SYSTEM_EVENT
shows how long processes have been waiting for latches. If there is no latch

contention, then this statistic does not appear. If there is a lot of contention, then

Solving CPU Problems by Changing System Architectures

Tuning CPU Resources 18-13

it may be better for a process to go to sleep at once when it cannot obtain a

latch, rather than use CPU time by spinning.

■ Look for the ratio of CPUs to processes. If there are large numbers of both, then

many processes can run. But, if a single process is holding a latch on a system

with ten CPUs, then reschedule that process so it is not running. But, ten other

processes may run ineffectively trying to secure the same latch. This situation

wastes, in parallel, some CPU resource.

■ Check V$LATCH_MISSES, which indicates where in the Oracle code most

contention occurs.

Solving CPU Problems by Changing System Architectures
If you have maximized the CPU power on your system and have exhausted all

means of tuning your system’s CPU use, then consider redesigning your system on

another architecture. Moving to a different architecture might improve CPU use.

This section describes architectures you could consider using. This section contains

the following possibilities:

■ Single Tier to Two-Tier

■ Multi-Tier: Using Smaller Client Machines

■ Two-Tier to Three-Tier

■ Three-Tier

■ Oracle Parallel Server

Note: Tuning the SPIN_COUNT actually tunes the symptom and

not the real problem. Furthermore, setting SPIN_COUNT may

actually increase CPU waits. If a post-wait driver is available on the

system, then evaluate its implementation.

Note: If you are running a multi-tier system, then check all levels

for CPU utilization. For example, on a three-tier system, your

server might be mostly idle while your second tier is completely

busy. To resolve this, tune the second tier rather than the server or

the third tier. In a multi-tier system, it is usually not the server that

has a performance problem. It is usually the clients and the middle

tier.

Solving CPU Problems by Changing System Architectures

18-14 Oracle8i Designing and Tuning for Performance

Single Tier to Two-Tier
Consider whether changing from several clients with one server, all running on a

single machine (single tier), to a two-tier client/server configuration would relieve

CPU problems.

Figure 18–2 Single Tier to Two-Tier

Server

Client Client Client

Server

Client Client Client

Solving CPU Problems by Changing System Architectures

Tuning CPU Resources 18-15

Multi-Tier: Using Smaller Client Machines
Consider whether using smaller clients improves CPU usage rather than using

multiple clients on larger machines. This strategy may be helpful with either

two-tier or three-tier configurations.

Figure 18–3 Multi-Tier Using Smaller Clients

Two-Tier to Three-Tier
If your system runs with multiple layers, then consider whether moving from a

two-tier to three-tier configuration and introducing an application server or a

transaction processing monitor might be a good solution.

ServerServer

Client Client Client Client

Clients

Solving CPU Problems by Changing System Architectures

18-16 Oracle8i Designing and Tuning for Performance

Figure 18–4 Two-Tier to Three-Tier

Application
Server

Server

Server

ClientClientClient Client Client Client

Solving CPU Problems by Changing System Architectures

Tuning CPU Resources 18-17

Three-Tier
Consider using one or more application servers or multiple transaction processing

monitors.

Figure 18–5 Three-Tier with Multiple Application Servers

Oracle Parallel Server
Consider whether incorporating Oracle Parallel Server would solve your CPU

problems.

ClientClientClient Client

Server

Client

Server

Application
Server

Application
Server

Client ClientClient

Application
Server

Solving CPU Problems by Changing System Architectures

18-18 Oracle8i Designing and Tuning for Performance

Figure 18–6 Oracle Parallel Server

ClientClientClient ClientClient

ServerServer

Client ClientClient

Server

Database Database

Tuning Memory Allocation 19-1

19
Tuning Memory Allocation

This chapter explains how to allocate memory to database structures. Proper sizing

of these structures greatly improves database performance.

This chapter contains the following sections:

■ Understanding Memory Allocation Issues

■ Detecting Memory Allocation Problems

■ Solving Memory Allocation Problems

Understanding Memory Allocation Issues

19-2 Oracle8i Designing and Tuning for Performance

Understanding Memory Allocation Issues
Oracle stores information in memory and on disk. Memory access is much faster

than disk access; therefore, it is better for data requests to be satisfied by access to

memory instead of by access to disk. For best performance, store as much data as

possible in memory. However, memory resources on your operating system are

likely to be limited. Tuning memory allocation involves distributing available

memory to Oracle memory structures.

Oracle’s memory requirements depend on your application. Therefore, tune

memory allocation after tuning your application and SQL statements. If you allocate

memory before tuning your application and SQL statements, then you may need to

resize some Oracle memory structures to meet the needs of your modified

statements and application.

Also, tune memory allocation before you tune I/O. Allocating memory establishes

the amount of I/O necessary for Oracle to operate. This chapter shows you how to

allocate memory to perform as little I/O as possible.

The following terms are used in this discussion:

block A unit of data transfer between main memory and disk. Many

blocks from one section of memory address space form a segment.

buffer A main memory address in which the buffer manager caches

currently and recently used data read from disk. Over time, a

buffer may hold different blocks. When a new block is needed, the

buffer manager may discard an old block and replace it with a new

one.

buffer pool A collection of buffers.

cache or

buffer cache

All buffers and buffer pools.

segment A set of extents allocated for a specific type of database object such

as a table, index, or cluster.

See Also: For information on how to perform I/O as efficiently

as possible, see Chapter 20, "Tuning I/O".

Solving Memory Allocation Problems

Tuning Memory Allocation 19-3

Detecting Memory Allocation Problems
When you use operating system tools to examine the size of Oracle processes, such

as ps -efl or ps -aux on UNIX, you may notice that the processes seem large. To

interpret the statistics shown, determine how much of the process size is

attributable to shared memory, heap, and executable stack, and how much is the

actual amount of memory the given process consumes.

The SZ statistic is given in units of page size (normally 4KB), and it normally

includes the shared overhead. To calculate the private, or per-process memory

usage, subtract shared memory and executable stack figures from the value of SZ.

For example:

In this example, the individual process consumes only 4,000 pages; the other 16,000

pages are shared by all processes.

Solving Memory Allocation Problems
The rest of this chapter explains how to tune memory allocation. For best results,

resolve memory issues in the order presented here:

1. Tuning Operating System Memory Requirements

2. Tuning the Redo Log Buffer

3. Tuning Private SQL and PL/SQL Areas

4. Tuning the Shared Pool

5. Tuning the Buffer Cache

6. Tuning Multiple Buffer Pools

7. Tuning Sort Areas

8. Reallocating Memory

9. Reducing Total Memory Usage

SZ +20,000

minus SHM - 15,000

minus EXECUTABLE - 1,000

actual per-process memory 4,000

See Also: Oracle for UNIX Performance Tuning Tips or your

operating system documentation.

Solving Memory Allocation Problems

19-4 Oracle8i Designing and Tuning for Performance

Tuning Operating System Memory Requirements
Begin tuning memory allocation by tuning your operating system with these goals:

■ Reducing Paging and Swapping

■ Fitting the System Global Area into Main Memory

■ Allocating Adequate Memory to Individual Users

These goals apply in general to most operating systems, but the details of operating

system tuning vary.

Reducing Paging and Swapping
Your operating system may store information in these places:

■ Real memory

■ Virtual memory

■ Expanded storage

■ Disk

The operating system may also move information from one storage location to

another. This process is known as paging or swapping. Many operating systems page

and swap to accommodate large amounts of information that do not fit into real

memory. However, excessive paging or swapping can reduce the performance of

many operating systems.

Monitor your operating system behavior with operating system utilities. Excessive

paging or swapping indicates that new information is often being moved into

memory. In this case, your system’s total memory may not be large enough to hold

everything for which you have allocated memory. Either increase the total memory

on your system or decrease the amount of memory allocated.

Fitting the System Global Area into Main Memory
Because the purpose of the System Global Area (SGA) is to store data in memory for

fast access, the SGA should always be within main memory. If pages of the SGA are

swapped to disk, then its data is no longer quickly accessible. On most operating

See Also: For more information on tuning operating system

memory usage, see your operating system hardware and software

documentation, as well as your Oracle operating system-specific

documentation.

Solving Memory Allocation Problems

Tuning Memory Allocation 19-5

systems, the disadvantage of excessive paging significantly outweighs the

advantage of a large SGA.

Although it is best to keep the entire SGA in memory, the contents of the SGA are

split logically between hot and cold parts. The hot parts are always in memory,

because they are always being referenced. Some cold parts may be paged out, and a

performance penalty may result from bringing them back in. A performance

problem likely occurs, however, when the hot part of the SGA cannot remain in

memory.

Data is swapped to disk because it is not being referenced. You can cause Oracle to

read the entire SGA into memory when you start your instance by setting the value

of the initialization parameter PRE_PAGE_SGA to YES. Operating system page table

entries are then pre-built for each page of the SGA. This setting may increase the

amount of time necessary for instance startup, but it is likely to decrease the amount

of time necessary for Oracle to reach its full performance capacity after startup.

PRE_PAGE_SGA may increase the process startup duration, because every process

that starts must attach itself to the SGA. The cost of this strategy is fixed; however,

you may simply determine that 20,000 pages must be touched every time a process

starts. This approach may be useful with some applications, but not with all

applications. Overhead may be significant if your system frequently creates and

destroys processes by, for example, continually logging on and logging off.

The advantage that PRE_PAGE_SGA can afford depends on page size. For example,

if the SGA is 80MB in size, and the page size is 4KB, then 20,000 pages must be

touched to refresh the SGA (80,000/4 = 20,000).

If the system permits you to set a 4MB page size, then only 20 pages must be

touched to refresh the SGA (80,000/4,000 = 20). The page size is operating

system-specific and generally cannot be changed. Some operating systems,

however, have a special implementation for shared memory whereby you can

change the page size.

You can see how much memory is allocated to the SGA and each of its internal

structures by issuing the following SQL statement:

SHOW SGA

The output of this statement could look like the following:

Note: This setting does not prevent your operating system from

paging or swapping the SGA after it is initially read into memory.

Solving Memory Allocation Problems

19-6 Oracle8i Designing and Tuning for Performance

Total System Global Area 18847360 bytes
Fixed Size 63104 bytes
Variable Size 14155776 bytes
Database Buffers 4096000 bytes
Redo Buffers 532480 bytes

Some IBM mainframe computer operating systems have expanded storage or

special memory, in addition to main memory, to which paging can be performed

very quickly. These operating systems may be able to page data between main

memory and expanded storage faster than Oracle can read and write data between

the SGA and disk. For this reason, allowing a larger SGA to be swapped may lead

to better performance than ensuring that a smaller SGA remains in main memory. If

your operating system has expanded storage, then take advantage of it by allocating

a larger SGA despite the resulting paging.

Allocating Adequate Memory to Individual Users
On some operating systems, you may have control over the amount of physical

memory allocated to each user. Be sure that all users are allocated enough memory

to accommodate the resources they need to use their application with Oracle.

Depending on your operating system, these resources may include:

■ The Oracle executable image

■ The SGA

■ Oracle application tools

■ Application-specific data

On some operating systems, Oracle software can be installed so that a single

executable image can be shared by many users. By sharing executable images

among users, you can reduce the amount of memory required by each user.

Tuning the Redo Log Buffer
The LOG_BUFFER parameter reserves space for the redo log buffer that is fixed in

size. On machines with fast processors and relatively slow disks, the processors

may be filling the rest of the buffer in the time it takes the redo log writer to move a

portion of the buffer to disk. The log writer process (LGWR) always starts when the

buffer begins to fill. For this reason, a larger buffer makes it less likely that new

entries collide with the part of the buffer still being written.

Solving Memory Allocation Problems

Tuning Memory Allocation 19-7

Figure 19–1 Redo Log Buffer

The log buffer is normally small compared with the total SGA size, and a modest

increase can significantly enhance throughput.

Detecting Contention for Space in the Redo Log Buffer
When LGWR writes redo entries from the redo log buffer to a redo log file or disk,

user processes can then copy new entries over the entries in memory that have been

written to disk. LGWR normally writes fast enough to ensure that space is always

available in the buffer for new entries, even when access to the redo log is heavy.

The statistic REDO BUFFER ALLOCATION RETRIES reflects the number of times a

user process waits for space in the redo log buffer. This statistic is available through

the dynamic performance view V$SYSSTAT. By default, this view is available only

to the user SYS and to users granted SELECT ANY TABLE system privilege, such as

SYSTEM.

Being written to
disk by LGWR

Being filled by
DML users

Solving Memory Allocation Problems

19-8 Oracle8i Designing and Tuning for Performance

Use the following query to monitor these statistics over a period of time while your

application is running:

SELECT NAME, VALUE
FROM V$SYSSTAT
‘WHERE NAME = ’REDO BUFFER ALLOCATION RETRIES’;

The information in V$SYSSTAT can also be obtained through the Simple Network

Management Protocol (SNMP).

The value of REDO BUFFER ALLOCATION RETRIES should be near zero. If this

value increments consistently, then processes have had to wait for space in the

buffer. The wait may be caused by the log buffer being too small or by

checkpointing. Increase the size of the redo log buffer, if necessary, by changing the

value of the initialization parameter LOG_BUFFER. The value of this parameter,

expressed in bytes, must be a multiple of DB_BLOCK_SIZE. Alternatively, improve

the checkpointing or archiving process.

Tuning Private SQL and PL/SQL Areas
This section explains how to tune private SQL and PL/SQL areas in the following

ways:

■ Identifying Unnecessary Parse Calls

■ Reducing Unnecessary Parse Calls

A trade-off exists between memory and reparsing. With significant amounts of

reparsing, less memory is needed. If you reduce reparsing by creating more SQL

statements, then client memory requirements increase. This is due to an increase in

the number of open cursors.

Tuning private SQL areas entails identifying unnecessary parse calls made by your

application and then reducing them. To reduce parse calls, you may need to

increase the number of private SQL areas that your application can have allocated

at once. Throughout this section, information about private SQL areas and SQL

statements also applies to private PL/SQL areas and PL/SQL blocks.

Note: Multiple archiver processes are not recommended. A single

automatic ARCH process can archive redo logs, keeping pace with

the LGWR process.

Solving Memory Allocation Problems

Tuning Memory Allocation 19-9

Identifying Unnecessary Parse Calls
This section describes three techniques for identifying unnecessary parse calls.

Technique 1 Run your application with the SQL trace facility enabled. For each SQL

statement in the trace output, the "count" statistic for the Parse step tells you how

many times your application makes a parse call for the statement. This statistic

includes parse calls satisfied by access to the library cache, as well as parse calls

resulting in actually parsing the statement.

If the count value for the Parse step is near the count value for the Execute step for a

statement, then your application may be deliberately making a parse call each time

it executes the statement. Try to reduce these parse calls through your application

tool.

Technique 2 Another way to identify unnecessary parse calls is to check the

V$SQLAREA view. Enter the following query:

SELECT SQL_TEXT, PARSE_CALLS, EXECUTIONS
FROM V$SQLAREA;

When the PARSE_CALLS value is close to the EXECUTION value for a given

statement, you may be continually reparsing that statement.

Technique 3 You can also identify unnecessary parse calls by identifying the session

in which they occur. It may be that particular batch programs or certain types of

applications do most of the reparsing. To do this, execute the following query:

SELECT * FROM V$STATNAME
WHERE NAME IN (’parsecount (hard)’,’executecount’);

Oracle responds with something similar to:

STATISTIC#, NAME
------------ ---------
100 parsecount
90 executecount

Note: This statistic does not include implicit parsing that occurs

when an application executes a statement whose shared SQL area is

no longer in the library cache. For information on detecting implicit

parsing, see "Examining Library Cache Activity" on page 19-14.

Solving Memory Allocation Problems

19-10 Oracle8i Designing and Tuning for Performance

Then, run a query similar to the following:

SELECT * FROM V$SESSTAT
WHERE STATISTICS# IN (90,100)
ORDER BY VALUE, SID;

The result is a list of all sessions and the amount of reparsing they do. For each

system identifier (SID), go to V$SESSION to find the name of the program that

causes the reparsing.

Reducing Unnecessary Parse Calls
Depending on the Oracle application tool you are using, you may be able to control

how frequently your application performs parse calls and allocates and deallocates

private SQL areas. Whether your application reuses private SQL areas for multiple

SQL statements determines how many parse calls your application performs and

how many private SQL areas the application requires.

In general, an application that reuses private SQL areas for multiple SQL statements

does not need as many private SQL areas as an application that does not reuse

private SQL areas. However, an application that reuses private SQL areas must

perform more parse calls, because the application must make a new parse call

whenever an existing private SQL area is reused for a new SQL statement.

Be sure that your application can open enough private SQL areas to accommodate

all your SQL statements. If you allocate more private SQL areas, then you may need

to increase the limit on the number of cursors permitted for a session. You can

increase this limit by increasing the value of the initialization parameter OPEN_
CURSORS. The default value for OPEN_CURSORS is 50, and the range is from 1 to

UB4MAXVAL.

The ways in which you control parse calls and allocation and deallocation of private

SQL areas depends on your Oracle application tool. The following sections

introduce the methods used for some tools. These methods apply only to private

SQL areas and not to shared SQL areas.

Reducing Parse Calls with the Oracle Precompilers When using the Oracle precompilers,

you can control private SQL areas and parse calls by setting three clauses. In Oracle

mode, the clauses and their defaults are as follows:

■ HOLD_CURSOR = yes

■ RELEASE_CURSOR = no

■ MAXOPENCURSORS = desired value

Solving Memory Allocation Problems

Tuning Memory Allocation 19-11

Oracle recommends that you not use ANSI mode, in which the values of HOLD_
CURSOR and RELEASE_CURSOR are switched.

The precompiler clauses can be specified in two ways:

■ On the precompiler command line

■ Within the precompiler program

With these clauses, you can employ different strategies for managing private SQL

areas during the course of the program.

Reducing Parse Calls with Oracle Forms With Oracle Forms, you also have some control

over whether your application reuses private SQL areas. You can exercise this

control in three places:

■ At the trigger level

■ At the form level

■ At run time

Tuning the Shared Pool
The shared pool contains the library cache of shared SQL requests, the dictionary

cache, stored procedures, and other cache structures that are specific to a particular

instance configuration. For example, in a multi-threaded server (MTS)

configuration, the session and private SQL area for each client process is included in

the shared pool. When the instance is configured for parallel execution, the shared

pool includes the parallel execution message buffers.

Proper sizing of the shared pool can reduce resource consumption in at least three

ways:

1. Parse time is avoided if the SQL statement is already in the shared pool. This

saves CPU resources.

2. Application memory overhead is reduced, because all applications use the same

pool of shared SQL statements and dictionary resources.

See Also: For more information on these calls, see Pro*C/C++
Precompiler Programmer’s Guide.

See Also: For more information on the reuse of private SQL areas

by Oracle Forms, see the Oracle Forms Reference manual.

Solving Memory Allocation Problems

19-12 Oracle8i Designing and Tuning for Performance

3. I/O resources are saved, because dictionary elements which are in the shared

pool do not require disk access.

Managing Data in the Shared Pool
The algorithm Oracle uses to manage data in the shared pool tends to hold

dictionary cache data in memory longer than library cache data. Therefore, tuning

the library cache to an acceptable cache hit ratio often ensures that the data

dictionary cache hit ratio is also acceptable. Allocating space in the shared pool for

session information is necessary only if you are using MTS architecture.

In the shared pool, some of the caches are dynamic—their sizes automatically

increase or decrease as needed. These dynamic caches include the library cache and

the data dictionary cache. Objects are aged out of these caches if the shared pool

runs out of room. For this reason you may need to increase the shared pool size if

the frequently used set of data does not fit within it. A cache miss on the data

dictionary cache or library cache is more expensive than a miss on the buffer cache.

For this reason, allocate sufficient memory to the shared pool before allocating to

the buffer cache.

For most applications, shared pool size is critical to Oracle performance. (Shared

pool size is less important only for applications that issue a very limited number of

discrete SQL statements.) The shared pool holds both the data dictionary cache and

the fully parsed or compiled representations of PL/SQL blocks and SQL statements.

PL/SQL blocks include procedures, functions, packages, triggers, and any

anonymous PL/SQL blocks submitted by client programs.

If the shared pool is too small, then the server must dedicate resources to managing

the limited amount of available space. This consumes CPU resources and causes

contention, because Oracle imposes restrictions on the parallel management of the

various caches. The more you use triggers and stored procedures, the larger the

shared pool must be. It may even reach a size measured in hundreds of megabytes.

Because it is better to measure statistics during a confined period than from startup,

you can determine the library cache and row cache (data dictionary cache) hit ratios

from the following queries. The results show the miss rates for the library cache and

row cache. In general, the number of reparses reflects the library cache. If the ratios

are close to 1, then you do not need to increase the pool size.

SELECT (SUM(PINS - RELOADS)) / SUM(PINS) "LIB CACHE"
FROM V$LIBRARYCACHE;

SELECT (SUM(GETS - GETMISSES - USAGE - FIXED)) / SUM(GETS) "ROW CACHE"
FROM V$ROWCACHE;

Solving Memory Allocation Problems

Tuning Memory Allocation 19-13

The amount of free memory in the shared pool is reported in V$SGASTAT. Report

the current value from this view using the following query:

SELECT * FROM V$SGASTAT WHERE NAME = ’FREE MEMORY’;

If there is always free memory available within the shared pool, then increasing the

size of the pool offers little or no benefit. However, just because the shared pool is

full does not necessarily mean there is a problem.

After an entry has been loaded into the shared pool, it cannot be moved. As more

entries are loaded, the free memory becomes discontiguous, and the shared pool

may become fragmented.

You can use the PL/SQL package DBMS_SHARED_POOL, located in dbmspool .sql ,
to manage the shared pool. The comments in the code describe how to use the

procedures within the package.

Loading PL/SQL Objects into the Shared Pool Oracle loads objects into the shared pool

using pages that are 4KB in size. These pages load chunks of segmented PL/SQL

code. The pages do not need to be contiguous. Therefore, Oracle does not need to

allocate large sections of contiguous memory for loading objects into the shared

pool. This reduces the need for contiguous memory and improves performance.

However, Oracle loads all of a package if any part of the package is called.

Depending on user needs, it may or may not be prudent to pin packages in the

shared pool. Nonetheless, Oracle recommends pinning, especially for frequently

used application objects.

Library Cache and Row Cache Hit Ratios Library cache and row cache hit ratios are

important. If free memory is near zero, and if either the library cache hit ratio or the

row cache hit ratio is less than 0.95, then increase the size of the shared pool until

the ratios stop improving.

The following sections explains how to allocate memory for key memory structures

of the shared pool. Structures are listed in order of importance for tuning.

See Also: For more information about DBMS_SHARED_POOL, see

the Oracle8i Supplied PL/SQL Packages Reference.

See Also: For information on how to pin packages with the

DBMS_SHARED_POOL package, see Chapter 13, "Managing Shared

SQL and PL/SQL Areas" and Oracle8i Supplied PL/SQL Packages
Reference.

Solving Memory Allocation Problems

19-14 Oracle8i Designing and Tuning for Performance

■ Tuning the Library Cache

■ Tuning the Data Dictionary Cache

■ Tuning the Large Pool and Shared Pool for the MTS Architecture

■ Tuning Reserved Space from the Shared Pool

Tuning the Library Cache
The library cache holds executable forms of SQL cursors, PL/SQL programs, and

JAVA classes. It also caches descriptive information, or metadata, about schema

objects. Oracle uses this metadata when parsing SQL cursors or during the

compilation of PL/SQL programs. The latter type of memory is seldom a concern

for performance, so this section focuses on tuning as it relates to cursors, PL/SQL

programs, and JAVA classes. These are collectively referred to as application logic.

Examining Library Cache Activity Library cache misses can occur on either the parse or

the execute step in the processing of a SQL statement.

If an application makes a parse call for a SQL statement, and if the parsed

representation of the statement does not already exist in a shared SQL area in the

library cache, then Oracle parses the statement and allocates a shared SQL area. You

may be able to reduce library cache misses on parse calls by ensuring that SQL

statements can share a shared SQL area whenever possible.

If an application makes an execute call for a SQL statement, and if the shared SQL

area containing the parsed representation of the statement has been deallocated

from the library cache to make room for another statement, then Oracle implicitly

reparses the statement, allocates a new shared SQL area for it, and executes it. You

may be able to reduce library cache misses on execution calls by allocating more

memory to the library cache.

You can monitor statistics reflecting library cache activity by examining the

dynamic performance view V$LIBRARYCACHE. These statistics reflect all library

cache activity since the most recent instance startup. By default, this view is

available only to the user SYS and to users granted SELECT ANY TABLE system

privilege, such as SYSTEM.

Each row in this view contains statistics for one type of item kept in the library

cache. The item described by each row is identified by the value of the NAMESPACE

Note: If you are using a reserved size for the shared pool, then see

"SHARED_POOL_SIZE Too Small" on page 19-27.

Solving Memory Allocation Problems

Tuning Memory Allocation 19-15

column. Rows of the table with the following NAMESPACE values reflect library

cache activity for SQL statements and PL/SQL blocks:

■ SQL AREA

■ TABLE/PROCEDURE

■ BODY

■ TRIGGER

Rows with other NAMESPACE values reflect library cache activity for object

definitions that Oracle uses for dependency maintenance.

These columns of the V$LIBRARYCACHE table reflect library cache misses on

execution calls:

Monitor the statistics in the V$LIBRARYCACHE table over a period of time with the

following query:

SELECT SUM(PINS) "EXECUTIONS",
SUM(RELOADS) "CACHE MISSES WHILE EXECUTING"
FROM V$LIBRARYCACHE;

The output of this query could look like the following:

EXECUTIONS CACHE MISSES WHILE EXECUTING
---------- ----------------------------
320871 549

Examining the data returned by the sample query leads to these observations:

■ The sum of the EXECUTIONS column indicates that SQL statements, PL/SQL

blocks, and object definitions were accessed for execution a total of 320,871

times.

■ The sum of the CACHE MISSES WHILE EXECUTINGcolumn indicates that 549 of

those executions resulted in library cache misses causing Oracle to implicitly

reparse a statement or block or reload an object definition because it aged out of

the library cache.

■ The ratio of the total misses to total executions is about 0.17%. This value means

that only 0.17% of executions resulted in reparsing.

PINS Shows the number of times an item in the library cache was executed.

RELOADS Shows the number of library cache misses on execution steps.

Solving Memory Allocation Problems

19-16 Oracle8i Designing and Tuning for Performance

Total misses should be near 0. If the ratio of misses to executions is more than 1%,

then try to reduce the library cache misses through the means discussed in the next

section.

You can reduce library cache misses by:

■ Allocating Additional Memory for the Library Cache

■ Writing Similar SQL Statements

Allocating Additional Memory for the Library Cache To ensure that shared SQL areas

remain in the cache after their SQL statements are parsed, increase the amount of

memory available to the library cache until the V$LIBRARYCACHE.RELOADS value

is near 0. To increase the amount of memory available to the library cache, increase

the value of the initialization parameter SHARED_POOL_SIZE. The maximum value

for this parameter depends on your operating system. This measure reduces

implicit reparsing of SQL statements and PL/SQL blocks on execution.

To take advantage of additional memory available for shared SQL areas, you may

also need to increase the number of cursors permitted for a session. You can do this

by increasing the value of the initialization parameter OPEN_CURSORS.

Be careful not to induce paging and swapping by allocating too much memory for

the library cache. The benefits of a library cache large enough to avoid cache misses

can be partially offset by reading shared SQL areas into memory from disk

whenever you need to access them.

Writing Similar SQL Statements You may be able to reduce library cache misses on

parse calls by ensuring that SQL statements and PL/SQL blocks use a shared SQL

area whenever possible. Two separate occurrences of a SQL statement or PL/SQL

block can use a shared SQL area if they follow these criteria:

■ The text of the SQL statements or PL/SQL blocks must be identical, character

for character, including spaces and case.

The following statements cannot use the same shared SQL area:

SELECT * FROM emp;
SELECT * FROM emp;

These statements also cannot use the same shared SQL area:

See Also: For more information, see "SHARED_POOL_SIZE Too

Small" on page 19-27.

Solving Memory Allocation Problems

Tuning Memory Allocation 19-17

SELECT * FROM emp;
SELECT * FROM Emp;

■ Statements that differ only in the literals can use the same shared SQL area. For

example, the following two statements are considered similar:

INSERT INTO T VALUES(1, ’foo’, 4)
INSERT INTO T VALUES(2, ’bar’, 7)

■ References to schema objects in the SQL statements or PL/SQL blocks must

resolve to the same object in the same schema.

For example, if the schemas of the users Bob and Ed both contain an emp table,

and if both users issue the following statement, then their statements cannot use

the same shared SQL area:

SELECT * FROM emp;

If both statements query the same table and qualify the table with the schema,

as in the following statement, then they can use the same shared SQL area:

SELECT * FROM bob.emp;

■ Bind variables in the SQL statements must match in name and datatype. For

example, these statements cannot use the same shared SQL area:

SELECT * FROM emp WHERE deptno = :department_no;
SELECT * FROM emp WHERE deptno = :d_no;

■ The SQL statements must be optimized using the same optimization approach

and, in the case of the cost-based approach, the same optimization goal.

Shared SQL areas are most useful for reducing library cache misses for multiple

users running the same application. Discuss these criteria with the developers of

such applications and agree on strategies to ensure that the SQL statements and

PL/SQL blocks of an application can use the same shared SQL areas:

See Also: Such statements can use the same shared SQL area only

when CURSOR_SHARING = FORCE. This is explained more later in

this section. For more information on the CURSOR_SHARING
parameter, see Oracle8i SQL Reference.

See Also: For information on optimization approach and goal, see

Chapter 9, "Optimizing SQL Statements".

Solving Memory Allocation Problems

19-18 Oracle8i Designing and Tuning for Performance

■ Use bind variables rather than explicitly specified constants in your statements

whenever possible.

For example, the following two statements cannot use the same shared area

because they do not match character for character:

SELECT ename, empno FROM emp WHERE deptno = 10;
SELECT ename, empno FROM emp WHERE deptno = 20;

You can accomplish the goals of these statements by using the following

statement that contains a bind variable, binding 10 for one occurrence of the

statement and 20 for the other:

SELECT ename, empno FROM emp WHERE deptno = :department_no;

The two occurrences of the statement can then use the same shared SQL area.

■ The CURSOR_SHARING parameter may solve some performance problems. It

has the following values: FORCE and EXACT (default).

Setting CURSOR_SHARING to FORCE forces similar statements to share SQL by

replacing literals with system generated bind variables. Replacing literals with bind

variables improves cursor sharing with reduced memory usage, faster parses, and

reduced latch contention.

The V$SQL_BIND_METADATA and V$SQL_BIND_DATA views show the

transformed text. These tables show bind metadata and bind data for all bind

variables, including system generated bind variables. System generated bind

variables can be distinguished from user bind variables based on the value of

SHARED_FLAG2 in V$SQL_BIND_DATA.

For example, the following statement shows bind data only for system generated

bind variables.

SELECT *
FROM V$SQL_BIND_DATA
WHERE BITAND(SHARED_FLAG2, 256) = 256;

This parameter should be set to FORCE only when the risk of suboptimal plans is

outweighed by the improvements in cursor sharing.

Note: Setting CURSOR_SHARING to FORCE causes an increase in

the maximum lengths (as returned by DESCRIBE) of any selected

expressions that contain literals (in a SELECT statement). However,

the actual length of the data returned will not change.

Solving Memory Allocation Problems

Tuning Memory Allocation 19-19

You should consider setting CURSOR_SHARING to FORCE if you can answer ’yes’ to

both of the following questions:

1. Are there statements in the shared pool that differ only in the values of literals?

2. Is the response time low due to a very high number of library cache misses?

Setting CURSOR_SHARING to EXACT allows SQL statements to share the SQL area

only when their texts match exactly.

■ Be sure that users of the application do not change the optimization approach

and goal for their individual sessions.

■ You can also increase the likelihood that SQL statements issued by different

applications can share SQL areas by establishing these policies among the

developers of the applications:

– Standardize naming conventions for bind variables and spacing

conventions for SQL statements and PL/SQL blocks.

– Use stored procedures whenever possible. Multiple users issuing the same

stored procedure automatically use the same shared PL/SQL area. Because

stored procedures are stored in a parsed form, they eliminate run-time

parsing altogether.

Use CURSOR_SPACE_FOR_TIME to Speed Access to Shared SQL Areas If you have no

library cache misses, then you may still be able to accelerate execution calls by

setting the value of the initialization parameter CURSOR_SPACE_FOR_TIME. This

parameter specifies whether a shared SQL area can be deallocated from the library

cache to make room for a new SQL statement. CURSOR_SPACE_FOR_TIME has the

following values meanings:

■ If this is set to false (the default), then a shared SQL area can be deallocated

from the library cache regardless of whether application cursors associated with

its SQL statement are open. In this case, Oracle must verify that a shared SQL

area containing the SQL statement is in the library cache.

■ If this is set to true , then a shared SQL area can be deallocated only when all

application cursors associated with its statement are closed. In this case, Oracle

need not verify that a shared SQL area is in the cache, because the shared SQL

Note: Oracle does not recommend setting CURSOR_SHARING to
FORCE in a DSS environment or if you are using complex queries,

query rewrite, or stored outlines.

Solving Memory Allocation Problems

19-20 Oracle8i Designing and Tuning for Performance

area can never be deallocated while an application cursor associated with it is

open.

Setting the value of the parameter to true saves Oracle a small amount of time and

may slightly improve the performance of execution calls. This value also prevents

the deallocation of private SQL areas until associated application cursors are closed.

Do not set the value of CURSOR_SPACE_FOR_TIME to true if you have found

library cache misses on execution calls. Such library cache misses indicate that the

shared pool is not large enough to hold the shared SQL areas of all concurrently

open cursors. If the value is true , and if the shared pool has no space for a new

SQL statement, then the statement cannot be parsed, and Oracle returns an error

saying that there is no more shared memory. If the value is false , and if there is no

space for a new statement, then Oracle deallocates an existing shared SQL area.

Although deallocating a shared SQL area results in a library cache miss later, it is

preferable to an error halting your application because a SQL statement cannot be

parsed.

Do not set the value of CURSOR_SPACE_FOR_TIME to true if the amount of

memory available to each user for private SQL areas is scarce. This value also

prevents the deallocation of private SQL areas associated with open cursors. If the

private SQL areas for all concurrently open cursors fills the user’s available memory

so that there is no space to allocate a private SQL area for a new SQL statement,

then the statement cannot be parsed, and Oracle returns an error indicating that

there is not enough memory.

Caching Session Cursors If an application repeatedly issues parse calls on the same

set of SQL statements, then the reopening of the session cursors can affect system

performance. Session cursors can be stored in a session cursor cache. This feature

can be particularly useful for applications designed using Oracle Forms, because

switching from one form to another closes all session cursors associated with the

first form.

Oracle uses the shared SQL area to determine whether more than three parse

requests have been issued on a given statement. If so, Oracle assumes the session

cursor associated with the statement should be cached and moves the cursor into

the session cursor cache. Subsequent requests to parse that SQL statement by the

same session then find the cursor in the session cursor cache.

To enable caching of session cursors, you must set the initialization parameter

SESSION_CACHED_CURSORS. The value of this parameter is a positive integer

specifying the maximum number of session cursors kept in the cache. An LRU

(Least Recently Used) algorithm removes entries in the session cursor cache to make

room for new entries when needed.

Solving Memory Allocation Problems

Tuning Memory Allocation 19-21

You can also enable the session cursor cache dynamically with the statement:

ALTER SESSION SET SESSION_CACHED_CURSORS.

To determine whether the session cursor cache is sufficiently large for your

instance, you can examine the session statistic "session cursor cache hits" in the

V$SESSTAT view. This statistic counts the number of times a parse call found a

cursor in the session cursor cache. If this statistic is a relatively low percentage of

the total parse call count for the session, then you should consider setting

SESSION_CACHED_CURSORS to a larger value.

Tuning the Data Dictionary Cache
This section describes how to tune the data dictionary cache with the following:

■ Monitoring Data Dictionary Cache Activity

■ Reducing Data Dictionary Cache Misses

Monitoring Data Dictionary Cache Activity Determine whether misses on the data

dictionary cache are affecting the performance of Oracle. You can examine cache

activity by querying the V$ROWCACHE table as described in the following sections.

Misses on the data dictionary cache are to be expected in some cases. Upon instance

startup, the data dictionary cache contains no data, so any SQL statement issued is

likely to result in cache misses. As more data is read into the cache, the likelihood of

cache misses should decrease. Eventually the database should reach a steady state, in

which the most frequently used dictionary data is in the cache. At this point, very

few cache misses should occur. To tune the cache, examine its activity only after

your application has been running.

Statistics reflecting data dictionary activity are kept in the dynamic performance

table V$ROWCACHE. By default, this table is available only to the user SYS and to

users granted SELECT ANY TABLE system privilege, such as SYSTEM.

Each row in this table contains statistics for a single type of the data dictionary item.

These statistics reflect all data dictionary activity since the most recent instance

startup. These columns in the V$ROWCACHEtable reflect the use and effectiveness of

the data dictionary cache:

PARAMETER Identifies a particular data dictionary item. For each row, the value

in this column is the item prefixed by dc_ . For example, in the row

that contains statistics for file descriptions, this column has the value

dc_files .

Solving Memory Allocation Problems

19-22 Oracle8i Designing and Tuning for Performance

Use the following query to monitor the statistics in the V$ROWCACHE table over a

period of time while your application is running:

SELECT SUM(GETS) "DATA DICTIONARY GETS",
SUM(GETMISSES) "DATA DICTIONARY CACHE GET MISSES"
FROM V$ROWCACHE;

The output of this query could look like this:

DATA DICTIONARY GETS DATA DICTIONARY CACHE GET MISSES
-------------------- --------------------------------
1439044 3120

Examining the data returned by the sample query leads to these observations:

■ The sum of the GETS column indicates that there was a total of 1,439,044

requests for dictionary data.

■ The sum of the GETMISSES column indicates that 3120 of the requests for

dictionary data resulted in cache misses.

■ The ratio of the sums of GETMISSES to GETS is about 0.2%.

Reducing Data Dictionary Cache Misses Examine cache activity by monitoring the sums

of the GETS and GETMISSES columns. For frequently accessed dictionary caches,

the ratio of total GETMISSES to total GETS should be less than 10% or 15%. If the

ratio continues to increase above this threshold while your application is running,

then you should consider increasing the amount of memory available to the data

dictionary cache. To increase the memory available to the cache, increase the value

of the initialization parameter SHARED_POOL_SIZE. The maximum value for this

parameter depends on your operating system.

Tuning the Large Pool and Shared Pool for the MTS Architecture
Oracle recommends using the large pool to allocate MTS-related UGA (User Global

Area), not the shared pool. This is because Oracle uses the shared pool to allocate

SGA (Shared Global Area) memory for other purposes, such as shared SQL and

GETS Shows the total number of requests for information on the

corresponding item. For example, in the row that contains statistics

for file descriptions, this column has the total number of requests for

file descriptions data.

GETMISSES Shows the number of data requests resulting in cache misses.

Solving Memory Allocation Problems

Tuning Memory Allocation 19-23

PL/SQL procedures. Using the large pool, instead of the shared pool, will decrease

fragmentation of the shared pool.

To store MTS-related UGA in the large pool, specify a value for the parameter

LARGE_POOL_SIZE. LARGE_POOL_SIZE does not have a default value, but its

minimal value is 300K. If you do not set a value for LARGE_POOL_SIZE, then

Oracle uses the shared pool for MTS user session memory. Oracle has a default

value for SHARED_POOL_SIZE of 8MB on 32-bit systems and 64MB on 64 bit

systems.

Configure the size of the large pool based on the number of simultaneously active

sessions. Each application requires a different amount of memory for session

information, and your configuration of the large pool or SGA should reflect the

memory requirement. For example, in some applications, MTS requires 200K - 300K

to store session information for each active session. If you anticipate 100 active

sessions simultaneously, then you should configure the large pool to be 30M, or

increase the shared pool accordingly if the large pool is not configured.

Determining an Effective Setting for MTS UGA Storage The exact amount of UGA Oracle

uses depends on each application. To determine an effective setting for the large or

shared pools, observe UGA use for a typical user, and multiply this amount by the

estimated number of user sessions.

Even though use of shared memory increases with MTS, the total amount of

memory use decreases. This is because there are fewer processes, and therefore,

Oracle uses less PGA memory with MTS when compared to dedicated server

environments.

Note: If MTS is used, then Oracle allocates some fixed amount of

memory (about 10K) per configured session from the shared pool,

even if you have configured the large pool. The MTS_CIRCUITS
initialization parameter specifies the maximum number of

concurrent MTS connections that the database allows. For

information on the MTS_CIRCUITS parameter, see Oracle8i
Reference.

Note: For best performance with sorts using MTS, set SORT_
AREA_SIZE and SORT_AREA_RETAINED_SIZE to the same value.

This keeps the sort result in the large pool instead of having it

written to disk.

Solving Memory Allocation Problems

19-24 Oracle8i Designing and Tuning for Performance

Limiting Memory Use Per User Session by Setting PRIVATE_SGA You can set the

PRIVATE_SGA parameter to limit the memory used by each client session from the

SGA. PRIVATE_SGA defines the number of bytes of memory used from the SGA by

a session. However, this parameter is rarely used because most DBAs do not limit

SGA consumption an a user-by-user basis.

Reducing Memory Use With Three-Tier Connections If you have a high number of

connected users, then you can reduce memory use to an acceptable level by

implementing "three-tier connections". This by-product of using a TP monitor is

feasible only with pure transactional models, because locks and uncommitted

DMLs cannot be held between calls. MTS is much less restrictive of the application

design than a TP monitor. It dramatically reduces operating system process count

and context switches by enabling users to share a pool of servers. MTS also

substantially reduces overall memory usage even though more SGA is used in MTS

mode.

The V$SESSTAT View Oracle collects statistics on total memory used by a session and

stores them in the dynamic performance view V$SESSTAT. By default, this view is

available only to the user SYS and to users granted SELECT ANY TABLE system

privilege, such as SYSTEM. These statistics are useful for measuring session memory

use:

To find the value, query V$STATNAME as described in "Technique 3" on page 19-9.

You can use the following query to decide how much larger to make the shared

pool if you are using a Multi-threaded Server. Issue these queries while your

application is running:

See Also: For more information, see the Oracle8i Reference.

Note: On NT, shared servers are implemented as threads instead

of processes.

session UGA memory The value of this statistic is the amount of memory

in bytes allocated to the session.

session UGA memory max The value of this statistic is the maximum amount of

memory in bytes ever allocated to the session.

Solving Memory Allocation Problems

Tuning Memory Allocation 19-25

SELECT SUM(VALUE) || ’ BYTES’ "TOTAL MEMORY FOR ALL SESSIONS"
FROM V$SESSTAT, V$STATNAME
WHERE NAME = ’SESSION UGA MEMORY’
AND V$SESSTAT.STATISTIC# = V$STATNAME.STATISTIC#;

SELECT SUM(VALUE) || ’ BYTES’ "TOTAL MAX MEM FOR ALL SESSIONS"
FROM V$SESSTAT, V$STATNAME
WHERE NAME = ’SESSION UGA MEMORY MAX’
AND V$SESSTAT.STATISTIC# = V$STATNAME.STATISTIC#;

These queries also select from the dynamic performance table V$STATNAME to
obtain internal identifiers for session memory and max session memory. The results of

these queries could look like this:

TOTAL MEMORY FOR ALL SESSIONS

157125 BYTES

TOTAL MAX MEM FOR ALL SESSIONS

417381 BYTES

The result of the first query indicates that the memory currently allocated to all

sessions is 157,125 bytes. This value is the total memory whose location depends on

how the sessions are connected to Oracle. If the sessions are connected to dedicated

server processes, then this memory is part of the memories of the user processes. If

the sessions are connected to shared server processes, then this memory is part of

the shared pool.

