
Oracle i

SQL Reference

Release 3 (8.1.7)

September 2000

Part No. A85397-01

SQL Reference, Release 3 (8.1.7)

Part No. A85397-01

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Author: Diana Lorentz

Contributors: Dave Alpern, Vikas Arora, Lance Ashdown, Hermann Baer, Vladimir Barriere, Lucy
Burgess, Souripriya Das, Carolyn Gray, John Haydu, Thuvan Hoang, Wei Hu, Namit Jain, Hakan
Jakobsson, Bob Jenkins, Mark Johnson, Jonathan Klein, Susan Kotsovolos, Vishu Krishnamurthy,
Muralidhar Krishnaprasad, Paul Lane, Geoff Lee, Nina Lewis, Bryn Llewellyn, Phil Locke, David
McElhoes, Jack Melnick, Ari Mozes, Subramanian Muralidhar, Ravi Murthy, Sujatha Muthulingam,
Bruce Olsen, Alla S Pfauntsch, Tom Portfolio, Kevin Quinn, Ananth Raghavan, Den Raphaely, John
Russell, Anant Singh, Rajesh Sivaramasubramaniom, Roger Snowden, Jags Srinivisan, Sankar
Subramanian, Murali Thiyagarajah, Michael Tobie, AhnTuan Tran, Randy Urbano, Andy Witkowski,
Daniel Wong, Aravind Yalamanchi, Qin Yu, Fred Zemke, Mohamed Ziauddin

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xiii

Preface ... xv

1 Introduction

Lexical Conventions ... 1-5

2 Basic Elements of Oracle SQL

Datatypes ... 2-2
Literals .. 2-33
Format Models .. 2-41
Nulls ... 2-57
Pseudocolumns .. 2-59
Comments .. 2-66
Database Objects .. 2-79
Schema Object Names and Qualifiers .. 2-83
Syntax for Schema Objects and Parts in SQL Statements .. 2-88

3 Operators

Unary and Binary Operators .. 3-2
Precedence ... 3-2
Arithmetic Operators .. 3-3
Concatenation Operator .. 3-4
Comparison Operators .. 3-5
 iii

Logical Operators: NOT, AND, OR ... 3-11
Set Operators: UNION [ALL], INTERSECT, MINUS ... 3-12
Other Built-In Operators ... 3-16
User-Defined Operators .. 3-16

4 Functions

SQL Functions .. 4-2
ABS ... 4-14
ACOS .. 4-14
ADD_MONTHS ... 4-15
ASCII .. 4-16
ASIN ... 4-16
ATAN .. 4-17
ATAN2 .. 4-17
AVG .. 4-18
BFILENAME ... 4-19
BITAND ... 4-20
CEIL .. 4-21
CHARTOROWID .. 4-21
CHR .. 4-22
CONCAT .. 4-23
CONVERT ... 4-24
CORR .. 4-25
COS ... 4-26
COSH .. 4-27
COUNT .. 4-27
COVAR_POP ... 4-29
COVAR_SAMP.. 4-31
CUME_DIST ... 4-33
DENSE_RANK ... 4-34
DEREF .. 4-35
DUMP ... 4-36
EMPTY_[B | C]LOB .. 4-37
EXP .. 4-38
FIRST_VALUE .. 4-38
 iv

FLOOR ... 4-40
GREATEST .. 4-40
GROUPING .. 4-41
HEXTORAW ... 4-42
INITCAP .. 4-43
INSTR .. 4-43
INSTRB .. 4-44
LAG .. 4-45
LAST_DAY .. 4-46
LAST_VALUE ... 4-47
LEAD .. 4-49
LEAST .. 4-50
LENGTH .. 4-51
LENGTHB ... 4-51
LN .. 4-52
LOG .. 4-52
LOWER .. 4-53
LPAD ... 4-53
LTRIM .. 4-54
MAKE_REF ... 4-55
MAX .. 4-56
MIN .. 4-58
MOD ... 4-59
MONTHS_BETWEEN .. 4-60
NEW_TIME ... 4-61
NEXT_DAY .. 4-62
NLS_CHARSET_DECL_LEN .. 4-62
NLS_CHARSET_ID .. 4-63
NLS_CHARSET_NAME .. 4-64
NLS_INITCAP .. 4-64
NLS_LOWER .. 4-65
NLSSORT .. 4-66
NLS_UPPER .. 4-67
NTILE ... 4-67
NUMTODSINTERVAL ... 4-69
 v

NUMTOYMINTERVAL .. 4-70
NVL ... 4-71
NVL2 ... 4-72
PERCENT_RANK .. 4-73
POWER .. 4-74
RANK ... 4-74
RATIO_TO_REPORT .. 4-75
RAWTOHEX ... 4-76
REF .. 4-77
REFTOHEX .. 4-78
REGR_ (linear regression) functions ... 4-78
REPLACE ... 4-85
ROUND (number function) ... 4-86
ROUND (date function) .. 4-87
ROW_NUMBER ... 4-87
ROWIDTOCHAR .. 4-89
RPAD .. 4-89
RTRIM .. 4-90
SIGN ... 4-90
SIN .. 4-91
SINH ... 4-91
SOUNDEX ... 4-92
SQRT .. 4-93
STDDEV .. 4-93
STDDEV_POP .. 4-95
STDDEV_SAMP .. 4-96
SUBSTR ... 4-98
SUBSTRB ... 4-99
SUM .. 4-99
SYS_CONTEXT .. 4-101
SYS_GUID ... 4-105
SYSDATE ... 4-106
TAN ... 4-107
TANH ... 4-107
TO_CHAR (date conversion) ... 4-108
 vi

TO_CHAR (number conversion) .. 4-109
TO_DATE .. 4-110
TO_LOB ... 4-111
TO_MULTI_BYTE ... 4-112
TO_NUMBER ... 4-112
TO_SINGLE_BYTE ... 4-113
TRANSLATE ... 4-113
TRANSLATE ... USING .. 4-114
TRIM .. 4-116
TRUNC (number function) .. 4-117
TRUNC (date function) .. 4-117
UID ... 4-118
UPPER ... 4-118
USER .. 4-119
USERENV .. 4-120
VALUE .. 4-121
VAR_POP .. 4-122
VAR_SAMP ... 4-123
VARIANCE ... 4-125
VSIZE ... 4-126
ROUND and TRUNC Date Functions .. 4-127
User-Defined Functions .. 4-128

5 Expressions, Conditions, and Queries

Expressions .. 5-2
Conditions ... 5-15
Queries and Subqueries ... 5-21

6 About SQL Statements

Summary of SQL Statements ... 6-2
Finding the SQL Statement for a Database Task.. 6-5
 vii

7 SQL Statements:
ALTER CLUSTER to ALTER SYSTEM

ALTER CLUSTER .. 7-3
ALTER DATABASE ... 7-9
ALTER DIMENSION .. 7-34
ALTER FUNCTION ... 7-38
ALTER INDEX .. 7-40
ALTER JAVA ... 7-58
ALTER MATERIALIZED VIEW .. 7-61
ALTER MATERIALIZED VIEW LOG ... 7-76
ALTER OUTLINE .. 7-83
ALTER PACKAGE ... 7-85
ALTER PROCEDURE ... 7-88
ALTER PROFILE .. 7-91
ALTER RESOURCE COST .. 7-95
ALTER ROLE .. 7-98
ALTER ROLLBACK SEGMENT ... 7-100
ALTER SEQUENCE ... 7-103
ALTER SESSION ... 7-105
ALTER SYSTEM ... 7-127

8 SQL Statements:
ALTER TABLE to constraint_clause

ALTER TABLE .. 8-2
ALTER TABLESPACE ... 8-67
ALTER TRIGGER .. 8-76
ALTER TYPE ... 8-79
ALTER USER .. 8-88
ALTER VIEW .. 8-94
ANALYZE .. 8-96
ASSOCIATE STATISTICS ... 8-110
AUDIT... 8-114
CALL ... 8-128
COMMENT ... 8-131
COMMIT ... 8-133
 viii

constraint_clause... 8-136

9 SQL Statements:
CREATE CLUSTER to CREATE SEQUENCE

CREATE CLUSTER ... 9-3
CREATE CONTEXT .. 9-13
CREATE CONTROLFILE ... 9-15
CREATE DATABASE .. 9-21
CREATE DATABASE LINK ... 9-28
CREATE DIMENSION ... 9-34
CREATE DIRECTORY .. 9-40
CREATE FUNCTION .. 9-43
CREATE INDEX ... 9-52
CREATE INDEXTYPE ... 9-76
CREATE JAVA .. 9-79
CREATE LIBRARY .. 9-86
CREATE MATERIALIZED VIEW .. 9-88
CREATE MATERIALIZED VIEW LOG .. 9-107
CREATE OPERATOR ... 9-115
CREATE OUTLINE ... 9-119
CREATE PACKAGE .. 9-122
CREATE PACKAGE BODY ... 9-127
CREATE PROCEDURE .. 9-132
CREATE PROFILE ... 9-139
CREATE ROLE ... 9-146
CREATE ROLLBACK SEGMENT .. 9-149
CREATE SCHEMA .. 9-152
CREATE SEQUENCE .. 9-155

10 SQL Statements:
CREATE SYNONYM to
DROP ROLLBACK SEGMENT

CREATE SYNONYM .. 10-3
CREATE TABLE ... 10-7
CREATE TABLESPACE .. 10-56
 ix

CREATE TEMPORARY TABLESPACE ... 10-63
CREATE TRIGGER ... 10-66
CREATE TYPE .. 10-80
CREATE TYPE BODY ... 10-93
CREATE USER .. 10-99
CREATE VIEW .. 10-105
DELETE ... 10-115
DISASSOCIATE STATISTICS ... 10-123
DROP CLUSTER ... 10-126
DROP CONTEXT .. 10-128
DROP DATABASE LINK .. 10-129
DROP DIMENSION .. 10-131
DROP DIRECTORY ... 10-133
DROP FUNCTION ... 10-134
DROP INDEX .. 10-136
DROP INDEXTYPE .. 10-138
DROP JAVA .. 10-140
DROP LIBRARY .. 10-142
DROP MATERIALIZED VIEW... 10-143
DROP MATERIALIZED VIEW LOG ... 10-145
DROP OPERATOR ... 10-147
DROP OUTLINE ... 10-149
DROP PACKAGE ... 10-150
DROP PROCEDURE .. 10-152
DROP PROFILE .. 10-154
DROP ROLE .. 10-156
DROP ROLLBACK SEGMENT ... 10-157

11 SQL Statements:
DROP SEQUENCE to UPDATE

DROP SEQUENCE .. 11-3
DROP SYNONYM ... 11-5
DROP TABLE .. 11-7
DROP TABLESPACE ... 11-10
DROP TRIGGER ... 11-13
 x

DROP TYPE .. 11-15
DROP TYPE BODY ... 11-17
DROP USER ... 11-19
DROP VIEW ... 11-21
EXPLAIN PLAN ... 11-23
filespec .. 11-27
GRANT ... 11-31
INSERT .. 11-51
LOCK TABLE .. 11-62
NOAUDIT .. 11-66
RENAME ... 11-71
REVOKE ... 11-73
ROLLBACK .. 11-83
SAVEPOINT ... 11-86
SELECT and subquery ... 11-88
SET CONSTRAINT[S] ... 11-120
SET ROLE .. 11-122
SET TRANSACTION ... 11-125
storage_clause .. 11-129
TRUNCATE ... 11-137
UPDATE ... 11-141

A Syntax Diagrams

B Oracle and Standard SQL

Conformance with Standard SQL ... B-1
Oracle Extensions to Standard SQL ... B-5

C Oracle Reserved Words
 xi

 xii

Send Us Your Comments

SQL Reference, Release 3 (8.1.7)

Part No. A85397-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ E-mail - infodev@us.oracle.com

■ FAX - (650) 506-7228. Attn: Information Development

■ Postal service:

Oracle Corporation

Server Technologies Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.
xiii

xiv

Preface

This reference contains a complete description of the Structured Query Language

(SQL) used to manage information in an Oracle database. Oracle SQL is a superset

of the American National Standards Institute (ANSI) and the International

Standards Organization (ISO) SQL92 standard at entry level conformance.

Features and Functionality
Oracle8i SQL Reference contains information about the features and functionality of

the Oracle8i and the Oracle8i Enterprise Edition products. Oracle8i and Oracle8i
Enterprise Edition have the same basic features. However, several advanced

features are available only with the Enterprise Edition, and some of these are

optional.

See Also:

■ PL/SQL User’s Guide and Reference for information on PL/SQL,

Oracle’s procedural language extension to SQL

■ Pro*C/C++ Precompiler Programmer’s Guide, SQL*Module for Ada
Programmer’s Guide, and the Pro*COBOL Precompiler
Programmer’s Guide for detailed descriptions of Oracle

embedded SQL

See Also: Getting to Know Oracle8i for information about the

differences between Oracle8i and the Oracle8i Enterprise Edition

and the available features and options. That book also describes all

the features that are new in Oracle8i.
xv

Audience
This reference is intended for all users of Oracle SQL.

What’s New in Oracle8 i?
Each release of Oracle8i contains new features, many of which are documented

throughout this reference.

Release 3 (8.1.7)
The following SQL functions are new to this release:

■ BITAND on page 4-20

■ NVL2 on page 4-72

Release 2 (8.1.6)
The following SQL functions are new to this release:

■ CORR on page 4-25

■ COVAR_POP

■ COVAR_SAMP

■ CUME_DIST

■ DENSE_RANK

■ FIRST_VALUE

■ LAG

■ LAST_VALUE

■ LEAD

■ NTILE

■ NUMTOYMINTERVAL

■ NUMTODSINTERVAL

■ PERCENT_RANK

See Also: Getting to Know Oracle8i for a description of all features

new to this release
xvi

■ RATIO_TO_REPORT

■ REGR_ (linear regression) functions

■ STDDEV_POP

■ STDDEV_SAMP

■ VAR_POP

■ VAR_SAMP

In addition, the following features have been enhanced:

■ The aggregate functions have expanded functionality. See "Aggregate

Functions" on page 4-6.

■ When specifying LOB storage parameters, you can now specify caching of

LOBs for read-only purposes. See CREATE TABLE on page 10-7.

■ The section on Expressions now contains a new expression. See "CASE

Expressions" on page 5-14.

■ Subqueries can now be unnested. See "Unnesting of Nested Subqueries" on

page 5-28.

Release 8.1.5
The following top-level SQL statements are new to Release 8.1.5:

■ ALTER DIMENSION on page 7-34

■ ALTER JAVA on page 7-58

■ ALTER OUTLINE on page 7-83

■ ASSOCIATE STATISTICS on page 8-110

■ CALL on page 8-128

■ CREATE CONTEXT on page 9-13

■ CREATE DIMENSION on page 9-34

■ CREATE INDEXTYPE on page 9-76

■ CREATE JAVA on page 9-79

■ CREATE OPERATOR on page 9-115

■ CREATE OUTLINE on page 9-119

■ CREATE TEMPORARY TABLESPACE on page 10-63
xvii

■ DISASSOCIATE STATISTICS on page 10-123

■ DROP CONTEXT on page 10-128

■ DROP DIMENSION on page 10-131

■ DROP INDEXTYPE on page 10-138

■ DROP JAVA on page 10-140

■ DROP OPERATOR on page 10-147

■ DROP OUTLINE on page 10-149

Organization
This reference is divided into the following parts:

Chapter 1, "Introduction"
This chapter defines SQL and describes its history as well as the advantages of

using it to access relational databases.

Chapter 2, "Basic Elements of Oracle SQL"
This chapter describes the basic building blocks of an Oracle database and of

Oracle SQL.

Chapter 3, "Operators"
This chapter describes how to use SQL operators to combine data into expressions

and conditions.

Chapter 4, "Functions"
This chapter describes how to use SQL functions to combine data into expressions

and conditions.

Chapter 5, "Expressions, Conditions, and Queries"
This chapter describes SQL expressions and conditions and discusses the various

ways of extracting information from your database through queries.

Chapter 6, "About SQL Statements"
This chapter lists the various types of SQL statements, and provides a table to help

you find the appropriate SQL statement for your database task.
xviii

Chapter 7, "SQL Statements: ALTER CLUSTER to ALTER SYSTEM"
Chapter 8, "SQL Statements: ALTER TABLE to constraint_clause"
Chapter 9, "SQL Statements: CREATE CLUSTER to CREATE SEQUENCE"
Chapter 10, "SQL Statements: CREATE SYNONYM to DROP ROLLBACK
SEGMENT"
Chapter 11, "SQL Statements: DROP SEQUENCE to UPDATE"
These chapters list and describe all Oracle SQL statements in alphabetical order.

Appendix A, "Syntax Diagrams"
This appendix describes how to read the syntax diagrams in this reference.

Appendix B, "Oracle and Standard SQL"
This appendix describes Oracle compliance with ANSI and ISO standards.

Appendix C, "Oracle Reserved Words"
This appendix lists words that are reserved for internal use by Oracle.

Structural Changes in the Reference in Release 8.1.7
The chapter containing all SQL statements (formerly Chapter 7) has been divided

into four chapters for printing purposes.

The following top-level SQL statements have been revised in Release 8.1.7:

■ The two SQL statements GRANTobject_privileges and GRANT
system_privileges_and_roles have been combined into one GRANT
statement. See GRANT on page 11-31.

■ The two SQL statements REVOKEschema_object_privileges and REVOKE
system_privileges_and_roles have been combined into one REVOKE
statement. See REVOKE on page 11-73.

■ The two SQL statements AUDIT sql_statements and AUDIT
schema_objects have been combined into one AUDIT statement. See AUDIT

on page 8-114.

■ The two SQL statements NOAUDITsql_statements and NOAUDIT
schema_objects have been combined into one NOAUDIT statement. See

NOAUDIT on page 11-66.
xix

Structural Changes in the Reference in Release 8.1.5
Users familiar with the Release 8.0 documentation will find that the following

sections have been moved or renamed:

■ The section "Format Models" now appears in Chapter 2 on page 2-41.

■ Chapter 3 has been divided into several smaller chapters:

■ Chapter 3, "Operators"

■ Chapter 4, "Functions"

■ Chapter 5, "Expressions, Conditions, and Queries". The last section,

"Queries and Subqueries" on page 5-21, provides background for the

syntactic and semantic information in SELECT and subquery on page 11-88.

■ A new chapter, Chapter 6, "About SQL Statements", has been added to help you

find the correct SQL statement for a particular task.

■ The archive_log_clause is no longer a separate section, but has been

incorporated into ALTER SYSTEM on page 7-127.

■ The deallocate_unused_clause is no longer a separate section, but has

been incorporated into ALTER TABLE on page 8-2, ALTER CLUSTER on

page 7-3, and ALTER INDEX on page 7-40.

■ The disable_clause is no longer a separate section, but has been

incorporated into CREATE TABLE on page 10-7 and ALTER TABLE on

page 8-2.

■ The drop_clause is no longer a separate section. It has become the

drop_constraint_clause of the ALTER TABLE statement (to distinguish it

from the new drop_column_clause of that statement). See ALTER TABLE on

page 8-2.

■ The enable_clause is no longer a separate section, but has been incorporated

into CREATE TABLE on page 10-7 and ALTER TABLE on page 8-2.

■ The parallel_clause is no longer a separate section. The clause has been

simplified, and has been incorporated into the various statements where it is

relevant.

■ The recover_clause is no longer a separate section. Recovery functionality

has been enhanced, and because it is always implemented through the ALTER
DATABASE statement, it has been incorporated into that section. See ALTER

DATABASE on page 7-9.
xx

■ The sections on snapshots and snapshot logs have been moved and renamed.

Snapshot functionality has been greatly enhanced, and these objects are now

called materialized views. See CREATE MATERIALIZED VIEW on page 9-88,

ALTER MATERIALIZED VIEW on page 7-61, DROP MATERIALIZED VIEW

on page 10-143, "CREATE MATERIALIZED VIEW LOG" on page 9-107, ALTER

MATERIALIZED VIEW LOG on page 7-76, and DROP MATERIALIZED VIEW

LOG on page 10-145.

■ The section on subqueries has now been combined with the SELECTstatement.

See SELECT and subquery on page 11-88.

Conventions Used in this Reference
This section explains the conventions used in this book including:

■ Text

■ Syntax Diagrams and Notation

■ Code Examples

■ Example Data

Text
The text in this reference adheres to the following conventions:

Syntax Diagrams and Notation

Syntax Diagrams This reference uses syntax diagrams to show SQL statements in

Chapter 7 through Chapter 11, and to show other elements of the SQL language in

Chapter 2, “Basic Elements of Oracle SQL”; Chapter 3, “Operators”; Chapter 4,

“Functions”; and Chapter 5, “Expressions, Conditions, and Queries”. These syntax

diagrams use lines and arrows to show syntactic structure, as shown here:

UPPERCASE Uppercase text calls attention to SQL keywords,

filenames, and initialization parameters.

italics Italicized text calls attention to parameters of SQL

statements.

boldface Boldface text calls attention to definitions of terms.
xxi

If you are not familiar with this type of syntax diagram, refer to Appendix A,

“Syntax Diagrams”, for a description of how to read them. This section describes

the components of syntax diagrams and gives examples of how to write SQL

statements. Syntax diagrams are made up of these items:

Keywords Keywords have special meanings in the SQL language. In the syntax

diagrams, keywords appear in UPPERCASE. You must use keywords in your SQL

statements exactly as they appear in the syntax diagram, except that they can be

either uppercase or lowercase. For example, you must use the CREATE keyword to

begin your CREATE TABLE statements just as it appears in the CREATE TABLE
syntax diagram.

Parameters Parameters act as placeholders in syntax diagrams. They appear in

lowercase. Parameters are usually names of database objects, Oracle datatype

names, or expressions. When you see a parameter in a syntax diagram, substitute an

object or expression of the appropriate type in your SQL statement. For example, to

write a CREATE TABLE statement, use the name of the table you want to create,

such as emp, in place of the table parameter in the syntax diagram. (Note that

parameter names appear in italics in the text.)

Code Examples
This reference contains many examples of SQL statements. These examples show

you how to use elements of SQL. The following example shows a CREATE TABLE
statement:

CREATE TABLE accounts
 (accno NUMBER,
 owner VARCHAR2(10),
 balance NUMBER(7,2));

Code examples appear in a different font than the text.

Examples follow these conventions:

■ Keywords, such as CREATE and NUMBER, appear in uppercase.

COMMIT
WORK

COMMENT ’ text ’

FORCE ’ text ’
, integer

;

xxii

■ Names of database objects and their parts, such as accounts and accno ,

appear in lowercase.

■ PL/SQL blocks appear in italics. Keywords and parameters in these blocks may

not be documented in this reference unless they are also SQL keywords and

parameters. For more information see PL/SQL User’s Guide and Reference.

Many examples assume the existence of objects that are not created in the example

itself. The examples will not work as expected unless you first create those

underlying objects.

SQL is not case sensitive (except for quoted identifiers), so you need not follow

these conventions when writing your own SQL statements. However, your

statements may be easier for you to read if you do.

Some Oracle tools require you to terminate SQL statements with a special character.

For example, the code examples in this reference were issued through SQL*Plus,

and therefore are terminated with a semicolon (;). If you issue these example

statements to Oracle, you must terminate them with the special character expected

by the Oracle tool you are using.

Example Data
Many examples in this reference operate on sample tables. The definitions of some

of these tables appear in a SQL script available on your distribution medium. On

most operating systems the name of this script is UTLSAMPL.SQL, although its exact

name and location depend on your operating system. This script creates sample

users and creates these sample tables in the schema of the user scott (password

tiger):

CREATE TABLE dept
 (deptno NUMBER(2) CONSTRAINT pk_dept PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13));
CREATE TABLE emp
 (empno NUMBER(4) CONSTRAINT pk_emp PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT fk_deptno REFERENCES dept);
CREATE TABLE bonus
 (ename VARCHAR2(10),
xxiii

 job VARCHAR2(9),
 sal NUMBER,
 comm NUMBER);
CREATE TABLE salgrade
 (grade NUMBER,
 losal NUMBER,
 hisal NUMBER);

The script also fills the sample tables with this data:

SELECT * FROM dept;

DEPTNO DNAME LOC
------- ---------- ---------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

SELECT * FROM emp;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
----- ------- --------- ------ --------- ------ ------ -------
 7369 SMITH CLERK 7902 17-DEC-80 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
 7566 JONES MANAGER 7839 02-APR-81 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
 7782 CLARK MANAGER 7839 09-JUN-81 2450 10
 7788 SCOTT ANALYST 7566 19-APR-87 3000 20
 7839 KING PRESIDENT 17-NOV-81 5000 10
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 30
 7876 ADAMS CLERK 7788 23-MAY-87 1100 20
 7900 JAMES CLERK 7698 03-DEC-81 950 30
 7902 FORD ANALYST 7566 03-DEC-81 3000 20
 7934 MILLER CLERK 7782 23-JAN-82 1300 10

SELECT * FROM salgrade;

GRADE LOSAL HISAL
----- ----- -----
1 700 1200
2 1201 1400
3 1401 2000
xxiv

4 2001 3000
5 3001 9999

The bonus table does not contain any data.

To perform all the operations of the script, run it when you are logged into Oracle as

the user SYSTEM.
xxv

xxvi

Introdu
1

Introduction

Structured Query Language (SQL) is the set of statements with which all programs

and users access data in an Oracle database. Application programs and Oracle tools

often allow users access to the database without using SQL directly, but these

applications in turn must use SQL when executing the user’s request. This chapter

provides background information on SQL as used by most relational database

systems.

This chapter contains these topics:

■ History of SQL

■ SQL Standards

■ Embedded SQL

■ Lexical Conventions

■ Tools Support
ction 1-1

History of SQL
Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared

Data Banks", in June 1970 in the Association of Computer Machinery (ACM)

journal, Communications of the ACM. Codd’s model is now accepted as the definitive

model for relational database management systems (RDBMS). The language,

Structured English Query Language ("SEQUEL") was developed by IBM

Corporation, Inc., to use Codd’s model. SEQUEL later became SQL (still

pronounced "sequel"). In 1979, Relational Software, Inc. (now Oracle Corporation)

introduced the first commercially available implementation of SQL. Today, SQL is

accepted as the standard RDBMS language.

SQL Standards
Oracle Corporation strives to comply with industry-accepted standards and

participates actively in SQL standards committees. Industry-accepted committees

are the American National Standards Institute (ANSI) and the International

Standards Organization (ISO), which is affiliated with the International

Electrotechnical Commission (IEC). Both ANSI and the ISO/IEC have accepted SQL

as the standard language for relational databases. When a new SQL standard is

simultaneously published by these organizations, the names of the standards

conform to conventions used by the organization, but the standards are technically

identical.

The latest SQL standard was adopted in July 1999 and is often called SQL-99. The

formal names of this standard are:

■ ANSI X3.135-1999, "Database Language SQL", Parts 1 ("Framework"), 2

("Foundation"), and 5 ("Bindings")

■ ISO/IEC 9075:1999, "Database Language SQL", Parts 1 ("Framework"), 2

("Foundation"), and 5 ("Bindings")

SQL-99 replaced the previous version of the standard, commonly known as SQL-92.

SQL-99 is an upward compatible extension of SQL-92, except for a few minor

incompatibilities noted in Annex E of Part 2, "Foundation," of SQL-99.

SQL-92 defined four levels of compliance: Entry, Transitional, Intermediate, and

Full. A conforming SQL implementation must support at least Entry SQL. Oracle8i
fully supports Entry SQL as outlined in Federal Information Processing Standard

(FIPS) PUB 127-2, and has many features that conform to Transitional, Intermediate,

or Full SQL.

The minimal conformance level for SQL-99 is known as Core. Core SQL-99 is a

superset of SQL-92 Entry Level specification. Oracle8i also is broadly compatible
1-2 SQL Reference

with the SQL-99 Core specification. However, some SQL-99 Core features are not

currently implemented in Oracle8i or differ from the Oracle8i implementation.

Oracle Corporation is committed to fully supporting SQL-99 Core functionality in a

future release, while providing upward compatibility for existing applications.

How SQL Works
The strengths of SQL provide benefits for all types of users, including application

programmers, database administrators, managers, and end users. Technically

speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface

to a relational database such as Oracle, and all SQL statements are instructions to

the database. In this SQL differs from general-purpose programming languages like

C and BASIC. Among the features of SQL are the following:

■ It processes sets of data as groups rather than as individual units.

■ It provides automatic navigation to the data.

■ It uses statements that are complex and powerful individually, and that

therefore stand alone. Flow-control statements were not part of SQL originally,

but they are found in the recently accepted optional part of SQL, ISO/IEC 9075-

5: 1996. Flow-control statements are commonly known as "persistent stored

modules" (PSM), and Oracle’s PL/SQL extension to SQL is similar to PSM.

Essentially, SQL lets you work with data at the logical level. You need to be

concerned with the implementation details only when you want to manipulate the

data. For example, to retrieve a set of rows from a table, you define a condition used

to filter the rows. All rows satisfying the condition are retrieved in a single step and

can be passed as a unit to the user, to another SQL statement, or to an application.

You need not deal with the rows one by one, nor do you have to worry about how

they are physically stored or retrieved. All SQL statements use the optimizer, a part

of Oracle that determines the most efficient means of accessing the specified data.

Oracle also provides techniques that you can use to make the optimizer perform its

job better.

SQL provides statements for a variety of tasks, including:

■ Querying data

■ Inserting, updating, and deleting rows in a table

■ Creating, replacing, altering, and dropping objects

See Also: Appendix B, "Oracle and Standard SQL" for more

information about Oracle and standard SQL
Introduction 1-3

■ Controlling access to the database and its objects

■ Guaranteeing database consistency and integrity

SQL unifies all of the above tasks in one consistent language.

Common Language for All Relational Databases
All major relational database management systems support SQL, so you can

transfer all skills you have gained with SQL from one database to another. In

addition, all programs written in SQL are portable. They can often be moved from

one database to another with very little modification.

Embedded SQL
Embedded SQL refers to the use of standard SQL statements embedded within a

procedural programming language. The embedded SQL statements are

documented in the Oracle precompiler books.

Embedded SQL is a collection of these statements:

■ All SQL commands, such as SELECT and INSERT, available with SQL with

interactive tools

■ Dynamic SQL execution commands, such as PREPARE and OPEN, which

integrate the standard SQL statements with a procedural programming

language

Embedded SQL also includes extensions to some standard SQL statements.

Embedded SQL is supported by the Oracle precompilers. The Oracle precompilers

interpret embedded SQL statements and translate them into statements that can be

understood by procedural language compilers.

Each of these Oracle precompilers translates embedded SQL programs into a

different procedural language:

■ Pro*C/C++ precompiler

■ Pro*COBOL precompiler

■ SQL*Module for ADA

See Also: ,SQL*Module for Ada Programmer’s Guide, Pro*C/C++
Precompiler Programmer’s Guide, and Pro*COBOL Precompiler
Programmer’s Guide for a definition of the Oracle precompilers and

the embedded SQL statements
1-4 SQL Reference

Lexical Conventions
Lexical Conventions
The following lexical conventions for issuing SQL statements apply specifically to

Oracle’s implementation of SQL, but are generally acceptable in other SQL

implementations.

When you issue a SQL statement, you can include one or more tabs, carriage

returns, spaces, or comments anywhere a space occurs within the definition of the

statement. Thus, Oracle evaluates the following two statements in the same manner:

SELECT ENAME,SAL*12,MONTHS_BETWEEN(HIREDATE,SYSDATE) FROM EMP;

SELECT ENAME,
 SAL * 12,
 MONTHS_BETWEEN(HIREDATE, SYSDATE)
FROM EMP;

Case is insignificant in reserved words, keywords, identifiers and parameters.

However, case is significant in text literals and quoted names.

Tools Support
Most (but not all) Oracle tools support all features of Oracle SQL. This reference

describes the complete functionality of SQL. If the Oracle tool that you are using

does not support this complete functionality, you can find a discussion of the

restrictions in the manual describing the tool, such as SQL*Plus User’s Guide and
Reference.

If you are using Trusted Oracle, see your Trusted Oracle documentation for

information about SQL statements specific to that environment.

See Also: "Text" on page 2-33 for a syntax description
Introduction 1-5

Lexical Conventions
1-6 SQL Reference

Basic Elements of Oracle
2

Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL.

These elements are simplest building blocks of SQL statements. Therefore, before

using the statements described in Chapter 7 through Chapter 11, you should

familiarize yourself with the concepts covered in this chapter, as well as in

Chapter 3, "Operators", Chapter 4, "Functions", Chapter 5, "Expressions, Conditions,

and Queries", and Chapter 6, "About SQL Statements".

This chapter contains these sections:

■ Datatypes

■ Literals

■ Format Models

■ Nulls

■ Pseudocolumns

■ Comments

■ Database Objects

■ Schema Object Names and Qualifiers

■ Syntax for Schema Objects and Parts in SQL Statements
 SQL 2-1

Datatypes
Datatypes
Each value manipulated by Oracle has a datatype. A value’s datatype associates a

fixed set of properties with the value. These properties cause Oracle to treat values

of one datatype differently from values of another. For example, you can add values

of NUMBER datatype, but not values of RAW datatype.

When you create a table or cluster, you must specify a datatype for each of its

columns. When you create a procedure or stored function, you must specify a

datatype for each of its arguments. These datatypes define the domain of values

that each column can contain or each argument can have. For example, DATE
columns cannot accept the value February 29 (except for a leap year) or the values 2

or ’SHOE’. Each value subsequently placed in a column assumes the column’s

datatype. For example, if you insert ’01-JAN-98’ into a DATE column, Oracle treats

the ’01-JAN-98’ character string as a DATEvalue after verifying that it translates to a

valid date.

Oracle provides a number of built-in datatypes as well as several categories for

user-defined types, as shown in Figure 2–1.
2-2 SQL Reference

Datatypes
Figure 2–1 Oracle Type Categories

The syntax of the Oracle built-in datatypes appears in the next diagram. Table 2–1

summarizes Oracle built-in datatypes. The rest of this section describes these

datatypes as well as the various kinds of user-defined types.

Note: The Oracle precompilers recognize other datatypes in embedded

SQL programs. These datatypes are called external datatypes and are

associated with host variables. Do not confuse built-in and user-defined

datatypes with external datatypes. For information on external datatypes,

including how Oracle converts between them and built-in or user-defined

datatypes, see Pro*COBOL Precompiler Programmer’s Guide, Pro*C/C++
Precompiler Programmer’s Guide, and SQL*Module for Ada Programmer’s Guide.

Built-in Datatypes

User-defined type category

structured type category

object types

collection type category

varrays

nested tables

REFS (to object types)
Basic Elements of Oracle SQL 2-3

Datatypes
built-in datatypes:

The ANSI-supported datatypes appear in the figure that follows. Table 2–2 shows

the mapping of ANSI-supported datatypes to Oracle build-in datatypes.

CHAR (size)

VARCHAR2 (size)

NCHAR (size)

NVARCHAR2 (size)

NUMBER
(precision

, scale
)

LONG

LONG RAW

RAW (size)

DATE

BLOB

CLOB

NCLOB

BFILE

ROWID

UROWID
(size)

ANSI_supported_types
2-4 SQL Reference

Datatypes
ANSI-supported datatypes:

CHARACTER (size)

CHARACTER VARYING (size)

CHAR VARYING (size)

VARCHAR (size)

NATIONAL CHARACTER (size)

NATIONAL CHAR (size)

NATIONAL CHARACTER VARYING (size)

NATIONAL CHAR VARYING (size)

NCHAR VARYING (size)

NUMERIC
(precision

, scale
)

DECIMAL
(precision

, scale
)

DEC
(precision

, scale
)

INTEGER

INT

SMALLINT

FLOAT
(size)

DOUBLE PRECISION

REAL
Basic Elements of Oracle SQL 2-5

Datatypes
Table 2–1 Built-In Datatype Summary

Codea Built-In Datatype Description

1 VARCHAR2(size) Variable-length character string having maximum
length size bytes. Maximum size is 4000, and
minimum is 1. You must specify size for
VARCHAR2.

1 NVARCHAR2(size) Variable-length character string having maximum
length size characters or bytes, depending on the
choice of national character set. Maximum size is
determined by the number of bytes required to store
each character, with an upper limit of 4000 bytes.
You must specify size for NVARCHAR2.

2 NUMBER(p,s) Number having precision p and scale s . The
precision p can range from 1 to 38. The scale s can
range from -84 to 127.

8 LONG Character data of variable length up to 2 gigabytes,

or 231 -1 bytes.

12 DATE Valid date range from January 1, 4712 BC to
December 31, 9999 AD.

23 RAW(size) Raw binary data of length size bytes. Maximum
size is 2000 bytes. You must specify size for a RAW
value.

24 LONG RAW Raw binary data of variable length up to 2
gigabytes.

69 ROWID Hexadecimal string representing the unique address
of a row in its table. This datatype is primarily for
values returned by the ROWID pseudocolumn.

208 UROWID [(size)] Hexadecimal string representing the logical address
of a row of an index-organized table. The optional
size is the size of a column of type UROWID. The
maximum size and default is 4000 bytes.

96 CHAR(size) Fixed-length character data of length size bytes.
Maximum size is 2000 bytes. Default and
minimum size is 1 byte.

a The codes listed for the datatypes are used internally by Oracle. The datatype code of a column
or object attribute is returned by the DUMP function.
2-6 SQL Reference

Datatypes
Character Datatypes
Character datatypes store character (alphanumeric) data, which are words and free-

form text, in the database character set or national character set. They are less

restrictive than other datatypes and consequently have fewer properties. For

example, character columns can store all alphanumeric values, but NUMBER
columns can store only numeric values.

Character data is stored in strings with byte values corresponding to one of the

character sets, such as 7-bit ASCII or EBCDIC, specified when the database was

created. Oracle supports both single-byte and multibyte character sets.

These datatypes are used for character data:

■ CHAR Datatype

■ NCHAR Datatype

96 NCHAR(size) Fixed-length character data of length size
characters or bytes, depending on the choice of
national character set. Maximum size is
determined by the number of bytes required to store
each character, with an upper limit of 2000 bytes.
Default and minimum size is 1 character or 1 byte,
depending on the character set.

112 CLOB A character large object containing single-byte
characters. Both fixed-width and variable-width
character sets are supported, both using the CHAR
database character set. Maximum size is 4 gigabytes.

112 NCLOB A character large object containing multibyte
characters. Both fixed-width and variable-width
character sets are supported, both using the NCHAR
database character set. Maximum size is 4 gigabytes.
Stores national character set data.

113 BLOB A binary large object. Maximum size is 4 gigabytes.

114 BFILE Contains a locator to a large binary file stored
outside the database. Enables byte stream I/O
access to external LOBs residing on the database
server. Maximum size is 4 gigabytes.

Table 2–1 (Cont.) Built-In Datatype Summary

Codea Built-In Datatype Description

a The codes listed for the datatypes are used internally by Oracle. The datatype code of a column
or object attribute is returned by the DUMP function.
Basic Elements of Oracle SQL 2-7

Datatypes
■ NVARCHAR2 Datatype

■ VARCHAR2 Datatype

CHAR Datatype
The CHARdatatype specifies a fixed-length character string. When you create a table

with a CHAR column, you supply the column length in bytes. Oracle subsequently

ensures that all values stored in that column have this length. If you insert a value

that is shorter than the column length, Oracle blank-pads the value to column

length. If you try to insert a value that is too long for the column, Oracle returns an

error.

The default length for a CHAR column is 1 character and the maximum allowed is

2000 characters. A zero-length string can be inserted into a CHAR column, but the

column is blank-padded to 1 character when used in comparisons.

NCHAR Datatype
The NCHAR datatype specifies a fixed-length national character set character string.

When you create a table with an NCHAR column, you define the column length

either in characters or in bytes. You define the national character set when you

create your database.

If the national character set of the database is fixed width, such as JA16EUCFIXED,

then you declare the NCHAR column size as the number of characters desired for the

string length. If the national character set is variable width, such as JA16SJIS, you

declare the column size in bytes. The following statement creates a table with one

NCHAR column that can store strings up to 30 characters in length using

JA16EUCFIXED as the national character set:

CREATE TABLE tab1 (col1 NCHAR(30));

The column’s maximum length is determined by the national character set

definition. Width specifications of character datatype NCHAR refer to the number of

See Also: "Datatype Comparison Rules" on page 2-26 for

information on comparison semantics

Note: To ensure proper data conversion between databases with

different character sets, you must ensure that CHAR data consists of

well-formed strings. See Oracle8i National Language Support Guide
for more information on character set support.
2-8 SQL Reference

Datatypes
characters if the national character set is fixed width and refer to the number of

bytes if the national character set is variable width. The maximum column size

allowed is 2000 bytes. For fixed-width, multibyte character sets, the maximum

length of a column allowed is the number of characters that fit into no more than

2000 bytes.

If you insert a value that is shorter than the column length, Oracle blank-pads the

value to column length. You cannot insert a CHAR value into an NCHAR column, nor

can you insert an NCHAR value into a CHAR column.

The following example compares the col1 column of tab1 with national character

set string ’NCHAR literal’:

SELECT * FROM tab1 WHERE col1 = N’NCHAR literal’;

NVARCHAR2 Datatype
The NVARCHAR2datatype specifies a variable-length national character set character

string. When you create a table with an NVARCHAR2 column, you supply the

maximum number of characters or bytes it can hold. Oracle subsequently stores

each value in the column exactly as you specify it, provided the value does not

exceed the column’s maximum length.

The column’s maximum length is determined by the national character set

definition. Width specifications of character datatype NVARCHAR2 refer to the

number of characters if the national character set is fixed width and refer to the

number of bytes if the national character set is variable width. The maximum

column size allowed is 4000 bytes. For fixed-width, multibyte character sets, the

maximum length of a column allowed is the number of characters that fit into no

more than 4000 bytes.

The following statement creates a table with one NVARCHAR2 column of 2000

characters in length (stored as 4000 bytes, because each character takes two bytes)

using JA16EUCFIXED as the national character set:

CREATE TABLE tab1 (col1 NVARCHAR2(2000));

VARCHAR2 Datatype
The VARCHAR2 datatype specifies a variable-length character string. When you

create a VARCHAR2 column, you supply the maximum number of bytes of data that

it can hold. Oracle subsequently stores each value in the column exactly as you

specify it, provided the value does not exceed the column’s maximum length. If you

try to insert a value that exceeds the specified length, Oracle returns an error.
Basic Elements of Oracle SQL 2-9

Datatypes
You must specify a maximum length for a VARCHAR2 column. This maximum must

be at least 1 byte, although the actual length of the string stored is permitted to be

zero. The maximum length of VARCHAR2 data is 4000 bytes. Oracle compares

VARCHAR2 values using nonpadded comparison semantics.

VARCHAR Datatype
The VARCHAR datatype is currently synonymous with the VARCHAR2 datatype.

Oracle recommends that you use VARCHAR2 rather than VARCHAR. In the future,

VARCHAR might be defined as a separate datatype used for variable-length

character strings compared with different comparison semantics.

NUMBER Datatype
The NUMBER datatype stores zero, positive, and negative fixed and floating-point

numbers with magnitudes between 1.0 x 10-130 and 9.9...9 x 10125 (38 nines followed

by 88 zeroes) with 38 digits of precision. If you specify an arithmetic expression

whose value has a magnitude greater than or equal to 1.0 x 10126, Oracle returns an

error.

Specify a fixed-point number using the following form:

NUMBER(p,s)

where:

■ p is the precision, or the total number of digits. Oracle guarantees the

portability of numbers with precision ranging from 1 to 38.

■ s is the scale, or the number of digits to the right of the decimal point. The scale

can range from -84 to 127.

Specify an integer using the following form:

See Also: "Datatype Comparison Rules" on page 2-26 for

information on comparison semantics

Note: To ensure proper data conversion between databases with

different character sets, you must ensure that VARCHAR2 data

consists of well-formed strings. See Oracle8i National Language
Support Guide for more information on character set support.
2-10 SQL Reference

Datatypes
■ NUMBER(p) is a fixed-point number with precision p and scale 0. This is

equivalent to NUMBER(p,0) .

Specify a floating-point number using the following form:

■ NUMBER is a floating-point number with decimal precision 38. Note that a scale

value is not applicable for floating-point numbers.

Scale and Precision
Specify the scale and precision of a fixed-point number column for extra integrity

checking on input. Specifying scale and precision does not force all values to a fixed

length. If a value exceeds the precision, Oracle returns an error. If a value exceeds

the scale, Oracle rounds it.

The following examples show how Oracle stores data using different precisions and

scales.

Negative Scale
If the scale is negative, the actual data is rounded to the specified number of places

to the left of the decimal point. For example, a specification of (10,-2) means to

round to hundreds.

Scale Greater than Precision
You can specify a scale that is greater than precision, although it is uncommon. In

this case, the precision specifies the maximum number of digits to the right of the

decimal point. As with all number datatypes, if the value exceeds the precision,

Oracle returns an error message. If the value exceeds the scale, Oracle rounds the

See Also: "Floating-Point Numbers" on page 2-12

Actual Data Specified As Stored As

7456123.89 NUMBER 7456123.89

7456123.89 NUMBER(9) 7456124

7456123.89 NUMBER(9,2) 7456123.89

7456123.89 NUMBER(9,1) 7456123.9

7456123.89 NUMBER(6) exceeds precision

7456123.89 NUMBER(7,-2) 7456100

7456123.89 NUMBER(-7,2) exceeds precision
Basic Elements of Oracle SQL 2-11

Datatypes
value. For example, a column defined as NUMBER(4,5) requires a zero for the first

digit after the decimal point and rounds all values past the fifth digit after the

decimal point. The following examples show the effects of a scale greater than

precision:

Floating-Point Numbers
Oracle allows you to specify floating-point numbers, which can have a decimal

point anywhere from the first to the last digit or can have no decimal point at all. A

scale value is not applicable to floating-point numbers, because the number of digits

that can appear after the decimal point is not restricted.

You can specify floating-point numbers with the form discussed in "NUMBER

Datatype" on page 2-10. Oracle also supports the ANSI datatype FLOAT. You can

specify this datatype using one of these syntactic forms:

■ FLOAT specifies a floating-point number with decimal precision 38, or binary

precision 126.

■ FLOAT(b) specifies a floating-point number with binary precision b. The

precision b can range from 1 to 126. To convert from binary to decimal

precision, multiply b by 0.30103. To convert from decimal to binary precision,

multiply the decimal precision by 3.32193. The maximum of 126 digits of binary

precision is roughly equivalent to 38 digits of decimal precision.

LONG Datatype
LONG columns store variable-length character strings containing up to 2 gigabytes,

or 231-1 bytes. LONG columns have many of the characteristics of VARCHAR2
columns. You can use LONG columns to store long text strings. The length of LONG
values may be limited by the memory available on your computer.

Actual Data Specified As Stored As

.01234 NUMBER(4,5) .01234

.00012 NUMBER(4,5) .00012

.000127 NUMBER(4,5) .00013

.0000012 NUMBER(2,7) .0000012

.00000123 NUMBER(2,7) .0000012
2-12 SQL Reference

Datatypes
You can reference LONG columns in SQL statements in these places:

■ SELECT lists

■ SET clauses of UPDATE statements

■ VALUES clauses of INSERT statements

The use of LONG values is subject to some restrictions:

■ A table cannot contain more than one LONG column.

■ You cannot create an object type with a LONG attribute.

■ LONG columns cannot appear in integrity constraints (except for NULL and NOT
NULL constraints).

■ LONG columns cannot be indexed.

■ A stored function cannot return a LONG value.

■ Within a single SQL statement, all LONG columns, updated tables, and locked

tables must be located on the same database.

LONG columns cannot appear in certain parts of SQL statements:

■ WHERE clauses, GROUP BY clauses, ORDER BY clauses, or CONNECT BY clauses or

with the DISTINCT operator in SELECT statements

■ The UNIQUE operator of a SELECT statement

■ The column list of a CREATE CLUSTER statement

■ The CLUSTER clause of a CREATE MATERIALIZED VIEW statement

■ SQL functions (such as SUBSTR or INSTR)

■ Expressions or conditions

■ SELECT lists of queries containing GROUP BY clauses

■ SELECT lists of subqueries or queries combined by the UNION, INTERSECT, or

MINUS set operators

Note: Oracle Corporation strongly recommends that you convert

LONG columns to LOB columns. LOB columns are subject to far

fewer restrictions than LONG columns. See "TO_LOB" on page 4-111

for more information.
Basic Elements of Oracle SQL 2-13

Datatypes
■ SELECT lists of CREATE TABLE ... AS SELECT statements

■ SELECT lists in subqueries in INSERT statements

Triggers can use the LONG datatype in the following manner:

■ A SQL statement within a trigger can insert data into a LONG column.

■ If data from a LONGcolumn can be converted to a constrained datatype (such as

CHAR and VARCHAR2), a LONG column can be referenced in a SQL statement

within a trigger.

■ Variables in triggers cannot be declared using the LONG datatype.

■ :NEW and :OLD cannot be used with LONG columns.

You can use the Oracle Call Interface functions to retrieve a portion of a LONG value

from the database.

DATE Datatype
The DATE datatype stores date and time information. Although date and time

information can be represented in both CHAR and NUMBER datatypes, the DATE
datatype has special associated properties. For each DATE value, Oracle stores the

following information: century, year, month, day, hour, minute, and second.

If you specify a date value without a time component, the default time is 12:00:00

AM (midnight). If you specify a time value without a date, the default date is the

first day of the current month. The date function SYSDATE returns the current date

and time.

The default date format is specified by the initialization parameter NLS_DATE_
FORMAT and is a string such as ’DD-MON-YY’ . This example default date format

includes a two-digit number for the day of the month, an abbreviation of the month

name, and the last two digits of the year. Oracle automatically converts character

values that are in the default date format into DATE values when they are used in

date expressions.

To specify a date value that is not in the default format, you must convert a

character or numeric value to a date value with the TO_DATE function. In this case,

you must specify the nondefault date format model (sometimes called a "date

mask") to tell Oracle how to interpret the character or numeric value. For example,

the date format model for ’17:45:29’ is ’HH24:MI:SS’. The date format model for ’11-

NOV-1999’ is ’DD-MON-YYYY’.

See Also: Oracle Call Interface Programmer’s Guide
2-14 SQL Reference

Datatypes
Date Arithmetic
You can add and subtract number constants as well as other dates from dates.

Oracle interprets number constants in arithmetic date expressions as numbers of

days. For example, SYSDATE + 1 is tomorrow. SYSDATE - 7 is one week ago.

SYSDATE + (10/1440) is ten minutes from now. Subtracting the hiredate column

of the emp table from SYSDATE returns the number of days since each employee

was hired. You cannot multiply or divide DATE values.

Oracle provides functions for many common date operations. For example, the

ADD_MONTHS function lets you add or subtract months from a date. The MONTHS_
BETWEEN function returns the number of months between two dates. The fractional

portion of the result represents that portion of a 31-day month.

Because each date contains a time component, most results of date operations

include a fraction. This fraction means a portion of one day. For example, 1.5 days is

36 hours.

Using Julian Dates
A Julian date is the number of days since January 1, 4712 BC. Julian dates allow

continuous dating from a common reference. You can use the date format model "J"

with date functions TO_DATEand TO_CHARto convert between Oracle DATEvalues

and their Julian equivalents.

Example This statement returns the Julian equivalent of January 1, 1997:

SELECT TO_CHAR(TO_DATE(’01-01-1997’, ’MM-DD-YYYY’),’J’)
 FROM DUAL;

See Also:

■ "Date Format Models" on page 2-47 for a listing of the elements

of date format models

■ "TO_DATE" on page 4-110 for information on converting

character and numeric values into DATE values

■ "TO_CHAR (date conversion)" on page 4-108 for information

on converting DATE values into strings

■ "SYSDATE" on page 4-106 for information on obtaining the

current system date and time.

See Also: "Date Functions" on page 4-5 for more information on

date functions
Basic Elements of Oracle SQL 2-15

Datatypes
TO_CHAR

2450450

RAW and LONG RAW Datatypes
The RAW and LONG RAW datatypes store data that is not to be interpreted (not

explicitly converted when moving data between different systems) by Oracle. These

datatypes are intended for binary data or byte strings. For example, you can use

LONG RAW to store graphics, sound, documents, or arrays of binary data, for which

the interpretation is dependent on the use.

RAW is a variable-length datatype like VARCHAR2, except that Net8 (which connects

user sessions to the instance) and the Import and Export utilities do not perform

character conversion when transmitting RAW or LONG RAW data. In contrast, Net8

and Import/Export automatically convert CHAR, VARCHAR2, and LONG data from

the database character set to the user session character set (which you can set with

the NLS_LANGUAGE parameter of the ALTER SESSION statement), if the two

character sets are different.

When Oracle automatically converts RAW or LONG RAW data to and from CHAR data,

the binary data is represented in hexadecimal form, with one hexadecimal character

representing every four bits of RAW data. For example, one byte of RAW data with

bits 11001011 is displayed and entered as ’CB’.

Large Object (LOB) Datatypes
The built-in LOB datatypes BLOB, CLOB, and NCLOB (stored internally), and the

BFILE (stored externally), can store large and unstructured data such as text,

image, video, and spatial data up to 4 gigabytes in size.

See Also: "Selecting from the DUAL Table" on page 5-28 for a

description of the DUAL table

Note: Oracle Corporation strongly recommends that you convert

LONG RAW columns to binary LOB (BLOB) columns. LOB columns

are subject to far fewer restrictions than LONG columns. See TO_

LOB on page 4-111 for more information.
2-16 SQL Reference

Datatypes
When creating a table, you can optionally specify different tablespace and storage

characteristics for LOB columns or LOB object attributes from those specified for the

table.

LOB columns contain LOB locators that can refer to out-of-line or in-line LOB

values. Selecting a LOB from a table actually returns the LOB’s locator and not the

entire LOB value. The DBMS_LOB package and Oracle Call Interface (OCI)

operations on LOBs are performed through these locators.

LOBs are similar to LONG and LONG RAW types, but differ in the following ways:

■ LOBs can be attributes of a user-defined datatype (object).

■ The LOB locator is stored in the table column, either with or without the actual

LOB value. BLOB, NCLOB, and CLOB values can be stored in separate

tablespaces. BFILE data is stored in an external file on the server.

■ When you access a LOB column, the locator is returned.

■ A LOB can be up to 4 gigabytes in size. BFILE maximum size is operating

system dependent, but cannot exceed 4 gigabytes.

■ LOBs permit efficient, random, piece-wise access to and manipulation of data.

■ You can define more than one LOB column in a table.

■ With the exception of NCLOB, you can define one or more LOB attributes in an

object.

■ You can declare LOB bind variables.

■ You can select LOB columns and LOB attributes.

■ You can insert a new row or update an existing row that contains one or more

LOB columns and/or an object with one or more LOB attributes. (You can set

the internal LOB value to NULL, empty, or replace the entire LOB with data. You

can set the BFILE to NULL or make it point to a different file.)

■ You can update a LOB row/column intersection or a LOB attribute with

another LOB row/column intersection or LOB attribute.

■ You can delete a row containing a LOB column or LOB attribute and thereby

also delete the LOB value. Note that for BFILEs, the actual operating system file

is not deleted.

You can access and populate rows of an internal LOB column (a LOB column stored

in the database) simply by issuing an INSERT or UPDATE statement. However, to

access and populate a LOB attribute that is part of an object type, you must first

initialize the LOB attribute using the EMPTY_CLOB or EMPTY_BLOB function. You
Basic Elements of Oracle SQL 2-17

Datatypes
can then select the empty LOB attribute and populate it using the DBMS_LOB
package or some other appropriate interface.

The following example creates a table with LOB columns. (It assumes the existence

of tablespace resumes).

CREATE TABLE person_table (name CHAR(40),
 resume CLOB,
 picture BLOB)
 LOB (resume) STORE AS
 (TABLESPACE resumes
 STORAGE (INITIAL 5M NEXT 5M));

BFILE Datatype
The BFILE datatype enables access to binary file LOBs that are stored in file systems

outside the Oracle database. A BFILE column or attribute stores a BFILE locator,

which serves as a pointer to a binary file on the server’s file system. The locator

maintains the directory alias and the filename.

Binary file LOBs do not participate in transactions and are not recoverable. Rather,

the underlying operating system provides file integrity and durability. The

maximum file size supported is 4 gigabytes.

The database administrator must ensure that the file exists and that Oracle

processes have operating system read permissions on the file.

The BFILE datatype allows read-only support of large binary files. You cannot

modify or replicate such a file. Oracle provides APIs to access file data. The primary

interfaces that you use to access file data are the DBMS_LOB package and the OCI.

See Also: "EMPTY_[B | C]LOB" on page 4-37

See Also:

■ Oracle8i Supplied PL/SQL Packages Reference and Oracle Call
Interface Programmer’s Guide for more information about these

interfaces and LOBs

■ Oracle8i Application Developer’s Guide - Large Objects (LOBs) for

information on creating temporary LOBs and on LOB

restrictions

■ "TO_LOB" on page 4-111 for more information on converting

LONG columns to LOB columns
2-18 SQL Reference

Datatypes
BLOB Datatype
The BLOB datatype stores unstructured binary large objects. BLOBs can be thought

of as bitstreams with no character set semantics. BLOBs can store up to 4 gigabytes

of binary data.

BLOBs have full transactional support. Changes made through SQL, the DBMS_LOB
package, or the OCI participate fully in the transaction. BLOB value manipulations

can be committed and rolled back. Note, however, that you cannot save a BLOB
locator in a PL/SQL or OCI variable in one transaction and then use it in another

transaction or session.

CLOB Datatype
The CLOB datatype stores single-byte character data. Both fixed-width and variable-

width character sets are supported, and both use the CHAR database character set.

CLOBs can store up to 4 gigabytes of character data.

CLOBs have full transactional support. Changes made through SQL, the DBMS_LOB
package, or the OCI participate fully in the transaction. CLOB value manipulations

can be committed and rolled back. Note, however, that you cannot save a CLOB
locator in a PL/SQL or OCI variable in one transaction and then use it in another

transaction or session.

NCLOB Datatype
The NCLOB datatype stores multibyte national character set character (NCHAR) data.

Both fixed-width and variable-width character sets are supported. NCLOBscan store

up to 4 gigabytes of character text data.

NCLOBs have full transactional support. Changes made through SQL, the DBMS_
LOB package, or the OCI participate fully in the transaction. NCLOB value

manipulations can be committed and rolled back. Note, however, that you cannot

save an NCLOB locator in a PL/SQL or OCI variable in one transaction and then use

it in another transaction or session.

See Also:

■ Oracle8i Application Developer’s Guide - Large Objects (LOBs) and

Oracle Call Interface Programmer’s Guide for more information

about LOBs.

■ CREATE DIRECTORY on page 9-40
Basic Elements of Oracle SQL 2-19

Datatypes
ROWID Datatype
Each row in the database has an address. You can examine a row’s address by

querying the pseudocolumn ROWID. Values of this pseudocolumn are hexadecimal

strings representing the address of each row. These strings have the datatype

ROWID. You can also create tables and clusters that contain actual columns having

the ROWID datatype. Oracle does not guarantee that the values of such columns are

valid rowids.

Restricted Rowids
Beginning with Oracle8, Oracle SQL incorporated an extended format for rowids to

efficiently support partitioned tables and indexes and tablespace-relative data block

addresses (DBAs) without ambiguity.

Character values representing rowids in Oracle7 and earlier releases are called

restricted rowids. Their format is as follows:

block.row.file

where:

Extended Rowids
The extended ROWID datatype stored in a user column includes the data in the

restricted rowid plus a data object number. The data object number is an

identification number assigned to every database segment. You can retrieve the data

object number from data dictionary views USER_OBJECTS, DBA_OBJECTS, and

ALL_OBJECTS. Objects that share the same segment (clustered tables in the same

cluster, for example) have the same object number.

See Also: "Pseudocolumns" on page 2-59 for more information on

the ROWID pseudocolumn

block is a hexadecimal string identifying the data block of the datafile

containing the row. The length of this string depends on your

operating system.

row is a four-digit hexadecimal string identifying the row in the data

block. The first row of the block has a digit of 0.

file is a hexadecimal string identifying the database file containing the

row. The first datafile has the number 1. The length of this string

depends on your operating system.
2-20 SQL Reference

Datatypes
Extended rowids are stored as base 64 values that can contain the characters A-Z, a-

z, 0-9, as well as the plus sign (+) and forward slash (/). Extended rowids are not

available directly. You can use a supplied package, DBMS_ROWID, to interpret

extended rowid contents. The package functions extract and provide information

that would be available directly from a restricted rowid, as well as information

specific to extended rowids.

Compatibility and Migration
The restricted form of a rowid is still supported in Oracle8i for backward

compatibility, but all tables return rowids in the extended format.

UROWID Datatype
Each row in a database has an address. However, the rows of some tables have

addresses that are not physical or permanent, or were not generated by Oracle. For

example, the row addresses of index-organized tables are stored in index leaves,

which can move. Rowids of foreign tables (such as DB2 tables accessed through a

gateway) are not standard Oracle rowids.

Oracle uses "universal rowids" (urowids) to store the addresses of index-organized

and foreign tables. Index-organized tables have logical urowids and foreign tables

have foreign urowids. Both types of urowid are stored in the ROWID pseudocolumn

(as are the physical rowids of heap-organized tables).

Oracle creates logical rowids based on a table’s primary key. The logical rowids do

not change as long as the primary key does not change. The ROWID pseudocolumn

of an index-organized table has a datatype of UROWID. You can access this

pseudocolumn as you would the ROWID pseudocolumn of a heap-organized (that

is, using the SELECT ROWID statement). If you wish to store the rowids of an index-

organized table, you can define a column of type UROWID for the table and retrieve

the value of the ROWID pseudocolumn into that column.

See Also: Oracle8i Supplied PL/SQL Packages Reference for

information on the functions available with the DBMS_ROWID
package and how to use them

See Also: Oracle8i Migration for information regarding

compatibility and migration issues
Basic Elements of Oracle SQL 2-21

Datatypes
ANSI, DB2, and SQL/DS Datatypes
SQL statements that create tables and clusters can also use ANSI datatypes and

datatypes from IBM’s products SQL/DS and DB2. Oracle recognizes the ANSI or

IBM datatype name and records it as the name of the datatype of the column, and

then stores the column’s data in an Oracle datatype based on the conversions

shown in Table 2–2 and Table 2–3.

Note: Heap-organized tables have physical rowids. Oracle

Corporation does not recommend that you specify a column of

datatype UROWID for a heap-organized table.

See Also:

■ Oracle8i Concepts and Oracle8i Performance Guide and Reference
for more information on the UROWID datatype and how Oracle

generates and manipulates universal rowids

■ "ROWID Datatype" on page 2-20 for a discussion of the address

of database rows

Table 2–2 ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype

CHARACTER(n)

CHAR(n)

CHAR(n)

CHARACTER VARYING(n)

CHAR VARYING(n)

VARCHAR(n)

NATIONAL CHARACTER(n)

NATIONAL CHAR(n)

NCHAR(n)

NCHAR(n)
2-22 SQL Reference

Datatypes
NATIONAL CHARACTER
VARYING(n)

NATIONAL CHAR VARYING(n)

NCHAR VARYING(n)

NVARCHAR2(n)

NUMERIC(p,s)

DECIMAL(p,s) a

NUMBER(p,s)

INTEGER

INT

SMALLINT

NUMBER(38)

FLOAT(b) b

DOUBLE PRECISIONc

REALd

NUMBER

aThe NUMERIC and DECIMAL datatypes can specify only fixed-point numbers. For these
datatypes, s defaults to 0.

bThe FLOAT datatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

cThe DOUBLE PRECISION datatype is a floating-point number with binary precision 126.
dThe REAL datatype is a floating-point number with a binary precision of 63, or 18 decimal.

Table 2–3 SQL/DS and DB2 Datatypes Converted to Oracle Datatypes

SQL/DS or DB2 Datatype Oracle Datatype

CHARACTER(n) CHAR(n)

VARCHAR(n) VARCHAR(n)

LONG VARCHAR(n) LONG

DECIMAL(p,s) a NUMBER(p,s)

INTEGER

SMALLINT

NUMBER(38)

FLOAT(b)b NUMBER

Table 2–2 ANSI Datatypes Converted to Oracle Datatypes
Basic Elements of Oracle SQL 2-23

Datatypes
Do not define columns with these SQL/DS and DB2 datatypes, because they have

no corresponding Oracle datatype:

■ GRAPHIC

■ LONG VARGRAPHIC

■ VARGRAPHIC

■ TIME

■ TIMESTAMP

Note that data of type TIME and TIMESTAMP can also be expressed as Oracle DATE
data.

User-Defined Type Categories
User-defined datatypes use Oracle built-in datatypes and other user-defined

datatypes as the building blocks of types that model the structure and behavior of

data in applications.

The sections that follow describe the various categories of user-defined types.

Object Types
Object types are abstractions of the real-world entities, such as purchase orders, that

application programs deal with. An object type is a schema object with three kinds

of components:

aThe DECIMAL datatype can specify only fixed-point numbers. For this datatype, s defaults to
0.

bThe FLOAT datatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

See Also:

■ Oracle8i Concepts for information about Oracle built-in

datatypes

■ CREATE TYPE on page 10-80 and the CREATE TYPE BODY on

page 10-93 for information about creating user-defined types

■ Oracle8i Application Developer’s Guide - Fundamentals for

information about using user-defined types

Table 2–3 SQL/DS and DB2 Datatypes Converted to Oracle Datatypes
2-24 SQL Reference

Datatypes
■ A name, which identifies the object type uniquely within that schema

■ Attributes, which are built-in types or other user-defined types. Attributes

model the structure of the real-world entity

■ Methods, which are functions or procedures written in PL/SQL and stored in

the database, or written in a language like C or Java and stored externally.

Methods implement operations the application can perform on the real-world

entity.

REFs
An object identifier (OID) uniquely identifies an object and enables you to

reference the object from other objects or from relational tables. A datatype category

called REF represents such references. A REF is a container for an object identifier.

REFs are pointers to objects.

When a REF value points to a nonexistent object, the REF is said to be "dangling". A

dangling REF is different from a null REF. To determine whether a REF is dangling

or not, use the predicate IS [NOT] DANGLING. For example, given table dept with

column mgr whose type is a REF to type emp_t , which has an attribute name:

SELECT t.mgr.name
 FROM dept t
 WHERE t.mgr IS NOT DANGLING;

Varrays
An array is an ordered set of data elements. All elements of a given array are of the

same datatype. Each element has an index, which is a number corresponding to the

element’s position in the array.

The number of elements in an array is the size of the array. Oracle arrays are of

variable size, which is why they are called varrays. You must specify a maximum

size when you declare the array.

When you declare a varray, it does not allocate space. It defines a type, which you

can use as:

■ The datatype of a column of a relational table

■ An object type attribute

■ A PL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (that is, as part of the row data)

or out of line (in a LOB), depending on its size. However, if you specify separate
Basic Elements of Oracle SQL 2-25

Datatypes
storage characteristics for a varray, Oracle will store it out of line, regardless of its

size.

Nested Tables
A nested table type models an unordered set of elements. The elements may be

built-in types or user-defined types. You can view a nested table as a single-column

table or, if the nested table is an object type, as a multicolumn table, with a column

for each attribute of the object type.

A nested table definition does not allocate space. It defines a type, which you can

use to declare:

■ Columns of a relational table

■ Object type attributes

■ PL/SQL variables, parameters, and function return values

When a nested table appears as the type of a column in a relational table or as an

attribute of the underlying object type of an object table, Oracle stores all of the

nested table data in a single table, which it associates with the enclosing relational

or object table.

Datatype Comparison Rules
This section describes how Oracle compares values of each datatype.

Number Values
A larger value is considered greater than a smaller one. All negative numbers are

less than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

Date Values
A later date is considered greater than an earlier one. For example, the date

equivalent of ’29-MAR-1997’ is less than that of ’05-JAN-1998’ and ’05-JAN-1998

1:35pm’ is greater than ’05-JAN-1998 10:09am’.

Character String Values
Character values are compared using one of these comparison rules:

See Also: The varray_storage_clause of CREATE TABLE on

page 10-32
2-26 SQL Reference

Datatypes
■ blank-padded comparison semantics

■ nonpadded comparison semantics

The following sections explain these comparison semantics. The results of

comparing two character values using different comparison semantics may vary.

The table below shows the results of comparing five pairs of character values using

each comparison semantic. Usually, the results of blank-padded and nonpadded

comparisons are the same. The last comparison in the table illustrates the

differences between the blank-padded and nonpadded comparison semantics.

Blank-Padded Comparison Semantics If the two values have different lengths, Oracle

first adds blanks to the end of the shorter one so their lengths are equal. Oracle then

compares the values character by character up to the first character that differs. The

value with the greater character in the first differing position is considered greater.

If two values have no differing characters, then they are considered equal. This rule

means that two values are equal if they differ only in the number of trailing blanks.

Oracle uses blank-padded comparison semantics only when both values in the

comparison are either expressions of datatype CHAR, NCHAR, text literals, or values

returned by the USER function.

Nonpadded Comparison Semantics Oracle compares two values character by character

up to the first character that differs. The value with the greater character in that

position is considered greater. If two values of different length are identical up to

the end of the shorter one, the longer value is considered greater. If two values of

equal length have no differing characters, then the values are considered equal.

Oracle uses nonpadded comparison semantics whenever one or both values in the

comparison have the datatype VARCHAR2 or NVARCHAR2.

Blank-Padded Nonpadded

’ab’ > ’aa’ ’ab’ > ’aa’

’ab’ > ’a ’ ’ab’ > ’a ’

’ab’ > ’a’ ’ab’ > ’a’

’ab’ = ’ab’ ’ab’ = ’ab’

’a ’ = ’a’ ’a ’ > ’a’
Basic Elements of Oracle SQL 2-27

Datatypes
Single Characters
Oracle compares single characters according to their numeric values in the database

character set. One character is greater than another if it has a greater numeric value

than the other in the character set. Oracle considers blanks to be less than any

character, which is true in most character sets.

These are some common character sets:

■ 7-bit ASCII (American Standard Code for Information Interchange)

■ EBCDIC Code (Extended Binary Coded Decimal Interchange Code)

■ ISO 8859/1 (International Standards Organization)

■ JEUC Japan Extended UNIX

Portions of the ASCII and EBCDIC character sets appear in Table 2–4 and Table 2–5.

Note that uppercase and lowercase letters are not equivalent. Also, note that the

numeric values for the characters of a character set may not match the linguistic

sequence for a particular language.

Table 2–4 ASCII Character Set

Symbol Decimal value Symbol Decimal value

blank 32 ; 59

! 33 < 60

" 34 = 61

35 > 62

$ 36 ? 63

% 37 @ 64

& 38 A-Z 65-90

’ 39 [91

(40 \ 92

) 41] 93

* 42 ^ 94

+ 43 _ 95

, 44 ‘ 96

- 45 a-z 97-122
2-28 SQL Reference

Datatypes
Object Values
Object values are compared using one of two comparison functions: MAP and

ORDER. Both functions compare object type instances, but they are quite different

from one another. These functions must be specified as part of the object type.

. 46 { 123

/ 47 | 124

0-9 48-57 } 125

: 58 ~ 126

Table 2–5 EBCDIC Character Set

Symbol Decimal value Symbol Decimal value

blank 64 % 108

¢ 74 _ 109

. 75 > 110

< 76 ? 111

(77 : 122

+ 78 # 123

| 79 @ 124

& 80 ’ 125

! 90 = 126

$ 91 " 127

* 92 a-i 129-137

) 93 j-r 145-153

; 94 s-z 162-169

ÿ 95 A-I 193-201

- 96 J-R 209-217

/ 97 S-Z 226-233

Table 2–4 (Cont.) ASCII Character Set

Symbol Decimal value Symbol Decimal value
Basic Elements of Oracle SQL 2-29

Datatypes
Varrays and Nested Tables
You cannot compare varrays and nested tables in Oracle8i.

Data Conversion
Generally an expression cannot contain values of different datatypes. For example,

an expression cannot multiply 5 by 10 and then add ’JAMES’. However, Oracle

supports both implicit and explicit conversion of values from one datatype to

another.

Implicit Data Conversion
Oracle automatically converts a value from one datatype to another when such a

conversion makes sense. Oracle performs conversions in these cases:

■ When an INSERT or UPDATE statement assigns a value of one datatype to a

column of another, Oracle converts the value to the datatype of the column.

■ When you use a SQL function or operator with an argument with a datatype

other than the one it accepts, Oracle converts the argument to the accepted

datatype.

■ When you use a comparison operator on values of different datatypes, Oracle

converts one of the expressions to the datatype of the other.

Implicit Data Conversion Examples

Text Literal Example The text literal ’10’ has datatype CHAR. Oracle implicitly

converts it to the NUMBER datatype if it appears in a numeric expression as in the

following statement:

SELECT sal + ’10’
 FROM emp;

Character and Number Values Example When a condition compares a character

value and a NUMBER value, Oracle implicitly converts the character value to a

NUMBER value, rather than converting the NUMBER value to a character value. In

the following statement, Oracle implicitly converts ’7936’ to 7936:

See Also: "CREATE TYPE" on page 10-80 and Oracle8i Application
Developer’s Guide - Fundamentals for a description of MAPand ORDER
methods and the values they return
2-30 SQL Reference

Datatypes
SELECT ename
 FROM emp
 WHERE empno = ’7936’;

Date Example In the following statement, Oracle implicitly converts ’12-MAR-

1993’ to a DATE value using the default date format ’DD-MON-YYYY’:

SELECT ename
 FROM emp
 WHERE hiredate = ’12-MAR-1993’;

Rowid Example In the following statement, Oracle implicitly converts the text

literal ’AAAAZ8AABAAABvlAAA’ to a rowid value:

SELECT ename
 FROM emp
 WHERE ROWID = ’AAAAZ8AABAAABvlAAA’;

Explicit Data Conversion
You can also explicitly specify datatype conversions using SQL conversion

functions. Table 2–6 shows SQL functions that explicitly convert a value from one

datatype to another.
Basic Elements of Oracle SQL 2-31

Datatypes
Implicit vs. Explicit Data Conversion
Oracle recommends that you specify explicit conversions rather than rely on

implicit or automatic conversions for these reasons:

■ SQL statements are easier to understand when you use explicit datatype

conversion functions.

■ Automatic datatype conversion can have a negative impact on performance,

especially if the datatype of a column value is converted to that of a constant

rather than the other way around.

Table 2–6 SQL Functions for Datatype Conversion

 TO / FROM CHAR NUMBER DATE RAW ROWID
LONG/

LONG RAW LOB

CHAR
— TO_NUMBER TO_DATE HEXTORAW CHARTO-

ROWID

NUMBER
TO_CHAR

— TO_DATE

(number,’
J’)

DATE
TO_CHAR

TO_CHAR

(date,’J’
)

—

RAW RAWTOHEX —

ROWID
ROWID-
TOCHAR

—

LONG /
LONG RAW

— TO_LOB

LOB —

Note: You cannot specify LONG and LONG RAW values in cases in

which Oracle can perform implicit datatype conversion. For

example, LONG and LONG RAW values cannot appear in expressions

with functions or operators. For information on the limitations on

LONG and LONG RAW datatypes, see "LONG Datatype" on page 2-12.

See Also: "Conversion Functions" on page 4-5
2-32 SQL Reference

Literals
■ Implicit conversion depends on the context in which it occurs and may not

work the same way in every case. For example, implicit conversion from a date

value to a VARCHAR2 value may return an unexpected year depending on the

value of the NLS_DATE_FORMAT parameter.

■ Algorithms for implicit conversion are subject to change across software

releases and among Oracle products. Behavior of explicit conversions is more

predictable.

Literals
The terms literal and constant value are synonymous and refer to a fixed data

value. For example, ’JACK’, ’BLUE ISLAND’, and ’101’ are all character literals;

5001 is a numeric literal. Note that character literals are enclosed in single quotation

marks, which enable Oracle to distinguish them from schema object names.

This section contains these topics:

■ Text

■ Integer

■ Number

■ Interval

Many SQL statements and functions require you to specify character and numeric

literal values. You can also specify literals as part of expressions and conditions. You

can specify character literals with the ’text ’ notation, national character literals

with the N’text ’ notation, and numeric literals with the integer or number
notation, depending on the context of the literal. The syntactic forms of these

notations appear in the sections that follow.

To specify a datetime or interval datatype as a literal, you must take into account

any optional precisions included in the datatypes. Examples of specifying datetime

and interval datatypes as literals are provided in the relevant sections of

"Datatypes" on page 2-2.

Text
Text specifies a text or character literal. You must use this notation to specify values

whenever ’text’ or char appear in expressions, conditions, SQL functions, and

SQL statements in other parts of this reference.

The syntax of text is as follows:
Basic Elements of Oracle SQL 2-33

Literals
text::=

where

■ N specifies representation of the literal using the national character set. Text

entered using this notation is translated into the national character set by Oracle

when used.

■ c is any member of the user’s character set, except a single quotation mark (’).

■ ’ ’ are two single quotation marks that begin and end text literals. To represent

one single quotation mark within a literal, enter two single quotation marks.

A text literal must be enclosed in single quotation marks. This reference uses the

terms text literal and character literal interchangeably.

Text literals have properties of both the CHAR and VARCHAR2 datatypes:

■ Within expressions and conditions, Oracle treats text literals as though they

have the datatype CHAR by comparing them using blank-padded comparison

semantics.

■ A text literal can have a maximum length of 4000 bytes.

Here are some valid text literals:

’Hello’
’ORACLE.dbs’
’Jackie’’s raincoat’
’09-MAR-98’
N’nchar literal’

Integer
You must use the integer notation to specify an integer whenever integer appears

in expressions, conditions, SQL functions, and SQL statements described in other

parts of this reference.

See Also:

■ "Expressions" on page 5-2 for the syntax description of expr

■ "Blank-Padded Comparison Semantics" on page 2-27

N
’ c ’
2-34 SQL Reference

Literals
The syntax of integer is as follows:

integer::=

where digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

An integer can store a maximum of 38 digits of precision.

Here are some valid integers:

7
+255

Number
You must use the number notation to specify values whenever number appears in

expressions, conditions, SQL functions, and SQL statements in other parts of this

reference.

The syntax of number is as follows:

number::=

where

See Also: "Expressions" on page 5-2 for the syntax description of

expr

+

–
digit

+

– digit
. digit

. digit

E

e

+

–
digit
Basic Elements of Oracle SQL 2-35

Literals
■ + or - indicates a positive or negative value. If you omit the sign, a positive

value is the default.

■ digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9.

■ e or E indicates that the number is specified in scientific notation. The digits

after the E specify the exponent. The exponent can range from -130 to 125.

A number can store a maximum of 38 digits of precision.

If you have established a decimal character other than a period (.) with the

initialization parameter NLS_NUMERIC_CHARACTERS, you must specify numeric

literals with ’text’ notation. In such cases, Oracle automatically converts the text

literal to a numeric value.

For example, if the NLS_NUMERIC_CHARACTERS parameter specifies a decimal

character of comma, specify the number 5.123 as follows:

’5,123’

Here are some valid representations of number :

25
+6.34
0.5
25e-03
-1

Interval
An interval literal specifies a period of time. You can specify these differences in

terms of years and months, or in terms of days, hours, minutes, and seconds. Oracle

supports two types of interval literals, YEAR TO MONTH and DAY TO SECOND. Each

type contains a leading field and may contain a trailing field. The leading field

defines the basic unit of date or time being measured. The trailing field defines the

smallest increment of the basic unit being considered. For example, a YEAR TO
MONTH interval considers an interval of years to the nearest month. A DAY TO
MINUTE interval considers an interval of days to the nearest minute.

See Also: ALTER SESSION on page 7-105 and Oracle8i Reference

See Also: "Expressions" on page 5-2 for the syntax description of

expr
2-36 SQL Reference

Literals
If you have date data in numeric form, you can use the NUMTOYMINTERVAL or

NUMTODSINTERVAL conversion function to convert the numeric data into interval

literals.

Interval literals are used primarily with analytic functions.

INTERVAL YEAR TO MONTH
Specify YEAR TO MONTH interval literals using the following syntax:

where

■ ’integer [-integer]’ specifies integer values for the leading and optional

trailing field of the literal. If the leading field is YEAR and the trailing field is

MONTH, the range of integer values for the month field is 0 to 11.

■ precision is the number of digits in the leading field. The valid range of the

leading field precision is 0 to 9 and its default value is 2.

Restriction: The leading field must be a larger time element than the trailing field.

For example, INTERVAL ’0-1’ MONTH TO YEAR is not valid.

The following INTERVAL YEAR TO MONTHliteral indicates an interval of 123 years, 2

months:

INTERVAL ’123-2’ YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated

versions:

See Also:

■ "Analytic Functions" on page 4-8 and Oracle8i Data Warehousing
Guide

■ "NUMTODSINTERVAL" on page 4-69 and

"NUMTOYMINTERVAL" on page 4-70

INTERVAL ’ integer
– integer

’

YEAR

MONTH

(precision)
TO

YEAR

MONTH
Basic Elements of Oracle SQL 2-37

Literals
You can add or subtract one INTERVAL YEAR TO MONTHliteral to or from another to

yield another INTERVAL YEAR TO MONTH literal. For example:

INTERVAL ’5-3’ YEAR TO MONTH + INTERVAL ’20’ MONTH TO MONTH =
INTERVAL ’6-11’ YEAR TO MONTH

INTERVAL ’123-2’ YEAR(3) TO
MONTH

indicates an interval of 123 years, 2

months. You must specify the leading field

precision if it is greater than the default of

2 digits.

INTERVAL ’123’ YEAR(3) indicates an interval of 123 years 0 months.

INTERVAL ’300’ MONTH(3) indicates an interval of 300 months.

INTERVAL ’4’ YEAR maps to INTERVAL ’4-0’ YEAR TO MONTH
and indicates 4 years.

INTERVAL ’50’ MONTH maps to INTERVAL ’4-2’ YEAR TO MONTH
and indicates 50 months or 4 years 2

months.

INTERVAL ’123’ YEAR returns an error, because the default

precision is 2, and ’123’ has 3 digits.
2-38 SQL Reference

Literals
INTERVAL DAY TO SECOND
Specify DAY TO SECOND interval literals using the following syntax:

where

■ integer specifies the number of days. If this value contains more digits than

the number specified by the leading precision, Oracle returns an error.

■ time_expr specifies a time in the format HH[:MI[:SS[.n]]]or MI[:SS[.n]] or

SS[.n], where n specifies the fractional part of a second. If n contains more digits

than the number specified by fractional_seconds_precision , then n is

rounded to the number of digits specified by the fractional_seconds_
precision value. You can specify time_expr following an integer and a

space only if the leading field is DAY.

■ leading_precision is the number of digits in the leading field. Accepted

values are 0 to 9. The default is 2.

■ fractional_seconds_precision is the number of digits in the fractional

part of the SECOND datetime field. Accepted values are 1 to 9. The default is 6.

INTERVAL ’

integer

integer time_expr

time_expr

’

DAY

HOUR

MINUTE

(leading_precision)

SECOND
(leading_precision

, fractional_seconds_precision
)

TO

DAY

HOUR

MINUTE

SECOND
(fractional_seconds_precision)
Basic Elements of Oracle SQL 2-39

Literals
Restriction: The leading field must be a larger time element than the trailing field.

For example, INTERVAL MINUTE TO DAY is not valid. As a result of this restriction,

if SECOND is the leading field, the interval literal cannot have any trailing field.

The valid range of values for the trailing field are as follows:

Examples of the various forms of INTERVAL DAY TO SECOND literals follow,

including some abbreviated versions:

HOUR 0 to 23

MINUTE 0 to 59

SECOND 0 to 59.999999999

INTERVAL ’4 5:12:10.222’ DAY (3) TO
SECOND(3)

indicates 4 days, 5 hours, 12 minutes,

10 seconds, and 222 thousandths of a

second.

INTERVAL ’4 5:12’ DAY TO MINUTE indicates 4 days, 5 hours and 12

minutes.

INTERVAL ’400 5’ DAY(3) TO HOUR indicates 400 days 5 hours.

INTERVAL ’400’ DAY(3) indicates 400 days.

INTERVAL ’11:12:10.2222222’ HOUR
TO SECOND(7)

indicates 11 hours, 12 minutes, and

10.2222222 seconds.

INTERVAL ’11:20’ HOUR TO MINUTE indicates 11 hours and 20 minutes.

INTERVAL ’10’ HOUR indicates 10 hours.

INTERVAL ’10:22’ MINUTE TO
SECOND

indicates 10 minutes 22 seconds.

INTERVAL ’10’ MINUTE indicates 10 minutes.

INTERVAL ’4’ DAY indicates 4 days.

INTERVAL ’25’ HOUR indicates 25 hours.

INTERVAL ’40’ MINUTE indicates 40 minutes.

INTERVAL ’120’ HOUR(3) indicates 120 hours

INTERVAL ’30.12345’ SECOND(2,4) indicates 30.1235 seconds. The

fractional second ’12345’ is rounded to

’1235’ because the precision is 4.
2-40 SQL Reference

Format Models
You can add or subtract one DAY TO SECOND interval literal from another DAY TO
SECOND literal. For example.

INTERVAL ’20’ DAY - INTERVAL ’240’ HOUR = INTERVAL ’10’ DAY

Format Models
A format model is a character literal that describes the format of DATE or NUMBER
data stored in a character string. When you convert a character string into a date or

number, a format model tells Oracle how to interpret the string. In SQL statements,

you can use a format model as an argument of the TO_CHAR and TO_DATE
functions:

■ To specify the format for Oracle to use to return a value from the database

■ To specify the format for a value you have specified for Oracle to store in the

database

For example, the date format model for the string ’17:45:29 ’ is ’HH24:MI:SS ’.

The date format model for the string ’11-Nov-1999 ’ is ’DD-Mon-YYYY’. The

number format model for the string ’$2,304.25 ’ is ’$9,999.99 ’. For lists of date

and number format model elements, see Table 2–7, "Number Format Elements" on

page 2-44 and Table 2–9, "Datetime Format Elements" on page 2-49.

The values of some formats are determined by the value of initialization

parameters. For such formats, you can specify the characters returned by these

format elements implicitly using the initialization parameter NLS_TERRITORY. You

can change the default date format for your session with the ALTER SESSION

statement.

Format of Return Values: Examples You can use a format model to specify the

format for Oracle to use to return values from the database to you.

Note: A format model does not change the internal representation

of the value in the database.

See Also:

■ Oracle8i Reference and Oracle8i National Language Support Guide
for information on these parameters

■ ALTER SESSION on page 7-105 for information on changing

the values of these parameters
Basic Elements of Oracle SQL 2-41

Format Models
The following statement selects the commission values of the employees in

Department 30 and uses the TO_CHAR function to convert these commissions into

character values with the format specified by the number format model

’$9,990.99 ’:

SELECT ename employee, TO_CHAR(comm, ’$9,990.99’) commission
 FROM emp
 WHERE deptno = 30;

EMPLOYEE COMMISSION
---------- ----------
ALLEN $300.00
WARD $500.00
MARTIN $1,400.00
BLAKE
TURNER $0.00
JAMES

Because of this format model, Oracle returns commissions with leading dollar signs,

commas every three digits, and two decimal places. Note that TO_CHARreturns null

for all employees with null in the comm column.

The following statement selects the date on which each employee from Department

20 was hired and uses the TO_CHAR function to convert these dates to character

strings with the format specified by the date format model ’fmMonth DD, YYYY ’:

 SELECT ename, TO_CHAR(Hiredate,’fmMonth DD, YYYY’) hiredate
 FROM emp
 WHERE deptno = 20;

ENAME HIREDATE
---------- ------------------
SMITH December 17, 1980
JONES April 2, 1981
SCOTT April 19, 1987
ADAMS May 23, 1987
FORD December 3, 1981
LEWIS October 23, 1997

With this format model, Oracle returns the hire dates (as specified by "fm") without

blank padding, two digits for the day, and the century included in the year.

See Also: "Format Model Modifiers" on page 2-54 for a description

of the fm format element
2-42 SQL Reference

Format Models
Supplying the Correct Format Model: Examples When you insert or update a

column value, the datatype of the value that you specify must correspond to the

column’s datatype. You can use format models to specify the format of a value that

you are converting from one datatype to another datatype required for a column.

For example, a value that you insert into a DATE column must be a value of the

DATE datatype or a character string in the default date format (Oracle implicitly

converts character strings in the default date format to the DATE datatype). If the

value is in another format, you must use the TO_DATE function to convert the value

to the DATEdatatype. You must also use a format model to specify the format of the

character string.

The following statement updates BAKER’s hire date using the TO_DATE function

with the format mask ’YYYY MM DD’ to convert the character string ’1998 05 20’ to

a DATE value:

UPDATE emp
 SET hiredate = TO_DATE(’1998 05 20’,’YYYY MM DD’)
 WHERE ename = ’BLAKE’;

This remainder of this section describes how to use:

■ Number Format Models

■ Date Format Models

■ Format Model Modifiers

Number Format Models
You can use number format models:

■ In the TO_CHAR function to translate a value of NUMBER datatype to VARCHAR2
datatype

■ In the TO_NUMBER function to translate a value of CHAR or VARCHAR2 datatype

to NUMBER datatype

All number format models cause the number to be rounded to the specified number

of significant digits. If a value has more significant digits to the left of the decimal

place than are specified in the format, pound signs (#) replace the value. If a positive

value is extremely large and cannot be represented in the specified format, then the

See Also: "TO_CHAR (date conversion)" on page 4-108, "TO_

CHAR (number conversion)" on page 4-109, and "TO_DATE" on

page 4-110
Basic Elements of Oracle SQL 2-43

Format Models
infinity sign (~) replaces the value. Likewise, if a negative value is extremely small

and cannot be represented by the specified format, then the negative infinity sign

replaces the value (-~). This event typically occurs when you are using TO_CHAR
with a restrictive number format string, causing a rounding operation.

Number Format Elements
A number format model is composed of one or more number format elements.

Table 2–7 lists the elements of a number format model. Examples are shown in

Table 2–8.

Negative return values automatically contain a leading negative sign and positive

values automatically contain a leading space unless the format model contains the

MI, S, or PR format element.

Table 2–7 Number Format Elements

Element Example Description

, (comma) 9,999 Returns a comma in the specified position. You can specify
multiple commas in a number format model.

Restrictions:

■ A comma element cannot begin a number format model.

■ A comma cannot appear to the right of a decimal character
or period in a number format model.

. (period) 99.99 Returns a decimal point, which is a period (.) in the specified
position.

Restriction: You can specify only one period in a number format
model.

$ $9999 Returns value with a leading dollar sign.

0 0999

9990

Returns leading zeros.

Returns trailing zeros.

9 9999 Returns value with the specified number of digits with a leading
space if positive or with a leading minus if negative.

Leading zeros are blank, except for a zero value, which returns a
zero for the integer part of the fixed-point number.

B B9999 Returns blanks for the integer part of a fixed-point number
when the integer part is zero (regardless of "0"s in the format
model).

C C999 Returns in the specified position the ISO currency symbol (the
current value of the NLS_ISO_CURRENCY parameter).
2-44 SQL Reference

Format Models
D 99D99 Returns in the specified position the decimal character, which is
the current value of the NLS_NUMERIC_CHARACTER parameter.
The default is a period (.).

Restriction: You can specify only one decimal character in a
number format model.

EEEE 9.9EEEE Returns a value using in scientific notation.

FM FM90.9 Returns a value with no leading or trailing blanks.

G 9G999 Returns in the specified position the group separator (the
current value of the NLS_NUMERIC_CHARACTER parameter).
You can specify multiple group separators in a number format
model.

Restriction: A group separator cannot appear to the right of a
decimal character or period in a number format model.

L L999 Returns in the specified position the local currency symbol (the
current value of the NLS_CURRENCY parameter).

MI 9999MI Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing blank.

Restriction: The MI format element can appear only in the last
position of a number format model.

PR 9999PR Returns negative value in <angle brackets>.

Returns positive value with a leading and trailing blank.

Restriction: The PR format element can appear only in the last
position of a number format model.

RN

rn

RN

rn

Returns a value as Roman numerals in uppercase.

Returns a value as Roman numerals in lowercase.

Value can be an integer between 1 and 3999.

S S9999

9999S

Returns negative value with a leading minus sign (-).

Returns positive value with a leading plus sign (+).

Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or
last position of a number format model.

Table 2–7 Number Format Elements

Element Example Description
Basic Elements of Oracle SQL 2-45

Format Models
Table 2–8 shows the results of the following query for different values of number
and ’fmt’ :

SELECT TO_CHAR(number, ’fmt’)
 FROM DUAL;

TM TM "Text minimum". Returns (in decimal output) the smallest
number of characters possible. This element is case-insensitive.

The default is TM9, which returns the number in fixed notation
unless the output exceeds 64 characters. If output exceeds 64
characters, Oracle automatically returns the number in scientific
notation.

Restrictions:

■ You cannot precede this element with any other element.