The result of the second query indicates that the sum of the maximum sizes of the

memories for all sessions is 417,381 bytes. The second result is greater than the first,

because some sessions have deallocated memory since allocating their maximum

amounts.

You can use the result of either of these queries to determine how much larger to

make the shared pool if you use a Multi-threaded Server. The first value is likely to

be a better estimate than the second, unless nearly all sessions are likely to reach

their maximum allocations at the same time.

Tuning Reserved Space from the Shared Pool
On busy systems, the database may have difficulty finding a contiguous piece of

memory to satisfy a large request for memory. This search may disrupt the behavior

of the shared pool, leading to fragmentation and poor performance.

Solving Memory Allocation Problems

19-26 Oracle8i Designing and Tuning for Performance

You can reserve memory within the shared pool to satisfy large allocations during

operations such as PL/SQL compilation and trigger compilation. Smaller objects do

not fragment the reserved list, helping to ensure that the reserved list has large

contiguous chunks of memory. After the memory allocated from the reserved list is

freed, it returns to the reserved list.

Controlling Space Reclamation of the Shared Pool The ABORTED_REQUEST_THRESHOLD
procedure in the DBMS_SHARED_POOL package lets you limit the size of allocations

allowed to flush the shared pool if the free lists cannot satisfy the request size. The

database incrementally flushes unused objects from the shared pool until there is

sufficient memory to satisfy the allocation request. In most cases, this frees enough

memory for the allocation to complete successfully.

If the database flushes all objects currently not in use on the system without finding

a large enough piece of contiguous memory, then an error occurs. Flushing all

objects, however, affects other users on the system, as well as system performance.

The ABORTED_REQUEST_THRESHOLD procedure lets you localize the error to the

process that could not allocate memory.

Using SHARED_POOL_RESERVED_SIZE The size of the reserved list, and the minimum

size of the objects that can be allocated from the reserved list, can be controlled by

the initialization parameter SHARED_POOL_RESERVED_SIZE. Begin this tuning

only after performing all other shared pool tuning.

The default value for SHARED_POOL_RESERVED_SIZE is 5% of the SHARED_
POOL_SIZE. This means that, by default, the reserved list is always configured.

If SHARED_POOL_RESERVED_SIZE > 1/2 SHARED_POOL_SIZE, then Oracle

signals an error. Ideally, this parameter should be large enough to satisfy any

request scanning for memory on the reserved list without flushing objects from the

shared pool. The amount of operating system memory, however, may constrain the

size of the shared pool. In general, set SHARED_POOL_RESERVED_SIZE to 10% of

SHARED_POOL_SIZE. For most systems, this value is sufficient if you have already

tuned the shared pool. If you increase this value, then the database allows fewer

allocations from the reserved list and requests more memory from the shared pool

list.

Statistics from the V$SHARED_POOL_RESERVED view help you tune these

parameters. On a system with ample free memory to increase the size of the SGA,

the goal is to have REQUEST_MISSES = 0. If the system is constrained for operating

system memory, then the goal is to not have REQUEST_FAILURES or at least

prevent this value from increasing.

Solving Memory Allocation Problems

Tuning Memory Allocation 19-27

If you cannot achieve this, then increase the value for SHARED_POOL_RESERVED_
SIZE . Also, increase the value for SHARED_POOL_SIZE by the same amount,

because the reserved list is taken from the shared pool.

SHARED_POOL_ RESERVED_SIZE Too Small The reserved pool is too small when the

value for REQUEST_FAILURES is more than zero and increasing. To resolve this,

increase the value for the SHARED_POOL_RESERVED_SIZE and SHARED_POOL_
SIZE accordingly. The settings you select for these depend on your system’s SGA

size constraints.

This option increases the amount of memory available on the reserved list without

having an effect on users who do not allocate memory from the reserved list. As a

second option, reduce the number of allocations allowed to use memory from the

reserved list; however, doing so increases the normal shared pool, which may have

an effect on other users on the system.

SHARED_POOL_ RESERVED_SIZE Too Large Too much memory may have been

allocated to the reserved list if:

■ REQUEST_MISS = 0 or not increasing

■ FREE_MEMORY = > 50% of SHARED_POOL_RESERVED_SIZE minimum

If either of these is true, then decrease the value for SHARED_POOL_RESERVED_
SIZE .

SHARED_POOL_SIZE Too Small The V$SHARED_POOL_RESERVEDfixed table can also

indicate when the value for SHARED_POOL_SIZE is too small. This may be the case

if REQUEST_FAILURES > 0 and increasing.

If you have enabled the reserved list, then decrease the value for SHARED_POOL_
RESERVED_SIZE. If you have not enabled the reserved list, then you could increase

SHARED_POOL_SIZE.

Tuning the Buffer Cache
You can use or bypass the Oracle buffer cache for particular operations. Oracle

bypasses the buffer cache for sorting and parallel reads. For operations that use the

buffer cache, this section explains:

■ Evaluating Buffer Cache Activity with the Cache Hit Ratio

See Also: For details on setting the LARGE_POOL_SIZE
parameter, see Oracle8i Reference.

Solving Memory Allocation Problems

19-28 Oracle8i Designing and Tuning for Performance

■ Increasing the Cache Hit Ratio by Reducing Buffer Cache Misses

■ Removing Unnecessary Buffers when Cache Hit Ratio Is High

■ Accommodating LOBs in the Buffer Cache

After tuning private SQL and PL/SQL areas and the shared pool, you can devote

the remaining available memory to the buffer cache. It may be necessary to repeat

the steps of memory allocation after the initial pass through the process. Subsequent

passes allow you to make adjustments in earlier steps based on changes in later

steps. For example, if you increase the size of the buffer cache, then you may need

to allocate more memory to Oracle to avoid paging and swapping.

Evaluating Buffer Cache Activity with the Cache Hit Ratio
Physical I/O takes a significant amount of time, typically in excess of 15

milliseconds. Physical I/O also increases the CPU resources required, owing to the

path length in device drivers and operating system event schedulers. Your goal is to

reduce this overhead as much as possible by making it more likely that the required

block is in memory. The extent to which you achieve this is measured using the

cache hit ratio. Within Oracle, this term applies specifically to the database buffer

cache.

Calculating the Cache Hit Ratio Oracle collects statistics that reflect data access and

stores them in the dynamic performance view V$SYSSTAT. By default, this table is

available only to the user SYS and to users, such as SYSTEM, who have the SELECT
ANY TABLE system privilege. Information in the V$SYSSTAT view can also be

obtained through the Simple Network Management Protocol (SNMP).

These statistics are useful for tuning the buffer cache:

Monitor these statistics as follows over a period of time while your application is

running:

SELECT NAME, VALUE
FROM V$SYSSTAT
WHERE NAME IN (’DB BLOCK GETS’, ’CONSISTENT GETS’, ’PHYSICAL READS’);

DB BLOCK GETS,
CONSISTENT GETS

The sum of these values is the total number of requests for data.

This value includes requests satisfied by access to buffers in

memory.

PHYSICAL READS This statistic is the total number of requests for data resulting in

access to datafiles on disk.

Solving Memory Allocation Problems

Tuning Memory Allocation 19-29

The output of this query could look like the following:

NAME VALUE
-- ----------
DB BLOCK GETS 85792
CONSISTENT GETS 278888
PHYSICAL READS 23182

Calculate the hit ratio for the buffer cache with this formula:

Hit Ratio = 1 - (physical reads / (db block gets + consistent gets))

Based on the statistics obtained by the example query, the buffer cache hit ratio is

94%.

Buffer Pinning Statistics These statistics are useful in evaluating buffer pinning:

These statistics are not incremented when a client performs such a check before

releasing it, because the client does not intend to use the buffer in this case.

These statistics provide a measure of how often a long consistent read pin on a

buffer is beneficial. If the client is able to reuse the pinned buffer many times, then it

indicates that it is useful to have the buffer pinned.

Evaluating the Cache Hit Ratio When looking at the cache hit ratio, remember that

blocks encountered during a "long" full table scan are not put at the head of the

LRU list; therefore, repeated scanning does not cause the blocks to be cached.

Repeated scanning of the same large table is rarely the most efficient approach. It

may be better to perform all of the processing in a single pass, even if this means

that the overnight batch suite can no longer be implemented as a SQL*Plus script

that contains no PL/SQL. The solution lies at the design or implementation level.

Production sites running with thousands, or tens of thousands, of buffers rarely use

memory effectively. In any large database running OLTP applications, in any given

unit of time, most rows are accessed either one or zero times. On this basis, there is

little point in keeping the row, or the block that contains it, in memory for very long

following its use.

Buffer pinned This statistic measures the number of times a buffer was

already pinned by a client when a client checks to determine if

the buffer it wants is already pinned.

Buffer not pinned This statistic measures the number of times the buffer was not

pinned by the client when a client checks to determine if the

buffer it wants is already pinned.

Solving Memory Allocation Problems

19-30 Oracle8i Designing and Tuning for Performance

Finally, the relationship between the cache hit ratio and the number of buffers is far

from a smooth distribution. When tuning the buffer pool, avoid the use of

additional buffers that contribute little or nothing to the cache hit ratio. As

illustrated in Figure 19–2, only narrow bands of values of DB_BLOCK_BUFFERS are

worth considering.

Figure 19–2 Buffer Pool Cache Hit Ratio

As a general rule, increase DB_BLOCK_BUFFERS when:

■ The cache hit ratio is less than 0.9.

■ There is no evidence of undue page faulting.

■ The previous increase of DB_BLOCK_BUFFERS was effective.

Note: A common mistake is to continue increasing the value of

DB_BLOCK_BUFFERS. Such increases have no effect if you are

doing full table scans or other operations that do not use the buffer

cache.

Buffers

P
hy

s
I/O

 R
at

io

~0.5

~0.1

Actual

Intuitive

Solving Memory Allocation Problems

Tuning Memory Allocation 19-31

Determining which Buffers are in the Pool The CATPARR.SQL script creates the view

V$BH, which shows the file number and block number of blocks that currently

reside within the SGA. Although CATPARR.SQL is primarily intended for use in

parallel server environments, you can run it as SYSeven if you’re operating a single

instance environment.

Perform a query similar to the following:

SELECT file#, COUNT(block#), COUNT (DISTINCT file# || block#)
FROM V$BH
GROUP BY file#;

Increasing the Cache Hit Ratio by Reducing Buffer Cache Misses
If your hit ratio is low, or less than 60% or 70%, then you may want to increase the

number of buffers in the cache to improve performance. To make the buffer cache

larger, increase the value of the initialization parameter DB_BLOCK_BUFFERS.

Removing Unnecessary Buffers when Cache Hit Ratio Is High
If your hit ratio is high, then your cache is probably large enough to hold your most

frequently accessed data. In this case, you may be able to reduce the cache size and

still maintain good performance. To make the buffer cache smaller, reduce the value

of the initialization parameter DB_BLOCK_BUFFERS. The minimum value for this

parameter is 50, but it is unusual for systems to run with less than 1,000. You can

use any leftover memory for other Oracle memory structures, for example, if you’re

using parallel query.

Accommodating LOBs in the Buffer Cache
Both temporary and permanent LOBs can use the buffer cache.

Temporary LOBs created with the CACHE parameter set to TRUE move through the

buffer cache. Temporary LOBs created with the CACHE parameter set to FALSE are

read directly from, and written directly to, disk.

You can use durations for automatic cleanup to save time and effort. Also, it is more

efficient for the database to end a duration and free all temporary LOBs associated

with a duration than it is to free each one explicitly.

Temporary LOBs create entirely new copies of themselves on assignments. For

example:

Solving Memory Allocation Problems

19-32 Oracle8i Designing and Tuning for Performance

LOCATOR1 BLOB;
LOCATOR2 BLOB;
DBMS_LOB.CREATETEMPORARY (LOCATOR1,TRUE,DBMS_LOB.SESSION);
 LOCATOR2 := LOCATOR;

The above code causes a copy of the temporary LOB pointed to by LOCATOR1 to be

created. You may also want to consider using pass by reference semantics in

PL/SQL.

Or, in OCI, you may declare pointers to locators as in the following example:

OCILOBDESCRIPTOR *LOC1;
OCILOBDESCRIPTOR *LOC2;
OCILOBCREATETEMPORARY (LOC1,TRUE,OCIDURATIONSESSION);
LOC2 = LOC1;

Avoid using OCILobAssign () statements, because these also cause deep copies of

temporary LOBs. In other words, a new copy of the temporary LOB is created.

Pointer assignment does not cause deep copies; it just causes pointers to point to the

same thing.

Tuning Multiple Buffer Pools
This section covers:

■ Overview of the Multiple Buffer Pool Feature

■ When to Use Multiple Buffer Pools

■ Tuning the Buffer Cache Using Multiple Buffer Pools

■ Enabling Multiple Buffer Pools

■ Using Multiple Buffer Pools

■ Dictionary Views Showing Default Buffer Pools

■ Sizing Each Buffer Pool

■ Identifying and Eliminating LRU Latch Contention

Overview of the Multiple Buffer Pool Feature
Schema objects are referenced with varying usage patterns; therefore, their cache

behavior may be quite different. Multiple buffer pools enable you to address these

differences. You can use a KEEP buffer pool to maintain objects in the buffer cache

and a RECYCLE buffer pool to prevent objects from consuming unnecessary space

Solving Memory Allocation Problems

Tuning Memory Allocation 19-33

in the cache. When an object is allocated to a cache, all blocks from that object are

placed in that cache. Oracle maintains a DEFAULT buffer pool for objects that have

not been assigned to one of the buffer pools.

Each buffer pool in Oracle comprises a number of working sets. A different number

of sets can be allocated for each buffer pool. All sets use the same LRU (Least

Recently Used) replacement policy. A strict LRU aging policy provides good hit

rates in most cases, but you can sometimes improve hit rates by providing some

hints.

The main problem with the LRU list occurs when a very large segment is accessed

frequently in a random fashion. Here, very large means large compared to the size of

the cache. Any single segment that accounts for a substantial portion (more than

10%) of nonsequential physical reads is probably one of these segments. Random

reads to such a large segment can cause buffers that contain data for other segments

to be aged out of the cache. The large segment ends up consuming a large

percentage of the cache, but does not benefit from the cache.

Very frequently accessed segments are not affected by large segment reads, because

their buffers are warmed frequently enough that they do not age out of the cache.

The main trouble occurs with "warm" segments that are not accessed frequently

enough to survive the buffer flushing caused by the large segment reads.

You have two options for solving this problem. One option is to move the large

segment into a separate RECYCLE cache, so that it does not disturb the other

segments. The RECYCLE cache should be smaller than the DEFAULT buffer pool,

and it should reuse buffers more quickly than the DEFAULT buffer pool.

The other option is to move the small warm segments into a separate KEEP cache

that is not used at all for large segments. The KEEP cache can be sized to minimize

misses in the cache. You can make the response times for specific queries more

predictable by putting the segments accessed by the queries in the KEEP cache to

ensure that they are never aged out.

When to Use Multiple Buffer Pools
When you examine system I/O performance, you should analyze the schema and

determine whether multiple buffer pools would be advantageous. Consider a KEEP
cache if there are small, frequently accessed tables that require quick response time.

Very large tables with random I/O are good candidates for a RECYCLE cache.

Use the following steps to determine the percentage of the cache used by an

individual object at a given point in time:

Solving Memory Allocation Problems

19-34 Oracle8i Designing and Tuning for Performance

1. Find the Oracle internal object number of the segment by entering the

following:

SELECT DATA_OBJECT_ID, OBJECT_TYPE
FROM USER_OBJECTS
WHERE OBJECT_NAME = '<SEGMENT_NAME>';

Because two objects can have the same name (if they are different types of

objects), you can use the OBJECT_TYPEcolumn to identify the object of interest.

If the object is owned by another user, then use the view DBA_OBJECTS or

ALL_OBJECTS instead of USER_OBJECTS.

2. Find the number of buffers in the buffer cache for SEGMENT_NAME:

SELECT COUNT(*) BUFFERS
FROM V$BH
WHERE OBJD = <DATA_OBJECT_ID>;

where DATA_OBJECT_ID is from Step 1.

3. Find the total number of buffers in the instance:

SELECT VALUE "TOTAL BUFFERS"
FROM V$PARAMETER
WHERE NAME = 'DB_BLOCK_BUFFERS';

4. Calculate the ratio of buffers to total buffers, to obtain the percentage of the

cache currently used by SEGMENT_NAME.

If the number of local block gets equals the number of physical reads for statements

involving such objects, then consider using a RECYCLEcache, because of the limited

usefulness of the buffer cache for the objects.

Note: This technique works only for a single segment. You must

run the query for each partition for a partitioned object.

% cache used by segment_name =
buffers (Step 2)

total buffers (Step 3)

Solving Memory Allocation Problems

Tuning Memory Allocation 19-35

Tuning the Buffer Cache Using Multiple Buffer Pools
When you partition your buffer cache into multiple buffer pools, each buffer pool

can be used for blocks from objects that are accessed in different ways. If the blocks

of a particular object are likely to be reused, then you should pin that object in the

buffer cache so that the next use of the block does not require disk I/O. Conversely,

if a block probably will not be reused within a reasonable period of time, then

discard it to make room for more frequently used blocks.

By properly allocating objects to appropriate buffer pools, you can:

■ Reduce or eliminate I/Os.

■ Isolate an object in the cache.

■ Restrict or limit an object to a part of the cache.

Enabling Multiple Buffer Pools
You can create multiple buffer pools for each database instance. The same set of

buffer pools need not be defined for each instance of the database. Among

instances, the buffer pools may be different sizes or not defined at all. Tune each

instance separately.

Defining New Buffer Pools You can define each buffer pool using the BUFFER_POOL_
name initialization parameter. You can specify two attributes for each buffer pool:

the number of buffers in the buffer pool, and the number of LRU latches allocated

to the buffer pool.

The initialization parameters used to define buffer pools are:

For example:

BUFFER_POOL_KEEP Defines the KEEP buffer pool.

BUFFER_POOL_RECYCLE Defines the RECYCLE buffer pool.

DB_BLOCK_BUFFERS Defines the number of buffers for the database

instance. Each individual buffer pool is created

from this total amount with the remainder

allocated to the DEFAULT buffer pool.

DB_BLOCK_LRU_LATCHES Defines the number of LRU latches for the

entire database instance. Each buffer pool

defined takes from this total in a fashion

similar to DB_BLOCK_BUFFERS.

Solving Memory Allocation Problems

19-36 Oracle8i Designing and Tuning for Performance

BUFFER_POOL_KEEP = #buffers
 |(buffers:#buffers, lru_latches:#latches)
 |(lru_latches:#latches, buffers:#buffers)
 |(buffers:#buffers)

The size of each buffer pool is subtracted from the total number of buffers defined

for the entire buffer cache (that is, the value of the DB_BLOCK_BUFFERS
parameter). The aggregate number of buffers in all buffer pools cannot, therefore,

exceed this value. Likewise, the number of LRU latches allocated to each buffer pool

is taken from the total number allocated to the instance by the DB_BLOCK_LRU_
LATCHES parameter. If either constraint is violated, then Oracle displays an error,

and the database is not mounted.

The minimum number of buffers you must allocate to each buffer pool is 50 times

the number of LRU latches. For example, a buffer pool with 3 LRU latches must

have at least 150 buffers.

Oracle automatically defines three buffer pools: KEEP, RECYCLE, and DEFAULT. The

DEFAULT buffer pool always exists. You do not explicitly define the size of the

DEFAULT buffer pool or the number of working sets assigned to the DEFAULT
buffer pool. Rather, each value is inferred from the total number allocated minus

the number allocated to every other buffer pool. There is no requirement that any

one buffer pool be defined for another buffer pool to be used.

Using Multiple Buffer Pools
This section describes how to establish a DEFAULT buffer pool for an object. All

blocks for the object go in the specified buffer pool.

The BUFFER_POOL clause is used to define the DEFAULT buffer pool for an object.

This clause is valid for CREATE and ALTER table, cluster, and index DDL

statements. The buffer pool name is case insensitive. The blocks from an object

without an explicitly set buffer pool go into the DEFAULT buffer pool.

If a buffer pool is defined for a partitioned table or index, then each partition of the

object inherits the buffer pool from the table or index definition unless you override

it with a specific buffer pool.

When the DEFAULT buffer pool of an object is changed using the ALTER statement,

all buffers currently containing blocks of the altered segment remain in the buffer

pool they were in before the ALTER statement. Newly loaded blocks and any blocks

that have aged out and are reloaded go into the new buffer pool.

The syntax of the BUFFER_POOL clause is: BUFFER_POOL {KEEP | RECYCLE |
DEFAULT}

Solving Memory Allocation Problems

Tuning Memory Allocation 19-37

For example:

BUFFER_POOL KEEP

or

BUFFER_POOL RECYCLE

The following DDL statements accept the buffer pool clause:

■ CREATE TABLE table name... STORAGE(buffer_pool_clause)

A buffer pool is not permitted for a clustered table. The buffer pool for a

clustered table is specified at the cluster level.

For an index-organized table, a buffer pool can be defined on both the index

and the overflow segment.

For a partitioned table, a buffer pool can be defined on each partition. The

buffer pool is specified as a part of the storage clause for each partition.

For example:

CREATE TABLE table_name (col_1 NUMBER, col_2 NUMBER)
PARTITION BY RANGE (col_1)
(PARTITION ONE VALUES LESS THAN (10)
STORAGE (INITIAL 10K BUFFER_POOL RECYCLE),
PARTITION TWO VALUES LESS THAN (20) STORAGE (BUFFER_POOL KEEP));

■ CREATE INDEXindex name... STORAGE (buffer_pool_clause)

For a global or local partitioned index, a buffer pool can be defined on each

partition.

■ CREATE CLUSTERcluster_name...STORAGE (buffer_pool_clause)

■ ALTER TABLEtable_name... STORAGE (buffer_pool_clause)

A buffer pool can be defined during simple ALTER TABLE, MODIFY
PARTITION, MOVE PARTITION, ADD PARTITION, and SPLIT PARTITION
statements for both new partitions.

■ ALTER INDEXindex_name... STORAGE (buffer_pool_clause)

A buffer pool can be defined during simple ALTER INDEX, REBUILD, MODIFY
PARTITION, SPLIT PARTITION statements for both new partitions, and

rebuild partitions.

■ ALTER CLUSTERcluster_name... STORAGE (buffer_pool_clause)

Solving Memory Allocation Problems

19-38 Oracle8i Designing and Tuning for Performance

Dictionary Views Showing Default Buffer Pools
The following dictionary views have a BUFFER POOL column indicating the

DEFAULT buffer pool for the given object.

The views V$BUFFER_POOL_STATISTICS and GV$BUFFER_POOL_STATISTICS
describe the buffer pools allocated on the local instance and entire database,

respectively. To create these views you must run the CATPERF.SQL file.

Sizing Each Buffer Pool
This section explains how to size the following:

■ KEEP Buffer Pool

■ RECYCLE Buffer Pool

KEEP Buffer Pool The goal of the KEEP buffer pool is to retain objects in memory,

thus avoiding I/O operations. The size of the KEEP buffer pool, therefore, depends

on the objects that you want to keep in the buffer cache. You can compute an

approximate size for the KEEPbuffer pool by adding together the sizes of all objects

dedicated to this pool. Use the ANALYZE statement to obtain the size of each object.

Although the ESTIMATE clause provides a rough measurement of sizes, the

COMPUTE STATISTICS clause is preferable because it provides the most accurate

value possible.

USER_CLUSTERS ALL_CLUSTERS DBA_CLUSTERS

USER_INDEXES ALL_INDEXES DBA_INDEXES

USER_SEGMENTS DBA_SEGMENTS

USER_TABLES USER_OBJECT_TABLES USER_ALL_TABLES

ALL_TABLES ALL_OBJECT_TABLES ALL_ALL_TABLES

DBA_TABLES DBA_OBJECT_TABLES DBA_ALL_TABLES

USER_PART_TABLES ALL_PART_TABLES DBA_PART_TABLES

USER_PART_INDEXES ALL_PART_INDEXES DBA_PART_INDEXES

USER_TAB_PARTITIONS ALL_TAB_PARTITIONS DBA_TAB_PARTITIONS

USER_IND_PARTITIONS ALL_IND_PARTITIONS DBA_IND_PARTITIONS

Solving Memory Allocation Problems

Tuning Memory Allocation 19-39

The buffer pool hit ratio can be determined using the formula:

Where the values of physical reads, block gets, and consistent gets can be obtained

for the KEEP buffer pool from the following query:

SELECT PHYSICAL_READS, BLOCK_GETS, CONSISTENT_GETS
FROM V$BUFFER_POOL_STATISTICS WHERE NAME = ’KEEP’;

The KEEP buffer pool has a 100% hit ratio only after the buffers have been loaded

into the buffer pool. Therefore, do not compute the hit ratio until after the system

runs for a while and achieves steady-state performance. Calculate the hit ratio by

taking two snapshots of system performance at different times using the above

query. Subtract the newest values from the older values for physical reads, block

gets, and consistent gets, and use these values to compute the hit ratio.

A 100% buffer pool hit ratio may not be optimal. Often, you can decrease the size of

your KEEPbuffer pool and still maintain a sufficiently high hit ratio. Allocate blocks

removed from use for the KEEP buffer pool to other buffer pools.

Each object kept in memory results in a trade-off: it is beneficial to keep frequently

accessed blocks in the cache, but retaining infrequently used blocks results in less

space for other, more active blocks.

RECYCLE Buffer Pool The goal of the RECYCLEbuffer pool is to eliminate blocks from

memory as soon as they are no longer needed. If an application accesses the blocks

of a very large object in a random fashion, then there is little chance of reusing a

block stored in the buffer pool before it is aged out. This is true regardless of the

size of the buffer pool (given the constraint of the amount of available physical

memory). Because of this, the object’s blocks should not be cached; those cache

buffers can be allocated to other objects.

Be careful, however, not to discard blocks from memory too quickly. If the buffer

pool is too small, then blocks may age out of the cache before the transaction or SQL

Note: You must first run the CATPERF.SQL script.

Note: If an object grows in size, then it may no longer fit in the

KEEP buffer pool. You will begin to lose blocks out of the cache.

hit ratio = 1 -
physical reads

(block gets + consistent gets)

Solving Memory Allocation Problems

19-40 Oracle8i Designing and Tuning for Performance

statement has completed execution. For example, an application may select a value

from a table, use the value to process some data, and then update the record. If the

block is removed from the cache after the select statement, then it must be read

from disk again to perform the update. The block should be retained for the

duration of the user transaction.

By executing statements with a SQL statement tuning tool, such as Oracle Trace, or

with the SQL trace facility enabled and running TKPROF on the trace files, you can

get a listing of the total number of data blocks physically read from disk. (This

number appears in the "disk" column in the TKPROF output.) The number of disk

reads for a particular SQL statement should not exceed the number of disk reads of

the same SQL statement with all objects allocated from the DEFAULT buffer pool.

Two other statistics can tell you whether the RECYCLE buffer pool is too small. If

the "free buffer waits" statistic ever becomes excessive, then the pool is probably too

small. Likewise, the number of "log file sync" wait events will increase. One way to

size the RECYCLE buffer pool is to run the system with the RECYCLE buffer pool

disabled. At steady state, the number of buffers in the DEFAULT buffer pool being

consumed by segments that would normally go in the RECYCLE buffer pool can be

divided by four. Use the result as a value for sizing the RECYCLE cache.

Identifying Segments to Put into the KEEP and RECYCLE Buffer Pools A good candidate

for a segment to put into the RECYCLE buffer pool is a segment that is at least twice

the size of the DEFAULT buffer pool and has incurred at least a few percent of the

total I/Os in the system.

A good candidate for a segment to put into the KEEP pool is a segment that is

smaller than 10% of the size of the DEFAULT buffer pool and has incurred at least

1% of the total I/Os in the system.

The trouble with these rules is that it can sometimes be difficult to determine the

number of I/Os per segment if a tablespace has more than one segment. One way to

solve this problem is to sample the I/Os that occur over a period of time by

selecting from V$SESSION_WAIT to determine a statistical distribution of I/Os per

segment.

Identifying and Eliminating LRU Latch Contention
LRU latches regulate the least recently used buffer lists used by the buffer cache. If

there is latch contention, then processes are waiting and spinning before obtaining

the latch.

You can set the overall number of latches in the database instance using the DB_
BLOCK_LRU_LATCHES parameter. When each buffer pool is defined, a number of

Solving Memory Allocation Problems

Tuning Memory Allocation 19-41

these LRU latches can be reserved for the buffer pool. The buffers of a buffer pool

are divided evenly between the LRU latches of the buffer pool.

To determine whether your system is experiencing latch contention, begin by

determining whether there is LRU latch contention for any individual latch.

SELECT CHILD#, SLEEPS / GETS RATIO
FROM V$LATCH_CHILDREN
WHERE NAME = ’cache buffers lru chain’;

The miss ratio for each LRU latch should be less than 3%. A ratio above 3% for any

particular latch is indicative of LRU latch contention and should be addressed. You

can determine the buffer pool to which the latch is associated as follows:

SELECT NAME
FROM V$BUFFER_POOL
WHERE lo_setid <= child_latch_number
AND hi_setid >= child_latch_number ;

Where child_latch_number is the child# from the previous query.

You can alleviate LRU latch contention by increasing the overall number of latches

in the system and the number of latches allocated to the buffer pool indicated in the

second query.

The maximum number of latches allowed is the lower of:

number_of_cpus * 2 * 3 or number_of_buffers / 50

This limitation exists because no set can have fewer than 50 buffers. If you specify a

value larger than the maximum, then Oracle automatically resets the number of

latches to the largest value allowed by the formula.

For example, if the number of CPUs is 4 and the number of buffers is 200, then a

maximum of 4 latches would be allowed (minimum of 4*2*3, 200/50). If the number

of CPUs is 4 and the number of buffers is 10000, then the maximum number of

latches allowed is 24 (minimum of 4*2*3, 10000/50).

Tuning Sort Areas
If large sorts occur frequently, then consider increasing the value of the parameter

SORT_AREA_SIZE with either or both of two goals in mind:

■ Increase the number of sorts that can be conducted entirely within memory.

■ Speed up those sorts that cannot be conducted entirely within memory.

Solving Memory Allocation Problems

19-42 Oracle8i Designing and Tuning for Performance

Large sort areas can be used effectively if you combine a large SORT_AREA_SIZE
with a minimal SORT_AREA_RETAINED_SIZE. If memory is not released until the

user disconnects from the database, then large sort work areas could cause

problems. The SORT_AREA_RETAINED_SIZE parameter lets you specify the level

down to which memory should be released as soon as possible following the sort.

Set this parameter to zero if large sort areas are being used in a system with many

simultaneous users.

SORT_AREA_RETAINED_SIZE is maintained for each sort operation in a query.

Thus, if 4 tables are being sorted for a sort merge, then Oracle maintains 4 areas of

SORT_AREA_RETAINED_SIZE.

Reallocating Memory
After resizing your Oracle memory structures, re-evaluate the performance of the

library cache, the data dictionary cache, and the buffer cache. If you have reduced

the memory consumption of any of these structures, then you may want to allocate

more memory to another. For example, if you have reduced the size of your buffer

cache, then you may want to use the additional memory by for the library cache.

Tune your operating system again. Resizing Oracle memory structures may have

changed Oracle memory requirements. In particular, be sure paging and swapping

are not excessive. For example, if the size of the data dictionary cache or the buffer

cache has increased, then the SGA may be too large to fit into main memory. In this

case, the SGA could be paged or swapped.

While reallocating memory, you may determine that the optimum size of Oracle

memory structures requires more memory than your operating system can provide.

In this case, you may improve performance even further by adding more memory

to your computer.

Reducing Total Memory Usage
If the overriding performance problem is that the server simply does not have

enough memory to run the application as currently configured, and the application

is logically a single application (that is, it cannot readily be segmented or

distributed across multiple servers), then only two possible solutions exist:

■ Increase the amount of memory available.

■ Decrease the amount of memory used.

See Also: For more information, see the "Tuning Sorts" section in

Chapter 20, "Tuning I/O".

Solving Memory Allocation Problems

Tuning Memory Allocation 19-43

The most dramatic reductions in server memory usage always come from reducing

the number of database connections, which in turn can resolve issues relating to the

number of open network sockets and the number of operating system processes.

However, to reduce the number of connections without reducing the number of

users, the connections that remain must be shared. This forces the user processes to

adhere to a paradigm in which every message request sent to the database describes

a complete or atomic transaction.

Writing applications to conform to this model is not necessarily either restrictive or

difficult, but it is certainly different. Conversion of an existing application, such as

an Oracle Forms suite, to conform is not normally possible without a complete

rewrite.

The Oracle Multi-threaded Server architecture is an effective solution for reducing

the number of server operating system processes. MTS is also quite effective at

reducing overall memory requirements. You can also use MTS to reduce the

number of network connections when you use MTS with connection pooling and

connection concentration.

Shared connections are possible in Oracle Forms environments when you use an

intermediate server that is also a client. In this configuration, use the DBMS_PIPE
package to transmit atomic requests from the user’s individual connection on the

intermediate server to a shared daemon in the intermediate server. The daemon, in

turn, owns a connection to the central server.

Solving Memory Allocation Problems

19-44 Oracle8i Designing and Tuning for Performance

Tuning I/O 20-1

20
Tuning I/O

This chapter explains how to avoid input/output (I/O) bottlenecks that could

prevent Oracle from performing at its maximum potential.

This chapter contains the following sections:

■ Understanding I/O Problems

■ Detecting I/O Problems

■ Solving I/O Problems

Understanding I/O Problems

20-2 Oracle8i Designing and Tuning for Performance

Understanding I/O Problems
The performance of many software applications is inherently limited by disk

input/output (I/O). Often, CPU activity must be suspended while I/O activity

completes. Such an application is said to be I/O bound. Oracle is designed so that

performance is not limited by I/O.

Tuning I/O can enhance performance if a disk containing database files is operating

at its capacity. However, tuning I/O cannot help performance in CPU bound
cases—or cases in which your computer’s CPUs are operating at their capacity.

This section introduces I/O performance issues. It covers:

■ Tuning I/O: Top Down and Bottom Up

■ Analyzing I/O Requirements

■ Planning File Storage

■ Choosing Data Block Size

■ Evaluating Device Bandwidth

Tuning I/O: Top Down and Bottom Up
When designing a new system, you should analyze I/O needs from the top down,

determining what resources you require in order to achieve the desired

performance.

For an existing system, you should approach I/O tuning from the bottom up:

1. Determine the number of disks on the system.

2. Determine the number of disks that are being used by Oracle.

3. Determine the type of I/O that your system performs.

4. Ascertain whether the I/Os are going to the file system or to raw devices.

See Also: It is important to tune I/O after following the

recommendations presented in Chapter 19, "Tuning Memory

Allocation". That chapter explains how to allocate memory so as to

reduce I/O to a minimum. After reaching this minimum, follow the

instructions in this chapter to achieve more efficient I/O

performance.

Understanding I/O Problems

Tuning I/O 20-3

5. Determine how to spread objects over multiple disks, using either manual

striping or striping software.

6. Calculate the level of performance you can expect.

Analyzing I/O Requirements
This section explains how to determine your system’s I/O requirements.

1. Calculate the total throughput your application requires.

To begin, figure out the number of reads and writes involved in each

transaction, and distinguish the objects against which each operation is

performed.

In an OLTP application, for example, each transaction might involve:

■ 1 read from object A.

■ 1 read from object B.

■ 1 write to object C.

So, one transaction requires 2 reads and 1 write, all to different objects.

2. Define the I/O performance target for this application by specifying the

number of transactions per second (tps) that the system must support.

With this example, the designer might specify that 100 tps constitutes an

acceptable level of performance. To achieve this, the system must be able to

perform 300 I/Os per second:

■ 100 reads from object A.

■ 100 reads from object B.

■ 100 writes to object C.

3. Determine the number of disks needed to achieve this level of performance.

To do this, ascertain the number of I/Os that each disk can perform per second.

This number depends on three factors:

■ The speed of your particular disk hardware.

■ Whether the I/Os needed are reads or writes.

■ Whether you are using the file system or raw devices.

In general, disk speed tends to have the following characteristics:

Understanding I/O Problems

20-4 Oracle8i Designing and Tuning for Performance

4. Write the relative speed per operation of your disks in a chart like the one

shown in Table 20–2:

The disks in the current example have characteristics as shown in Table 20–3:

5. Calculate the number of disks you need to achieve your I/O performance target

using a chart like the one shown in Table 20–4:

Table 20–1 Relative Disk Speed

Disk Speed File System Raw Devices

Reads per second fast slow

Writes per second slow fast

Table 20–2 Disk I/O Analysis Worksheet

Disk Speed File System Raw Devices

Reads per second

Writes per second

Table 20–3 Sample Disk I/O Analysis

Disk Speed File System Raw Devices

Reads per second 50 45

Writes per second 20 50

Table 20–4 Disk I/O Requirements Worksheet

Object

If Stored on File System If Stored on Raw Devices

R/W
Needed
per Sec.

Disk R/W
Capabil.
per Sec.

Disks
Needed

R/W
Needed
per Sec.

Disk R/W
Capabil.
per Sec.

Disks
Needed

A

B

C

Disks Req’d

Understanding I/O Problems

Tuning I/O 20-5

Table 20–5 shows the values from this example:

Planning File Storage
This section explains the following:

■ How to determine the types of I/O operations required by your application.

■ How to choose between file system and raw devices for your database files.

Design Approach
Use the following approach to design file storage:

1. Identify the operations required by your application.

2. Test the performance of your system's disks and controllers for the different

operations required by your application.

3. Finally, evaluate what kind of disk and controller layout gives you the best

performance for the operations that predominate in your application.

These steps are described in detail under the following headings.

Identifying the Required Read/Write Operations
Evaluate your application to determine how often it requires each type of I/O

operation (sequential read, sequential write, random read, and random write).

Table 20–6 shows the types of read and write operations performed by each of the

background processes, by foreground processes, and by parallel execution servers.

Table 20–5 Sample Disk I/O Requirements

Object

If Stored on File System If Stored on Raw Devices

R/W
Needed
per Sec.

Disk R/W
Capabil.
per Sec.

Disks
Needed

R/W
Needed
per Sec.

Disk R/W
Capabil.
per Sec.

Disks
Needed

A 100 reads 50 reads 2 disks 100 reads 45 reads 3 disks

B 100 reads 50 reads 2 disks 100 reads 45 reads 3 disks

C 100 writes 20 writes 5 disks 100 writes 50 writes 2 disks

Disks Req’d 9 disks 8 disks

Understanding I/O Problems

20-6 Oracle8i Designing and Tuning for Performance

In this discussion, a sample application might involve 50% random reads, 25%

sequential reads, and 25% random writes.

Sequential I/O Sequential I/O is characterized by high data rates. For example, a

single DSS type I/O may access hundreds of blocks. Sequential access is efficient,

because these accesses allow data prefetches and cause limited head positioning.

This provides high throughputs.

Because DSS systems may not do a large number of transactions per second, it is

better to estimate the size of the I/O in terms of bytes per second. For example:

(estimate # of physical blocks in transaction * Oracle block size) = byte/second

Using this value and the theoretical limits for disk and controller throughputs can

help you determine the number of drives/controllers to implement.

The goal in optimizing sequential I/O is to maximize throughput by involving the

maximum number of disks in the I/O request. The more disks involved, the greater

aggregate throughput. For example:

4 disks/array @ 5Mb/second = (20 Mb/second)I/O call

Random I/O Random I/O is characterized by high I/O rate in OLTP. It requires

frequent seeks with small I/O sizes.

The following example determines the application load for OLTP (gets the number

and size of the transactions):

Table 20–6 Read/Write Operations Performed by Oracle Processes

Operation

Process

LGWR DBWn ARCH SMON PMON CKPT Foreground
PQ
Processes

Sequential Read X X X X X

Sequential Write X X X X X

Random Read X X

Random Write X

Note: Most disk drives can handle 50-70 I/O per second and can

transfer approximately 5Mb/sec.

Understanding I/O Problems

Tuning I/O 20-7

(# of blocks accessed/transaction) * (# of transactions/second) = blocks/second

Using this value and the theoretical limits for disk and controller throughputs can

help you determine the number of drives per controllers to implement.

The goal in optimizing random I/O is to reduce disk hot spots and limit seek times.

Testing the Performance of Your Disks
This section illustrates relative performance of read/write operations by a

particular test system.

Table 20–7 shows the speed of sequential read in milliseconds per I/O on a test

system.

Note: Values provided in this example do not constitute a general

rule. They were generated by an actual UNIX test system using

particular disks. These figures differ significantly for different platforms
and different disks! To make accurate judgments, test your own system
using an approach similar to the one demonstrated in this section.

Or, contact your system vendor for information on disk

performance for the different operations.

Table 20–7 Block Size and Speed of Sequential Read (Sample Data)

Block Size

Speed of Sequential Read on:

Raw Device UNIX File System (UFS)

512 bytes 1.4 0.4

1KB 1.4 0.3

2KB 1.5 0.6

4KB 1.6 1.0

8KB 2.7 1.5

16KB 5.1 3.7

32KB 10.1 8.1

64KB 20.0 18.0

128KB 40.4 36.1

256KB 80.7 61.3

Understanding I/O Problems

20-8 Oracle8i Designing and Tuning for Performance

Doing research like this helps determine the correct stripe size. In this example, it

takes at most 5.3 milliseconds to read 16KB. If your data is in chunks of 256KB, then

you could stripe the data over 16 disks (as described on page 20-22) and maintain

this low read time.

By contrast, if all your data is on one disk, then read time would be 80 milliseconds.

Thus, the test results show that on this particular set of disks, things look quite

different from what might be expected. It is sometimes beneficial to have a smaller

stripe size, depending on the size of the I/O.

Table 20–8 shows the speed of sequential write in milliseconds per I/O on the test

system.

Table 20–9 shows the speed of random read in milliseconds per I/O on the test

system.

Table 20–8 Block Size and Speed of Sequential Write (Sample Data)

Block Size

Speed of Sequential Write on:

Raw Device UNIX File System (UFS)

512 bytes 11.2 17.9

1KB 11.7 18.3

2KB 11.6 19.0

4KB 12.3 19.8

8KB 13.5 21.8

16KB 16.0 35.3

32KB 19.3 62.2

64KB 31.5 115.1

128KB 62.5 221.8

256KB 115.6 429.0

Understanding I/O Problems

Tuning I/O 20-9

Table 20–10 shows the speed of random write in milliseconds per I/O on the test

system.

Table 20–9 Block Size and Speed of Random Read (Sample Data)

Block Size

Speed of Random Read on:

Raw Device UNIX File System (UFS)

512 bytes 12.3 15.5

1KB 12.0 14.1

2KB 13.4 15.0

4KB 13.9 15.3

8KB 15.4 14.4

16KB 19.1 39.7

32KB 25.7 39.9

64KB 38.1 40.2

128KB 64.3 62.2

256KB 115.7 91.2

Table 20–10 Block Size and Speed of Random Write (Sample Data)

Block Size

Speed of Random Write on:

Raw Device UNIX File System (UFS)

512 bytes 12.3 40.7

1KB 12.0 41.4

2KB 12.6 41.6

4KB 13.8 41.4

8KB 14.8 32.8

16KB 17.7 45.6

32KB 24.8 71.6

64KB 38.0 123.8

128KB 74.4 230.3

256KB 137.4 441.5

Understanding I/O Problems

20-10 Oracle8i Designing and Tuning for Performance

Evaluate Disk Layout Options
Knowing the types of operations that predominate in your application and the

speed with which your system can process the corresponding I/Os, you can choose

the disk layout that maximizes performance.