■ You can follow this element only with 9 or E (only one) or e
(only one).

U U9999 Returns in the specified position the "Euro" (or other) dual
currency symbol (the current value of the NLS_DUAL_
CURRENCY parameter).

V 999V99 Returns a value multiplied by 10n (and if necessary, round it up),
where n is the number of 9’s after the "V".

X XXXX

xxxx

Returns the hexadecimal value of the specified number of digits.
If the specified number is not an integer, Oracle rounds it to an
integer.

Restrictions:

■ This element accepts only positive values or 0. Negative
values return an error.

■ You can precede this element only with 0 (which returns
leading zeroes) or FM. Any other elements return an error.
If you specify neither 0 nor FM with X, the return always
has 1 leading blank.

Table 2–8 Results of Example Number Conversions

number ’fmt’ Result

-1234567890 9999999999S ’1234567890-’

 0 99.99 ’ .00’

Table 2–7 Number Format Elements

Element Example Description
2-46 SQL Reference

Format Models
Date Format Models
You can use date format models:

■ In the TO_DATE function to translate a character value that is in a format other

than the default date format into a DATE value

 +0.1 99.99 ’ .10’

 -0.2 99.99 ’ -.20’

 0 90.99 ’ 0.00’

 +0.1 90.99 ’ 0.10’

 -0.2 90.99 ’ -0.20’

 0 9999 ’ 0’

 1 9999 ’ 1’

 0 B9999 ’ ’

 1 B9999 ’ 1’

 0 B90.99 ’ ’

 +123.456 999.999 ’ 123.456’

 -123.456 999.999 ’-123.456’

 +123.456 FM999.009 ’123.456’

 +123.456 9.9EEEE ’ 1.2E+02’

 +1E+123 9.9EEEE ’ 1.0E+123’

 +123.456 FM9.9EEEE ’1.2E+02’

 +123.45 FM999.009 ’123.45’

 +123.0 FM999.009 ’123.00’

 +123.45 L999.99 ’ $123.45’

 +123.45 FML999.99 ’$123.45’

+1234567890 9999999999S ’1234567890+’

Table 2–8 Results of Example Number Conversions (Cont.)

number ’fmt’ Result
Basic Elements of Oracle SQL 2-47

Format Models
■ In the TO_CHAR function to translate a DATE value that is in a format other than

the default date format into a string (for example, to print the date from an

application)

The default date format is specified either explicitly with the initialization

parameter NLS_DATE_FORMAT or implicitly with the initialization parameter NLS_
TERRITORY. For information on these parameters, see Oracle8i Reference.

You can change the default date format for your session with the ALTER SESSION
statement.

The total length of a date format model cannot exceed 22 characters.

Date Format Elements
A date format model is composed of one or more date format elements as listed in

Table 2–9.

■ For input format models, format items cannot appear twice, and format items

that represent similar information cannot be combined. For example, you

cannot use ’SYYYY’ and ’BC’ in the same format string.

■ Some of the date format elements cannot be used in the TO_DATE function, as

noted in Table 2–9.

Capitalization of Date Format Elements Capitalization in a spelled-out word,

abbreviation, or Roman numeral follows capitalization in the corresponding format

element. For example, the date format model ’DAY’ produces capitalized words like

’MONDAY’; ’Day’ produces ’Monday’; and ’day’ produces ’monday’.

Punctuation and Character Literals in Date Format Models You can also include these

characters in a date format model:

■ Punctuation such as hyphens, slashes, commas, periods, and colons

■ Character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in

the format model.

See Also: ALTER SESSION on page 7-105
2-48 SQL Reference

Format Models
Table 2–9 Datetime Format Elements

Element
Specify in TO_

DATE? Meaning

-
/
,
.
;
:
"text"

Yes Punctuation and quoted text is reproduced in the
result.

AD or
A.D.

Yes AD indicator with or without periods.

Note: The indicator with periods is supported only if
the NLS_LANGUAGE parameter is set to AMERICAN.

AM
A.M.

Yes Meridian indicator with or without periods.

Note: The indicator with periods is supported only if
the NLS_LANGUAGE parameter is set to AMERICAN.

BC
B.C.

Yes BC indicator with or without periods.

Note: The indicator with periods is supported only if
the NLS_LANGUAGE parameter is set to AMERICAN.

CC
SCC

No The first two digits of the century of a four-digit year,
for example, ’19’ from ’1900’ and ’20’ from ’2001’. "S"
prefixes BC dates with "-".

D Yes Day of week (1-7). This element is used only to validate
a date specified in the TO_DATE function.

DAY Yes Name of day, padded with blanks to length of 9
characters. This element is used only to validate a date
specified in the TO_DATE function.

DD Yes Day of month (1-31).

DDD Yes Day of year (1-366).

DY Yes Abbreviated name of day. This element is used only to
validate a date specified in the TO_DATE function.

E Yes Abbreviated era name (Japanese Imperial, ROC
Official, and Thai Buddha calendars).

EE Yes Full era name (Japanese Imperial, ROC Official, and
Thai Buddha calendars).

HH Yes Hour of day (1-12).
Basic Elements of Oracle SQL 2-49

Format Models
HH12 Yes Hour of day (1-12).

HH24 Yes Hour of day (0-23).

IW No Week of year (1-52 or 1-53) based on the ISO standard.

IYY
IY
I

No Last 3, 2, or 1 digit(s) of ISO year.

IYYY No 4-digit year based on the ISO standard.

J Yes Julian day; the number of days since January 1, 4712
BC. Number specified with ’J’ must be integers.

MI Yes Minute (0-59).

MM Yes Two-digit numeric abbreviation of month (01-12; JAN =
01)

MON Yes Abbreviated name of month.

MONTH Yes Name of month, padded with blanks to length of 9
characters.

PM
P.M.

No Meridian indicator with or without periods.

Note: The indicator with periods is supported only if
the NLS_LANGUAGE parameter is set to AMERICAN.

Q No Quarter of year (1, 2, 3, 4; JAN-MAR = 1)

RM Yes Roman numeral month (I-XII; JAN = I).

RR Yes Given a year with 2 digits:

■ If the year is <50 and the last 2 digits of the current
year are >=50, the first 2 digits of the returned year
are 1 greater than the first two digits of the current
year.

■ If the year is >=50 and the last 2 digits of the
current year are <50, the first 2 digits of the
returned year are the same as the first 2 digits of
the current year.

RRRR Yes Round year. Accepts either 4-digit or 2-digit input. If 2-
digit, provides the same return as RR. If you don’t want
this functionality, enter the 4-digit year.

SS Yes Second (0-59).

Table 2–9 Datetime Format Elements

Element
Specify in TO_

DATE? Meaning
2-50 SQL Reference

Format Models
Oracle returns an error if an alphanumeric character is found in the date string

where punctuation character is found in the format string. For example:

TO_CHAR (TO_DATE(’0297’,’MM/YY’), ’MM/YY’)

returns an error.

Date Format Elements and National Language Support
The functionality of some date format elements depends on the country and

language in which you are using Oracle. For example, these date format elements

return spelled values:

■ MONTH

■ MON

■ DAY

■ DY

■ BC or AD or B.C. or A.D.

■ AM or PM or A.M or P.M.

SSSSS Yes Seconds past midnight (0-86399).

WW No Week of year (1-53) where week 1 starts on the first day
of the year and continues to the seventh day of the year.

W No Week of month (1-5) where week 1 starts on the first
day of the month and ends on the seventh.

Y,YYY Yes Year with comma in this position.

YEAR
SYEAR

No Year, spelled out. "S" prefixes BC dates with "-".

YYYY
SYYYY

Yes 4-digit year. "S" prefixes BC dates with "-".

YYY
YY
Y

Yes Last 3, 2, or 1 digit(s) of year.

Table 2–9 Datetime Format Elements

Element
Specify in TO_

DATE? Meaning
Basic Elements of Oracle SQL 2-51

Format Models
The language in which these values are returned is specified either explicitly with

the initialization parameter NLS_DATE_LANGUAGE or implicitly with the

initialization parameter NLS_LANGUAGE. The values returned by the YEAR and

SYEAR date format elements are always in English.

The date format element D returns the number of the day of the week (1-7). The day

of the week that is numbered 1 is specified implicitly by the initialization parameter

NLS_TERRITORY.

ISO Standard Date Format Elements
Oracle calculates the values returned by the date format elements IYYY, IYY, IY, I,

and IW according to the ISO standard. For information on the differences between

these values and those returned by the date format elements YYYY, YYY, YY, Y, and

WW, see the discussion of national language support in Oracle8i National Language
Support Guide.

The RR Date Format Element
The RR date format element is similar to the YY date format element, but it

provides additional flexibility for storing date values in other centuries. The RR

date format element allows you to store 21st century dates in the 20th century by

specifying only the last two digits of the year. It will also allow you to store 20th

century dates in the 21st century in the same way if necessary.

If you use the TO_DATE function with the YY date format element, the date value

returned always has the same first 2 digits as the current year. If you use the RR

date format element instead, the century of the return value varies according to the

specified two-digit year and the last two digits of the current year. Table 2–10

summarizes the behavior of the RR date format element.

See Also: Oracle8i Reference and Oracle8i National Language
Support Guide for information on national language support

initialization parameters
2-52 SQL Reference

Format Models
The following examples demonstrate the behavior of the RR date format element.

RR Date Format Examples

Assume these queries are issued between 1950 and 1999:

SELECT TO_CHAR(TO_DATE(’27-OCT-98’, ’DD-MON-RR’) ,’YYYY’) "Year"
 FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE(’27-OCT-17’, ’DD-MON-RR’) ,’YYYY’) "Year"
 FROM DUAL;

Year

2017

Now assume these queries are issued between 2000 and 2049:

SELECT TO_CHAR(TO_DATE(’27-OCT-98’, ’DD-MON-RR’) ,’YYYY’) "Year"
 FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE(’27-OCT-17’, ’DD-MON-RR’) ,’YYYY’) "Year"
 FROM DUAL;

Table 2–10 The RR Date Element Format

If the specified two-digit year is

 0 - 49 50 - 99

If the last two
digits of the
current year
are:

0-49 The return date has the same
first 2 digits as the current
date.

The first 2 digits of the return
date are 1 less than the first 2
digits of the current date.

50-99 The first 2 digits of the return
date are 1 greater than the
first 2 digits of the current
date.

The return date has the same
first 2 digits as the current
date.
Basic Elements of Oracle SQL 2-53

Format Models
Year

2017

Note that the queries return the same values regardless of whether they are issued

before or after the year 2000. The RR date format element allows you to write SQL

statements that will return the same values from years whose first two digits are

different.

Date Format Element Suffixes
Table 2–11 lists suffixes that can be added to date format elements:

Format Model Modifiers
The FM and FX modifiers, used in format models in the TO_CHAR function, control

blank padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each

subsequent occurrence toggles the effects of the modifier. Its effects are enabled for

the portion of the model following its first occurrence, and then disabled for the

portion following its second, and then reenabled for the portion following its third,

and so on.

FM "Fill mode". This modifier suppresses blank padding in the return value of the

TO_CHAR function:

■ In a date format element of a TO_CHAR function, this modifier suppresses

blanks in subsequent character elements (such as MONTH) and suppresses

leading zeroes for subsequent number elements (such as MI) in a date format

Table 2–11 Date Format Element Suffixes

Suffix Meaning Example Element Example Value

TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Restrictions:

■ When you add one of these suffixes to a date format element, the return value is
always in English.

■ Date suffixes are valid only on output. You cannot use them to insert a date into
the database.
2-54 SQL Reference

Format Models
model. Without FM, the result of a character element is always right padded

with blanks to a fixed length, and leading zeroes are always returned for a

number element. With FM, because there is no blank padding, the length of the

return value may vary.

■ In a number format element of a TO_CHAR function, this modifier suppresses

blanks added to the left of the number, so that the result is left-justified in the

output buffer. Without FM, the result is always right-justified in the buffer,

resulting in blank-padding to the left of the number.

FX "Format exact". This modifier specifies exact matching for the character

argument and date format model of a TO_DATE function:

■ Punctuation and quoted text in the character argument must exactly match

(except for case) the corresponding parts of the format model.

■ The character argument cannot have extra blanks. Without FX, Oracle ignores

extra blanks.

■ Numeric data in the character argument must have the same number of digits

as the corresponding element in the format model. Without FX, numbers in the

character argument can omit leading zeroes.

When FX is enabled, you can disable this check for leading zeroes by using the

FM modifier as well.

If any portion of the character argument violates any of these conditions, Oracle

returns an error message.

Format Modifier Examples
The following statement uses a date format model to return a character expression:

SELECT TO_CHAR(SYSDATE, ’fmDDTH’)||’ of ’||TO_CHAR
 (SYSDATE, ’fmMonth’)||’, ’||TO_CHAR(SYSDATE, ’YYYY’) "Ides"
 FROM DUAL;

Ides

3RD of April, 1998

Note that the statement above also uses the FM modifier. If FM is omitted, the

month is blank-padded to nine characters:

SELECT TO_CHAR(SYSDATE, ’DDTH’)||’ of ’||
 TO_CHAR(SYSDATE, ’Month’)||’, ’||
Basic Elements of Oracle SQL 2-55

Format Models
 TO_CHAR(SYSDATE, ’YYYY’) "Ides"
 FROM DUAL;

Ides

03RD of April , 1998

The following statement places a single quotation mark in the return value by using

a date format model that includes two consecutive single quotation marks:

SELECT TO_CHAR(SYSDATE, ’fmDay’)||’’’s Special’ "Menu"
 FROM DUAL;

Menu

Tuesday’s Special

Two consecutive single quotation marks can be used for the same purpose within a

character literal in a format model.

Table 2–12 shows whether the following statement meets the matching conditions

for different values of char and ’fmt’ using FX (the table named table has a

column date_column of datatype DATE):

UPDATE table
 SET date_column = TO_DATE(char, ’fmt’);

Table 2–12 Matching Character Data and Format Models with the FX Format Model
Modifier

char ’fmt’ Match or Error?

’15/ JAN /1998’ ’DD-MON-YYYY’ Match

’ 15! JAN % /1998’ ’DD-MON-YYYY’ Error

’15/JAN/1998’ ’FXDD-MON-YYYY’ Error

’15-JAN-1998’ ’FXDD-MON-YYYY’ Match

’1-JAN-1998’ ’FXDD-MON-YYYY’ Error

’01-JAN-1998’ ’FXDD-MON-YYYY’ Match

’1-JAN-1998’ ’FXFMDD-MON-YYYY’ Match
2-56 SQL Reference

Nulls
String-to-Date Conversion Rules
The following additional formatting rules apply when converting string values to

date values (unless you have used the FX or FXFM modifiers in the format model to

control exact format checking):

■ You can omit punctuation included in the format string from the date string if

all the digits of the numerical format elements, including leading zeros, are

specified. In other words, specify 02 and not 2 for two-digit format elements

such as MM, DD, and YY.

■ You can omit time fields found at the end of a format string from the date

string.

■ If a match fails between a date format element and the corresponding characters

in the date string, Oracle attempts alternative format elements, as shown in

Table 2–13.

Nulls
If a column in a row has no value, then the column is said to be null, or to contain a

null. Nulls can appear in columns of any datatype that are not restricted by NOT
NULL or PRIMARY KEY integrity constraints. Use a null when the actual value is not

known or when a value would not be meaningful.

Do not use null to represent a value of zero, because they are not equivalent. (Oracle

currently treats a character value with a length of zero as null. However, this may

not continue to be true in future releases, and Oracle recommends that you do not

treat empty strings the same as nulls.) Any arithmetic expression containing a null

always evaluates to null. For example, null added to 10 is null. In fact, all operators

(except concatenation) return null when given a null operand.

Table 2–13 Oracle Format Matching

Original Format Element

Additional Format
Elements to Try in Place of
the Original

’MM’ ’MON’ and ’MONTH’

’MON ’MONTH’

’MONTH’ ’MON’

’YY’ ’YYYY’

’RR’ ’RRRR’
Basic Elements of Oracle SQL 2-57

Nulls
Nulls in SQL Functions
All scalar functions (except REPLACE, NVL, and CONCAT) return null when given a

null argument. You can use the NVL function to return a value when a null occurs.

For example, the expression NVL(COMM,0) returns 0 if COMM is null or the value of

COMM if it is not null.

Most aggregate functions ignore nulls. For example, consider a query that averages

the five values 1000, null, null, null, and 2000. Such a query ignores the nulls and

calculates the average to be (1000+2000)/2 = 1500.

Nulls with Comparison Operators
To test for nulls, use only the comparison operators IS NULL and IS NOT NULL. If
you use any other operator with nulls and the result depends on the value of the

null, the result is UNKNOWN. Because null represents a lack of data, a null cannot be

equal or unequal to any value or to another null. However, Oracle considers two

nulls to be equal when evaluating a DECODE expression.

Oracle also considers two nulls to be equal if they appear in compound keys. That

is, Oracle considers identical two compound keys containing nulls if all the non-

null components of the keys are equal.

Nulls in Conditions
A condition that evaluates to UNKNOWN acts almost like FALSE. For example, a

SELECT statement with a condition in the WHERE clause that evaluates to UNKNOWN
returns no rows. However, a condition evaluating to UNKNOWN differs from FALSE
in that further operations on an UNKNOWN condition evaluation will evaluate to

UNKNOWN. Thus, NOT FALSE evaluates to TRUE, but NOT UNKNOWN evaluates to

UNKNOWN.

Table 2–14 shows examples of various evaluations involving nulls in conditions. If

the conditions evaluating to UNKNOWN were used in a WHERE clause of a SELECT
statement, then no rows would be returned for that query.

See Also: "DECODE Expressions" on page 5-13 for syntax and

additional information, see
2-58 SQL Reference

Pseudocolumns
For the truth tables showing the results of logical expressions containing nulls, see

Table 3–6 on page 3-12, as well as Table 3–7 and Table 3–8.

Pseudocolumns
A pseudocolumn behaves like a table column, but is not actually stored in the table.

You can select from pseudocolumns, but you cannot insert, update, or delete their

values. This section describes these pseudocolumns:

■ CURRVAL and NEXTVAL

■ LEVEL

■ ROWID

■ ROWNUM

CURRVAL and NEXTVAL
A sequence is a schema object that can generate unique sequential values. These

values are often used for primary and unique keys. You can refer to sequence values

in SQL statements with these pseudocolumns:

Table 2–14 Conditions Containing Nulls

If A is: Condition Evaluates to:

10 a IS NULL FALSE

10 a IS NOT NULL TRUE

NULL a IS NULL TRUE

NULL a IS NOT NULL FALSE

10 a = NULL UNKNOWN

10 a != NULL UNKNOWN

NULL a = NULL UNKNOWN

NULL a != NULL UNKNOWN

NULL a = 10 UNKNOWN

NULL a != 10 UNKNOWN
Basic Elements of Oracle SQL 2-59

Pseudocolumns
You must qualify CURRVAL and NEXTVAL with the name of the sequence:

sequence.CURRVAL
sequence.NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you

must have been granted either SELECT object privilege on the sequence or SELECT
ANY SEQUENCE system privilege, and you must qualify the sequence with the

schema containing it:

schema.sequence.CURRVAL
schema.sequence.NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the

sequence with a complete or partial name of a database link:

schema.sequence.CURRVAL@dblink
schema.sequence.NEXTVAL@dblink

Where to Use Sequence Values
You can use CURRVAL and NEXTVAL in:

■ The SELECT list of a SELECT statement that is not contained in a subquery,

materialized view, or view

■ The SELECT list of a subquery in an INSERT statement

■ The VALUES clause of an INSERT statement

■ The SET clause of an UPDATE statement

Restrictions: You cannot use CURRVAL and NEXTVAL:

■ A subquery in a DELETE, SELECT, or UPDATE statement

■ A query of a view or of a materialized view

■ A SELECT statement with the DISTINCT operator

CURRVAL The CURRVAL pseudocolumn returns the current value of a

sequence.

NEXTVAL The NEXTVAL pseudocolumn increments the sequence and

returns the next value.

See Also: "Referring to Objects in Remote Databases" on

page 2-90 for more information on referring to database links
2-60 SQL Reference

Pseudocolumns
■ A SELECT statement with a GROUP BY clause or ORDER BY clause

■ A SELECT statement that is combined with another SELECT statement with the

UNION, INTERSECT, or MINUS set operator

■ The WHERE clause of a SELECT statement

■ DEFAULT value of a column in a CREATE TABLE or ALTER TABLE statement

■ The condition of a CHECK constraint

Also, within a single SQL statement that uses CURVAL or NEXTVAL, all referenced

LONG columns, updated tables, and locked tables must be located on the same

database.

How to Use Sequence Values
When you create a sequence, you can define its initial value and the increment

between its values. The first reference to NEXTVAL returns the sequence’s initial

value. Subsequent references to NEXTVAL increment the sequence value by the

defined increment and return the new value. Any reference to CURRVAL always

returns the sequence’s current value, which is the value returned by the last

reference to NEXTVAL. Note that before you use CURRVAL for a sequence in your

session, you must first initialize the sequence with NEXTVAL.

Within a single SQL statement, Oracle will increment the sequence only once per

row. If a statement contains more than one reference to NEXTVAL for a sequence,

Oracle increments the sequence once and returns the same value for all occurrences

of NEXTVAL. If a statement contains references to both CURRVAL and NEXTVAL,
Oracle increments the sequence and returns the same value for both CURRVAL and

NEXTVAL regardless of their order within the statement.

A sequence can be accessed by many users concurrently with no waiting or locking.

Finding the current value of a sequence: Example This example selects the

current value of the employee sequence:

SELECT empseq.currval
 FROM DUAL;

Inserting sequence values into a table: Example This example increments the

employee sequence and uses its value for a new employee inserted into the

employee table:

See Also: CREATE SEQUENCE on page 9-155 for information on

sequences
Basic Elements of Oracle SQL 2-61

Pseudocolumns
INSERT INTO emp
 VALUES (empseq.nextval, ’LEWIS’, ’CLERK’,
 7902, SYSDATE, 1200, NULL, 20);

Reusing the current value of a sequence: Example This example adds a new

order with the next order number to the master order table. It then adds suborders

with this number to the detail order table:

INSERT INTO master_order(orderno, customer, orderdate)
 VALUES (orderseq.nextval, ’Al’’s Auto Shop’, SYSDATE);

INSERT INTO detail_order (orderno, part, quantity)
 VALUES (orderseq.currval, ’SPARKPLUG’, 4);

INSERT INTO detail_order (orderno, part, quantity)
 VALUES (orderseq.currval, ’FUEL PUMP’, 1);

INSERT INTO detail_order (orderno, part, quantity)
 VALUES (orderseq.currval, ’TAILPIPE’, 2);

LEVEL
For each row returned by a hierarchical query, the LEVEL pseudocolumn

returns 1 for a root node, 2 for a child of a root, and so on. A root node is the

highest node within an inverted tree. A child node is any nonroot node. A

parent node is any node that has children. A leaf node is any node without

children. Figure 2–2 shows the nodes of an inverted tree with their LEVEL
values.
2-62 SQL Reference

Pseudocolumns
Figure 2–2 Hierarchical Tree

To define a hierarchical relationship in a query, you must use the START WITH and

CONNECT BY clauses.

ROWID
For each row in the database, the ROWID pseudocolumn returns a row’s address.

Oracle8i rowid values contain information necessary to locate a row:

■ The data object number of the object

■ Which data block in the datafile

■ Which row in the data block (first row is 0)

■ Which datafile (first file is 1). The file number is relative to the tablespace.

Usually, a rowid value uniquely identifies a row in the database. However, rows in

different tables that are stored together in the same cluster can have the same rowid.

Values of the ROWID pseudocolumn have the datatype ROWID or UROWID.

See also:

■ SELECT and subquery on page 11-88 for more information on

using the LEVEL pseudocolumn

■ "Hierarchical Queries" on page 5-22 for information on

hierarchical queries in general

Level 1

Level 2

Level 3

Level 4 child/
leaf

parent/
child

root/
parent

parent/
child

child/
leaf

child/
leaf

child/
leaf

child/
leaf

parent/
child

parent/
child
Basic Elements of Oracle SQL 2-63

Pseudocolumns
Rowid values have several important uses:

■ They are the fastest way to access a single row.

■ They can show you how a table’s rows are stored.

■ They are unique identifiers for rows in a table.

You should not use ROWID as a table’s primary key. If you delete and reinsert a row

with the Import and Export utilities, for example, its rowid may change. If you

delete a row, Oracle may reassign its rowid to a new row inserted later.

Although you can use the ROWID pseudocolumn in the SELECT and WHERE clause

of a query, these pseudocolumn values are not actually stored in the database. You

cannot insert, update, or delete a value of the ROWID pseudocolumn.

Example This statement selects the address of all rows that contain data for

employees in department 20:

SELECT ROWID, ename
 FROM emp
 WHERE deptno = 20;

ROWID ENAME
------------------ ----------
AAAAqYAABAAAEPvAAA SMITH
AAAAqYAABAAAEPvAAD JONES
AAAAqYAABAAAEPvAAH SCOTT
AAAAqYAABAAAEPvAAK ADAMS
AAAAqYAABAAAEPvAAM FORD

ROWNUM
For each row returned by a query, the ROWNUM pseudocolumn returns a number

indicating the order in which Oracle selects the row from a table or set of joined

rows. The first row selected has a ROWNUM of 1, the second has 2, and so on.

You can use ROWNUM to limit the number of rows returned by a query, as in this

example:

SELECT * FROM emp WHERE ROWNUM < 10;

See Also: "ROWID Datatype" on page 2-20 and "UROWID

Datatype" on page 2-21
2-64 SQL Reference

Pseudocolumns
If an ORDER BY clause follows ROWNUM in the same query, the rows will be

reordered by the ORDER BY clause. The results can vary depending on the way the

rows are accessed. For example, if the ORDER BY clause causes Oracle to use an

index to access the data, Oracle may retrieve the rows in a different order than

without the index. Therefore, the following statement will not have the same effect

as the preceding example:

SELECT * FROM emp WHERE ROWNUM < 11 ORDER BY empno;

If you embed the ORDER BYclause in a subquery and place the ROWNUMcondition in

the top-level query, you can force the ROWNUM condition to be applied after the

ordering of the rows. For example, the following query returns the 10 smallest

employee numbers. This is sometimes referred to as a "top-N query":

SELECT * FROM
 (SELECT empno FROM emp ORDER BY empno)
 WHERE ROWNUM < 11;

In the preceding example, the ROWNUM values are those of the top-level SELECT
statement, so they are generated after the rows have already been ordered by

empno in the subquery.

Conditions testing for ROWNUM values greater than a positive integer are always

false. For example, this query returns no rows:

SELECT * FROM emp
 WHERE ROWNUM > 1;

The first row fetched is assigned a ROWNUM of 1 and makes the condition false. The

second row to be fetched is now the first row and is also assigned a ROWNUM of 1

and makes the condition false. All rows subsequently fail to satisfy the condition, so

no rows are returned.

You can also use ROWNUM to assign unique values to each row of a table, as in this

example:

UPDATE tabx
 SET col1 = ROWNUM;

See Also: Oracle8i Application Developer’s Guide - Fundamentals for

more information about top-N queries
Basic Elements of Oracle SQL 2-65

Comments
Comments
You can associate comments with SQL statements and schema objects.

Comments Within SQL Statements
Comments within SQL statements do not affect the statement execution, but they

may make your application easier for you to read and maintain. You may want to

include a comment in a statement that describes the statement’s purpose within

your application.

A comment can appear between any keywords, parameters, or punctuation marks

in a statement. You can include a comment in a statement using either of these

means:

■ Begin the comment with a slash and an asterisk (/*). Proceed with the text of

the comment. This text can span multiple lines. End the comment with an

asterisk and a slash (*/). The opening and terminating characters need not be

separated from the text by a space or a line break.

■ Begin the comment with -- (two hyphens). Proceed with the text of the

comment. This text cannot extend to a new line. End the comment with a line

break.

A SQL statement can contain multiple comments of both styles. The text of a

comment can contain any printable characters in your database character set.

Example These statements contain many comments:

SELECT ename, sal + NVL(comm, 0), job, loc
/* Select all employees whose compensation is
greater than that of Jones.*/
 FROM emp, dept
 /*The DEPT table is used to get the department name.*/

Note: Using ROWNUM in a query can affect view optimization. For

more information, see Oracle8i Concepts.

Note: You cannot use these styles of comments between SQL

statements in a SQL script. Use the SQL*Plus REMARKcommand for

this purpose. For information on these statements, see SQL*Plus
User’s Guide and Reference.
2-66 SQL Reference

Comments
 WHERE emp.deptno = dept.deptno
 AND sal + NVL(comm,0) > /* Subquery: */
 (SELECT sal + NLV(comm,0)
 /* total compensation is sal + comm */
 FROM emp
 WHERE ename = ’JONES’);

SELECT ename, -- select the name
 sal + NVL(comm, 0), -- total compensation
 job, -- job
 loc -- and city containing the office
 FROM emp, -- of all employees
 dept
 WHERE emp.deptno = dept.deptno
 AND sal + NVL(comm, 0) > -- whose compensation
 -- is greater than
 (SELECT sal + NVL(comm,0) -- the compensation
 FROM emp
 WHERE ename = ’JONES’); -- of Jones.

Comments on Schema Objects
You can associate a comment with a table, view, materialized view, or column using

the COMMENTcommand. Comments associated with schema objects are stored in the

data dictionary.

Hints
You can use comments in a SQL statement to pass instructions, or hints, to the

Oracle optimizer. The optimizer uses these hints as suggestions for choosing an

execution plan for the statement.

A statement block can have only one comment containing hints, and that comment

must follow the SELECT, UPDATE, INSERT, or DELETE keyword. The syntax below

shows hints contained in both styles of comments that Oracle supports within a

statement block.

{DELETE|INSERT|SELECT|UPDATE} /*+ hint [text] [hint[text]]... */

or

{DELETE|INSERT|SELECT|UPDATE} --+ hint [text] [hint[text]]...

See Also: COMMENT on page 8-131 for a description of

comments
Basic Elements of Oracle SQL 2-67

Comments
where:

■ DELETE, INSERT, SELECT, or UPDATE is a DELETE, INSERT, SELECT, or

UPDATE keyword that begins a statement block. Comments containing hints

can appear only after these keywords.

■ + is a plus sign that causes Oracle to interpret the comment as a list of hints. The

plus sign must follow immediately after the comment delimiter (no space is

permitted).

■ hint is one of the hints discussed in this section. The space between the plus

sign and the hint is optional. If the comment contains multiple hints, separate

the hints by at least one space.

■ text is other commenting text that can be interspersed with the hints.

The syntax and a brief description of each hint appear below. Hints are divided into

functional categories.

Optimization Approaches and Goals Hints

 The ALL_ROWS hint explicitly chooses the cost-based approach to optimize a

statement block with a goal of best throughput (that is, minimum total resource

consumption).

 The ALL_ROWS hint explicitly chooses the cost-based approach to optimize a

statement block with a goal of best throughput (that is, minimum total resource

consumption).

See Also: Oracle8i Performance Guide and Reference and Oracle8i
Concepts for more information on hints

/*+ ALL_ROWS */

/*+ CHOOSE */
2-68 SQL Reference

Comments
The FIRST_ROWS hint explicitly chooses the cost-based approach to optimize a

statement block with a goal of best response time (minimum resource usage to

return first row).

This hint causes the optimizer to make the following choices:

■ If an index scan is available, then the optimizer might choose it over a full table

scan.

■ If an index scan is available, then the optimizer might choose a nested loops

join over a sort-merge join whenever the associated table is the potential inner

table of the nested loops.

■ If an index scan is made available by an ORDER BY clause, then the optimizer

might choose it to avoid a sort operation.

The RULE hint explicitly chooses rule-based optimization for a statement block. It

also makes the optimizer ignore other hints specified for the statement block.

Access Method Hints

The AND_EQUAL hint explicitly chooses an execution plan that uses an access path

that merges the scans on several single-column indexes.

The CLUSTER hint explicitly chooses a cluster scan to access the specified table. It

applies only to clustered objects.

The FULL hint explicitly chooses a full table scan for the specified table.

/*+ FIRST_ROWS */

/*+ RULE */

/*+ AND_EQUAL (table index index
index index index

) */

/*+ CLUSTER (table) */

/*+ FULL (table) */
Basic Elements of Oracle SQL 2-69

Comments
The HASH hint explicitly chooses a hash scan to access the specified table. It applies

only to tables stored in a cluster.

The INDEX hint explicitly chooses an index scan for the specified table. You can use

the INDEX hint for domain, B*-tree, and bitmap indexes. However, Oracle

recommends using INDEX_COMBINE rather than INDEX for bitmap indexes,

because it is a more versatile hint.

The INDEX_ASC hint explicitly chooses an index scan for the specified table. If the

statement uses an index range scan, then Oracle scans the index entries in ascending

order of their indexed values.

The INDEX_COMBINE hint explicitly chooses a bitmap access path for the table. If

no indexes are given as arguments for the INDEX_COMBINEhint, then the optimizer

uses whatever Boolean combination of bitmap indexes has the best cost estimate for

the table. If certain indexes are given as arguments, then the optimizer tries to use

some Boolean combination of those particular bitmap indexes.

The INDEX_DESC hint explicitly chooses an index scan for the specified table. If the

statement uses an index range scan, then Oracle scans the index entries in

/*+ HASH (table) */

/*+ INDEX (table
index

) */

/*+ INDEX_ASC (table
index

) */

/*+ INDEX_COMBINE (table
index

) */

/*+ INDEX_DESC (table
index

) */
2-70 SQL Reference

Comments
descending order of their indexed values. In a partitioned index, the results are in

descending order within each partition.

The INDEX_FFS hint causes a fast full index scan to be performed rather than a full

table scan.

The NO_INDEX hint explicitly disallows a set of indexes for the specified table.

The ROWID hint explicitly chooses a table scan by rowid for the specified table.

Join Order Hints

The ORDERED hint causes Oracle to join tables in the order in which they appear in

the FROM clause.

If you omit the ORDERED hint from a SQL statement performing a join, then the

optimizer chooses the order in which to join the tables. You might want to use the

ORDERED hint to specify a join order if you know something about the number of

rows selected from each table that the optimizer does not. Such information lets you

choose an inner and outer table better than the optimizer could.

The STAR hint forces a star query plan to be used, if possible. A star plan has the

largest table in the query last in the join order and joins it with a nested loops join

on a concatenated index. The STAR hint applies when there are at least three tables,

/*+ INDEX_FFS (table
index

) */

/*+ NO_INDEX (table
index

) */

/*+ ROWID (table) */

/*+ ORDERED */

/*+ STAR */
Basic Elements of Oracle SQL 2-71

Comments
the large table’s concatenated index has at least three columns, and there are no

conflicting access or join method hints. The optimizer also considers different

permutations of the small tables.

Join Operation Hints

The DRIVING_SITE hint forces query execution to be done at a different site than

that selected by Oracle. This hint can be used with either rule-based or cost-based

optimization.

For a specific query, place the MERGE_AJ or HASH_AJ hints into the NOT IN
subquery. MERGE_AJ uses a sort-merge anti-join and HASH_AJ uses a hash anti-join.

For a specific query, place the HASH_SJ or MERGE_SJ hint into the EXISTS
subquery. HASH_SJ uses a hash semi-join and MERGE_SJ uses a sort merge semi-

join.

The LEADING hint causes Oracle to use the specified table as the first table in the

join order.

If you specify two or more LEADING hints on different tables, then all of them are

ignored. If you specify the ORDERED hint, then it overrides all LEADING hints.

/*+ DRIVING_SITE (table) */

/*+ HASH_AJ */

/*+ MERGE_AJ */

/*+ HASH_SJ */

/*+ MERGE_SJ */

/*+ LEADING (table) */
2-72 SQL Reference

Comments
The USE_HASH hint causes Oracle to join each specified table with another row

source with a hash join.

The USE_MERGE hint causes Oracle to join each specified table with another row

source with a sort-merge join.

The USE_NL hint causes Oracle to join each specified table to another row source

with a nested loops join using the specified table as the inner table.

Parallel Execution Hints

When you use the APPEND hint for INSERT, data is simply appended to a table.

Existing free space in the blocks currently allocated to the table is not used.

If INSERT is parallelized using the PARALLEL hint or clause, then append mode is

used by default. You can use NOAPPEND to override append mode. The APPEND
hint applies to both serial and parallel insert.

Note: Oracle ignores parallel hints on a temporary table.

See Also: CREATE TABLE on page 10-7 and Oracle8i Concepts

/*+ USE_HASH (table) */

/*+ USE_MERGE (table) */

/*+ USE_NL (table) */

/*+

APPEND

NOAPPEND

parallel_hint

,

*/
Basic Elements of Oracle SQL 2-73

Comments
The append operation is performed in LOGGING or NOLOGGING mode, depending

on whether the [NO] option is set for the table in question. Use the ALTER TABLE...
[NO]LOGGING statement to set the appropriate value.

The NOAPPEND hint overrides append mode.

The NOPARALLEL hint overrides a PARALLEL specification in the table clause. In

general, hints take precedence over table clauses.

Restriction: You cannot parallelize a query involving a nested table.

The PARALLEL hint lets you specify the desired number of concurrent servers that

can be used for a parallel operation. The hint applies to the INSERT, UPDATE, and

DELETE portions of a statement as well as to the table scan portion.

If any parallel restrictions are violated, then the hint is ignored.

The PARALLEL_INDEX hint specifies the desired number of concurrent servers that

can be used to parallelize index range scans for partitioned indexes.

Note: The number of servers that can be used is twice the value in

the PARALLEL hint if sorting or grouping operations also take

place.

/*+ NOPARALLEL (table) */

/*+ PARALLEL (table

, integer

, DEFAULT

,

, integer

, DEFAULT

) */

/*+ PARALLEL_INDEX (table
index

,

, integer

, DEFAULT

,

, integer

, DEFAULT

) */
2-74 SQL Reference

Comments
The PQ_DISTRIBUTEhint improves parallel join operation performance. Do this by

specifying how rows of joined tables should be distributed among producer and

consumer query servers. Using this hint overrides decisions the optimizer would

normally make.

Use the EXPLAIN PLAN statement to identify the distribution chosen by the

optimizer. The optimizer ignores the distribution hint if both tables are serial.

The NOPARALLEL_INDEX hint overrides a PARALLEL attribute setting on an index

to avoid a parallel index scan operation.

Query Transformation Hints

The MERGE hint lets you merge a view on a per-query basis.

If a view's query contains a GROUP BY clause or DISTINCT operator in the SELECT
list, then the optimizer can merge the view's query into the accessing statement only

if complex view merging is enabled. Complex merging can also be used to merge an

IN subquery into the accessing statement if the subquery is uncorrelated.

Complex merging is not cost-based--that is, the accessing query block must include

the MERGE hint. Without this hint, the optimizer uses another approach.

See Also: Oracle8i Performance Guide and Reference for the

permitted combinations of distributions for the outer and inner join

tables

/*+ PQ_DISTRIBUTE (table
,

outer_distribution , inner_distribution) */

/*+ NOPARALLEL_INDEX (table
index

) */

/*+ MERGE (table) */
Basic Elements of Oracle SQL 2-75

Comments
The NO_EXPAND hint prevents the cost-based optimizer from considering OR-

expansion for queries having ORconditions or IN -lists in the WHEREclause. Usually,

the optimizer considers using OR expansion and uses this method if it decides that

the cost is lower than not using it.

The NO_MERGE hint causes Oracle not to merge mergeable views.

The NOREWRITE hint disables query rewrite for the query block, overriding the

setting of the parameter QUERY_REWRITE_ENABLED. Use the NOREWRITE hint on

any query block of a request.

The REWRITE hint forces the cost-based optimizer to rewrite a query in terms of

materialized views, when possible, without cost consideration. Use the REWRITE
hint with or without a view list. If you use REWRITE with a view list and the list

contains an eligible materialized view, then Oracle uses that view regardless of its

cost.

Oracle does not consider views outside of the list. If you do not specify a view list,

then Oracle searches for an eligible materialized view and always uses it regardless

of its cost.

The STAR_TRANSFORMATION hint makes the optimizer use the best plan in which

the transformation has been used. Without the hint, the optimizer could make a

cost-based decision to use the best plan generated without the transformation,

instead of the best plan for the transformed query.

/*+ NO_EXPAND */

/*+ NO_MERGE (table) */

/*+ NOREWRITE */

/*+ REWRITE
(view)

*/

/*+ STAR_TRANSFORMATION */
2-76 SQL Reference

Comments
Even if the hint is given, there is no guarantee that the transformation will take

place. The optimizer only generates the subqueries if it seems reasonable to do so. If

no subqueries are generated, then there is no transformed query, and the best plan

for the untransformed query is used, regardless of the hint.

The USE_CONCAT hint forces combined OR conditions in the WHERE clause of a

query to be transformed into a compound query using the UNION ALL set operator.

Generally, this transformation occurs only if the cost of the query using the

concatenations is cheaper than the cost without them.

The USE_CONCAT hint turns off IN -list processing and OR-expands all disjunctions,

including IN -lists.

Other Hints

The CACHE hint specifies that the blocks retrieved for the table are placed at the

most recently used end of the LRU list in the buffer cache when a full table scan is

performed. This option is useful for small lookup tables.

The NOCACHE hint specifies that the blocks retrieved for the table are placed at the

least recently used end of the LRU list in the buffer cache when a full table scan is

performed. This is the normal behavior of blocks in the buffer cache.

If you enabled subquery unnesting with the UNNEST_SUBQUERY parameter, then

the NO_UNNEST hint turns it off for specific subquery blocks.

/*+ USE_CONCAT */

/*+ CACHE (table) */

/*+ NOCACHE (table) */

/*+ NO_UNNEST */
Basic Elements of Oracle SQL 2-77

Comments
The ORDERED_PREDICATES hint forces the optimizer to preserve the order of

predicate evaluation, except for predicates used as index keys. Use this hint in the

WHERE clause of SELECT statements.

If you do not use the ORDERED_PREDICATES hint, then Oracle evaluates all

predicates in the order specified by the following rules. Predicates:

■ Without user-defined functions, type methods, or subqueries are evaluated first,

in the order specified in the WHERE clause.

■ With user-defined functions and type methods that have user-computed costs

are evaluated next, in increasing order of their cost.

■ With user-defined functions and type methods without user-computed costs are

evaluated next, in the order specified in the WHERE clause.

■ Not specified in the WHERE clause (for example, predicates transitively

generated by the optimizer) are evaluated next.

■ With subqueries are evaluated last in the order specified in the WHERE clause.

The PUSH_PRED hint forces pushing of a join predicate into the view.

The NO_PUSH_PRED hint prevents pushing of a join predicate into the view.

The PUSH_SUBQ hint causes non-merged subqueries to be evaluated at the earliest

possible place in the execution plan. Generally, subqueries that are not merged are

Note: As mentioned, you cannot use the ORDERED_PREDICATES
hint to preserve the order of predicate evaluation on index keys.

/*+ ORDERED_PREDICATES */

/*+ PUSH_PRED (table) */

/*+ NO_PUSH_PRED (table) */

/*+ PUSH_SUBQ */
2-78 SQL Reference

Database Objects
executed as the last step in the execution plan. If the subquery is relatively

inexpensive and reduces the number of rows significantly, then it improves

performance to evaluate the subquery earlier.

This hint has no effect if the subquery is applied to a remote table or one that is

joined using a merge join.

Setting the UNNEST_SUBQUERY session parameter to TRUE enables subquery

unnesting. Subquery unnesting unnests and merges the body of the subquery into

the body of the statement that contains it, allowing the optimizer to consider them

together when evaluating access paths and joins.

UNNEST_SUBQUERY first verifies if the statement is valid. If the statement is not

valid, then subquery unnesting cannot proceed. The statement must then must pass

a heuristic test.

The UNNEST hint checks the subquery block for validity only. If it is valid, then

subquery unnesting is enabled without Oracle checking the heuristics.

Database Objects
Oracle recognizes objects that are associated with a particular schema and objects

that are not associated with a particular schema, as described in the sections that

follow.

Schema Objects
A schema is a collection of logical structures of data, or schema objects. A schema is

owned by a database user and has the same name as that user. Each user owns a

single schema. Schema objects can be created and manipulated with SQL and

include the following types of objects:

■ Clusters

■ Database links

■ Database triggers

■ Dimensions

■ External procedure libraries

/*+ UNNEST */
Basic Elements of Oracle SQL 2-79

Database Objects
■ Index-organized tables

■ Indexes

■ Indextypes

■ Java classes, Java resources, Java sources

■ Materialized views

■ Materialized view logs

■ Object tables

■ Object types

■ Object views

■ Operators

■ Packages

■ Sequences

■ Stored functions, stored procedures

■ Synonyms

■ Tables

■ Views

Nonschema Objects
Other types of objects are also stored in the database and can be created and

manipulated with SQL but are not contained in a schema:

■ Contexts

■ Directories

■ Profiles

■ Roles

■ Rollback segments

■ Tablespaces

■ Users

In this reference, each type of object is briefly defined in Chapter 7 through

Chapter 11, in the section describing the statement that creates the database object.
2-80 SQL Reference

Database Objects
These statements begin with the keyword CREATE. For example, for the definition

of a cluster, see CREATE CLUSTER on page 9-3.

You must provide names for most types of schema objects when you create them.

These names must follow the rules listed in the following sections.

Parts of Schema Objects
Some schema objects are made up of parts that you can or must name, such as:

■ Columns in a table or view

■ Index and table partitions and subpartitions

■ Integrity constraints on a table

■ Packaged procedures, packaged stored functions, and other objects stored

within a package

Partitioned Tables and Indexes
Tables and indexes can be partitioned. When partitioned, these schema objects

consist of a number of parts called partitions, all of which have the same logical

attributes. For example, all partitions in a table share the same column and

constraint definitions, and all partitions in an index share the same index columns.

When you partition a table or index using the range method, you specify a

maximum value for the partitioning key column(s) for each partition. When you

partition a table or index using the hash method, you instruct Oracle to distribute

the rows of the table into partitions based on a system-defined hash function on the

partitioning key column(s). When you partition a table or index using the

composite-partitioning method, you specify ranges for the partitions, and Oracle

distributes the rows in each partition into one or more hash subpartitions based on

a hash function. Each subpartition of a table or index partitioned using the

composite method has the same logical attributes.

Partition-Extended and Subpartition-Extended Table Names
Partition-extended and subpartition-extended table names let you perform some

partition-level and subpartition-level operations, such as deleting all rows from a

partition or subpartition, on only one partition or subpartition. Without extended

table names, such operations would require that you specify a predicate (WHERE

See Also: Oracle8i Concepts for an overview of database objects
Basic Elements of Oracle SQL 2-81

Database Objects
clause). For range-partitioned tables, trying to phrase a partition-level operation

with a predicate can be cumbersome, especially when the range partitioning key

uses more than one column. For hash partitions and subpartitions, using a predicate

is more difficult still, because these partitions and subpartitions are based on a

system-defined hash function.

Partition-extended table names let you use partitions as if they were tables. An

advantage of this method, which is most useful for range-partitioned tables, is that

you can build partition-level access control mechanisms by granting (or revoking)

privileges on these views to (or from) other users or roles.To use a partition as a

table, create a view by selecting data from a single partition, and then use the view

as a table.

You can specify partition-extended or subpartition-extended table names for the

following DML statements:

■ DELETE

■ INSERT

■ LOCK TABLE

■ SELECT

■ UPDATE

Syntax The basic syntax for using partition-extended and subpartition-extended

table names is:

Restrictions Currently, the use of partition-extended and subpartition-extended

table names has the following restrictions:

Note: For application portability and ANSI syntax compliance,

Oracle strongly recommends that you use views to insulate

applications from this Oracle proprietary extension.

schema . table

view

@ dblink

PARTITION (partition)

SUBPARTITION (subpartition)
2-82 SQL Reference

Schema Object Names and Qualifiers
■ No remote tables: A partition-extended or subpartition-extended table name

cannot contain a database link (dblink) or a synonym that translates to a table

with a dblink. To use remote partitions and subpartitions, create a view at the

remote site that uses the extended table name syntax and then refer to the

remote view.

■ No synonyms: A partition or subpartition extension must be specified with a

base table. You cannot use synonyms, views, or any other objects.

Example In the following statement, sales is a partitioned table with partition

jan97 . You can create a view of the single partition jan97 , and then use it as if it

were a table. This example deletes rows from the partition.

CREATE VIEW sales_jan97 AS
 SELECT * FROM sales PARTITION (jan97);
DELETE FROM sales_jan97 WHERE amount < 0;

Schema Object Names and Qualifiers
This section provides:

■ Rules for naming schema objects and schema object location qualifiers

■ Guidelines for naming schema objects and qualifiers

Schema Object Naming Rules
The following rules apply when naming schema objects:

1. Names must be from 1 to 30 bytes long with these exceptions:

■ Names of databases are limited to 8 bytes.

■ Names of database links can be as long as 128 bytes.

2. Names cannot contain quotation marks.

3. Names are not case sensitive.

4. A name must begin with an alphabetic character from your database character

set unless surrounded by double quotation marks.

5. Names can contain only alphanumeric characters from your database character

set and the underscore (_), dollar sign ($), and pound sign (#). Oracle strongly

discourages you from using $ and #. Names of database links can also contain

periods (.) and "at" signs (@).
Basic Elements of Oracle SQL 2-83

Schema Object Names and Qualifiers
If your database character set contains multibyte characters, Oracle

recommends that each name for a user or a role contain at least one single-byte

character.

6. A name cannot be an Oracle reserved word. , lists all Oracle reserved words.

Depending on the Oracle product you plan to use to access a database object,

names might be further restricted by other product-specific reserved words.

7. Do not use the word DUALas a name for an object or part. DUALis the name of a

dummy table.

8. The Oracle SQL language contains other words that have special meanings.

These words include datatypes, function names, and keywords (the uppercase

words in SQL statements, such as DIMENSION, SEGMENT, ALLOCATE, DISABLE,

and so forth). These words are not reserved. However, Oracle uses them

internally. Therefore, if you use these words as names for objects and object

parts, your SQL statements may be more difficult to read and may lead to

unpredictable results.

In particular, do not use words beginning with "SYS_" as schema object names,

and do not use the names of SQL built-in functions for the names of schema

objects or user-defined functions.

9. Within a namespace, no two objects can have the same name.

Note: You cannot use special characters from European or Asian

character sets in a database name, global database name, or

database link names. For example, characters with an umlaut are

not allowed.

See Also:

■ Appendix C, "Oracle Reserved Words" for a listing of all Oracle

reserved words

■ The manual for the specific product, such as PL/SQL User’s
Guide and Reference, for a list of a product’s reserved words

See Also: "Datatypes" on page 2-2 and "SQL Functions" on

page 4-2
2-84 SQL Reference

Schema Object Names and Qualifiers
The following figure shows the namespaces for schema objects. Each box is a

namespace. Tables and views are in the same namespace. Therefore, a table and

a view in the same schema cannot have the same name. However, tables and

indexes are in different namespaces. Therefore, a table and an index in the same

schema can have the same name.

Each schema in the database has its own namespaces for the objects it contains.

This means, for example, that two tables in different schemas are in different

namespaces and can have the same name.

The following figure shows the namespaces for nonschema objects. Because the

objects in these namespaces are not contained in schemas, these namespaces

span the entire database.

10. Columns in the same table or view cannot have the same name. However,

columns in different tables or views can have the same name.

INDEXES

CONSTRAINTS

CLUSTERS

DATABASE TRIGGERS

PRIVATE DATABASE LINKS

DIMENSIONS

TABLES

VIEWS

SEQUENCES

PRIVATE SYNONYMS

STAND-ALONE PROCEDURES

STAND-ALONE STORED FUNCTIONS

PACKAGES

USER-DEFINED TYPES

MATERIALIZED VIEWS/
SNAPSHOTS

USER

PUBLIC SYNONYMS

PUBLIC DATABASE LINKS

TABLESPACES

ROLLBACK SEGMENTS

PROFILES

ROLES
Basic Elements of Oracle SQL 2-85

Schema Object Names and Qualifiers
11. Procedures or functions contained in the same package can have the same

name, provided that their arguments are not of the same number and

datatypes. Creating multiple procedures or functions with the same name in the

same package with different arguments is called overloading the procedure or

function.

12. A name can be enclosed in double quotation marks. Such names can contain

any combination of characters, including spaces, ignoring rules 3 through 7 in

this list. This exception is allowed for portability, but Oracle recommends that

you do not break rules 3 through 7.

If you give a schema object a name enclosed in double quotation marks, you

must use double quotation marks whenever you refer to the object.

Enclosing a name in double quotes allows it to:

■ Contain spaces

■ Be case sensitive

■ Begin with a character other than an alphabetic character, such as a numeric

character

■ Contain characters other than alphanumeric characters and _, $, and #

■ Be a reserved word

By enclosing names in double quotation marks, you can give the following

names to different objects in the same namespace:

emp
"emp"
"Emp"
"EMP "

Note that Oracle interprets the following names the same, so they cannot be

used for different objects in the same namespace:

emp
EMP
"EMP"

If you give a user or password a quoted name, the name cannot contain

lowercase letters.

Database link names cannot be quoted.
2-86 SQL Reference

Schema Object Names and Qualifiers
Schema Object Naming Examples
The following examples are valid schema object names:

ename
horse
scott.hiredate
"EVEN THIS & THAT!"
a_very_long_and_valid_name

Although column aliases, table aliases, usernames, and passwords are not objects or

parts of objects, they must also follow these naming rules with these exceptions:

■ Column aliases and table aliases exist only for the execution of a single SQL

statement and are not stored in the database, so rule 12 does not apply to them.

■ Passwords do not have namespaces, so rule 9 does not apply to them.

■ Do not use quotation marks to make usernames and passwords case sensitive.

Schema Object Naming Guidelines
Here are several helpful guidelines for naming objects and their parts:

■ Use full, descriptive, pronounceable names (or well-known abbreviations).

■ Use consistent naming rules.

■ Use the same name to describe the same entity or attribute across tables.

When naming objects, balance the objective of keeping names short and easy to use

with the objective of making names as descriptive as possible. When in doubt,

choose the more descriptive name, because the objects in the database may be used

by many people over a period of time. Your counterpart ten years from now may

have difficulty understanding a database with a name like pmdd instead of

payment_due_date .

Using consistent naming rules helps users understand the part that each table plays

in your application. One such rule might be to begin the names of all tables

belonging to the FINANCE application with fin_ .

Use the same names to describe the same things across tables. For example, the

department number columns of the sample employees and departments tables

are both named deptno .

See Also: CREATE USER on page 10-99 for additional rules for

naming users and passwords
Basic Elements of Oracle SQL 2-87

Syntax for Schema Objects and Parts in SQL Statements
Syntax for Schema Objects and Parts in SQL Statements
This section tells you how to refer to schema objects and their parts in the context of

a SQL statement. This section shows you:

■ The general syntax for referring to an object

■ How Oracle resolves a reference to an object

■ How to refer to objects in schemas other than your own

■ How to refer to objects in remote databases

The following diagram shows the general syntax for referring to an object or a part:

where:

■ object is the name of the object.

■ schema is the schema containing the object. The schema qualifier allows you to

refer to an object in a schema other than your own. You must be granted

privileges to refer to objects in other schemas. If you omit schema , Oracle

assumes that you are referring to an object in your own schema.

Only schema objects can be qualified with schema . Schema objects are shown

with list item 9 on page 2-84. Nonschema objects, also shown with list item 9 on

page 2-84, cannot be qualified with schema because they are not schema

objects. (An exception is public synonyms, which can optionally be qualified

with "PUBLIC". The quotation marks are required.)

■ part is a part of the object. This identifier allows you to refer to a part of a

schema object, such as a column or a partition of a table. Not all types of objects

have parts.

■ dblink applies only when you are using Oracle’s distributed functionality.

This is the name of the database containing the object. The dblink qualifier lets

you refer to an object in a database other than your local database. If you omit

dblink , Oracle assumes that you are referring to an object in your local

database. Not all SQL statements allow you to access objects on remote

databases.

You can include spaces around the periods separating the components of the

reference to the object, but it is conventional to omit them.

schema .
object

. part @ dblink
2-88 SQL Reference

Syntax for Schema Objects and Parts in SQL Statements
How Oracle Resolves Schema Object References
When you refer to an object in a SQL statement, Oracle considers the context of the

SQL statement and locates the object in the appropriate namespace. After locating

the object, Oracle performs the statement’s operation on the object. If the named

object cannot be found in the appropriate namespace, Oracle returns an error.

The following example illustrates how Oracle resolves references to objects within

SQL statements. Consider this statement that adds a row of data to a table identified

by the name dept :

INSERT INTO dept
 VALUES (50, ’SUPPORT’, ’PARIS’);

Based on the context of the statement, Oracle determines that dept can be:

■ A table in your own schema

■ A view in your own schema

■ A private synonym for a table or view

■ A public synonym

Oracle always attempts to resolve an object reference within the namespaces in your

own schema before considering namespaces outside your schema. In this example,

Oracle attempts to resolve the name dept as follows:

1. First, Oracle attempts to locate the object in the namespace in your own schema

containing tables, views, and private synonyms. If the object is a private

synonym, Oracle locates the object for which the synonym stands. This object

could be in your own schema, another schema, or on another database. The

object could also be another synonym, in which case Oracle locates the object

for which this synonym stands.

2. If the object is in the namespace, Oracle attempts to perform the statement on

the object. In this example, Oracle attempts to add the row of data to dept . If

the object is not of the correct type for the statement, Oracle returns an error. In

this example, dept must be a table, view, or a private synonym resolving to a

table or view. If dept is a sequence, Oracle returns an error.

3. If the object is not in any namespace searched in thus far, Oracle searches the

namespace containing public synonyms. If the object is in that namespace,

Oracle attempts to perform the statement on it. If the object is not of the correct

type for the statement, Oracle returns an error. In this example, if dept is a

public synonym for a sequence, Oracle returns an error.
Basic Elements of Oracle SQL 2-89

Syntax for Schema Objects and Parts in SQL Statements
Referring to Objects in Other Schemas
To refer to objects in schemas other than your own, prefix the object name with the

schema name:

schema.object

For example, this statement drops the emp table in the schema scott :

DROP TABLE scott.emp

Referring to Objects in Remote Databases
To refer to objects in databases other than your local database, follow the object

name with the name of the database link to that database. A database link is a

schema object that causes Oracle to connect to a remote database to access an object

there. This section tells you:

■ How to create database links

■ How to use database links in your SQL statements

Creating Database Links
You create a database link with the statement CREATE DATABASE LINK on

page 9-28. The statement allows you to specify this information about the database

link:

■ The name of the database link

■ The database connect string to access the remote database

■ The username and password to connect to the remote database

Oracle stores this information in the data dictionary.

Database Link Names When you create a database link, you must specify its name.

Database link names are different from names of other types of objects. They can be

as long as 128 bytes and can contain periods (.) and the "at" sign (@).

The name that you give to a database link must correspond to the name of the

database to which the database link refers and the location of that database in the

hierarchy of database names. The following syntax diagram shows the form of the

name of a database link:
2-90 SQL Reference

Syntax for Schema Objects and Parts in SQL Statements
dblink::=

where:

■ database should specify name portion of the global name of the remote

database to which the database link connects. This global name is stored in the

data dictionary of the remote database; you can see this name in the GLOBAL_
NAME view.

■ domain should specify the domain portion of the global name of the remote

database to which the database link connects. If you omit domain from the

name of a database link, Oracle qualifies the database link name with the

domain of your local database as it currently exists in the data dictionary.

■ connect_descriptor allows you to further qualify a database link. Using

connect descriptors, you can create multiple database links to the same

database. For example, you can use connect descriptors to create multiple

database links to different instances of the Oracle Parallel Server that access the

same database.

The combination database.domain is sometimes called the "service name".

Username and Password Oracle uses the username and password to connect to the

remote database. The username and password for a database link are optional.

Database Connect String The database connect string is the specification used by Net8

to access the remote database. For information on writing database connect strings,

see the Net8 documentation for your specific network protocol. The database string

for a database link is optional.

Referring to Database Links
Database links are available only if you are using Oracle’s distributed functionality.

When you issue a SQL statement that contains a database link, you can specify the

database link name in one of these forms:

See Also: Net8 Administrator’s Guide

database
. domain @ connect_descriptor
Basic Elements of Oracle SQL 2-91

Syntax for Schema Objects and Parts in SQL Statements
■ complete is the complete database link name as stored in the data dictionary,

including the database , domain , and optional connect_descriptor
components.

■ partial is the database and optional connect_descriptor components,

but not the domain component.

Oracle performs these tasks before connecting to the remote database:

1. If the database link name specified in the statement is partial, Oracle expands

the name to contain the domain of the local database as found in the global

database name stored in the data dictionary. (You can see the current global

database name in the GLOBAL_NAME data dictionary view.)

2. Oracle first searches for a private database link in your own schema with the

same name as the database link in the statement. Then, if necessary, it searches

for a public database link with the same name.

■ Oracle always determines the username and password from the first

matching database link (either private or public). If the first matching

database link has an associated username and password, Oracle uses it. If it

does not have an associated username and password, Oracle uses your

current username and password.

■ If the first matching database link has an associated database string, Oracle

uses it. If not, Oracle searches for the next matching (public) database link.

If no matching database link is found, or if no matching link has an

associated database string, Oracle returns an error.

3. Oracle uses the database string to access the remote database. After accessing

the remote database, if the value of the GLOBAL_NAMES parameter is true ,

Oracle verifies that the database.domain portion of the database link name

matches the complete global name of the remote database. If this condition is

true, Oracle proceeds with the connection, using the username and password

chosen in Step 2. If not, Oracle returns an error.

4. If the connection using the database string, username, and password is

successful, Oracle attempts to access the specified object on the remote database

using the rules for resolving object references and referring to objects in other

schemas discussed earlier in this section.

You can disable the requirement that the database.domain portion of the

database link name must match the complete global name of the remote database

by setting to false the initialization parameter GLOBAL_NAMES or the GLOBAL_
NAMES parameter of the ALTER SYSTEM or ALTER SESSION statement.
2-92 SQL Reference

Syntax for Schema Objects and Parts in SQL Statements
Referencing Object Type Attributes and Methods
To reference object type attributes or methods in a SQL statement, you must fully

qualify the reference with a table alias. Consider the following example:

CREATE TYPE person AS OBJECT
 (ssno VARCHAR(20),
 name VARCHAR (10));

CREATE TABLE emptab (pinfo person);

In a SQL statement, reference to the ssno attribute must be fully qualified using a

table alias, as illustrated below:

SELECT e.pinfo.ssno FROM emptab e;

UPDATE emptab e SET e.pinfo.ssno = ’510129980’
 WHERE e.pinfo.name = ’Mike’;

To reference an object type’s member method that does not accept arguments, you

must provide "empty" parentheses. For example, assume that age is a method in

the person type that does not take arguments. In order to call this method in a SQL

statement, you must provide empty parentheses as shows in this example:

SELECT e.pinfo.age() FROM emptab e
 WHERE e.pinfo.name = ’Mike’;

See Also: Oracle8i Distributed Database Systems for more

information on remote name resolution

See Also: Oracle8i Concepts for more information on user-defined

datatypes
Basic Elements of Oracle SQL 2-93

Syntax for Schema Objects and Parts in SQL Statements
2-94 SQL Reference

Ope
3

Operators

An operator manipulates individual data items and returns a result. The data items

are called operands or arguments. Operators are represented by special characters

or by keywords. For example, the multiplication operator is represented by an

asterisk (*) and the operator that tests for nulls is represented by the keywords IS
NULL.

This chapter contains these sections:

■ Unary and Binary Operators

■ Precedence

■ Arithmetic Operators

■ Concatenation Operator

■ Comparison Operators

■ Logical Operators: NOT, AND, OR

■ Set Operators: UNION [ALL], INTERSECT, MINUS

■ Other Built-In Operators

■ User-Defined Operators
rators 3-1

Unary and Binary Operators
Unary and Binary Operators
The two general classes of operators are:

Other operators with special formats accept more than two operands. If an operator

is given a null operand, the result is always null. The only operator that does not

follow this rule is concatenation (||).

Precedence
Precedence is the order in which Oracle evaluates different operators in the same

expression. When evaluating an expression containing multiple operators, Oracle

evaluates operators with higher precedence before evaluating those with lower

precedence. Oracle evaluates operators with equal precedence from left to right

within an expression.

Table 3–1 lists the levels of precedence among SQL operators from high to low.

Operators listed on the same line have the same precedence.

unary A unary operator operates on only one operand. A unary

operator typically appears with its operand in this format:

operator operand

binary A binary operator operates on two operands. A binary operator

appears with its operands in this format:

operand1 operator operand2

Table 3–1 SQL Operator Precedence

Operator Operation

+, - identity, negation

*, / multiplication, division

+, -, || addition, subtraction, concatenation

=, !=, <, >, <=, >=, IS
NULL, LIKE, BETWEEN, IN

comparison

NOT exponentiation, logical negation

AND conjunction

OR disjunction
3-2 SQL Reference

Arithmetic Operators
Precedence Example In the following expression, multiplication has a higher

precedence than addition, so Oracle first multiplies 2 by 3 and then adds the result

to 1.

1+2*3

You can use parentheses in an expression to override operator precedence. Oracle

evaluates expressions inside parentheses before evaluating those outside.

SQL also supports set operators (UNION, UNION ALL, INTERSECT, and MINUS),

which combine sets of rows returned by queries, rather than individual data items.

All set operators have equal precedence.

Arithmetic Operators
You can use an arithmetic operator in an expression to negate, add, subtract,

multiply, and divide numeric values. The result of the operation is also a numeric

value. Some of these operators are also used in date arithmetic. Table 3–2 lists

arithmetic operators.

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate

double negation or the subtraction of a negative value. The characters -- are used to

begin comments within SQL statements. You should separate consecutive minus

signs with a space or a parenthesis.

Table 3–2 Arithmetic Operators

Operator Purpose Example

+ - When these denote a positive
or negative expression, they are
unary operators.

SELECT * FROM orders
 WHERE qtysold = -1;
SELECT * FROM emp
 WHERE -sal < 0;

When they add or subtract,
they are binary operators.

SELECT sal + comm FROM emp
 WHERE SYSDATE - hiredate
 > 365;

* / Multiply, divide. These are
binary operators.

UPDATE emp
 SET sal = sal * 1.1;
Operators 3-3

Concatenation Operator
Concatenation Operator
The concatenation operator manipulates character strings. Table 3–3 describes the

concatenation operator.

The result of concatenating two character strings is another character string. If both

character strings are of datatype CHAR, the result has datatype CHAR and is limited

to 2000 characters. If either string is of datatype VARCHAR2, the result has datatype

VARCHAR2 and is limited to 4000 characters. Trailing blanks in character strings are

preserved by concatenation, regardless of the strings’ datatypes.

On most platforms, the concatenation operator is two solid vertical bars, as shown

in Table 3–3. However, some IBM platforms use broken vertical bars for this

operator. When moving SQL script files between systems having different character

sets, such as between ASCII and EBCDIC, vertical bars might not be translated into

the vertical bar required by the target Oracle environment. Oracle provides the

CONCAT character function as an alternative to the vertical bar operator for cases

when it is difficult or impossible to control translation performed by operating

system or network utilities. Use this function in applications that will be moved

between environments with differing character sets.

Although Oracle treats zero-length character strings as nulls, concatenating a zero-

length character string with another operand always results in the other operand, so

null can result only from the concatenation of two null strings. However, this may

not continue to be true in future versions of Oracle. To concatenate an expression

that might be null, use the NVL function to explicitly convert the expression to a

zero-length string.

See Also: "Comments" on page 2-66 for more information on

comments within SQL statements

Table 3–3 Concatenation Operator

Operator Purpose Example

|| Concatenates
character strings.

SELECT ’Name is ’ || ename
 FROM emp;

See Also: "Character Datatypes" on page 2-7 for more

information on the differences between the CHAR and VARCHAR2
datatypes
3-4 SQL Reference

Comparison Operators
Example This example creates a table with both CHAR and VARCHAR2 columns,

inserts values both with and without trailing blanks, and then selects these values

and concatenates them. Note that for both CHAR and VARCHAR2 columns, the

trailing blanks are preserved.

CREATE TABLE tab1 (col1 VARCHAR2(6), col2 CHAR(6),
 col3 VARCHAR2(6), col4 CHAR(6));

Table created.

INSERT INTO tab1 (col1, col2, col3, col4)
 VALUES (’abc’, ’def ’, ’ghi ’, ’jkl’);

1 row created.

SELECT col1||col2||col3||col4 "Concatenation"
 FROM tab1;

Concatenation

abcdef ghi jkl

Comparison Operators
Comparison operators compare one expression with another. The result of such a

comparison can be TRUE, FALSE, or UNKNOWN.

Table 3–4 lists comparison operators.

See Also: "Conditions" on page 5-15 for information on

conditions

Table 3–4 Comparison Operators

Operator Purpose Example

= Equality test. SELECT *
 FROM emp
 WHERE sal = 1500;

!=
^=
< >
¬=

Inequality test. Some forms of the
inequality operator may be
unavailable on some platforms.

SELECT *
 FROM emp
 WHERE sal != 1500;
Operators 3-5

Comparison Operators
>

<

"Greater than" and "less than"
tests.

SELECT * FROM emp
 WHERE sal > 1500;
SELECT * FROM emp
 WHERE sal < 1500;

>=

<=

"Greater than or equal to" and
"less than or equal to" tests.

SELECT * FROM emp
 WHERE sal >= 1500;
SELECT * FROM emp
 WHERE sal <= 1500;

IN "Equal to any member of" test.
Equivalent to "= ANY".

SELECT * FROM emp
 WHERE job IN
 (’CLERK’,’ANALYST’);
SELECT * FROM emp
 WHERE sal IN
 (SELECT sal FROM emp
 WHERE deptno = 30);

NOT IN Equivalent to "!=ALL". Evaluates
to FALSE if any member of the set
is NULL.

SELECT * FROM emp
 WHERE sal NOT IN
 (SELECT sal FROM emp
 WHERE deptno = 30);
SELECT * FROM emp
 WHERE job NOT IN
 (’CLERK’, ’ANALYST’);

ANY
SOME

Compares a value to each value in
a list or returned by a query. Must
be preceded by =, !=, >, <, <=, >=.

Evaluates to FALSE if the query
returns no rows.

SELECT * FROM emp
 WHERE sal = ANY
 (SELECT sal FROM emp
 WHERE deptno = 30);

ALL Compares a value to every value
in a list or returned by a query.
Must be preceded by =, !=, >, <,
<=, >=.

Evaluates to TRUE if the query
returns no rows.

SELECT * FROM emp
 WHERE sal >=
 ALL (1400, 3000);

[NOT]
BETWEEN x
AND y

[Not] greater than or equal to x
and less than or equal to y.

SELECT * FROM emp
 WHERE sal
 BETWEEN 2000 AND 3000;

Table 3–4 (Cont.) Comparison Operators

Operator Purpose Example
3-6 SQL Reference

Comparison Operators
Additional information on the NOT IN and LIKE operators appears in the sections

that follow.

NOT IN Operator
If any item in the list following a NOT IN operation is null, all rows evaluate to

UNKNOWN (and no rows are returned). For example, the following statement returns

the string ’TRUE’ for each row:

SELECT ’TRUE’
 FROM emp
 WHERE deptno NOT IN (5,15);

However, the following statement returns no rows:

EXISTS TRUEif a subquery returns at least
one row.

SELECT ename, deptno
 FROM dept
 WHERE EXISTS
 (SELECT * FROM emp
 WHERE dept.deptno
 = emp.deptno);

x [NOT] LIKE
y

[ESCAPE ’z’]

TRUE if x does [not] match the
pattern y. Within y, the character
"%" matches any string of zero or
more characters except null. The
character "_" matches any single
character. Any character,
excepting percent (%) and
underbar (_) may follow ESCAPE.
A wildcard character is treated as
a literal if preceded by the
character designated as the escape
character.

See Also: "LIKE
Operator" on page 3-8

SELECT * FROM tab1
 WHERE col1 LIKE
 ’A_C/%E%’ ESCAPE ’/’;

IS [NOT]
NULL

Tests for nulls. This is the only
operator that you should use to
test for nulls.

See Also: "Nulls" on
page 2-57.

SELECT ename, deptno
 FROM emp
 WHERE comm IS NULL;

Table 3–4 (Cont.) Comparison Operators

Operator Purpose Example
Operators 3-7

Comparison Operators
SELECT ’TRUE’
 FROM emp
 WHERE deptno NOT IN (5,15,null);

The above example returns no rows because the WHERE clause condition evaluates

to:

deptno != 5 AND deptno != 15 AND deptno != null

Because all conditions that compare a null result in a null, the entire expression

results in a null. This behavior can easily be overlooked, especially when the NOT
IN operator references a subquery.

LIKE Operator
The LIKE operator is used in character string comparisons with pattern matching.

The syntax for a condition using the LIKE operator is shown in this diagram:

Whereas the equal (=) operator exactly matches one character value to another, the

LIKE operator matches a portion of one character value to another by searching the

char1 Specify a value to be compared with a pattern. This value can

have datatype CHAR or VARCHAR2.

NOT The NOT keyword logically inverts the result of the condition,

returning FALSE if the condition evaluates to TRUE and TRUE if it
evaluates to FALSE.

char2 Specify the pattern to which char1 is compared. The pattern is a

value of datatype CHAR or VARCHAR2 and can contain the special

pattern matching characters % and _.

ESCAPE Specify for esc_char a single character as the escape character.

The escape character can be used to cause Oracle to interpret % or

_ literally, rather than as a special character.

If you wish to search for strings containing an escape character,

you must specify this character twice. For example, if the escape

character is ’/’, to search for the string ’client/server’, you must

specify, ’client//server’.

char1
NOT

LIKE char2
ESCAPE esc_char
3-8 SQL Reference

Comparison Operators
first value for the pattern specified by the second. Note that blank padding is not
used for LIKE comparisons.

With the LIKE operator, you can compare a value to a pattern rather than to a

constant. The pattern must appear after the LIKE keyword. For example, you can

issue the following query to find the salaries of all employees with names beginning

with ’SM’:

SELECT sal
 FROM emp
 WHERE ename LIKE ’SM%’;

The following query uses the = operator, rather than the LIKE operator, to find the

salaries of all employees with the name ’SM%’:

SELECT sal
 FROM emp
 WHERE ename = ’SM%’;

The following query finds the salaries of all employees with the name ’SM%’.

Oracle interprets ’SM%’ as a text literal, rather than as a pattern, because it precedes

the LIKE operator:

SELECT sal
 FROM emp
 WHERE ’SM%’ LIKE ename;

Patterns typically use special characters that Oracle matches with different

characters in the value:

■ An underscore (_) in the pattern matches exactly one character (as opposed to

one byte in a multibyte character set) in the value.

■ A percent sign (%) in the pattern can match zero or more characters (as opposed

to bytes in a multibyte character set) in the value. Note that the pattern ’%’

cannot match a null.

Case Sensitivity and Pattern Matching Case is significant in all conditions

comparing character expressions including the LIKE and equality (=) operators.

You can use the UPPER function to perform a case-insensitive match, as in this

condition:

UPPER(ename) LIKE ’SM%’

Pattern Matching on Indexed Columns When LIKE is used to search an indexed

column for a pattern, Oracle can use the index to improve the statement’s
Operators 3-9

Comparison Operators
performance if the leading character in the pattern is not "%" or "_". In this case,

Oracle can scan the index by this leading character. If the first character in the

pattern is "%" or "_", the index cannot improve the query’s performance because

Oracle cannot scan the index.

LIKE Operator Examples This condition is true for all ename values beginning

with "MA":

ename LIKE ’MA%’

All of these ename values make the condition TRUE:

MARTIN, MA, MARK, MARY

Case is significant, so ename values beginning with "Ma," "ma," and "mA" make the

condition FALSE.

Consider this condition:

ename LIKE ’SMITH_’

This condition is true for these ename values:

SMITHE, SMITHY, SMITHS

This condition is false for ’SMITH’, since the special character "_" must match

exactly one character of the ename value.

To search for employees with the pattern ’A_B’ in their name:

SELECT ename
 FROM emp
 WHERE ename LIKE ’%A_B%’ ESCAPE ’\’;

The ESCAPE option identifies the backslash (\) as the escape character. In the

pattern, the escape character precedes the underscore (_). This causes Oracle to

interpret the underscore literally, rather than as a special pattern matching

character.

ESCAPE Option Example You can include the actual characters "%" or "_" in the

pattern by using the ESCAPE option. The ESCAPE option identifies the escape

character. If the escape character appears in the pattern before the character "%" or

"_" then Oracle interprets this character literally in the pattern, rather than as a

special pattern matching character.
3-10 SQL Reference

Logical Operators: NOT, AND, OR
Patterns Without % If a pattern does not contain the "%" character, the condition

can be TRUE only if both operands have the same length.

Example: Consider the definition of this table and the values inserted into it:

CREATE TABLE freds (f CHAR(6), v VARCHAR2(6));
INSERT INTO freds VALUES (’FRED’, ’FRED’);

Because Oracle blank-pads CHAR values, the value of f is blank-padded to 6 bytes.

v is not blank-padded and has length 4.

Logical Operators: NOT, AND, OR
A logical operator combines the results of two component conditions to produce a

single result based on them or to invert the result of a single condition. Table 3–5

lists logical operators.

For example, in the WHERE clause of the following SELECT statement, the AND
logical operator is used to ensure that only those hired before 1984 and earning

more than $1000 a month are returned:

SELECT *

Table 3–5 Logical Operators

Operator Function Example

NOT Returns TRUEif the following
condition is FALSE. Returns
FALSE if it is TRUE. If it is
UNKNOWN, it remains
UNKNOWN.

SELECT *
 FROM emp
 WHERE NOT (job IS NULL);
SELECT *
 FROM emp
 WHERE NOT
 (sal BETWEEN 1000 AND 2000);

AND Returns TRUE if both
component conditions are
TRUE. Returns FALSEif either
is FALSE. Otherwise returns
UNKNOWN.

SELECT *
 FROM emp
 WHERE job = ’CLERK’
 AND deptno = 10;

OR Returns TRUE if either
component condition is TRUE.
Returns FALSE if both are
FALSE. Otherwise returns
UNKNOWN.

SELECT *
 FROM emp
 WHERE job = ’CLERK’
 OR deptno = 10;
Operators 3-11

Set Operators: UNION [ALL], INTERSECT, MINUS
 FROM emp
 WHERE hiredate < TO_DATE(’01-JAN-1984’, ’DD-MON-YYYY’)
 AND sal > 1000;

NOT Operator
Table 3–6 shows the result of applying the NOT operator to a condition.

AND Operator
Table 3–7 shows the results of combining two expressions with AND.

OR Operator
Table 3–8 shows the results of combining two expressions with OR.

Set Operators: UNION [ALL], INTERSECT, MINUS
Set operators combine the results of two component queries into a single result.

Queries containing set operators are called compound queries. Table 3–9 lists SQL

set operators.

Table 3–6 NOT Truth Table

TRUE FALSE UNKNOWN

NOT FALSE TRUE UNKNOWN

Table 3–7 AND Truth Table

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

Table 3–8 OR Truth Table

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN
3-12 SQL Reference

Set Operators: UNION [ALL], INTERSECT, MINUS
All set operators have equal precedence. If a SQL statement contains multiple set

operators, Oracle evaluates them from the left to right if no parentheses explicitly

specify another order.

The corresponding expressions in the select lists of the component queries of a

compound query must match in number and datatype. If component queries select

character data, the datatype of the return values are determined as follows:

■ If both queries select values of datatype CHAR, the returned values have

datatype CHAR.

■ If either or both of the queries select values of datatype VARCHAR2, the returned

values have datatype VARCHAR2.

Set Operator Examples Consider these two queries and their results:

SELECT part
 FROM orders_list1;

PART

SPARKPLUG
FUEL PUMP
FUEL PUMP
TAILPIPE

SELECT part
 FROM orders_list2;

PART

CRANKSHAFT
TAILPIPE
TAILPIPE

Table 3–9 Set Operators

Operator Returns

UNION All rows selected by either query.

UNION ALL All rows selected by either query, including all duplicates.

INTERSECT All distinct rows selected by both queries.

MINUS All distinct rows selected by the first query but not the second.
Operators 3-13

Set Operators: UNION [ALL], INTERSECT, MINUS
The following examples combine the two query results with each of the set

operators.

UNION Example The following statement combines the results with the UNION
operator, which eliminates duplicate selected rows. This statement shows that you

must match datatype (using the TO_DATE and TO_NUMBER functions) when

columns do not exist in one or the other table:

SELECT part, partnum, to_date(null) date_in
 FROM orders_list1
UNION
SELECT part, to_number(null), date_in
 FROM orders_list2;

PART PARTNUM DATE_IN
---------- ------- --------
SPARKPLUG 3323165
SPARKPLUG 10/24/98
FUEL PUMP 3323162
FUEL PUMP 12/24/99
TAILPIPE 1332999
TAILPIPE 01/01/01
CRANKSHAFT 9394991
CRANKSHAFT 09/12/02

SELECT part
 FROM orders_list1
UNION
SELECT part
 FROM orders_list2;

PART

SPARKPLUG
FUEL PUMP
TAILPIPE
CRANKSHAFT

UNION ALL Example The following statement combines the results with the

UNION ALL operator, which does not eliminate duplicate selected rows:

SELECT part
 FROM orders_list1
UNION ALL
3-14 SQL Reference

Set Operators: UNION [ALL], INTERSECT, MINUS
SELECT part
 FROM orders_list2;

PART

SPARKPLUG
FUEL PUMP
FUEL PUMP
TAILPIPE
CRANKSHAFT
TAILPIPE
TAILPIPE

Note that the UNIONoperator returns only distinct rows that appear in either result,

while the UNION ALLoperator returns all rows. A part value that appears multiple

times in either or both queries (such as ’FUEL PUMP’) is returned only once by the

UNION operator, but multiple times by the UNION ALL operator.

INTERSECT Example The following statement combines the results with the

INTERSECT operator, which returns only those rows returned by both queries:

SELECT part
 FROM orders_list1
INTERSECT
SELECT part
 FROM orders_list2;

PART

TAILPIPE

MINUS Example The following statement combines results with the MINUS
operator, which returns only rows returned by the first query but not by the second:

SELECT part
 FROM orders_list1
MINUS
SELECT part
 FROM orders_list2;

PART

SPARKPLUG
FUEL PUMP
Operators 3-15

Other Built-In Operators
Other Built-In Operators
Table 3–10 lists other SQL operators.

User-Defined Operators
Like built-in operators, user-defined operators take a set of operands as input and

return a result. However, you create them with the CREATE OPERATOR statement,

and they are identified by names (e.g., MERGE). They reside in the same namespace

as tables, views, types, and stand-alone functions.

Once you have defined a new operator, you can use it in SQL statements like any

other built-in operator. For example, you can use user-defined operators in the

select list of a SELECT statement, the condition of a WHERE clause, or in ORDER BY
clauses and GROUP BY clauses. However, you must have EXECUTE privilege on the

operator to do so, because it is a user-defined object.

For example, if you define an operator CONTAINS, which takes as input a text

document and a keyword and returns 1 if the document contains the specified

keyword, you can then write the following SQL query:

SELECT * FROM emp WHERE contains (resume, ’Oracle and UNIX’) = 1;

Table 3–10 Other SQL Operators

Operator Purpose Example

(+) Indicates that the preceding column is the outer join column in a
join.

See Also: "Outer Joins" on page 5-25.

SELECT ename, dname
 FROM emp, dept
 WHERE dept.deptno =
 emp.deptno(+);

PRIOR Evaluates the following expression for the parent row of the
current row in a hierarchical, or tree-structured, query. In such a
query, you must use this operator in the CONNECT BY clause to
define the relationship between parent and child rows. You can
also use this operator in other parts of a SELECT statement that
performs a hierarchical query. The PRIOR operator is a unary
operator and has the same precedence as the unary + and -
arithmetic operators.

See Also: "Hierarchical Queries" on page 5-22.

SELECT empno, ename,
mgr
 FROM emp
 CONNECT BY
 PRIOR empno =
mgr;

See Also: CREATE OPERATOR on page 9-115 and Oracle8i Data
Cartridge Developer’s Guide for more information on user-defined operators
3-16 SQL Reference

Fun
4

Functions

Functions are similar to operators in that they manipulate data items and return a

result. Functions differ from operators in the format of their arguments. This format

allows them to operate on zero, one, two, or more arguments:

function(argument, argument, ...)

This chapter contains these sections:

■ SQL Functions

■ User-Defined Functions
ctions 4-1

SQL Functions
SQL Functions
SQL functions are built into Oracle and are available for use in various appropriate

SQL statements. Do not confuse SQL functions with user functions written in PL/

SQL.

If you call a SQL function with an argument of a datatype other than the datatype

expected by the SQL function, Oracle implicitly converts the argument to the

expected datatype before performing the SQL function. If you call a SQL function

with a null argument, the SQL function automatically returns null. The only SQL

functions that do not necessarily follow this behavior are CONCAT, NVL, and

REPLACE.

In the syntax diagrams for SQL functions, arguments are indicated by their

datatypes. When the parameter "function" appears in SQL syntax, replace it with

one of the functions described in this section. Functions are grouped by the

datatypes of their arguments and their return values.

The general syntax is as follows:

function::=

See Also:

■ "User-Defined Functions" on page 4-128 for information on user

functions

■ Oracle interMedia Audio, Image, and Video User’s Guide and
Reference for information on functions used with Oracle

interMedia

■ "Data Conversion" on page 2-30 for implicit conversion of

datatypes

■ "Syntax Diagrams and Notation" on page -xxi

single_row_function

aggregate_function

analytic_function

object_reference_function

user_defined_function
4-2 SQL Reference

SQL Functions
single_row_function::=

The sections that follow list the built-in SQL functions in each of the groups

illustrated above except user-defined functions. All of the built-in SQL functions are

then described in alphabetical order. User-defined functions are described at the

end of this chapter.

The examples provided with the function descriptions use the emp and dept tables

that are part of the scott schema in your sample Oracle database. Many examples

also use a sales table, which has the following contents:

REGION PRODUCT S_DAY S_MONTH S_YEAR S_AMOUNT S_PROFIT
------ ------- ------ ---------- ---------- ---------- --------
200 1 10 6 1998 77586 586
200 1 26 8 1998 62109 509
200 1 11 11 1998 46632 432
200 1 14 4 1999 15678 278
201 1 9 6 1998 77972 587
201 1 25 8 1998 62418 510
201 1 10 11 1998 46864 433
201 1 13 4 1999 15756 279
200 2 9 6 1998 39087 293.5
200 2 25 8 1998 31310 255
200 2 10 11 1998 23533 216.5
200 2 13 4 1999 7979 139.5
201 2 9 11 1998 23649.5 217
201 2 12 4 1999 8018.5 140
200 3 9 11 1998 15834 144.67
200 3 12 4 1999 5413.33 93.33
201 3 11 4 1999 5440 93.67
200 4 11 4 1999 4131 70.25
201 4 10 4 1999 4151.25 70.5
200 5 10 4 1999 3362 56.4
201 5 5 6 1998 16068 118.2
201 5 21 8 1998 12895.6 102.8
201 5 9 4 1999 3378.4 56.6

number_function

character_function

date_function

conversion_function

miscellaneous_single_row_function
Functions 4-3

SQL Functions
Single-Row Functions
Single-row functions return a single result row for every row of a queried table or

view. These functions can appear in select lists, WHEREclauses, START WITHclauses,

and CONNECT BY clauses.

Number Functions
Number functions accept numeric input and return numeric values. Most of these

functions return values that are accurate to 38 decimal digits. The transcendental

functions COS, COSH, EXP, LN, LOG, SIN , SINH, SQRT, TAN, and TANHare accurate to

36 decimal digits. The transcendental functions ACOS, ASIN, ATAN, and ATAN2 are

accurate to 30 decimal digits. The number functions are:

Character Functions Returning Character Values
Character functions that return character values, unless otherwise noted, return

values with the datatype VARCHAR2 and are limited in length to 4000 bytes.

Functions that return values of datatype CHAR are limited in length to 2000 bytes. If

the length of the return value exceeds the limit, Oracle truncates it and returns the

result without an error message. The character functions that return character

values are:

ABS

ACOS

ADD_MONTHS

ATAN

ATAN2

BITAND

CEIL

COS

COSH

EXP

FLOOR

LN

LOG

MOD

POWER

ROUND (number function)

SIGN

SIN

SINH

SQRT

TAN

TANH

TRUNC (number function)
4-4 SQL Reference

SQL Functions
Character Functions Returning Number Values
The character functions that return number values are:

Date Functions
Date functions operate on values of the DATE datatype. All date functions return a

value of DATE datatype, except the MONTHS_BETWEEN function, which returns a

number. The date functions are:

Conversion Functions
Conversion functions convert a value from one datatype to another. Generally, the

form of the function names follows the convention datatype TOdatatype . The

first datatype is the input datatype. The second datatype is the output datatype. The

SQL conversion functions are:

CHR

CONCAT

INITCAP

LOWER

LPAD

LTRIM

NLS_INITCAP

NLS_LOWER

NLSSORT

NLS_UPPER

REPLACE

RPAD

RTRIM

SOUNDEX

SUBSTR

SUBSTRB

TRANSLATE

TRIM

UPPER

ASCII

INSTR

INSTRB

LENGTH

LENGTHB

ADD_MONTHS

LAST_DAY

MONTHS_BETWEEN

NEW_TIME

NEXT_DAY

ROUND (date function)

SYSDATE

TRUNC (date function)
Functions 4-5

SQL Functions
Miscellaneous Single-Row Functions
The following single-row functions do not fall into any of the other single-row

function categories.

Aggregate Functions
Aggregate functions return a single result row based on groups of rows, rather than

on single rows. Aggregate functions can appear in select lists and in ORDER BY and

HAVING clauses. They are commonly used with the GROUP BY clause in a SELECT
statement, where Oracle divides the rows of a queried table or view into groups. In

a query containing a GROUP BY clause, the elements of the select list can be

aggregate functions, GROUP BY expressions, constants, or expressions involving one

of these. Oracle applies the aggregate functions to each group of rows and returns a

single result row for each group.

If you omit the GROUP BYclause, Oracle applies aggregate functions in the select list

to all the rows in the queried table or view. You use aggregate functions in the

HAVING clause to eliminate groups from the output based on the results of the

aggregate functions, rather than on the values of the individual rows of the queried

table or view.

CHARTOROWID

CONVERT

HEXTORAW

NUMTODSINTERVAL

NUMTOYMINTERVAL

RAWTOHEX

ROWIDTOCHAR

TO_CHAR (date
conversion)

TO_CHAR (number
conversion)

TO_DATE

TO_LOB

TO_MULTI_BYTE

TO_NUMBER

TO_SINGLE_BYTE

TRANSLATE ... USING

BFILENAME

DUMP

EMPTY_[B | C]LOB

GREATEST

LEAST

NLS_CHARSET_DECL_LEN

NLS_CHARSET_ID

NLS_CHARSET_NAME

NVL

NVL2

SYS_CONTEXT

SYS_GUID

UID

USER

USERENV

VSIZE
4-6 SQL Reference

SQL Functions
Many (but not all) aggregate functions that take a single argument accept these

options:

■ DISTINCT causes an aggregate function to consider only distinct values of the

argument expression.

■ ALL causes an aggregate function to consider all values, including all

duplicates.

For example, the DISTINCT average of 1, 1, 1, and 3 is 2. The ALL average is 1.5. If

you specify neither option, the default is ALL.

All aggregate functions except COUNT(*) and GROUPING ignore nulls. You can use

the NVLfunction in the argument to an aggregate function to substitute a value for a

null. COUNT never returns null, but returns either a number or zero. For all the

remaining aggregate functions, if the data set contains no rows, or contains only

rows with nulls as arguments to the aggregate function, then the function returns

null.

You can nest aggregate functions. For example, the following example calculates the

average of the maximum salaries of all the departments in the scott schema:

SELECT AVG(MAX(sal)) FROM emp GROUP BY deptno;

AVG(MAX(SAL))

 3616.66667

This calculation evaluates the inner aggregate (MAX(sal)) for each group defined by

the GROUP BY clause (deptno), and aggregates the results again.

The aggregate functions are:

See Also: "GROUP BY Examples" on page 11-105 and the HAVING
clause on page 11-100 for more information on the GROUP BYclause

and HAVING clauses in queries and subqueries

AVG

CORR

COUNT

COVAR_POP

COVAR_SAMP

GROUPING

MAX

MIN

REGR_ (linear
regression) functions

STDDEV

STDDEV_POP

STDDEV_SAMP

SUM

VAR_POP

VAR_SAMP

VARIANCE
Functions 4-7

SQL Functions
Analytic Functions
Analytic functions compute an aggregate value based on a group of rows. The

group of rows is called a window and is defined by the analytic clause. For each

row, a "sliding" window of rows is defined. The window determines the range of

rows used to perform the calculations for the "current row". Window sizes can be

based on either a physical number of rows or a logical interval such as time.