For example, with the sample application and test system described previously, the

UNIX file system is a good choice. With random reads predominating (50% of all

I/O operations), 8KB is good block size. Furthermore, the UNIX file system in this

example processes sequential reads (25% of all I/O operations) almost twice as fast

as raw devices, given an 8KB block size.

Choosing Data Block Size
Table data in the database is stored in data blocks. This section describes how to

allocate space within data blocks for best performance.

With single block I/O (random read), minimize the number of reads required to

retrieve the desired data. How you store the data determines whether this

performance objective is achieved. It depends on two factors: storage of the rows

and block size.

Tests have proven that matching the database block size to the UNIX file system

(UFS) block size provides the most predictable and efficient performance. On UNIX

systems, the block size of an existing file system can be determined using the df -g
command.

Having the database block size greater than the UFS block size, or having the UFS

block size greater than database block size, may yield inconsistent performance

based on how your operating system and external I/O subsystem manage data

pre-fetching and the coalescing of multiple I/Os.

Figure 20–1 illustrates the suitability of various block sizes to online transaction

processing (OLTP) or decision support (DSS) applications.

Note: Figures shown in the preceding example differ significantly on
different platforms, and with different disks! To plan effectively, test

I/O performance on your own system.

See Also: For more information, see the example in "Testing the

Performance of Your Disks" on page 20-7.

Understanding I/O Problems

Tuning I/O 20-11

Figure 20–1 Block Size and Application Type

Block Size Advantages and Disadvantages
Table 20–11 lists the advantages and disadvantages of different block sizes.

Evaluating Device Bandwidth
The number of I/Os a disk can perform depends on whether the operations involve

reading or writing to objects stored on raw devices or on the file system. This affects

the number of disks you must use to achieve the desired level of performance.

See Also: Your Oracle operating system-specific documentation
has information on the minimum and maximum block size on your
operating system

Table 20–11 Block Size Advantages and Disadvantages

Block Size Advantages Disadvantages

Small
(2KB-4KB)

Reduces block contention.

Good for small rows, or lots of
random access.

Has relatively large overhead.

You may end up storing only a small
number of rows, depending on the size
of the row.

Medium
(8KB)

If rows are medium size, then
you can bring a number of rows
into the buffer cache with a
single I/O.

With 2KB or 4KB block size, you
may only bring in a single row.

Space in the buffer cache is wasted if
you are doing random access to small
rows and have a large block size. For
example, with an 8KB block size and 50
byte row size, you are wasting 7,950
bytes in the buffer cache when doing
random access.

Large
(16KB-32KB)

There is relatively less overhead;
thus, there is more room to store
useful data.

Good for sequential access or
very large rows.

Large block size is not good for index
blocks used in an OLTP type
environment, because they increase
block contention on the index leaf
blocks.

0 2 4 8 16 32 64

OLTP DSS

Understanding I/O Problems

20-12 Oracle8i Designing and Tuning for Performance

I/O Tuning Tips
When performing I/O tuning, remember that I/O service time reported by the

operating system is not necessarily the total time taken to process the I/O. The goal

of tuning I/O is to minimize waits, such that the response time equals service time

plus wait time.

An I/O queue consists of two stages: one stage is in the device driver, and the

second stage is in the device itself. When the I/O is waiting to be serviced by the

SCSI bus or disk, it is actually waiting in the device driver queue. This is the true

wait queue. The time on the wait queue is the wait queue time. When the I/O is

truly being service by the disk unit, then it is on the active or run queue. The time to

physically process the I/O is the service time.

The goal in tuning I/O is to minimize waits and increase throughput. Disk time can

encounter the following bottlenecks:

■ Waiting for access to the I/O bus.

■ Waiting for other queued disk requests.

■ Seek time (to find the correct track in cylinder).

■ Rotation time (to find the correct sector in track).

■ I/O transfer time.

Tips for Tuning the I/O Adapter

■ Spread disks over several I/O adapters, so that one I/O adapter is not

overworked. Also, spread I/O bound files across several disks and several I/O

adapters using appropriate RAID implementation. Striping allows single I/O

requests to be serviced by several drives, and it allows multiple I/Os to occur in

parallel.

■ Make sure that there are not too many adapters on the same system bus.

Exceeding the bandwidth of the system bus creates large CPU waits.

■ Understand your applications. Make sure that the number of I/O operations (or

the I/O size) of your application does not exceed the theoretical limit of the

adapter or a given disk.

Dissecting the I/O Path
This section explains the I/O path, so that you can analyze and tune I/O

bottlenecks. The I/O path follows these steps:

1. A user process issues an I/O call (read or write).

Understanding I/O Problems

Tuning I/O 20-13

2. The I/O is placed on an available CPU’s dispatch queue. An available CPU

picks up the request and context switches the user process.

3. The CPU checks the local cache to see if the requested data block is there. If it is,

then it is a cache hit, and the I/O request is complete.

4. If the block does not exist in the cache or main memory, then it takes a major

page fault (gets page from disk), and issues an I/O call against the appropriate

device driver. The device driver builds a set of SCSI commands against an I/O

unit.

5. The operating system (device driver) sends an I/O request through system bus

to I/O controller (host bus adapter).

6. The host bus adapter (HBA) arbitrates for bus access. When the I/O request’s

device is ready, it is selected, and the I/O statement is prepared to be sent to the

target.

7. If the target unit can satisfy the request from its cache, then it transfers the data

back and disconnects. This is a disk cache hit. For a cache miss, the target

disconnects and tries to service the request.

8. The I/O request is placed in the target's queue table on its adapter where it may

be sorted and merged with other I/O requests. This is possible only if the disk

unit supports tag queuing.

9. After the I/O is picked off the queue, it is serviced by computing the physical

address and seeking to the correct sector, read or write. If it is a read operation,

then data is placed in the target cache. Write operations signal a completion by

sending an interrupt signal.

10. The target controller reconnects with the I/O bus to transfer the data (with

reads).

11. The HBA sends an interrupt to the operating system, marking the end of the

I/O request.

The following table explains where the wait components lay with respect to the I/O

path.

Steps 1 - 5, 11 These steps are handled by the operating system. The time

required for these operations is limited by access time to the

HBA. Slowness can be attributed to CPU contention or I/O bus

contention. A heavily loaded CPU is not able to service an I/O

request. Review vmstat statistics for runnable process, high

system time, and excessive context switch.

Understanding I/O Problems

20-14 Oracle8i Designing and Tuning for Performance

Steps 5, 6, 10, 11 These two steps involve the I/O adapter. A faster adapter

propagates and manages I/O requests faster. An overloaded I/O

bus may cause I/O requests to process slowly. Review IOSTAT
statistics for high percent busy combined with large AVWAIT (or

AVSERV, if available).

Steps 7 - 9 These two steps are handled by the disk drive. Limiting factors

can be seek times, rotational delays, and data transfer times.

These disk operations are mechanical in nature; therefore, they

consume the largest chunk of time in an I/O call. Newer disks

have improved seek times, rotational speeds, and data transfer

rates.

Mechanical time is considered wasted time, because no data

(productive work) is transferred during this time. The goal is to

minimize this time by acquiring disks with larger caches and by

using disks with tag queuing.

To minimize the mechanical overhead of an I/O, spread the I/O

request across several disks using an appropriate stripe size

under a RAID implementation. An incorrect stripe size can cause

hot disks or multiple physical I/Os per logical I/O.

Additionally, use a raw interface (raw devices) or direct I/O

when possible. Raw devices allow unbuffered I/O and can

utilize kernalized asynchronous I/O. Raw interfaces can also be

implemented using a volume manager. Finally, check to see if

your operating system provides direct I/O support on file

system-based files. Direct I/O has proven to be helpful for I/Os

that involve sequential reads and writes.

See Also: For more information on removing I/O contention, see

"Reducing Disk Contention by Distributing I/O" on page 20-18.

Detecting I/O Problems

Tuning I/O 20-15

Detecting I/O Problems
This section describes two tasks to perform if you suspect a problem with I/O

usage:

■ Checking System I/O Utilization

■ Checking Oracle I/O Utilization

Oracle compiles file I/O statistics that reflect disk access to database files. These

statistics report only the I/O utilization of Oracle sessions—yet every process

affects the available I/O resources. Tuning non-Oracle factors can thus improve

performance.

Checking System I/O Utilization
Use operating system monitoring tools to determine what processes are running on

the system as a whole, and to monitor disk access to all files. Remember that disks

holding datafiles and redo log files may also hold files that are not related to Oracle.

Try to reduce any heavy access to disks that contain database files. Access to

non-Oracle files can be monitored only through operating system facilities rather

than through the V$FILESTAT view.

Tools, such as sar -d , on many UNIX systems let you examine the I/O statistics for

your entire system. (Some UNIX-based platforms have an iostat command.) On

NT systems, use Performance Monitor.

Checking Oracle I/O Utilization
This section identifies the views and processes that provide Oracle I/O statistics. It

also shows how to check statistics using V$FILESTAT.

Dynamic Performance Views for I/O Statistics
Table 20–12 shows dynamic performance views to check for I/O statistics relating to

Oracle database files, log files, archive files, and control files.

See Also: For information on other platforms, see your operating

system documentation.

Detecting I/O Problems

20-16 Oracle8i Designing and Tuning for Performance

Table 20–13 lists which file types processes write to.

V$SYSTEM_EVENT can be queried by event to show the total number of I/Os and

average duration by type of I/O (read/write). With this, you can determine which

types of I/O are too slow. If there are Oracle-related I/O problems, then tune them.

But, if your process is not consuming the available I/O resources, then some other

process is. Go back to the system to identify the process that is using up so much

I/O, and determine why. Then tune this process.

Table 20–12 Where to Find Statistics about Oracle Files

File Type Where to Find Statistics

Database Files V$FILESTAT, V$SYSTEM_EVENT, V$SESSION_EVENT

Log Files V$SYSSTAT, V$SYSTEM_EVENT, V$SESSION_EVENT

Archive Files V$SYSTEM_EVENT, V$SESSION_EVENT

Control Files V$SYSTEM_EVENT, V$SESSION_EVENT

Table 20–13 File Throughput Statistics for Oracle Processes

File

Process

LGWR DBWn ARCH SMON PMON CKPT Foreground
PQ
Process

Database
Files

X X X X X X

Log Files X

Archive
Files

X

Control
Files

X X X X X X X X

Note: Different types of I/O in Oracle require different tuning

approaches. Tuning I/O for data warehousing applications that

perform large sequential reads is different from tuning I/O for

OLTP applications that perform random reads and writes.

Detecting I/O Problems

Tuning I/O 20-17

Checking Oracle Datafile I/O with V$FILESTAT
Examine disk access to database files through the dynamic performance view

V$FILESTAT. This view shows the following information for database I/O (but not

for log file I/O):

■ Number of physical reads and writes.

■ Number of blocks read and written.

■ Total I/O time for reads and writes.

By default, this view is available only to the user SYS and to users granted SELECT
ANY TABLE system privilege, such as SYSTEM. The following column values reflect

the number of disk accesses for each datafile:

Use the following query to monitor these values over some period of time while

your application is running:

SELECT NAME, PHYRDS, PHYWRTS
FROM V$DATAFILE df, V$FILESTAT fs
WHERE df.FILE# = fs.FILE#;

This query also retrieves the name of each datafile from the dynamic performance

view V$DATAFILE. Sample output might look like this:

NAME PHYRDS PHYWRTS
-- ---------- ----------
/oracle/ora70/dbs/ora_system.dbf 7679 2735
/oracle/ora70/dbs/ora_temp.dbf 32 546

The PHYRDS and PHYWRTS columns of V$FILESTAT can also be obtained through

SNMP.

The total I/O for a single disk is the sum of PHYRDS and PHYWRTS for all the

database files managed by the Oracle instance on that disk. Determine this value for

each of your disks. Also, determine the rate at which I/O occurs for each disk by

dividing the total I/O by the interval of time over which the statistics were

collected.

See Also: "Planning File Storage" on page 20-5.

PHYRDS The number of reads from each database file.

PHYWRTS The number of writes to each database file.

Solving I/O Problems

20-18 Oracle8i Designing and Tuning for Performance

Solving I/O Problems
The rest of this chapter describes various techniques of solving I/O problems:

■ Reducing Disk Contention by Distributing I/O

■ Striping Disks

■ Avoiding Dynamic Space Management

■ Tuning Sorts

■ Tuning Checkpoint Activity

■ Tuning LGWR and DBWR I/O

■ Tuning Backup and Restore Operations

■ Configuring the Large Pool

Reducing Disk Contention by Distributing I/O
This section describes how to reduce disk contention.

■ What Is Disk Contention?

■ Separating Datafiles and Redo Log Files

■ Striping Table Data

■ Separating Tables and Indexes

■ Reducing Disk I/O Unrelated to Oracle

What Is Disk Contention?
Disk contention occurs when multiple processes try to access the same disk

simultaneously. Most disks have limits on both the number of accesses and the

Note: Although Oracle records read and write times accurately, a

database that is running on UFS may not reflect true disk accesses.

For example, the read times may not always reflect a true disk read,

but rather a UFS cache hit. However, read and write times should

be accurate for raw devices. Additionally, write times are only

recorded per batch, with all blocks in the same batch given the

same time after the completion of the write I/O.

Solving I/O Problems

Tuning I/O 20-19

amount of data they can transfer per second. When these limits are reached,

processes may have to wait to access the disk.

In general, consider the statistics in the V$FILESTAT view and your operating

system facilities. Consult your hardware documentation to determine the limits on

the capacity of your disks. Any disks operating at or near full capacity are potential

sites for disk contention. For example, 60 or more I/Os per second may be excessive

for some disks on VMS or UNIX operating systems.

In addition, review V$SESSION_EVENT for the following events: db file sequential

read, db file scattered read, db file single write, and db file parallel write. These are

all events corresponding to I/Os performed against the data file headers, control

files, or data files. If any of these wait events correspond to high Average Time, then

investigate the I/O contention using sar or iostat . Look for busy waits on the

device. Examine the file statistics to determine which file is associated with the high

I/O.

To reduce the activity on an overloaded disk, move one or more of its heavily

accessed files to a less active disk. Apply this principle to each of your disks until

they all have roughly the same amount of I/O. This is known as distributing I/O.

Separating Datafiles and Redo Log Files
Oracle processes constantly access datafiles and redo log files. If these files are on

common disks, then there is potential for disk contention. Place each datafile on a

separate disk. Multiple processes can then access different files concurrently

without disk contention.

Place each set of redo log files on a separate disk with no other activity. Redo log

files are written by the Log Writer process (LGWR) when a transaction is

committed. Information in a redo log file is written sequentially. This sequential

writing can take place much faster if there is no concurrent activity on the same

disk. Dedicating a separate disk to redo log files usually ensures that LGWR runs

smoothly with no further tuning attention. Performance bottlenecks related to

LGWR are rare.

Dedicating separate disks to datafiles and mirroring redo log files are important

safety precautions. These steps ensure that the datafiles and the redo log files

cannot both be lost in a single disk failure. Mirroring redo log files ensures that a

redo log file cannot be lost in a single disk failure.

See Also: For information on tuning LGWR, see the section

"Detecting Contention for Redo Log Buffer Latches" on page 21-16.

Solving I/O Problems

20-20 Oracle8i Designing and Tuning for Performance

In order to prevent I/O contention between the archiver process and LGWR (when

using multi-membered groups), make sure that archiver reads and LGWR writes

are separated. For example, if your system has 4 groups with 2 members, then the

following scenario should used to separate disk access:

4 groups x 2 members each = 8 logfiles labeled: 1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b.

This requires at least 4 disks, plus one disk for archived files.

Figure 20–2 illustrates how redo members should be distributed across disks to

minimize contention.

Figure 20–2 Distributing Redo Members Across Disks

In this example, LGWR switched out of log group 1 (member 1a and 1b) and is now

writing to log group2 (2a and 2b). Concurrently, the archiver process is reading

from the group 1 and writing to its archive destination. Note how the redo log files

are isolated from contention.

2a
4a

1a
3a

2b
4b

1b
3b

arch
dest

arch

lgwr

Solving I/O Problems

Tuning I/O 20-21

Striping Table Data
Striping, or spreading a large table’s data across separate datafiles on separate

disks, can also help to reduce contention.

Separating Tables and Indexes
It is not necessary to separate a frequently used table from its index. During the

course of a transaction, the index is read first, and then the table is read. Because

these I/Os occur sequentially, the table and index can be stored on the same disk

without contention. However, for very high OLTP systems, separating indexes from

tables may be required.

Split indexes and tables into separate tablespaces to minimize disk head movement

and parallelize I/O. Both reads happen faster because one disk head is on the index

data and the other is on the table data.

The idea of separating objects accessed simultaneously applies to indexes as well.

For example, if a SQL statement uses two indexes at the same time, then

performance is improved by having each index on a separate disk.

Also, avoid having several heavily accessed tables on the same disk. This requires

strong knowledge of the application access patterns.

The use of partitioned tables and indexes can improve performance of operations in

a data warehouse. Divide a large table or index into multiple physical segments

residing in different tablespaces. All tables that contain large object datatypes

should be placed into a separate tablespace as well.

Note: Mirroring redo log files, or maintaining multiple copies of

each redo log file on separate disks, does not slow LGWR

considerably. LGWR writes to each disk in parallel and waits until

each part of the parallel write is complete. Because the time

required to perform a single-disk write may vary, increasing the

number of copies increases the likelihood that one of the single-disk

writes in the parallel write takes longer than average. A parallel

write does not take longer than the longest possible single-disk

write. There may also be some overhead associated with parallel

writes on your operating system.

See Also: This strategy is fully discussed in the section "Striping

Disks" on page 20-22.

Solving I/O Problems

20-22 Oracle8i Designing and Tuning for Performance

Reducing Disk I/O Unrelated to Oracle
If possible, eliminate I/O unrelated to Oracle on disks that contain database files.

This measure is especially helpful in optimizing access to redo log files. Not only

does this reduce disk contention, it also allows you to monitor all activity on such

disks through the dynamic performance table V$FILESTAT.

Striping Disks
This section describes:

■ Purpose of Striping

■ I/O Balancing and Striping

■ Striping Disks Manually

■ Striping Disks with Operating System Software

■ Striping and RAID

Purpose of Striping
Striping divides a large table’s data into small portions and stores these portions in

separate datafiles on separate disks. This permits multiple processes to access

different portions of the table concurrently without disk contention. Striping is

particularly helpful in optimizing random access to tables with many rows. Striping

can either be done manually (described below), or through operating system

striping utilities.

I/O Balancing and Striping
Benchmark tuners in the past tried hard to ensure that the I/O load was evenly

balanced across the available devices. Currently, operating systems are providing

the ability to stripe a heavily used container file across many physical devices.

However, such techniques are productive only where the load redistribution

eliminates or reduces some form of queue.

If the wait service time exists, along with high percentage busy on a drive, then I/O

distribution may be required. Where larger numbers of physical drives are

available, consider dedicating two drives to carrying redo logs (two because redo

logs should always be mirrored either by the operating system or using Oracle redo

log group features). Because redo logs are written serially, drives dedicated to redo

log activity normally require limited head movement. This significantly accelerates

log writing.

Solving I/O Problems

Tuning I/O 20-23

When archiving, it is beneficial to use extra disks so that LGWR and ARCH do not

compete for the same read/write head. This is achieved by placing logs on

alternating drives.

Mirroring can also be a cause of I/O bottlenecks. The process of writing to each

mirror is normally done in parallel, and does not cause a bottleneck. However, if

each mirror is striped differently, then the I/O is not completed until the slowest

mirror member is finished. To avoid I/O problems, stripe using the same number

of disks for the destination database, or the copy, as you used for the source

database.

For example, if you have 160KB of data striped over 8 disks, but the data is

mirrored onto only one disk, then regardless of how quickly the data is processed

on the 8 disks, the I/O is not completed until 160KB has been written onto the

mirror disk. It might thus take 20.48 milliseconds to write the database, but 137

milliseconds to write the mirror.

Striping Disks Manually
To stripe disks manually, you need to relate an object’s storage requirements to its

I/O requirements.

1. Begin by evaluating an object’s disk storage requirements by checking:

■ The size of the object.

■ The size of the disk.

For example, if an object requires 5GB in Oracle storage space, then you need

one 5GB disk or two 4GB disks to accommodate it. On the other hand, if the

system is configured with 1GB or 2GB disks, then the object may require 5 or 3

disks, respectively.

2. Compare to this the application’s I/O requirements, as described in "Analyzing

I/O Requirements" on page 20-3. You must take the larger of the storage

requirement and the I/O requirement.

For example, if the storage requirement is 5 disks (1GB each), and the I/O

requirement is 2 disks, then your application requires the higher value: 5 disks.

3. Create a tablespace with the CREATE TABLESPACE statement. Specify the

datafiles in the DATAFILE clause. Each of the files should be on a different disk.

For example:

CREATE TABLESPACE stripedtabspace
 DATAFILE ’file_on_disk_1’ SIZE 1GB,
 ’file_on_disk_2’ SIZE 1GB,

Solving I/O Problems

20-24 Oracle8i Designing and Tuning for Performance

 ’file_on_disk_3’ SIZE 1GB,
 ’file_on_disk_4’ SIZE 1GB,
 ’file_on_disk_5’ SIZE 1GB;

4. Then, create the table with the CREATE TABLE statement. Specify the newly

created tablespace in the TABLESPACE clause.

Also specify the size of the table extents in the STORAGE clause. Store each

extent in a separate datafile. The table extents should be slightly smaller than

the datafiles in the tablespace to allow for overhead. For example, when

preparing for datafiles of 1GB (1024MB), you can set the table extents to be

1023MB. For example:

CREATE TABLE stripedtab (
 col_1 NUMBER(2),
 col_2 VARCHAR2(10))
 TABLESPACE stripedtabspace
 STORAGE (INITIAL 1023MB NEXT 1023MB
 MINEXTENTS 5 PCTINCREASE 0);

(Alternatively, you can stripe a table by entering an ALTER TABLE ALLOCATE
EXTENT statement with DATAFILE 'datafile' SIZE 'size'.)

These steps result in the creation of table STRIPEDTAB. STRIPEDTAB has 5 initial

extents, each of size 1023MB. Each extent takes up one of the datafiles named in the

DATAFILE clause of the CREATE TABLESPACE statement. Each of these files is on a

separate disk. The 5 extents are all allocated immediately, because MINEXTENTS is
5.

Striping Disks with Operating System Software
As an alternative to striping disks manually, use operating system utilities or

third-party tools, such as logical volume managers, or use hardware-based striping.

With utilities or hardware-based striping mechanisms, the main factors to consider

are stripe size, number of disks to stripe across (which defines the stripe width),

and the level of concurrency (or level of I/O activity). These factors are affected by

the Oracle block size and the database access methods.

See Also: For more information on MINEXTENTS and the other

storage parameters, see Oracle8i SQL Reference.

Solving I/O Problems

Tuning I/O 20-25

Where k = 2,3,4...

In striping, uniform access to the data is assumed. If the stripe size is too large, then

a hot spot may appear on one disk or on a small number of disks. Avoid this by

reducing the stripe size, thus spreading the data over more disks.

Consider an example in which 100 rows of fixed size are evenly distributed over 5

disks, with each disk containing 20 sequential rows. If your application only

requires access to rows 35 through 55, then only 2 disks must perform the I/O. At a

high rate of concurrency, the system may not be able to achieve the desired level of

performance.

Correct this problem by spreading rows 35 through 55 across more disks. In the

current example, if there were two rows per block, then we could place rows 35 and

36 on the same disk, and rows 37 and 38 on a different disk. Taking this approach,

we could spread the data over all the disks and I/O throughput would improve.

Striping and RAID
Redundant arrays of inexpensive disks (RAID) configurations provide improved

data reliability. However, I/O performance depends on which RAID configuration

is implemented.

Below are the most widely used RAID configurations:

Table 20–14 Minimum Stripe Size

Disk Access Minimum Stripe Size

Random reads and writes The minimum stripe size is twice the Oracle block size.

Sequential reads The minimum stripe size is twice the value of DB_FILE_
MULTIBLOCK_READ_COUNT.

Table 20–15 Typical Stripe Size

Concurrency I/O Size Typical Stripe Size

Low Small k * DB_BLOCK_SIZE

Low Large k * DB_BLOCK_SIZE

High Small k * DB_BLOCK_SIZE

High Large k * DB_BLOCK_SIZE * DB_FILE_MULTI_BLOCK_READ_COUNT

Solving I/O Problems

20-26 Oracle8i Designing and Tuning for Performance

■ RAID 1: Provides good reliability and good read rates; however, writes may be

costly.

■ RAID 0+1: Provides good reliability and better read and write performance

than RAID 1.

■ RAID 5: Provides good reliability. Sequential reads benefit the most. Writes

performance may suffer with RAID 5. This configuration is not recommended

for heavy write applications.

Optimal stripe size is a function of three things:

1. Size of I/O requests to the array.

2. Concurrency of I/O requests to the array.

3. The physical stripe boundaries matching the block size boundaries.

Striping is a good tool for balancing I/O across two or more disks in an array.

However, keep in mind the following techniques:

■ On high concurrency arrays, you must ensure that no single I/O request gets

broken up into more than one physical I/O call. Failing to do this multiplies the

number of physical I/O requests performed in your system, which in turn

causes exponential degradation in your system I/O response times.

■ On low concurrency arrays, you must ensure that no single I/O visits any disk

twice. To fail here causes the same performance penalty as the one described

above.

Avoiding Dynamic Space Management
When you create an object, such as a table or rollback segment, Oracle allocates

space in the database for the data. This space is called a segment. If subsequent

database operations cause the data volume to increase and exceed the space

allocated, then Oracle extends the segment. Dynamic extension then reduces

performance.

This section discusses:

Note: Although RAID 0 provides the best read and write

performance, it is not a true RAID system, because it does not allow

for redundancy. Oracle recommends that you do not place

production database files on RAID 0 systems.

Solving I/O Problems

Tuning I/O 20-27

■ Detecting Dynamic Extension

■ Allocating Extents

■ Evaluating Unlimited Extents

■ Evaluating Multiple Extents

■ Avoiding Dynamic Space Management in Rollback Segments

■ Reducing Migrated and Chained Rows

■ Modifying the SQL.BSQ File

■ Using Locally-Managed Tablespaces

Detecting Dynamic Extension
Dynamic extension causes Oracle to execute SQL statements in addition to those

SQL statements issued by user processes. These SQL statements are called recursive
calls because Oracle issues these statements itself. Recursive calls are also generated

by these activities:

■ Misses on the data dictionary cache.

■ Firing of database triggers.

■ Execution of Data Definition Language (DDL) statements.

■ Execution of SQL statements within stored procedures, functions, packages,

and anonymous PL/SQL blocks.

■ Enforcement of referential integrity constraints.

Examine the RECURSIVE CALLS statistic through the dynamic performance view

V$SYSSTAT. By default, this view is available only to user SYSand to users granted

the SELECT ANY TABLE system privilege, such as SYSTEM. Use the following query

to monitor this statistic over a period of time:

SELECT NAME, VALUE
FROM V$SYSSTAT
WHERE NAME = ’recursive calls’;

Oracle responds with something similar to the following:

NAME VALUE
--- ----------
recursive calls 626681

Solving I/O Problems

20-28 Oracle8i Designing and Tuning for Performance

If Oracle continues to make excessive recursive calls while your application is

running, then determine whether these recursive calls are due to an activity, other

than dynamic extension, that generates recursive calls. If you determine that the

recursive calls are caused by dynamic extension, then reduce this extension by

allocating larger extents.

Allocating Extents
Follow these steps to avoid dynamic extension:

1. Determine the maximum size of your object.

2. Choose storage parameter values so that Oracle allocates extents large enough

to accommodate all your data when you create the object.

Larger extents tend to benefit performance for the following reasons:

■ Blocks in a single extent are contiguous, so one large extent is more contiguous

than multiple small extents. Oracle can read one large extent from disk with

fewer multiblock reads than would be required to read many small extents.

Therefore, make sure that the extent size is a multiple of DB_FILE_MULTI_
BLOCK_READ_COUNT.

■ Segments with larger extents are less likely to be extended.

However, because large extents require more contiguous blocks, Oracle may have

difficulty finding enough contiguous space to store them. To determine whether to

allocate only a few large extents or many small extents, evaluate the benefits and

drawbacks of each in consideration of plans for the growth and use of your objects.

Automatically re-sizable datafiles can also cause problems with dynamic extension.

Instead, manually allocate more space to a datafile during times when the system is

relatively inactive.

Evaluating Unlimited Extents
Even though an object may have unlimited extents, this does not mean that having

a large number of small extents is acceptable. For optimal performance you may

decide to reduce the number of extents.

Extent maps list all extents for a particular segment. The number of extents entries

per Oracle block depends on operating system block size and platform. Although

an extent is a data structure inside Oracle, the size of this data structure depends on

the platform. Accordingly, this affects the number of extents Oracle can store in a

single operating system block. Typically, this value is as follows:

Solving I/O Problems

Tuning I/O 20-29

For optimal performance, you should be able to read the extent map with a single

I/O. Performance degrades if multiple I/Os are necessary for a full table scan to get

the extent map.

Avoid dynamic extension in dictionary-mapped tablespaces. For

dictionary-mapped tablespaces, do not let the number of extents exceed 1,000. If

extent allocation is local, then do not have more than 2,000 extents. Having too

many extents reduces performance when dropping or truncating tables.

Evaluating Multiple Extents
This section explains various ramifications of using multiple extents.

■ You cannot put large segments into single extents, because of file size and file

system size limitations. When you enable segments to allocate new extents over

time, you can take advantage of faster, less expensive disks.

■ For a table that is never full-table scanned, it makes no difference in terms of

query performance whether the table has one extent or multiple extents.

■ The performance of searches using an index is not affected by the index having

one extent or multiple extents.

■ Using more than one extent in a table, cluster, or temporary segment does not

affect the performance of full scans on a multi-user system.

■ Using more than one extent in a table, cluster, or temporary segment does not

materially affect the performance of full scans on a dedicated single-user batch

processing system, if the extents are properly sized and if the application is

designed to avoid expensive DDL operations.

■ If extent sizes are appropriately matched to the I/O size, then the performance

cost of having many extents in a segment is minimized.

Table 20–16 Block Size and Maximum Number of Extents (Typical Values)

Block Size (KB) Maximum Number of Extents

2 121

4 255

8 504

16 1032

32 2070

Solving I/O Problems

20-30 Oracle8i Designing and Tuning for Performance

■ For rollback segments, many extents are preferable to few extents. Having

many extents reduces the number of recursive SQL calls to perform dynamic

extent allocations on the segments.

Avoiding Dynamic Space Management in Rollback Segments
The size of rollback segments can affect performance. Rollback segment size is

determined by the rollback segment’s storage parameter values. Your rollback

segments must be large enough to hold the rollback entries for your transactions.

As with other objects, you should avoid dynamic space management in rollback

segments.

Use the SET TRANSACTIONstatement to assign transactions to rollback segments of

the appropriate size based on the recommendations in the following sections. If you

do not explicitly assign a transaction to a rollback segment, then Oracle

automatically assigns it to a rollback segment.

For example, the following statement assigns the current transaction to the rollback

segment OLTP_13:

SET TRANSACTION USE ROLLBACK SEGMENT oltp_13

Also, monitor the shrinking, or dynamic deallocation, of rollback segments based

on the OPTIMAL storage parameter.

For Long Queries Assign large rollback segments to transactions that modify data

that is concurrently selected by long queries. Such queries may require access to

rollback segments to reconstruct a read-consistent version of the modified data. The

rollback segments must be large enough to hold all the rollback entries for the data

while the query is running.

For Long Transactions Assign large rollback segments to transactions that modify

large amounts of data. A large rollback segment can improve the performance of

Note: If you are running multiple concurrent copies of the same

application, then be careful not to assign the transactions for all

copies to the same rollback segment. This leads to contention for

that rollback segment.

See Also: For information on choosing values for this parameter,

monitoring rollback segment shrinking, and adjusting the OPTIMAL
parameter, see Oracle8i Administrator’s Guide.

Solving I/O Problems

Tuning I/O 20-31

such a transaction, because the transaction generates large rollback entries. If a

rollback entry does not fit into a rollback segment, then Oracle extends the segment.

Dynamic extension reduces performance and should be avoided whenever possible.

For OLTP Transactions OLTP applications are characterized by frequent concurrent

transactions, each of which modifies a small amount of data. Assign OLTP

transactions to small rollback segments, provided that their data is not concurrently

queried. Small rollback segments are more likely to remain stored in the buffer

cache where they can be accessed quickly. A typical OLTP rollback segment might

have 2 extents, each approximately 10 kilobytes in size. To best avoid contention,

create many rollback segments and assign each transaction to its own rollback

segment.

Reducing Migrated and Chained Rows
If an UPDATE statement increases the amount of data in a row so that the row no

longer fits in its data block, then Oracle tries to find another block with enough free

space to hold the entire row. If such a block is available, then Oracle moves the

entire row to the new block. This is called migrating a row. If the row is too large to

fit into any available block, then Oracle splits the row into multiple pieces and

stores each piece in a separate block. This is called chaining a row. Rows can also be

chained when they are inserted.

Dynamic space management, especially migration and chaining, is detrimental to

performance:

■ UPDATE statements that cause migration and chaining perform poorly.

■ Queries that select migrated or chained rows must perform more I/O.

Identify migrated and chained rows in a table or cluster using the ANALYZE
statement with the LIST CHAINED ROWSclause. This statement collects information

about each migrated or chained row and places this information into a specified

output table.

The definition of a sample output table named CHAINED_ROWS appears in a SQL

script available on your distribution medium. The common name of this script is

UTLCHN1.SQL, although its exact name and location varies depending on your

platform. Your output table must have the same column names, datatypes, and

sizes as the CHAINED_ROWS table.

You can also detect migrated or chained rows by checking the TABLE FETCH
CONTINUED ROW column in V$SYSSTAT. Increase PCTFREE to avoid migrated

rows. If you leave more free space available in the block, then the row has room to

Solving I/O Problems

20-32 Oracle8i Designing and Tuning for Performance

grow. You can also reorganize or re-create tables and indexes with high deletion

rates.

To reduce migrated and chained rows in an existing table, follow these steps:

1. Use the ANALYZE statement to collect information about migrated and chained

rows. For example:

ANALYZE TABLE order_hist LIST CHAINED ROWS;

2. Query the output table:

SELECT *
FROM CHAINED_ROWS
WHERE TABLE_NAME = ’ORDER_HIST’;

OWNER_NAME TABLE_NAME CLUST... HEAD_ROWID TIMESTAMP
---------- ---------- -----... ------------------ ---------
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAA 04-MAR-96
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAB 04-MAR-96
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAC 04-MAR-96

The output lists all rows that are either migrated or chained.

3. If the output table shows that you have many migrated or chained rows, then

you can eliminate migrated rows with the following steps:

a. Create an intermediate table with the same columns as the existing table to

hold the migrated and chained rows:

CREATE TABLE int_order_hist
 AS SELECT *
 FROM order_hist
 WHERE ROWID IN
 (SELECT HEAD_ROWID
 FROM CHAINED_ROWS
 WHERE TABLE_NAME = ’ORDER_HIST’);

Note: PCTUSED is not the opposite of PCTFREE; PCTUSED
controls space management.

See Also: For more information on PCTUSED, see Oracle8i
Concepts

Solving I/O Problems

Tuning I/O 20-33

b. Delete the migrated and chained rows from the existing table:

DELETE FROM order_hist
 WHERE ROWID IN
 (SELECT HEAD_ROWID
 FROM CHAINED_ROWS
 WHERE TABLE_NAME = ’ORDER_HIST’);

c. Insert the rows of the intermediate table into the existing table:

INSERT INTO order_hist
SELECT *
FROM int_order_hist;

d. Drop the intermediate table:

DROP TABLE int_order_history;

4. Delete the information collected in step 1 from the output table:

DELETE FROM CHAINED_ROWS
WHERE TABLE_NAME = ’ORDER_HIST’;

5. Use the ANALYZE statement again and query the output table.

6. Any rows that appear in the output table are chained. You can eliminate

chained rows only by increasing your data block size. It may not be possible to

avoid chaining in all situations. Chaining is often unavoidable with tables that

have a LONG column or long CHAR or VARCHAR2 columns.

Retrieval of migrated rows is resource intensive; therefore, all tables subject to

UPDATE should have their distributed free space set to allow enough space within

the block for the likely update.

Modifying the SQL.BSQ File
The SQL.BSQ file runs when you issue the CREATE DATABASE statement. This file

contains the table definitions that make up the Oracle server. The views you use as

a DBA are based on these tables. Oracle recommends that you strictly limit

modifications to SQL.BSQ.

■ If necessary, you can increase the value of the following storage parameters:

INITIAL , NEXT, MINEXTENTS, MAXEXTENTS, PCTINCREASE, FREELISTS,

FREELIST GROUPS, and OPTIMAL.

Solving I/O Problems

20-34 Oracle8i Designing and Tuning for Performance

■ With the exception of PCTINCREASE, do not decrease the setting of a storage

parameter to a value below the default. (If the value of MAXEXTENTS is large,

then you can lower the value for PCTINCREASE or even set it to zero.)

■ No other changes to SQL.BSQ are supported. In particular, you should not add,

drop, or rename a column.

Using Locally-Managed Tablespaces
A tablespace that manages its own extents maintains a bitmap in each datafile to

keep track of the free or used status of blocks in that datafile. Each bit in the bitmap

corresponds to a block or a group of blocks. When an extent is allocated or freed for

reuse, Oracle changes the bitmap values to show the new status of the blocks. These

changes do not generate rollback information, because they do not update tables in

the data dictionary (except for special cases such as tablespace quota information).

Locally-managed tablespaces have the following advantages over

dictionary-managed tablespaces:

■ Local management of extents avoids recursive space management operations,

which can occur in dictionary-managed tablespaces if consuming or releasing

space in an extent results in another operation that consumes or releases space

in a rollback segment or data dictionary table.

■ Local management of extents automatically tracks adjacent free space,

eliminating the need to coalesce free extents.

The sizes of extents that are managed locally can be determined automatically by

the system. Alternatively, all extents can have the same size in a locally-managed

tablespace.

See Also: For complete information about these parameters, see

Oracle8i SQL Reference.

Note: Oracle may add, delete, or change internal data dictionary

tables from release to release. For this reason, modifications you

make are not carried forward when the dictionary is migrated to

later releases.

See Also: For more information on locally-managed tablespaces,

see Oracle8i Concepts and Oracle8i Administrator’s Guide. For more

information on the statements for specifying space management,

see Oracle8i SQL Reference.

Solving I/O Problems

Tuning I/O 20-35

Tuning Sorts
There is a trade-off between performance and memory usage. For best performance,

most sorts should occur in memory; sorts written to disk adversely affect

performance. If the sort area size is too large, then too much memory may be used.

If the sort area size is too small, then sorts may need to be written to disk which, as,

mentioned, can severely degrade performance.

This section describes:

■ Sorting to Memory

■ Sorting to Disk

■ Optimizing Sort Performance with Temporary Tablespaces

■ Using NOSORT to Create Indexes Without Sorting

■ GROUP BY NOSORT

Sorting to Memory
The default sort area size is adequate to hold all the data for most sorts. However, if

your application often performs large sorts on data that does not fit into the sort

area, then you may want to increase the sort area size. Large sorts can be caused by

any SQL statement that performs a sort on many rows.

Recognizing Large Sorts Oracle collects statistics that reflect sort activity and stores

them in the dynamic performance view V$SYSSTAT. By default, this view is

available only to the user SYS and to users granted the SELECT ANY TABLE system

privilege. These statistics reflect sort behavior:

Use the following query to monitor these statistics over time:

SELECT NAME, VALUE
FROM V$SYSSTAT
WHERE NAME IN (’SORTS (MEMORY)’, ’SORTS (DISK)’);

See Also: For a list of SQL statements that perform sorts, see

Oracle8i Concepts.

SORTS(MEMORY) The number of sorts small enough to be performed entirely in

sort areas without I/O to temporary segments on disk.

SORTS(DISK) The number of sorts too large to be performed entirely in the

sort area, requiring I/O to temporary segments on disk.

Solving I/O Problems

20-36 Oracle8i Designing and Tuning for Performance

The output of this query might look like this:

NAME VALUE
--- ----------
SORTS(MEMORY) 965
SORTS(DISK) 8

The information in V$SYSSTAT can also be obtained through the Simple Network

Management Protocol (SNMP).

Increasing SORT_AREA_SIZE to Avoid Sorting to Disk SORT_AREA_SIZE is a

dynamically modifiable initialization parameter that specifies the maximum

amount of memory to use for each sort. If a significant number of sorts require disk

I/O to temporary segments, then your application’s performance may benefit from

increasing the size of the sort area. In this case, increase the value of SORT_AREA_
SIZE .

The maximum value of this parameter depends on your operating system. You

need to determine what size SORT_AREA_SIZE makes sense. If you set SORT_
AREA_SIZE to an adequately large value, then most sorts should not need to go to

disk (unless, for example, you are sorting a 10-gigabyte table).

Performance Benefits of Large Sort Areas As mentioned, increasing sort area size

decreases the chances that sorts go to disk. Therefore, with a larger sort area, most

sorts process quickly without I/O.

When Oracle writes sort operations to disk, it writes out partially sorted data in

sorted runs. After all the data has been received by the sort, Oracle merges the runs

to produce the final sorted output. If the sort area is not large enough to merge all

the runs at once, then subsets of the runs are merged in several merge passes. If the

sort area is larger, then there are fewer, longer runs produced. A larger sort area

also means the sort can merge more runs in one merge pass.

Performance Trade-offs for Large Sort Areas Increasing sort area size causes each Oracle

sort process to allocate more memory. This increase reduces the amount of memory

for private SQL and PL/SQL areas. It can also affect operating system memory

allocation and may induce paging and swapping. Before increasing the size of the

sort area, be sure enough free memory is available on your operating system to

accommodate a larger sort area.

See Also: For more information, see the "Tuning Sort Areas"

section in Chapter 19, "Tuning Memory Allocation".

Solving I/O Problems

Tuning I/O 20-37

If you increase sort area size, then consider decreasing the value for the SORT_
AREA_RETAINED_SIZE parameter. This parameter controls the lower limit to

which Oracle reduces the size of the sort area when Oracle completes some or all of

a sort process. That is, Oracle reduces the size of the sort area after the sort has

started sending the sorted data to the user or to the next part of the query. A smaller

retained sort area reduces memory usage but causes additional I/O to write and

read data to and from temporary segments on disk.

Sorting to Disk
Sort writes to disk directly bypass the buffer cache. If you sort to disk, then make

sure that PCTINCREASE is set to zero for the tablespace used for sorting. Also,

INITIAL and NEXT should be the same size. This reduces fragmentation of the

tablespaces used for sorting. You set these parameters using the STORAGE clause of

ALTER TABLE.

Optimizing Sort Performance with Temporary Tablespaces
Optimize sort performance by performing sorts in temporary tablespaces. To create

temporary tablespaces, use the CREATE TABLESPACE or ALTER TABLESPACE
statements with the TEMPORARY keyword.

Normally, a sort may require many space allocation calls to allocate and deallocate

temporary segments. If you specify a tablespace as TEMPORARY, then Oracle caches

one sort segment in that tablespace for each instance requesting a sort operation.

This scheme bypasses the normal space allocation mechanism and greatly improves

performance of medium-sized sorts that cannot be done completely in memory.

You cannot use the TEMPORARY keyword with tablespaces containing permanent

objects such as tables or rollback segments.

Striping Temporary Tablespaces Stripe the temporary tablespace over many disks,

preferably using an operating system striping tool. For example, if you only stripe

the temporary tablespace over 2 disks with a maximum of 50 I/Os per second on

each disk, then Oracle can only perform 100 I/Os per second. This restriction could

lengthen the duration of sort operations.

See Also: For more information on PCTINCREASE, see Oracle8i
Concepts.

See Also: For more information about the syntax of the CREATE
TABLESPACE and ALTER TABLESPACE statements, see Oracle8i
SQL Reference.

Solving I/O Problems

20-38 Oracle8i Designing and Tuning for Performance

For the previous example, you could accelerate sort processing fivefold if you

striped the temporary tablespace over 10 disks. This would enable 500 I/Os per

second.

Using SORT_MULTIBLOCK_READ_COUNT Another way to improve sort performance

using temporary tablespaces is to tune the parameter SORT_MULTIBLOCK_READ_
COUNT. For temporary segments, SORT_MULTIBLOCK_READ_COUNT has nearly the

same effect as the parameter DB_FILE_MULTIBLOCK_READ_COUNT.

Increasing the value of SORT_MULTIBLOCK_READ_COUNTforces the sort process to

read a larger section of each sort run from disk to memory during each merge pass.

This also forces the sort process to reduce the merge width, or number of runs, that

can be merged in one merge pass. This may increase in the number of merge passes.

Because each merge pass produces a new sort run to disk, an increase in the

number of merge passes causes an increase in the total amount of I/O performed

during the sort. Carefully balance increases in I/O throughput obtained by

increasing the SORT_MULTIBLOCK_READ_COUNT parameter with possible

increases in the total amount of I/O performed.

Using NOSORT to Create Indexes Without Sorting
One cause of sorting is the creation of indexes. Creating an index for a table

involves sorting all rows in the table based on the values of the indexed columns.

Oracle also allows you to create indexes without sorting. If the rows in the table are

loaded in ascending order, then you can create the index faster without sorting.

The NOSORT Clause To create an index without sorting, load the rows into the table

in ascending order of the indexed column values. Your operating system may

provide a sorting utility to sort the rows before you load them. When you create the

index, use the NOSORT clause on the CREATE INDEX statement. For example, this

CREATE INDEX statement creates the index EMP_INDEX on the ENAME column of

the emp table without sorting the rows in the EMP table:

CREATE INDEX emp_index
 ON emp(ename)
 NOSORT;

Note: Specifying NOSORT in a CREATE INDEX statement negates

the use of PARALLEL INDEX CREATE, even if PARALLEL (DEGREE
n) is specified.

Solving I/O Problems

Tuning I/O 20-39

When to Use the NOSORT Clause Presorting your data and loading it in order may not

always be the fastest way to load a table.

■ If you have a multiple-CPU computer, then you may be able to load data faster

using multiple processors in parallel, each processor loading a different portion

of the data. To take advantage of parallel processing, load the data without

sorting it first. Then create the index without the NOSORT clause.

■ If you have a single-CPU computer, then you should sort your data before

loading, if possible. Then create the index with the NOSORT clause.

GROUP BY NOSORT
Sorting can be avoided when performing a GROUP BY operation when you know

that the input data is already ordered, so that all rows in each group are clumped

together. This may be the case if the rows are being retrieved from an index that

matches the grouped columns, or if a sort-merge join produces the rows in the right

order. ORDER BY sorts can be avoided in the same circumstances. When no sort

takes place, the EXPLAIN PLAN output indicates GROUP BY NOSORT.

Tuning Checkpoint Activity
Checkpointing is an operation that Oracle performs automatically. This section

explains the following:

■ How Checkpoints Affect Performance

■ Adjusting Checkpointing Activity

■ Fast-Start Checkpointing

How Checkpoints Affect Performance
Aggressive checkpointing will write dirty buffers to the datafiles more quickly and

can reduce instance recovery time in the event of an instance failure. If

checkpointing is fairly aggressive, then replaying the redo records in the redo log

between the current checkpoint position and the end of the log involves processing

relatively few data blocks. This means that the roll-forward phase of recovery will

be fairly short.

See Also: For a complete discussion of checkpoints, see Oracle8i
Concepts.

Solving I/O Problems

20-40 Oracle8i Designing and Tuning for Performance

However, aggressive checkpointing can reduce run-time performance, because

checkpointing causes DBWn processes to perform I/O. The overhead associated

with checkpointing is usually small.

Adjusting Checkpointing Activity
Adjust your checkpointing activity based on your performance concerns. If you are

more concerned with efficient run-time performance than recovery time, then set

checkpointing to be less aggressive.

If you are more concerned with having fast instance recovery than with achieving

optimal run-time performance, then increase the checkpointing interval.

Checkpointing behavior can be influenced by the following parameters:

■ Set the value of the LOG_CHECKPOINT_INTERVAL initialization parameter (in

multiples of physical block size) to be larger than the size of your largest redo

log file.

■ Set the value of the LOG_CHECKPOINT_TIMEOUT initialization parameter to

zero. This value eliminates time-based checkpoints.

■ Set the value of FAST_START_IO_TARGET to zero to disable fast-start

checkpointing. This is described below under the heading, "Fast-Start

Checkpointing".

In addition to setting these parameters, also consider the size of your log files.

Maintaining small log files can increase checkpoint activity and reduce

performance.

Fast-Start Checkpointing
The fast-start checkpointing feature limits the number of dirty buffers and thereby

limits the amount of time required for instance recovery. If Oracle must process an

excessive number of I/O operations to perform instance recovery, then

performance can be adversely affected. You can control this overhead by setting an

appropriate value for the parameter FAST_START_IO_TARGET.

Solving I/O Problems

Tuning I/O 20-41

FAST_START_IO_TARGET limits the number of I/O operations that Oracle should

allow for instance recovery. If the number of operations required for recovery at

any point in time exceeds this limit, then Oracle writes dirty buffers to disk until the

number of I/O operations needed for instance recovery is reduced to the limit set

by FAST_START_IO_TARGET.

You can control the duration of instance recovery, because the number of

operations required to recover indicates how much time this process takes. Disable

this aspect of checkpointing by setting FAST_START_IO_TARGET to zero (0).

Tuning LGWR and DBWR I/O
This section describes how to tune I/O for the log writer and database writer

background processes.

Tuning LGWR I/O
Applications with many INSERTs or with LONG/RAW activity may benefit from

tuning LGWR I/O. The size of each I/O write depends on the size of the log buffer

which is set by the initialization parameter LOG_BUFFER. Therefore, it is important

to choose the right log buffer size. LGWR starts writing if the buffer is one third full,

or when it is posted by a foreground process such as a COMMIT. Too large a log

buffer size might delay the writes. Too small a log buffer might also be inefficient,

resulting in frequent, small I/Os.

Note: Fast-start checkpointing is only available with the Oracle8i
Enterprise Edition.

Oracle recommends using fast-start checkpointing to control the

duration of the "roll-forward" phase of recovery. This behavior is

controlled by the FAST_START_IO_TARGET parameter. The

parameter, DB_BLOCK_MAX_DIRTY_TARGET, is an Oracle8

parameter used to provide more limited control over roll-forward

duration, and it is included in Oracle8i only for backward

compatibility.

See Also: For more information on the FAST_START_IO_
TARGET parameter and the trade-off between performance and

instance recovery time, see Chapter 24, "Tuning Instance Recovery

Performance".

Solving I/O Problems

20-42 Oracle8i Designing and Tuning for Performance

If the average size of the I/O becomes quite large, then the log file could become a

bottleneck. To avoid this problem, you can stripe the redo log files, going in parallel

to several disks. You must use an operating system striping tool, because manual

striping is not possible in this situation.

Stripe size is also important. You can figure an appropriate value by dividing the

average redo I/O size by the number of disks over which you want to stripe the

buffer.

Review V$SYSSTAT or the UTLBSTAT report for the following:

■ Log buffer space: This is time spent waiting for space in the log buffer. This is

an indication that the buffers are being filled up faster than LGWR is writing.

This may also indicate disk I/O contention. If the count is very high, then

increase LGWR buffers and investigate disk I/O contention where the redo logs

reside.

■ Log file space/switch: This is the time Oracle spent waiting for the space on

disk for LGWR to complete the write of log buffers to the redo log. This may be

an indication to increase log buffers.

For example:

SELECT a.VALUE / DECODE(b.VALUE, 0, 1, b.VALUE)
FROM V$SYSSTAT a, V$SYSSTAT b
WHERE a.NAME = 'redo size' AND b.NAME = 'user commits';

This provides the average number redo records per commit. Now you must

determine the average number of commits per second and multiply it by the

average number redo records per commit (calculated above). This provides the max

log buffers to setup.

The following events uniquely identify the specific wait:

■ Log buffer space

■ Log file switch (checkpoint incomplete)

■ Log file switch (archiving needed)

■ Log file switch (clearing log file)

■ Log file switch completion

■ Switch logfile statement

Pre-Oracle 7.3 tuning required the following to tune log file switch counts:

■ If log file/switch = log space free requests, then add more log_buffers

Solving I/O Problems

Tuning I/O 20-43

■ If log file/switch is high and there is a significant difference between

background checkpoints started and background checkpoints completed, then

consider reviewing the checkpoint frequency and the log file sizes.

Tuning DBWR I/O
This section describes the following issues of tuning DBWR I/O:

■ Multiple Database Writer (DBWR) Processes and Database Slaves

■ Internal Write Batch Size

■ LRU Latches with a Single Buffer Pool

■ LRU Latches with Multiple Buffer Pools

Multiple Database Writer (DBWR) Processes and Database Slaves Multiple database writer

processes are useful when a buffer cache is so large that one DBWn process running

full-time cannot keep up with the load. However, for large transaction rate systems

that have many CPUs, you can enable multiple database writers to handle the load.

Using the DB_WRITER_PROCESSES initialization parameter, you can create

multiple database writer processes (from DBW0 to DBW9). Database I/O slaves

provide non-blocking, asynchronous requests to simulate asynchronous I/O.

I/O slaves for DBWR are allocated immediately following database open, when the

first I/O request is made. The DBWR continues to do all the DBWR-related work

(scanning LRU). When the DBWR process initiates the I/O, the DBWR I/O slave

simply does the I/O on behalf of DBWR. The writing of the batch is parallelized

between the I/O slaves.

The main DBWR process, which is I/O issuing process, looks for an idle I/O slave.

If one is available, then that I/O slave gets a post. If there are no idle slaves, then

the I/O issuer spawns one. If the allowed number of slaves have been spawned,

then the issuer waits and tries again to find an idle slave.

If the asynchronous I/O code of the platform has bugs or is not efficient, then

asynchronous I/O can be disabled on a device type. However, multiple I/O slaves

only parallelize the writing of the batch between the DBWR I/O slaves. In contrast,

you can parallelize the gathering as well as the writing of buffers with the multiple

DBWR feature. Therefore, from the throughput standpoint, N DBWR processes

should deliver more throughput than one DBWR process with the same number of

I/O slaves.

Multiple writer processes (and I/O slaves) are advanced features that are intended

for heavy OLTP processing. Implement this feature only if the database

Solving I/O Problems

20-44 Oracle8i Designing and Tuning for Performance

environment requires such I/O throughput. For example, if asynchronous I/O is

available, then it may be wise to disable I/O slaves and run with a single DBWR in

asynchronous I/O mode.

If it is determined that there is a need for multiple writer processes or slave

processes, then determine which option to use. Although both implementations of

DBWR processes may be beneficial, the general indicator rule on which option to

use depends on the availability of asynchronous I/O (from the operating system)

and the number of CPUs.

The number of CPUs is also indirectly related to the number LRU latch sets. To

determine whether to use multiple DBWn processes or database slaves, follow these

guidelines:

■ First, determine if DBWR is keeping up the write requests. Review the

V$SYSTEM_EVENT view for significant numbers of 'free buffer' waits. Large

values may indicate that users wants to read a buffer, but they cannot because

there are too many dirty buffers in the cache. If you do not see free buffer waits,

then DBWR is not a problem.

■ If DBWR is keeping up with the write requests, then use I/O slaves only if

asynchronous I/O is not supported (or is working improperly) on the operating

system for the types of files that you are using. Start with the number of I/O

slaves equal to the average number of disks that a typical file spans.

■ If you are using a RAID device with a large write back cache, then you can

reduce your I/O slaves significantly, because I/Os to the RAID cache are much

faster than I/Os to the disks.

■ Use multiple DBWR (DB_WRITER_PROCESSES) when one DBWR cannot keep

up. This is generally only necessary for large SMP systems with a lot of I/O

activity. Typically, there should be no more than one DBWR for every 8 CPUs.

Some systems can use multiple DBWR processes with asynchronous I/O

enabled if they have very high transaction rates, are not CPU starved, and the

operating system's async I/O works effectively.

Note: Review the current throughput, and examine possible

bottlenecks to determine if it is feasible to implement these features.

Solving I/O Problems

Tuning I/O 20-45

Internal Write Batch Size Database writer (DBWn) processes use the internal write batch
size, which is set to the lowest of the following three values (A, B, or C):

■ Value A is calculated as follows:

■ Value B is the port-specific limit. (See your Oracle platform-specific

documentation.)

■ Value C is one-fourth the value of DB_BLOCK_BUFFERS.

Setting the internal write batch size too large may result in uneven response times.

For best results, you can influence the internal write batch size by changing the

parameter values by which Value A is calculated. Take the following approach:

1. Determine the files to which you must write, and the number of disks on which

those files reside.

2. Determine the number of I/Os you can perform against these disks.

3. Determine the number of writes that your transactions require.

4. Make sure that you have enough disks to sustain this rate.

LRU Latches with a Single Buffer Pool When you have multiple database writer DBWn
processes and only one buffer pool, the buffer cache is divided up among the

processes by LRU (least recently used) latches; each LRU latch is for one LRU list.

The default value of the DB_BLOCK_LRU_LATCHESparameter is 50% of the number

of CPUs in the system. You can adjust this value to be equal to, or a multiple of, the

number of CPUs. The objective is to cause each DBWn process to have the same

number of LRU lists, so that they have equivalent loads.

For example, if you have 2 database writer processes and 4 LRU lists (4 latches),

then the DBWn processes obtain latches in a round-robin fashion. DBW0 obtains

latch 1, DBW1 obtains latch 2, then DBW0 obtains latch 3 and DBW1 obtains latch 4.

Note: Implementing DB_IO_SLAVES or multiple writer processes

creates some overhead cost. Enabling these features requires that

extra shared memory be allocated for I/O buffers and request

queues.

= Value A
DB_FILES * DB_FILE_SIMULTANEOUS_WRITES

2

Solving I/O Problems

20-46 Oracle8i Designing and Tuning for Performance

Similarly, if your system has 8 CPUs and 3 DBWn processes, then you should have

9 latches.

LRU Latches with Multiple Buffer Pools If you are using multiple buffer pools and

multiple database writer (DBWn) processes, then the number of latches in each pool

(DEFAULT, KEEP, and RECYCLE) should be equal to, or a multiple of, the number of

processes. This is recommended so that each DBWn process is equally loaded.

Consider the example in Figure 20–3 where there are 3 DBWn processes and 2

latches for each of the 3 buffer pools, for a total of 6 latches. Each buffer pool would

obtain a latch in round robin fashion.

Figure 20–3 LRU Latches with Multiple Buffer Pools: Example 1

The DEFAULT buffer pool has 500 buffers for each LRU list. The RECYCLE buffer

pool has 250 buffers for each LRU list. The KEEPbuffer pool has 100 buffers for each

LRU.

DBW0 gets latch 1 (500) and latch 4 (250) for 750.

DBW1 gets latch 2 (500) and latch 6 (100) for 600.

DBW2 gets latch 3 (250) and latch 5 (100) for 350.

Note: When there are multiple buffer pools, each buffer pool has a

contiguous range of LRU latches.

LRU
Lists

Latches

DEFAULT
Buffer Pool

RECYCLE
Buffer Pool

KEEP
Buffer Pool

1 2

3 4

5 6500
Buffers

500
Buffers

250
Buffers

250
Buffers

100
Buffers

100
Buffers

Solving I/O Problems

Tuning I/O 20-47

Thus, the load carried by each of the DBWn processes differs, and performance

suffers. If, however, there are 3 latches in each pool, then the DBWn processes have

equal loads, and performance is optimized.

The different buffer pools have different rates of block replacement. Ordinarily,

blocks are rarely modified in the KEEP pool and frequently modified in the

RECYCLE pool. This means that you need to write out blocks more frequently from

the RECYCLE pool than from the KEEP pool. As a result, owning 100 buffers from

one pool is not the same as owning 100 buffers from the other pool. To be perfectly

load balanced, each DBWn process should have the same number of LRU lists from

each type of buffer pool.

A well-configured system might have 3 DBWn processes and 9 latches, with 3

latches in each buffer pool.

Figure 20–4 LRU Latches with Multiple Buffer Pools: Example 2

The DEFAULT buffer pool has 500 buffers for each LRU list. The RECYCLE buffer

pool has 250 buffers for each LRU list. The KEEPbuffer pool has 100 buffers for each

LRU list.

DBW0 gets latch 1 (500) and latch 4 (250) and latch 7 (100) for 850.

DBW1 gets latch 2 (500) and latch 5 (250) and latch 8 (100) for 850.

DBW2 gets latch 3 (500) and latch 6 (250) and latch 9 (100) for 850.

LRU
Lists

Latches

DEFAULT
Buffer Pool

RECYCLE
Buffer Pool

KEEP
Buffer Pool

1 2

4 5

7 8500
Buffers

500
Buffers

3

500
Buffers

250
Buffers

250
Buffers

6

250
Buffers

100
Buffers

100
Buffers

9

100
Buffers

Solving I/O Problems

20-48 Oracle8i Designing and Tuning for Performance

Tuning Backup and Restore Operations
The primary goal of backup and restore tuning is to create an adequate flow of data

between disk and storage device. Tuning backup and restore operations involve the

following tasks:

■ Locating the Source of Bottlenecks

■ Using Recovery Manager

■ Using Fixed Views to Monitor Bottlenecks

■ Improving Backup Throughput

Locating the Source of Bottlenecks
Backups and restore operations have three distinct components:

■ Read the input (disk or tape).

■ Process data by validating blocks and copying them from the input to the

output buffer.

■ Write the output to tape or disk.

It is unlikely that all three of these perform at the same speed. Therefore, the

slowest of these components is the bottleneck.

Types of I/O Oracle backup and restore uses two types of I/O: disk and tape. When

performing a backup, the input files are read using disk I/O, and the output backup

file is written using either disk or tape I/O. When performing restores, these roles

reverse. Both disk and tape I/O can be synchronous or asynchronous; each is

independent of the other.

Measuring Synchronous and Asynchronous I/O Rates When using synchronous I/O, you

can easily determine how much time backup jobs require, because devices only

perform one I/O task at a time. When using asynchronous I/O, it is more difficult

to measure the bytes-per-second rate for the following reasons:

■ Asynchronous processing implies that more than one task occurs at a time.

■ Oracle I/O uses a polling, rather than an interrupt, mechanism to determine

when each I/O request completes. Because the backup or restore process is not

immediately notified of I/O completion by the operating system, you cannot

determine the duration of each I/O.

Solving I/O Problems

Tuning I/O 20-49

Using Recovery Manager
Recovery Manager (RMAN) is an Oracle tool that allows you to back up, copy,

restore, and recover datafiles, control files, and archived redo logs. You can invoke

RMAN as a command-line utility from the operating system prompt or use the

GUI-based Enterprise Manager Backup Manager.

RMAN automates many of the backup and recovery tasks that were formerly

performed manually. For example, instead of requiring you to locate appropriate

backups for each datafile, copy them to the correct place using operating system

commands, and choose which archived logs to apply, RMAN manages all these

tasks automatically.

RMAN provides several parameters that allow you to tune backup and recovery

operations. These are discussed in the following sections.

Allocating Disk Buffers There are two different buffers: disk buffers and tape buffers.

They can be different sizes. When RMAN backs up from disk, it allocates four disk

buffers for each input datafile. You cannot alter the number of buffers that RMAN

allocates.

The size of the disk buffers is controlled by the DB_FILE_DIRECT_IO_COUNT
initialization parameter. This is the number of blocks per buffer. The default is 64.

The size of each buffer is equal to the product of the following initialization

parameters:

DB_BLOCK_SIZE * DB_FILE_DIRECT_IO_COUNT

For example, if DB_BLOCK_SIZE = 2048 and DB_FILE_DIRECT_IO_COUNT =64,

then each disk buffer is 128K. In this example, the total size of the buffers for each

datafile is 128K * 4, or 512K. There are 4 buffers allocated for each datafile in the

backup set.

If you want to know the total size of the buffers allocated in your backup, then

multiply this total by the number of datafiles being accessed by the channel, and

then multiply by the number of channels. You should also add a little extra to

account for the control structures.

You can reduce the size of the buffers by lowering DB_FILE_DIRECT_IO_COUNT,
but the number of buffers remains at 4 per file.

Note: On some platforms, the most efficient I/O buffer size may

be more than 128KB.

Solving I/O Problems

20-50 Oracle8i Designing and Tuning for Performance

Figure 20–5 Disk Buffer Allocation

Allocating Tape Buffers Oracle allocates 4 buffers per channel for the tape writers (or

reads if doing a restore). There are usually 64K each. Therefore, to size this,

multiply by 4, and then multiply by the number of channels.

You can change the size of each tape buffer using the parms parameter of the

ALLOCATE CHANNEL statement. Set blksize to the desired size of each buffer. For

example:

allocate channel foo type 'sbt_tape' parms="blksize=16384"

RMAN allocates the tape buffers in the SGA or the PGA. If you set the initialization

parameter BACKUP_TAPE_IO_SLAVES = true , then RMAN allocates them from

the SGA. If you set the parameter to FALSE, then RMAN allocates the buffers in the

PGA.

If you use I/O slaves, then you should use the LARGE_POOL_SIZE initialization

parameter to set aside some SGA memory that is dedicated to holding these large

memory allocations. Hence, the RMAN I/O buffers do not compete with the library

cache for SGA memory.

128

128

128

Tape driveDatafiles Input disk
buffers

2 64*

Channel
filesperset = 3

Datafile 2

Datafile 3

Datafile 1 buffer =
DB_BLOCK_SIZE
DB_FILE_DIRECT_IO_COUNT

*

Solving I/O Problems

Tuning I/O 20-51

Figure 20–6 Tape Buffer Allocation

Synchronous vs. Asynchronous I/O When RMAN reads or writes data, the action is

either synchronous or asynchronous. When the I/O is synchronous, a server

process can perform only one task at a time. When the I/O is asynchronous, a

server process can begin one task, and other processes can perform other tasks

while the initial process waits for the task to complete.

You can set initialization parameters that determine the type of I/O. If you set

BACKUP_TAPE_IO_SLAVES to true , then the I/O is asynchronous. Otherwise, the

I/O is synchronous.

Figure 20–7 illustrates synchronous I/O in a backup to tape. The following steps

occur:

1. A server process writes blocks to a tape buffer.

2. The tape process writes data to tape. While the tape process is writing, the server
process must remain idle.

3. The tape process returns a message to the server process stating that it has

completed writing.

4. The server process can initiate a new task.

64

64

Channel

SGA if BACKUP_TAPE_IO_SLAVES = TRUE

PGA if BACKUP_TAPE_IO_SLAVES = FALSE
or

64

64

Tape driveOutput tape
buffers

Solving I/O Problems

20-52 Oracle8i Designing and Tuning for Performance

Figure 20–7 Synchronous I/O

Figure 20–8 illustrates asynchronous I/O in a backup to tape. The following steps

occur:

1. A server process writes blocks to a tape buffer.

2. The tape process writes data to tape. While the tape process is writing, other server
processes are free to perform tasks.

3. Two spawned server processes write to tape buffers as the initial tape process

writes to tape.

1010101
Server

process
1010101

1 2Server process
writes data to
a buffer

3Process says it
is done

Server process waits
while tape process
writes data

4 Server process
can write to
new buffer

Tape
buffers

Solving I/O Problems

Tuning I/O 20-53

Figure 20–8 Asynchronous I/O

Allocating Channels When you allocate a channel, RMAN lets you set various

channel limit parameters that apply to operations performed by the allocated server

session. You can use these parameters to do the following:

■ Force RMAN to create multiple backup pieces.

■ Prevent RMAN from consuming too much disk bandwidth.

■ Prevent RMAN from opening too many input files at once.

You can specify the following parameters:

Parameter Description

kbytes Specifies the maximum size of a backup piece created on a channel.
Use this parameter to force RMAN to create multiple backup pieces in
a backup set. RMAN creates each backup piece with a size no larger
than the value specified in the parameter.

readrate Specifies the maximum number of buffers per second read from each
input datafile. You can use this parameter to prevent RMAN from
consuming too much bandwidth during backups.

For example, set readrate to 12. If each input buffer is 128K, then the
read rate for each input datafile is 12 * 128 or about 1.5 Mb per second.
If each SCI drive delivers 3 Mb per second, then RMAN leaves some
disk bandwidth available to the online system.

1010101
Server

process
1010101 1010101

1 2
Server process
writes data

3 Server process writes
to new buffers
while waiting for
to complete

Tape process
writes data

2

Tape
buffers

Solving I/O Problems

20-54 Oracle8i Designing and Tuning for Performance

Allocating Input Files The BACKUP statement lets you set parameters that influence

how RMAN selects files for input into backup sets. You may need to set these

parameter to do the following:

■ Prevent RMAN from write a single backup set to multiple volumes.

■ Prevent RMAN from reading from too many disks at once.

■ Keep a tape drive streaming during a backup.

You can specify the following parameters:

maxopenfiles Determines the maximum number of input files that a backup or copy
can have open at a given time. Set this parameter to prevent RMAN
from attempting to open a number of files greater than the upper limit
for your operating system.

See Also: For syntax information on the ALLOCATE CHANNEL
statement, see Oracle8i Recovery Manager User’s Guide and Reference.

Parameter Description

filesperset Specifies the maximum number of files to place in a backup set. RMAN
divides the number of input files by the number of channels to calculate
the number of files per backup set. Use this parameter to force RMAN
to create multiple backup sets.

For example, if you have 50 input datafiles and 2 channels, you can set
filesperset = 5 to create 10 backup sets. This action can prevent you
from splitting a backup set among multiple tapes.

diskratio Specifies the number of drives to include in the backup.

For example, assume your datafiles are located on 5 disks, the disks
supply data at 10 bytes/second, and the tape drive requires 20
bytes/second to set keep streaming. If you set diskratio to 2, then
RMAN reads from 2 drives at a time, thereby spreading the backup
load.

Parameter Description

Solving I/O Problems

Tuning I/O 20-55

Using Incremental Backups An incremental backup is an RMAN backup in which only

modified blocks are backed up. Incremental backups are not necessarily faster than

full backups, because Oracle still reads the entire datafile to take an incremental

backup. If tape drives are locally attached, then incremental backups could be

faster. You must consider how much bandwidth there is for reading the disks

compared to the bandwidth for writing to the tapes. If tape bandwidth is limited

compared to disk, then incremental backups could help.

In an incremental backup, if only a few blocks have changed, then you need to

input many buffers from the datafile before you accumulate enough blocks to fill a

buffer and write to tape. So, it is possible that the tape drive is not streaming.

Streaming means that the tape drive is 100% busy. If a tape drive is not kept

streaming, then it becomes inefficient, because after each write, the tape drive must

stop and rewind a little bit.

If you use a large filesperset in the filesperset parameter, then you can scan many

datafiles in parallel, the output buffers for the tape drive are filled quickly, and you

can write them frequently enough to keep the tape drive streaming.

For an incremental backup, filesperset=50 might be a good number. But, for a full

or incremental level=0 backup, filesperset should be smaller, such as 4 or 8.

RMAN Performance Tips To get the best performance for a backup, follow these

suggestions:

1. Do not set the readrate parameter. This is intended to slow down a backup, so

that you can run it in the background during production hours.

2. Set the BACKUP_TAPE_IO_SLAVES initialization parameter to TRUE.

3. If you set BACKUP_TAPE_IO_SLAVES to TRUE, then the tape buffers are

allocated from the SGA. Therefore, allocate a LARGE_POOL for them. You can

control the buffer size with the parms clause on the allocate channel statement:

Note: The number of datafiles accessed by a channel can be

controlled by setting filesperset on the BACKUP statement or by

entering a SET LIMIT CHANNEL ... maxopenfiles=n statement

before the BACKUP statement.

See Also: For syntax information on the BACKUP statement, see

Oracle8i Recovery Manager User’s Guide and Reference.

Solving I/O Problems

20-56 Oracle8i Designing and Tuning for Performance

4. Increase the size of the disk reads by setting the DB_FILE_DIRECT_IO_COUNT
initialization parameter. Use the maxopenfiles parameter to control how many

datafiles are opened simultaneously on each channel.

5. If your datafiles are in a UNIX file system, then try setting BACKUP_DISK_IO_
SLAVES to 4. This spawns processes to read datafiles in parallel, simulating

asynchronous I/O. In this case, the datafile buffers are allocated from the SGA.

The default value for this parameter is 0, meaning I/O slaves are not used at all,

and the buffers come from the process local memory, not the SGA.

6. For incremental backups, use a higher filesperset than for full backups. Set it

high enough so that the tape drive is kept streaming. Filesperset should be less

than or equal to maxopenfiles. Try making FILESPERSET=MAXOPENFILES.
Use a value of 10 to start, and raise this if the tape drive does not stream.

BACKUP_DISK_IO_SLAVES may be necessary.

Using Fixed Views to Monitor Bottlenecks
Use the V$BACKUP_SYNC_IO and V$BACKUP_ASYNC_IO views to determine the

source of backup or restore bottlenecks and to determine the progress of backup

jobs.

V$BACKUP_SYNC_IOcontains rows when the I/O is synchronous to the process (or

thread on some platforms) performing the backup. V$BACKUP_ASYNC_IO contains

rows when the I/O is asynchronous. Asynchronous I/O is obtained either with I/O

processes or because it is supported by the underlying operating system.

Identifying Bottlenecks with Synchronous I/O With synchronous I/O, it is difficult to

identify specific bottlenecks, because all synchronous I/O is a bottleneck to the

process. The only way to tune synchronous I/O is to compare the bytes-per-second

rate with the device’s maximum throughput rate. If the bytes-per-second rate is

lower than that device specifies, then consider tuning that part of the

backup/restore process. Use the DISCRETE_BYTES_PER_SECOND column in the

V$BACKUP_SYNC_IO view to see the I/O rate.

Identifying Bottlenecks with Asynchronous I/O If the combination of LONG_WAITS and

SHORT_WAITS is a significant fraction of IO_COUNT, then the file indicated in

V$BACKUP_SYNCH_IO and V$BACKUP_ASYNCH_IO is probably a bottleneck. Some

platforms' implementation of asynchronous I/O can cause the caller to wait for I/O

completion when performing a non-blocking poll for I/O. Because this behavior

See Also: For more information about these views, see the

Oracle8i Reference.

Solving I/O Problems

Tuning I/O 20-57

can vary among platforms, the V$BACKUP_ASYNC_IOview shows the total time for

both "short" and "long" waits.

Long waits are the number of times the backup/restore process told the operating

system to wait until an I/O was complete. Short waits are the number of times the

backup/restore process made an operating system call to poll for I/O completion in

a non-blocking mode. Both types of waits the operating system should respond

immediately.

If the SHORT_WAIT_TIME_TOTAL column is equal to or greater than the LONG_
WAIT_TIME_TOTAL column, then your platform probably blocks for I/O

completion when performing non-blocking I/O polling. In this case, the SHORT_
WAIT_TIME_TOTAL represents real I/O time for this file. If the SHORT_WAIT_
TIME_TOTAL is low compared to the total time for this file, then the delay is most

likely caused by other factors, such as process swapping. If possible, tune your

operating system so that the I/O wait time appears up in the LONG_WAIT_TIME_
TOTAL column.

Columns Common to V$BACKUP_SYNC_IO and V$BACKUP_ASYNC_IO Table 20–17 lists

columns and their descriptions that are common to the V$BACKUP_SYNC_IO and

V$BACKUP_ASYNC_IO views.

Table 20–17 Common Columns of V$BACKUP_SYNC_IO and V$BACKUP_ASYNC_IO

Column Description

SID Oracle SID of the session doing the backup or restore.

SERIAL Usage counter for the SID doing the backup or restore.

USE_COUNT A counter you can use to identify rows from different backup sets.
Each time a new set of rows is created in V$BACKUP_SYNC_IO or
V$BACKUP_ASYNC_IO, they have a USE_COUNT that is greater
than the previous rows. The USE_COUNT is the same for all rows
used by each backup or restore operation.

DEVICE_TYPE Device type where the file is located (typically DISK or SBT_
TAPE).

TYPE INPUT: The file(s) are being read.

OUTPUT: The file(s) are being written.

AGGREGATE: This row represents the total I/O counts for all DISK
files involved in the backup or restore.

Solving I/O Problems

20-58 Oracle8i Designing and Tuning for Performance

STATUS NOTSTARTED: This file has not been opened yet.

IN PROGRESS: This file is currently being read or written.

FINISHED : Processing for this file is complete.

FILENAME The name of the backup file being read or written.

SET_COUNT The SET_COUNT of the backup set being read or written.

SET_STAMP The SET_STAMP of the backup set being read or written.

BUFFER_SIZE Size of the buffers being used to read/write this file in bytes.

BUFFER_COUNT The number of buffers being used to read/write this file.

TOTAL_BYTES The total number of bytes to be read or written for this file if
known. If not known, this column is null.

OPEN_TIME Time this file was opened. If TYPE = 'AGGREGATE', then this is the
time that the first file in the aggregate was opened.

CLOSE_TIME Time this file was closed. If TYPE = 'AGGREGATE', then this is the
time that the last file in the aggregate was closed.

ELAPSED_TIME The length of time expressed in 100ths of seconds that the file was
open.

MAXOPENFILES The number of concurrently open DISK files. This value is only
present in rows where TYPE = 'AGGREGATE'.

BYTES The number of bytes read or written so far.

EFFECTIVE_BYTES_PER_
SECOND

The I/O rate achieved with this device during the backup. It is the
number of bytes read or written divided by the elapsed time. This
value is only meaningful for the component of the backup system
causing a bottleneck. If this component is not causing a
bottleneck, then the speed measured by this column actually
reflects the speed of some other, slower, component of the system.

IO_COUNT The number of I/Os performed to this file. Each request is to read
or write one buffer, of size BUFFER_SIZE.

Table 20–17 Common Columns of V$BACKUP_SYNC_IO and V$BACKUP_ASYNC_IO

Column Description

Solving I/O Problems

Tuning I/O 20-59

Columns Specific to V$BACKUP_SYNC_IO Table 20–18 lists columns specific to the

V$BACKUP_SYNC_IO view.

Columns Specific to V$BACKUP_ASYNC_IO Table 20–19 lists columns specific to the

V$BACKUP_ASYNC_IO view.

Table 20–18 Columns Specific to V$BACKUP_SYNC_IO

Column Description

IO_TIME_TOTAL The total time required to perform I/O for this file expressed in
100ths of seconds.

IO_TIME_MAX The maximum time taken for a single I/O request.

DISCRETE_BYTES_PER_
SECOND

The average transfer rate for this file. This is based on
measurements taken at the start and end of each individual I/O
request. This value should reflect the real speed of this device.

Table 20–19 Columns Specific to V$BACKUP_ASYNC_IO

Column Description

READY The number of asynchronous requests for which a buffer was
immediately ready for use.

SHORT_WAITS The number of times a buffer was not immediately available, but
then a buffer became available after doing a non-blocking poll
for I/O completion. The reason non-blocking waits are timed is
because some implementations of asynchronous I/O may wait for
an I/O to complete even when the request is supposed to be
non-blocking.

SHORT_WAIT_TIME_TOTAL The total time expressed in 100ths of seconds, taken by
non-blocking polls for I/O completion.

SHORT_WAIT_TIME_MAX The maximum time taken for a non-blocking poll for I/O
completion, in 100ths of seconds.

LONG_WAITS The number of times a buffer was not immediately available,
and only became available after issuing a blocking wait for an
I/O to complete.

LONG_WAIT_TIME_TOTAL The total time expressed in 100ths of seconds taken by blocking
waits for I/O completion.

LONG_WAIT_TIME_MAX The maximum time taken for a blocking wait for I/O completion
expressed in 100ths of seconds.

Solving I/O Problems

20-60 Oracle8i Designing and Tuning for Performance

Improving Backup Throughput
In optimally tuned backups, tape components should create the only bottleneck.

You should keep the tape and its device streaming, or constantly rotating. If the tape

is not streaming, then the data flow to the tape may be inadequate.

This section contains the following topics to maintain streaming by improving

backup throughput:

■ Understanding Factors Affecting Data Transfer Rates

■ Determining If Tape is Streaming for Synchronous I/O

■ Determining If Tape is Streaming for Asynchronous I/O

■ Increasing Throughput to Enable Tape Streaming

■ Spreading I/O Across Multiple Disks

■ Backing Up Empty Files or Files with Few Changes

■ Backing Up Full Files

Understanding Factors Affecting Data Transfer Rates The rate at which the host sends

data to keep the tape streaming depends on the following factors:

■ The raw capacity of the tape device.

■ Compression.

Tape device raw capacity is the smallest amount of data required to keep the tape

streaming.

Compression is implemented either in the tape hardware or by the media

management software. If you do not use compression, then the raw capacity of the

tape device keeps it streaming. If you use compression, then the amount of data that

must be sent to stream the tape is the raw device capacity multiplied by the

compression factor. The compression factor varies for different types of data.

Determining If Tape is Streaming for Synchronous I/O To determine whether your tape is

streaming when the I/O is synchronous, query the EFFECTIVE_BYTES_PER_
SECOND column in the V$BACKUP_SYNC_IO view.

Solving I/O Problems

Tuning I/O 20-61

Determining If Tape is Streaming for Asynchronous I/O If the I/O is asynchronous, then

the tape is streaming if the combination of LONG_WAITS and SHORT_WAITS is a

significant fraction of I/O count. Place more importance on SHORT_WAITS if the

time indicated in the SHORT_WAIT_TIME_TOTALcolumn is equal to or greater than

the LONG_WAIT_TIME_TOTAL column.

Increasing Throughput to Enable Tape Streaming If the tape is not streaming, then the

basic strategy is to supply more bytes-per-second to the tape. Modify this strategy

depending on the how many blocks Oracle must read from disk and how many

disks Oracle must access.

Spreading I/O Across Multiple Disks Using the DISKRATIO parameter of the BACKUP
statement to distribute backup I/O across multiple volumes, specify how many

disk drives RMAN uses to distribute file reads when backing up multiple

concurrent datafiles. For example, assume that your system uses 10 disks. The disks

supply data at 10 byes per second, and the tape drive requires 50 bytes per second

to keep streaming. In this case, set DISKRATIO to 5 to spread the backup load onto

5 disks.

When setting DISKRATIO, spread the I/O over only as many disks as needed to

keep the tape streaming: any more can increase the time it takes to recover a single

file and provides no performance benefit. If you do not specify DISKRATIO, but

you do specify FILESPERSET, then DISKRATIO defaults to FILESPERSET. If
neither is specified, then DISKRATIO defaults to 4.

Backing Up Empty Files or Files with Few Changes When performing a full backup of

files that are largely empty, or when performing an incremental backup when few

blocks have changed, you may not be able to supply data to the tape fast enough to

keep it streaming.

In this case, you can achieve optimal performance by the following:

■ Use the highest possible value for the MAXOPENFILESparameter of the

Recovery Manager SET LIMIT CHANNELstatement.

Table 20–20 V$BACKUP_SYNC_IO View

If EFFECTIVE_BYTES_PER_SECOND is: Then:

Less than the raw capacity of the hardware The tape is not streaming.

More than the raw capacity of the
hardware

The tape may be streaming, depending on the
compression ratio of the data.

Solving I/O Problems

20-62 Oracle8i Designing and Tuning for Performance

■ Use asynchronous disk I/O. This takes advantage of asynchronous read-ahead

that fills input buffers from one file while processing data from others.

Backing Up Full Files When you perform a full backup of files that are mostly full and

the tape is not streaming, you can improve performance in several ways, as shown

in Table 20–21:

See Also: For more information about the RMAN SET statement,

see Oracle8i Backup and Recovery Guide.

Table 20–21 Throughput Performance Improvement Methods

Method Consequence

Set DBWR_IO_SLAVES
= TRUE

Allocates additional processes for each disk channel, and these
processes simulate asynchronous I/O. Try setting this to 3 or 4, and
set the LARGE_POOL_SIZE parameter accordingly.

Set BACKUP_TAPE_
IO_SLAVES = TRUE

Simulates asynchronous tape I/O by spawning multiple processes
to divide the work for the backup or restore operation. If you do
not set this parameter, then all I/O to the tape layer is synchronous,
which means that no other work can be done until the tape is done
writing.

BACKUP_TAPE_IO_SLAVES requires that the buffers for the
respective disk or tape I/O be allocated from the shared memory
(SGA), so that they can be shared between two processes.
Therefore, you should allocate a large enough SGA. If you set this
parameter, then also set LARGE_POOL_SIZE.

Set LARGE_POOL_
SIZE

When attempting to get shared buffers for I/O slaves, Oracle does
the following:

■ If LARGE_POOL_SIZE is set, then Oracle attempts to get
memory from the large pool. If this value is not large enough,
then Oracle does not try to get buffers from the shared pool.

■ If LARGE_POOL_SIZE is not set, then Oracle attempts to get
memory from the shared pool.

■ If Oracle cannot get enough memory, then it obtains I/O buffer
memory from local process memory and writes a message to
the alert .log file indicating that synchronous I/O is used for
this backup.

Solving I/O Problems

Tuning I/O 20-63

Increase DB_FILE_
DIRECT_IO_COUNT

Causes RMAN to use larger buffers for disk I/O. The default buffer
size used for backup and restore disk I/O is DB_FILE_DIRECT_
IO_COUNT * DB_BLOCK_SIZE. The default value for DB_FILE_
DIRECT_IO_COUNT is 64, so if DB_BLOCK_SIZE is 2048, then the
buffer size is 128KB. On some platforms, the most efficient I/O
buffer size may be more than 128KB. You can increase the DB_
FILE_DIRECT_IO_COUNT, but the number of buffers per file stays
fixed at 4.

Make sure the RMAN
parameters
MAXOPENFILES and
FILESPERSETare not
too low

Increases the number of files that RMAN can process at one time.
Using default buffer sizes, each concurrently open file uses 512KB
of process memory (or SGA large pool memory, if I/O processes
are used) for buffers. The number of concurrent files should be just
enough to keep the tape streaming.

You must derive the correct number by trial and error, because
unused block compression greatly affects the amount of disk data
that is sent to the tape drive. If your tape drives are slower than
your disk drives, then a value of 1 for MAXOPENFILES should be
sufficient.