Analytic functions are the last set of operations performed in a query except for the

final ORDER BY clause. All joins and all WHERE, GROUP BY, and HAVING clauses are

completed before the analytic functions are processed. Therefore, analytic functions

can appear only in the select list or ORDER BY clause.

Analytic functions are commonly used to compute cumulative, moving, centered,

and reporting aggregates.

analytic_function ::=

analytic_clause ::=

query_partition_clause ::=

ORDER_BY_clause::=

analytic_function (
arguments

) OVER (analytic_clause)

query_partition_clause ORDER_BY_clause
windowing_clause

PARTITION BY value_expr

,

ORDER BY

expr

position

c_alias

ASC

DESC

NULLS FIRST

NULLS LAST

,

4-8 SQL Reference

SQL Functions
windowing_clause ::=

The keywords and parameters of this syntax are:

analytic_function
Specify the name of an analytic function (see the listings of different types of

analytic functions following this table).

arguments
Analytic functions take 0 to 3 arguments.

analytic_clause
Use analytic_clause OVER clause to indicate that the function operates on a

query result set. That is, it is computed after the FROM, WHERE, GROUP BY, and

HAVING clauses. You can specify analytic functions with this clause in the select list

or ORDER BY clause. To filter the results of a query based on an analytic function,

nest these functions within the parent query, and then filter the results of the nested

subquery.

Note: You cannot specify any analytic function in any part of the

analytic_clause . That is, you cannot nest analytic functions.

However, you can specify an analytic function in a subquery and

compute another analytic function over it.

ROWS

RANGE

BETWEEN

UNBOUNDED PRECEDING

CURRENT ROW

value_expr
PRECEDING

FOLLOWING

AND

UNBOUNDED FOLLOWING

CURRENT ROW

value_expr
PRECEDING

FOLLOWING

UNBOUNDED PRECEDING

CURRENT ROW

value_expr PRECEDING
Functions 4-9

SQL Functions
query_partition_clause

ORDER_BY_clause

Use the ORDER BY clause to specify how data is ordered within a partition. You can

order the values in a partition on multiple keys, each defined by a value_expr
and each qualified by an ordering sequence.

Within each function, you can specify multiple ordering expressions. Doing so is

especially useful when using functions that rank values, because the second

expression can resolve ties between identical values for the first expression.

Restriction: When used in an analytic function, the ORDER_BY_clause must take

an expression (expr). Position (position) and column aliases (c_alias) are

invalid. Otherwise this ORDER_BY_clause is the same as that used to order the

overall query or subquery.

PARTITION BY Use the PARTITION BY clause to partition the query result set into

groups based on one or more value_expr . If you omit this

clause, the function treats all rows of the query result set as a

single group.

You can specify multiple analytic functions in the same query,

each with the same or different PARTITION BY keys.

Note: If the objects being queried have the parallel attribute,

and if you specify an analytic function with the query_
partition_clause , then the function computations are

parallelized as well.

value_expr Valid value expressions are constants, columns, nonanalytic

functions, function expressions, or expressions involving any of

these.

Note: Analytic functions always operate on rows in the order

specified in the ORDER_BY_clause of the function. However, the

ORDER_BY_clause of the function does not guarantee the order of

the result. Use the ORDER_BY_clause of the query to guarantee

the final result ordering.
4-10 SQL Reference

SQL Functions
windowing_clause

See Also: order_by_clause of "SELECT and Subqueries" on

page 11-102 for more information on this clause

ASC | DESC Specify the ordering sequence (ascending or descending). ASC is

the default.

NULLS FIRST|

NULLS LAST
Specify whether returned rows containing null values should

appear first or last in the ordering sequence.

NULLS LASTis the default for ascending order, and NULLS FIRST
is the default for descending order.

ROWS | RANGE These keywords define for each row a "window" (a physical or

logical set of rows) used for calculating the function result. The

function is then applied to all the rows in the window. The

window "slides" through the query result set or partition from top

to bottom.

■ ROWS specifies the window in physical units (rows).

■ RANGE specifies the window as a logical offset.

You cannot specify this clause unless you have specified the

ORDER_BY_clause.

Note: The value returned by an analytic function with a

logical offset is always deterministic. However, the value

returned by an analytic function with a physical offset may

produce nondeterministic results unless the ordering

expression results in a unique ordering. You may have to

specify multiple columns in the ORDER_BY_clause to

achieve this unique ordering.

BETWEEN ...
AND

Use the BETWEEN ... AND clause to specify a start point and end

point for the window. The first expression (before AND) defines the

start point and the second expression (after AND) defines the end

point.

If you omit BETWEEN and specify only one end point, Oracle

considers it the start point, and the end point defaults to the

current row.
Functions 4-11

SQL Functions
UNBOUNDED
PRECEDING

Specify UNBOUNDED PRECEDING to indicate that the window

starts at the first row of the partition. This is the start point

specification and cannot be used as an end point specification.

UNBOUNDED
FOLLOWING

Specify UNBOUNDED FOLLOWINGto indicate that the window ends

at the last row of the partition. This is the end point specification

and cannot be used as a start point specification.

CURRENT ROW As a start point, CURRENT ROWspecifies that the window begins at

the current row or value (depending on whether you have

specified ROW or RANGE, respectively). In this case the end point

cannot be value_expr PRECEDING.

As an end point, CURRENT ROW specifies that the window ends at

the current row or value (depending on whether you have

specified ROW or RANGE, respectively). In this case the start point

cannot be value_expr FOLLOWING.

value_expr
PRECEDING

value_expr
FOLLOWING

For RANGE or ROW:

■ If value_expr FOLLOWING is the start point, then the end

point must be value_expr FOLLOWING.

■ If value_expr PRECEDING is the end point, then the start

point must be value_expr PRECEDING.

If you are defining a logical window defined by an interval of time

in numeric format, you may need to use conversion functions.

See Also: NUMTOYMINTERVAL on page 4-70 and

NUMTODSINTERVAL on page 4-69 for information on

converting numeric times into interval literals

If you specified ROWS:

■ value_expr is a physical offset. It must be a constant or

expression and must evaluate to a positive numeric value.

■ If value_expr is part of the start point, it must evaluate to a

row before the end point.
4-12 SQL Reference

SQL Functions
Analytic functions are commonly used in data warehousing environments. The

analytic functions are:

If you specified RANGE:

■ value_expr is a logical offset. It must be a constant or

expression that evaluates to a positive numeric value or an

interval literal.

See Also: "Literals" on page 2-33 for information on interval

literals.

■ You can specify only one expression in the ORDER_BY_
clause

■ If value_expr evaluates to a numeric value, the ORDER BY
expr must be a NUMBER or DATE datatype.

■ If value_expr evaluates to an interval value, the ORDER BY
expr must be a DATE datatype.

If you omit the windowing_clause entirely, the default is RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW.

AVG

CORR

COVAR_POP

COVAR_SAMP

COUNT

CUME_DIST

DENSE_RANK

LAG

FIRST_VALUE

LAST_VALUE

LEAD

MAX

MIN

NTILE

PERCENT_RANK

RATIO_TO_REPORT

RANK

REGR_ (linear
regression) functions

ROW_NUMBER

STDDEV

STDDEV_POP

STDDEV_SAMP

SUM

VAR_POP

VAR_SAMP

VARIANCE

See Also: Oracle8i Data Warehousing Guide for more information

on these functions, and for scenarios illustrating their use
Functions 4-13

ABS
Object Reference Functions
Object functions manipulate REFs, which are references to objects of specified object

types. The object reference functions are:

Alphabetical Listing of SQL Functions

ABS

Syntax

Purpose
ABS returns the absolute value of n.

Example
SELECT ABS(-15) "Absolute" FROM DUAL;

 Absolute

 15

ACOS

Syntax

DEREF

MAKE_REF

REF

REFTOHEX

VALUE

See Also: Oracle8i Concepts and Oracle8i Application Developer’s
Guide - Fundamentals for more information about REFs

ABS (n)

ACOS (n)
4-14 SQL Reference

ADD_MONTHS
Purpose
ACOS returns the arc cosine of n. Inputs are in the range of -1 to 1, and outputs are

in the range of 0 to π and are expressed in radians.

Example
SELECT ACOS(.3)"Arc_Cosine" FROM DUAL;

Arc_Cosine

1.26610367

ADD_MONTHS

Syntax

Purpose
ADD_MONTHS returns the date d plus n months. The argument n can be any integer.

If d is the last day of the month or if the resulting month has fewer days than the

day component of d, then the result is the last day of the resulting month.

Otherwise, the result has the same day component as d.

Example
SELECT TO_CHAR(
 ADD_MONTHS(hiredate,1),
 ’DD-MON-YYYY’) "Next month"
 FROM emp
 WHERE ename = ’SMITH’;

Next Month

17-JAN-1981

ADD_MONTHS (d , n)
Functions 4-15

ASCII
ASCII

Syntax

Purpose
ASCII returns the decimal representation in the database character set of the first

character of char . If your database character set is 7-bit ASCII, this function returns

an ASCII value. If your database character set is EBCDIC Code, this function

returns an EBCDIC value. There is no corresponding EBCDIC character function.

Example
SELECT ASCII(’Q’) FROM DUAL;

ASCII(’Q’)

 81

ASIN

Syntax

Purpose
ASIN returns the arc sine of n. Inputs are in the range of -1 to 1, and outputs are in

the range of -π/2 to π/2 and are expressed in radians.

Example
SELECT ASIN(.3) "Arc_Sine" FROM DUAL;

 Arc_Sine

.304692654

ASCII (char)

ASIN (n)
4-16 SQL Reference

ATAN2
ATAN

Syntax

Purpose
ATAN returns the arc tangent of n. Inputs are in an unbounded range, and outputs

are in the range of -π/2 to π/2 and are expressed in radians.

Example
SELECT ATAN(.3) "Arc_Tangent" FROM DUAL;

Arc_Tangent

.291456794

ATAN2

Syntax

Purpose
ATAN2 returns the arc tangent of n and m. Inputs are in an unbounded range, and

outputs are in the range of -π to π, depending on the signs of n and m, and are

expressed in radians. ATAN2(n,m) is the same as ATAN2(n/m)

Example
SELECT ATAN2(.3, .2) "Arc_Tangent2" FROM DUAL;

Arc_Tangent2

 .982793723

ATAN (n)

ATAN2 (n
,

/
m)
Functions 4-17

AVG
AVG

Syntax

Purpose
AVG returns average value of expr . You can use it as an aggregate or analytic

function.

If you specify DISTINCT , you can specify only the query_partition_clause of

the analytic_clause . The ORDER_BY_clause and windowing_clause are not

allowed.

Aggregate Example
The following example calculates the average salary of all employees in the emp
table:

SELECT AVG(sal) "Average" FROM emp;

 Average

2077.21429

Analytic Example
The following example calculates, for each employee in the emp table, the average

salary of the employees reporting to the same manager who were hired in the range

just before through just after the employee:

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 4-6

■ "Expressions" on page 5-2 for information on valid forms of

expr

AVG (

DISTINCT

ALL
expr)

OVER (analytic_clause)
4-18 SQL Reference

BFILENAME
SELECT mgr, ename, hiredate, sal,
 AVG(sal) OVER (PARTITION BY mgr ORDER BY hiredate
 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS c_mavg
 FROM emp;

 MGR ENAME HIREDATE SAL C_MAVG
---------- ---------- --------- ---------- ----------
 7566 FORD 03-DEC-81 3000 3000
 7566 SCOTT 19-APR-87 3000 3000
 7698 ALLEN 20-FEB-81 1600 1425
 7698 WARD 22-FEB-81 1250 1450
 7698 TURNER 08-SEP-81 1500 1333.33333
 7698 MARTIN 28-SEP-81 1250 1233.33333
 7698 JAMES 03-DEC-81 950 1100
 7782 MILLER 23-JAN-82 1300 1300
 7788 ADAMS 23-MAY-87 1100 1100
 7839 JONES 02-APR-81 2975 2912.5
 7839 BLAKE 01-MAY-81 2850 2758.33333
 7839 CLARK 09-JUN-81 2450 2650
 7902 SMITH 17-DEC-80 800 800
 KING 17-NOV-81 5000 5000

BFILENAME

Syntax

Purpose
BFILENAME returns a BFILE locator that is associated with a physical LOB binary

file on the server’s file system. A directory is an alias for a full pathname on the

server’s file system where the files are actually located, and ’filename’ is the name

of the file in the server’s file system.

Neither ’directory ’ nor ’filename ’ needs to point to an existing object on the file

system at the time you specify BFILENAME. However, you must associate a BFILE
value with a physical file before performing subsequent SQL, PL/SQL, DBMS_LOB
package, or OCI operations.

BFILENAME (’ directory ’ , ’ filename ’)
Functions 4-19

BITAND
Example
INSERT INTO file_tbl
 VALUES (BFILENAME (’lob_dir1’, ’image1.gif’));

BITAND

Syntax

Purpose
BITAND computes an AND operation on the bits of argument1 and argument2 ,

both of which must resolve to nonnegative integers, and returns an integer. This

function is commonly used with the DECODE expression, as illustrated in the

example that follows.

Example
Consider the following table named cars :

MANUFACTURER MODEL OPTIONS
--------------- ---------- ----------
TOYOTA CAMRY 3
TOYOTA COROLLA 5
NISSAN MAXIMA 6

The following example represents each option in each car by individual bits:

SELECT manufacturer, model,
 DECODE(BITAND(options, 1), 1, ’Automatic’, ’Stick-shift’),
 DECODE(BITAND(options, 2), 2, ’CD’, ’Radio’),
 DECODE(BITAND(options, 4), 4, ’ABS’, ’No-ABS’)
FROM cars;

See Also:

■ Oracle8i Application Developer’s Guide - Large Objects (LOBs) and

Oracle Call Interface Programmer’s Guide for more information on

LOBs

■ CREATE DIRECTORY on page 9-40

BITAND (argument1 , argument2)
4-20 SQL Reference

CHARTOROWID
MANUFACTURER MODEL DECODE(BITA DECOD DECODE
--------------- ---------- ----------- ----- ------
TOYOTA CAMRY Automatic CD No-ABS
TOYOTA COROLLA Automatic Radio ABS
NISSAN MAXIMA Stick-shift CD ABS

CEIL

Syntax

Purpose
CEIL returns smallest integer greater than or equal to n.

Example
SELECT CEIL(15.7) "Ceiling" FROM DUAL;

 Ceiling

 16

CHARTOROWID

Syntax

Purpose
CHARTOROWID converts a value from CHAR or VARCHAR2 datatype to ROWID
datatype.

Example
SELECT ename FROM emp
 WHERE ROWID = CHARTOROWID(’AAAAfZAABAAACp8AAO’);

CEIL (n)

CHARTOROWID (char)
Functions 4-21

CHR
ENAME

LEWIS

CHR

Syntax

Purpose
CHR returns the character having the binary equivalent to n in either the database

character set or the national character set.

If USING NCHAR_CS is not specified, this function returns the character having the

binary equivalent to n as a VARCHAR2 value in the database character set.

If USING NCHAR_CS is specified, this function returns the character having the

binary equivalent to n as a NVARCHAR2 value in the national character set.

Examples
The following example is run on an ASCII-based machine with the database

character set defined as WE8ISO8859P1:

SELECT CHR(67)||CHR(65)||CHR(84) "Dog" FROM DUAL;

Dog

CAT

SELECT CHR(16705 USING NCHAR_CS) FROM DUAL;

C
-
A

Note: Use of the CHRfunction (either with or without the optional

USING NCHAR_CS clause) results in code that is not portable

between ASCII- and EBCDIC-based machine architectures.

CHR (n
USING NCHAR_CS

)

4-22 SQL Reference

CONCAT
To produce the same results on an EBCDIC-based machine with the

WE8EBCDIC1047 character set, the first example above would have to be modified

as follows:

SELECT CHR(195)||CHR(193)||CHR(227) "Dog"
 FROM DUAL;

Dog

CAT

CONCAT

Syntax

Purpose
CONCAT returns char1 concatenated with char2 . This function is equivalent to the

concatenation operator (||).

Example
This example uses nesting to concatenate three character strings:

SELECT CONCAT(CONCAT(ename, ’ is a ’), job) "Job"
FROM emp
WHERE empno = 7900;

Job

JAMES is a CLERK

See Also: "Concatenation Operator" on page 3-4 for information

on the CONCAT operator

CONCAT (char1 , char2)
Functions 4-23

CONVERT
CONVERT

Syntax

Purpose
CONVERT converts a character string from one character set to another.

■ The char argument is the value to be converted.

■ The dest_char_set argument is the name of the character set to which char is

converted.

■ The source_char_set argument is the name of the character set in which

char is stored in the database. The default value is the database character set.

Both the destination and source character set arguments can be either literals or

columns containing the name of the character set.

For complete correspondence in character conversion, it is essential that the

destination character set contains a representation of all the characters defined in

the source character set. Where a character does not exist in the destination

character set, a replacement character appears. Replacement characters can be

defined as part of a character set definition.

Example
SELECT CONVERT(’Groß’, ’US7ASCII’, ’WE8HP’)
 "Conversion" FROM DUAL;

Conversion

Gross

Common character sets include:

■ US7ASCII: US 7-bit ASCII character set

■ WE8DECDEC: West European 8-bit character set

■ WE8HP: HP West European Laserjet 8-bit character set

CONVERT (char , dest_char_set
, source_char_set

)

4-24 SQL Reference

CORR
■ F7DEC: DEC French 7-bit character set

■ WE8EBCDIC500: IBM West European EBCDIC Code Page 500

■ WE8PC850: IBM PC Code Page 850

■ WE8ISO8859P1: ISO 8859-1 West European 8-bit character set

CORR

Syntax

Purpose
CORR returns the coefficient of correlation of a set of number pairs. You can use it as

an aggregate or analytic function.

Both expr1 and expr2 are number expressions. Oracle applies the function to the

set of (expr1 , expr2) after eliminating the pairs for which either expr1 or expr2
is null. Then Oracle makes the following computation:

COVAR_POP(expr1, expr2) / (STDDEV_POP(expr1) * STDDEV_POP(expr2))

The function returns a value of type NUMBER. If the function is applied to an empty

set, it returns null.

Aggregate Example
The following example calculates the coefficient of correlation between the salaries

and commissions of the employees whose manager is 7698 from the emp table:

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 4-6

■ "Expressions" on page 5-2 for information on valid forms of

expr

CORR (expr1 , expr2)
OVER (analytic_clause)
Functions 4-25

COS
SELECT mgr, CORR(sal, comm) FROM EMP
 GROUP BY mgr
 HAVING mgr = 7698;

 MGR CORR(SAL,COMM)
---------- --------------
 7698 -.69920974

Analytic Example
The following example returns the cumulative coefficient of correlation of monthly

sales and monthly profits from the sales table for year 1998:

SELECT s_month, CORR(SUM(s_amount), SUM(s_profit))
 OVER (ORDER BY s_month) AS CUM_CORR
 FROM sales
 WHERE s_year=1998
 GROUP BY s_month
 ORDER BY s_month;

 S_MONTH CUM_CORR
---------- ----------
 6
 8 1
 11 .860554259

Correlation functions require more than one row on which to operate, so the first

row in the preceding example has no value calculated for it.

COS

Syntax

Purpose
COS returns the cosine of n (an angle expressed in radians).

Example
SELECT COS(180 * 3.14159265359/180)
"Cosine of 180 degrees" FROM DUAL;

COS (n)
4-26 SQL Reference

COUNT
Cosine of 180 degrees

 -1

COSH

Syntax

Purpose
COSH returns the hyperbolic cosine of n.

Example
SELECT COSH(0) "Hyperbolic cosine of 0" FROM DUAL;

Hyperbolic cosine of 0

 1

COUNT

Syntax

Purpose
COUNT returns the number of rows in the query. You can use it as an aggregate or

analytic function.

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

COSH (n)

COUNT (

*

DISTINCT

ALL
expr

)
OVER (analytic_clause)
Functions 4-27

COUNT
If you specify DISTINCT , you can specify only the query_partition_clause of

the analytic_clause . The ORDER_BY_clause and windowing_clause are not

allowed.

If you specify expr , COUNTreturns the number of rows where expr is not null. You

can count either all rows, or only distinct values of expr .

If you specify the asterisk (*), this function returns all rows, including duplicates

and nulls. COUNT never returns null.

Aggregate Examples
SELECT COUNT(*) "Total" FROM emp;

Total

 14

SELECT COUNT(*) "Allstars" FROM emp
 WHERE comm > 0;

Allstars

 3

SELECT COUNT(mgr) "Count" FROM emp;

Count

 13

SELECT COUNT(DISTINCT mgr) "Managers" FROM emp;

Managers

 6

See Also:

■ "Aggregate Functions" on page 4-6

■ "Expressions" on page 5-2 for information on valid forms of

expr
4-28 SQL Reference

COVAR_POP
Analytic Example
The following example calculates, for each employee in the emp table, the moving

count of employees earning salaries in the range $50 less than through $150 greater

than the employee’s salary.

SELECT ename, sal,
 COUNT(*) OVER (ORDER BY sal RANGE BETWEEN 50 PRECEDING
 AND 150 FOLLOWING) AS mov_count
 FROM emp;

ENAME SAL MOV_COUNT
---------- ---------- ----------
SMITH 800 2
JAMES 950 2
ADAMS 1100 3
WARD 1250 3
MARTIN 1250 3
MILLER 1300 3
TURNER 1500 2
ALLEN 1600 1
CLARK 2450 1
BLAKE 2850 4
JONES 2975 3
SCOTT 3000 3
FORD 3000 3
KING 5000 1

COVAR_POP

Syntax

Purpose
COVAR_POPreturns the population covariance of a set of number pairs. You can use

it as an aggregate or analytic function.

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

COVAR_POP (expr1 , expr2)
OVER (analytic_clause)
Functions 4-29

COVAR_POP
Both expr1 and expr2 are number expressions. Oracle applies the function to the

set of (expr1 , expr2) pairs after eliminating all pairs for which either expr1 or

expr2 is null. Then Oracle makes the following computation:

(SUM(expr1 * expr2) - SUM(expr2) * SUM(expr1) / n) / n

where n is the number of (expr1 , expr2) pairs where neither expr1 nor expr2 is

null.

The function returns a value of type NUMBER. If the function is applied to an empty

set, it returns null.

Aggregate Example
The following example calculates the population covariance for the amount of sales

and sale profits for each year from the table sales .

SELECT s_year,
 COVAR_POP(s_amount, s_profit) AS COVAR_POP,
 COVAR_SAMP(s_amount, s_profit) AS COVAR_SAMP
 FROM sales GROUP BY s_year;

S_YEAR COVAR_POP COVAR_SAMP
---------- ---------- ----------
 1998 3747965.53 4060295.99
 1999 360536.162 400595.736

Analytic Example
The following example calculates cumulative sample covariance of the amount of

sales and sale profits in 1998.

SELECT s_year, s_month, s_day,
 COVAR_POP(s_amount, s_profit)
 OVER (ORDER BY s_month, s_day) AS CUM_COVP,
 COVAR_SAMP(s_amount, s_profit)
 OVER (ORDER BY s_month, s_day) AS CUM_COVS
 FROM sales
 WHERE s_year=1998
 ORDER BY s_year, s_month, s_day;

See Also:

■ "Aggregate Functions" on page 4-6

■ "Expressions" on page 5-2 for information on valid forms of

expr
4-30 SQL Reference

COVAR_SAMP
S_YEAR S_MONTH S_DAY CUM_COVP CUM_COVS
---------- ---------- ---------- ---------- ----------
 1998 6 5 0
 1998 6 9 4940952.6 7411428.9
 1998 6 9 4940952.6 7411428.9
 1998 6 10 5281752.33 7042336.44
 1998 8 21 6092799.46 7615999.32
 1998 8 25 4938283.61 5761330.88
 1998 8 25 4938283.61 5761330.88
 1998 8 26 4612074.09 5270941.82
 1998 11 9 4556799.53 5063110.59
 1998 11 9 4556799.53 5063110.59
 1998 11 10 4014833.65 4379818.52
 1998 11 10 4014833.65 4379818.52
 1998 11 11 3747965.53 4060295.99

COVAR_SAMP

Syntax

Purpose
COVAR_SAMP returns the sample covariance of a set of number pairs. You can use it

as an aggregate or analytic function.

Both expr1 and expr2 are number expressions. Oracle applies the function to the

set of (expr1 , expr2) pairs after eliminating all pairs for which either expr1 or

expr2 is null. Then Oracle makes the following computation:

(SUM(expr1 * expr2) - SUM(expr1) * SUM(expr2) / n) / (n-1)

where n is the number of (expr1 , expr2) pairs where neither expr1 nor expr2 is

null.

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

COVAR_SAMP (expr1 , expr2)
OVER (analytic_clause)
Functions 4-31

COVAR_SAMP
The function returns a value of type NUMBER. If the function is applied to an empty

set, it returns null.

Aggregate Example
The following example calculates the population covariance for the amount of sales

and sale profits for each year from the table sales .

SELECT s_year,
 COVAR_POP(s_amount, s_profit) AS COVAR_POP,
 COVAR_SAMP(s_amount, s_profit) AS COVAR_SAMP
 FROM sales GROUP BY s_year;

S_YEAR COVAR_POP COVAR_SAMP
---------- ---------- ----------
 1998 3747965.53 4060295.99
 1999 360536.162 400595.736

Analytic Example
The following example calculates cumulative sample covariance of the amount of

sales and sale profits in 1998.

SELECT s_year, s_month, s_day,
 COVAR_POP(s_amount, s_profit)
 OVER (ORDER BY s_month, s_day) AS CUM_COVP,
 COVAR_SAMP(s_amount, s_profit)
 OVER (ORDER BY s_month, s_day) AS CUM_COVS
 FROM sales
 WHERE s_year=1998
 ORDER BY s_year, s_month, s_day;

S_YEAR S_MONTH S_DAY CUM_COVP CUM_COVS
---------- ---------- ---------- ---------- ----------
 1998 6 5 0
 1998 6 9 4940952.6 7411428.9
 1998 6 9 4940952.6 7411428.9
 1998 6 10 5281752.33 7042336.44
 1998 8 21 6092799.46 7615999.32
 1998 8 25 4938283.61 5761330.88

See Also:

■ "Aggregate Functions" on page 4-6

■ "Expressions" on page 5-2 for information on valid forms of

expr
4-32 SQL Reference

CUME_DIST
 1998 8 25 4938283.61 5761330.88
 1998 8 26 4612074.09 5270941.82
 1998 11 9 4556799.53 5063110.59
 1998 11 9 4556799.53 5063110.59
 1998 11 10 4014833.65 4379818.52
 1998 11 10 4014833.65 4379818.52
 1998 11 11 3747965.53 4060295.99

CUME_DIST

Syntax

Purpose
CUME_DIST (cumulative distribution) is an analytic function. It computes the

relative position of a specified value in a group of values. For a row R, assuming

ascending ordering, the CUME_DIST of R is the number of rows with values lower

than or equal to the value of R, divided by the number of rows being evaluated (the

entire query result set or a partition). The range of values returned by CUME_DIST
is >0 to <=1. Tie values always evaluate to the same cumulative distribution value.

Example
The following example calculates the salary percentile for each employee within

each job category excluding job categories PRESIDENT and MANAGER. For example,

50% of clerks have salaries less than or equal to James.

SELECT job, ename, sal, CUME_DIST()
 OVER (PARTITION BY job ORDER BY sal) AS cume_dist
 FROM emp
 WHERE job NOT IN (’MANAGER’, ’PRESIDENT’);

JOB ENAME SAL CUME_DIST
--------- ---------- ---------- ----------
ANALYST SCOTT 3000 1
ANALYST FORD 3000 1

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

CUME_DIST () OVER (
query_partition_clause

ORDER_BY_clause)
Functions 4-33

DENSE_RANK
CLERK SMITH 800 .25
CLERK JAMES 950 .5
CLERK ADAMS 1100 .75
CLERK MILLER 1300 1
SALESMAN WARD 1250 .5
SALESMAN MARTIN 1250 .5
SALESMAN TURNER 1500 .75
SALESMAN ALLEN 1600 1

DENSE_RANK

Syntax

Purpose
DENSE_RANK is an analytic function. It computes the rank of each row returned

from a query with respect to the other rows, based on the values of the value_
exprs in the ORDER_BY_clause. Rows with equal values for the ranking criteria

receive the same rank. The ranks are consecutive integers beginning with 1. The

largest rank value is the number of unique values returned by the query. Rank

values are not skipped in the event of ties.

Example
The following statement selects the department name, employee name, and salary

of all employees who work in the RESEARCH or SALES department, and then

computes a rank for each unique salary in each of the two departments. The salaries

that are equal receive the same rank. Compare this example with the example for

RANK on page 4-74.

SELECT dname, ename, sal, DENSE_RANK()
 OVER (PARTITION BY dname ORDER BY sal) as drank
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND dname IN (’SALES’, ’RESEARCH’);

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

DENSE_RANK () OVER (
query_partition_clause

ORDER_BY_clause)
4-34 SQL Reference

DEREF
DNAME ENAME SAL DRANK
-------------- ---------- ---------- ----------
RESEARCH SMITH 800 1
RESEARCH ADAMS 1100 2
RESEARCH JONES 2975 3
RESEARCH FORD 3000 4
RESEARCH SCOTT 3000 4
SALES JAMES 950 1
SALES MARTIN 1250 2
SALES WARD 1250 2
SALES TURNER 1500 3
SALES ALLEN 1600 4
SALES BLAKE 2850 5

DEREF

Syntax

Purpose
DEREF returns the object reference of argument expr , where expr must return a

REF to an object. If you do not use this function in a query, Oracle returns the object

ID of the REF instead, as shown in the example that follows.

Example
CREATE TYPE emp_type AS OBJECT
 (eno NUMBER, ename VARCHAR2(20), salary NUMBER);
CREATE TABLE emp_table OF emp_type
 (primary key (eno, ename));
CREATE TABLE dept_table
 (dno NUMBER, mgr REF emp_type SCOPE IS emp_table);
INSERT INTO emp_table VALUES (10, 'jack', 50000);
INSERT INTO dept_table SELECT 10, REF(e) FROM emp_table e;

SELECT mgr FROM dept_table;

MGR
--

See Also: MAKE_REF on page 4-55

DEREF (expr)
Functions 4-35

DUMP
00002202085928CB5CDF7B61CAE03400400B40DCB15928C35861E761BCE03400400B40DCB1

SELECT DEREF(mgr) from dept_table;

DEREF(MGR)(ENO, ENAME, SALARY)
--
EMP_TYPE(10, 'jack', 50000)

DUMP

Syntax

Purpose
DUMP returns a VARCHAR2 value containing the datatype code, length in bytes, and

internal representation of expr . The returned result is always in the database

character set. For the datatype corresponding to each code, see Table 2–1 on

page 2-6.

The argument return_fmt specifies the format of the return value and can have

any of the following values:

■ 8 returns result in octal notation.

■ 10 returns result in decimal notation.

■ 16 returns result in hexadecimal notation.

■ 17 returns result as single characters.

By default, the return value contains no character set information. To retrieve the

character set name of expr , specify any of the format values above, plus 1000. For

example, a return_fmt of 1008 returns the result in octal, plus provides the

character set name of expr .

The arguments start_position and length combine to determine which

portion of the internal representation to return. The default is to return the entire

internal representation in decimal notation.

DUMP (expr
, return_fmt

, start_position
, length

)

4-36 SQL Reference

EMPTY_[B | C]LOB
If expr is null, this function returns a null.

Examples
SELECT DUMP(’abc’, 1016)
 FROM DUAL;

DUMP(’ABC’,1016)
--
Typ=96 Len=3 CharacterSet=WE8DEC: 61,62,63

SELECT DUMP(ename, 8, 3, 2) "OCTAL"
 FROM emp
 WHERE ename = ’SCOTT’;

OCTAL

Type=1 Len=5: 117,124

SELECT DUMP(ename, 10, 3, 2) "ASCII"
 FROM emp
 WHERE ename = ’SCOTT’;

ASCII

Type=1 Len=5: 79,84

EMPTY_[B | C]LOB

Syntax

Purpose
EMPTY_BLOB and EMPTY_CLOB returns an empty LOB locator that can be used to

initialize a LOB variable or in an INSERT or UPDATE statement to initialize a LOB

EMPTY_BLOB

EMPTY_CLOB
()
Functions 4-37

EXP
column or attribute to EMPTY. EMPTY means that the LOB is initialized, but not

populated with data.

You cannot use the locator returned from this function as a parameter to the DBMS_
LOB package or the OCI.

Example
INSERT INTO lob_tab1 VALUES (EMPTY_BLOB());
UPDATE lob_tab1

SET clob_col = EMPTY_BLOB();

EXP

Syntax

Purpose
EXP returns e raised to the nth power, where e = 2.71828183 ...

Example
SELECT EXP(4) "e to the 4th power" FROM DUAL;

e to the 4th power

 54.59815

FIRST_VALUE

Syntax

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

EXP (n)

FIRST_VALUE (expr) OVER (analytic_clause)
4-38 SQL Reference

FIRST_VALUE
Purpose
FIRST_VALUE is an analytic function. It returns the first value in an ordered set of

values.

You cannot use FIRST_VALUE or any other analytic function for expr . That is, you

can use other built-in function expressions for expr , but you cannot nest analytic

functions.

Examples
The following example selects, for each employee in Department 20, the name of

the employee with the highest salary.

SELECT deptno, ename, sal, FIRST_VALUE(ename)
 OVER (ORDER BY sal DESC ROWS UNBOUNDED PRECEDING) AS rich_emp
 FROM (SELECT * FROM emp WHERE deptno = 20 ORDER BY empno);

 DEPTNO ENAME SAL RICH_EMP
---------- ---------- ---------- ----------
 20 SCOTT 3000 SCOTT
 20 FORD 3000 SCOTT
 20 JONES 2975 SCOTT
 20 ADAMS 1100 SCOTT
 20 SMITH 800 SCOTT

The example illustrates the nondeterministic nature of the FIRST_VALUE function.

Scott and Ford have the same salary, so are in adjacent rows. Scott appears first

because the rows returned by the subquery are ordered by empno. However, if the

rows returned by the subquery are ordered by empno in descending order, as in the

next example, the function returns a different value:

SELECT deptno, ename, sal, FIRST_VALUE(ename)
 OVER (ORDER BY sal DESC ROWS UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM emp WHERE deptno = 20 ORDER BY empno desc);

 DEPTNO ENAME SAL FV
---------- ---------- ---------- ----------
 20 FORD 3000 FORD
 20 SCOTT 3000 FORD
 20 JONES 2975 FORD
 20 ADAMS 1100 FORD
 20 SMITH 800 FORD

See Also: "Expressions" on page 5-2 for information on valid

forms of expr
Functions 4-39

FLOOR
The following example shows how to make the FIRST_VALUE function

deterministic by ordering on a unique key.

SELECT deptno, ename, sal, hiredate, FIRST_VALUE(ename)
 OVER (ORDER BY sal DESC, hiredate ROWS UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM emp WHERE deptno = 20 ORDER BY empno desc);

DEPTNO ENAME SAL HIREDATE FV
---------- ---------- ---------- --------- ----------
 20 FORD 3000 03-DEC-81 FORD
 20 SCOTT 3000 19-APR-87 FORD
 20 JONES 2975 02-APR-81 FORD
 20 ADAMS 1100 23-MAY-87 FORD
 20 SMITH 800 17-DEC-80 FORD

FLOOR

Syntax

Purpose
FLOOR returns largest integer equal to or less than n.

Example
SELECT FLOOR(15.7) "Floor" FROM DUAL;

 Floor

 15

GREATEST

Syntax

FLOOR (n)

GREATEST (expr

,

)

4-40 SQL Reference

GROUPING
Purpose
GREATEST returns the greatest of the list of exprs . All exprs after the first are

implicitly converted to the datatype of the first expr before the comparison. Oracle

compares the exprs using nonpadded comparison semantics. Character

comparison is based on the value of the character in the database character set. One

character is greater than another if it has a higher character set value. If the value

returned by this function is character data, its datatype is always VARCHAR2.

Example
SELECT GREATEST (’HARRY’, ’HARRIOT’, ’HAROLD’)
 "Greatest" FROM DUAL;

Greatest

HARRY

GROUPING

Syntax

Purpose
The GROUPING function is applicable only in a SELECT statement that contains a

GROUP BY extension, such as ROLLUP or CUBE. These operations produce

superaggregate rows that contain nulls representing the set of all values. You can

use the GROUPING function to distinguish a null that represents the set of all values

in a superaggregate row from an actual null.

The expr in the GROUPING function must match one of the expressions in the

GROUP BYclause. The function returns a value of 1 if the value of expr in the row is

a null representing the set of all values. Otherwise, it returns zero. The datatype of

the value returned by the GROUPING function is Oracle NUMBER.

See Also: "Datatype Comparison Rules" on page 2-26

See Also: group_by_clause of the SELECT statement on

page 11-99 for a discussion of these terms

GROUPING (expr)
Functions 4-41

HEXTORAW
Example
In the following example, if the GROUPING function returns 1 (indicating a

superaggregate row rather than a data row from the table), the string "All Jobs"

appears instead of the null that would otherwise appear:

SELECT DECODE(GROUPING(dname), 1, 'All Departments',
 dname) AS dname,
 DECODE(GROUPING(job), 1, 'All Jobs', job) AS job,
 COUNT(*) "Total Empl", AVG(sal) * 12 "Average Sal"
 FROM emp, dept
 WHERE dept.deptno = emp.deptno
 GROUP BY ROLLUP (dname, job);

DNAME JOB Total Empl Average Sa
--------------- --------- ---------- ----------
ACCOUNTING CLERK 1 15600
ACCOUNTING MANAGER 1 29400
ACCOUNTING PRESIDENT 1 60000
ACCOUNTING All Jobs 3 35000
RESEARCH ANALYST 2 36000
RESEARCH CLERK 2 11400
RESEARCH MANAGER 1 35700
RESEARCH All Jobs 5 26100
SALES CLERK 1 11400
SALES MANAGER 1 34200
SALES SALESMAN 4 16800
SALES All Jobs 6 18800
All Departments All Jobs 14 24878.5714

HEXTORAW

Syntax

Purpose
HEXTORAW converts char containing hexadecimal digits to a raw value.

Example
INSERT INTO graphics (raw_column)
 SELECT HEXTORAW(’7D’) FROM DUAL;

HEXTORAW (char)
4-42 SQL Reference

INSTR
INITCAP

Syntax

Purpose
INITCAP returns char , with the first letter of each word in uppercase, all other

letters in lowercase. Words are delimited by white space or characters that are not

alphanumeric.

Example
SELECT INITCAP(’the soap’) "Capitals" FROM DUAL;

Capitals

The Soap

INSTR

Syntax

Purpose
INSTR searches string for substring .

■ position is an integer indicating the character of string where Oracle begins

the search. If position is negative, Oracle counts and searches backward from

the end of string .

See Also: "RAW and LONG RAW Datatypes" on page 2-16 and

RAWTOHEX on page 4-76

INITCAP (char)

INSTR (string , substring
, position

, occurrence

)

Functions 4-43

INSTRB
■ occurrence is an integer indicating which occurrence of string Oracle should

search for. The value of occurrence must be positive.

The function returns an integer indicating the position of the character in string
that is the first character of this occurrence. The default values of both position
and occurrence are 1, meaning Oracle begins searching at the first character of

string for the first occurrence of substring . The return value is relative to the

beginning of string , regardless of the value of position , and is expressed in

characters. If the search is unsuccessful (if substring does not appear

occurrence times after the position character of string) the return value is 0.

Examples
SELECT INSTR(’CORPORATE FLOOR’,’OR’, 3, 2)
 "Instring" FROM DUAL;

 Instring

 14

SELECT INSTR(’CORPORATE FLOOR’,’OR’, -3, 2)
"Reversed Instring"
 FROM DUAL;

Reversed Instring

 2

INSTRB

Syntax

Purpose
INSTRB is the same as INSTR, except that position and the return value are

expressed in bytes, rather than in characters. For a single-byte database character

set, INSTRB is equivalent to INSTR.

INSTRB (string , substring
, position

, occurrence

)

4-44 SQL Reference

LAG
Example
This example assumes a double-byte database character set.

SELECT INSTRB(’CORPORATE FLOOR’,’OR’,5,2)
"Instring in bytes"
FROM DUAL;

Instring in bytes

 27

LAG

Syntax

Purpose
LAG is an analytic function. It provides access to more than one row of a table at the

same time without a self-join. Given a series of rows returned from a query and a

position of the cursor, LAG provides access to a row at a given physical offset prior

to that position.

If you do not specify offset , its default is 1. The optional default value is

returned if the offset goes beyond the scope of the window. If you do not specify

default , its default value is null.

You cannot use LAG or any other analytic function for value_expr . That is, you

can use other built-in function expressions for expr , but you cannot nest analytic

functions.

See Also: INSTR on page 4-43

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

See Also: "Expressions" on page 5-2 for information on valid

forms of expr

LAG (value_expr
, offset , default

) OVER (analytic_clause)
Functions 4-45

LAST_DAY
Example
The following example provides, for each salesperson in the emp table, the salary of

the employee hired just before:

SELECT ename, hiredate, sal,
 LAG(sal, 1, 0) OVER (ORDER BY hiredate) as prev_sal
 FROM emp
 WHERE job = ’SALESMAN’;

ENAME HIREDATE SAL PREV_SAL
---------- --------- ---------- ----------
ALLEN 20-FEB-81 1600 0
WARD 22-FEB-81 1250 1600
TURNER 08-SEP-81 1500 1250
MARTIN 28-SEP-81 1250 1500

LAST_DAY

Syntax

Purpose
LAST_DAY returns the date of the last day of the month that contains d. You might

use this function to determine how many days are left in the current month.

Examples
SELECT SYSDATE,
 LAST_DAY(SYSDATE) "Last",
 LAST_DAY(SYSDATE) - SYSDATE "Days Left"
 FROM DUAL;

SYSDATE Last Days Left
--------- --------- ----------
23-OCT-97 31-OCT-97 8

The following example adds 5 months to the hiredate of each employee to give an

evaluation date:

LAST_DAY (d)
4-46 SQL Reference

LAST_VALUE
SELECT ename, hiredate, TO_CHAR(
ADD_MONTHS(LAST_DAY(hiredate), 5)) "Eval Date"
FROM emp;

ENAME HIREDATE Eval Date
---------- --------- ---------
SMITH 17-DEC-80 31-MAY-81
ALLEN 20-FEB-81 31-JUL-81
WARD 22-FEB-81 31-JUL-81
JONES 02-APR-81 30-SEP-81
MARTIN 28-SEP-81 28-FEB-82
BLAKE 01-MAY-81 31-OCT-81
CLARK 09-JUN-81 30-NOV-81
SCOTT 19-APR-87 30-SEP-87
KING 17-NOV-81 30-APR-82
TURNER 08-SEP-81 28-FEB-82
ADAMS 23-MAY-87 31-OCT-87
JAMES 03-DEC-81 31-MAY-82
FORD 03-DEC-81 31-MAY-82
MILLER 23-JAN-82 30-JUN-82

LAST_VALUE

Syntax

Purpose
LAST_VALUE is an analytic function. It returns the last value in an ordered set of

values.

You cannot use LAST_VALUE or any other analytic function for expr . That is, you

can use other built-in function expressions for expr , but you cannot nest analytic

functions.

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

See Also: "Expressions" on page 5-2 for information on valid

forms of expr

LAST_VALUE (expr) OVER (analytic_clause)
Functions 4-47

LAST_VALUE
Examples
The following example returns the hiredate of the employee earning the highest

salary.

SELECT ename, sal, hiredate, LAST_VALUE(hiredate) OVER
 (ORDER BY sal
 ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS lv
FROM (SELECT * FROM emp WHERE deptno=20 ORDER BY hiredate);

ENAME SAL HIREDATE LV
---------- ---------- --------- ---------
SMITH 800 17-DEC-80 19-APR-87
ADAMS 1100 23-MAY-87 19-APR-87
JONES 2975 02-APR-81 19-APR-87
FORD 3000 03-DEC-81 19-APR-87
SCOTT 3000 19-APR-87 19-APR-87

This example illustrates the nondeterministic nature of the LAST_VALUE function.

Ford and Scott have the same salary, so they are in adjacent rows. Ford appears first

because the rows in the subquery are ordered by hiredate . However, if the rows

are ordered by hiredate in descending order, as in the next example, the function

returns a different value:

SELECT ename, sal, hiredate, LAST_VALUE(hiredate) OVER
 (ORDER BY sal
 ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS lv
FROM (SELECT * FROM emp WHERE deptno=20 ORDER BY hiredate DESC);

ENAME SAL HIREDATE LV
---------- ---------- --------- ---------
SMITH 800 17-DEC-80 03-DEC-81
ADAMS 1100 23-MAY-87 03-DEC-81
JONES 2975 02-APR-81 03-DEC-81
SCOTT 3000 19-APR-87 03-DEC-81
FORD 3000 03-DEC-81 03-DEC-81

The following two examples show how to make the LAST_VALUE function

deterministic by ordering on a unique key. By ordering within the function by both

salary and hiredate, you can ensure the same result regardless of the ordering in the

subquery.

SELECT ename, sal, hiredate, LAST_VALUE(hiredate) OVER
 (ORDER BY sal, hiredate
 ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS lv
FROM (SELECT * FROM emp WHERE deptno=20 ORDER BY hiredate);
4-48 SQL Reference

LEAD
ENAME SAL HIREDATE LV
---------- ---------- --------- ---------
SMITH 800 17-DEC-80 19-APR-87
ADAMS 1100 23-MAY-87 19-APR-87
JONES 2975 02-APR-81 19-APR-87
FORD 3000 03-DEC-81 19-APR-87
SCOTT 3000 19-APR-87 19-APR-87

SELECT ename, sal, hiredate, LAST_VALUE(hiredate) OVER
 (ORDER BY sal, hiredate
 ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS lv
FROM (SELECT * FROM emp WHERE deptno=20 ORDER BY hiredate DESC);

ENAME SAL HIREDATE LV
---------- ---------- --------- ---------
SMITH 800 17-DEC-80 19-APR-87
ADAMS 1100 23-MAY-87 19-APR-87
JONES 2975 02-APR-81 19-APR-87
FORD 3000 03-DEC-81 19-APR-87
SCOTT 3000 19-APR-87 19-APR-87

LEAD

Syntax

Purpose
LEAD is an analytic function. It provides access to more than one row of a table at

the same time without a self-join. Given a series of rows returned from a query and

a position of the cursor, LEAD provides access to a row at a given physical offset

beyond that position.

If you do not specify offset , its default is 1. The optional default value is

returned if the offset goes beyond the scope of the table. If you do not specify

default , its default value is null.

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

LEAD (value_expr
, offset , default

) OVER (analytic_clause)
Functions 4-49

LEAST
You cannot use LEAD or any other analytic function for value_expr . That is, you

can use other built-in function expressions for value_expr , but you cannot nest

analytic functions.

Example
The following example provides, for each employee in the emptable, the hiredate of

the employee hired just after:

SELECT ename, hiredate,
 LEAD(hiredate, 1) OVER (ORDER BY hiredate) AS "NextHired"
 FROM emp;

ENAME HIREDATE NextHired
---------- --------- ---------
SMITH 17-DEC-80 20-FEB-81
ALLEN 20-FEB-81 22-FEB-81
WARD 22-FEB-81 02-APR-81
JONES 02-APR-81 01-MAY-81
BLAKE 01-MAY-81 09-JUN-81
CLARK 09-JUN-81 08-SEP-81
TURNER 08-SEP-81 28-SEP-81
MARTIN 28-SEP-81 17-NOV-81
KING 17-NOV-81 03-DEC-81
JAMES 03-DEC-81 03-DEC-81
FORD 03-DEC-81 23-JAN-82
MILLER 23-JAN-82 19-APR-87
SCOTT 19-APR-87 23-MAY-87
ADAMS 23-MAY-87

LEAST

Syntax

See Also: "Expressions" on page 5-2 for information on valid

forms of expr

LEAST (expr

,

)

4-50 SQL Reference

LENGTHB
Purpose
LEAST returns the least of the list of expr s. All expr s after the first are implicitly

converted to the datatype of the first expr before the comparison. Oracle compares

the expr s using nonpadded comparison semantics. If the value returned by this

function is character data, its datatype is always VARCHAR2.

Example
SELECT LEAST(’HARRY’,’HARRIOT’,’HAROLD’) "LEAST"
 FROM DUAL;

LEAST

HAROLD

LENGTH

Syntax

Purpose
LENGTH returns the length of char in characters. If char has datatype CHAR, the

length includes all trailing blanks. If char is null, this function returns null.

Example
SELECT LENGTH(’CANDIDE’) "Length in characters"
FROM DUAL;

Length in characters

 7

LENGTHB

Syntax

LENGTH (char)

LENGTHB (char)
Functions 4-51

LN
Purpose
LENGTHB returns the length of char in bytes. If char is null, this function returns

null. For a single-byte database character set, LENGTHB is equivalent to LENGTH.

Example
This example assumes a double-byte database character set.

SELECT LENGTHB (’CANDIDE’) "Length in bytes"
 FROM DUAL;

Length in bytes

 14

LN

Syntax

Purpose
LN returns the natural logarithm of n, where n is greater than 0.

Example
SELECT LN(95) "Natural log of 95" FROM DUAL;

Natural log of 95

 4.55387689

LOG

Syntax

LN (n)

LOG (m , n)
4-52 SQL Reference

LPAD
Purpose
LOG returns the logarithm, base m, of n. The base m can be any positive number

other than 0 or 1 and n can be any positive number.

Example
SELECT LOG(10,100) "Log base 10 of 100" FROM DUAL;

Log base 10 of 100

 2

LOWER

Syntax

Purpose
LOWER returns char , with all letters lowercase. The return value has the same

datatype as the argument char (CHAR or VARCHAR2).

Example
SELECT LOWER(’MR. SCOTT MCMILLAN’) "Lowercase"
 FROM DUAL;

Lowercase

mr. scott mcmillan

LPAD

Syntax

LOWER (char)

LPAD (char1 , n
, char2

)

Functions 4-53

LTRIM
Purpose
LPAD returns char1 , left-padded to length n with the sequence of characters in

char2 ; char2 defaults to a single blank. If char1 is longer than n, this function

returns the portion of char1 that fits in n.

The argument n is the total length of the return value as it is displayed on your

terminal screen. In most character sets, this is also the number of characters in the

return value. However, in some multibyte character sets, the display length of a

character string can differ from the number of characters in the string.

Example
SELECT LPAD(’Page 1’,15,’*.’) "LPAD example"
 FROM DUAL;

LPAD example

..*.*.*Page 1

LTRIM

Syntax

Purpose
LTRIM removes characters from the left of char , with all the leftmost characters

that appear in set removed; set defaults to a single blank. If char is a character

literal, you must enclose it in single quotes. Oracle begins scanning char from its

first character and removes all characters that appear in set until reaching a

character not in set and then returns the result.

Example
SELECT LTRIM(’xyxXxyLAST WORD’,’xy’) "LTRIM example"
 FROM DUAL;

LTRIM example

XxyLAST WORD

LTRIM (char
, set

)

4-54 SQL Reference

MAKE_REF
MAKE_REF

Syntax

Purpose
MAKE_REF creates a REF to a row of an object view or a row in an object table

whose object identifier is primary key based.

Example
CREATE TABLE employee (eno NUMBER, ename VARCHAR2(20),
 salary NUMBER, PRIMARY KEY (eno, ename));
CREATE TYPE emp_type AS OBJECT
 (eno NUMBER, ename CHAR(20), salary NUMBER);
CREATE VIEW emp_view OF emp_type
 WITH OBJECT IDENTIFIER (eno, ename)
 AS SELECT * FROM emp;
SELECT MAKE_REF(emp_view, 1, 'jack') FROM DUAL;

MAKE_REF(EMP_VIEW,1,'JACK')
--
000067030A0063420D06E06F3C00C1E03400400B40DCB10000001C26010001000200
2900000000000F0600810100140100002A0007000A8401FE0000001F02C102146A61
636B2020202020202020202020202020202000000000000000000000000000000000
00000000

See Also:

■ Oracle8i Application Developer’s Guide - Fundamentals for more

information about object views

■ DEREF on page 4-35

MAKE_REF (
table

view
, key

,

)

Functions 4-55

MAX
MAX

Syntax

Purpose
MAX returns maximum value of expr . You can use it as an aggregate or analytic

function.

If you specify DISTINCT , you can specify only the query_partition_clause of

the analytic_clause . The ORDER_BY_clause and windowing_clause are not

allowed.

Aggregate Example
SELECT MAX(sal) "Maximum" FROM emp;

 Maximum

 5000

Analytic Example
The following example calculates, for each employee, the highest salary of the

employees reporting to the same manager as the employee.

SELECT mgr, ename, sal,
 MAX(sal) OVER (PARTITION BY mgr) AS mgr_max
 FROM emp;

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 4-6

■ "Expressions" on page 5-2 for information on valid forms of

expr

MAX (

DISTINCT

ALL
expr)

OVER (analytic_clause)
4-56 SQL Reference

MAX
 MGR ENAME SAL MGR_MAX
---------- ---------- ---------- ----------
 7566 SCOTT 3000 3000
 7566 FORD 3000 3000
 7698 ALLEN 1600 1600
 7698 WARD 1250 1600
 7698 JAMES 950 1600
 7698 TURNER 1500 1600
 7698 MARTIN 1250 1600
 7782 MILLER 1300 1300
 7788 ADAMS 1100 1100
 7839 JONES 2975 2975
 7839 CLARK 2450 2975
 7839 BLAKE 2850 2975
 7902 SMITH 800 800
 KING 5000 5000

If you enclose this query in the parent query with a predicate, you can determine

the employee who makes the highest salary in each department:

SELECT mgr, ename, sal
 FROM (SELECT mgr, ename, sal,
 MAX(sal) OVER (PARTITION BY mgr) AS rmax_sal
 FROM emp)
 WHERE sal = rmax_sal;

 MGR ENAME SAL
---------- ---------- ----------
 7566 SCOTT 3000
 7566 FORD 3000
 7698 ALLEN 1600
 7782 MILLER 1300
 7788 ADAMS 1100
 7839 JONES 2975
 7902 SMITH 800
 KING 5000
Functions 4-57

MIN
MIN

Syntax

Purpose
MIN returns minimum value of expr . You can use it as an aggregate or analytic

function.

If you specify DISTINCT , you can specify only the query_partition_clause of

the analytic_clause . The ORDER_BY_clause and windowing_clause are not

allowed.

Aggregate Example
SELECT MIN(hiredate) "Earliest" FROM emp;

Earliest

17-DEC-80

Analytic Example
The following example determines, for each employee, the employees who were

hired on or before the same date as the employee. It then determines the subset of

employees reporting to the same manager as the employee, and returns the lowest

salary in that subset.

SELECT mgr, ename, hiredate, sal,
 MIN(sal) OVER(PARTITION BY mgr ORDER BY hiredate

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 4-6

■ "Expressions" on page 5-2 for information on valid forms of

expr

MIN (

DISTINCT

ALL
expr)

OVER (analytic_clause)
4-58 SQL Reference

MOD
 RANGE UNBOUNDED PRECEDING) as p_cmin
 FROM emp;

 MGR ENAME HIREDATE SAL P_CMIN
---------- ---------- --------- ---------- ----------
 7566 FORD 03-DEC-81 3000 3000
 7566 SCOTT 19-APR-87 3000 3000
 7698 ALLEN 20-FEB-81 1600 1600
 7698 WARD 22-FEB-81 1250 1250
 7698 TURNER 08-SEP-81 1500 1250
 7698 MARTIN 28-SEP-81 1250 1250
 7698 JAMES 03-DEC-81 950 950
 7782 MILLER 23-JAN-82 1300 1300
 7788 ADAMS 23-MAY-87 1100 1100
 7839 JONES 02-APR-81 2975 2975
 7839 BLAKE 01-MAY-81 2850 2850
 7839 CLARK 09-JUN-81 2450 2450
 7902 SMITH 17-DEC-80 800 800
 KING 17-NOV-81 5000 5000

MOD

Syntax

Purpose
MOD returns remainder of m divided by n. Returns m if n is 0.

Example
SELECT MOD(11,4) "Modulus" FROM DUAL;

 Modulus

 3

This function behaves differently from the classical mathematical modulus function

when m is negative. The classical modulus can be expressed using the MOD function

with this formula:

m - n * FLOOR(m/n)

MOD (m , n)
Functions 4-59

MONTHS_BETWEEN
The following statement illustrates the difference between the MOD function and the

classical modulus:

SELECT m, n, MOD(m, n),
m - n * FLOOR(m/n) "Classical Modulus"
 FROM test_mod_table;

 M N MOD(M,N) Classical Modulus
---------- ---------- ---------- -----------------
 11 4 3 3
 11 -4 3 -1
 -11 4 -3 1
 -11 -4 -3 -3

MONTHS_BETWEEN

Syntax

Purpose
MONTHS_BETWEEN returns number of months between dates d1 and d2 . If d1 is

later than d2 , result is positive; if earlier, negative. If d1 and d2 are either the same

days of the month or both last days of months, the result is always an integer.

Otherwise Oracle calculates the fractional portion of the result based on a 31-day

month and considers the difference in time components of d1 and d2 .

Example
SELECT MONTHS_BETWEEN
 (TO_DATE(’02-02-1995’,’MM-DD-YYYY’),
 TO_DATE(’01-01-1995’,’MM-DD-YYYY’)) "Months"
 FROM DUAL;

 Months

1.03225806

See Also: FLOOR on page 4-40

MONTHS_BETWEEN (d1 , d2)
4-60 SQL Reference

NEW_TIME
NEW_TIME

Syntax

Purpose
NEW_TIME returns the date and time in time zone z2 when date and time in time

zone z1 are d. Before using this function, you must set the NLS_DATE_FORMAT
parameter to display 24-hour time.

The arguments z1 and z2 can be any of these text strings:

■ AST, ADT: Atlantic Standard or Daylight Time

■ BST, BDT: Bering Standard or Daylight Time

■ CST, CDT: Central Standard or Daylight Time

■ EST, EDT: Eastern Standard or Daylight Time

■ GMT: Greenwich Mean Time

■ HST, HDT: Alaska-Hawaii Standard Time or Daylight Time.

■ MST, MDT: Mountain Standard or Daylight Time

■ NST: Newfoundland Standard Time

■ PST, PDT: Pacific Standard or Daylight Time

■ YST, YDT: Yukon Standard or Daylight Time

Example
The following example returns an Atlantic Standard time, given the Pacific

Standard time equivalent:

ALTER SESSION SET NLS_DATE_FORMAT =
’DD-MON-YYYY HH24:MI:SS’;

SELECT NEW_TIME(TO_DATE(
’11-10-99 01:23:45’, ’MM-DD-YY HH24:MI:SS’),
’AST’, ’PST’) "New Date and Time" FROM DUAL;

New Date and Time

09-NOV-1999 21:23:45

NEW_TIME (d , z1 , z2)
Functions 4-61

NEXT_DAY
NEXT_DAY

Syntax

Purpose
NEXT_DAY returns the date of the first weekday named by char that is later than

the date d. The argument char must be a day of the week in the date language of

your session, either the full name or the abbreviation. The minimum number of

letters required is the number of letters in the abbreviated version. Any characters

immediately following the valid abbreviation are ignored. The return value has the

same hours, minutes, and seconds component as the argument d.

Example
This example returns the date of the next Tuesday after March 15, 1998.

SELECT NEXT_DAY(’15-MAR-98’,’TUESDAY’) "NEXT DAY"
 FROM DUAL;

NEXT DAY

16-MAR-98

NLS_CHARSET_DECL_LEN

Syntax

Purpose
NLS_CHARSET_DECL_LEN returns the declaration width (in number of characters)

of an NCHAR column. The bytecnt argument is the width of the column. The csid
argument is the character set ID of the column.

NEXT_DAY (d , char)

NLS_CHARSET_DECL_LEN (bytecnt , csid)
4-62 SQL Reference

NLS_CHARSET_ID
Example
SELECT NLS_CHARSET_DECL_LEN
 (200, nls_charset_id(’ja16eucfixed’))
 FROM DUAL;

NLS_CHARSET_DECL_LEN(200,NLS_CHARSET_ID(’JA16EUCFIXED’))
--
 100

NLS_CHARSET_ID

Syntax

Purpose
NLS_CHARSET_ID returns the NLS character set ID number corresponding to NLS

character set name, text . The text argument is a run-time VARCHAR2 value. The

text value ’CHAR_CS’ returns the database character set ID number of the server.

The text value ’NCHAR_CS’ returns the national character set ID number of the

server.

Invalid character set names return null.

Example
SELECT NLS_CHARSET_ID(’ja16euc’)
 FROM DUAL;

NLS_CHARSET_ID(’JA16EUC’)

 830

See Also: Oracle8i National Language Support Guide for a list of

character set names

NLS_CHARSET_ID (text)
Functions 4-63

NLS_CHARSET_NAME
NLS_CHARSET_NAME

Syntax

Purpose
NLS_CHARSET_NAME returns the name of the NLS character set corresponding to

ID number n. The character set name is returned as a VARCHAR2 value in the

database character set.

If n is not recognized as a valid character set ID, this function returns null.

Example
SELECT NLS_CHARSET_NAME(2)
 FROM DUAL;

NLS_CH

WE8DEC

NLS_INITCAP

Syntax

Purpose
NLS_INITCAP returns char , with the first letter of each word in uppercase, all

other letters in lowercase. Words are delimited by white space or characters that are

not alphanumeric. The value of ’nlsparam ’ can have this form:

’NLS_SORT = sort’

See Also: Oracle8i National Language Support Guide for a list of

character set IDs

NLS_CHARSET_NAME (n)

NLS_INITCAP (char
, ’ nlsparam ’

)

4-64 SQL Reference

NLS_LOWER
where sort is either a linguistic sort sequence or BINARY. The linguistic sort

sequence handles special linguistic requirements for case conversions. These

requirements can result in a return value of a different length than the char . If you

omit ’nlsparam ’, this function uses the default sort sequence for your session.

Example
The following examples show how the linguistic sort sequence results in a different

return value from the function:

SELECT NLS_INITCAP
(’ijsland’) "InitCap" FROM DUAL;

InitCap

Ijsland

SELECT NLS_INITCAP
 (’ijsland’, ’NLS_SORT = XDutch’) "InitCap"
 FROM DUAL;

InitCap

IJsland

NLS_LOWER

Syntax

Purpose
NLS_LOWER returns char , with all letters lowercase. The ’nlsparam ’ can have the

same form and serve the same purpose as in the NLS_INITCAP function.

Example
SELECT NLS_LOWER

See Also: Oracle8i National Language Support Guide for

information on sort sequences

NLS_LOWER (char
, ’ nlsparam ’

)

Functions 4-65

NLSSORT
 (’CITTA’’’, ’NLS_SORT = XGerman’) "Lowercase"
 FROM DUAL;

Lower

cittá

NLSSORT

Syntax

Purpose
NLSSORT returns the string of bytes used to sort char . The value of ’nlsparams ’

can have the form

’NLS_SORT = sort’

where sort is a linguistic sort sequence or BINARY. If you omit ’nlsparams ’, this

function uses the default sort sequence for your session. If you specify BINARY, this

function returns char .

Example
This function can be used to specify comparisons based on a linguistic sort

sequence rather than on the binary value of a string:

SELECT ename FROM emp
 WHERE NLSSORT (ename, ’NLS_SORT = German’)
 > NLSSORT (’S’, ’NLS_SORT = German’) ORDER BY ename;

ENAME

SCOTT
SMITH
TURNER
WARD

See Also: Oracle8i National Language Support Guide for

information on sort sequences

NLSSORT (char
, ’ nlsparam ’

)

4-66 SQL Reference

NTILE
NLS_UPPER

Syntax

Purpose
NLS_UPPER returns char , with all letters uppercase. The ’nlsparam ’ can have the

same form and serve the same purpose as in the NLS_INITCAP function.

Example
SELECT NLS_UPPER
 (’große’, ’NLS_SORT = XGerman’) "Uppercase"
 FROM DUAL;

Upper

GROSS

NTILE

Syntax

Purpose
NTILE is an analytic function. It divides an ordered dataset into a number of

buckets indicated by expr and assigns the appropriate bucket number to each row.

The buckets are numbered 1 through expr , and expr must resolve to a positive

constant for each partition.

See Also: NLS_INITCAP on page 4-64

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

NLS_UPPER (char
, ’ NLS_param = param_value ’

)

NTILE (expr) OVER (
query_partition_clause

ORDER_BY_clause)
Functions 4-67

NTILE
The number of rows in the buckets can differ by at most 1. The remainder values

(the remainder of number of rows divided by buckets) are distributed 1 per bucket,

starting with bucket 1.

If expr is greater than the number of rows, a number of buckets equal to the

number of rows will be filled, and the remaining buckets will be empty.

You cannot use NTILE or any other analytic function for expr . That is, you can use

other built-in function expressions for expr , but you cannot nest analytic functions.

Example
The following example divides the values in the SAL column into 4 buckets. The

SAL column has 14 values, so the two extra values (the remainder of 14 / 4) are

allocated to buckets 1 and 2, which therefore have one more value than buckets 3 or

4.

SELECT ename, sal, NTILE(4) OVER (ORDER BY sal DESC) AS quartile
 FROM emp;

ENAME SAL QUARTILE
---------- ---------- ----------
KING 5000 1
SCOTT 3000 1
FORD 3000 1
JONES 2975 1
BLAKE 2850 2
CLARK 2450 2
ALLEN 1600 2
TURNER 1500 2
MILLER 1300 3
WARD 1250 3
MARTIN 1250 3
ADAMS 1100 4
JAMES 950 4
SMITH 800 4

See Also: "Expressions" on page 5-2 for information on valid

forms of expr
4-68 SQL Reference

NUMTODSINTERVAL
NUMTODSINTERVAL

Syntax

Purpose
NUMTODSINTERVAL converts n to an INTERVAL DAY TO SECOND literal. n can be a

number or an expression resolving to a number. The value for char_expr specifies

the unit of n and must resolve to one of the following string values:

■ ’DAY’

■ ’HOUR’

■ ’MINUTE’

■ ’SECOND’

char_expr is case insensitive. Leading and trailing values within the parentheses

are ignored. By default, precision of the return is 9.

Example
The following example calculates for each employee, the number of employees

hired, by the same manager, within the last 100 days from his/her hiredate:

SELECT mgr, ename, hiredate,
 COUNT(*) OVER (PARTITION BY mgr ORDER BY hiredate
 RANGE NUMTODSINTERVAL(100, ’day’) PRECEDING) AS t_count
 FROM emp;

 MGR ENAME HIREDATE T_COUNT
---------- ---------- --------- ----------
 7566 FORD 03-DEC-81 1
 7566 SCOTT 19-APR-87 1
 7698 ALLEN 20-FEB-81 1
 7698 WARD 22-FEB-81 2
 7698 TURNER 08-SEP-81 1

Note: This function is restricted to use with analytic functions. It

accepts only numbers as arguments, and returns interval literals.

See "Analytic Functions" on page 4-8 and "Interval" on page 2-36.

NUMTODSINTERVAL (n , ’ char_expr ’)
Functions 4-69

NUMTOYMINTERVAL
 7698 MARTIN 28-SEP-81 2
 7698 JAMES 03-DEC-81 3
 7782 MILLER 23-JAN-82 1
 7788 ADAMS 23-MAY-87 1
 7839 JONES 02-APR-81 1
 7839 BLAKE 01-MAY-81 2
 7839 CLARK 09-JUN-81 3
 7902 SMITH 17-DEC-80 1
 KING 17-NOV-81 1

NUMTOYMINTERVAL

Syntax

Purpose
NUMTOYMINTERVAL converts number n to an INTERVAL YEAR TO MONTH literal. n
can be a number or an expression resolving to a number. The value for char_expr
specifies the unit of n, and must resolve to one of the following string values:

■ ’YEAR’

■ ’MONTH’

char_expr is case insensitive. Leading and trailing values within the parentheses

are ignored. By default, precision of the return is 9.

Example
The following example calculates, for each employee, the total salary of employees

hired in the past one year from his/her hiredate.

SELECT ename, hiredate, sal, SUM(sal) OVER (ORDER BY hiredate
 RANGE NUMTOYMINTERVAL(1,’year’) PRECEDING) AS t_sal
 FROM emp;

ENAME HIREDATE SAL T_SAL

Note: This function is restricted to use with analytic functions. It

accepts only numbers as arguments, and returns interval literals.

See "Analytic Functions" on page 4-8 and "Interval" on page 2-36.

NUMTOYMINTERVAL (n , ’ char_expr ’)
4-70 SQL Reference

NVL
---------- --------- ---------- ----------
SMITH 17-DEC-80 800 800
ALLEN 20-FEB-81 1600 2400
WARD 22-FEB-81 1250 3650
JONES 02-APR-81 2975 6625
BLAKE 01-MAY-81 2850 9475
CLARK 09-JUN-81 2450 11925
TURNER 08-SEP-81 1500 13425
MARTIN 28-SEP-81 1250 14675
KING 17-NOV-81 5000 19675
JAMES 03-DEC-81 950 23625
FORD 03-DEC-81 3000 23625
MILLER 23-JAN-82 1300 24125
SCOTT 19-APR-87 3000 3000
ADAMS 23-MAY-87 1100 4100

NVL

Syntax

Purpose
If expr1 is null, NVL returns expr2 ; if expr1 is not null, NVL returns expr1 . The

arguments expr1 and expr2 can have any datatype. If their datatypes are

different, Oracle converts expr2 to the datatype of expr1 before comparing them.

The datatype of the return value is always the same as the datatype of expr1 ,

unless expr1 is character data, in which case the return value’s datatype is

VARCHAR2.

Example
SELECT ename, NVL(TO_CHAR(COMM), ’NOT APPLICABLE’)
 "COMMISSION" FROM emp
 WHERE deptno = 30;

ENAME COMMISSION
---------- -------------------------------------
ALLEN 300
WARD 500
MARTIN 1400

NVL (expr1 , expr2)
Functions 4-71

NVL2
BLAKE NOT APPLICABLE
TURNER 0
JAMES NOT APPLICABLE

NVL2

Syntax

Purpose
If expr1 is not null, NVL2 returns expr2 . If expr1 is null, NVL2 returns expr3 .

The argument expr1 can have any datatype. The arguments expr2 and expr3 can

have any datatypes except LONG.

If the datatypes of expr2 and expr3 are different, Oracle converts expr3 to the

datatype of expr2 before comparing them unless expr3 is a null constant. In that

case, a datatype conversion is not necessary.

The datatype of the return value is always the same as the datatype of expr2 ,

unless expr2 is character data, in which case the return value’s datatype is

VARCHAR2.

Example
The following example shows whether the income of each employee in department

30 is made up of salary plus commission, or just salary, depending on whether the

comm column of emp is null or not.

SELECT ename, NVL2(TO_CHAR(COMM), ’SAL & COMM’, ’SAL’) income
FROM emp WHERE deptno = 30;

ENAME INCOME
---------- ----------
ALLEN SAL & COMM
WARD SAL & COMM
MARTIN SAL & COMM
BLAKE SAL
TURNER SAL & COMM
JAMES SAL

NVL2 (expr1 , expr2 , expr3)
4-72 SQL Reference

PERCENT_RANK
PERCENT_RANK

Syntax

Purpose
PERCENT_RANK is an analytic function, and is similar to the CUME_DIST
(cumulative distribution) function. For a row R, PERCENT_RANK calculates the rank

of R minus 1, divided by 1 less than the number of rows being evaluated (the entire

query result set or a partition). The range of values returned by PERCENT_RANKis 0

to 1, inclusive. The first row in any set has a PERCENT_RANK of 0.

Example
The following example calculates, for each employee, the percent rank of the

employee’s salary within the department:

SELECT deptno, ename, sal,
 PERCENT_RANK() OVER (PARTITION BY deptno ORDER BY sal DESC) AS pr
 FROM emp;

 DEPTNO ENAME SAL PR
---------- ---------- ---------- ----------
 10 KING 5000 0
 10 CLARK 2450 .5
 10 MILLER 1300 1
 20 SCOTT 3000 0
 20 FORD 3000 0
 20 JONES 2975 .5
 20 ADAMS 1100 .75
 20 SMITH 800 1
 30 BLAKE 2850 0
 30 ALLEN 1600 .2
 30 TURNER 1500 .4
 30 WARD 1250 .6
 30 MARTIN 1250 .6
 30 JAMES 950 1

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

PERCENT_RANK () OVER (
query_partition_clause

ORDER_BY_clause)
Functions 4-73

POWER
POWER

Syntax

Purpose
POWER returns m raised to the nth power. The base m and the exponent n can be any

numbers, but if m is negative, n must be an integer.

Example
SELECT POWER(3,2) "Raised" FROM DUAL;

 Raised

 9

RANK

Syntax

Purpose
RANK is an analytic function. It computes the rank of each row returned from a

query with respect to the other rows returned by the query, based on the values of

the value_exprs in the ORDER_BY_clause. Rows with equal values for the

ranking criteria receive the same rank. Oracle then adds the number of tied rows to

the tied rank to calculate the next rank. Therefore, the ranks may not be consecutive

numbers.

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

POWER (m , n)

RANK () OVER (
query_partition_clause

ORDER_BY_clause)
4-74 SQL Reference

RATIO_TO_REPORT
Example
The following statement ranks the employees within each department based on

their salary and commission. Identical salary values receive the same rank and

cause nonconsecutive ranks. Compare this example with the example for DENSE_

RANK on page 4-34.

SELECT deptno, ename, sal, comm,
 RANK() OVER (PARTITION BY deptno ORDER BY sal DESC, comm) as rk
 FROM emp;

 DEPTNO ENAME SAL COMM RK
---------- ---------- ---------- ---------- ----------
 10 KING 5000 1
 10 CLARK 2450 2
 10 MILLER 1300 3
 20 SCOTT 3000 1
 20 FORD 3000 1
 20 JONES 2975 3
 20 ADAMS 1100 4
 20 SMITH 800 5
 30 BLAKE 2850 1
 30 ALLEN 1600 300 2
 30 TURNER 1500 0 3
 30 WARD 1250 500 4
 30 MARTIN 1250 1400 5
 30 JAMES 950 6

RATIO_TO_REPORT

Syntax

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

RATIO_TO_REPORT (expr) OVER (
query_partition_clause

)

Functions 4-75

RAWTOHEX
Purpose
RATIO_TO_REPORT is an analytic function. It computes the ratio of a value to the

sum of a set of values. If expr evaluates to null, the ratio-to-report value also

evaluates to null.

The set of values is determined by the query_partition_clause . If you omit

that clause, the ratio-to-report is computed over all rows returned by the query.

You cannot use RATIO_TO_REPORTor any other analytic function for expr . That is,

you can use other built-in function expressions for expr , but you cannot nest

analytic functions.

Example
The following example calculates the ratio-to-report of each salesperson’s salary to

the total of all salespeople’s salaries:

SELECT ename, sal, RATIO_TO_REPORT(sal) OVER () AS rr
 FROM emp
 WHERE job = ’SALESMAN’;

ENAME SAL RR
---------- ---------- ----------
ALLEN 1600 .285714286
WARD 1250 .223214286
MARTIN 1250 .223214286
TURNER 1500 .267857143

RAWTOHEX

Syntax

Purpose
RAWTOHEXconverts raw to a character value containing its hexadecimal equivalent.

See Also: "Expressions" on page 5-2 for information on valid

forms of expr

RAWTOHEX (raw)
4-76 SQL Reference

REF
Example
SELECT RAWTOHEX(raw_column) "Graphics"
 FROM graphics;

Graphics

7D

REF

Syntax

Purpose
In a SQL statement, REF takes as its argument a correlation variable (table alias)

associated with a row of an object table or an object view. A REF value is returned

for the object instance that is bound to the variable or row.

Example
CREATE TYPE emp_type AS OBJECT
 (eno NUMBER, ename VARCHAR2(20), salary NUMBER);
CREATE TABLE emp_table OF emp_type
 (primary key (eno, ename));
INSERT INTO emp_table VALUES (10, 'jack', 50000);
SELECT REF(e) FROM emp_table e;

REF(E)

0000280209420D2FEABD9400C3E03400400B40DCB1420D2FEABD9300C3E03400400B
40DCB1004049EE0000

See Also: "RAW and LONG RAW Datatypes" on page 2-16 and

HEXTORAW on page 4-42

See Also: Oracle8i Concepts

REF (correlation_variable)
Functions 4-77

REFTOHEX
REFTOHEX

Syntax

Purpose
REFTOHEXconverts argument expr to a character value containing its hexadecimal

equivalent. expr must return a REF.

Example
CREATE TYPE emp_type AS OBJECT
 (eno NUMBER, ename VARCHAR2(20), salary NUMBER);
CREATE TABLE emp_table OF emp_type
 (primary key (eno, ename));
CREATE TABLE dept
 (dno NUMBER, mgr REF emp_type SCOPE IS emp);
INSERT INTO emp_table VALUES (10, 'jack', 50000);
INSERT INTO dept SELECT 10, REF(e) FROM emp_table e;
SELECT REFTOHEX(mgr) FROM dept;

REFTOHEX(MGR)
--
0000220208420D2FEABD9400C3E03400400B40DCB1420D2FEABD9300C3E03400400B
40DCB1

REGR_ (linear regression) functions
The linear regression functions are:

■ REGR_SLOPE

■ REGR_INTERCEPT

■ REGR_COUNT

■ REGR_R2

■ REGR_AVGX

■ REGR_AVGY

■ REGR_SXX

REFTOHEX (expr)
4-78 SQL Reference

REGR_ (linear regression) functions
■ REGR_SYY

■ REGR_SXY

Syntax

Purpose
The linear regression functions fit an ordinary-least-squares regression line to a set

of number pairs. You can use them as both aggregate and analytic functions.

Oracle applies the function to the set of (expr1 , expr2) pairs after eliminating all

pairs for which either expr1 or expr2 is null. Oracle computes all the regression

functions simultaneously during a single pass through the data.

expr1 is interpreted as a value of the dependent variable (a "y value"), and expr2
is interpreted as a value of the independent variable (an "x value"). Both expressions

must be numbers.

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 4-6

■ "Expressions" on page 5-2 for information on valid forms of

expr

REGR_SLOPE

REGR_INTERCEPT

REGR_COUNT

REGR_R2

REGR_AVGX

REGR_AVGY

REGR_SXX

REGR_SYY

REGR_SXY

(expr1 , expr2)
OVER (analytic_clause)
Functions 4-79

REGR_ (linear regression) functions
■ REGR_SLOPEreturns the slope of the line. The return value is a number and can

be null. After the elimination of null (expr1 , expr2) pairs, it makes the

following computation:

COVAR_POP(expr1, expr2) / VAR_POP(expr2)

■ REGR_INTERCEPT returns the y-intercept of the regression line. The return

value is a number and can be null. After the elimination of null (expr1 , expr2)

pairs, it makes the following computation:

AVG(expr1) - REGR_SLOPE(expr1, expr2) * AVG(expr2)

■ REGR_COUNT returns an integer that is the number of non-null number pairs

used to fit the regression line.

■ REGR_R2 returns the coefficient of determination (also called "R-squared" or

"goodness of fit") for the regression. The return value is a number and can be

null. VAR_POP(expr1) and VAR_POP(expr2) are evaluated after the

elimination of null pairs. The return values are:

 NULL if VAR_POP(expr2) = 0

 1 if VAR_POP(expr1) = 0 and
 VAR_POP(expr2) != 0

POWER(CORR(expr1,expr),2) if VAR_POP(expr1) > 0 and
 VAR_POP(expr2 != 0

All of the remaining regression functions return a number and can be null:

■ REGR_AVGX evaluates the average of the independent variable (expr2) of the

regression line. It makes the following computation after the elimination of null

(expr1 , expr2) pairs:

AVG(expr2)

■ REGR_AVGY evaluates the average of the dependent variable (expr1) of the

regression line. It makes the following computation after the elimination of null

(expr1 , expr2) pairs:

AVG(expr1)

REGR_SXY, REGR_SXX, REGR_SYY are auxiliary functions that are used to compute

various diagnostic statistics.

■ REGR_SXX makes the following computation after the elimination of null

(expr1 , expr2) pairs:
4-80 SQL Reference

REGR_ (linear regression) functions
REGR_COUNT(expr1, expr2) * VAR_POP(expr2)

■ REGR_SYY makes the following computation after the elimination of null

(expr1 , expr2) pairs:

REGR_COUNT(expr1, expr2) * VAR_POP(expr1)

■ REGR_SXY makes the following computation after the elimination of null

(expr1 , expr2) pairs:

REGR_COUNT(expr1, expr2) * COVAR_POP(expr1, expr2)

The following examples are based on the sales table, described in COVAR_POP

on page 4-29.

REGR_SLOPE and REGR_INTERCEPT Examples
The following example determines the slope and intercept of the regression line for

the amount of sales and sale profits for each year.

SELECT s_year,
 REGR_SLOPE(s_amount, s_profit),
 REGR_INTERCEPT(s_amount, s_profit)
FROM sales GROUP BY s_year;

 S_YEAR REGR_SLOPE REGR_INTER
---------- ---------- ----------
 1998 128.401558 -2277.5684
 1999 55.618655 226.855296

The following example determines the cumulative slope and cumulative intercept

of the regression line for the amount of sales and sale profits for each day in 1998:

SELECT s_year, s_month, s_day,
 REGR_SLOPE(s_amount, s_profit)
 OVER (ORDER BY s_month, s_day) AS CUM_SLOPE,
 REGR_INTERCEPT(s_amount, s_profit)
 OVER (ORDER BY s_month, s_day) AS CUM_ICPT
 FROM sales
 WHERE s_year=1998
 ORDER BY s_month, s_day;

S_YEAR S_MONTH S_DAY CUM_SLOPE CUM_ICPT
---------- ---------- ---------- ---------- ----------
 1998 6 5
Functions 4-81

REGR_ (linear regression) functions
 1998 6 9 132.093066 401.884833
 1998 6 9 132.093066 401.884833
 1998 6 10 131.829612 450.65349
 1998 8 21 132.963737 -153.5413
 1998 8 25 130.681718 -451.47349
 1998 8 25 130.681718 -451.47349
 1998 8 26 128.76502 -236.50096
 1998 11 9 131.499934 -1806.7535
 1998 11 9 131.499934 -1806.7535
 1998 11 10 130.190972 -2323.3056
 1998 11 10 130.190972 -2323.3056
 1998 11 11 128.401558 -2277.5684

REGR_COUNT Examples
The following example returns the number of sales transactions in the sales table

that resulted in a profit. (None of the rows for containing a sales amount have a null

in the s_profit column, so the function returns the total number of rows in the

sales table.)

SELECT REGR_COUNT(s_amount, s_profit) FROM sales;

REGR_COUNT

 23

The following example computes, for each day, the cumulative number of

transactions within each month for the year 1998:

SELECT s_month, s_day,
 REGR_COUNT(s_amount,s_profit)
 OVER (PARTITION BY s_month ORDER BY s_day)
FROM SALES
WHERE S_YEAR=1998
ORDER BY S_MONTH;

S_MONTH S_DAY REGR_COUNT
---------- ---------- ----------
 6 5 1
 6 9 3
 6 9 3
 6 10 4
 8 21 1
 8 25 3
 8 25 3
 8 26 4
4-82 SQL Reference

REGR_ (linear regression) functions
 11 9 2
 11 9 2
 11 10 4
 11 10 4
 11 11 5

REGR_R2 Examples
The following example computes the coefficient of determination of the regression

line for amount of sales and sale profits:

SELECT REGR_R2(s_amount, s_profit) FROM sales;

REGR_R2(S_

.942435028

The following example computes the cumulative coefficient of determination of the

regression line for monthly sales and monthly profits for each month in 1998:

SELECT s_month,
 REGR_R2(SUM(s_amount), SUM(s_profit))
 OVER (ORDER BY s_month)
FROM SALES
WHERE s_year=1998
GROUP BY s_month
ORDER BY s_month;

S_MONTH REGR_R2(SU
---------- ----------
 6
 8 1
 11 .740553632

REGR_AVGY and REGR_AVGX Examples
The following example calculates the regression average for the amount of sales and

sale profits for each year:

SELECT s_year,
 REGR_AVGY(s_amount, s_profit),
 REGR_AVGX(s_amount, s_profit)
FROM sales GROUP BY s_year;

 S_YEAR REGR_AVGY(REGR_AVGX(
---------- ---------- ----------
Functions 4-83

REGR_ (linear regression) functions
 1998 41227.5462 338.820769
 1999 7330.748 127.725

The following example calculates the cumulative averages for the amount of sales

and sale profits in 1998:

SELECT s_year, s_month, s_day,
 REGR_AVGY(s_amount, s_profit)
 OVER (ORDER BY s_month, s_day) AS CUM_AMOUNT,
 REGR_AVGX(s_amount, s_profit)
 OVER (ORDER BY s_month, s_day) AS CUM_PROFIT
 FROM sales
 WHERE s_year=1998
 ORDER BY s_month, s_day;

S_YEAR S_MONTH S_DAY CUM_AMOUNT CUM_PROFIT
---------- ---------- ---------- ---------- ----------
 1998 6 5 16068 118.2
 1998 6 9 44375.6667 332.9
 1998 6 9 44375.6667 332.9
 1998 6 10 52678.25 396.175
 1998 8 21 44721.72 337.5
 1998 8 25 45333.8 350.357143
 1998 8 25 45333.8 350.357143
 1998 8 26 47430.7 370.1875
 1998 11 9 41892.91 332.317
 1998 11 9 41892.91 332.317
 1998 11 10 40777.175 331.055833
 1998 11 10 40777.175 331.055833
 1998 11 11 41227.5462 338.820769

REGR_SXY, REGR_SXX, and REGR_SYY Examples
The following example computes the REGR_SXY, REGR_SXX, and REGR_SYY
values for the regression analysis of amount of sales and sale profits for each year:

SELECT s_year,
 REGR_SXY(s_amount, s_profit),
 REGR_SYY(s_amount, s_profit),
 REGR_SXX(s_amount, s_profit)
FROM sales GROUP BY s_year;

S_YEAR REGR_SXY(S REGR_SYY(S REGR_SXX(S
---------- ---------- ---------- ----------
 1998 48723551.8 6423698688 379462.311
4-84 SQL Reference

REPLACE
 1999 3605361.62 200525751 64822.8841

The following example computes the cumulative REGR_SXY, REGR_SXX, and

REGR_SYY statistics for amount of sales and sale profits for each month-day value

in 1998:

SELECT s_year, s_month, s_day,
 REGR_SXY(s_amount, s_profit)
 OVER (ORDER BY s_month, s_day) AS CUM_SXY,
 REGR_SYY(s_amount, s_profit)
 OVER (ORDER BY s_month, s_day) AS CUM_SXY,
 REGR_SXX(s_amount, s_profit)
 OVER (ORDER BY s_month, s_day) AS CUM_SXX
 FROM sales
 WHERE s_year=1998
 ORDER BY s_month, s_day;

S_YEAR S_MONTH S_DAY CUM_SXY CUM_SXY CUM_SXX
---------- ---------- ---------- ---------- ---------- ----------
 1998 6 5 0 0 0
 1998 6 9 14822857.8 1958007601 112215.26
 1998 6 9 14822857.8 1958007601 112215.26
 1998 6 10 21127009.3 2785202281 160259.968
 1998 8 21 30463997.3 4051329674 229115.08
 1998 8 25 34567985.3 4541739739 264520.437
 1998 8 25 34567985.3 4541739739 264520.437
 1998 8 26 36896592.7 4787971157 286542.049
 1998 11 9 45567995.3 6045196901 346524.854
 1998 11 9 45567995.3 6045196901 346524.854
 1998 11 10 48178003.8 6392056557 370056.411
 1998 11 10 48178003.8 6392056557 370056.411
 1998 11 11 48723551.8 6423698688 379462.311

REPLACE

Syntax

REPLACE (char , search_string
, replacement_string

)

Functions 4-85

ROUND (number function)
Purpose
REPLACE returns char with every occurrence of search_string replaced with

replacement_string . If replacement_string is omitted or null, all

occurrences of search_string are removed. If search_string is null, char is

returned. This function provides a superset of the functionality provided by the

TRANSLATE function. TRANSLATE provides single-character, one-to-one

substitution. REPLACE lets you substitute one string for another as well as to

remove character strings.

Example
SELECT REPLACE(’JACK and JUE’,’J’,’BL’) "Changes"
 FROM DUAL;

Changes

BLACK and BLUE

ROUND (number function)

Syntax

Purpose
ROUND returns n rounded to m places right of the decimal point. If m is omitted, n is

rounded to 0 places. mcan be negative to round off digits left of the decimal point. m
must be an integer.

Examples
SELECT ROUND(15.193,1) "Round" FROM DUAL;

 Round

 15.2

SELECT ROUND(15.193,-1) "Round" FROM DUAL;

ROUND (n
, m

)

4-86 SQL Reference

ROW_NUMBER
 Round

 20

ROUND (date function)

Syntax

Purpose
ROUNDreturns d rounded to the unit specified by the format model fmt . If you omit

fmt , d is rounded to the nearest day.

Example
SELECT ROUND (TO_DATE (’27-OCT-92’),’YEAR’)
 "New Year" FROM DUAL;

New Year

01-JAN-93

ROW_NUMBER

Syntax

See Also: "ROUND and TRUNC Date Functions" on page 4-127

for the permitted format models to use in fmt

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

ROUND (d
, fmt

)

ROW_NUMBER () OVER (
query_partition_clause

ORDER_BY_clause)
Functions 4-87

ROW_NUMBER
Purpose
ROW_NUMBER is an analytic function. It assigns a unique number to each row to

which it is applied (either each row in the partition or each row returned by the

query), in the ordered sequence of rows specified in the ORDER_BY_clause,

beginning with 1.

You cannot use ROW_NUMBER or any other analytic function for expr . That is, you

can use other built-in function expressions for expr , but you cannot nest analytic

functions.

Example
For each department in the emp table, the following example assigns numbers to

each row in order of employee’s hire date:

SELECT deptno, ename, hiredate, ROW_NUMBER()
 OVER (PARTITION BY deptno ORDER BY hiredate) AS emp_id
 FROM emp;

 DEPTNO ENAME HIREDATE EMP_ID
---------- ---------- --------- ----------
 10 CLARK 09-JUN-81 1
 10 KING 17-NOV-81 2
 10 MILLER 23-JAN-82 3
 20 SMITH 17-DEC-80 1
 20 JONES 02-APR-81 2
 20 FORD 03-DEC-81 3
 20 SCOTT 19-APR-87 4
 20 ADAMS 23-MAY-87 5
 30 ALLEN 20-FEB-81 1
 30 WARD 22-FEB-81 2
 30 BLAKE 01-MAY-81 3
 30 TURNER 08-SEP-81 4
 30 MARTIN 28-SEP-81 5
 30 JAMES 03-DEC-81 6

ROW_NUMBER is a nondeterministic function. However, hiredate is a unique key,

so the results of this application of the function are deterministic.

See Also: "Expressions" on page 5-2 for information on valid

forms of expr

See Also: FIRST_VALUE on page 4-38 and LAST_VALUE on

page 4-47 for examples of nondeterministic behavior
4-88 SQL Reference

RPAD
ROWIDTOCHAR

Syntax

Purpose
ROWIDTOCHAR converts a rowid value to VARCHAR2 datatype. The result of this

conversion is always 18 characters long.

Example
SELECT ROWID
 FROM offices
 WHERE
 ROWIDTOCHAR(ROWID) LIKE ’%Br1AAB%’;

ROWID

AAAAZ6AABAAABr1AAB

RPAD

Syntax

Purpose
RPAD returns char1 , right-padded to length n with char2 , replicated as many

times as necessary; char2 defaults to a single blank. If char1 is longer than n, this

function returns the portion of char1 that fits in n.

The argument n is the total length of the return value as it is displayed on your

terminal screen. In most character sets, this is also the number of characters in the

return value. However, in some multibyte character sets, the display length of a

character string can differ from the number of characters in the string.

ROWIDTOCHAR (rowid)

RPAD (char1 , n
, char2

)

Functions 4-89

RTRIM
Example
SELECT RPAD(’MORRISON’,12,’ab’) "RPAD example"
 FROM DUAL;

RPAD example

MORRISONabab

RTRIM

Syntax

Purpose
RTRIM returns char , with all the rightmost characters that appear in set removed;

set defaults to a single blank. If char is a character literal, you must enclose it in

single quotes. RTRIM works similarly to LTRIM.

Example
SELECT RTRIM(’BROWNINGyxXxy’,’xy’) "RTRIM e.g."
 FROM DUAL;

RTRIM e.g

BROWNINGyxX

SIGN

Syntax

See Also: LTRIM on page 4-54

RTRIM (char
, set

)

SIGN (n)
4-90 SQL Reference

SINH
Purpose
If n<0, SIGN returns -1. If n=0, the function returns 0. If n>0, SIGN returns 1.