If you want a high FILESPERSET, but you want to limit the
memory allocated for buffers, then use SETLIMIT . For example:

run{
allocate channel foo type disk;
SETLIMIT CHANNEL foo maxopenfiles=4
backup database...}

SETLIMIT limits the channels to have at most 4 open files. So, you
could allocate 16 buffers for the input files and 4 buffers for the
backup set. The default is 10, which may be high for your system.

READRATE The READRATE parameter specifies units of buffers per second. For
example, if your buffers are 128K and READRATEis 12, then RMAN
is limited to reading 12*128K bytes per second from each datafile
going into a backup set. You should test to find a value that
improves performance of your queries while still letting RMAN
complete the backup in a reasonable amount of time.

Table 20–21 Throughput Performance Improvement Methods

Method Consequence

Solving I/O Problems

20-64 Oracle8i Designing and Tuning for Performance

Configuring the Large Pool
You can optionally configure the large pool so that Oracle has a separate pool from

which it can request large memory allocations. This prevents competition with

other subsystems for the same memory.

As Oracle allocates more shared pool memory for the multi-threaded server session

memory, the amount of shared pool memory available for the shared SQL cache

decreases. If you allocate session memory from another area of shared memory,

then Oracle can use the shared pool primarily for caching shared SQL and not incur

the performance overhead from shrinking the shared SQL cache.

For I/O server processes and backup and restore operations, Oracle allocates

buffers that are a few hundred kilobytes in size. Although the shared pool may be

unable to satisfy this request, the large pool is able to do so. The large pool does not

have an LRU list; Oracle does not attempt to age memory out of the large pool.

Use the LARGE_POOL_SIZE parameter to configure the large pool. To see in which

pool (shared pool or large pool) the memory for an object resides, see the column

POOL in V$SGASTAT.

Increase the number
of channels

Increases parallelism. Each channel must write to different
filesystems, which should be on different disks. One channel per
tape drive ensures that during restore, the files are read with the
same sequence and timing as when they were created.

You must specify the FORMAT parameter on the ALLOCATE
CHANNEL statement. For example:

run{
allocate channel foo1 type disk format ’/filesys1/oracle_
backups/%d/%u_%p’;
allocate channel foo2 type disk format ’/filesys2/oracle_
backups/%d/%u_%p’;
...}

See Also: For more information about the large pool, see Oracle8i
Concepts. For complete information about initialization parameters,

see Oracle8i Reference.

Table 20–21 Throughput Performance Improvement Methods

Method Consequence

Tuning Resource Contention 21-1

21
Tuning Resource Contention

Contention occurs when multiple processes try to access the same resource

simultaneously. Some processes must then wait for access to various database

structures.

This chapter contains the following sections:

■ Understanding Contention Issues

■ Detecting Contention Problems

■ Solving Contention Problems

Understanding Contention Issues

21-2 Oracle8i Designing and Tuning for Performance

Understanding Contention Issues
Symptoms of resource contention problems can be found in V$SYSTEM_EVENT.
This view reveals various system problems that may be impacting performance,

problems such as latch contention, buffer contention, and I/O contention. It is

important to remember that these are only symptoms of problems—not the actual

causes.

For example, by looking at V$SYSTEM_EVENT you might notice lots of buffer-busy

waits. It may be that many processes are inserting into the same block and must

wait for each other before they can insert. The solution might be to introduce free

lists for the object in question.

Buffer busy waits may also have caused some latch free waits. Because most of

these waits were caused by misses on the cache buffer hash chain latch, this was

also a side effect of trying to insert into the same block. Rather than increasing

SPINCOUNT to reduce the latch free waits (a symptom), you should change the

object to allow for multiple processes to insert into free blocks. This approach

effectively reduces contention.

Detecting Contention Problems
The V$RESOURCE_LIMIT view provides information about current and maximum

global resource utilization for some system resources. This information enables you

to make better decisions when choosing values for resource limit-controlling

parameters.

If the system has idle time, then start your investigation by checking V$SYSTEM_
EVENT. Examine the events with the highest average wait time, then take

appropriate action on each. For example, if you find a high number of latch free

waits, then look in V$LATCH to see which latch is the problem.

For excessive buffer busy waits, look in V$WAITSTAT to see which block type has

the highest wait count and the highest wait time. Look in V$SESSION_WAIT for

cache buffer waits so you can decode the file and block number of an object.

The rest of this chapter describes common contention problems. Remember that the

different forms of contention are symptoms which can be fixed by making changes

in one of two places:

■ Changes in the application.

■ Changes in Oracle.

Solving Contention Problems

Tuning Resource Contention 21-3

Sometimes you have no alternative but to change the application in order to

overcome performance constraints.

Solving Contention Problems
The rest of this chapter examines various kinds of contention and explains how to

resolve problems. Contention may be for rollback segments, multi-threaded servers,

parallel execution servers, redo log buffer latches, LRU latch, or for free lists.

Reducing Contention for Rollback Segments
This section discusses how to reduce contention for rollback segments. The

following issues are explained:

■ Identifying Rollback Segment Contention

■ Creating Rollback Segments

Identifying Rollback Segment Contention
Contention for rollback segments is reflected by contention for buffers that contain

rollback segment blocks. You can determine whether contention for rollback

segments is adversely affecting performance by checking the dynamic performance

table V$WAITSTAT.

V$WAITSTATcontains statistics that reflect block contention. By default, this table is

available only to the user SYS and to other users who have SELECT ANY TABLE
system privilege, such as SYSTEM. These statistics reflect contention for different

classes of blocks:

SYSTEM UNDO HEADERThe number of waits for buffers containing header blocks of

the SYSTEM rollback segment.

SYSTEM UNDO BLOCK The number of waits for buffers containing blocks of the

SYSTEM rollback segment other than header blocks.

UNDO HEADER The number of waits for buffers containing header blocks of

rollback segments other than the SYSTEM rollback segment.

UNDO BLOCK The number of waits for buffers containing blocks other than

header blocks of rollback segments other than the SYSTEM
rollback segment.

Solving Contention Problems

21-4 Oracle8i Designing and Tuning for Performance

Use the following query to monitor these statistics over a period of time while your

application is running:

SELECT CLASS, COUNT
FROM V$WAITSTAT
WHERE CLASS IN ('SYSTEM UNDO HEADER', 'SYSTEM UNDO BLOCK',

'UNDO HEADER', 'UNDO BLOCK');

The result of this query might look like this:

CLASS COUNT
------------------ ----------
SYSTEM UNDO HEADER 2089
SYSTEM UNDO BLOCK 633
UNDO HEADER 1235
UNDO BLOCK 942

Compare the number of waits for each class of block with the total number of

requests for data over the same period of time. You can monitor the total number of

requests for data over a period of time with this query:

SELECT SUM(VALUE)
FROM V$SYSSTAT
WHERE NAME IN (’DB BLOCK GETS’, ’CONSISTENT GETS’);

The output of this query might look like this:

SUM(VALUE)

929530

The information in V$SYSSTAT can also be obtained through SNMP.

If the number of waits for any class of block exceeds 1% of the total number of

requests, then consider creating more rollback segments to reduce contention.

Creating Rollback Segments
To reduce contention for buffers containing rollback segment blocks, create more

rollback segments. Table 21–1 shows some general guidelines for choosing how

many rollback segments to allocate based on the number of concurrent transactions

on your database. These guidelines are appropriate for most application mixes.

Solving Contention Problems

Tuning Resource Contention 21-5

Table 21–1 Choosing the Number of Rollback Segments

Reducing Contention for Multi-Threaded Servers
Performance of certain database features may degrade slightly when MTS is used.

These features include BFILEs , parallel execution, inter-node parallel execution,

and hash joins. This is because these features may prevent a session from migrating

to another shared server while they are active.

A session may remain non-migratable after a request from the client has been

processed. Use of the above mentioned features may make sessions non-migratable,

because the features have not stored all the user state information in the UGA, but

have left some of the state in the PGA. As a result, if different shared servers process

requests from the client, then the part of the user state stored in the PGA is

inaccessible. To avoid this, individual shared servers often need to remain bound to

a user session. This makes the session non-migratable among shared servers.

When using these features, you may need to configure more shared servers. This is

because some servers may be bound to sessions for an excessive amount of time.

This section discusses how to reduce contention for processes used by Oracle’s

multi-threaded server (MTS) architecture:

■ Identifying Contention Using the Dispatcher-Specific Views

■ Reducing Contention for Dispatcher Processes

■ Reducing Contention for Shared Servers

■ Determining the Optimal Number of Dispatchers and Shared Servers

Identifying Contention Using the Dispatcher-Specific Views
The following views provide dispatcher performance statistics:

■ V$DISPATCHER

■ V$DISPATCHER_RATE

Number of Current Transactions (n) Number of Rollback Segments Recommended

n < 16 4

16 <= n < 32 8

32 <= n n/4

Solving Contention Problems

21-6 Oracle8i Designing and Tuning for Performance

V$DISPATCHER provides general information about dispatcher processes.

V$DISPATCHER_RATE view provides dispatcher processing statistics.

Analyzing V$DISPATCHER_RATE Statistics The V$DISPATCHER_RATE view contains

current, average, and maximum dispatcher statistics for several categories. Statistics

with the prefix "CUR_" are statistics for the current session. Statistics with the prefix

"AVG_" are the average values for the statistics since the collection period began.

Statistics with "MAX_" prefixes are the maximum values for these categories since

statistics collection began.

To assess dispatcher performance, query the V$DISPATCHER_RATE view and

compare the current values with the maximums. If your present system throughput

provides adequate response time and current values from this view are near the

average and below the maximum, then you likely have an optimally-tuned MTS

environment.

If the current and average rates are significantly below the maximums, then

consider reducing the number of dispatchers. Conversely, if current and average

rates are close to the maximums, then you may need to add more dispatchers. A

good rule-of-thumb is to examine V$DISPATCHER_RATEstatistics during both light

and heavy system use periods. After identifying your MTS load patterns, adjust

your parameters accordingly.

If needed, you can also mimic processing loads by running system stress-tests and

periodically polling the V$DISPATCHER_RATE statistics. Proper interpretation of

these statistics varies from platform to platform. Different types of applications also

can cause significant variations on the statistical values recorded in

V$DISPATCHER_RATE.

Reducing Contention for Dispatcher Processes
This section discusses how to identify contention for dispatcher processes, how to

add dispatcher processes, and how to enable connection pooling.

Identifying Contention for Dispatcher Processes Contention for dispatcher processes is

indicated by either of these symptoms:

■ Excessive busy rates for existing dispatcher processes.

■ Steady increases in waiting times for responses in the response queues of

dispatcher processes.

See Also: For detailed information about these views, see the

Oracle8i Reference.

Solving Contention Problems

Tuning Resource Contention 21-7

Examining Busy Rates for Dispatcher Processes V$DISPATCHER contains statistics

reflecting the activity of dispatcher processes. By default, this view is available only

to the user SYS and to other users who have SELECT ANY TABLE system privilege,

such as SYSTEM. These columns reflect busy rates for dispatcher processes:

If the database is only in use 8 hours per day, then statistics need to be normalized

by the effective work times. You cannot simply look at statistics from the time the

instance started. Instead, record statistics during peak workloads. If the dispatcher

processes for a specific protocol are busy for more than 50% of the peak workload

period, then by adding dispatcher processes, you may improve performance for

users connected to Oracle using that protocol.

Examining Wait Times for Dispatcher Process Response Queues V$QUEUE contains

statistics reflecting the response queue activity for dispatcher processes. By default,

this table is available only to the user SYSand to other users who have SELECT ANY
TABLE system privilege, such as SYSTEM. These columns show wait times for

responses in the queue:

Use the following query to monitor these statistics occasionally while your

application is running:

SELECT CONF_INDX "INDEX",
DECODE(SUM(TOTALQ), 0, ’NO RESPONSES’,

SUM(WAIT)/SUM(TOTALQ) || ’ HUNDREDTHS OF SECONDS’)
"AVERAGE WAIT TIME PER RESPONSE"
FROM V$QUEUE Q, V$DISPATCHER D
WHERE Q.TYPE = ’DISPATCHER’

AND Q.PADDR = D.PADDR
GROUP BY CONF_INDX;

This query returns the average time, in hundredths of a second, that a response

waits in each response queue for a dispatcher process to route it to a user process.

This query uses the V$DISPATCHER table to group the rows of the V$QUEUE table

IDLE Displays the idle time for the dispatcher process in hundredths of a

second.

BUSY Displays the busy time for the dispatcher process in hundredths of a

second.

WAIT The total waiting time, in hundredths of a second, for all responses that

have ever been in the queue.

TOTALQ The total number of responses that have ever been in the queue.

Solving Contention Problems

21-8 Oracle8i Designing and Tuning for Performance

by MTS_DISPATCHERS parameter value index. The query also uses the DECODE
syntax to recognize those protocols for which there have been no responses in the

queue. The result of this query might look like this:

INDEX AVERAGE WAIT TIME PER RESPONSE
-------- ------------------------------
0 .1739130 HUNDREDTHS OF SECONDS
1 NO RESPONSES

From this result, you can tell that a response in the queue for the first MTS_
DISPATCHERSvalue’s dispatchers waits an average of 0.17 hundredths of a second,

and that there have been no responses in the queue for the second MTS_
DISPATCHERS value’s dispatchers.

If the average wait time for a specific MTS_DISPATCHERS value continues to

increase steadily as your application runs, then by adding dispatchers, you may be

able to improve performance of those user processes connected to Oracle using that

group of dispatchers.

Adding Dispatcher Processes Add dispatcher processes while Oracle is running by

using the SET option of the ALTER SYSTEM statement to increase the value for the

MTS_DISPATCHERS parameter.

The total number of dispatcher processes is limited by the value of the initialization

parameter MTS_MAX_DISPATCHERS. You may need to increase this value before

adding dispatcher processes. The default value of this parameter is 5 and the

maximum value varies depending on your operating system.

Enabling Connection Pooling When system load increases and dispatcher throughput

is maximized, it is not necessarily a good idea to immediately add more

dispatchers. Instead, consider configuring the dispatcher to support more users

with connection pooling.

MTS_DISPATCHERS lets you enable various attributes for each dispatcher. Oracle

supports a name-value syntax to let you specify attributes in a

position-independent, case-insensitive manner. For example:

MTS_DISPATCHERS = "(PROTOCOL=TCP)(POOL=ON)(TICK=1)"

The optional attribute POOL is used to enable the Net8 connection pooling feature.

TICK is the size of a network TICK in seconds. The TICK - default is 15 seconds.

See Also: For more information on adding dispatcher processes,

see Oracle8i Administrator’s Guide and Net8 Administrator’s Guide.

Solving Contention Problems

Tuning Resource Contention 21-9

Enabling Connection Concentration Multiplexing is used by a connection manager

process to establish and maintain connections from multiple users to individual

dispatchers. For example, several user processes may connect to one dispatcher by

way of a single connection manager process.

The connection manager manages communication from users to the dispatcher by

way of the single connection. At any one time, zero, one, or a few users may need

the connection, while other user processes linked to the dispatcher by way of the

connection manager process are idle. In this way, multiplexing is beneficial as it

maximizes use of user-to-dispatcher process connections.

Multiplexing is also useful for multiplexing database link connections between

dispatchers. The limit on the number of connections for each dispatcher is platform

dependent. For example:

MTS_DISPATCHERS="(PROTOCOL=TCP)(MULTIPLEX=ON)"

Reducing Contention for Shared Servers
This section discusses how to identify contention for shared servers and how to

increase the maximum number of shared servers.

Identifying Contention for Shared Servers Steadily increasing wait times in the requests

queue indicate contention for shared servers. To examine wait time data, use the

dynamic performance view V$QUEUE. This view contains statistics showing request

queue activity for shared servers. By default, this view is available only to the user

SYS and to other users with SELECT ANY TABLE system privilege, such as SYSTEM.
These columns show wait times for requests in the queue:

Monitor these statistics occasionally while your application is running by issuing

the following SQL statement:

SELECT DECODE(TOTALQ, 0, ’No Requests’,
WAIT/TOTALQ || ’ HUNDREDTHS OF SECONDS’)

"AVERAGE WAIT TIME PER REQUESTS"

See Also: For more information about the MTS_DISPATCHERS
parameter and its options, see the Oracle8i SQL Reference and the

Net8 Administrator’s Guide.

WAIT Displays the total waiting time, in hundredths of a second, for all

requests that have ever been in the queue.

TOTALQ Displays the total number of requests that have ever been in the queue.

Solving Contention Problems

21-10 Oracle8i Designing and Tuning for Performance

FROM V$QUEUE
WHERE TYPE = ’COMMON’;

This query returns the results of a calculation that shows the following:

AVERAGE WAIT TIME PER REQUEST

.090909 HUNDREDTHS OF SECONDS

From the result, you can tell that a request waits an average of 0.09 hundredths of a

second in the queue before processing.

You can also determine how many shared servers are currently running by issuing

this query:

SELECT COUNT(*) "Shared Server Processes"
FROM V$SHARED_SERVER
WHERE STATUS != ’QUIT’;

The result of this query might look like this:

SHARED SERVER PROCESSES

10

If you detect resource contention with MTS, then first make sure that this is not a

memory contention issue by examining the shared pool and the large pool. If

performance remains poor, then you may want to create more resources to reduce

shared server process contention. Do this by modifying the optional server process

parameters as explained under the following headings.

Setting and Modifying MTS Processes This section explains how to set optional

parameters affecting processes for the multi-threaded server architecture. This

section also explains how and when to modify these parameters to tune

performance.

The static initialization parameters discussed in this section are:

■ MTS_MAX_DISPATCHERS

■ MTS_MAX_SERVERS

This section also describes the initialization/session parameters:

■ MTS_DISPATCHERS

■ MTS_SERVERS

Solving Contention Problems

Tuning Resource Contention 21-11

Values for the initialization parameters MTS_MAX_DISPATCHERS and MTS_MAX_
SERVERS define upper limits for the number of dispatchers and servers running on

an instance. These parameters are static and cannot be changed after your database

is running. You can create as many dispatcher and server processes as you need, but

the total number of processes cannot exceed the host operating system’s limit for

the number of running processes.

You can also define starting values for the number of dispatchers and servers by

setting the MTS_DISPATCHERS parameter’s DISPATCHER attribute and the MTS_
SERVERS parameter. After system startup, you can dynamically re-set values for

these parameters to change the number of dispatchers and servers using the SET
option of the ALTER SYSTEM statement. If you enter values for these parameters in

excess of limits set by the static parameters, then Oracle uses the static parameter

values.

The default value of MTS_MAX_SERVERS is dependent on the value of MTS_
SERVERS. If MTS_SERVERS is less than or equal to 10, then MTS_MAX_SERVERS
defaults to 20. If MTS_SERVERS is greater than 10, then MTS_MAX_SERVERS
defaults to 2 times the value of MTS_SERVERS.

Self-adjusting MTS Architecture Features When the database starts, MTS_SERVERS is
the number of shared servers created. Oracle will not allow the number of shared

servers to fall below this minimum. During processing, Oracle automatically adds

shared servers up to the limit defined by MTS_MAX_SERVERS if Oracle perceives

that the load based on the activity of the requests on the common queue warrant

additional shared servers. Therefore, you are unlikely to improve performance by

explicitly adding shared servers. However, you may need to adjust your system to

accommodate certain resource issues.

If the number of shared server processes has reached the limit set by the

initialization parameter MTS_MAX_SERVERS and the average wait time in the

request queue is still unacceptable, then you might improve performance by

increasing the MTS_MAX_SERVERS value.

If resource demands exceed expectations, then you can either allow Oracle to

automatically add shared server processes or you can add shared processes by

altering the value for MTS_SERVERS. You can change the value of this parameter in

Note: Setting MTS_MAX_DISPATCHERS sets the limit on the

number of dispatchers for all MTS_DISPATCHERS’ dispatcher

values.

Solving Contention Problems

21-12 Oracle8i Designing and Tuning for Performance

the initialization parameter file, or alter it using the MTS_SERVERSparameter of the

ALTER SYSTEMstatement. Experiment with this limit and monitor shared servers to

determine an ideal setting for this parameter.

Setting the MTS Highwater Mark Equal to MTS_MAX_SERVERS This is the first stage in

troubleshooting MTS. Performance can degrade if there are not enough shared

servers to process all the requests put toward the database.

Check for the initial setting of the maximum number of shared servers. For

example:

SHOW PARAMETER MTS_MAX_SERVERS

Check for the highwater mark for shared servers. For example:

SELECT maximum_connections "MAXIMUM_CONNECTIONS",
servers_started "SERVERS_STARTED", servers_terminated "SERVERS_TERMINATED",
servers_highwater "SERVERS_HIGHWATER"

FROM V$MTS;

The output is:

MAXIMUM_CONNECTIONS SERVERS_STARTED SERVERS_TERMINATED SERVERS_HIGHWATER
------------------- --------------- ------------------ -----------------
 60 30 30 50

Here, HIGHWATER should not be equal to the parameter MTS_MAX_SERVERS.

The other parameters are:

Increasing the Maximum Number of Shared Servers The shared servers are the processes

that perform data access and pass back this information to the dispatchers.

The dispatchers then forward the data to the client process. If there are not enough

shared servers to handle all the requests, then the queue backs up (V$QUEUE), and

requests take longer to process. However, before you check the V$QUEUE statistics,

it is best to first check if you are running out of shared servers.

MAXIMUM_CONNECTIONSThe maximum number of connections a single dispatcher

can handle.

SERVERS_STARTED The cumulative number of shared servers that have been

started.

SERVERS_TERMINATED The cumulative number of shared servers that have been

terminated.

Solving Contention Problems

Tuning Resource Contention 21-13

Find out the amount of free RAM in the system. Examine ps or any other operating

system utility to find out the amount of memory a shared server uses. Divide the

amount of free RAM by the size of a shared server. This gives you the maximum

number of shared servers you can add to your system.

The best way to proceed is to increase the MTS_MAX_SERVERS parameter gradually

until you begin to swap. If swapping occurs due to the shared server, then back off

the number until swapping stops, or increase the amount of physical RAM.

Because each operating system and application is different, the only way to find out

the correct setting for MTS_MAX_SERVERS is through trial and error.

To change the MTS_MAX_SERVERS, first edit the initialization parameter file. Find in

the file the parameter MTS_MAX_SERVERS and change it there. Save the file and

restart the instance. Remember that setting MTS_SERVERS to MTS_MAX_SERVERS
should only be done if you are sure that you will be using the machine at 100% all

the time. The general rules are:

■ MTS_SERVERS should be set for slightly greater than the expected number of

shared servers that will be needed when the database is at an average load.

■ MTS_MAX_SERVERSshould be set for slightly greater than the expected number

of shared servers that will be needed when the database is at an peak load.

Determining the Optimal Number of Dispatchers and Shared Servers
As mentioned, MTS_SERVERSdetermines the number of shared servers activated at

instance startup. The default setting for MTS_SERVERS is 1 which is the default

setting when MTS_DISPATCHERS is specified.

To determine the optimal number of dispatchers and shared servers, consider the

number of users typically accessing the database and how much processing each

requires. Also consider that user and processing loads vary over time. For example,

a customer service system’s load might vary drastically from peak OLTP-oriented

daytime use to DSS-oriented nighttime use. System use can also predictably change

over longer time periods such as the loads experienced by an accounting system

that vary greatly from mid-month to month-end.

If each user makes relatively few requests over a given period of time, then each

associated user process is idle for a large percentage of time. In this case, one shared

See Also: If HIGHWATERdoes not equal MTS_MAX_SERVERS, then

you need to tune MTS. MTS is a complicated configuration and has

many points where degradation can occur.

Solving Contention Problems

21-14 Oracle8i Designing and Tuning for Performance

server process can serve 10 to 20 users. If each user requires a significant amount of

processing,then establish a higher ratio of servers to user processes.

In the beginning, it is best to allocate fewer shared servers. Additional shared

servers start automatically as needed and are deallocated automatically if they

remain idle too long. However, the initial servers always remain allocated, even if

they are idle.

If you set the initial number of servers too high, then your system might incur

unnecessary overhead. Experiment with the number of initial shared servers and

monitor shared servers until you achieve ideal system performance for your typical

database activity.

Estimating the Maximum Number of Dispatcher Processes Use values for MTS_MAX_
DISPATCHERS and MTS_DISPATCHERS that are at least equal to the maximum

number of concurrent sessions divided by the number of connections per

dispatcher. For most systems, a value of 1,000 connections per dispatcher provides

good performance.

Disallowing Further MTS Use with Concurrent MTS Use As mentioned, you can use the

SET option of the ALTER SYSTEM statement to alter the number of active, shared

servers. To prevent additional users from accessing shared servers, set MTS_
SERVERS to 0. This temporarily disables additional use of MTS. Re- setting MTS_
SERVERS to a positive value enables MTS for all current users.

Reducing Contention for Parallel Execution Servers
This section describes how to detect and alleviate contention for parallel execution

servers when using parallel execution:

■ Identifying Contention for Parallel Execution Servers

■ Reducing Contention for Parallel Execution Servers

See Also: For information about dispatchers, see the description

of the V$DISPATCHER and V$DISPATCHER_RATE views in the

Oracle8i Reference. For more information about the ALTER SYSTEM
statement, see the Oracle8i SQL Reference. For more information on

changing the number of shared servers, see the Oracle8i
Administrator’s Guide.

Solving Contention Problems

Tuning Resource Contention 21-15

Identifying Contention for Parallel Execution Servers
Statistics in the V$PQ_SYSSTAT view are useful for determining the appropriate

number of parallel execution servers for an instance. The statistics that are

particularly useful are SERVERS BUSY, SERVERS IDLE, SERVERS STARTED, and

SERVERS SHUTDOWN.

Frequently, you cannot increase the maximum number of parallel execution servers

for an instance, because the maximum number is heavily dependent upon the

capacity of your CPUs and your I/O bandwidth. However, if servers are

continuously starting and shutting down, then you should consider increasing the

value of the initialization parameter PARALLEL_MIN_SERVERS.

For example, if you have determined that the maximum number of concurrent

parallel execution servers that your machine can manage is 100, then you should set

PARALLEL_MAX_SERVERS to 100. Next, determine how many parallel execution

servers the average parallel operation needs, and how many parallel operations are

likely to be executed concurrently. For this example, assume you have two

concurrent operations with 20 as the average degree of parallelism. Thus, at any

given time there could be 80 parallel execution servers busy on an instance. Thus

you should set the PARALLEL_MIN_SERVERS parameter to 80.

Periodically examine V$PQ_SYSSTAT to determine whether the 80 parallel

execution servers for the instance are actually busy. To do so, issue the following

query:

SELECT * FROM V$PQ_SYSSTAT
WHERE STATISTIC = "SERVERS BUSY";

The result of this query might look like this:

STATISTIC VALUE
--------------------- -----------
SERVERS BUSY 70

Reducing Contention for Parallel Execution Servers
If you find that typically there are fewer than PARALLEL_MIN_SERVERS busy at

any given time, then your idle parallel execution servers constitute system overhead

that is not being used. Consider decreasing the value of the parameter PARALLEL_
MIN_SERVERS. If you find that there are typically more parallel execution servers

active than the value of PARALLEL_MIN_SERVERS and the SERVERS STARTED
statistic is continuously growing, then consider increasing the value of the

parameter PARALLEL_MIN_SERVERS.

Solving Contention Problems

21-16 Oracle8i Designing and Tuning for Performance

Reducing Contention for Redo Log Buffer Latches
Contention for redo log buffer access rarely inhibits database performance.

However, Oracle provides methods to monitor and reduce any latch contention that

does occur. This section covers:

■ Detecting Contention for Redo Log Buffer Latches

■ Examining Redo Log Activity

■ Reducing Latch Contention

Detecting Contention for Redo Log Buffer Latches
Access to the redo log buffer is regulated by two types of latches: the redo allocation

latch and redo copy latches.

The Redo Allocation Latch The redo allocation latch controls the allocation of space for

redo entries in the redo log buffer. To allocate space in the buffer, an Oracle user

process must obtain the redo allocation latch. Because there is only one redo

allocation latch, only one user process can allocate space in the buffer at a time. The

single redo allocation latch enforces the sequential nature of the entries in the

buffer.

After allocating space for a redo entry, the user process may copy the entry into the

buffer. This is called "copying on the redo allocation latch". A process may only

copy on the redo allocation latch if the redo entry is smaller than a threshold size.

Redo Copy Latches The user process first obtains the copy latch which allows the

process to copy. Then it obtains the allocation latch, performs allocation, and

releases the allocation latch. Next the process performs the copy under the copy

latch, and releases the copy latch. The allocation latch is thus held for only a very

short period of time, as the user process does not try to obtain the copy latch while

holding the allocation latch.

If the redo entry is too large to copy on the redo allocation latch, then the user

process must obtain a redo copy latch before copying the entry into the buffer.

While holding a redo copy latch, the user process copies the redo entry into its

allocated space in the buffer and then releases the redo copy latch.

If your computer has multiple CPUs, then your redo log buffer can have multiple

redo copy latches. These allow multiple processes to concurrently copy entries to

the redo log buffer concurrently.

Solving Contention Problems

Tuning Resource Contention 21-17

On single-CPU computers, there should be no redo copy latches, because only one

process can be active at once. In this case, all redo entries are copied on the redo

allocation latch, regardless of size.

Examining Redo Log Activity
Heavy access to the redo log buffer can result in contention for redo log buffer

latches. Latch contention can reduce performance. Oracle collects statistics for the

activity of all latches and stores them in the dynamic performance view V$LATCH.

By default, this table is available only to the user SYS and to other users who have

SELECT ANY TABLE system privilege, such as SYSTEM.

Each row in the V$LATCH table contains statistics for a different type of latch. The

columns of the table reflect activity for different types of latch requests. There is a

distinction between the different types of latch requests. The distinction is:

These columns of the V$LATCH view reflect willing-to-wait requests:

For example, consider the case in which a process makes a willing-to-wait request

for a latch that is unavailable. The process waits and requests the latch again and

the latch is still unavailable. The process waits and requests the latch a third time

and acquires the latch. This activity increments the statistics as follows:

■ The GETS value increases by one because one request for the latch (the third

request) was successful.

■ The MISSES value increases by one each time because the initial request for the

latch resulted in waiting.

WILLING-TO-WAIT If the latch requested with a willing-to-wait request is not

available, then the requesting process waits a short time and

requests the latch again. The process continues waiting and

requesting until the latch is available.

IMMEDIATE If the latch requested with an immediate request is not

available, then the requesting process does not wait, but

continues processing.

GETS Shows the number of successful willing-to-wait requests for a latch.

MISSES Shows the number of times an initial willing-to-wait request was

unsuccessful.

SLEEPS Shows the number of times a process waited and requested a latch

after an initial willing-to-wait request.

Solving Contention Problems

21-18 Oracle8i Designing and Tuning for Performance

■ The SLEEPS value increases by two because the process waited for the latch

twice, once after the initial request and again after the second request.

These columns of the V$LATCH table reflect immediate requests:

Use the following query to monitor the statistics for the redo allocation latch and

the redo copy latches over a period of time:

SELECT ln.name, gets, misses, immediate_gets, immediate_misses
FROM v$latch l, v$latchname ln
WHERE ln.name IN (’redo allocation’, ’redo copy’)

AND ln.latch# = l.latch#;

The output of this query might look like this:

NAME GETS MISSES IMMEDIATE_GETS IMMEDIATE_MISSES
------------------------ ---------- ---------- --------------- ----------------
redo allocation 252867 83 0 0
redo copy 0 0 22830 0

From the output of the query, calculate the wait ratio for each type of request.

Contention for a latch may affect performance if either of these conditions is true:

■ If the ratio of MISSES to GETS exceeds 1%.

■ If the ratio of IMMEDIATE_MISSES to the sum of IMMEDIATE_GETS and

IMMEDIATE_MISSES exceeds 1%.

If either of these conditions is true for a latch, then try to reduce contention for that

latch. These contention thresholds are appropriate for most operating systems,

though some computers with many CPUs may be able to tolerate more contention

without performance reduction.

Reducing Latch Contention
Most cases of latch contention occur when two or more Oracle processes

concurrently attempt to obtain the same latch. Latch contention rarely occurs on

single-CPU computers, where only a single process can be active at once.

IMMEDIATE GETS This column shows the number of successful immediate

requests for each latch.

IMMEDIATE MISSES This column shows the number of unsuccessful immediate

requests for each latch.

Solving Contention Problems

Tuning Resource Contention 21-19

Reducing Contention for the Redo Allocation Latch To reduce contention for the redo

allocation latch, you should minimize the time that any single process holds the

latch. To reduce this time, reduce copying on the redo allocation latch. Decreasing

the value of the LOG_SMALL_ENTRY_MAX_SIZE initialization parameter reduces

the number and size of redo entries copied on the redo allocation latch.

Reducing Contention for Redo Copy Latches On multiple-CPU computers, multiple

redo copy latches allow multiple processes to copy entries to the redo log buffer

concurrently. The default value of LOG_SIMULTANEOUS_COPIES is the number of

CPUs available to your Oracle instance.

If you observe contention for redo copy latches, then add more latches by increasing

the value of LOG_SIMULTANEOUS_COPIES. Consider having twice as many redo

copy latches as CPUs available to your Oracle instance.

Reducing Contention for the LRU Latch
The LRU (least recently used) latch controls the replacement of buffers in the buffer

cache. For symmetric multiprocessor (SMP) systems, Oracle automatically sets the

number of LRU latches to a value equal to one half the number of CPUs on the

system. For non-SMP systems, one LRU latch is sufficient.

Contention for the LRU latch can impede performance on SMP machines with a

large number of CPUs. You can detect LRU latch contention by querying V$LATCH,

V$SESSION_EVENT, and V$SYSTEM_EVENT. To avoid contention, consider

bypassing the buffer cache or redesigning the application.

You can specify the number of LRU latches on your system with the initialization

parameter DB_BLOCK_LRU_LATCHES. This parameter sets the maximum value for

the desired number of LRU latches. Each LRU latch controls a set of buffers; Oracle

balances allocation of replacement buffers among the sets.

To select the appropriate value for DB_BLOCK_LRU_LATCHES, consider the

following:

■ The maximum number of latches is twice the number of CPUs in the system.

That is, the value of DB_BLOCK_LRU_LATCHES can range from 1 to twice the

number of CPUs.

■ A latch should have no less than 50 buffers in its set; for small buffer caches

there is no added value if you select a larger number of sets. The size of the

buffer cache determines a maximum boundary condition on the number of sets.

■ Do not create multiple latches when Oracle runs in single process mode. Oracle

automatically uses only one LRU latch in single process mode.

Solving Contention Problems

21-20 Oracle8i Designing and Tuning for Performance

■ If the workload on the instance is large, then you should have a higher number

of latches. For example, if you have 32 CPUs in your system, then choose a

number between half the number of CPUs (16) and actual number of CPUs (32)

in your system.

Reducing Free List Contention
Free list contention can reduce the performance of some applications. This section

covers:

■ Identifying Free List Contention

■ Adding More Free Lists

Identifying Free List Contention
A free list is a list of free data blocks that can be drawn from a number of different

extents within the segment. Blocks in free lists contain free space greater than

PCTFREE. This is the percentage of a block to be reserved for updates to existing

rows. In general, blocks included in process free lists for a database object must

satisfy the PCTFREE and PCTUSED constraints.

You can specify the number of process free lists with the FREELISTS parameter.

The default value of FREELISTS is 1. This is the minimum value. The maximum

value depends on the data block size. If you specify a value that is too large, an

error message informs you of the maximum value. In addition, for each free list,

you need to store a certain number of bytes in a block to handle overhead.

Contention for free lists is reflected by contention for free data blocks in the buffer

cache. You can determine whether contention for free lists is reducing performance

by querying the dynamic performance view V$WAITSTAT.

Note: You cannot dynamically change the number of sets during

the lifetime of the instance.

See Also: For information on free lists, PCTFREE, and PCTUSED,
see Oracle8i Concepts.

See Also: The reserved area and the number of bytes required per

free list depend upon your platform. For more information, see

your Oracle system-specific documentation.

Solving Contention Problems

Tuning Resource Contention 21-21

Use the following procedure to find the segment names and free lists that have

contention:

1. Check V$WAITSTAT for contention on DATA BLOCKS.

2. Check V$SYSTEM_EVENT for BUFFER BUSY WAITS.

High numbers indicate that some contention exists.

3. In this case, check V$SESSION_WAIT to see, for each buffer busy wait, the

values for FILE , BLOCK, and ID .

4. Construct a query as follows to obtain the name of the objects and free lists that

have the buffer busy waits:

SELECT SEGMENT_NAME, SEGMENT_TYPE
FROM DBA_EXTENTS
WHERE FILE_ID = file
AND BLOCK BETWEENblock_id AND block_id + blocks ;

This returns the segment name (segment) and type (type).

5. To find the free lists, query as follows:

SELECT SEGMENT_NAME, FREELISTS
FROM DBA_SEGMENTS
WHERE SEGMENT_NAME =SEGMENT
AND SEGMENT_TYPE =TYPE;

Adding More Free Lists
The ALTER FREELISTS statement lets you modify the FREELIST setting of the

existing database objects. To reduce contention for the free lists of a table, use the

ALTER FREELISTS statement to add free lists. Set the value of this parameter

proportional to the number of processes doing concurrent INSERTs in the steady

state.

See Also: For information about using free list groups in a

Parallel Server environment, see Oracle8i Parallel Server
Administration, Deployment, and Performance.

Solving Contention Problems

21-22 Oracle8i Designing and Tuning for Performance

Tuning Networks 22-1

22
Tuning Networks

This chapter introduces networking issues that affect tuning.

This chapter contains the following sections:

■ Understanding Connection Models

■ Detecting Network Problems

■ Solving Network Problems

Understanding Connection Models

22-2 Oracle8i Designing and Tuning for Performance

Understanding Connection Models
The techniques used to determine the source of problems vary depending on the

configuration. The three types of configurations are:

■ Multi-Threaded Server (MTS) Configuration

■ Dedicated Server Configuration

■ Pre-Spawned Dedicated Server Configuration

Table 22–1 lists how to tell what type of database configuration you have.

It is possible to connect to dedicated server with a database configured for MTS by

placing the parameter (SERVER = DEDICATED) in the connect descriptor.

Multi-Threaded Server (MTS) Configuration

Registering the Dispatchers The LSNRCTL control utility’s services statement lists

every dispatcher registered with it. This list includes the dispatchers process ID.

You can check the alert log to confirm that the dispatcher have been started

successfully.

For example:

lsnrctl services:
LSNRCTL for Solaris: Version 8.1.6.0.0 - Production on 27-MAY-99 13:38:02
(c) Copyright 1999 Oracle Corporation. All rights reserved.
Connecting to (ADDRESS=(PROTOCOL=TCP)(Host=ecdc2)(Port=1521))
Services Summary...
 ORCL has 2 service handler(s)
 DEDICATED SERVER established:0 refused:0
 LOCAL SERVER
 DISPATCHER established:0 refused:0 current:0 max:1 state:ready

Table 22–1 Database Configurations

Multi-Threaded Server LSNRCTL services lists dispatchers .

Dedicated Server LSNRCTL services lists dedicated servers .

Pre-Spawn Dedicated Server LSNRCTL services lists prespawned servers .

Note: Remember that PMON may take a minute to register the

dispatcher with the listener.

Understanding Connection Models

Tuning Networks 22-3

 D000 <machine: ecdc2, pid: 16011>
 (ADDRESS=(PROTOCOL=tcp)(DEV=20)(HOST=144.25.216.223)(PORT=55304))

The command completed successfully.

Configuring the Initialization Parameter File

■ Make sure that the MTS_DISPATCHER line is correctly set. For example:

MTS_DISPATCHERS =
"(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=hostname)(PORT=1492)(queuesize=32
)))
 (DISPATCHERS = 1)
 (LISTENER = alias)
 (SERVICE = servicename)
 (SESSIONS = 1000)
 (CONNECTIONS = 1000)
 (MULTIPLEX = ON)
 (POOL = ON)
 (TICK = 5)"

One, and only one, of the following attributes is required: PROTOCOL, ADDRESS,
or DESCRIPTION. ADDRESS and DESCRIPTION provide support for the

specification of additional network attributes beyond PROTOCOL. In the

example above, the entire line with "DESCRIPTION" can be substituted by

(PROTOCOL=TCP). The attributes DISPATCHERS, LISTENER, SERVICE,

SESSIONS, CONNECTIONS, MULTIPLEX, POOL, and TICKS are all optional.

■ Make sure that the optional MTS_MAX_DISPATCHER line is correctly set. For

example:

MTS_MAX_DISPATCHERS = 4

This line should reflect the total number of dispatchers you may want to start.

■ Make sure that the optional MTS_MAX_SERVERS line is correctly set. For

example:

MTS_MAX_SERVERS = 5

This line sets the upper bound on the total number of shared servers PMON can

create, based on the peak load of the system. This should be set high enough so

See Also: For more information on there parameters, see Oracle8i
Reference and Net8 Administrator’s Guide.

Understanding Connection Models

22-4 Oracle8i Designing and Tuning for Performance

that all requests can be serviced, but not so high that the system swaps if they

are reached. The purpose of this parameter is to prevent the server from

swapping. Run the following script to see what the highwater mark is for the

number of servers running, and then set MTS_MAX_SERVERS to more then this.

SELECT maximum_connections "MAX CONN", servers_started "STARTED",
servers_terminated "TERMINATED", servers_highwater "HIGHWATER"

FROM V$MTS;

■ Make sure that the optional MTS_SERVERS line is correctly set. For example:

MTS_SERVERS = 5

This is the total number of shared servers started when the database is started.

It also represents the total number of shared servers PMON tries to keep. It

should be the total number of servers expected to always be used when the

database is active. MTS_MAX_SERVERS is intended to handle peak load.

Registration

Checking the Connections Use the LSNRCTL control utility’s services statement to

see if there are excessive connection refusals. Check the listener's log file to see if

this is a connection problem. For example:

LSNRCTL> set displaymode normal
Service display mode is NORMAL
LSNRCTL> services
Connecting to
(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=net)(QUEUESIZE=32)))
Services Summary...
Service "net.regress.rdbms.dev.us.oracle.com" has 1 instances.
 Instance "net"
 Status: READY Total handlers: 3 Relevant handlers: 3
 DEDICATED established:0 refused:0 current:0 max:0 state:ready
 Session: NS
 D001 established:0 refused:0 current:0 max:16383 state:ready

(ADDRESS=(PROTOCOL=tcp)(HOST=dlsun1013.us.oracle.com)(PORT=52217))
 Session: NS
 D000 established:0 refused:0 current:0 max:16383 state:ready

(ADDRESS=(PROTOCOL=tcp)(HOST=dlsun1013.us.oracle.com)(PORT=52216))
 Session: NS

Understanding Connection Models

Tuning Networks 22-5

Under normal conditions, the number refused should be zero. Shut down the

listener, and restart it to erase these statistics. If, after the listener restarts, the

refused count is increasing, then the connections are being refused. If the refused

count stays at zero, and if the problem you are troubleshooting is occurring, then

your problem is not with the connections being refused.

Checking the Connect/Second Rate Connection refusals can occur for many reasons.

Examine the listener log to see what the connect per second rate is. Run the listener

log analyzer script to check.

The listener is a queue-based process. It receives connect requests from the lower

level protocol stack. It has a limited queue stack (which is configurable to the

operating system maximum). It can only process one connection at a time, and there

is a limit to the number of connections per second the process can handle.

If the rate at which the connect requests arrive exceeds that limit, then the requests

will be queued. The queue stack is also limited, but you can configure it. If there are

more listener processes, then the requests made against each process will be fewer

and, therefore, will be handled more quickly.

Increasing the listener queue is done in the listener .ora file. The listener .ora
file can contain many listeners, each by a different name. It is assumed that only one

of those listed is having a problem. If not, then apply this method to all applicable

listeners. To increase the listener queue, add (queuesize = number) to the

listener .ora file. For example:

listener =
(address =

(protocol = tcp)
(host = sales-pc)
(port = 1521)
(queuesize = 20)

)

Stop and restart the listener to initialize this new parameter. If you are not currently

running an MTS configuration, then you should consider doing so. It is faster for

the listener to handle a client request in an MTS configuration than it is in a

dedicated server or a pre-spawned dedicated server configuration.

See Also: For more information, see Net8 Administrator’s Guide.

Understanding Connection Models

22-6 Oracle8i Designing and Tuning for Performance

Pre-Spawned Dedicated Server Configuration
Pre-spawned (pre-started) processes can improve connect time with a dedicated

server. This is particularly true of heavily loaded systems not using multi-threaded

servers, where connect time is slow. If this is enabled, then the listener can redirect

the connection to an existing process with no wait time whenever a connection

request arrives. Connection requests do not have to wait for new processes to be

started.

Checking for the Correct Number of Dedicated Pre-Spawn Servers Determine if the

pre-spawn configuration was properly configured and sized for this system.

Pre-spawning dedicated servers have intents. One is to have faster connect times to

the database by having the server shadow processes created before the client makes

a connect request. Once connected, the listener creates the next shadow process for

the next connect. Pre-spawning is also useful in a controlling resource starved

system or access into the system. It lets you cap the number of shadow processes

that can be pre-spawned. After this limit is reached, all new connections come in as

dedicated.

If there is no activity on the database and there are no users connected, then the

number of pre-spawn servers is the number listed in the listener .ora file for

POOL_SIZE. Otherwise, depending on the number of connections to the database,

they will range from the minimum (POOL_SIZE) to the maximum (PRESPAWN_
MAX). For example:

LISTENER =
 (ADDRESS_LIST =(ADDRESS= (PROTOCOL= TCP)(Host= ecdc2)(Port= 1521)))
SID_LIST_LISTENER =
 (SID_LIST =

Note: MTS dispatchers also receive connect requests and may also

benefit from tuning the queuesize.

The maximum queue size is subject to the maximum size possible

for a particular operating system.

Note: Oracle Corporation recommends that you use a

multi-threaded server configuration rather than a pre-spawned

dedicated server configuration to solve performance and scalability

problems. Use of pre-spawned dedicated servers is recommended

only on platforms where MTS is not available.

Understanding Connection Models

Tuning Networks 22-7

 (SID_DESC =
 (ORACLE_HOME = /u01/oracle/product/oracle/8.1.6)
 (SID_NAME = ORCL)
 (PRESPAWN_MAX = 12)
 (PRESPAWN_LIST =
 (PRESPAWN_DESC =
 (PROTOCOL = TCP)
 (POOL_SIZE = 1)
 (TIMEOUT = 1)))))

In the above example, with no database activity, there will be one pre-spawn

process. During periods of high activity there will be a maximum of 12. After this

point, any connect requests that arrive have their shadow processes created in the

same manner as a dedicated connection.

To check if there are the correct number of pre-spawn processes, use the LSNRCTL
utility’s services statement and the operating system command to list running

processes (ps on UNIX). For example:

lsnrctl services:
LSNRCTL for Solaris: Version 8.1.6.0.0 - Production on 26-MAY-99 18:22:49
(c) Copyright 1999 Oracle Corporation. All rights reserved.
Connecting to (ADDRESS=(PROTOCOL=TCP)(Host=ecdc2)(Port=1521))
Services Summary...
 ORCL has 2 service handler(s)
 DEDICATED SERVER established:0 refused:0
 LOCAL SERVER
 PRESPAWNED SERVER established:0 refused:0 current:0 max:1 state:ready
 PID:15587
 (ADDRESS=(PROTOCOL=tcp)(DEV=8)(HOST=144.25.216.223)(PORT=55221))

The command completed successfully

ps -ef | grep oracle
oracle 15587 1 0 17:54:21 ? 0:00 oracleORCL /
 (DESCRIPTION=(COMMAND=prespawn)(PROTOCOL=TCP)(SERVICE_ID=2)(HANDLER_

The first statement shows that there is one pre-spawn server process, which is

confirmed by the ps command.

If there were more pre-spawn servers listed by ps than set by the PRESPAWN_MAX
parameter, then there are processes that are defunct.

If there were other process listed in the ps command, like

oracle 15634 1 3 18:31:31 ? 0:01 oracleORCL (LOCAL=NO)

Understanding Connection Models

22-8 Oracle8i Designing and Tuning for Performance

then there may not be enough pre-spawn servers to handle the load for this

configuration. Extra processes like this imply that the maximum number of

pre-spawn servers needs to be increased.

There should be, at a minimum, the same number of idle pre-spawn servers as the

POOL parameter. This can be examined by looking at LSNRCTL services to see how

many pre-spawn servers have no current connections. For example:

lsnrctl services:
LSNRCTL for Solaris: Version 8.1.6.0.0 - Production on 26-MAY-99 18:22:49
(c) Copyright 1999 Oracle Corporation. All rights reserved.
Connecting to (ADDRESS=(PROTOCOL=TCP)(Host=ecdc2)(Port=1521))
Services Summary...
 ORCL has 2 service handler(s)
 DEDICATED SERVER established:0 refused:0
 LOCAL SERVER
 PRESPAWNED SERVER established:0 refused:0 current:0 max:1 state:ready
 PID:15587
 (ADDRESS=(PROTOCOL=tcp)(DEV=8)(HOST=144.25.216.223)(PORT=55221))

The command completed successfully

Determining the Problem To determine if there is a problem with the listener or

pre-spawn servers, test to see if the behavior is due to pre-spawn or something else.

Create a listener not configured for pre-spawn. By placing (SERVER=DEDICATED)
in the connect descriptor, it still connects to a pre-spawn server process. You need

to create a listener that does not pre-spawn for this test.

Determining if There Enough Physical RAM Determine how much RAM is present so

that you do not cause the server to swap when the number of pre-spawn servers is

increased.

Note: The number of current connections to the pre-spawn server

is 0 (current:0). This means that it is part of the free pool of

pre-spawn. If there are fewer idle pre-spawn than the pool is

configured for, then you must be hitting the maximum of

pre-spawn.

See Also: For more information on setting up tnsnames .ora and

listener .ora , see Net8 Administrator’s Guide.

Detecting Network Problems

Tuning Networks 22-9

Find out what the physical size of the pre-spawn server is. On some systems, the

command ps gives a false size to a process. Sometimes it gives you the size of the

process plus any common memory it shares, like the SGA. Check with the system

administrator of the system to get the proper utility.

Find out the amount of RAM that is free in the system. This amount must not

include the amount of swap.

Divide the total amount of free RAM by the size of the pre-spawn server process.

This gives you an approximate top number of pre-spawn servers that you can add

to the system without the fear of it beginning to swap. The actual number of servers

to pre-spawn depends on the suspected number of simultaneous connections plus

the expected connect rate. The first number determines the setting for PRESPAWN_
MAX, while the other number determines the setting for POOLSIZE.

Detecting Network Problems
This section encompasses Local Area Network (LAN) and Wide Area Network

(WAN) troubleshooting methods.

Using Dynamic Performance Views
Networks entail overhead that adds a certain amount of delay to processing. To

optimize performance, you must ensure that your network throughput is fast, and

you should try to reduce the number of messages that must be sent over the

network. It can be difficult to measure the delay the network adds.

Three dynamic performance views are useful for measuring the network delay:

V$SESSION_EVENT, V$SESSION_WAIT, and V$SESSTAT.

In V$SESSION_EVENT, the AVERAGE_WAIT column indicates the amount of time

that Oracle waits between messages. You can use this statistic as a yardstick to

evaluate the effectiveness of the network.

In V$SESSION_WAIT, the EVENT column lists the events for which active sessions

are waiting. The "sqlnet message from client" wait event indicates that the shared or

foreground process is waiting for a message from a client. If this wait event has

occurred, then you can check to see whether the message has been sent by the user

or received by Oracle.

You can investigate hang-ups by looking at V$SESSION_WAIT to see what the

sessions are waiting for. If a client has sent a message, then you can determine

whether Oracle is responding to it or is still waiting for it.

Detecting Network Problems

22-10 Oracle8i Designing and Tuning for Performance

In V$SESSTAT you can see the number of bytes that have been received from the

client, the number of bytes sent to the client, and the number of calls the client has

made.

Understanding Latency and Bandwidth
The most critical aspects of a network that contribute to performance are latency and

bandwidth.

The term latency refers to a time delay; for example, the gap between the time a

device requests access to a network and the time it receives permission to transmit.

Bandwidth is the throughput capacity of a network medium or protocol. Variations

in the network signals can cause degradation on the network. Sources of

degradation can be cables that are too long or wrong cable type. External noise

sources, such as elevators, air handlers, or florescent lights, can also cause problems.

Common Network Topologies
Local Area Network Topologies:

■ Ethernet

■ Fast Ethernet

■ 1 Gigabit Ethernet

■ Token Ring

■ FDDI

■ ATM

Wide Area Network Topologies:

■ DSL

■ ISDN

■ Frame Relay

■ T-1, T-3, E-1, E-3

■ ATM

■ SONAT

Table 22–2 lists the most common ratings for various topologies.

Solving Network Problems

Tuning Networks 22-11

Solving Network Problems
This section describes several techniques for enhancing performance and solving

network problems.

■ Finding Bottlenecks

■ Dissecting Bottlenecks

■ Using Array Interfaces

■ Adjusting Session Data Unit Buffer Size

■ Using TCP.NODELAY

■ Using Connection Manager

Table 22–2 Bandwidth Ratings

Topology or Carrier Bandwidth

Ethernet 10 Megabits/second

Fast Ethernet 100 Megabits/second

1 Gigabit Ethernet 1 Gigabits/second

Token Ring 16 Megabits/second

FDDI 100 Megabits/second

ATM 155 Megabits/second (OC3), 622 Megabits/second (OC12)

T-1 (US only) 1.544 Megabits/second

T-3 (US only) 44.736 Megabits/second

E-1 (non-US) 2.048 Megabits/second

E-3 (non-US) 34.368 Megabits/second

Frame Relay Committed Information Rate, which can be up to the carrier
speed, but usually is not.

DSL This can be up to the carrier speed.

ISDN This can be up to the carrier speed. It is usually used with
slower modems.

Dial Up Modems 56 Kilobits/second. It is usually accompanied with data
compression for faster throughput.

Solving Network Problems

22-12 Oracle8i Designing and Tuning for Performance

Finding Bottlenecks
The first step in solving network problem is to understand the overall topology.

Gather as much information about the network that you can. This kind of

information usually manifests itself as a network diagram. Your diagram should

contain the types of network technology used in the Local Area Network and the

Wide Area Network. It should also contain addresses of the various network

segments.

Examine this information. Obvious bottlenecks include:

■ Using a dial-up modem (normal modem or ISDN) to access time critical data.

■ A frame relay link is running on a T-1, but has a 9.6 Kilobits CIR so that it only

reliably transmits up to 9.6 Kilobit's per second and if the rest of the bandwidth

is used, then there is a possibly that the data will be lost.

■ Data from high speed networks channels through low speed networks.

■ There are too many network hops (a router constitutes one hop).

■ A 10 Megabit network for a Web site.

There are many problems that can cause a performance breakdown. Follow this

checklist:

■ Get a Network Sniffer trace.

■ Check the following:

■ Is the bandwidth being exceeded on the network, the client, and/or the

server?

■ Ethernet collisions.

■ Token ring or FDDI ring beacons.

■ Are there many runt frames?

■ The stability of the WAN links.

■ Get a bandwidth utilization chart for frame relay, and see if CIR is being

exceeded.

■ Is any Quality of Service or packet prioritizing going on?

■ Is a firewall in the way somewhere?

See Also: For more information, see Net8 Administrator’s Guide.

Solving Network Problems

Tuning Networks 22-13

If nothing is revealed, then find the network route from the client to the data server.

Understanding the travel times on a network gives you an idea as to the time a

transaction will take. Client-server communication requires many small packets.

High latency on a network slows the transaction down due to the time interval

between sending a request and getting the response.

Use trace route (trcroute or equivalent) from the client to the server to get

address information for each device in the path. For example:

tracert usmail05
Tracing route to usmail05.us.oracle.com [144.25.88.200]over a maximum of 30
hops:
 1 <10 ms <10 ms 10 ms whq1davis-rtr-749-f1-0-a.us.oracle.com
[144.25.216.1]
 2 <10 ms <10 ms <10 ms whq4op3-rtr-723-f0-0.us.oracle.com
[144.25.252.23]
 3 220 ms 210 ms 231 ms usmail05.us.oracle.com [144.25.88.200]

Trace complete.

Ping each device in turn to get the timings. Use large packets to get the slowest

times. Make sure you set the "don't fragment bit" so that routers do not spend time

disassembling and reassembling the packet. Also note that the packet size is 1472.

This is for Ethernet. Ethernet packets are 1536 octets (actual 8 bit bytes) in size.

ICPM packets (this is what ping is designed to use) have 64 octets of header.

Evaluate the area where the slowness seems to occur. For example:

ping -l 1472 -n 1 -f 144.25.216.1
Pinging 144.25.216.1 with 1472 bytes of data:
Reply from 144.25.216.1: bytes=1472 time<10ms TTL=255

ping -l 1472 -n 1 -f 144.25.252.23
Pinging 144.25.252.23 with 1472 bytes of data:
Reply from 144.25.252.23: bytes=1472 time=10ms TTL=254

ping -l 1472 -n 1 -f 144.25.88.200
Pinging 144.25.88.200 with 1472 bytes of data:
Reply from 144.25.88.200: bytes=1472 time=271ms TTL=253

The above example validates trace route. Ideally, you would ping from the

workstation to 144.25.216.1, from 144.25.216.1 to 144.25.252.23, then from

144.25.252.23 to 144.25.88.200. This would show the exact latency on each segment

traveled.

Solving Network Problems

22-14 Oracle8i Designing and Tuning for Performance

Dissecting Bottlenecks
This section helps you determine the problem with your bottleneck.

Determine if the Problem is with Net8 or the Network
Net8 tracing reveals whether an error is Oracle-specific or due to conditions that the

operating system is passing to the Transparent Network Substrate (Oracle TNS

layer).

Enable Net8 tracing at the Oracle server, the listener, and at a client suspected of

having the problem you are trying to resolve.

To enable tracing at the server, find the sqlnet .ora file for the server and create

the following lines in it:

TRACE_LEVEL_SERVER = 16
TRACE_UNIQUE_SERVER = ON

To enable tracing at the client, find the sqlnet .ora file for the client and create the

following lines in it:

TRACE_LEVEL_CLIENT = 16
TRACE_UNIQUE_CLIENT = ON

To enable tracing at the listener, find the listener .ora file and create the

following line in it:

TRACE_LEVEL_listener_name = 16

Reproduce the problem, so that you generate traces on the client and server. Now

analyze the traces generated.

If the problem is with the network and not Net8, then you must determine the

following:

■ Does the problem only occur in one location on the local network?

■ Does the problem only occur in one area on the WAN?

For example, perhaps the system is fine in the building where the Data Center is,

but it is slow in other buildings that are several miles away.

See Also: For detailed directions on enabling Net8 tracing, see

Net8 Administrator’s Guide. For definitions to Net8 errors noted in

the trace file, see Oracle8i Error Messages.

Solving Network Problems

Tuning Networks 22-15

Not all Oracle error codes represent pure Oracle troubles. ORA-3113 is the most

common error which points to an underlying network problem.

If you are getting an Oracle error message, then look into the trace file to find the

error. For troubleshooting bugs, Net8 trace analysis takes some time to fully find

the problem. However, high level simple trace analysis is rather simple.

On Net8, Determine if the Problem is on the Client or the Server
If the problem is with Net8, then use Net8 tracing to show you where the problem

lies. If there are errors in the trace files, then do they appear in only the client traces,

only in the server traces, or in both?

Errors Only in the Client Trace

The problem is on the client. However, if you are getting ORA-3113 or ORA-3114
errors, then the problem is on the server.

Errors Only in the Server Trace or Listener Trace

Note: Enabling tracing on the server can generate a large amount

of trace, or large number of trace, files. To prevent this, you can set

up a separate environment that traces itself. This configuration

works for dedicated and pre-spawn connections. First, log into the

server's operating system as the Oracle software owner. Create a

temporary directory to keep configuration files and trace files that

will be created. Copy the sqlnet .ora , listener .ora , and

tnsnames .ora to that directory. Edit the sqlnet .ora file to enable

tracing as above. Add to the sqlnet .ora file the following line:

TRACE_DIRECTORY_SERVER = temporary directory just created

Now, modify the listener .ora file and change the listening port

(for TCP, other protocols, use a similar technique) to an unused

port. You need to make a similar modification to the client's

tnsnames .ora file for the connect string you will be using for this

test.

Set the TNS_ADMIN environment to point to the temporary

directory. Start the listener. Now all new connections to the new

listener send Server traces to this directory. Reproduce the

problem.

Solving Network Problems

22-16 Oracle8i Designing and Tuning for Performance

The problem is on the server. However, if you are getting ORA-3113 or ORA-3114
errors, then the problem is on the client.

Errors in All: Client, Server, and Listener Trace

If you are getting ORA-3113 or ORA-3114 errors, then the problem is on the

Network. Troubleshoot the server first. If it is fine, then the client is at fault.

Check if the Server is Configured for MTS
The multi-threaded server (MTS) is an advanced solution for many customers, and

it can be more complex to troubleshoot. Check the initialization parameter file for

any MTS parameters. Look at the operating system to see if any of the MTS

processes are present.

Check for dispatchers by looking for names like ora_d000 , ora_d001 , etc. For

example:

ps -ef | grep ora_d

Check for shared servers by looking for names like ora_s000 , ora_s001 , etc. For

example:

ps -ef | grep ora_s

Using Array Interfaces
Reduce network calls by using array interfaces. Instead of fetching one row at a

time, it is more efficient to fetch ten rows with a single network round trip.

Adjusting Session Data Unit Buffer Size
Before sending data across the network, Net8 buffers data into the Session Data

Unit (SDU). It sends the data stored in this buffer when the buffer is full or when an

application tries to read the data. When large amounts of data are being retrieved

and when packet size is consistently the same, it may speed retrieval to adjust the

default SDU size.

See Also: For more information on tuning the multi-threaded

server, see "Multi-Threaded Server (MTS) Configuration" on

page 22-2. For more information on MTS concepts and parameters,

see Oracle8i Concepts and Net8 Administrator’s Guide.

See Also: For more information on array interfaces, see Oracle
Call Interface Programmer’s Guide.

Solving Network Problems

Tuning Networks 22-17

Optimal SDU size depends on the normal transport size. Use a sniffer to find out

the frame size, or set tracing on to its highest level to check the number of packets

sent and received and to determine whether they are fragmented. Tune your system

to limit the amount of fragmentation.

Use Net8 Assistant to configure a change to the default SDU size on both the client

and the server; SDU size should generally be the same on both.

Using TCP.NODELAY
When a session is established, Net8 packages and sends data between server and

client using packets. Use the TCP.NODELAY parameter in the protocol .ora file,

which causes packets to be flushed on to the network more frequently. If you are

streaming large amounts of data, then there is no buffering and hence no delay.

Although Net8 supports many networking protocols, TCP tends to have the best

scalability.

Using Connection Manager
In Net8, you can use the Connection Manager to conserve system resources by

multiplexing. Multiplexing means funneling many client sessions through a single

transport connection to a server destination. In this way, you can increase the

number of sessions that a process can handle. This applies only to MTS

configurations.

Alternately, you can use Connection Manager to control client access to dedicated

servers. In addition, Connection Manager provides multiple protocol support

allowing a client and server with different networking protocols to communicate.

See Also: For more information, see Net8 Administrator’s Guide.

See Also: For more information on TCP.NODELAY, see your

platform-specific Oracle documentation.

See Also: For more information on Connection Manager, see Net8
Administrator’s Guide.

Solving Network Problems

22-18 Oracle8i Designing and Tuning for Performance

Tuning the Operating System 23-1

23
Tuning the Operating System

This chapter explains how to tune the operating system for optimal performance of

the Oracle server.

This chapter contains the following sections:

■ Understanding Operating System Performance Issues

■ Detecting Operating System Problems

■ Solving Operating System Problems

See Also: In addition to information in this chapter, see your

operating system specific documentation.

Understanding Operating System Performance Issues

23-2 Oracle8i Designing and Tuning for Performance

Understanding Operating System Performance Issues
Operating system performance issues commonly involve process management,

memory management, and scheduling. If you tuned the Oracle instance and you

still need better performance, then verify your work or try to reduce system time.

Make sure that there is enough I/O bandwidth, CPU power, and swap space. Do

not expect, however, that further tuning of the operating system will have a

significant effect on application performance. Changes in the Oracle configuration

or in the application are likely to make a more significant difference in operating

system efficiency than simply tuning the operating system.

For example, if your application experiences excessive buffer busy waits, then the

number of system calls will increase. If you reduce the buffer busy waits by tuning

the application, then the number of system calls will decrease. Similarly, if you turn

on the Oracle initialization parameter TIMED_STATISTICS , then the number of

system calls will increase. If you turn it off, then system calls will decrease.

Operating System and Hardware Caches
Operating systems and device controllers provide data caches that do not directly

conflict with Oracle’s own cache management. Nonetheless, these structures can

consume resources while offering little or no benefit to performance. This is most

noticeable on a UNIX system that has the database files in the UNIX file store: by

default all database I/O goes through the file system cache. On some UNIX

systems, direct I/O is available to the filestore. This arrangement allows the

database files to be accessed within the UNIX file system, bypassing the file system

cache. It saves CPU resources and allows the file system cache to be dedicated to

non-database activity, such as program texts and spool files.

This problem does not occur on NT. All file requests by the database bypass the

caches in the file system.

Raw Devices
Evaluate the use of raw devices on your system. Using raw devices may involve a

significant amount of work, but may also provide significant performance benefits.

Raw devices impose a penalty on full table scans, but may be essential on UNIX

systems if the implementation does not support "write through" cache. The UNIX

file system accelerates full table scans by reading ahead when the server starts

See Also: For detailed information, see your Oracle

platform-specific documentation and your operating system

vendor’s documentation.

Understanding Operating System Performance Issues

Tuning the Operating System 23-3

requesting contiguous data blocks. It also caches full table scans. If your UNIX

system does not support the write through option on writes to the file system, then

it is essential that you use raw devices to ensure that at commit and checkpoint, the

data that the server assumes is safely established on disk is actually there. If this is

not the case, then recovery from a UNIX operating system crash may not be

possible.

Raw devices on NT are similar to UNIX raw devices; however, all NT devices

support write through cache.

Process Schedulers
Many processes, or "threads" on NT systems, are involved in the operation of

Oracle. They all access the shared memory resources in the SGA.

Be sure that all Oracle processes, both background and user processes, have the

same process priority. When you install Oracle, all background processes are given

the default priority for your operating system. Do not change the priorities of

background processes. Verify that all user processes have the default operating

system priority.

Assigning different priorities to Oracle processes may exacerbate the effects of

contention. Your operating system may not grant processing time to a low-priority

process if a high-priority process also requests processing time. If a high-priority

process needs access to a memory resource held by a low-priority process, then the

high-priority process may wait indefinitely for the low-priority process to obtain

the CPU, process the request, and release the resource.

Additionally, do not bind Oracle background processes to CPUs. This may cause

the bound processes to be CPU-starved. This is especially the case when binding

processes that fork off operating system threads. In this case, the parent process and

all its threads will bind to the CPU.

Operating System Resource Managers
Some platforms provide operating system resource managers. These are designed

to reduce the impact of peak load use patterns by prioritizing access to system

resources. They usually implement administrative policies that govern which

resources users can access, and how much of those resources each user is permitted

to consume.

See Also: For a discussion on raw devices versus UNIX file

system (UFS), see Chapter 20, "Tuning I/O".

Understanding Operating System Performance Issues

23-4 Oracle8i Designing and Tuning for Performance

Operating system resource managers are different from domains or other similar

facilities. Domains provide one or more completely separated environments within

one system. Disk, CPU, memory, and all other resources are dedicated to each

domain, and cannot be accessed from any other domain. Other similar facilities

completely separate just a portion of system resources into different areas, usually

separate CPU and/or memory areas. Like domains, the separate resource areas are

dedicated only to the processing assigned to that area; processes cannot migrate

across boundaries. Unlike domains, all other resources (usually disk) are accessed

by all partitions on a system.

Oracle runs within domains, as well as within these other less complete partitioning

constructs, provided that the allocation of partitioned memory (RAM) resources is

fixed, not dynamic. Deallocating RAM to enable a memory board replacement is an

example of a dynamically changing memory resource; therefore, this is an example

of an environment in which Oracle is not supported.

Operating system resource managers prioritize resource allocation within a global

pool of resources, usually a domain or an entire system. Processes are assigned to

groups, which are in turn assigned resources anywhere within the resource pool.

Note: Oracle is not supported in any resource partitioned

environment in which memory resources are assigned dynamically.

Warning: When running under operating system resource

managers, Oracle is supported only when each instance is assigned

to a dedicated operating system resource manager group or

managed entity. Also, the dedicated entity running all the

instance's processes must run at one priority (or resource

consumption) level. Management of individual Oracle processes at

different priority levels is not supported. Severe consequences,

including instance crashes, can result.

Warning: Oracle is not supported for use with any operating

system resource manager's memory management and allocation

facility.

Warning: Oracle Database Resource Manager, which provides

resource allocation capabilities within an Oracle instance, cannot be

used with any operating system resource manager.

Solving Operating System Problems

Tuning the Operating System 23-5

Detecting Operating System Problems
The key statistics to extract from any operating system monitor are:

■ CPU load

■ Device queues

■ Network activity (queues)

■ Memory management (paging/swapping)

Examine CPU use to determine the ratio between the time spent running in

application mode and the time spent running in operating system mode. Look at

run queues to see how many processes are runable and how many system calls are

being executed. See if paging or swapping is occuring, and check the number of

I/Os being performed and the scan rate.

Solving Operating System Problems
This section provides hints for tuning various systems by explaining the following

topics:

■ Performance on UNIX-Based Systems

■ Performance on NT Systems

■ Performance on Mainframe Computers

Familiarize yourself with platform-specific issues so you know what performance

options your operating system provides. For example, some platforms have post

See Also: For a complete list of operating system resource

management and resource allocation/deallocation features that

work with Oracle and Oracle Database Resource Manager, see your

systems vendor and your Oracle representative. Note that Oracle

does not certify these system features for compatibility with

specific release levels.

For more information about Oracle Database Resource Manager,

see Oracle8i Concepts and Oracle8i Administrator’s Guide.

See Also: For more information, see your Oracle platform-specific

documentation and your operating system vendor’s

documentation.

Solving Operating System Problems

23-6 Oracle8i Designing and Tuning for Performance

wait drivers that allow you to map system time and thus reduce system calls,

enabling faster I/O.

Performance on UNIX-Based Systems
On UNIX systems, try to establish a good ratio between the amount of time the

operating system spends fulfilling system calls and doing process scheduling, and

the amount of time the application runs. Your goal should be running 60% to 75%

of the time in application mode, and 25% to 40% of the time in operating system

mode. If you find that the system is spending 50% of its time in each mode, then

determine what is wrong.

The ratio of time spent in each mode is only a symptom of the underlying problem,

which might involve:

■ Swapping

■ Executing too many O/S system calls

■ Running too many processes

If such conditions exist, then there is less time available for the application to run.

The more time you can release from the operating system side, the more

transactions your application can perform.

Performance on NT Systems
On NT systems, as with UNIX-based systems, you should establish an appropriate

ratio between time in application mode and time in system mode. On NT you can

easily monitor many factors with Performance Monitor: CPU, network, I/O, and

memory are all displayed on the same graph, to assist you in avoiding bottlenecks

in any of these areas.

Performance on Mainframe Computers
Consider the paging parameters on a mainframe, and remember that Oracle can

exploit a very large working set of parameters.

Free memory in VAX/VMS environments is actually memory that is not mapped to

any operating system process. On a busy system, free memory likely contains a

page belonging to one or more currently active process. When that access occurs, a

See Also: For more information, see your Oracle platform-specific

documentation and your operating system vendor’s

documentation.

Solving Operating System Problems

Tuning the Operating System 23-7

"soft page fault" takes place, and the page is included in the working set for the

process. If the process cannot expand its working set, then one of the pages

currently mapped by the process must be moved to the free set.

Any number of processes may have pages of shared memory within their working

sets. The sum of the sizes of the working sets can thus markedly exceed the

available memory. When the Oracle server is running, the SGA, the Oracle kernel

code, and the Oracle Forms runtime executable are normally all sharable and

account for perhaps 80% or 90% of the pages accessed.

Adding more buffers is not necessarily better. Each application has a threshold

number of buffers at which the cache hit ratio stops rising. This is typically quite

low (approximately 1500 buffers). Setting higher values simply increases the

management load for both Oracle and the operating system.

Solving Operating System Problems

23-8 Oracle8i Designing and Tuning for Performance

Tuning Instance Recovery Performance 24-1

24
Tuning Instance Recovery Performance

This chapter offers guidelines for tuning instance recovery.

This chapter contains the following sections:

■ Understanding Instance Recovery

■ Tuning the Duration of Instance and Crash Recovery

■ Monitoring Instance Recovery

■ Tuning the Phases of Instance Recovery

Understanding Instance Recovery

24-2 Oracle8i Designing and Tuning for Performance

Understanding Instance Recovery
Instance and crash recovery are the automatic application of redo log records to

Oracle data blocks after a crash or system failure. If a single instance database

crashes, or if all instances of an Oracle Parallel Server configuration crash, then

Oracle performs instance recovery at the next startup. If one or more instances of an

Oracle Parallel Server configuration crash, then a surviving instance performs

recovery.

Instance and crash recovery occur in two phases. In phase one, Oracle applies all

committed and uncommitted changes in the redo log files to the affected

datablocks. In phase two, Oracle applies information in the rollback segments to

undo changes made by uncommitted transactions to the data blocks.

How Oracle Applies Redo Log Information
During normal operations, Oracle’s DBWn processes periodically write dirty

buffers, or buffers that have in-memory changes, to disk. Periodically, Oracle

records the highest system change number (SCN) of all changes to blocks, such that

all data blocks with changes below that SCN have been written to disk by DBWn.

This SCN is the checkpoint.

Records that Oracle appends to the redo log file after the change record that the

checkpoint refers to are changes that Oracle has not yet written to disk. If a failure

occurs, then only redo log records containing changes at SCNs higher than the

checkpoint need to be replayed during recovery.

The duration of recovery processing is directly influenced by the number of data

blocks that have changes at SCNs higher than the SCN of the checkpoint. For

example, Oracle recovers a redo log with 100 entries affecting one data block faster

than it recovers a redo log with 10 entries for 10 different data blocks. This is

because for each log record processed during recovery, the corresponding data

block (if it is not already in memory) must be read from disk by Oracle, so that the

change represented by the redo log entry can be applied to that block.

Trade-offs of Minimizing Recovery Duration
The principal means of balancing the duration of instance recovery and daily

performance is by influencing how aggressively Oracle advances the checkpoint. If

you force Oracle to keep the checkpoint only a few blocks behind the most recent

redo log record, then you minimize the number of blocks Oracle processes during

recovery.

Tuning the Duration of Instance and Crash Recovery

Tuning Instance Recovery Performance 24-3

The trade-off for having minimal recovery time, however, is increased performance

overhead for normal database operations. If daily operational efficiency is more

important than minimizing recovery time, then decreasing the frequency of writes

to the datafiles increases instance recovery time.

Tuning the Duration of Instance and Crash Recovery
There are several methods for tuning instance and crash recovery to keep the

duration of recovery within user-specified bounds. For example:

■ Use initialization parameters to influence the number of redo log records and

data blocks involved in recovery.

■ Size the redo log file to influence checkpointing frequency.

■ Use SQL statements to initiate checkpoints.

■ Parallelize instance recovery operations to further shorten the recovery

duration.

The Oracle8i Enterprise Edition also offers fast-start fault recovery functionality to

control instance recovery. This reduces the roll forward time by making it bounded

and predictable, and it also eliminates the time required perform rollback. The

foundation of fast-start fault recovery is fast-start checkpointing architecture.

Instead of the conventional periodic checkpointing, as performed in earlier versions

of Oracle, fast-start checkpointing occurs continuously, advancing the checkpoint

time as blocks are written. Fast-start checkpointing always writes the oldest

modified block first, ensuring that every write allows the checkpoint time to be

advanced. Administrators specify a target (bounded) time to complete the roll

forward phase of recovery, and Oracle automatically varies the checkpoint writes to

meet that target.

Using Initialization Parameters to Influence Recovery Time
During recovery, Oracle performs two main tasks:

■ Reads redo logs to determine what has been changed.

■ Reads data blocks to determine whether to apply changes.

Fast-start checkpointing eliminates bulk writes and the resultant I/O spikes that

occur with conventional checkpointing, yielding smooth and fast ongoing

performance. Continuous advancement reduces roll forward by half, compared to

conventional checkpoints at the same transaction rate. Administrators can specify a

Tuning the Duration of Instance and Crash Recovery

24-4 Oracle8i Designing and Tuning for Performance

bound on the time to do roll forward, rather than specifying the frequency of

checkpoints.

You can use three initialization parameters to influence how aggressively Oracle

advances the checkpoint, as shown in Table 24–1:

Using LOG_CHECKPOINT_TIMEOUT
Set the initialization parameter LOG_CHECKPOINT_TIMEOUT to a value n (where n
is an integer) to require that the latest checkpoint position follow the most recent

redo block by no more than n seconds. In other words, at most, n seconds worth of

logging activity can occur between the most recent checkpoint position and the end

of the redo log. This forces the checkpoint position to keep pace with the most

recent redo block

You can also interpret LOG_CHECKPOINT_TIMEOUT as specifying an upper bound

on the time a buffer can be dirty in the cache before DBWn must write it to disk. For

example, if you set LOG_CHECKPOINT_TIMEOUTto 60, then no buffers remain dirty

in the cache for more than 60 seconds. The default value for LOG_CHECKPOINT_
TIMEOUT is 1800.

Table 24–1 Initialization Parameters Influencing Checkpoints

Parameter Purpose

LOG_CHECKPOINT_TIMEOUT Limits the number of seconds between the most recent
redo record and the checkpoint.

LOG_CHECKPOINT_INTERVAL Limits the number of redo records between the most
recent redo record and the checkpoint.

FAST_START_IO_TARGET Limits instance recovery time by controlling the number of
data blocks Oracle processes during instance recovery.

Note: The FAST_START_IO_TARGET parameter is only available

with the Oracle8i Enterprise Edition.

Note: The minimum value for LOG_CHECKPOINT_TIMEOUT in

the Standard Edition is 900, or 15 minutes. If you set the value

below 900 in the Standard Edition, then Oracle rounds it to 900.

Tuning the Duration of Instance and Crash Recovery

Tuning Instance Recovery Performance 24-5

Using LOG_CHECKPOINT_INTERVAL
Set the initialization parameter LOG_CHECKPOINT_INTERVALto a value n (where n
is an integer) to require that the checkpoint position never follow the most recent

redo block by more than n blocks. In other words, at most n redo blocks can exist

between the checkpoint position and the last block written to the redo log. In effect,

you are limiting the amount of redo blocks that can exist between the checkpoint

and the end of the log.

Oracle limits the maximum value of LOG_CHECKPOINT_INTERVAL to 90% of the

smallest log to ensure that the checkpoint advances into the current log before that

log fills and a log switch is attempted.

LOG_CHECKPOINT_INTERVALis specified in redo blocks. Redo blocks are the same

size as operating system blocks. Use the LOG_FILE_SIZE_REDO_BLKS column in

V$INSTANCE_RECOVERYto see the number of redo blocks corresponding to 90% of

the size of the smallest log file.

Using FAST_START_IO_TARGET

Set this parameter to n, where n is an integer limiting to n the number of buffers

that Oracle processes during crash or instance recovery. Because the number of

I/Os to be processed during recovery correlates closely to the duration of recovery,

the FAST_START_IO_TARGET parameter gives you the most precise control over

the duration of recovery.

FAST_START_IO_TARGET advances the checkpoint, because DBWn uses the value

of FAST_START_IO_TARGETto determine how much writing to do. Assuming that

users are making many updates to the database, a low value for this parameter

forces DBWn to write changed buffers to disk. As the changed buffers are written to

disk, the checkpoint advances.

Note: The initialization parameter FAST_START_IO_TARGETand

fast-start checkpointing are only available with the Oracle8i
Enterprise Edition.

Oracle recommends using fast-start checkpointing to control the

duration of the roll forward phase of recovery. This behavior is

controlled by the FAST_START_IO_TARGET parameter. The

parameter, DB_BLOCK_MAX_DIRTY_TARGET, is an Oracle8

parameter used to provide more limited control over roll forward

duration, and it is included in Oracle8i only for backward

compatibility.

Tuning the Duration of Instance and Crash Recovery

24-6 Oracle8i Designing and Tuning for Performance

The smaller the value of FAST_START_IO_TARGET, the better the recovery

performance, because fewer blocks require recovery. If you use smaller values for

this parameter, however, then you impose higher overhead during normal

processing, because DBWn must write more buffers to disk more frequently.

Using Redo Log Size to Influence Checkpointing Frequency
The size of a redo log file directly influences checkpoint performance. The smaller

the size of the smallest log, the more aggressively Oracle writes dirty buffers to disk

to ensure the position of the checkpoint has advanced to the current log before that

log completely fills. Forcing the checkpoint to advance into the current log before it

fills ensures that Oracle will not need to wait for the checkpoint to advance out of a

redo log file before it can be reused. Oracle enforces this behavior by ensuring the

number of redo blocks between the checkpoint and the most recent redo record is

less than 90% of the size of the smallest log.

If your redo logs are small compared to the number of changes made against the

database, then Oracle must switch logs frequently. If the value of LOG_
CHECKPOINT_INTERVAL is less than 90% of the size of the smallest log, then the

size of the smallest log file does not influence checkpointing behavior.

Although you specify the number and sizes of online redo log files at database

creation, you can alter the characteristics of your redo log files after startup. Use the

ADD LOGFILE clause of the ALTER DATABASE statement to add a redo log file and

specify its size, or the DROP LOGFILE clause to drop a redo log.

The size of the redo log appears in the LOG_FILE_SIZE_REDO_BLKS column of

the V$INSTANCE_RECOVERYdynamic performance. This value shows how the size

of the smallest online redo log is affecting checkpointing. By increasing or

decreasing the size of your online redo logs, you indirectly influence the frequency

of checkpoint writes.

See Also: For more information, see "Estimating Recovery Time"

on page 24-4 and "Calculating Performance Overhead" on

page 24-11. For more information on tuning checkpoints, see

Chapter 20, "Tuning I/O". For more information about initialization

parameters, see the Oracle8i Reference.

See Also: For information on using the V$INSTANCE_RECOVERY
view to tune instance recovery, see "Estimating Recovery Time" on

page 24-10.

Monitoring Instance Recovery

Tuning Instance Recovery Performance 24-7

Using SQL Statements to Initiate Checkpoints
Besides setting initialization parameters and sizing your redo log files, you can also

influence checkpoints with SQL statements. ALTER SYSTEM CHECKPOINT directs

Oracle to record a checkpoint for the node, and ALTER SYSTEM CHECKPOINT
GLOBAL directs Oracle to record a checkpoint for every node in a cluster.

SQL-induced checkpoints are heavyweight. This means that Oracle records the

checkpoint in a control file shared by all the redo threads. Oracle also updates the

datafile headers. SQL-induced checkpoints move the checkpoint position to the

point that corresponded to the end of the log when the statement was initiated.

These checkpoints can adversely affect performance, because the additional writes

to the datafiles increase system overhead.

Monitoring Instance Recovery
Use the V$INSTANCE_RECOVERY view to see your current recovery parameter

settings. You can also use statistics from this view to calculate which parameter has

the greatest influence on checkpointing. V$INSTANCE_RECOVERY contains the

columns shown in Table 24–2.

See Also: For more information about these statements, see the

Oracle8i SQL Reference.

Table 24–2 V$INSTANCE_RECOVERY View

Column Description

RECOVERY_ESTIMATED_IOS The estimated number of blocks that would be
processed during recovery. This estimate is based
upon FAST_START_IO_TARGET, and it is not valid
unless FAST_START_IO_TARGET is driving
checkpointing behavior.

ACTUAL_REDO_BLKS Current number of redo blocks required for recovery.

TARGET_REDO_BLKS Goal for the maximum number of redo blocks to be
processed during recovery. This value is the
minimum of the next 4 columns.

LOG_FILE_SIZE_REDO_BLKS Number of redo blocks to be processed during
recovery to guarantee that a log switch never has to
wait for a checkpoint. This is 90% of the smallest log
file.

LOG_CHKPT_TIMEOUT_REDO_BLKS Number of redo blocks that must be processed during
recovery to satisfy LOG_CHECKPOINT_TIMEOUT.

Monitoring Instance Recovery

24-8 Oracle8i Designing and Tuning for Performance

The value appearing in the TARGET_REDO_BLKS column equals a value appearing

in another column in the view. This other column corresponds to the parameter or

log file that is determining the maximum number of redo blocks that Oracle

processes during recovery. The setting for the parameter in this column is imposing

the heaviest requirement on redo block processing.

Determining the Strongest Checkpoint Influence
For example, assume your initialization parameter settings are as follows:

FAST_START_IO_TARGET = 1000
LOG_CHECKPOINT_TIMEOUT = 1800 # default
LOG_CHECKPOINT_INTERVAL = 0# default: disabled interval checkpointing

You execute the following query:

SELECT * FROM V$INSTANCE_RECOVERY;

Oracle responds with the following:

1 row selected.

As you can see by the values in the last three columns, the FAST_START_IO_
TARGET parameter places heavier recovery demands on Oracle than the other two

parameters. It requires that Oracle process no more than 4215 redo blocks during

recovery. The LOG_FILE_SIZE_REDO_BLKS column indicates that Oracle can

process up to 55,296 blocks during recovery, so the log file size is not the heaviest

influence on checkpointing.

LOG_CHKPT_INTERVAL_REDO_BLKS Number of redo blocks that must be processed during
recovery to satisfy LOG_CHECKPOINT_INTERVAL.

FAST_START_IO_TARGET_REDO_BLKSNumber of redo blocks that must be processed during
recovery to satisfy FAST_START_IO_TARGET.

See Also: For more information on the V$INSTANCE_RECOVERY
view, see the Oracle8i Reference.

RECOVERY_
ESTIMATED_
IOS

ACTUAL_REDO_
BLKS

TARGET_REDO_
BLKS

LOG_FILE_
SIZE_REDO_
BLKS

LOG_CHKPT_
TIMEOUT_
REDO_BLKS

LOG_CHKPT_
INTERVAL_
REDO_BLKS

FAST_START_IO_
TARGET_REDO_
BLKS

1025 6169 4215 55296 35485 4294967295 4215

Table 24–2 V$INSTANCE_RECOVERY View

Column Description

Monitoring Instance Recovery

Tuning Instance Recovery Performance 24-9

The TARGET_REDO_BLKScolumn shows the smallest value of the last five columns.