Example
SELECT SIGN(-15) "Sign" FROM DUAL;

 Sign

 -1

SIN

Syntax

Purpose
SIN returns the sine of n (an angle expressed in radians).

Example
SELECT SIN(30 * 3.14159265359/180)
 "Sine of 30 degrees" FROM DUAL;

Sine of 30 degrees

 .5

SINH

Syntax

Purpose
SINH returns the hyperbolic sine of n.

SIN (n)

SINH (n)
Functions 4-91

SOUNDEX
Example
SELECT SINH(1) "Hyperbolic sine of 1" FROM DUAL;

Hyperbolic sine of 1

 1.17520119

SOUNDEX

Syntax

Purpose
SOUNDEX returns a character string containing the phonetic representation of char.
This function allows you to compare words that are spelled differently, but sound

alike in English.

The phonetic representation is defined in The Art of Computer Programming, Volume

3: Sorting and Searching, by Donald E. Knuth, as follows:

■ Retain the first letter of the string and remove all other occurrences of the

following letters: a, e, h, i, o, u, w, y.

■ Assign numbers to the remaining letters (after the first) as follows:

b, f, p, v = 1
c, g, j, k, q, s, x, z = 2
d, t = 3
l = 4
m, n = 5
r = 6

■ If two or more letters with the same number were adjacent in the original name

(before step 1), or adjacent except for any intervening h and w, omit all but the

first.

■ Return the first four bytes padded with 0.

Example
SELECT ename
 FROM emp

SOUNDEX (char)
4-92 SQL Reference

STDDEV
 WHERE SOUNDEX(ename)
 = SOUNDEX(’SMYTHE’);

ENAME

SMITH

SQRT

Syntax

Purpose
SQRTreturns square root of n. The value n cannot be negative. SQRTreturns a "real"

result.

Example
SELECT SQRT(26) "Square root" FROM DUAL;

Square root

5.09901951

STDDEV

Syntax

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

SQRT (n)

STDDEV (

DISTINCT

ALL
expr)

OVER (analytic_clause)
Functions 4-93

STDDEV
Purpose
STDDEVreturns sample standard deviation of expr , a set of numbers. You can use it

as both an aggregate and analytic function. It differs from STDDEV_SAMP in that

STDDEV returns zero when it has only 1 row of input data, whereas STDDEV_SAMP
returns a null.

Oracle calculates the standard deviation as the square root of the variance defined

for the VARIANCE aggregate function.

If you specify DISTINCT , you can specify only the query_partition_clause of

the analytic_clause . The ORDER_BY_clause and windowing_clause are not

allowed.

Aggregate Example
SELECT STDDEV(sal) "Deviation"
 FROM emp;

 Deviation

1182.50322

Analytic Example
The query in the following example returns the cumulative standard deviation of

salary values in Department 30 ordered by hiredate:

SELECT ENAME, SAL, STDDEV(SAL) OVER (ORDER BY HIREDATE)
 FROM EMP
 WHERE DEPTNO=30;

ENAME SAL STDDEV(SAL
---------- ---------- ----------
ALLEN 1600 0
WARD 1250 247.487373
BLAKE 2850 841.130192
TURNER 1500 715.308791
MARTIN 1250 666.520817

See Also:

■ "Aggregate Functions" on page 4-6, VARIANCE on page 4-125,

and STDDEV_SAMP on page 4-96

■ "Expressions" on page 5-2 for information on valid forms of

expr
4-94 SQL Reference

STDDEV_POP
JAMES 950 668.331255

STDDEV_POP

Syntax

Purpose
STDDEV_POP computes the population standard deviation and returns the square

root of the population variance. You can use it as both an aggregate and analytic

function.

The expr is a number expression, and the function returns a value of type NUMBER.
This function is same as the square root of the VAR_POP function. When VAR_POP
returns null, this function returns null.

Aggregate Example
The following example returns the population and sample standard deviations of

profit from sales in the SALES table.

SELECT STDDEV_POP(s_profit), STDDEV_SAMP(s_profit) FROM sales;

STDDEV_POP STDDEV_SAM
---------- ----------
173.975774 177.885831

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 4-6 and VAR_POP on

page 4-122

■ "Expressions" on page 5-2 for information on valid forms of

expr

STDDEV_POP (expr)
OVER (analytic_clause)
Functions 4-95

STDDEV_SAMP
Analytic Example
The following example returns the population standard deviations of salaries in the

emp table by department:

SELECT deptno, ename, sal,
 STDDEV_POP(sal) OVER (PARTITION BY deptno) AS pop_std
 FROM emp;

 DEPTNO ENAME SAL POP_STD
---------- ---------- ---------- ----------
 10 CLARK 2450 1546.14215
 10 KING 5000 1546.14215
 10 MILLER 1300 1546.14215
 20 SMITH 800 1004.73877
 20 ADAMS 1100 1004.73877
 20 FORD 3000 1004.73877
 20 SCOTT 3000 1004.73877
 20 JONES 2975 1004.73877
 30 ALLEN 1600 610.100174
 30 BLAKE 2850 610.100174
 30 MARTIN 1250 610.100174
 30 JAMES 950 610.100174
 30 TURNER 1500 610.100174
 30 WARD 1250 610.100174

STDDEV_SAMP

Syntax

Purpose
STDDEV_SAMPcomputes the cumulative sample standard deviation and returns the

square root of the sample variance. You can use it as both an aggregate and analytic

function.

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

STDDEV_SAMP (expr)
OVER (analytic_clause)
4-96 SQL Reference

STDDEV_SAMP
The expr is a number expression, and the function returns a value of type NUMBER.
This function is same as the square root of the VAR_SAMP function. When VAR_
SAMP returns null, this function returns null.

Aggregate Example
The following example returns the population and sample standard deviations of

profit from sales in the SALES table.

SELECT STDDEV_POP(s_profit), STDDEV_SAMP(s_profit) FROM sales;

STDDEV_POP STDDEV_SAM
---------- ----------
173.975774 177.885831

Analytic Example
The following example returns the sample standard deviation of salaries in the EMP
table by department:

SELECT deptno, ename, hiredate, sal,
 STDDEV_SAMP(sal) OVER (PARTITION BY deptno ORDER BY hiredate
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cum_sdev
 FROM emp;

 DEPTNO ENAME HIREDATE SAL CUM_SDEV
---------- ---------- --------- ---------- ----------
 10 CLARK 09-JUN-81 2450
 10 KING 17-NOV-81 5000 1803.12229
 10 MILLER 23-JAN-82 1300 1893.62967
 20 SMITH 17-DEC-80 800
 20 JONES 02-APR-81 2975 1537.95725
 20 FORD 03-DEC-81 3000 1263.01557
 20 SCOTT 19-APR-87 3000 1095.8967
 20 ADAMS 23-MAY-87 1100 1123.3321
 30 ALLEN 20-FEB-81 1600
 30 WARD 22-FEB-81 1250 247.487373
 30 BLAKE 01-MAY-81 2850 841.130192

See Also:

■ "Aggregate Functions" on page 4-6 and VAR_SAMP on

page 4-123

■ "Expressions" on page 5-2 for information on valid forms of

expr
Functions 4-97

SUBSTR
 30 TURNER 08-SEP-81 1500 715.308791
 30 MARTIN 28-SEP-81 1250 666.520817
 30 JAMES 03-DEC-81 950 668.331255

SUBSTR

Syntax

Purpose
SUBSTR returns a portion of char , beginning at character m, n characters long.

■ If m is 0, it is treated as 1.

■ If m is positive, Oracle counts from the beginning of char to find the first

character.

■ If m is negative, Oracle counts backwards from the end of char .

■ If n is omitted, Oracle returns all characters to the end of char . If n is less than

1, a null is returned.

Floating-point numbers passed as arguments to SUBSTR are automatically

converted to integers.

SELECT SUBSTR(’ABCDEFG’,3,4) "Substring"
 FROM DUAL;

Substring

CDEF

Example 2
SELECT SUBSTR(’ABCDEFG’,-5,4) "Substring"
 FROM DUAL;

Substring

CDEF

SUBSTR (char , m
, n

)

4-98 SQL Reference

SUM
SUBSTRB

Syntax

Purpose
SUBSTRB is the same as SUBSTR, except that the arguments m and n are expressed

in bytes, rather than in characters. For a single-byte database character set,

SUBSTRB is equivalent to SUBSTR.

Floating-point numbers passed as arguments to SUBSTRB are automatically

converted to integers.

Example
Assume a double-byte database character set:

SELECT SUBSTRB(’ABCDEFG’,5,4.2)
 "Substring with bytes"
 FROM DUAL;

Substring with bytes

CD

SUM

Syntax

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

SUBSTRB (char , m
, n

)

SUM (

DISTINCT

ALL
expr)

OVER (analytic_clause)
Functions 4-99

SUM
Purpose
SUM returns sum of values of expr . You can use it as an aggregate or analytic

function.

If you specify DISTINCT , you can specify only the query_partition_clause of

the analytic_clause . The ORDER_BY_clause and windowing_clause are not

allowed.

Aggregate Example
The following example calculates the sum of all salaries in the emp table:

SELECT SUM(sal) "Total"
 FROM emp;

 Total

 29025

Analytic Example
The following example calculates, for each manager, a cumulative total of salaries of

employees who answer to that manager that are equal to or less than the current

salary:

SELECT mgr, ename, sal,
 SUM(sal) OVER (PARTITION BY mgr ORDER BY sal
 RANGE UNBOUNDED PRECEDING) l_csum
 FROM emp;

 MGR ENAME SAL L_CSUM
---------- ---------- ---------- ----------
 7566 SCOTT 3000 6000
 7566 FORD 3000 6000
 7698 JAMES 950 950
 7698 WARD 1250 3450
 7698 MARTIN 1250 3450
 7698 TURNER 1500 4950
 7698 ALLEN 1600 6550
 7782 MILLER 1300 1300

See Also:

■ "Aggregate Functions" on page 4-6

■ "Expressions" on page 5-2 for information on valid forms of

expr
4-100 SQL Reference

SYS_CONTEXT
 7788 ADAMS 1100 1100
 7839 CLARK 2450 2450
 7839 BLAKE 2850 5300
 7839 JONES 2975 8275
 7902 SMITH 800 800
 KING 5000 5000

SYS_CONTEXT

Syntax

Purpose
SYS_CONTEXT returns the value of attribute associated with the context

namespace . You can use this function in both SQL and PL/SQL statements. The

context namespace must already have been created, and the associated

attribute and its value must also have been set using the DBMS_SESSION.set_
context procedure. The namespace must be a valid SQL identifier. The

attribute name can be any string, and it is not case sensitive, but it cannot exceed

30 bytes in length.

The datatype of the return value is VARCHAR2. The default maximum size of the

return value is 256 bytes. You can override this default by specifying the optional

length parameter. The valid range of values is 1 to 4000 bytes. (If you specify an

invalid value, Oracle ignores it and uses the default.)

Oracle8i provides a built-in namespace called USERENV, which describes the current

session. The predefined attributes of namespace USERENV are listed Table 4–1 on

page 4-102, along with the lengths of their return strings.

SYS_CONTEXT (’ namespace ’ , ’ attribute ’
, length

)

Functions 4-101

SYS_CONTEXT
Examples
The following statement returns the name of the user who logged onto the

database:

SELECT SYS_CONTEXT (’USERENV’, ’SESSION_USER’)
 FROM DUAL;

SYS_CONTEXT (’USERENV’, ’SESSION_USER’)
--
SCOTT

The following example returns the group number that was set as the value for the

attribute group_no in the PL/SQL package that was associated with the context

hr_apps when hr_apps was created:

SELECT SYS_CONTEXT (’hr_apps’, ’group_no’) "User Group"
 FROM DUAL;

User Group

Sales

See Also:

■ Oracle8i Application Developer’s Guide - Fundamentals for

information on using the application context feature in your

application development

■ CREATE CONTEXT on page 9-13 for information on creating

user-defined context namespaces

■ Oracle8i Supplied PL/SQL Packages Reference for information on

the DBMS_SESSION.set_context procedure

Table 4–1 Predefined Attributes of Namespace USERENV

Attribute Return Value

Return
Length
(bytes)

AUTHENTICATION_DATA Data being used to authenticate the login user. For
X.503 certificate authenticated sessions, this field
returns the context of the certificate in HEX2 format.

256
4-102 SQL Reference

SYS_CONTEXT
Note: You can change the return value of the
AUTHENTICATION_DATA attribute using the length
parameter of the syntax. Values of up to 4000 are
accepted. This is the only attribute of USERENV for
which Oracle implements such a change.

AUTHENTICATION_TYPE How the user was authenticated:

■ DATABASE: username/password authentication

■ OS: operating system external user
authentication

■ NETWORK: network protocol or ANO
authentication

■ PROXY: OCI proxy connection authentication

30

BG_JOB_ID Job ID of the current session if it was established by
an Oracle background process. Null if the session was
not established by a background process.

30

CLIENT_INFO Returns up to 64 bytes of user session information
that can be stored by an application using the DBMS_
APPLICATION_INFO package.

64

CURRENT_SCHEMA Name of the default schema being used in the current
schema. This value can be changed during the session
with an ALTER SESSION SET CURRENT_SCHEMA
statement.

30

CURRENT_SCHEMAID Identifier of the default schema being used in the
current session.

30

CURRENT_USER The name of the user whose privilege the current
session is under.

30

CURRENT_USERID User ID of the user whose privilege the current
session is under

30

DB_DOMAIN Domain of the database as specified in the DB_
DOMAIN initialization parameter.

256

DB_NAME Name of the database as specified in the DB_NAME
initialization parameter

30

Table 4–1 Predefined Attributes of Namespace USERENV

Attribute Return Value

Return
Length
(bytes)
Functions 4-103

SYS_CONTEXT
ENTRYID The available auditing entry identifier. You cannot use
this option in distributed SQL statements. To use this
keyword in USERENV, the initialization parameter
AUDIT_TRAIL must be set to true .

30

EXTERNAL_NAME External name of the database user. For SSL
authenticated sessions using v.503 certificates, this
field returns the distinguished name (DN) stored in
the user certificate.

256

FG_JOB_ID Job ID of the current session if it was established by a
client foreground process. Null if the session was not
established by a foreground process.

30

HOST Name of the host machine from which the client has
connected.

54

INSTANCE The instance identification number of the current
instance.

30

IP_ADDRESS IP address of the machine from which the client is
connected.

30

ISDBA TRUE if you currently have the DBA role enabled and
FALSE if you do not.

30

LANG The ISO abbreviation for the language name, a shorter
form than the existing ’LANGUAGE’ parameter.

62

LANGUAGE The language and territory currently used by your
session, along with the database character set, in this
form:

language_territory.characterset

52

NETWORK_PROTOCOL Network protocol being used for communication, as
specified in the ’PROTOCOL=protocol ’ portion of
the connect string.

256

NLS_CALENDAR The current calendar of the current session. 62

NLS_CURRENCY The currency of the current session. 62

NLS_DATE_FORMAT The date format for the session. 62

NLS_DATE_LANGUAGE The language used for expressing dates. 62

NLS_SORT BINARY or the linguistic sort basis. 62

Table 4–1 Predefined Attributes of Namespace USERENV

Attribute Return Value

Return
Length
(bytes)
4-104 SQL Reference

SYS_GUID
SYS_GUID

Syntax

Purpose
SYS_GUID generates and returns a globally unique identifier (RAW value) made up

of 16 bytes. On most platforms, the generated identifier consists of a host identifier

and a process or thread identifier of the process or thread invoking the function,

and a nonrepeating value (sequence of bytes) for that process or thread.

NLS_TERRITORY The territory of the current session. 62

OS_USER Operating system username of the client process that
initiated the database session

30

PROXY_USER Name of the database user who opened the current
session on behalf of SESSION_USER.

30

PROXY_USERID Identifier of the database user who opened the
current session on behalf of SESSION_USER.

30

SESSION_USER Database user name by which the current user is
authenticated. This value remains the same
throughout the duration of the session.

30

SESSION_USERID Identifier of the database user name by which the
current user is authenticated.

30

SESSIONID The auditing session identifier. You cannot use this
option in distributed SQL statements.

30

TERMINAL The operating system identifier for the client of the
current session. In distributed SQL statements, this
option returns the identifier for your local session. In
a distributed environment, this is supported only for
remote SELECT statements, not for remote INSERT,
UPDATE, or DELETE operations. (The return length of
this parameter may vary by operating system.)

10

Table 4–1 Predefined Attributes of Namespace USERENV

Attribute Return Value

Return
Length
(bytes)

SYS_GUID ()
Functions 4-105

SYSDATE
Example
The following examples return the 32-character hexadecimal representation of the

16-byte raw value of the global unique identifier:

CREATE TABLE mytable (col1 VARCHAR2(10), col2 RAW(32));
INSERT INTO mytable VALUES (’BOB’, SYS_GUID());
SELECT * FROM mytable;

COL1 COL2
---------- --
BOB 5901B85D996C570CE03400400B40DCB1

SELECT SYS_GUID() FROM DUAL;

SYS_GUID()

5901B85D996D570CE03400400B40DCB1

SYSDATE

Syntax

Purpose
SYSDATE returns the current date and time. Requires no arguments. In distributed

SQL statements, this function returns the date and time on your local database. You

cannot use this function in the condition of a CHECK constraint.

Example
SELECT TO_CHAR
 (SYSDATE, ’MM-DD-YYYY HH24:MI:SS’)"NOW"
 FROM DUAL;

NOW

10-29-1999 20:27:11

SYSDATE
4-106 SQL Reference

TANH
TAN

Syntax

Purpose
TAN returns the tangent of n (an angle expressed in radians).

Example
SELECT TAN(135 * 3.14159265359/180)
"Tangent of 135 degrees" FROM DUAL;

Tangent of 135 degrees

 - 1

TANH

Syntax

Purpose
TANH returns the hyperbolic tangent of n.

Example
SELECT TANH(.5) "Hyperbolic tangent of .5"
 FROM DUAL;

Hyperbolic tangent of .5

 .462117157

TAN (n)

TANH (n)
Functions 4-107

TO_CHAR (date conversion)
TO_CHAR (date conversion)

Syntax

Purpose
TO_CHAR converts d of DATE datatype to a value of VARCHAR2 datatype in the

format specified by the date format fmt . If you omit fmt , d is converted to a

VARCHAR2 value in the default date format.

The ’nlsparams ’ specifies the language in which month and day names and

abbreviations are returned. This argument can have this form:

’NLS_DATE_LANGUAGE = language’

If you omit nlsparams , this function uses the default date language for your

session.

Example
SELECT TO_CHAR(HIREDATE, ’Month DD, YYYY’)
 "New date format" FROM emp
 WHERE ename = ’BLAKE’;

New date format

May 01, 1981

See Also: "Format Models" on page 2-41 for information on date

formats

TO_CHAR (d
, fmt

, ’ nlsparam ’

)

4-108 SQL Reference

TO_CHAR (number conversion)
TO_CHAR (number conversion)

Syntax

Purpose
TO_CHAR converts n of NUMBER datatype to a value of VARCHAR2 datatype, using

the optional number format fmt . If you omit fmt , n is converted to a VARCHAR2
value exactly long enough to hold its significant digits.

The ’nlsparams ’ specifies these characters that are returned by number format

elements:

■ Decimal character

■ Group separator

■ Local currency symbol

■ International currency symbol

This argument can have this form:

’NLS_NUMERIC_CHARACTERS = ’’dg’’
 NLS_CURRENCY = ’’text’’
 NLS_ISO_CURRENCY = territory ’

The characters d and g represent the decimal character and group separator,

respectively. They must be different single-byte characters. Note that within the

quoted string, you must use two single quotation marks around the parameter

values. Ten characters are available for the currency symbol.

If you omit ’nlsparams ’ or any one of the parameters, this function uses the

default parameter values for your session.

Examples
In this example, the output is blank padded to the left of the currency symbol.

See Also: "Format Models" on page 2-41 for information on

number formats

TO_CHAR (n
, fmt

, ’ nlsparam ’

)

Functions 4-109

TO_DATE
SELECT TO_CHAR(-10000,’L99G999D99MI’) "Amount"
 FROM DUAL;

Amount

 $10,000.00-

SELECT TO_CHAR(-10000,’L99G999D99MI’,
 ’NLS_NUMERIC_CHARACTERS = ’’,.’’
 NLS_CURRENCY = ’’AusDollars’’ ’) "Amount"
 FROM DUAL;

Amount

AusDollars10.000,00-

TO_DATE

Syntax

Purpose
TO_DATE converts char of CHAR or VARCHAR2 datatype to a value of DATE
datatype. The fmt is a date format specifying the format of char . If you omit fmt ,

char must be in the default date format. If fmt is ’J’, for Julian, then char must be

an integer.

The ’nlsparams ’ has the same purpose in this function as in the TO_CHARfunction

for date conversion.

Note: In the optional number format fmt , L designates local

currency symbol and MI designates a trailing minus sign. See

Table 2–7 on page 2-44 for a complete listing of number format

elements.

TO_DATE (char
, fmt

, ’ nlsparam ’

)

4-110 SQL Reference

TO_LOB
Do not use the TO_DATE function with a DATE value for the char argument. The

first 2 digits of the returned DATE value can differ from the original char ,

depending on fmt or the default date format.

Example
INSERT INTO bonus (bonus_date)
 SELECT TO_DATE(
 ’January 15, 1989, 11:00 A.M.’,
 ’Month dd, YYYY, HH:MI A.M.’,
 ’NLS_DATE_LANGUAGE = American’)
 FROM DUAL;

TO_LOB

Syntax

Purpose
TO_LOB converts LONG or LONG RAW values in the column long_column to LOB

values. You can apply this function only to a LONG or LONG RAW column, and only

in the SELECT list of a subquery in an INSERT statement.

Before using this function, you must create a LOB column to receive the converted

LONG values. To convert LONGs, create a CLOB column. To convert LONG RAWs,

create a BLOB column.

Example
Given the following tables:

CREATE TABLE long_table (n NUMBER, long_col LONG);
CREATE TABLE lob_table (n NUMBER, lob_col CLOB);

use this function to convert LONG to LOB values as follows:

See Also: "Date Format Models" on page 2-47

See Also: INSERT on page 11-51 for information on the subquery

of an INSERT statement

TO_LOB (long_column)
Functions 4-111

TO_MULTI_BYTE
INSERT INTO lob_table
 SELECT n, TO_LOB(long_col) FROM long_table;

TO_MULTI_BYTE

Syntax

Purpose
TO_MULTI_BYTE returns char with all of its single-byte characters converted to

their corresponding multibyte characters. Any single-byte characters in char that

have no multibyte equivalents appear in the output string as single-byte characters.

This function is useful only if your database character set contains both single-byte

and multibyte characters.

TO_NUMBER

Syntax

Purpose
TO_NUMBER converts char , a value of CHAR or VARCHAR2 datatype containing a

number in the format specified by the optional format model fmt , to a value of

NUMBER datatype.

Examples
UPDATE emp SET sal = sal +
 TO_NUMBER(’100.00’, ’9G999D99’)
 WHERE ename = ’BLAKE’;

The ’nlsparams ’ string in this function has the same purpose as it does in the TO_
CHAR function for number conversions.

TO_MULTI_BYTE (char)

TO_NUMBER (char
, fmt

, ’ nlsparam ’

)

4-112 SQL Reference

TRANSLATE
SELECT TO_NUMBER(’-AusDollars100’,’L9G999D99’,
 ’ NLS_NUMERIC_CHARACTERS = ’’,.’’
 NLS_CURRENCY = ’’AusDollars’’
 ’) "Amount"
 FROM DUAL;

 Amount

 -100

TO_SINGLE_BYTE

Syntax

Purpose
TO_SINGLE_BYTE returns char with all of its multibyte characters converted to

their corresponding single-byte characters. Any multibyte characters in char that

have no single-byte equivalents appear in the output as multibyte characters. This

function is useful only if your database character set contains both single-byte and

multibyte characters.

TRANSLATE

Syntax

Purpose
TRANSLATE returns char with all occurrences of each character in from replaced

by its corresponding character in to . Characters in char that are not in from are

not replaced. The argument from can contain more characters than to . In this case,

the extra characters at the end of from have no corresponding characters in to . If

these extra characters appear in char , they are removed from the return value. You

See Also: "TO_CHAR (number conversion)" on page 4-109

TO_SINGLE_BYTE (char)

TRANSLATE (’ char ’ , ’ from ’ , ’ to ’)
Functions 4-113

TRANSLATE ... USING

(

cannot use an empty string for to to remove all characters in from from the return

value. Oracle interprets the empty string as null, and if this function has a null

argument, it returns null.

Examples
The following statement translates a license number. All letters ’ABC...Z’ are

translated to ’X’ and all digits ’012 . . . 9’ are translated to ’9’:

SELECT TRANSLATE(’2KRW229’,
’0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’,
’9999999999XXXXXXXXXXXXXXXXXXXXXXXXXX’) "License"
 FROM DUAL;

License

9XXX999

The following statement returns a license number with the characters removed and

the digits remaining:

SELECT TRANSLATE(’2KRW229’,
’0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’, ’0123456789’)
"Translate example"
 FROM DUAL;

Translate example

2229

TRANSLATE ... USING

Syntax

Purpose
TRANSLATE... USINGconverts text into the character set specified for conversions

between the database character set and the national character set.

The text argument is the expression to be converted.

TRANSLATE (text USING
4-114 SQL Reference

TRANSLATE ... USING
Specifying the USING CHAR_CS argument converts text into the database

character set. The output datatype is VARCHAR2.

Specifying the USING NCHAR_CS argument converts text into the national

character set. The output datatype is NVARCHAR2.

This function is similar to the Oracle CONVERTfunction, but must be used instead of

CONVERT if either the input or the output datatype is being used as NCHAR or

NVARCHAR2.

Examples
The examples below use the following table and table values:

CREATE TABLE t1 (char_col CHAR(20),
 nchar_col nchar(20));
INSERT INTO t1
 VALUES (’Hi’, N’Bye’);
SELECT * FROM t1;

CHAR_COL NCHAR_COL
-------- ---------
Hi Bye

UPDATE t1 SET
 nchar_col = TRANSLATE(char_col USING NCHAR_CS);
UPDATE t1 SET
 char_col = TRANSLATE(nchar_col USING CHAR_CS);
SELECT * FROM t1;

CHAR_COL NCHAR_COL
-------- ---------
Hi Hi

UPDATE t1 SET
 nchar_col = TRANSLATE(’deo’ USING NCHAR_CS);
UPDATE t1 SET
 char_col = TRANSLATE(N’deo’ USING CHAR_CS);
SELECT * FROM t1;

CHAR_COL NCHAR_COL
-------- ---------
deo deo
Functions 4-115

TRIM
TRIM

Syntax

Purpose
TRIM enables you to trim leading or trailing characters (or both) from a character

string. If trim_character or trim_source is a character literal, you must

enclose it in single quotes.

■ If you specify LEADING, Oracle removes any leading characters equal to trim_
character .

■ If you specify TRAILING , Oracle removes any trailing characters equal to

trim_character .

■ If you specify BOTH or none of the three, Oracle removes leading and trailing

characters equal to trim_character .

■ If you do not specify trim_character , the default value is a blank space.

■ If you specify only trim_source , Oracle removes leading and trailing blank

spaces.

■ The function returns a value with datatype VARCHAR2. The maximum length of

the value is the length of trim_source .

■ If either trim_source or trim_character is a null value, then the TRIM
function returns a null value.

This example trims leading and trailing zeroes from a number:

Example
SELECT TRIM (0 FROM 0009872348900) "TRIM Example"
 FROM DUAL;

TRIM example

TRIM (

LEADING

TRAILING

BOTH

trim_character

trim_character

FROM

trim_source)
4-116 SQL Reference

TRUNC (date function)

 98723489

TRUNC (number function)

Syntax

Purpose
TRUNC returns n truncated to m decimal places. If m is omitted, n is truncated to 0

places. m can be negative to truncate (make zero) m digits left of the decimal point.

Example
SELECT TRUNC(15.79,1) "Truncate" FROM DUAL;

 Truncate

 15.7

SELECT TRUNC(15.79,-1) "Truncate" FROM DUAL;

 Truncate

 10

TRUNC (date function)

Syntax

TRUNC (n
, m

)

TRUNC (d
, fmt

)

Functions 4-117

UID
Purpose
TRUNC returns d with the time portion of the day truncated to the unit specified by

the format model fmt . If you omit fmt , d is truncated to the nearest day.

Example
SELECT TRUNC(TO_DATE(’27-OCT-92’,’DD-MON-YY’), ’YEAR’)
 "New Year" FROM DUAL;

New Year

01-JAN-92

UID

Syntax

Purpose
UID returns an integer that uniquely identifies the session user (the user who

logged on).

Example
SELECT UID FROM DUAL;

 UID

 19

UPPER

Syntax

See Also: "ROUND and TRUNC Date Functions" on page 4-127

for the permitted format models to use in fmt

UID

UPPER (char)
4-118 SQL Reference

USER
Purpose
UPPER returns char , with all letters uppercase. The return value has the same

datatype as the argument char .

Example
SELECT UPPER(’Large’) "Uppercase"
 FROM DUAL;

Upper

LARGE

USER

Syntax

Purpose
USER returns the name of the session user (the user who logged on) with the

datatype VARCHAR2. Oracle compares values of this function with blank-padded

comparison semantics.

In a distributed SQL statement, the UID and USER functions identify the user on

your local database. You cannot use these functions in the condition of a CHECK
constraint.

Example
SELECT USER, UID FROM DUAL;

USER UID
------------------------------ ----------
SCOTT 19

USER
Functions 4-119

USERENV
USERENV

Syntax

Purpose
USERENVreturns information of VARCHAR2datatype about the current session. This

information can be useful for writing an application-specific audit trail table or for

determining the language-specific characters currently used by your session. You

cannot use USERENV in the condition of a CHECK constraint. Table 4–2 describes the

values for the option argument.

Table 4–2 USERENV Options

Option Return Value

’CLIENT_INFO ’ CLIENT_INFO returns up to 64 bytes of user session information that
can be stored by an application using the DBMS_APPLICATION_
INFO package.

Caution: Some commercial applications may be using this
context value. Check the applicable documentation for those
applications to determine what restrictions they may impose on
use of this context area.

Oracle recommends that you use the application context feature or
the SYS_CONTEXT function with the USERENV option. These
alternatives are more secure and flexible.

See Also:

- Oracle8i Concepts for information on application context

- CREATE CONTEXT on page 9-13 and SYS_CONTEXT on
page 4-101

’ENTRYID’ ENTRYID returns available auditing entry identifier. You cannot use
this option in distributed SQL statements. To use this keyword in
USERENV, the initialization parameter AUDIT_TRAIL must be set to
true .

’INSTANCE’ INSTANCE returns the instance identification number of the current
instance.

USERENV (option)
4-120 SQL Reference

VALUE
Example
SELECT USERENV(’LANGUAGE’) "Language" FROM DUAL;

Language

AMERICAN_AMERICA.WE8DEC

VALUE

Syntax

Purpose
In a SQL statement, VALUE takes as its argument a correlation variable (table alias)

associated with a row of an object table and returns object instances stored in the

object table. The type of the object instances is the same type as the object table.

Example
CREATE TYPE emp_type AS OBJECT

’ISDBA’ ISDBA returns ’TRUE’ if you currently have the ISDBA role enabled
and ’FALSE’ if you do not.

’LANG’ LANG returns the ISO abbreviation for the language name, a shorter
form than the existing ’LANGUAGE’ parameter.

’LANGUAGE’ LANGUAGEreturns the language and territory currently used by your
session along with the database character set in this form:

language_territory.characterset

’SESSIONID’ SESSIONID returns your auditing session identifier. You cannot use
this option in distributed SQL statements.

’TERMINAL’ TERMINAL returns the operating system identifier for your current
session’s terminal. In distributed SQL statements, this option returns
the identifier for your local session. In a distributed environment,
this is supported only for remote SELECT statements, not for remote
INSERT, UPDATE, or DELETE operations.

Table 4–2 (Cont.) USERENV Options

Option Return Value

VALUE (correlation_variable)
Functions 4-121

VAR_POP
 (eno NUMBER, ename VARCHAR2(20), salary NUMBER);
CREATE TABLE emp_table OF emp_type
 (primary key (eno, ename));
INSERT INTO emp_table VALUES (10, 'jack', 50000);
SELECT VALUE(e) FROM emp_table e;

VALUE(E)(ENO, ENAME, SALARY)
--
EMP_TYPE(10, 'jack', 50000)

VAR_POP

Syntax

Purpose
VAR_POP returns the population variance of a set of numbers after discarding the

nulls in this set. You can use it as both an aggregate and analytic function.

The expr is a number expression, and the function returns a value of type NUMBER.
If the function is applied to an empty set, it returns null. The function makes the

following calculation:

(SUM(expr 2) - SUM(expr) 2 / COUNT(expr)) / COUNT(expr)

Aggregate Example
The following example returns the population variance of the salaries in the EMP

table:

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 4-6

■ "Expressions" on page 5-2 for information on valid forms of

expr

VAR_POP (expr)
OVER (analytic_clause)
4-122 SQL Reference

VAR_SAMP
SELECT VAR_POP(sal) FROM emp;

VAR_POP(SAL)

 1298434.31

Analytic Example
The following example calculates the cumulative population and sample variances

of the monthly sales in 1998:

SELECT s_month, VAR_POP(SUM(s_amount)) OVER (ORDER BY s_month),
 VAR_SAMP(SUM(s_amount)) OVER (ORDER BY s_month)
 FROM sales
 WHERE s_year =1998
 GROUP BY s_month;

S_MONTH VAR_POP(SU VAR_SAMP(S
---------- ---------- ----------
 6 0
 8 440588496 881176992
 11 538819892 808229838

VAR_SAMP

Syntax

Purpose
VAR_SAMP returns the sample variance of a set of numbers after discarding the

nulls in this set. You can use it as both an aggregate and analytic function.

The expr is a number expression, and the function returns a value of type NUMBER.
If the function is applied to an empty set, it returns null. The function makes the

following calculation:

(SUM(expr 2) - SUM(expr) 2 / COUNT(expr)) / (COUNT(expr) - 1)

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

VAR_SAMP (expr)
OVER (analytic_clause)
Functions 4-123

VAR_SAMP
This function is similar to VARIANCE, except that given an input set of one element,

VARIANCE returns 0 and VAR_SAMP returns null.

Aggregate Example
The following example returns the sample variance of the salaries in the emp table.

SELECT VAR_SAMP(sal) FROM emp;

VAR_SAMP(SAL)

 1398313.87

Analytic Example
The following example calculates the cumulative population and sample variances

of the monthly sales in 1998:

SELECT s_month, VAR_POP(SUM(s_amount)) OVER (ORDER BY s_month),
 VAR_SAMP(SUM(s_amount)) OVER (ORDER BY s_month)
 FROM sales
 WHERE s_year =1998
 GROUP BY s_month;

S_MONTH VAR_POP(SU VAR_SAMP(S
---------- ---------- ----------
 6 0
 8 440588496 881176992
 11 538819892 808229838

See Also:

■ "Aggregate Functions" on page 4-6

■ "Expressions" on page 5-2 for information on valid forms of

expr
4-124 SQL Reference

VARIANCE
VARIANCE

Syntax

Purpose
VARIANCE returns variance of expr . You can use it as an aggregate or analytic

function.

Oracle calculates the variance of expr as follows:

■ 0 if the number of rows in expr = 1

■ VAR_SAMP if the number of rows in expr > 1

If you specify DISTINCT , you can specify only the query_partition_clause of

the analytic_clause . The ORDER_BY_clause and windowing_clause are not

allowed.

Aggregate Example
The following example calculates the variance of all salaries in the emp table:

SELECT VARIANCE(sal) "Variance"
 FROM emp;

Variance

1389313.87

See Also: "Analytic Functions" on page 4-8 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 4-6

■ "Expressions" on page 5-2 for information on valid forms of

expr

VARIANCE (

DISTINCT

ALL
expr)

OVER (analytic_clause)
Functions 4-125

VSIZE
Analytic Example
The query returns the cumulative variance of salary values in Department 30

ordered by hiredate.

SELECT ename, sal, VARIANCE(sal) OVER (ORDER BY hiredate)
 FROM emp
 WHERE deptno=30;

ENAME SAL VARIANCE(S
---------- ---------- ----------
ALLEN 1600 0
WARD 1250 61250
BLAKE 2850 707500
TURNER 1500 511666.667
MARTIN 1250 444250
JAMES 950 446666.667

VSIZE

Syntax

Purpose
VSIZE returns the number of bytes in the internal representation of expr . If expr is

null, this function returns null.

Example
SELECT ename, VSIZE (ename) "BYTES"
 FROM emp
 WHERE deptno = 10;

ENAME BYTES
---------- ----------
CLARK 5
KING 4
MILLER 6

VSIZE (expr)
4-126 SQL Reference

ROUND and TRUNC Date Functions
ROUND and TRUNC Date Functions
Table 4–3 lists the format models you can use with the ROUND and TRUNC date

functions and the units to which they round and truncate dates. The default model,

’DD’, returns the date rounded or truncated to the day with a time of midnight.

Table 4–3 Date Format Models for the ROUND and TRUNC Date Functions

Format Model Rounding or Truncating Unit

CC
SCC

One greater than the first two digits of a four-digit year.

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year (rounds up on July 1)

IYYY
IY
IY
I

ISO Year

Q Quarter (rounds up on the sixteenth day of the second month of the
quarter)

MONTH
MON
MM
RM

Month (rounds up on the sixteenth day)

WW Same day of the week as the first day of the year.
Functions 4-127

User-Defined Functions
The starting day of the week used by the format models DAY, DY, and D is specified

implicitly by the initialization parameter NLS_TERRITORY.

User-Defined Functions
You can write user-defined functions in PL/SQL or Java to provide functionality

that is not available in SQL or SQL functions. User functions can appear in a SQL

statement anywhere SQL functions can appear, that is, wherever an expression can

occur.

For example, user functions can be used in the following:

■ The select list of a SELECT statement

■ The condition of a WHERE clause

■ CONNECT BY, START WITH, ORDER BY, and GROUP BYclauses

■ The VALUES clause of an INSERT statement

■ The SET clause of an UPDATE statement

IW Same day of the week as the first day of the ISO year.

W Same day of the week as the first day of the month.

DDD
DD
J

Day

DAY
DY
D

Starting day of the week

HH
HH12
HH24

Hour

MI Minute

See Also: Oracle8i Reference and Oracle8i National Language
Support Guide for information on this parameter

Table 4–3 (Cont.) Date Format Models for the ROUND and TRUNC Date Functions

Format Model Rounding or Truncating Unit
4-128 SQL Reference

User-Defined Functions
Prerequisites
User functions must be created as top-level functions or declared with a package

specification before they can be named within a SQL statement.

To use a user function in a SQL expression, you must own or have EXECUTE
privilege on the user function. To query a view defined with a user function, you

must have SELECT privileges on the view. No separate EXECUTE privileges are

needed to select from the view.

Name Precedence
Within a SQL statement, the names of database columns take precedence over the

names of functions with no parameters. For example, if user scott creates the

following two objects in his own schema:

CREATE TABLE emp(new_sal NUMBER, ...);
CREATE FUNCTION new_sal RETURN NUMBER IS BEGIN ... END ;

then in the following two statements, the reference to NEW_SAL refers to the

column emp.new_sal :

SELECT new_sal FROM emp;
SELECT emp.new_sal FROM emp;

To access the function new_sal , you would enter:

SELECT scott.new_sal FROM emp;

Here are some sample calls to user functions that are allowed in SQL expressions:

See Also:

■ CREATE FUNCTION on page 9-43 for information on creating

functions, including restrictions on user-defined functions

■ Oracle8i Application Developer’s Guide - Fundamentals for a

complete description on the creation and use of user functions

See Also:

■ CREATE FUNCTION on page 9-43 for information on creating

top-level functions

■ CREATE PACKAGE on page 9-122 for information on

specifying packaged functions
Functions 4-129

User-Defined Functions
circle_area (radius)
payroll.tax_rate (empno)
scott.payroll.tax_rate (dependent, empno)@ny

Example To call the tax_rate user function from schema scott , execute it

against the ss_no and sal columns in tax_table , and place the results in the

variable income_tax , specify the following:

SELECT scott.tax_rate (ss_no, sal)
 INTO income_tax
 FROM tax_table
 WHERE ss_no = tax_id;

Naming Conventions
If only one of the optional schema or package names is given, the first identifier can

be either a schema name or a package name. For example, to determine whether

PAYROLLin the reference PAYROLL.TAX_RATEis a schema or package name, Oracle

proceeds as follows:

1. Check for the PAYROLL package in the current schema.

2. If a PAYROLL package is not found, look for a schema name PAYROLL that

contains a top-level TAX_RATE function. If no such function is found, return an

error.

3. If the PAYROLL package is found in the current schema, look for a TAX_RATE
function in the PAYROLL package. If no such function is found, return an error.

You can also refer to a stored top-level function using any synonym that you have

defined for it.
4-130 SQL Reference

Expressions, Conditions, and Qu
5

Expressions, Conditions, and Queries

This chapter describes how to combine the values, operators, and functions

described in earlier chapters evaluate to a value.

This chapter includes these sections:

■ Expressions

■ Conditions

■ Queries and Subqueries
eries 5-1

Expressions
Expressions
An expression is a combination of one or more values, operators, and SQL

functions that evaluate to a value. An expression generally assumes the datatype of

its components.

This simple expression evaluates to 4 and has datatype NUMBER (the same datatype

as its components):

2*2

The following expression is an example of a more complex expression that uses

both functions and operators. The expression adds seven days to the current date,

removes the time component from the sum, and converts the result to CHAR
datatype:

TO_CHAR(TRUNC(SYSDATE+7))

You can use expressions in:

■ The select list of the SELECT statement

■ A condition of the WHERE clause and HAVING clause

■ The CONNECT BY, START WITH, and ORDER BY clauses

■ The VALUES clause of the INSERT statement

■ The SET clause of the UPDATE statement

For example, you could use an expression in place of the quoted string ’smith’ in

this UPDATE statement SET clause:

SET ename = ’smith’;

This SET clause has the expression LOWER(ename) instead of the quoted string

’smith ’:

SET ename = LOWER(ename);

Expressions have several forms, as shown in the following syntax:
5-2 SQL Reference

Expressions
expr::=

Oracle does not accept all forms of expressions in all parts of all SQL statements.

You must use appropriate expression notation whenever expr appears in

conditions, SQL functions, or SQL statements in other parts of this reference. The

sections that follow describe and provide examples of the various forms of

expressions.

Simple Expressions
A simple expression specifies column, pseudocolumn, constant, sequence number,

or null.

See Also: The individual SQL statements in Chapter 7 through

Chapter 11 for information on restrictions on the expressions in that

statement

simple_expression

compound_expression

variable_expression

built_in_function_expression

user_defined_function_expression

type_constructor_expression

CAST_expression

CURSOR_expression

object_access_expression

DECODE_expression

CASE_expression

expression_list
Expressions, Conditions, and Queries 5-3

Expressions
simple_expression::=

In addition to the schema of a user, schema can also be "PUBLIC" (double quotation

marks required), in which case it must qualify a public synonym for a table, view, or

materialized view. Qualifying a public synonym with "PUBLIC" is supported only

in data manipulation language (DML) statements, not data definition language

(DDL) statements.

The pseudocolumn can be either LEVEL, ROWID, or ROWNUM. You can use a

pseudocolumn only with a table, not with a view or materialized view. NCHAR and

NVARCHAR2 are not valid pseudocolumn datatypes.

Some valid simple expressions are:

emp.ename
’this is a text string’
10
N’this is an NCHAR string’

Compound Expressions
A compound expression specifies a combination of other expressions.

See Also: "Pseudocolumns" on page 2-59 for more information on

pseudocolumns

schema .
table

view

snapshot

.

column

pseudocolumn

text

number

sequence .
CURRVAL

NEXTVAL

NULL
5-4 SQL Reference

Expressions
compound_expression::=

Note that some combinations of functions are inappropriate and are rejected. For

example, the LENGTH function is inappropriate within an aggregate function.

Some valid compound expressions are:

(’CLARK’ || ’SMITH’)
LENGTH(’MOOSE’) * 57
SQRT(144) + 72
my_fun(TO_CHAR(sysdate,’DD-MMM-YY’)

Variable Expressions
A variable expression specifies a host variable with an optional indicator variable.

Note that this form of expression can appear only in embedded SQL statements or

SQL statements processed in an Oracle Call Interface (OCI) program.

variable_expression::=

Some valid variable expressions are:

:employee_name INDICATOR :employee_name_indicator_var
:department_location

(expr)

+

–

PRIOR

expr

expr

*

/

+

–

| |

expr

: host_variable

INDICATOR
: indicator_variable
Expressions, Conditions, and Queries 5-5

Expressions
Built-In Function Expressions
A built-in function expression specifies a call to a single-row SQL function.

built_in_function_expression::=

Some valid built-in function expressions are:

LENGTH(’BLAKE’)
ROUND(1234.567*43)
SYSDATE

Function Expressions
A function expression specifies a call to

■ A SQL built-in function (see Chapter 4, "Functions")

■ A function in an Oracle-supplied package (see Oracle8i Supplied PL/SQL
Packages Reference).

■ A function in a user-defined package or in a standalone user-defined function

(see "User-Defined Functions" on page 4-128)

■ A user-defined operator (see CREATE OPERATOR on page 9-115 and Oracle8i
Data Cartridge Developer’s Guide)

The optional expression/subquery list must match attributes of the function,

package, or operator. Only scalar subqueries are supported.

See Also: "SQL Functions" on page 4-2 and "Aggregate

Functions" on page 4-6 for information on built-in functions

function
(

DISTINCT

ALL
expr

,

)

5-6 SQL Reference

Expressions
function_expression::=

Some valid user-defined function expressions are:

circle_area(radius)
payroll.tax_rate(empno)
scott.payrol.tax_rate(dependents, empno)@ny
DBMS_LOB.getlength(column_name)

Type Constructor Expressions
A type constructor expression specifies a call to a type constructor. The argument to

the type constructor is any expression or subquery. Only scalar subqueries are

supported.

type_constructor_expression::=

If type_name is an object type, then the expression/subquery list must be an

ordered list, where the first argument is a value whose type matches the first

attribute of the object type, the second argument is a value whose type matches the

second attribute of the object type, and so on. The total number of arguments to the

constructor must match the total number of attributes of the object type.