This shows the parameter or condition that exerts the heaviest requirement for

Oracle checkpointing. In this example, the FAST_START_IO_TARGET parameter is

the strongest influence with a value of 4215.

Assume you make several updates to the database and query V$INSTANCE_
RECOVERY three hours later. Oracle responds with the following:

1 row selected.

FAST_START_IO_TARGET is still exerting the strongest influence over

checkpointing behavior, although the number of redo blocks corresponding to this

target has changed dramatically. This change is not due to a change in FAST_
START_IO_TARGET or the corresponding RECOVERY_ESTIMATED_IOS. Instead,

this indicates that operations requiring I/O in the event of recovery are more

frequent in the redo log, so fewer redo blocks now correspond to the same FAST_
START_IO_TARGET.

Assume you decide that FAST_START_IO_TARGET is placing an excessive limit on

the maximum number of redo blocks that Oracle processes during recovery. You

adjust FAST_START_IO_TARGET to 8000, set LOG_CHECKPOINT_TIMEOUT to 60,

and perform several updates. You reissue the query to V$INSTANCE_RECOVERY
and Oracle responds with:

1 row selected.

Because the TARGET_REDO_BLKS column value of 6707 corresponds to the value in

the LOG_CHKPT_TIMEOUT_REDO_BLKS column, LOG_CHECKPOINT_TIMEOUT is

now exerting the most influence over checkpointing behavior.

Note: The value for LOG_CHKPT_INTERVAL_REDO_BLKS,

4294967295, corresponds to the maximum possible value indicating

that this column does not have the greatest influence over

checkpointing.

RECOVERY_
ESTIMATED_
IOS

ACTUAL_
REDO_BLKS

TARGET_
REDO_BLKS

LOG_FILE_
SIZE_REDO_
BLKS

LOG_CHKPT_
TIMEOUT_
REDO_BLKS

LOG_CHKPT_
INTERVAL_
REDO_BLKS

FAST_START_
IO_TARGET_
REDO_BLKS

1022 916 742 55296 44845 4294967295 742

RECOVERY_
ESTIMATED_
IOS

ACTUAL_
REDO_BLKS

TARGET_
REDO_BLKS

LOG_FILE_
SIZE_REDO_
BLKS

LOG_CHKPT_
TIMEOUT_
REDO_BLKS

LOG_CHKPT_
INTERVAL_
REDO_BLKS

FAST_START_
IO_TARGET_
REDO_BLKS

1640 6972 6707 55296 6707 4294967295 10338

Monitoring Instance Recovery

24-10 Oracle8i Designing and Tuning for Performance

Estimating Recovery Time
Use statistics from the V$INSTANCE_RECOVERY view to estimate recovery time

using the following formula:

For example, if RECOVERY_ESTIMATED_IOS is 2500, and the maximum number of

writes your system performs is 500 per second, then recovery time is 5 seconds.

Note the following restrictions:

■ The value for the maximum I/Os per second that the system can perform is

difficult to measure accurately. You can estimate this value by measuring the

total number of reads and writes your system can perform under a peak load.

The V$FILESTAT view provides information on the number of physical reads

and writes performed since the instance started. Measure these values over a set

time interval, and then divide this by the time interval to estimate your system's

maximum I/Os per second. The following query can be used to measure the

total I/Os since the instance started:

SELECT sum(PHYBLKRD+PHYBLKWRT)
FROM v$filestat;

■ There is no guarantee the system will sustain the I/O rate during recovery.

■ This estimate for recovery time is only valid when FAST_START_IO_TARGETis
both enabled and when this parameter is the determining influence on

checkpointing behavior.

To adjust recovery time, change the initialization parameter that has the most

influence over checkpointing. Use the V$INSTANCE_RECOVERY view as described

in "Monitoring Instance Recovery" on page 24-7 to determine which parameter to

adjust. Then, either adjust the parameter to decrease or increase recovery time as

required.

Adjusting Recovery Time: Example Scenario
For example, assume as in "Determining the Strongest Checkpoint Influence" on

page 24-8 that your initialization parameter settings are the following:

FAST_START_IO_TARGET = 1000
LOG_CHECKPOINT_TIMEOUT = 1800 # default
LOG_CHECKPOINT_INTERVAL = 0 # default: disabled interval checkpointing

RECOVERY_ESTIMATED_JOBS

Maximum I/Os per second that your system can perform

Monitoring Instance Recovery

Tuning Instance Recovery Performance 24-11

You execute the following query:

SELECT * FROM V$INSTANCE_RECOVERY;

Oracle responds with the following:

1 row selected.

You calculate recovery time using the formula on page 24-10, where RECOVERY_
ESTIMATED_IOS is 1025 and the maximum I/Os per second the system can

perform is 500:

You decide you can afford slightly more than 2.05 seconds of recovery time:

constant access to the data is not critical. You increase the value for the parameter

FAST_START_IO_TARGET to 2000 and perform several updates. You then reissue

the query and Oracle displays:

1 row selected.

Recalculate recovery time using the same formula:

You have increased your recovery time by 1.96 seconds. If you can afford more

time, then repeat the procedure until you arrive at an acceptable recovery time.

Calculating Performance Overhead
To calculate performance overhead, use the V$SYSSTAT view. For example, assume

you execute the following query:

RECOVERY_
ESTIMATED_
IOS

ACTUAL_
REDO_BLKS

TARGET_
REDO_BLKS

LOG_FILE_
SIZE_REDO_
BLKS

LOG_CHKPT_
TIMEOUT_
REDO_BLKS

LOG_CHKPT_
INTERVAL_
REDO_BLKS

FAST_START_
IO_TARGET_
REDO_BLKS

1025 6169 4215 55296 35485 4294967295 4215

RECOVERY_
ESTIMATED_
IOS

ACTUAL_
REDO_BLKS

TARGET_
REDO_BLKS

LOG_FILE_
SIZE_REDO_
BLKS

LOG_CHKPT_
TIMEOUT_
REDO_BLKS

LOG_CHKPT_
INTERVAL_
REDO_BLKS

FAST_START_
IO_TARGET_
REDO_BLKS

2007 8301 8012 55296 40117 4294967295 8012

1025

500
= 2.05

2007

500
= 4.01

Monitoring Instance Recovery

24-12 Oracle8i Designing and Tuning for Performance

SELECT NAME, VALUE FROM V$SYSSTAT
WHERE NAME IN ('PHYSICAL READS', ’PHYSICAL WRITES',);

Oracle responds with the following:

NAME VALUE
physical reads 2376
physical writes 14932
physical writes non checkpoint 11165
3 rows selected.

The first row shows the number of data blocks retrieved from disk. The second row

shows the number of data blocks written to disk. The last row shows the value of

the number of writes to disk that would occur if you turned off checkpointing.

Use this data to calculate the overhead imposed by setting the FAST_START_IO_
TARGET initialization parameter. To effectively measure the percentage of extra

writes, mark the values for these statistics at different times, t_1 and t_2 . Use the

following formula where the variables stand for the following:

Calculate the percentage of extra I/Os generated by fast-start checkpointing using

this formula:

It can take some time for database statistics to stabilize after instance startup or

dynamic initialization parameter modification. After such events, wait until all

blocks age out of the buffer cache at least once before taking measurements.

Variable Definition

*_1 Value of prefixed variable at time t_1 , which is any time after the database has
been running for a while

*_2 Value of prefixed variable at time t_2 , which is later than t_1 and not
immediately after changing any of the checkpoint parameters

PWNC Physical writes non checkpoint

PW Physical writes

PR Physical reads

EIO Percentage of estimated extra I/Os generated by enabling checkpointing

[((PW_2 - PW_1) - (PWNC_2 - PWNC_1)) / ((PR_2 - PR_1) + (PW_2 - PW_1))] x 100% = EIO

Monitoring Instance Recovery

Tuning Instance Recovery Performance 24-13

If the percentage of extra I/Os is too high, then increase the value for FAST_
START_IO_TARGET. Adjust this parameter until you get an acceptable value for the

RECOVERY_ESTIMATED_IOS in V$INSTANCE_RECOVERY as described in

"Determining the Strongest Checkpoint Influence" on page 24-8.

The number of extra writes caused by setting FAST_START_IO_TARGET to a

non-zero value is application-dependent. An application that repeatedly modifies

the same buffers incurs a higher write penalty because of fast-start checkpointing

than an application that does not. The extra write penalty is not dependent on cache

size.

Calculating Performance Overhead: Example Scenario
As an example, assume your initialization parameter settings are:

FAST_START_IO_TARGET = 2000
LOG_CHECKPOINT_TIMEOUT = 1800 # default
LOG_CHECKPOINT_INTERVAL = 0 # default: disabled interval checkpointing

After the statistics stabilize, you issue this query on V$SYSSTAT:

SELECT NAME, VALUE FROM V$SYSSTAT
WHERE NAME IN ('PHYSICAL READS', 'PHYSICAL WRITES',
'PHYSICAL WRITES NON CHECKPOINT');

Oracle responds with:

Name Value
physical reads 2376
physical writes 14932
physical writes non checkpoint 11165
3 rows selected.

After making updates for a few hours, you re-issue the query and Oracle responds

with:

Name Value
physical reads 3011
physical writes 17467
physical writes non checkpoint 13231
3 rows selected.

Substitute the values from your select statements in the formula as described on

page 24-11 to determine how much performance overhead you are incurring:

Tuning the Phases of Instance Recovery

24-14 Oracle8i Designing and Tuning for Performance

[((17467 - 14932) - (13231 - 11165)) / ((3011 - 2376) + (17467 - 14932))] x 100% = 14.8%

As the result indicates, enabling fast-start checkpointing generates about 15% more

I/O than would be required had you not enabled fast-start checkpointing. After

calculating the extra I/O, you decide you can afford more system overhead if you

decrease recovery time.

To decrease recovery time, reduce the value for the parameter FAST_START_IO_
TARGET to 1000. After items in the buffer cache age out, calculate V$SYSSTAT
statistics across a second interval to determine the new performance overhead.

Query V$SYSSTAT:

SELECT NAME, VALUE FROM V$SYSSTAT
WHERE NAME IN ('PHYSICAL READS', 'PHYSICAL WRITES',
'PHYSICAL WRITES NON CHECKPOINT');

Oracle responds with:

Name Value
physical reads 4652
physical writes 28864
physical writes non checkpoint 21784
3 rows selected.

After making updates, re-issue the query and Oracle responds with:

Name Value
physical reads 6000
physical writes 35394
physical writes non checkpoint 26438
3 rows selected.

Calculate how much performance overhead you are incurring using the values

from your two SELECT statements:

[(35394 - 28864) - (26438 - 21784)) / ((6000 - 4652) + (35394 - 28864))] x 100% = 23.8%

After changing the parameter, the percentage of I/Os performed by Oracle is now

about 24% more than it would be if you disabled fast-start checkpointing.

Tuning the Phases of Instance Recovery
The work required to do roll forward processing is proportional to the rate of

change to the database (update transactions per second) and the time between

which consistent snapshots, or checkpoints, of the database are made. The work

required to do roll back is proportional to the number and size of uncommitted

Tuning the Phases of Instance Recovery

Tuning Instance Recovery Performance 24-15

transactions when the system fault occurred. The total recovery time is the sum of

time to do roll forward and the time to do roll back.

Besides using checkpoints to tune instance recovery, you can also use a variety of

parameters to control Oracle’s behavior during the rolling forward and rolling back

phases of instance recovery. In some cases, you can parallelize operations and

thereby increase recovery efficiency.

This section contains the following topics:

■ Tuning the Rolling Forward Phase

■ Tuning the Rolling Back Phase

Tuning the Rolling Forward Phase
Use parallel block recovery to tune the roll forward phase of recovery. Parallel

block recovery uses a division of labor approach to allocate different processes to

different data blocks during the roll forward phase of recovery. For example,

during recovery the redo log is read, and blocks that require redo application are

parsed out. These blocks are subsequently distributed evenly to all recovery slaves

to be read into the buffer cache. Crash, instance, and media recovery of many

datafiles on different disk drives are good candidates for parallel block recovery.

Use the RECOVERY_PARALLELISM initialization parameter to specify the number

of concurrent recovery processes for instance or media recovery operations. Because

crash recovery occurs at instance startup, this parameter is useful for specifying the

number of processes to use for crash recovery. The value of this parameter is also

the default number of processes used for media recovery if you do not specify the

PARALLEL clause of the RECOVER statement. To use parallel processing, the value

of RECOVERY_PARALLELISMmust be greater than 1 and cannot exceed the value of

the PARALLEL_MAX_SERVERS parameter. Parallel block recovery requires a

minimum of eight recovery processes for it to be more effective than serial recovery.

Recovery is usually I/O bound on reads to data blocks. Consequently, parallelism

at the block level may only help recovery performance if it increases total I/Os. In

other words, parallelism at the block level by-passes operating system restrictions

on asynchronous I/Os. Performance on systems with efficient asynchronous I/O

typically does not improve significantly with parallel block recovery.

Tuning the Phases of Instance Recovery

24-16 Oracle8i Designing and Tuning for Performance

Tuning the Rolling Back Phase
During the second phase of instance recovery, Oracle rolls back uncommitted

transactions. Oracle uses two features, fast-start on-demand rollback and fast-start

parallel rollback, to increase the efficiency of this recovery phase.

This section contains the following topics:

■ Using Fast-Start On-Demand Rollback

■ Using Fast-Start Parallel Rollback

Using Fast-Start On-Demand Rollback
Using the fast-start on-demand rollback feature, Oracle automatically allows new

transactions to begin immediately after the roll forward phase of recovery

completes. Should a user attempt to access a row that is locked by a dead

transaction, Oracle rolls back only those changes necessary to complete the

transaction, in other words, it rolls them back on demand. Consequently, new

transactions do not have to wait until all parts of a long transaction are rolled back.

Using Fast-Start Parallel Rollback
In fast-start parallel rollback, the background process SMON acts as a coordinator

and rolls back a set of transactions in parallel using multiple server processes.

Essentially, fast-start parallel rollback is to rolling back what parallel block recovery

is to rolling forward.

Fast-start parallel rollback is mainly useful when a system has transactions that run

a long time before committing, especially parallel INSERT, UPDATE, and DELETE
operations. When SMON discovers that the amount of recovery work is above a

certain threshold, it automatically begins parallel rollback by dispersing the work

among several parallel processes: process 1 rolls back one transaction, process 2

rolls back a second transaction, and so on. The threshold is the point at which

parallel recovery becomes cost-effective, in other words, when parallel recovery

takes less time than serial recovery.

Note: These features are part of fast-start fault recovery and are

only available in the Oracle8i Enterprise Edition.

Note: Oracle does this automatically. You do not need to set any

parameters or issue statements to use this feature.

Tuning the Phases of Instance Recovery

Tuning Instance Recovery Performance 24-17

One special form of fast-start parallel rollback is intra-transaction recovery. In

intra-transaction recovery, a single transaction is divided among several processes.

For example, assume 8 transactions require recovery with one parallel process

assigned to each transaction. The transactions are all similar in size except for

transaction 5, which is quite large. This means it takes longer for one process to roll

this transaction back than for the other processes to roll back their transactions.

In this situation, Oracle automatically begins intra-transaction recovery by

dispersing transaction 5 among the processes: process 1 takes one part, process 2

takes another part, and so on.

You control the number of processes involved in transaction recovery by setting the

parameter FAST_START_PARALLEL_ROLLBACK to one of three values:

Parallel Rollback in an Oracle Parallel Server Configuration In Oracle Parallel Server, you

can perform fast-start parallel rollback on each instance. Within each instance, you

can perform parallel rollback on transactions that are:

■ Online on a given instance.

■ Offline and not being recovered on instances other than the given instance.

After a rollback segment is online for a given instance, only this instance can

perform parallel rollback on transactions on that segment.

Monitoring Progress of Fast-Start Parallel Rollback Monitor the progress of fast-start

parallel rollback by examining the V$FAST_START_SERVERS and V$FAST_
START_TRANSACTIONS tables. V$FAST_START_SERVERS provides information

about all recovery processes performing fast-start parallel rollback. V$FAST_
START_TRANSACTIONS contains data about the progress of the transactions.

FALSE Turns off fast-start parallel rollback.

LOW Specifies that the number of recovery servers may not exceed twice

the value of the CPU_COUNT parameter.

HIGH Specifies that the number of recovery servers may not exceed four

times the value of the CPU_COUNT parameter.

See Also: For more information on fast-start parallel rollback in

an Oracle Parallel Server environment, see Oracle8i Parallel Server
Administration, Deployment, and Performance. For more information

about initialization parameters, see the Oracle8i Reference.

Tuning the Phases of Instance Recovery

24-18 Oracle8i Designing and Tuning for Performance

Index-1

Index
A
ABORTED_REQUEST_THRESHOLD

procedure, 19-26

access methods, 4-20

cluster scans, 4-22

execution plans, 4-5

hash scans, 4-22

index scans, 4-22

table scans, 4-21

access path, 2-11

access paths

cluster join, 4-38

composite index, 4-39

defined, 4-7

hash cluster key, 4-38

indexed cluster key, 4-39

optimization, 4-20

single row by cluster join, 4-36

single row by hash cluster key (with unique

key), 4-36

single row by rowid, 4-35

single row by unique or primary key, 4-37

alert files, 11-4

ALL, 4-67

ALL_INDEXES view, 12-17

ALL_OBJECTS view, 19-34

ALL_ROWS hint, 4-11, 7-6

allocation

of memory, 19-2

ALTER INDEX REBUILD statement, 12-9

ALTER SESSION statement

examples, 6-5

HASH_JOIN_ENABLED, 4-53

OPTIMIZER_GOAL, 4-11

SET SESSION_CACHED_CURSORS

statement, 19-21

ALTER SYSTEM statement

CHECKPOINT clause, 24-7

MTS_DISPATCHERS parameter, 21-8

ALWAYS_ANTI_JOIN parameter, 4-29, 4-61, 7-23,

7-24

ALWAYS_SEMI_JOIN parameter, 4-62

analysis dictionary, 11-5

ANALYZE statement, 20-31

creating histograms, 8-18

AND_EQUAL hint, 7-16, 12-7

anti-joins, 4-61

ANY, 4-67

APPEND hint, 7-28

application design, 2-9

application designer, 1-8

application developer, 1-8

applications

client/server, 3-11

data warehousing

star queries, 4-62

decision support, 3-4, 9-15

distributed databases, 3-8

OLTP, 3-2

Oracle Parallel Server, 3-10

parallel query, 3-5

registering with the database, 11-8

ARCH process, 19-8

architecture and CPU, 18-13

array interface, 22-16

audit trail, 11-4

Average Elapsed Time data view, 14-11

Index-2

B
B*-tree index, 12-16, 12-20

backups

cumulative incremental, 20-50, 20-51, 20-52,

20-53

tuning, 20-61

bandwidth, 9-15

Basic Statistics for Parse/Execute/Fetch drilldown

data view, 14-19

BEGIN_DISCRETE_TRANSACTION

procedure, 17-2, 17-3

benefits

of tuning, 2-3

BETWEEN, 4-68

binary files

formatting using Oracle Trace, 14-5

bind variables, 19-17

optimization, 4-27

BITMAP CONVERSION row source, 12-20

bitmap indexes, 12-14, 12-19

creating, 12-16

inlist iterator, 5-22

maintenance, 12-15

scans of, 4-24

size, 12-21

storage considerations, 12-15

when to use, 12-13

BITMAP keyword, 12-16

BITMAP_MERGE_AREA_SIZE parameter, 4-30,

12-16, 12-19

bitmaps

mapping to rowids, 12-18

block contention, 2-13

block sampling, 8-3

blocks, 20-10

bottlenecks

disk I/O, 20-18

memory, 19-2

broadcast

distribution value, 5-8

buffer caches, 2-12

memory allocation, 19-31

partitioning, 19-35

reducing buffers, 19-31

reducing cache misses, 19-31

tuning, 19-27

buffer get, 2-10

buffer not pinned statistics, 19-29

buffer pinned statistics, 19-29

buffer pools

default cache, 19-33

keep cache, 19-33

multiple, 19-32, 19-33

RECYCLE cache, 19-33

syntax, 19-36

BUFFER_POOL clause, 19-36

BUFFER_POOL_name parameter, 19-35

business rules, 1-8, 2-3, 2-7

BYTES column

PLAN_TABLE table, 5-5

C
CACHE hint, 7-30

cache hit ratios

increasing, 19-31

cardinality, 12-21

CARDINALITY column

PLAN_TABLE table, 5-5

Cartesian products, 4-48

CATPARR.SQL script, 19-31

CATPERF.SQL file, 19-38

chained rows, 20-31

channel bandwidth, 16-6

CHECKPOINT clause

ALTER SYSTEM statement, 24-7

checkpoints

choosing checkpoint frequency, 20-40

CHOOSE hint, 4-11, 7-8

client/server applications, 3-11, 18-5

CLUSTER hint, 7-11

cluster joins, 4-55

clusters, 12-25

hash

scans of, 4-22, 4-36, 4-38

index

scans of, 4-39

joins and, 4-36, 4-38, 4-55

scans of, 4-22, 4-36

Index-3

hash, 4-36, 4-38

joins, 4-38

collections, 14-4, 14-23

columns

pseudocolumns

ROWNUM, 4-46, 4-77, 4-88

selectivity, 8-2

histograms, 8-17

to index, 12-4

COMPATIBLE parameter

and parallel query, 7-24

complex view merging, 4-78

composite indexes, 12-5

composite partitions

examples of, 5-16

CONNECT BY clause

optimizing view queries, 4-77

connection manager, 22-17

connection pooling, 21-8

consistency

read, 18-10

consistent gets statistic, 19-28, 21-4, 21-21

consistent mode

TKPROF, 6-13

constants

comparisons and, 4-65

evaluation of expressions, 4-65

when computed, 4-65

constraints, 12-11

contention

disk access, 20-18

free lists, 21-20

memory, 19-2

memory access, 21-1

redo allocation latch, 21-19

redo copy latches, 21-19

rollback segments, 21-3

tuning, 21-1

tuning resource, 2-13

context area, 2-12

context switching, 18-6

COST column

PLAN_TABLE table, 5-5

cost-based optimization, 4-12

extensible optimization, 4-32

histograms, 8-17

procedures for plan stability, 10-8

selectivity of predicates, 8-2

histograms, 8-17

user-defined, 4-33

star queries, 4-62

statistics, 4-10, 8-2

user-defined, 4-33

upgrading to, 10-9

user-defined costs, 4-33

count column

SQL trace, 6-12

CPU

checking utilization, 18-4

column

SQL trace, 6-12

detecting problems, 18-4

system architecture, 18-13

tuning, 18-1

utilization, 9-15

CPU Statistics data view, 14-12

CPU Statistics for Parse/Execute/Fetch drilldown

data view, 14-19

CPU_COUNT initialization parameter, 24-17

CREATE CLUSTER statement, 12-27

CREATE INDEX statement

examples, 20-38

NOSORT clause, 20-38

CREATE OUTLINE statement, 10-5

CREATE TABLE statement

STORAGE clause, 20-24

TABLESPACE clause, 20-24

CREATE TABLESPACE statement, 20-23

CREATE_BITMAP_AREA_SIZE parameter, 12-16,

12-19

CREATE_STORED_OUTLINES parameter, 10-4

cross joins, 4-48

current column

SQL trace, 6-13

current mode

TKPROF, 6-13

CURSOR_NUM column

TKPROF_TABLE table, 6-18

CURSOR_SHARING parameter, 19-18

Index-4

CURSOR_SPACE_FOR_TIME parameter

setting, 19-19

D
data

comparative, 11-5

design tuning, 2-8

sources for tuning, 11-2

volume, 11-2

data blocks, 20-10

data cache, 23-2

data dictionary, 2-12, 11-3, 19-22

statistics in, 4-10, 8-13

views used in optimization, 8-13

data views in Oracle Trace, 14-6

Average Elapsed Time, 14-11

CPU Statistics, 14-12

Disk Reads, 14-9

Disk Reads/Execution Ratio, 14-9

Disk Reads/Logical Reads Ratio, 14-10

Disk Reads/Rows Fetched Ratio, 14-9

Execute Elapsed Time, 14-11

Fetch Elapsed Time, 14-11

Logical Reads, 14-9

Logical Reads/Rows Fetched Ratio, 14-9

Number of Rows Processed, 14-12

Parse Elapsed Time, 14-11

Parse/Execution Ratio, 14-10

Re-Parse Frequency, 14-10

Rows Fetched/Fetch Count Ratio, 14-12

Rows Sorted, 14-12

Sorts in Memory, 14-12

Sorts on Disk, 14-12

Total Elapsed Time, 14-11

Waits by Average Wait Time, 14-13

Waits by Event Frequency, 14-13

Waits by Total Wait Time, 14-13

data warehousing

dimensions, 4-62

star queries, 4-62

database

buffers, 19-31

database administrator (DBA), 1-8

Database Connection event, 14-5

Database Resource Manager, 18-4, 18-7, 23-4, 23-5

database writer process (DBWn)

tuning, 18-10

databases

distributed

statement optimization on, 4-94

DATAFILE clause, 20-23

datafiles

placement on disk, 20-19

datatypes

user-defined

statistics, 4-33

DATE_OF_INSERT column

TKPROF_TABLE table, 6-18

db block gets statistic, 19-28, 21-4, 21-21

DB_BLOCK_BUFFERS parameter, 19-31, 19-36,

20-45

DB_BLOCK_LRU_LATCHES parameter, 19-36,

19-40

DB_BLOCK_SIZE parameter

tuning backups, 20-63

DB_FILE_DIRECT_IO_COUNT

parameter, 20-63

DB_FILE_MULTIBLOCK_READ_COUNT

parameter, 4-26, 4-29, 20-38

cost-based optimization, 4-59

DB_WRITER_PROCESSES initialization

parameter, 20-43, 20-44

DBA_INDEXES view, 12-17

DBA_OBJECTS view, 19-34

DBMS_APPLICATION_INFO package, 3-7

DBMS_SHARED_POOL package, 13-4, 19-13,

19-26

DBMS_STATS package, 8-5, 8-6

creating histograms, 8-18

DBMSPOOL.SQL script, 13-4, 19-13

decision support, 3-4

systems (DSS), 1-2

tuning, 9-15

with OLTP, 3-6

decomposition of SQL statements, 9-32

default cache, 19-33

demand rate, 1-5

DEPTH column

TKPROF_TABLE table, 6-18

Index-5

design dictionary, 11-5

detail report in Oracle Trace, 14-6

details property sheet in Oracle Trace, 14-15

DETERMINISTIC functions, 4-70

deterministic functions, 4-70

device bandwidth, 16-6

evaluating, 20-11

device latency, 16-6

diagnosing tuning problems, 16-1

dictionary-mapped tablespaces, 20-29

dimensions

star joins, 4-62

star queries, 4-62

disabled constraints, 12-11

discrete transactions

example, 17-4

processing, 17-3

when to use, 17-2

disk column

SQL trace, 6-12

Disk Reads data view, 14-9

Disk Reads/Execution Ratio data view, 14-9

Disk Reads/Logical Reads Ratio data view, 14-10

Disk Reads/Rows Fetched Ratio data view, 14-9

DISKRATIO parameter

to distribute backup I/O, 20-61

disks

contention, 20-18, 20-19

distributing I/O, 20-19

I/O requirements, 20-4

layout options, 20-10

monitoring OS file activity, 20-15

number required, 20-4

placement of datafiles, 20-19

placement of redo logs, 20-19

reducing contention, 20-18

speed characteristics, 20-3

testing performance, 20-5

dispatcher processes (Dnnn), 21-8

DISTINCT operator

optimizing views, 4-78

distributed databases, 3-8

statement optimization on, 4-94

distributed query, 9-30, 9-40

distributed transactions

distributed statements, 4-48

optimizing, 4-94

sample table scan not supported, 4-21

distributing I/O, 20-19, 20-23

distribution

hints for, 7-26

DISTRIBUTION column

PLAN_TABLE table, 5-6

DIUTIL package, 13-4

domain indexes

and EXPLAIN PLAN, 5-22

extensible optimization, 4-32

user-defined statistics, 4-33

using, 12-24

drilldown data views in Oracle Trace, 14-17

Basic Statistics for Parse/Execute/Fetch, 14-19

CPU Statistics for Parse/Execute/Fetch, 14-19

Parse Statistics, 14-19

Row Statistics for Execute/Fetch, 14-20

duration events in Oracle Trace, 14-5

dynamic extension, 20-27

avoiding, 20-29

dynamic performance views

enabling statistics, 6-4

for tuning, 15-1

E
elapsed column

SQL trace, 6-12

enabled constraints, 12-11

enforced constraints, 12-11

equijoins, 9-5

cluster joins, 4-55

defined, 4-47

hash joins, 4-53

sort-merge, 4-51

errors

common tuning, 2-15

during discrete transactions, 17-3

events in Oracle Trace, 14-5

examples

ALTER SESSION statement, 6-5

CREATE INDEX statement, 20-38

DATAFILE clause, 20-23

Index-6

discrete transactions, 17-4

execution plan, 9-3

EXPLAIN PLAN output, 6-15, 9-3

full table scan, 9-3

indexed query, 9-4

NOSORT clause, 20-38

SET TRANSACTION statement, 20-30

SQL trace facility output, 6-15

STORAGE clause, 20-24

table striping, 20-23

TABLESPACE clause, 20-24

executable code as data source, 11-4

Execute Elapsed Time data view, 14-11

execution plan

accessing views, 4-80, 4-82, 4-84

complex statements, 4-75

compound queries, 4-91, 4-92, 4-93

joining views, 4-89

joins, 4-49, 4-58

OR operators, 4-73

execution plans, 5-2

examples, 4-75, 6-7, 9-3

execution sequence of, 4-7

overview of, 4-5

plan stability, 10-2

preserving with plan stability, 10-2

TKPROF, 6-7, 6-10

viewing, 4-3

expectations for tuning, 1-9

EXPLAIN PLAN statement

access paths, 4-21, 4-24, 4-35, 4-36, 4-37, 4-38,

4-39, 4-40, 4-41, 4-42, 4-43, 4-44, 4-45, 4-47

and domain indexes, 5-22

and full partition-wise joins, 5-20

and partial partition-wise joins, 5-19

and partitioned objects, 5-14

examples of output, 6-15, 9-3

introduction, 11-6

invoking with the TKPROF program, 6-10

PLAN_TABLE table, 5-3

restrictions, 5-23

SQL decomposition, 9-35

Export utility

copying statistics, 8-2

extensible optimization, 4-32

user-defined costs, 4-33

user-defined selectivity, 4-33

user-defined statistics, 4-33

extents

unlimited, 20-28

F
fact tables

star joins, 4-62

star queries, 4-62

fast full index scans, 4-23, 12-8

FAST_START_IO_TARGET initialization parameter

controlling checkpoints with, 20-40

recovery time and the, 24-5

FAST_START_PARALLEL_ROLLBACK

initialization parameter, 24-17

fast-start checkpoints

controlling checkpoints, 20-40

FAST_START_IO_TARGET initialization

parameter, 24-5

LOG_CHECKPOINT_INTERVAL initialization

parameter, 24-5

LOG_CHECKPOINT_TIMEOUT initialization

parameter, 24-4

fast-start on-demand rollback, 24-16

fast-start parallel rollback, 24-16

Fetch Elapsed Time data view, 14-11

file storage

designing, 20-5

FILESPERSET parameter

tuning backups, 20-63

FIRST_ROWS hint, 4-11, 7-7

FORMAT statement

in Oracle Trace, 14-21

formatter tables

in Oracle Trace, 14-5

free lists

adding, 21-21

contention, 21-20

reducing contention, 21-21

FULL hint, 7-10, 12-7

full index scans, 4-23

full partition-wise joins, 5-20

full table scans, 4-21, 4-46, 9-3

Index-7

multiblock reads, 4-26

rule-based optimizer, 4-46

selectivity and, 4-25

function-based indexes, 12-12

functions

PL/SQL

DETERMINISTIC, 4-70

deterministic, 4-70

SQL

optimizing view queries, 4-84

user-defined

extensible optimization, 4-32

G
GATHER_ INDEX_STATS procedure

in DBMS_STATS package, 8-6

GATHER_DATABASE_STATS procedure

in DBMS_STATS package, 8-6

GATHER_SCHEMA_STATS procedure

in DBMS_STATS package, 8-6

GATHER_TABLE_STATS procedure

in DBMS_STATS package, 8-6

GETMISSES column

in V$ROWCACHE table, 19-22

GETS column

in V$ROWCACHE table, 19-22

global hints, 7-37

goals for tuning, 1-9, 2-14

GROUP BY clause

NOSORT clause, 20-39

optimizing views, 4-78

H
hash

distribution value, 5-8

hash areas, 2-12

hash clusters

scans of, 4-22, 4-36, 4-38

HASH hint, 7-11

hash join, 4-53

HASH_AREA_SIZE parameter, 4-54

HASH_MULTIBLOCK_IO_COUNT

parameter, 4-54

index join, 4-24

hash partitions, 5-14

examples of, 5-14

HASH_AJ hint, 4-61, 7-22, 7-23

HASH_AREA_SIZE parameter, 4-29, 4-54

HASH_JOIN_ENABLED parameter, 4-29, 4-53

HASH_MULTIBLOCK_IO_COUNT

parameter, 4-30, 4-54

HASH_SJ hint, 4-62, 7-23

hashing, 12-26

HASHKEYS parameter

CREATE CLUSTER statement, 12-27

HIGH_VALUE statistics, 4-26

hints, 7-2

access methods, 7-9

ALL_ROWS hint, 7-6

AND_EQUAL hint, 7-16, 12-7

as used in outlines, 10-3

CACHE hint, 7-30

cannot override sample access path, 4-25

CHOOSE hint, 7-8

CLUSTER hint, 7-11

degree of parallelism, 7-24

extensible optimization, 4-33

FIRST_ROWS hint, 7-7

FULL hint, 7-10, 12-7

global, 7-37

HASH hint, 7-11

HASH_AJ hint, 7-22

HASH_SJ hint, 7-23

how to use, 7-2

INDEX hint, 7-12, 7-19, 12-7

INDEX_ASC hint, 7-13

INDEX_DESC hint, 7-14, 7-15

INDEX_FFS, 4-23

INDEX_FFS hint, 7-15

INDEX_JOIN, 4-24

join operations, 7-19

LEADING hint, 7-22

MERGE_AJ and HASH_AJ, 4-61

MERGE_AJ hint, 7-22

MERGE_SJ and HASH_SJ, 4-62

MERGE_SJ hint, 7-23

NO_EXPAND hint, 7-17

NO_INDEX, 12-7

Index-8

NO_INDEX hint, 7-15

NO_MERGE hint, 7-32

NO_PUSH_PRED hint, 7-34

NO_UNNEST hint, 7-33

NOCACHE hint, 7-31

NOPARALLEL hint, 7-26

NOREWRITE hint, 7-18

optimization approach and goal, 7-6

ORDERED, 4-59

ORDERED hint, 7-18

overriding optimizer choice, 4-25

overriding OPTIMIZER_MODE and

OPTIMIZER_GOAL, 4-11

PARALLEL hint, 7-25

parallel query option, 7-24

PQ_DISTRIBUTE hint, 7-26

PUSH_JOIN_PRED, 4-87

PUSH_PRED hint, 7-34

PUSH_SUBQ hint, 7-34

REWRITE hint, 7-17

ROWID hint, 7-11

RULE hint, 7-8

STAR hint, 7-19

UNNEST hint, 7-32

USE_CONCAT hint, 7-16

USE_HASH, 4-53

USE_MERGE hint, 7-21

USE_NL hint, 7-20

histograms, 8-17

number of buckets, 8-19

HOLD_CURSOR clause, 19-10

I
ID column

PLAN_TABLE table, 5-5

Import utility

copying statistics, 8-2

IN operator, 4-66

merging views, 4-79

IN subquery, 4-78

INDEX hint, 7-12, 12-7, 12-17

index joins, 4-24

INDEX_ASC hint, 7-13

INDEX_COMBINE hint, 12-7, 12-17

INDEX_DESC hint, 7-14, 7-15

INDEX_FFS hint, 4-23, 7-15, 12-9

INDEX_JOIN hint, 4-24

indexes

avoiding the use of, 12-7

bitmap, 12-13, 12-14, 12-16, 12-19

choosing columns for, 12-4

cluster

scans of, 4-39

composite, 12-5

scans of, 4-39

design, 2-9

domain, 12-24

domain indexes

extensible optimization, 4-32

user-defined statistics, 4-33

enforcing uniqueness, 12-10

ensuring the use of, 12-6

example, 9-4

fast full scan, 12-8

fast full scans of, 4-23

function-based, 12-12

index joins, 4-24

modifying values of, 12-5

non-unique, 12-10

optimization and, 4-71

placement on disk, 20-21

range scans, 4-23

rebuilding, 12-9

recreating, 12-9

scans of, 4-22

bounded range, 4-41

cluster key, 4-39

composite, 4-39

MAX or MIN, 4-44

ORDER BY, 4-45

restrictions, 4-46

single-column, 4-40

unbounded range, 4-42

selectivity of, 12-4

statement conversion and, 4-71

statistics, gathering, 8-6

unique scans, 4-22

when to create, 12-2

Index-9

initialization parameters

ALWAYS_ANTI_JOIN, 4-61

ALWAYS_SEMI_JOIN, 4-62

CPU_COUNT, 24-17

DB_FILE_MULTIBLOCK_READ_COUNT, 4-26

, 4-59

FAST_START_PARALLEL_ROLLBACK, 24-17

HASH_AREA_SIZE, 4-54

HASH_JOIN_ENABLED, 4-53

HASH_MULTIBLOCK_IO_COUNT, 4-54

in Oracle Trace, 14-22

LOG_CHECKPOINT_INTERVAL, 24-5

LOG_CHECKPOINT_TIMEOUT, 24-4

MAX_DUMP_FILE_SIZE, 6-4

OPTIMIZER_FEATURES_ENABLE, 4-23, 4-24,

4-78, 4-87

OPTIMIZER_MODE, 4-10, 4-34, 7-6

OPTIMIZER_PERCENT_PARALLEL, 4-9

PARALLEL_MAX_SERVERS, 24-15

PRE_PAGE_SGA, 19-5

RECOVERY_PARALLELISM, 24-15

SESSION_CACHED_CURSORS, 19-20

SORT_AREA_SIZE, 4-59

SQL_TRACE, 6-5

TIMED_STATISTICS, 6-4

USER_DUMP_DEST, 6-4

IN-lists, 7-13, 7-17

INSERT statement

append, 7-28

internal write batch size, 20-45

INTERSECT operator

compound queries, 4-48

example, 4-93

optimizing view queries, 4-77

intra transaction recovery, 24-17

I/O

analyzing needs, 20-2, 20-3

balancing, 20-22

distributing, 20-19, 20-23

insufficient, 16-6

multiple buffer pools, 19-33

parallel execution, 9-15

Statistics for Parse/Execute/Fetch view, 14-19

testing disk performance, 20-5

tuning, 2-12, 20-2

isolation level

of transactions, 17-6

J
joins

anti-joins, 4-61

Cartesian products, 4-48

cluster, 4-36, 4-55

searches on, 4-38

convert to subqueries, 4-74

cross, 4-48

defined, 4-47

equijoins, 4-47

execution plans and, 4-49

hash joins, 4-53

index joins, 4-24

join order

execution plans, 4-5

selectivity of predicates, 4-33, 8-2, 8-17

nested loops, 4-50

cost-based optimization, 4-59

non-equijoins, 4-47

optimization of, 4-60

outer, 4-47

non-null values for nulls, 4-86

parallel, and PQ_DISTRIBUTE hint, 7-26

partition-wise

examples of full, 5-20

examples of partial, 5-19

full, 5-20

sample table scan not supported, 4-21

select-project-join views, 4-76

semi-joins, 4-61

sort-merge, 4-51

cost-based optimization, 4-59

example, 4-43

star joins, 4-62

star queries, 4-62

K
keep cache, 19-33

keys

searches, 4-36

Index-10

L
large pool, 20-64

LARGE_POOL_SIZE parameter, 20-64

latches

contention, 2-13, 18-12

redo allocation latch, 21-16

redo copy latches, 21-16

LEADING hint, 7-22

least recently used list (LRU), 18-10

library cache, 2-12

memory allocation, 19-16

tuning, 19-14

LIKE, 4-66

load balancing, 20-22

lock contention, 2-13

log, 21-16

log buffer tuning, 2-12, 19-7

log writer process (LGWR) tuning, 20-19, 20-41

LOG_BUFFER parameter, 19-6, 20-41

setting, 19-8

LOG_CHECKPOINT_INTERVAL initialization

parameter, 20-40

recovery time, 24-5

LOG_CHECKPOINT_TIMEOUT initialization

parameter, 20-40

recovery time, 24-4

LOG_SIMULTANEOUS_COPIES parameter, 21-19

LOG_SMALL_ENTRY_MAX_SIZE

parameter, 21-19

Logical Reads data view, 14-9

Logical Reads/Rows Fetched Ratio data view, 14-9

logical structure of database, 2-9

long waits

definition of, 20-57

lookup tables

star queries, 4-62

LOW_VALUE statistics, 4-26

LRU

aging policy, 19-33

latch, 19-35, 19-36, 19-41

latch contention, 19-41, 21-19

M
Management Information Base (MIB), 11-5

massively parallel system, 9-15

max session memory statistic, 19-24

MAX_DUMP_FILE_SIZE

SQL Trace parameter, 6-4

MAX_DUMP_FILE_SIZE initialization

parameter, 6-4

MAXOPENCURSORS clause, 19-10

MAXOPENFILES parameter

tuning backups, 20-63

memory

insufficient, 16-5

reducing usage, 19-42

tuning, 2-11

memory allocation

buffer caches, 19-31

importance, 19-2

library cache, 19-16

shared SQL areas, 19-16

sort areas, 20-35

tuning, 19-2, 19-42

users, 19-6

MERGE hint, 7-31

MERGE_AJ hint, 4-61, 7-22, 7-23

MERGE_SJ hint, 4-62, 7-23

merging complex views, 4-78

merging views into statements, 4-76

message rate, 16-7

method

applying, 2-14

tuning, 2-1

tuning steps, 2-5

MIB, 11-5

migrated rows, 20-31

MINUS operator

compound queries, 4-48

optimizing view queries, 4-77

mirroring

redo logs, 20-21

monitoring, 11-5

MTS_DISPATCHERS parameter, 21-8

MTS_MAX_DISPATCHERS parameter, 21-8

MTS_MAX_SERVERS parameter, 21-11

Index-11

multiblock reads, 20-28

multiple buffer pools, 19-32, 19-33, 19-36

multi-purpose applications, 3-6

multi-threaded server

context area size, 2-12

performance issues, 21-5

reducing contention, 21-5

tuning, 21-5

tuning memory, 19-22

multi-tier systems, 3-9, 18-15

N
NAMESPACE column

V$LIBRARYCACHE table, 19-14

nested loops joins, 4-50

cost-based optimization, 4-59

Net8 Assistant, 22-17

network

array interface, 22-16

bandwidth, 16-6

constraints, 16-6

detecting performance problems, 22-9

prestarting processes, 22-6

problem solving, 22-11

Session Data Unit, 22-16

tuning, 22-1

NLS_SORT parameter

ORDER BY access path, 4-45

NO_EXPAND hint, 7-17

NO_INDEX hint, 7-15, 12-7

NO_MERGE hint, 7-32

NO_PUSH_PRED hint, 7-34

NO_UNNEST hint, 7-33

NOAPPEND hint, 7-28

NOCACHE hint, 7-31

non-equijoins

defined, 4-47

NOPARALLEL hint, 7-26

NOPARALLEL_INDEX hint, 7-30

NOREWRITE hint, 7-18

NOSORT clause, 20-38, 20-39

NOT, 4-68

NOT IN subquery, 4-61

NT performance, 23-6

nulls

converting to values

optimization, 4-86

non-null values for, 4-86

NUM_DISTINCT column

USER_TAB_COLUMNS view, 4-26

NUM_ROWS column

USER_TABLES view, 4-26

Number of Rows Processed data view, 14-12

O
OBJECT_INSTANCE column

PLAN_TABLE table, 5-5

OBJECT_NAME column

PLAN_TABLE table, 5-5

OBJECT_NODE column

PLAN_TABLE table, 5-4

OBJECT_OWNER column

PLAN_TABLE table, 5-5

OBJECT_TYPE column

PLAN_TABLE table, 5-5

online transaction processing (OLTP), 1-2, 3-2

with decision support, 3-6

OPEN_CURSORS parameter

allocating more private SQL areas, 19-10

increasing cursors per session, 19-16

operating system

data cache, 23-2

monitoring disk I/O, 20-15

monitoring tools, 11-3

tuning, 2-13, 16-7, 19-4

OPERATION column

PLAN_TABLE table, 5-4, 5-9

OPTIMAL storage parameter, 20-30

optimization

choosing the approach, 4-10

conversion of expressions and predicates, 4-65

cost-based, 4-12, 4-59

choosing an access path, 4-25

examples of, 4-26

histograms, 8-17

remote databases and, 4-94

star queries, 4-62

user-defined costs, 4-33

Index-12

described, 4-4

DISTINCT, 4-78

distributed SQL statements, 4-94

extensible optimizer, 4-32

GROUP BY views, 4-78

hints, 4-11, 4-23, 4-24

manual, 4-11

merging complex views, 4-78

merging views into statements, 4-76

non-null values for nulls, 4-86

operations performed, 4-48

rule-based, 4-34, 4-60

selectivity of predicates, 8-2

histograms, 8-17

user-defined, 4-33

selectivity of queries and, 4-25

select-project-join views, 4-76

semi-joins, 4-61

statistics, 4-10, 8-2

user-defined, 4-33

transitivity and, 4-69

types of SQL statements, 4-47

without merging, 4-88

optimizer, 4-4

plan stability, 10-2

OPTIMIZER column

PLAN_TABLE, 5-5

OPTIMIZER_FEATURES_ENABLE

parameter, 4-23, 4-24, 4-78, 4-87

OPTIMIZER_FEATURES_ENABLED

parameter, 4-29

OPTIMIZER_GOAL clause, 4-11

OPTIMIZER_INDEX_CACHING, 4-31

OPTIMIZER_INDEX_COST_ADJ parameter, 4-30

OPTIMIZER_MODE, 4-10, 4-20

hints affecting, 4-11

OPTIMIZER_MODE initialization parameter, 4-12,

4-29, 4-34, 7-6

OPTIMIZER_PERCENT_PARALLEL initialization

parameter, 4-9

OPTIMIZER_PERCENT_PARALLEL

parameter, 4-9, 4-29

OPTIONS column

PLAN_TABLE table, 5-4

Oracle Enterprise Manager, 11-8

Oracle Expert, 2-1, 11-13

Oracle Forms, 6-5

control of parsing and private SQL areas, 19-11

Oracle Parallel Server, 3-10

CPU, 18-17

synchronization points, 2-8

tuning, 11-14

Oracle Parallel Server Management, 11-14

Oracle Performance Manager, 11-11

Oracle Server

client/server configuration, 3-11

configurations, 3-7

events, 14-5

Oracle Trace, 14-1, 19-40

accessing collected data, 14-5

binary files, 14-5

collection results, 14-27

collections, 14-4, 14-23

command-line interface, 14-20

data views, 14-6

Average Elapsed Time, 14-11

CPU Statistics, 14-12

Disk Reads, 14-9

Disk Reads/Execution Ratio, 14-9

Disk Reads/Logical Reads Ratio, 14-10

Disk Reads/Rows Fetched Ratio, 14-9

Execute Elapsed Time, 14-11

Fetch Elapsed Time, 14-11

Logical Reads, 14-9

Logical Reads/Rows Fetched Ratio, 14-9

Number of Rows Processed, 14-12

Parse Elapsed Time, 14-11

Parse/Execution Ratio, 14-10

Re-Parse Frequency, 14-10

Rows Fetched/Fetch Count Ratio, 14-12

Rows Sorted, 14-12

Sorts in Memory, 14-12

Sorts on Disk, 14-12

Total Elapsed Time, 14-11

Waits by Average Wait Time, 14-13

Waits by Event Frequency, 14-13

Waits by Total Wait Time, 14-13

deleting files, 14-22

details property sheet, 14-15

drilldown data views, 14-17, 14-19

Index-13

Basic Statistics for Parse/Execute/Fetch

view, 14-19

CPU Statistics for Parse/Execute/Fetch

view, 14-19

Parse Statistics view, 14-19

Row Statistics for Execute/Fetch view, 14-20

duration events, 14-5

events, 14-5

FORMAT statement, 14-21

formatter tables, 14-5

formatting data, 14-27

Oracle Trace Data Viewer, 14-6

parameters, 14-22

point events, 14-5

predefined data views, 14-6

reporting utility, 14-6, 14-28

SQL statement property sheet, 14-15

START statement, 14-21

STOP statement, 14-21

stored procedures, 14-25

using to collect workload data, 14-3

viewing data, 14-13

Oracle Trace Data Viewer, 14-6

Oracle Trace Manager, 14-4, 14-23

used for formatting collections, 14-5

ORACLE_TRACE_COLLECTION_NAME

parameter, 14-22, 14-23

ORACLE_TRACE_COLLECTION_PATH

parameter, 14-22

ORACLE_TRACE_COLLECTION_SIZE

parameter, 14-22

ORACLE_TRACE_ENABLE parameter, 14-22,

14-23

ORACLE_TRACE_FACILITY_NAME

parameter, 14-22, 14-23

ORACLE_TRACE_FACILITY_PATH

parameter, 14-22

ORDERED hint, 4-59, 7-18

ORDERED_PREDICATES hint, 7-35

OTHER column

PLAN_TABLE table, 5-6

OTHER_TAG column

PLAN_TABLE table, 5-5

outer joins

defined, 4-47

non-null values for nulls, 4-86

outlines

CREATE OUTLINE statement, 10-5

creating and using, 10-4

execution plans and plan stability, 10-2

hints, 10-3

matching with SQL statements, 10-3

moving tables, 10-7

storage requirements, 10-4

using, 10-5

using to move to the cost-based optimizer, 10-8

viewing data for, 10-6

overloaded disks, 20-19

P
packages

DBMS_APPLICATION_INFO package, 3-7

DBMS_SHARED_POOL package, 13-4

DBMS_TRANSACTION package, 17-4

DIUTIL package, 13-4

registering with the database, 11-8

STANDARD package, 13-4

page table, 18-5

paging, 16-5, 18-5

library cache, 19-16

reducing, 19-4

SGA, 19-42

PARALLEL clause

RECOVER statement, 24-15

parallel execution, 3-5

hints, 7-25

query servers, 21-15

tuning query servers, 21-15

PARALLEL hint, 7-25

parallel joins

and PQ_DISTRIBUTE hint, 7-26

parallel recovery, 24-15

PARALLEL_MAX_SERVERS initialization

parameter, 24-15

PARALLEL_MAX_SERVERS parameter, 24-15

parameter files, 11-4

PARENT_ID column

PLAN_TABLE table, 5-5

Parse Elapsed Time data view, 14-11

Index-14

Parse Statistics drilldown data view, 14-19

Parse/Execution Ratio data view, 14-10

parsing

Oracle Forms, 19-11

Oracle precompilers, 19-10

reducing unnecessary calls, 19-10

partition views, 9-35

PARTITION_ID column

PLAN_TABLE table, 5-6

PARTITION_START column

PLAN_TABLE table, 5-6

PARTITION_STOP column

PLAN_TABLE table, 5-6

PARTITION_VIEW_ENABLED parameter, 9-36

partitioned objects

and EXPLAIN PLAN statement, 5-14

partitioning

distribution value, 5-8

examples of, 5-14

examples of composite, 5-16

hash, 5-14

range, 5-14

start and stop columns, 5-15

partitions

elimination, 9-35

statistics, 8-4

partition-wise joins

full, 5-20

full, and EXPLAIN PLAN output, 5-20

partial, and EXPLAIN PLAN output, 5-19

PCTFREE parameter, 2-12, 20-31

PCTINCREASE parameter, 20-37

and SQL.BSQ file, 20-34

PCTUSED parameter, 2-12, 20-32

performance

client/server applications, 3-11

decision support applications, 3-4

different types of applications, 3-2

distributed databases, 3-8

evaluating, 1-10

key factors, 16-3

mainframe, 23-6

monitoring registered applications, 11-8

NT, 23-6

OLTP applications, 3-2

Oracle Parallel Server, 3-10

UNIX-based systems, 23-6

viewing execution plans, 4-3

Performance Manager, 11-11

Performance Monitor

NT, 18-5

PHYRDS column

V$FILESTAT table, 20-17

physical reads statistic, 19-28

PHYWRTS column

V$FILESTAT table, 20-17

ping UNIX command, 11-3

pinging, 2-13

PINS column

V$LIBRARYCACHE table, 19-15

plan

accessing views, 4-80, 4-82, 4-84

complex statements, 4-75

compound queries, 4-91, 4-92, 4-93

joining views, 4-89

joins, 4-49, 4-58

OR operators, 4-73

plan stability, 10-2

limitations of, 10-2

preserving execution plans, 10-2

procedures for the cost-based optimizer, 10-8

use of hints, 10-2

PLAN_TABLE table

BYTES column, 5-5

CARDINALITY column, 5-5

COST column, 5-5

DISTRIBUTION column, 5-6

ID column, 5-5

OBJECT_INSTANCE column, 5-5

OBJECT_NAME column, 5-5

OBJECT_NODE column, 5-4

OBJECT_OWNER column, 5-5

OBJECT_TYPE column, 5-5

OPERATION column, 5-4

OPTIMIZER column, 5-5

OPTIONS column, 5-4

OTHER column, 5-6

OTHER_TAG column, 5-5

PARENT_ID column, 5-5

PARTITION_ID column, 5-6

Index-15

PARTITION_START column, 5-6

PARTITION_STOP column, 5-6

POSITION column, 5-5

REMARKS column, 5-4

SEARCH_COLUMNS column, 5-5

STATEMENT_ID column, 5-4

structure, 5-3

TIMESTAMP column, 5-4

PL/SQL

deterministic functions, 4-70

package, 11-7

tuning PL/SQL areas, 19-8

point events in Oracle Trace, 14-5

POOL attribute, 21-8

POSITION column

PLAN_TABLE table, 5-5

PQ_DISTRIBUTE hint, 7-26

PRE_PAGE_SGA parameter, 19-5

precompilers

control of parsing and private SQL areas, 19-10

predicates

optimizing view queries, 4-76

pushing into a view, 4-79, 4-84

examples, 4-80, 4-82

selectivity, 8-2

histograms, 8-17

user-defined, 4-33

PRIMARY KEY constraint, 12-10

primary keys

optimization, 4-75

searches, 4-37

private SQL areas, 19-10

PRIVATE_SGA variable, 19-24

proactive tuning, 2-2

procedures

deterministic functions, 4-70

process

dispatcher process configuration, 21-8

maximum number, 16-7

prestarting, 22-6

priority, 23-3

scheduler, 23-3

scheduling, 18-6

processing, distributed, 3-11

pseudocolumns

ROWNUM

cannot use indexes, 4-46

optimizing view queries, 4-77, 4-88

PUSH_JOIN_PRED hint, 4-87

PUSH_PRED hint, 7-34

Q
queries

avoiding the use of indexes, 12-7

compound

defined, 4-48

optimization of, 4-91

ORs converted to, 4-71

defined, 4-47

distributed, 9-30, 9-40

ensuring the use of indexes, 12-6

optimizing IN subquery, 4-78

optimizing view queries, 4-76

SAMPLE clause

cost-based optimization, 4-19

selectivity of, 4-25

star queries, 4-62

query column

SQL trace, 6-13

query plans, 5-2

query server process

tuning, 21-15

R
random reads, 20-5

random writes, 20-5

range

distribution value, 5-8

range partitions, 5-14

examples of, 5-14

raw device, 23-2

reactive tuning, 2-3

read consistency, 18-10

read/write operations, 20-5

REBUILD statement, 12-9

record keeping, 2-15

RECOVER statement

PARALLEL clause, 24-15

Index-16

recovery

parallel

intra transaction recovery, 24-17

parallel processes for, 24-15

PARALLEL_MAX_SERVERS initialization

parameter, 24-15

setting number of processes to use, 24-15

RECOVERY_PARALLELISM initialization

parameter, 24-15

recursive calls, 6-13, 20-27

recursive SQL, 13-1

RECYCLE cache, 19-33

redo allocation latch, 21-16, 21-19

REDO BUFFER ALLOCATION RETRIES

statistic, 19-7

redo copy latches, 21-16, 21-19

choosing how many, 21-16

redo logs

buffer tuning, 19-6

mirroring, 20-21

placement on disk, 20-19

reducing

buffer cache misses, 19-31

contention

dispatchers, 21-6

OS processes, 23-3

query servers, 21-15

redo log buffer latches, 21-16

shared servers, 21-9

data dictionary cache misses, 19-22

paging and swapping, 19-4

rollback segment contention, 21-4

unnecessary parse calls, 19-10

registering applications with database, 11-8

RELEASE_CURSOR clause, 19-10

RELOADS column

V$LIBRARYCACHE table, 19-15

REMARKS column

PLAN_TABLE table, 5-4

remote SQL statement, 9-30

Re-Parse Frequency data view, 14-10

resource

adding, 1-4

tuning contention, 2-13

response time, 1-2, 1-3, 4-8

cost-based approach, 4-10

optimizing, 4-9, 7-7

REWRITE hint, 7-17

RMAN

tuning for backups, 20-61

roles in tuning, 1-7

rollback segments, 18-10

assigning to transactions, 20-30

choosing how many, 21-4

contention, 21-3

creating, 21-4

detecting dynamic extension, 20-27

dynamic extension, 20-30

rollbacks

fast-start on-demand, 24-16

fast-start parallel, 24-16

round-robin

distribution value, 5-8

row sampling, 8-3

row sources, 4-6

Row Statistics for Execute/Fetch drilldown data

views, 14-20

ROWID hint, 7-11

rowids

mapping to bitmaps, 12-18

table access by, 4-21

ROWNUM pseudocolumn

cannot use indexes, 4-46

optimizing view queries, 4-77, 4-88

rows

row sources, 4-6

rowids used to locate, 4-21, 4-35

rows column, SQL trace, 6-13

Rows Fetched/Fetch Count Ratio data view, 14-12

Rows Sorted data view, 14-12

RowSource event, 14-5

RULE hint, 7-8

OPTIMIZER_MODE and, 4-11

rule-based optimization, 4-34

S
SAMPLE BLOCK clause, 4-21

access path, 4-21

hints cannot override, 4-25

Index-17

SAMPLE clause, 4-21

access path, 4-21

hints cannot override, 4-25

cost-based optimization, 4-19

sample table scans, 4-21

hints cannot override, 4-25

sar UNIX command, 18-5

scalability, 18-11

scans, 4-21

cluster, 4-36, 4-38

indexed, 4-39

fast full index scan, 4-23

full table, 4-21, 4-46

multiblock reads, 4-26

rule-based optimizer, 4-46

hash cluster, 4-36, 4-38

index, 4-22

bitmap, 4-24

bounded range, 4-41

cluster key, 4-39

composite, 4-39

MAX or MIN, 4-44

ORDER BY, 4-45

restrictions, 4-46

selectivity and, 4-25

single-column, 4-40

unbounded range, 4-42

index joins, 4-24

range, 4-23, 4-39, 4-40

bounded, 4-41

MAX or MIN, 4-44

ORDER BY, 4-45

unbounded, 4-42

sample table, 4-21

hints cannot override, 4-25

unique, 4-22, 4-37, 4-39

schemas

star schemas, 4-62

SEARCH_COLUMNS column

PLAN_TABLE table, 5-5

segments, 20-26

SELECT statement

SAMPLE clause, 4-21

access path, 4-21, 4-25

cost-based optimization, 4-19

selectivity of predicates, 8-2

histograms, 8-17

user-defined selectivity, 4-33

selectivity of queries, 4-25

selectivity, index, 12-4

select-project-join views, 4-76

semi-joins, 4-61

sequence cache, 2-12

sequential reads, 20-5

sequential writes, 20-5

serializable transactions, 17-6

service time, 1-2, 1-3

Session Data Unit (SDU), 22-16

session memory statistic, 19-24

SESSION_CACHED_CURSORS parameter, 19-20

SET TRANSACTION statement, 20-30

SGA size, 19-7

SGA statistics, 15-2

shared pool, 2-12

contention, 2-13

keeping objects pinned in, 13-4

tuning, 19-13, 19-25

shared SQL areas

keeping in the shared pool, 13-4

memory allocation, 19-16

similar SQL statements, 13-2

statements considered, 13-1

SHARED_POOL_RESERVED_SIZE

parameter, 19-27

SHARED_POOL_SIZE parameter, 19-22, 19-27

allocating library cache, 19-16

tuning the shared pool, 19-24

short waits

definition of, 20-57

SHOW SGA statement, 19-5

Simple Network Management Protocol

(SNMP), 11-5

single tier, 18-14

SNMP, 11-5

SOME, 4-67

sort areas

memory allocation, 20-35

process local area, 2-12

SORT_AREA_RETAINED_SIZE parameter, 19-42,

20-37

Index-18

SORT_AREA_SIZE parameter, 4-29, 12-16, 19-41

cost-based optimization and, 4-59

tuning sorts, 20-36

SORT_MULTIBLOCK_READ_COUNT

parameter, 20-38

sort-merge joins, 4-51

access path, 4-43

cost-based optimization, 4-59

example, 4-43

sorts

(disk) statistic, 20-35

(memory) statistic, 20-35

avoiding on index creation, 20-38

tuning, 20-35

Sorts in Memory data view, 14-12

Sorts on Disk data view, 14-12

source data for tuning, 11-2

spin count, 18-12

SPINCOUNT parameter, 21-2

SQL

functions

optimizing view queries, 4-84

types of statements in

optimizing, 4-47

SQL area tuning, 19-8

SQL Parse event, 14-5

SQL statement property sheet in Oracle

Trace, 14-15

SQL statements

avoiding the use of indexes, 12-7

complex, 4-48, 4-74

optimizing, 4-74

converting

examples of, 4-71

decomposition, 9-32

distributed

defined, 4-48

optimization of, 4-94

ensuring the use of indexes, 12-6

execution plans of, 4-5

matching with outlines, 10-3

modifying indexed data, 12-5

optimization

complex statements, 4-74

types of statements, 4-47

recursive, 13-1

OPTIMIZER_GOAL does not affect, 4-11

remote

defined, 4-48

simple, 4-47

tuning, 2-10

types of, 4-47

SQL trace facility, 6-2, 6-6, 11-6, 19-9, 19-40

example of output, 6-15

output, 6-12

parse calls, 19-9

statement truncation, 6-14

steps to follow, 6-3

trace files, 6-4, 11-3

SQL*Plus script, 11-7

SQL_STATEMENT column

TKPROF_TABLE, 6-18

SQL_TRACE parameter, 6-5

SQL.BSQ file, 20-33

STANDARD package, 13-4

STAR hint, 7-19

star joins, 4-62

star query, 4-62

star transformation, 7-34

STAR_TRANSFORMATION hint, 7-34

STAR_TRANSFORMATION_ENABLED

parameter, 7-35

start columns

in partitioning and EXPLAIN PLAN

statement, 5-15

START statement in Oracle Trace, 14-21

STATEMENT_ID column

PLAN_TABLE table, 5-4

statistics, 15-2

consistent gets, 19-28, 21-4, 21-21

current value, 15-4

db block gets, 19-28, 21-4

estimated

block sampling, 8-3

row sampling, 8-3

exporting and importing, 8-2

extensible optimization, 4-32

from ANALYZE, 8-4

from B*-tree or bitmap index, 8-6

gathering with DBMS_STATS package, 8-6

Index-19

generating, 8-3

generating and managing with

DBMS_STATS, 8-5

generating for cost-based optimization, 8-3

HIGH_VALUE and LOW_VALUE, 4-26

max session memory, 19-24

optimizer goal, 4-11

optimizer mode, 4-10

optimizer use of, 4-10, 4-12, 8-2

partitions and subpartitions, 8-4

physical reads, 19-28

query servers, 21-15

rate of change, 15-4

selectivity of predicates, 8-2

histograms, 8-17

user-defined, 4-33

session memory, 19-24

shared server processes, 19-7, 21-9

sorts (disk), 20-35

sorts (memory), 20-35

undo block, 21-3

user-defined statistics, 4-33

STATSPACK package, 11-7, 11-8, 18-2

stop columns

in partitioning and EXPLAIN PLAN

statement, 5-15

STOP statement in Oracle Trace, 14-21

storage

file, 20-5

STORAGE clause

CREATE TABLE statement, 20-24

examples, 20-24

modifying parameters, 20-33

modifying SQL.BSQ file, 20-33

OPTIMAL parameter, 20-30

stored outlines

creating and using, 10-4

execution plans and plan stability, 10-2

hints, 10-3

matching with SQL statements, 10-3

moving tables, 10-7

storage requirements, 10-4

using, 10-5

viewing data for, 10-6

stored procedures

in Oracle Trace, 14-25

registering with the database, 11-8

striping, 20-22

examples, 20-23

manual, 20-23

subpartitions

statistics, 8-4

subqueries

converting to joins, 4-74

NOT IN, 4-61

optimizing IN subquery, 4-78

subquery unnesting, 9-10

swapping, 16-5, 18-5

library cache, 19-16

reducing, 19-4

SGA, 19-42

switching processes, 18-6

symmetric multiprocessor, 9-15

System Global Area tuning, 19-4

system-specific Oracle documentation

software constraints, 16-7

T
tables

dimensions

star queries, 4-62

fact tables

star queries, 4-62

formatter in Oracle Trace, 14-5

lookup tables, 4-62

placement on disk, 20-21

striping examples, 20-23

TABLESPACE clause, 20-24

CREATE TABLE statement, 20-24

tablespaces

dictionary-mapped, 20-29

temporary, 20-37

TCP.NODELAY parameter, 22-17

TEMPORARY keyword, 20-37

temporary LOBs, 19-31

temporary tablespaces

optimizing sort, 20-37

testing, 2-14

thrashing, 18-5

Index-20

thread, 23-3

throughput, 1-3, 4-8

cost-based approach, 4-10

optimizing, 4-9, 7-6

tiers, 18-14

TIMED_STATISTICS initialization parameter, 6-4,

23-2

SQL Trace, 6-4

TIMESTAMP column

PLAN_TABLE table, 5-4

TKPROF program, 6-3, 6-6, 19-40

editing the output SQL script, 6-17

example of output, 6-15

generating the output SQL script, 6-16

introduction, 11-7

syntax, 6-8

using the EXPLAIN PLAN statement, 6-10

TKPROF_TABLE, 6-18

querying, 6-17

Total Elapsed Time data view, 14-11

Trace, Oracle, 14-1

transaction processing monitor, 18-15, 18-17

transactions

assigning rollback segments, 20-30

discrete, 17-2

serializable, 17-6

transmission time, 16-7

Transparent Gateway, 9-40

triggers

in tuning OLTP applications, 9-16

tuning

access path, 2-11

and design, 2-10

application design, 2-9

business rule, 2-7

client/server applications, 3-11

contention, 21-1

CPU, 18-1

data design, 2-8

data sources, 11-2

database logical structure, 2-9

decision support systems, 3-4

diagnosing problems, 16-1

distributed databases, 3-8

expectations, 1-9

factors, 16-2

goals, 1-9, 2-14

I/O, 2-12, 20-2

library cache, 19-14

logical structure, 12-3

memory allocation, 2-11, 19-2, 19-42

method, 2-1

monitoring registered applications, 11-8

multi-threaded server, 21-5

OLTP applications, 3-2

operating system, 2-13, 16-7, 19-4

Oracle Parallel Server, 3-10

parallel execution, 3-5

personnel, 1-7

proactive, 2-2

production systems, 2-4

query servers, 21-15

reactive, 2-3

shared pool, 19-13

sorts, 20-35

SQL, 2-10

SQL and PL/SQL areas, 19-8

System Global Area (SGA), 19-4

two-tier, 18-14

U
undo block statistic, 21-3

UNION ALL operator

examples, 4-72, 4-74, 4-91

optimizing view queries, 4-77

transforming OR into, 4-71

UNION ALL view, 9-36

UNION operator

compound queries, 4-48

examples, 4-79, 4-92

optimizing view queries, 4-77

UNIQUE constraint, 12-10

UNIQUE index, 12-17

unique keys

optimization, 4-75

searches, 4-37

uniqueness, 12-10

UNIX system performance, 23-6

unlimited extents, 20-28

Index-21

UNNEST hint, 7-32

UNNEST_SUBQUERY parameter, 7-32, 9-10

upgrade

to the cost-based optimizer, 10-9

USE_CONCAT hint, 7-16

USE_MERGE hint, 7-21

USE_NL hint, 7-20

USE_STORED_OUTLINES parameter, 10-5

USER_DUMP_DEST initialization parameter, 6-4

USER_DUMP_DEST parameter

SQL Trace parameter, 6-4

USER_ID column

TKPROF_TABLE, 6-18

USER_INDEXES view, 12-17

USER_OULTINE_HINTS view

stored outline hints, 10-6

USER_OUTLINES view

stored outlines, 10-6

USER_TAB_COL_STATISTICS view, 4-26

USER_TAB_COLUMNS view, 4-26

USER_TABLES view, 4-26

user-defined costs, 4-33

users

memory allocation, 19-8

UTLBSTAT.SQL script, 11-7

UTLCHN1.SQL script, 11-7, 20-31

UTLDTREE.SQL script, 11-7

UTLESTAT.SQL script, 11-7

UTLLOCKT.SQL script, 11-7

UTLXPLAN.SQL script, 5-3

V
V$ dynamic performance views, 11-5

V$BH view, 19-31

V$BUFFER_POOL_STATISTICS view, 19-39, 19-41

V$DATAFILE view, 20-17

V$DISPATCHER view, 21-7

V$FAST_START_SERVERS view, 24-17

V$FAST_START_TRANSACTIONS view, 24-17

V$FILESTAT view

disk I/O, 20-17

PHYRDS column, 20-17

PHYWRTS column, 20-17

V$FIXED_TABLE view, 15-2

V$INSTANCE view, 15-2

V$LATCH view, 15-2, 21-2, 21-17

V$LATCH_CHILDREN view, 19-41

V$LATCH_MISSES view, 18-13

V$LIBRARYCACHE view, 15-2

NAMESPACE column, 19-15

PINS column, 19-15

RELOADS column, 19-15

V$LOCK view, 15-3

V$MYSTAT view, 15-3

V$PROCESS view, 15-3

V$QUEUE view, 21-7, 21-9

V$RESOURCE_LIMIT view, 21-2

V$ROLLSTAT view, 15-2

V$ROWCACHE view, 15-2

GETMISSES column, 19-22

GETS column, 19-22

performance statistics, 19-21

using, 19-21

V$RSRC_CONSUMER_GROUP view, 18-7

V$SESSION view, 15-3

application registration, 11-8

V$SESSION_EVENT view, 15-3

network information, 22-9

V$SESSION_WAIT view, 15-3, 19-40, 21-2

network information, 22-9

V$SESSTAT view, 15-3, 18-7

network information, 22-10

using, 19-24

V$SGA view, 15-2

V$SGASTAT view, 15-2

V$SHARED_POOL_RESERVED view, 19-27

V$SORT_USAGE view, 2-10, 15-2

V$SQL_BIND_DATA view, 19-18

V$SQL_BIND_METADATA view, 19-18

V$SQLAREA view, 15-2

application registration, 11-8

resource-intensive statements, 2-10

V$SQLTEXT view, 15-2

V$SYSSTAT view, 15-2, 18-6

detecting dynamic extension, 20-27

examining recursive calls, 20-27

redo buffer allocation, 19-7

tuning sorts, 20-35

using, 19-28

Index-22

V$SYSTEM_EVENT view, 15-2, 18-12, 21-2

V$WAITSTAT view, 15-2, 21-2

reducing free list contention, 21-20

rollback segment contention, 21-3

variables

bind variables

optimization, 4-27

views

complex view merging, 4-78

histograms, 8-21

instance level, 15-2

non-null values for nulls, 4-86

optimization, 4-76

select-project-join views, 4-76

statistics, 8-13

tuning, 15-1

USER_OUTLINE_HINTS view, 10-6

USER_OUTLINES view, 10-6

V$FAST_START_SERVERS view, 24-17

V$FAST_START_TRANSACTIONS view, 24-17

vmstat UNIX command, 18-5

W
wait detection, 18-11

wait time, 1-3, 1-4

Waits by Average Wait Time data view, 14-13

Waits by Event Frequency data view, 14-13

Waits by Total Wait Time data view, 14-13

workload, 1-6

write batch size, 20-45

	PDF Directory
	Send Us Your Comments
	Preface
	Intended Audience
	How This Book is Organized
	What’s New
	Related Documents
	Conventions
	Text
	Syntax Diagrams and Notation
	Code Examples

	Part I� Introduction to Tuning
	1 Understanding Oracle Performance Tuning
	What Is Performance Tuning?
	Trade-offs Between Response Time and Throughput
	Critical Resources
	Effects of Excessive Demand
	Adjustments to Relieve Problems

	Who Tunes?
	Setting Performance Targets
	Setting User Expectations
	Evaluating Performance

	2 Performance Tuning Methods
	When Is Tuning Most Effective?
	Proactive Tuning While Designing and Developing Systems
	Reactive Tuning to Improve Production Systems

	Prioritized Tuning Steps
	Step 1: Tune the Business Rules
	Step 2: Tune the Data Design
	Step 3: Tune the Application Design
	Step 4: Tune the Logical Structure of the Database
	Step 5: Tune Database Operations
	Step 6: Tune the Access Paths
	Step 7: Tune Memory Allocation
	Step 8: Tune I/O and Physical Structure
	Step 9: Tune Resource Contention
	Step 10: Tune the Underlying Platform(s)

	Applying the Tuning Method
	Set Clear Goals for Tuning
	Create Minimum Repeatable Tests
	Test Hypotheses
	Keep Records and Automate Testing
	Avoid Common Errors
	Stop Tuning When Objectives Are Met
	Demonstrate Meeting the Objectives

	Part II Application Design Tuning for Designers and Developers
	3 Application and System Performance Characteristics
	Types of Applications
	Online Transaction Processing (OLTP)
	Decision Support Systems
	Multipurpose Applications

	Registering Applications
	Oracle Configurations
	Distributed Systems
	Multi-Tier Systems
	Oracle Parallel Server
	Client/Server Configurations

	4 The Optimizer
	SQL Processing Architecture
	Parser
	Optimizer
	Row Source Generator
	SQL Execution

	EXPLAIN PLAN
	What Is The Optimizer?
	Execution Plan

	Choosing an Optimizer Approach and Goal
	OPTIMIZER_MODE Initialization Parameter
	Statistics in the Data Dictionary
	OPTIMIZER_GOAL Parameter of the ALTER SESSION Statement
	Changing the Goal with Hints

	Cost-Based Optimizer (CBO)
	Architecture of the CBO
	Features that Require the CBO
	Using the CBO
	Access Paths for the CBO
	How the CBO Chooses an Access Path

	CBO Parameters
	Parameters Affecting CBO Plans
	Parameters Affecting How the Optimizer Uses Indexes
	Setting Initialization Parameters

	Extensible Optimizer
	User-Defined Statistics
	User-Defined Selectivity
	User-Defined Costs

	Rule-Based Optimizer (RBO)
	Access Paths for the RBO

	Overview of Optimizer Operations
	Types of SQL Statements
	Optimizer Operations

	Optimizing Joins
	Optimizing Join Statements
	Join Operations
	How the Optimizer Chooses the Join Method
	Forcing the Join Order
	Choosing Execution Plans for Join Statements
	Optimizing Anti-Joins and Semi-Joins
	Optimizing Star Queries

	Optimizing Statements that Use Common Subexpressions
	Evaluation of Expressions and Conditions
	Constants
	LIKE Operator
	IN Operator
	ANY or SOME Operator
	ALL Operator
	BETWEEN Operator
	NOT Operator
	Transitivity
	DETERMINISTIC Functions

	Transforming and Optimizing Statements
	Transforming ORs into Compound Queries
	Transforming Complex Statements into Join Statements
	Optimizing Statements That Access Views
	Optimizing Compound Queries
	Optimizing Distributed Statements

	5 Using EXPLAIN PLAN
	Understanding EXPLAIN PLAN
	Creating the Output Table
	Displaying PLAN_TABLE Output
	Output Table Columns
	Bitmap Indexes and EXPLAIN PLAN
	EXPLAIN PLAN and Partitioned Objects
	Displaying Range and Hash Partitioning with EXPLAIN PLAN
	Pruning Information with Composite Partitioned Objects
	Partial Partition-wise Joins
	Full Partition-wise Joins
	INLIST ITERATOR and EXPLAIN PLAN
	Domain Indexes and EXPLAIN PLAN

	EXPLAIN PLAN Restrictions

	6 Using SQL Trace and TKPROF
	Understanding SQL Trace and TKPROF
	Understanding the SQL Trace Facility
	Understanding TKPROF

	Using the SQL Trace Facility and TKPROF
	Step 1: Setting Initialization Parameters for Trace File Management
	Step 2: Enabling the SQL Trace Facility
	Step 3: Formatting Trace Files with TKPROF
	Step 4: Interpreting TKPROF Output
	Step 5: Storing SQL Trace Facility Statistics

	Avoiding Pitfalls in TKPROF Interpretation
	The Argument Trap
	The Read Consistency Trap
	The Schema Trap
	The Time Trap
	The Trigger Trap

	TKPROF Output Example
	Header
	Body
	Summary

	7 Using Optimizer Hints
	Understanding Hints
	Specifying Hints

	Using Hints
	Hints for Optimization Approaches and Goals
	Hints for Access Methods
	Hints for Join Orders
	Hints for Join Operations
	Hints for Parallel Execution
	Additional Hints
	Using Hints with Views

	8 Gathering Statistics
	Understanding Statistics
	Generating Statistics
	Using the ANALYZE Statement
	Using the DBMS_STATS Package
	Statistics Data
	Missing Statistics

	Using Statistics
	Managing Statistics
	Verifying Table Statistics
	Verifying Index Statistics
	Verifying Column Statistics

	Using Histograms
	When to Use Histograms
	Creating Histograms
	Types of Histograms
	Viewing Histograms
	Verifying Histogram Statistics

	9 Optimizing SQL Statements
	Approaches to SQL Statement Tuning
	Restructuring the Indexes
	Restructuring the Statement
	Modifying or Disabling Triggers
	Restructuring the Data
	Keeping Statistics Current and Using Plan Stability to Preserve Execution Plans

	Tuning Goals
	Tuning a Serial SQL Statement
	Tuning Parallel Execution
	Tuning OLTP Applications

	Best Practices
	Avoiding Rule-Based Optimizer Techniques
	Index Cost
	Analyzing Object Statistics
	Avoiding Complex Expressions
	Avoiding Balloon Tactic for Coding SQL
	Handling Complex Logic in the Application

	SQL Tuning Tips
	Using EXPLAIN PLAN on All Queries
	Predicate Collapsing
	Tuning for the Typical Case
	Disk Reads and Buffer Gets

	Using EXISTS versus IN
	Trouble Shooting
	Tuning Distributed Queries
	Remote and Distributed Queries
	Distributed Query Restrictions
	Transparent Gateways
	Optimizing Performance of Distributed Queries

	10 Using Plan Stability
	Using Plan Stability to Preserve Execution Plans
	Hints and Exact Text Matching
	Storing Outlines
	Enabling Plan Stability
	Creating Outlines
	Using Stored Outlines
	Viewing Outline Data
	Using the OUTLN_PKG Package to Manage Stored Outlines
	Moving Outline Tables

	Plan Stability Procedures for the Cost-Based Optimizer
	Using Outlines to Move to the Cost-Based Optimizer
	RDBMS Upgrades and the Cost-Based Optimizer

	Part III� Application Design Tools for Designers and DBAs
	11 Overview of Diagnostic Tools
	Sources of Data for Tuning
	Data Volumes
	Online Data Dictionary
	Operating System Tools
	Dynamic Performance Tables
	Oracle Trace and Oracle Trace Data Viewer
	SQL Trace Facility
	Alert Log
	Application Program Output
	Users
	Initialization Parameter Files
	Program Text
	Design (Analysis) Dictionary
	Comparative Data

	Dynamic Performance Views
	Oracle and SNMP Support
	EXPLAIN PLAN
	SQL Trace and TKPROF
	Supported Scripts
	Application Registration
	Oracle Enterprise Manager, Packs, and Applications
	Introduction to Oracle Enterprise Manager
	Oracle Diagnostics Pack
	Oracle Tuning Pack

	Oracle Parallel Server Management
	Independent Tools

	12 Data Access Methods
	Using Indexes
	When to Create Indexes
	Tuning the Logical Structure
	Choosing Columns and Expressions to Index
	Choosing Composite Indexes
	Writing Statements that Use Indexes
	Writing Statements that Avoid Using Indexes
	Assessing the Value of Indexes
	Using Fast Full Index Scans
	Re-creating Indexes
	Compacting Indexes
	Using Nonunique Indexes to Enforce Uniqueness
	Using Enabled Novalidated Constraints

	Using Function-based Indexes
	Function-based Indexes and Index Organized Tables

	Using Bitmap Indexes
	When to Use Bitmap Indexes
	Creating Bitmap Indexes
	Initialization Parameters for Bitmap Indexing
	Using Bitmap Access Plans on Regular B*-tree Indexes
	Estimating Bitmap Index Size
	Bitmap Index Restrictions

	Using Domain Indexes
	Using Clusters
	Using Hash Clusters
	When to Use Hash Clusters
	Creating Hash Clusters

	13 Managing Shared SQL and PL/SQL Areas
	Comparing SQL Statements and PL/SQL Blocks
	Testing for Identical SQL Statements
	Aspects of Standardized SQL Formatting

	Keeping Shared SQL and PL/SQL in the Shared Pool
	Reserving Space for Large Allocations
	Preventing Objects from Aging Out

	14 Using Oracle Trace
	Introduction to Oracle Trace
	Using Oracle Trace Data

	Using Oracle Trace Manager
	Managing Collections
	Collecting Event Data
	Accessing Collected Data

	Using Oracle Trace Data Viewer
	Oracle Trace Predefined Data Views
	Viewing Oracle Trace Data
	SQL Statement Property Page
	Details Property Page
	Example of Details Property Page
	Getting More Information on a Selected Query

	Manually Collecting Oracle Trace Data
	Using the Oracle Trace Command-Line Interface
	Using Initialization Parameters to Control Oracle Trace
	Using Stored Procedures to Control Oracle Trace
	Oracle Trace Collection Results
	Formatting Oracle Trace Data to Oracle Tables
	Oracle Trace Statistics Reporting Utility

	15 Dynamic Performance Views
	Instance-Level Views for Tuning
	Session-Level or Transient Views for Tuning
	Current Statistic Values and Rates of Change
	Finding the Current Value of a Statistic
	Finding the Rate of Change of a Statistic

	16 Diagnosing System Performance Problems
	Tuning Factors for Well Designed Existing Systems
	Insufficient CPU
	Insufficient Memory
	I/O Constraints
	Network Constraints
	Software Constraints

	17 Transaction Modes
	Using Discrete Transactions
	Deciding When to Use Discrete Transactions
	How Discrete Transactions Work
	Errors During Discrete Transactions
	Using Discrete Transactions
	Example

	Using Serializable Transactions

	Part IV Optimizing Instance Performance
	18 Tuning CPU Resources
	Understanding CPU Problems
	Detecting and Solving CPU Problems
	System CPU Utilization
	Oracle CPU Utilization

	Solving CPU Problems by Changing System Architectures
	Single Tier to Two-Tier
	Multi-Tier: Using Smaller Client Machines
	Two-Tier to Three-Tier
	Three-Tier
	Oracle Parallel Server

	19 Tuning Memory Allocation
	Understanding Memory Allocation Issues
	Detecting Memory Allocation Problems
	Solving Memory Allocation Problems
	Tuning Operating System Memory Requirements
	Tuning the Redo Log Buffer
	Tuning Private SQL and PL/SQL Areas
	Tuning the Shared Pool
	Tuning the Buffer Cache
	Tuning Multiple Buffer Pools
	Tuning Sort Areas
	Reallocating Memory
	Reducing Total Memory Usage

	20 Tuning I/O
	Understanding I/O Problems
	Tuning I/O: Top Down and Bottom Up
	Analyzing I/O Requirements
	Planning File Storage
	Choosing Data Block Size
	Evaluating Device Bandwidth

	Detecting I/O Problems
	Checking System I/O Utilization
	Checking Oracle I/O Utilization

	Solving I/O Problems
	Reducing Disk Contention by Distributing I/O
	Striping Disks
	Avoiding Dynamic Space Management
	Tuning Sorts
	Tuning Checkpoint Activity
	Tuning LGWR and DBWR I/O
	Tuning Backup and Restore Operations
	Configuring the Large Pool

	21 Tuning Resource Contention
	Understanding Contention Issues
	Detecting Contention Problems
	Solving Contention Problems
	Reducing Contention for Rollback Segments
	Reducing Contention for Multi-Threaded Servers
	Reducing Contention for Parallel Execution Servers
	Reducing Contention for Redo Log Buffer Latches
	Reducing Contention for the LRU Latch
	Reducing Free List Contention

	22 Tuning Networks
	Understanding Connection Models
	Detecting Network Problems
	Using Dynamic Performance Views
	Understanding Latency and Bandwidth

	Solving Network Problems
	Finding Bottlenecks
	Dissecting Bottlenecks
	Using Array Interfaces
	Adjusting Session Data Unit Buffer Size
	Using TCP.NODELAY
	Using Connection Manager

	23 Tuning the Operating System
	Understanding Operating System Performance Issues
	Operating System and Hardware Caches
	Raw Devices
	Process Schedulers
	Operating System Resource Managers

	Detecting Operating System Problems
	Solving Operating System Problems
	Performance on UNIX-Based Systems
	Performance on NT Systems
	Performance on Mainframe Computers

	24 Tuning Instance Recovery Performance
	Understanding Instance Recovery
	How Oracle Applies Redo Log Information
	Trade-offs of Minimizing Recovery Duration

	Tuning the Duration of Instance and Crash Recovery
	Using Initialization Parameters to Influence Recovery Time
	Using Redo Log Size to Influence Checkpointing Frequency
	Using SQL Statements to Initiate Checkpoints

	Monitoring Instance Recovery
	Tuning the Phases of Instance Recovery
	Tuning the Rolling Forward Phase
	Tuning the Rolling Back Phase

	Index