If type_name is a varray or nested table type, then the expression/subquery list

can contain zero or more arguments. Zero arguments implies construction of an

empty collection. Otherwise, each argument corresponds to an element value whose

type is the element type of the collection type.

schema .
package .

function

user_defined_operator

@ dblink .
(

expr

subquery

,

)

schema .
type_name (

expr

subquery

,

)

Expressions, Conditions, and Queries 5-7

Expressions
If type_name is an object type, a varray, or a nested table type, the maximum

number of arguments it can contain is 1000 minus some overhead.

Expression Example This example shows the use of an expression in the call to a

type constructor.

CREATE TYPE address_t AS OBJECT
 (no NUMBER, street CHAR(31), city CHAR(21), state CHAR(3), zip NUMBER);
CREATE TYPE address_book_t AS TABLE OF address_t;
DECLARE
 /* Object Type variable initialized via Object Type Constructor */
 myaddr address_t = address_t(500, ’Oracle Parkway’, ’Redwood Shores’, ’CA’, 94065);
 /* nested table variable initialized to an empty table via a constructor*/
 alladdr address_book_t = address_book_t();
BEGIN
 /* below is an example of a nested table constructor with two elements
 specified, where each element is specified as an object type constructor. */
 insert into employee values (666999, address_book_t(address_t(500,
 ’Oracle Parkway’, ’Redwood Shores’, ’CA’, 94065), address_t(400,
 ’Mission Street’, ’Fremont’, ’CA’, 94555)));
END;

Subquery Example This example illustrates the use of a subquery in the call to

the type constructor.

CREATE TYPE employee AS OBJECT (
 empno NUMBER,
 ename VARCHAR2(20));
CREATE TABLE emptbl of EMPLOYEE;
INSERT INTO emptbl VALUES(7377, ’JOHN’);
CREATE TYPE project AS OBJECT (
 pname VARCHAR2(25),
 empref REF employee);
CREATE TABLE depttbl (dno number, proj project);
INSERT INTO depttbl values(10, project(’SQL Extensions’,
 (SELECT REF(p) FROM emptbl p
 WHERE ename=’JOHN’)));

CAST Expressions
A CAST expression converts one built-in datatype or collection-typed value into

another built-in datatype or collection-typed value.
5-8 SQL Reference

Expressions
CAST_expression::=

CASTallows you to convert built-in datatypes or collection-typed values of one type

into another built-in datatype or collection type. You can cast an unnamed operand

(such as a date or the result set of a subquery) or a named collection (such as a

varray or a nested table) into a type-compatible datatype or named collection. The

type_name must be the name of a built-in datatype or collection type and the

operand must be a built-in datatype or must evaluate to a collection value.

For the operand, expr can be either a built-in datatype or a collection type, and

subquery must return a single value of collection type or built-in type. MULTISET
informs Oracle to take the result set of the subquery and return a collection value.

Table 5–1 shows which built-in datatypes can be cast into which other built-in

datatypes. (CAST does not support LONG, LONG RAW, or any of the LOB datatypes.)

To cast a named collection type into another named collection type, the elements of

both collections must be of the same type.

Table 5–1 Casting Built-In Datatypes

From/

To
CHAR,

VARCHAR2 NUMBER DATE RAW
ROWID,
UROWID

NCHAR,
NVARCHAR2

CHAR,
VARCHAR2

X X X X X

NUMBER X X

DATE X X

RAW X X

ROWID, UROWID X Xa

NCHAR,
NVARCHAR2

X X X X X

a You cannot cast a UROWID to a ROWID if the UROWID contains the value of a ROWID of an index-orga-
nized table.

CAST (

expr

(subquery)

MULTISET (subquery)

AS type_name)
Expressions, Conditions, and Queries 5-9

Expressions
If the result set of subquery can evaluate to multiple rows, you must specify the

MULTISET keyword. The rows resulting from the subquery form the elements of

the collection value into which they are cast. Without the MULTISET keyword, the

subquery is treated as a scalar subquery, which is not supported in the CAST
expression. In other words, scalar subqueries as arguments of the CASToperator are

not valid in Oracle8i.

Built-In Datatype Examples

SELECT CAST (’1997-10-22’ AS DATE) FROM DUAL;
SELECT * FROM t1 WHERE CAST (ROWID AS VARCHAR2) = ’01234’;

Collection Examples The CAST examples that follow use the following user-

defined types and tables:

CREATE TYPE address_t AS OBJECT
 (no NUMBER, street CHAR(31), city CHAR(21), state CHAR(2));
CREATE TYPE address_book_t AS TABLE OF address_t;
CREATE TYPE address_array_t AS VARRAY(3) OF address_t;
CREATE TABLE emp_address (empno NUMBER, no NUMBER, street CHAR(31),
 city CHAR(21), state CHAR(2));
CREATE TABLE employees (empno NUMBER, name CHAR(31));
CREATE TABLE dept (dno NUMBER, addresses address_array_t);

This example casts a subquery:

SELECT e.empno, e.name, CAST(MULTISET(SELECT ea.no, ea.street,
 ea.city, ea.state
 FROM emp_address ea
 WHERE ea.empno = e.empno)
 AS address_book_t)
 FROM employees e;

CAST converts a varray type column into a nested table:

SELECT CAST(d.addresses AS address_book_t)
 FROM dept d
 WHERE d.dno = 111;

The following example casts a MULTISET expression with an ORDER BY clause:

CREATE TABLE projects (empid NUMBER, projname VARCHAR2(10));
CREATE TABLE employees (empid NUMBER, ename VARCHAR2(10));
CREATE TYPE projname_table_type AS TABLE OF VARCHAR2(10);

An example of a MULTISET expression with the above schema is:
5-10 SQL Reference

Expressions
SELECT e.ename, CAST(MULTISET(SELECT p.projname
 FROM projects p
 WHERE p.empid=e.empid
 ORDER BY p.projname)
 AS projname_table_type)
 FROM employees e;

CURSOR Expressions
A CURSOR expression returns a nested cursor. This form of expression is similar to

the PL/SQL REF cursor.

CURSOR_expression::=

A nested cursor is implicitly opened when the containing row is fetched from the

parent cursor. The nested cursor is closed only when:

■ The nested cursor is explicitly closed by the user

■ The parent cursor is reexecuted

■ The parent cursor is closed

■ The parent cursor is cancelled

■ An error arises during fetch on one of its parent cursors (it is closed as part of

the clean-up)

Restrictions: The following restrictions apply to the CURSOR expression:

■ Nested cursors can appear only in a SELECT statement that is not nested in any

other query expression, except when it is a subquery of the CURSOR expression

itself.

■ Nested cursors can appear only in the outermost SELECT list of the query

specification.

■ Nested cursors cannot appear in views.

■ You cannot perform BIND and EXECUTE operations on nested cursors.

Example

SELECT d.deptno, CURSOR(SELECT e.empno, CURSOR(SELECT p.projnum,
 p.projname

CURSOR (subquery)
Expressions, Conditions, and Queries 5-11

Expressions
 FROM projects p
 WHERE p.empno = e.empno)
 FROM TABLE(d.employees) e)
 FROM dept d
 WHERE d.dno = 605;

Object Access Expressions
An object access expression specifies attribute reference and method invocation.

object_access_expression::=

The column parameter can be an object or REF column.

When a type’s member function is invoked in the context of a SQL statement, if the

SELF argument is null, Oracle returns null and the function is not invoked.

Examples in this section use the following user-defined types and tables:

CREATE OR REPLACE TYPE employee_t AS OBJECT
 (empid NUMBER,
 name VARCHAR2(31),
 birthdate DATE,
 MEMBER FUNCTION age RETURN NUMBER,
 PRAGMA RESTRICT_REFERENCES (age, RNPS, WNPS, WNDS)
);

CREATE OR REPLACE TYPE BODY employee_t AS
 MEMBER FUNCTION age RETURN NUMBER IS
 var NUMBER;
 BEGIN
 var := TRUNC(MONTHS_BETWEEN(SYSDATE, birthdate) /12);
 RETURN(var);
 END;
 END;

table_alias . column .

object_table_alias

attribute

.
. method (

argument

,

)

method (
argument

,

)

5-12 SQL Reference

Expressions
CREATE TABLE department (dno NUMBER, manager EMPLOYEE_T);

Examples The following examples update and select from the object columns and

method defined above.

UPDATE department d
 SET d.manager.empid = 100;
SELECT d.manager.name, d.manager.age()
 FROM department d;

DECODE Expressions
A DECODE expression uses the special DECODE syntax:

DECODE_expression::=

To evaluate this expression, Oracle compares expr to each search value one by

one. If expr is equal to a search , Oracle returns the corresponding result . If no

match is found, Oracle returns default , or, if default is omitted, returns null. If

expr and search contain character data, Oracle compares them using nonpadded

comparison semantics.

The search , result , and default values can be derived from expressions.

Oracle evaluates each search value only before comparing it to expr , rather than

evaluating all search values before comparing any of them with expr .

Consequently, Oracle never evaluates a search if a previous search is equal to

expr .

Oracle automatically converts expr and each search value to the datatype of the

first search value before comparing. Oracle automatically converts the return

value to the same datatype as the first result . If the first result has the datatype

CHAR or if the first result is null, then Oracle converts the return value to the

datatype VARCHAR2.

In a DECODEexpression, Oracle considers two nulls to be equivalent. If expr is null,

Oracle returns the result of the first search that is also null.

The maximum number of components in the DECODE expression, including expr ,

search es, results , and default is 255.

DECODE (expr , search , result

,
, default

) ;
Expressions, Conditions, and Queries 5-13

Expressions
Example This expression decodes the value deptno . If deptno is 10, the

expression evaluates to ’ACCOUNTING’; if deptno is 20, it evaluates to ’RESEARCH’;
etc. If deptno is not 10, 20, 30, or 40, the expression returns ’NONE’.

DECODE (deptno,10, ’ACCOUNTING’,
 20, ’RESEARCH’,
 30, ’SALES’,
 40, ’OPERATION’,
 ’NONE’)

CASE Expressions
CASE expressions let you use IF ... THEN ... ELSE logic in SQL statements without

having to invoke procedures. The syntax is:

CASE_expression::=

Oracle searches for the first WHEN ... THEN pair for which condition is true.

■ If Oracle finds such a pair, then the result of the CASE expression is expr1.

■ If Oracle does not find such a pair,

■ If an ELSE clause is specified, the result of the CASE expression is expr2.

■ If no ELSE clause is specified, the result of the CASE expression in null.

At least one occurrence of expr1 or expr2 must be non-null.

See Also:

■ "Datatype Comparison Rules" on page 2-26 for information on

comparison semantics

■ "Data Conversion" on page 2-30 for information on datatype

conversion in general

■ "Implicit vs. Explicit Data Conversion" on page 2-32 for

information on the drawbacks of implicit conversion

CASE WHEN condition THEN expr1
ELSE expr2

END
5-14 SQL Reference

Conditions
Example The following statement finds the average salary of all employees in the

EMP table. If an employee’s salary is less than $2000, the CASE expression uses

$2000 instead.

SELECT AVG(CASE WHEN e.sal > 2000 THEN e.sal ELSE 2000 END) from emp e;

Expression List
An expression list is a series of expressions separated by a comma. The entire series

is enclosed in parentheses.

expression_list::=

An expression list can contain up to 1000 expressions. Some valid expression lists

are:

(10, 20, 40)
(’SCOTT’, ’BLAKE’, ’TAYLOR’)
(LENGTH(’MOOSE’) * 57, -SQRT(144) + 72, 69)

Conditions
A condition specifies a combination of one or more expressions and logical

operators that evaluates to either TRUE, FALSE, or unknown. You must use this

syntax whenever condition appears in SQL statements.

You can use a condition in the WHERE clause of these statements:

■ DELETE

■ SELECT

■ UPDATE

Note: The maximum number of arguments in a CASE expression

is 255, and each WHEN ... THEN pair counts as two arguments. To

avoid exceeding the limit of 128 choices, you can nest CASE

expressions. That is expr1 can itself be a CASE expression.

(expr

,

)

Expressions, Conditions, and Queries 5-15

Conditions
You can use a condition in any of these clauses of the SELECT statement:

■ WHERE

■ START WITH

■ CONNECT BY

■ HAVING

A condition could be said to be of the "logical" datatype, although Oracle does not

formally support such a datatype.

The following simple condition always evaluates to TRUE:

1 = 1

The following more complex condition adds the sal value to the comm value

(substituting the value 0 for null) and determines whether the sum is greater than

the number constant 2500:

NVL(sal, 0) + NVL(comm, 0) > 2500

Logical operators can combine multiple conditions into a single condition. For

example, you can use the AND operator to combine two conditions:

(1 = 1) AND (5 < 7)

Here are some valid conditions:

name = ’SMITH’
emp.deptno = dept.deptno
hiredate > ’01-JAN-88’
job IN (’PRESIDENT’, ’CLERK’, ’ANALYST’)
sal BETWEEN 500 AND 1000
comm IS NULL AND sal = 2000

Conditions can have several forms, as shown in the following syntax.
5-16 SQL Reference

Conditions
condition::=

The sections that follow describe the various forms of conditions.

Simple Comparison Conditions
A simple comparison condition specifies a comparison with expressions or

subquery results.

See Also: The description of each statement in Chapter 7 through

Chapter 11 for the restrictions on the conditions in that statement

simple_comparison_condition

group_comparison_condition

membership_condition

range_condition

NULL_condition

EXISTS_condition

LIKE_condition

compound_condition
Expressions, Conditions, and Queries 5-17

Conditions
simple_comparison_condition::=

Group Comparison Conditions
A group comparison condition specifies a comparison with any or all members in a

list or subquery.

See Also: "Comparison Operators" on page 3-5 for information on

comparison operators

expr

=

!=

^=

<>

>

<

>=

<=

expr

(subquery)

expr_list

=

!=

^=

<>

(subquery)
5-18 SQL Reference

Conditions
group_comparison_condition::=

Membership Conditions
A membership condition tests for membership in a list or subquery.

membership_condition::=

See Also: SELECT and subquery on page 11-88

expr

=

!=

^=

<>

>

<

>=

<=

ANY

SOME

ALL

expr_list

(subquery)

expr_list

=

!=

^=

<>

ANY

SOME

ALL

(
expr_list

subquery

,

)

expr
NOT

IN
expr_list

(subquery)

expr_list
NOT

IN (
expr_list

subquery

,

)

Expressions, Conditions, and Queries 5-19

Conditions
Range Conditions
A range condition tests for inclusion in a range.

range_condition::=

NULL Conditions
A NULL condition tests for nulls.

NULL_condition::=

EXISTS Conditions
An EXISTS condition tests for existence of rows in a subquery.

EXISTS_condition::=

LIKE Conditions
A LIKE condition specifies a test involving pattern matching.

LIKE_condition::=

Compound Conditions
A compound condition specifies a combination of other conditions.

expr
NOT

BETWEEN expr AND expr

expr IS
NOT

NULL

EXISTS (subquery)

char1
NOT

LIKE char2
ESCAPE ’ esc_char ’
5-20 SQL Reference

Queries and Subqueries
compound_condition::=

Queries and Subqueries
A query is an operation that retrieves data from one or more tables or views. In this

reference, a top-level SELECTstatement is called a query, and a query nested within

another SQL statement is called a subquery.

This section describes some types of queries and subqueries and how to use them.

Creating Simple Queries
The list of expressions that appears after the SELECT keyword and before the FROM
clause is called the select list. Each expression expr becomes the name of one

column in the set of returned rows, and each table.* becomes a set of columns,

one for each column in the table in the order they were defined when the table was

created. The datatype and length of each expression is determined by the elements

of the expression.

If two or more tables have some column names in common, you must qualify

column names with names of tables. Otherwise, fully qualified column names are

optional. However, it is always a good idea to qualify table and column references

explicitly. Oracle often does less work with fully qualified table and column names.

You can use a column alias, c_alias , to label the preceding expression in the select

list so that the column is displayed with a new heading. The alias effectively

renames the select list item for the duration of the query. The alias can be used in

the ORDER BY clause, but not other clauses in the query.

See Also: SELECT and subquery on page 11-88 for the full syntax

of all the clauses and the semantics of the keywords and

parameters

(condition)

NOT condition

condition
AND

OR
condition
Expressions, Conditions, and Queries 5-21

Queries and Subqueries
You can use comments in a SELECT statement to pass instructions, or hints, to the

Oracle optimizer. The optimizer uses hints to choose an execution plan for the

statement.

Hierarchical Queries
If a table contains hierarchical data, you can select rows in a hierarchical order using

the hierarchical query clause:

■ START WITH specifies the root row(s) of the hierarchy.

■ CONNECT BYspecifies the relationship between parent rows and child rows of

the hierarchy. Some part of condition must use the PRIORoperator to refer to

the parent row. See the PRIOR operator on page 3-16.

■ WHERE restricts the rows returned by the query without affecting other rows of

the hierarchy.

Oracle uses the information from the hierarchical query clause clause to form the

hierarchy using the following steps:

1. Oracle selects the root row(s) of the hierarchy—those rows that satisfy the

START WITH condition.

2. Oracle selects the child rows of each root row. Each child row must satisfy the

condition of the CONNECT BY condition with respect to one of the root rows.

3. Oracle selects successive generations of child rows. Oracle first selects the

children of the rows returned in step 2, and then the children of those children,

and so on. Oracle always selects children by evaluating the CONNECT BY
condition with respect to a current parent row.

4. If the query contains a WHERE clause, Oracle eliminates all rows from the

hierarchy that do not satisfy the condition of the WHEREclause. Oracle evaluates

this condition for each row individually, rather than removing all the children

of a row that does not satisfy the condition.

5. Oracle returns the rows in the order shown in Figure 5–1. In the diagram

children appear below their parents.

See Also: "Hints" on page 2-67 and Oracle8i Performance Guide and
Reference for more information on hints

START WITH condition
CONNECT BY condition
5-22 SQL Reference

Queries and Subqueries
Figure 5–1 Hierarchical Queries

To find the children of a parent row, Oracle evaluates the PRIOR expression of the

CONNECT BY condition for the parent row and the other expression for each row in

the table. Rows for which the condition is true are the children of the parent. The

CONNECT BY condition can contain other conditions to further filter the rows

selected by the query. The CONNECT BY condition cannot contain a subquery.

If the CONNECT BY condition results in a loop in the hierarchy, Oracle returns an

error. A loop occurs if one row is both the parent (or grandparent or direct ancestor)

and a child (or a grandchild or a direct descendent) of another row.

Sorting Query Results
You can use the ORDER BY clause to order the rows selected by a query. Sorting by

position is useful in the following cases:

■ To order by a lengthy select list expression, you can specify its position, rather

than duplicate the entire expression, in the ORDER BY clause.

■ For compound queries (containing set operators UNION, INTERSECT, MINUS, or

UNION ALL), the ORDER BY clause must use positions, rather than explicit

expressions. Also, the ORDER BY clause can appear only in the last component

query. The ORDER BY clause orders all rows returned by the entire compound

query.

See Also: "LEVEL" on page 2-62 for a discussion of how the

LEVEL pseudocolumn operates in a hierarchical query

1

7

8

ROOT

2 9

3 4 10 12

1165
Expressions, Conditions, and Queries 5-23

Queries and Subqueries
The mechanism by which Oracle sorts values for the ORDER BY clause is specified

either explicitly by the NLS_SORT initialization parameter or implicitly by the

NLS_LANGUAGE initialization parameter. For information on these parameters, see

Oracle8i National Language Support Guide. You can change the sort mechanism

dynamically from one linguistic sort sequence to another using the ALTER SESSION
statement. You can also specify a specific sort sequence for a single query by using

the NLSSORT function with the NLS_SORT parameter in the ORDER BY clause.

Joins
A join is a query that combines rows from two or more tables, views, or

materialized views ("snapshots"). Oracle performs a join whenever multiple tables

appear in the query’s FROM clause. The query’s select list can select any columns

from any of these tables. If any two of these tables have a column name in common,

you must qualify all references to these columns throughout the query with table

names to avoid ambiguity.

Join Conditions
Most join queries contain WHERE clause conditions that compare two columns, each

from a different table. Such a condition is called a join condition. To execute a join,

Oracle combines pairs of rows, each containing one row from each table, for which

the join condition evaluates to TRUE. The columns in the join conditions need not

also appear in the select list.

To execute a join of three or more tables, Oracle first joins two of the tables based on

the join conditions comparing their columns and then joins the result to another

table based on join conditions containing columns of the joined tables and the new

table. Oracle continues this process until all tables are joined into the result. The

optimizer determines the order in which Oracle joins tables based on the join

conditions, indexes on the tables, and, in the case of the cost-based optimization

approach, statistics for the tables.

In addition to join conditions, the WHERE clause of a join query can also contain

other conditions that refer to columns of only one table. These conditions can

further restrict the rows returned by the join query.

Equijoins
An equijoin is a join with a join condition containing an equality operator. An

equijoin combines rows that have equivalent values for the specified columns.

Depending on the internal algorithm the optimizer chooses to execute the join, the

total size of the columns in the equijoin condition in a single table may be limited to
5-24 SQL Reference

Queries and Subqueries
the size of a data block minus some overhead. The size of a data block is specified

by the initialization parameter DB_BLOCK_SIZE.

Self Joins
A self join is a join of a table to itself. This table appears twice in the FROM clause

and is followed by table aliases that qualify column names in the join condition. To

perform a self join, Oracle combines and returns rows of the table that satisfy the

join condition.

Cartesian Products
If two tables in a join query have no join condition, Oracle returns their Cartesian
product. Oracle combines each row of one table with each row of the other. A

Cartesian product always generates many rows and is rarely useful. For example,

the Cartesian product of two tables, each with 100 rows, has 10,000 rows. Always

include a join condition unless you specifically need a Cartesian product. If a query

joins three or more tables and you do not specify a join condition for a specific pair,

the optimizer may choose a join order that avoids producing an intermediate

Cartesian product.

Outer Joins
An outer join extends the result of a simple join. An outer join returns all rows that

satisfy the join condition and those rows from one table for which no rows from the

other satisfy the join condition. Such rows are not returned by a simple join. To

write a query that performs an outer join of tables A and B and returns all rows

from A, apply the outer join operator (+) to all columns of B in the join condition.

For all rows in A that have no matching rows in B, Oracle returns null for any select

list expressions containing columns of B.

Outer join queries are subject to the following rules and restrictions:

■ The (+) operator can appear only in the WHERE clause or, in the context of left-

correlation (that is, when specifying the TABLE clause) in the FROM clause, and

can be applied only to a column of a table or view.

■ If A and B are joined by multiple join conditions, you must use the (+) operator

in all of these conditions. If you do not, Oracle will return only the rows

See Also: "Equijoin Examples" on page 11-108

See Also: "Self Join Example" on page 11-110
Expressions, Conditions, and Queries 5-25

Queries and Subqueries
resulting from a simple join, but without a warning or error to advise you that

you do not have the results of an outer join.

■ The (+) operator can be applied only to a column, not to an arbitrary expression.

However, an arbitrary expression can contain a column marked with the (+)

operator.

■ A condition containing the (+) operator cannot be combined with another

condition using the OR logical operator.

■ A condition cannot use the IN comparison operator to compare a column

marked with the (+) operator with an expression.

■ A condition cannot compare any column marked with the (+) operator with a

subquery.

If the WHERE clause contains a condition that compares a column from table B with

a constant, the (+) operator must be applied to the column so that Oracle returns the

rows from table A for which it has generated NULLs for this column. Otherwise

Oracle will return only the results of a simple join.

In a query that performs outer joins of more than two pairs of tables, a single table

can be the null-generated table for only one other table. For this reason, you cannot

apply the (+) operator to columns of B in the join condition for A and B and the join

condition for B and C.

Using Subqueries
A subquery answers multiple-part questions. For example, to determine who

works in Taylor’s department, you can first use a subquery to determine the

department in which Taylor works. You can then answer the original question with

the parent SELECT statement. A subquery in the FROM clause of a SELECT
statement is also called an inline view. A subquery in the WHERE clause of a

SELECT statement is also called a nested subquery.

A subquery can contain another subquery. Oracle imposes no limit on the number

of subquery levels in the FROM clause of the top-level query. You can nest up to 255

levels of subqueries in the WHERE clause.

If tables in a subquery have the same name as tables in the containing statement,

you must prefix any reference to the column of the table from the containing

statement with the table name or alias. To make your statements easier for you to

See Also: SELECT and subquery on page 11-88 for the syntax for

an outer join
5-26 SQL Reference

Queries and Subqueries
read, always qualify the columns in a subquery with the name or alias of the table,

view, or materialized view.

Oracle performs a correlated subquery when the subquery references a column

from a table referred to in the parent statement. A correlated subquery is evaluated

once for each row processed by the parent statement. The parent statement can be a

SELECT, UPDATE, or DELETE statement.

A correlated subquery answers a multiple-part question whose answer depends on

the value in each row processed by the parent statement. For example, you can use

a correlated subquery to determine which employees earn more than the average

salaries for their departments. In this case, the correlated subquery specifically

computes the average salary for each department.

A scalar subquery returns exactly one column value from one row. You can use a

scalar subquery in place of an expression to specify a value in the VALUES clause of

an INSERT statement or to provide an argument of a type constructor expression or

user-defined function expression.

Use subqueries for the following purposes:

■ To define the set of rows to be inserted into the target table of an INSERT or

CREATE TABLE statement

■ To define the set of rows to be included in a view or materialized view

("snapshot) in a CREATE VIEW or CREATE MATERIALIZED VIEW statement

■ To define one or more values to be assigned to existing rows in an UPDATE
statement

■ To provide values for conditions in a WHERE clause, HAVING clause, or START
WITH clause of SELECT, UPDATE, and DELETE statements

■ To provide a value for a specified column in an INSERT ... VALUES list (scalar

subqueries only)

■ To provide values for arguments of a type constructor expression or a user-

defined function expression (scalar subqueries only)

■ To define a table to be operated on by a containing query.

You do this by placing the subquery in the FROM clause of the containing query

as you would a table name. You may use subqueries in place of tables in this

way as well in INSERT, UDPATE, and DELETE statements.

See Also: "Correlated Subquery Examples" on page 11-118
Expressions, Conditions, and Queries 5-27

Queries and Subqueries
Subqueries so used can employ correlation variables, but only those defined

within the subquery itself, not outer references. Outer references ("left-

correlated subqueries") are allowed only in the FROM clause of a SELECT
statement.

Unnesting of Nested Subqueries
Subqueries are "nested" when they appear in the WHERE clause of the parent

statement. When Oracle evaluates a statement with a nested subquery, it must

evaluate the subquery portion multiple times and may overlook some efficient

access paths or joins.

Subquery unnesting unnests and merges the body of the subquery into the body of

the statement that contains it, allowing the optimizer to consider them together

when evaluating access paths and joins. The optimizer can unnest most subqueries,

with some exceptions. Those exceptions include subqueries that contain a CONNECT
BY or START WITH clause, a ROWNUM pseudocolumn, one of the set operators, a

nested aggregate function, or a correlated reference to a query block that is not the

subquery’s immediate outer query block.

Assuming no restrictions exist, the optimizer automatically unnests some (but not

all) of the following nested subqueries:

■ Uncorrelated IN subqueries

■ IN and EXISTS correlated subqueries as long, as they do not contain aggregate

functions or a GROUP BY clause

You can enable extended subquery unnesting by instructing the optimizer to

unnest additional types of subqueries:

■ You can unnest an uncorrelated NOT INsubquery by specifying the HASH_AJor

MERGE_AJ hint in the subquery.

■ You can unnest other subqueries by specifying the UNNESThint in the subquery

Selecting from the DUAL Table
DUAL is a table automatically created by Oracle along with the data dictionary.

DUAL is in the schema of the user SYS, but is accessible by the name DUAL to all

See Also: table_collection_expression on page 11-96

See Also: Chapter 2, "Basic Elements of Oracle SQL" for

information on hints
5-28 SQL Reference

Queries and Subqueries
users. It has one column, DUMMY, defined to be VARCHAR2(1), and contains one row

with a value ’X’. Selecting from the DUAL table is useful for computing a constant

expression with the SELECT statement. Because DUAL has only one row, the

constant is returned only once. Alternatively, you can select a constant,

pseudocolumn, or expression from any table, but the value will be returned as

many times as there are rows in the table.

Distributed Queries
Oracle’s distributed database management system architecture allows you to access

data in remote databases using Net8 and an Oracle server. You can identify a

remote table, view, or materialized view by appending @dblink to the end of its

name. The dblink must be a complete or partial name for a database link to the

database containing the remote table, view, or materialized view.

Restrictions on Distributed Queries
Distributed queries are currently subject to the restriction that all tables locked by a

FOR UPDATEclause and all tables with LONGcolumns selected by the query must be

located on the same database. For example, the following statement will raise an

error:

SELECT emp_ny.*
 FROM emp_ny@ny, dept
 WHERE emp_ny.deptno = dept.deptno
 AND dept.dname = ’ACCOUNTING’
 FOR UPDATE OF emp_ny.sal;

The following statement fails because it selects long_column , a LONG value, from

the emp_review table on the ny database and locks the emp table on the local

database:

SELECT emp.empno, review.long_column, emp.sal
 FROM emp, emp_review@ny review
 WHERE emp.empno = emp_review.empno
 FOR UPDATE OF emp.sal;

See Also: "SQL Functions" on page 4-2 for many examples of

selecting a constant value from DUAL

See Also: "Referring to Objects in Remote Databases" on

page 2-90 for more information on referring to database links
Expressions, Conditions, and Queries 5-29

Queries and Subqueries
In addition, Oracle currently does not support distributed queries that select user-

defined types or object REFs on remote tables.
5-30 SQL Reference

About SQL Statem
6

About SQL Statements

This chapter describes the various types of Oracle SQL statements, and provides

guidelines for finding the right SQL statement for your task.

This chapter contains these sections:

■ Summary of SQL Statements

■ Finding the SQL Statement for a Database Task
ents 6-1

Summary of SQL Statements
Summary of SQL Statements
The tables in the following sections provide a functional summary of SQL

statements and are divided into these categories:

■ Data Definition Language (DDL) Statements

■ Data Manipulation Language (DML) Statements

■ Transaction Control Statements

■ Session Control Statements

■ System Control Statements

Data Definition Language (DDL) Statements
Data definition language (DDL) statements enable you to perform these tasks:

■ Create, alter, and drop schema objects

■ Grant and revoke privileges and roles

■ Analyze information on a table, index, or cluster

■ Establish auditing options

■ Add comments to the data dictionary

The CREATE, ALTER, and DROP commands require exclusive access to the specified

object. For example, an ALTER TABLE statement fails if another user has an open

transaction on the specified table.

The GRANT, REVOKE, ANALYZE, AUDIT, and COMMENT commands do not require

exclusive access to the specified object. For example, you can analyze a table while

other users are updating the table.

Oracle implicitly commits the current transaction before and after every DDL

statement.

Many DDL statements may cause Oracle to recompile or reauthorize schema

objects. For information on how Oracle recompiles and reauthorizes schema objects

and the circumstances under which a DDL statement would cause this, see Oracle8i
Concepts.

DDL statements are supported by PL/SQL with the use of the DBMS_SQL package.

See Also: Oracle8i Supplied PL/SQL Packages Reference
6-2 SQL Reference

Summary of SQL Statements
Table 6–1 lists the DDL statements.

Table 6–1 Data Definition Language Statements

ALTER CLUSTER

ALTER DATABASE

ALTER DIMENSION

ALTER FUNCTION

ALTER INDEX

ALTER MATERIALIZED VIEW /
SNAPSHOT

ALTER MATERIALIZED VIEW /
SHAPSHOT LOG

ALTER PACKAGE

ALTER PROCEDURE

ALTER PROFILE

ALTER RESOURCE COST

ALTER ROLE

ALTER ROLLBACK SEGMENT

ALTER SEQUENCE

ALTER SNAPSHOT

ALTER SHAPSHOT LOG

ALTER TABLE

ALTER TABLESPACE

ALTER TRIGGER

ALTER TYPE

ALTER USER

ALTER VIEW

ANALYZE

ASSOCIATE STATISTICS

AUDIT

COMMENT

CREATE CLUSTER

CREATE CONTEXT

CREATE CONTROLFILE

CREATE DATABASE

CREATE DATABASE LINK

CREATE DIMENSION

CREATE DIRECTORY

CREATE FUNCTION

CREATE INDEX

CREATE INDEXTYPE

CREATE LIBRARY

CREATE MATERIALIZED VIEW
/ SHAPSHOT

CREATE MATERIALIZED VIEW
/ SNAPSHOT LOG

CREATE OPERATOR

CREATE PACKAGE

CREATE PACKAGE BODY

CREATE PROCEDURE

CREATE PROFILE

CREATE ROLE

CREATE ROLLBACK SEGMENT

CREATE SCHEMA

CREATE SEQUENCE

CREATE SHAPSHOT

CREATE SNAPSHOT LOG

CREATE SYNONYM

CREATE TABLE

CREATE TABLESPACE

CREATE TEMPORARY
TABLESPACE

CREATE TRIGGER

CREATE TYPE

CREATE USER

CREATE VIEW

DISASSOCIATE STATISTICS

DROP CLUSTER

DROP CONTEXT

DROP DATABASE LINK

DROP DIMENSION

DROP DIRECTORY

DROP FUNCTION

DROP INDEX

DROP INDEXTYPE

DROP LIBRARY

DROP MATERIALIZED VIEW /
SNAPSHOT

DROP MATERIALIZED VIEW /
SNAPSHOT LOG

DROP OPERATOR

DROP PACKAGE

DROP PROCEDURE

DROP PROFILE

DROP ROLE

DROP ROLLBACK SEGMENT

DROP SEQUENCE

DROP SNAPSHOT

DROP SNAPSHOT LOG

DROP SYNONYM

DROP TABLE

DROP TABLESPACE

DROP TRIGGER

DROP TYPE

DROP USER

DROP VIEW

GRANT

NOAUDIT

RENAME

REVOKE

TRUNCATE
About SQL Statements 6-3

Summary of SQL Statements
Data Manipulation Language (DML) Statements
Data manipulation language (DML) statements query and manipulate data in

existing schema objects. These statements do not implicitly commit the current

transaction.

The CALL and EXPLAIN PLAN statements are supported in PL/SQL only when

executed dynamically. All other DML statements are fully supported in PL/SQL.

Transaction Control Statements
Transaction control statements manage changes made by DML statements.

All transaction control statements except certain forms of the COMMIT and

ROLLBACK commands are supported in PL/SQL. For information on the

restrictions, see COMMIT on page 8-133and ROLLBACK on page 11-83.

Table 6–2 Data Manipulation Language Statements

Statement

CALL

DELETE

EXPLAIN PLAN

INSERT

LOCK TABLE

SELECT

UPDATE

Table 6–3 Transaction Control Statements

Statement

COMMIT

ROLLBACK

SAVEPOINT

SET TRANSACTION
6-4 SQL Reference

Finding the SQL Statement for a Database Task
Session Control Statements
Session control statements dynamically manage the properties of a user session.

These statements do not implicitly commit the current transaction.

PL/SQL does not support session control statements.

System Control Statement
The single system control statement dynamically manages the properties of an

Oracle instance. This statement does not implicitly commit the current transaction.

ALTER SYSTEM is not supported in PL/SQL.

Embedded SQL Statements
Embedded SQL statements place DDL, DML, and transaction control statements

within a procedural language program. Embedded SQL is supported by the Oracle

precompilers and is documented in the following books:

■ Pro*COBOL Precompiler Programmer’s Guide

■ Pro*C/C++ Precompiler Programmer’s Guide

■ SQL*Module for Ada Programmer’s Guide

Finding the SQL Statement for a Database Task
The particular SQL statement you use to accomplish a given database task is

sometimes obvious and sometimes difficult to predict. For example, you create a

table with the CREATE TABLE statement. However, you don’t enable a constraint

with the ENABLE CONSTRAINT statement, because such a statement doesn’t exist.

Rather, you modify the column options using the ALTER TABLE statement.

Table 6–4 Session Control Statements

Statement

ALTER SESSION

SET ROLE

Table 6–5 System Control Statement

Statement

ALTER SYSTEM
About SQL Statements 6-5

Finding the SQL Statement for a Database Task
This section lists, by database object and task, the appropriate SQL statement to use

to accomplish various database tasks. You can then refer to Chapter 7 through

Chapter 11, for the syntax and semantics of each SQL statement.

Note: Your ability to use the SQL statements listed in this section

depends on the version and edition of Oracle you are using, as well

as the options you have installed. Be sure to read the detailed

descriptions in Chapter 7 through Chapter 11, before using these

statements.

Database Object /
Task Operation SQL Statement

application allowing to connect as a user ALTER USER proxy_clause

application server allowing to connect as a user ALTER USER proxy_clause

auditing of database events CREATE TRIGGER

call limit CPU time for CPU_PER_CALLparameter

limit data blocks read LOGICAL_READS_PER_CALLparameter

checkpoint perform explicitly ALTER SYSTEM CHECKPOINT

clone database mount ALTER DATABASE MOUNT

cluster cluster key, change columns of prohibited

extent, allocate for ALTER CLUSTER allocate_extent_clause

migrated or chained rows,
identify

ANALYZE

parallelism of, change ALTER CLUSTER parallel_clause

rename prohibited

storage characteristics of, change ALTER CLUSTER
physical_attributes_clause

tablespace of, change prohibited

unused space in, release ALTER CLUSTER
deallocate_unused_clause

column add to a table or modify ALTER TABLE add_column_options ,
modify_column_options

define CREATE TABLE
6-6 SQL Reference

Finding the SQL Statement for a Database Task
drop from a table ALTER TABLE drop_column_clause

generate derived values
automatically

CREATE TRIGGER

organization of, define CREATE TABLE

commit operation prevent procedure or function
from issuing

ALTER SESSION

compilation avoid run-time of ALTER FUNCTION ... COMPILE

constraint add to a table or modify ALTER TABLE add_column_options,
modify_column_options

business, enforce CREATE TRIGGER

enable, disable, or drop ALTER TABLE enable_disable_clause,
drop_constraint_clause

specify CREATE TABLE

control file back up ALTER DATABASE controlfile_clauses

standby, create ALTER DATABASE CREATE STANDBY
CONTROLFILE

currency symbol reset for session ALTER SESSION SET NLS_CURRENCY

data frequently used, caching ALTER TABLE cache_clause

specify as temporary or
permanent

CREATE TABLE

data dictionary convert from Oracle7 to Oracle8i ALTER DATABASE CONVERT

data independence provide CREATE SYNONYM

database character set of, change ALTER DATABASE CHARACTER SET

create script for ALTER DATABASE controlfile_clauses

database character set for, specify CREATE DATABASE

datafiles for, specify CREATE DATABASE

datafiles of, modify ALTER DATABASE

datafiles, establish number of CREATE DATABASE

downgrade to an earlier release ALTER DATABASE RESET COMPATIBILITY

global name of, change ALTER DATABASE RENAME GLOBAL_NAME

Database Object /
Task Operation SQL Statement
About SQL Statements 6-7

Finding the SQL Statement for a Database Task
global name resolution, enable for
the session

ALTER SESSION SET GLOBAL_NAMES

instances, establish number of CREATE DATABASE

media recovery, design ALTER DATABASE
general_recovery_clause

media recovery, perform ongoing ALTER DATABASE
managed_recovery_clause

mount ALTER DATABASE MOUNT

move a subset to a different
Oracle database

ALTER TABLE exchange_partition_clause

national character set for, specify CREATE DATABASE

national character set of, change ALTER DATABASE CHARACTER SET

open ALTER DATABASE OPEN

parallelize recovery of ALTER DATABASE parallel_clause

place in read-only mode ALTER DATABASE OPEN

place in read-write mode ALTER DATABASE OPEN

place in sustained standby
recovery mode

ALTER DATABASE
general_recovery_clause

prepare to re-create ALTER DATABASE controlfile_clauses

recover ALTER DATABASE recover_clauses

redo log file groups, establish
number of

CREATE DATABASE

redo log files for, specify CREATE DATABASE

redo log files of, create or modify ALTER DATABASE

redo log files, establish number of CREATE DATABASE

redo log, choose mode for CREATE DATABASE

upgrade to Oracle8i ALTER DATABASE

database character set specify for a database CREATE DATABASE

database events transparent logging of CREATE TRIGGER

database link close ALTER SESSION

Database Object /
Task Operation SQL Statement
6-8 SQL Reference

Finding the SQL Statement for a Database Task
database security enforce authorizations CREATE TRIGGER

datafile automatic extension of, allow ALTER DATABASE DATAFILE
autoextend_clause

create ALTER DATABASE CREATE DATAFILE

put online ALTER DATABASE DATAFILE ONLINE

reconstruct damaged ALTER DATABASE
general_recovery_clause

reconstruct lost or damaged ALTER DATABASE CREATE DATAFILE

recover specified ALTER DATABASE
general_recovery_clause

replace an old, for recovery ALTER DATABASE CREATE DATAFILE

resize ALTER DATABASE DATAFILE RESIZE

take offline ALTER DATABASE DATAFILE ONLINE/
OFFLINE

begin or end backup of ALTER TABLESPACE ... BACKUP

number of, establish for a
database

CREATE DATABASE

online, update instance
information on

ALTER SYSTEM check_datafiles_clause

specify for a database CREATE DATABASE

dates format of See Table 2–9, "Date Format Elements" on
page 2-48.

decimal character reset for session ALTER SESSION SET
NLS_NUMERIC_CHARACTERS

dimension add a level, hierarchy, or attribute
to

ALTER DIMENSION ... ADD

change the relationships of ALTER DIMENSION

drop a level, hierarchy, or attribute
from

ALTER DIMENSION ... DROP

explicitly compile ALTER DIMENSION ... COMPILE

dispatcher processes multi-threaded server, manage MTS_ parameters of ALTER SYSTEM

Database Object /
Task Operation SQL Statement
About SQL Statements 6-9

Finding the SQL Statement for a Database Task
domain index alter ALTER INDEX ... PARAMETERS

rebuild ALTER INDEX rebuild_clause

dump file limit the size of ALTER SESSION SET MAX_DUMP_FILE_SIZE

error messages language in which displayed,
change

ALTER SESSION SET NLS_LANGUAGE

function allow to or prevent from
committing a transaction

ALTER SESSION

declaration of, change CREATE OR REPLACE FUNCTION

definition of, change CREATE OR REPLACE FUNCTION

recompile explicitly ALTER FUNCTION

function-based index disable ALTER INDEX ... [rebuild_clause]
DISABLE

disabled, re-enable ALTER INDEX ... [rebuild_clause]
ENABLE

global names enforce resolution of GLOBAL_NAMESparameter of ALTER SYSTEM

hash join operations data blocks for, allocate ALTER SESSION SET
HASH_MULTIBLOCK_IO_COUNT

in queries, enable or disable ALTER SESSION SET HASH_JOIN_ENABLED
...

memory for, allocate ALTER SESSION SET HASH_AREA_SIZE

index allow DML operations during
rebuilding of

ALTER INDEX rebuild_clause

based on a function; see "function-
based index"

CREATE INDEX ... column_expression

based on an indextype; see
"domain index"

CREATE INDEX domain_index_clause

collect statistics during rebuilding
of

ALTER INDEX rebuild_clause

default attribute values of, change ALTER INDEX partitioning_clauses

degree of parallelism for, change ALTER INDEX parallel_clause

direct-load INSERT operations,
write to a log

ALTER INDEX
physical_attributes_clause

Database Object /
Task Operation SQL Statement
6-10 SQL Reference

Finding the SQL Statement for a Database Task
extent for, allocate new ALTER INDEX allocate_extent_clause

key compression, enable ALTER INDEX rebuild_clause

key values, eliminate repetition of ALTER INDEX rebuild_clause

merge block contents of ALTER INDEX rebuild_clause

physical attributes of a partition
of, change

ALTER INDEX
physical_attributes_clause

physical attributes of a
subpartition of, change the

ALTER INDEX
physical_attributes_clause

physical attributes of, change ALTER INDEX
physical_attributes_clause

re-create ALTER INDEX rebuild_clause

rebuild operations, write to a log ALTER INDEX rebuild_clause

SQL*Loader operations against,
write to a log

ALTER INDEX
physical_attributes_clause

store bytes in reverse order ALTER INDEX rebuild_clause

tablespace for, specify ALTER INDEX rebuild_clause

tell Oracle not to use ALTER INDEX ... [rebuild_clause]
UNUSABLE

unused space, release ALTER INDEX deallocate_unused_clause

rename ALTER INDEX rebuild_clause

index partition create-time attributes, change ALTER INDEX rebuild_clause

log direct-load INSERT operations ALTER INDEX
physical_attributes_clause

log SQL*Loader operations
against

ALTER INDEX
physical_attributes_clause

move to a different tablespace ALTER INDEX rebuild_clause

physical attributes of, change ALTER INDEX
physical_attributes_clause

physical, logging, or storage
characteristics of, change

ALTER INDEX partitioning_clauses

re-create ALTER INDEX rebuild_clause

Database Object /
Task Operation SQL Statement
About SQL Statements 6-11

Finding the SQL Statement for a Database Task
remove from the database ALTER INDEX partitioning_clauses

specify a tablespace for ALTER INDEX rebuild_clause

split into two partitions ALTER INDEX partitioning_clauses

tell Oracle not to use ALTER INDEX ... UNUSABLE

index subpartition change a create-time attributes,
change

ALTER INDEX rebuild_clause

log direct-load INSERT operations ALTER INDEX
physical_attributes_clause

log SQL*Loader operations
against

ALTER INDEX
physical_attributes_clause

move to a different tablespace ALTER INDEX rebuild_clause

physical attributes, change ALTER INDEX
physical_attributes_clause

physical, logging, or storage
characteristics, change

ALTER INDEX partitioning_clauses

re-create ALTER INDEX rebuild_clause

tablespace for, specify ALTER INDEX rebuild_clause

tell Oracle not to use ALTER INDEX ... UNUSABLE

index-organized table characteristics, change ALTER TABLE

indexes on a cluster CREATE INDEX

on a nested table storage table CREATE INDEX

on a partitioned table CREATE INDEX

on an index-organized table CREATE INDEX

on columns of a table CREATE INDEX

on scalar typed object attributes CREATE INDEX

instance dynamically modify ALTER SYSTEM

make an index extent available to ALTER INDEX allocate_extent_clause

switch to a different ALTER SESSION SET INSTANCE

instance recovery continue after interruption ALTER DATABASE
general_recovery_clause

Database Object /
Task Operation SQL Statement
6-12 SQL Reference

Finding the SQL Statement for a Database Task
instances number of, establish for a
database

CREATE DATABASE

Java class force resolution of ALTER JAVA

Java resource force compilation of ALTER JAVA

Java source force compilation of ALTER JAVA

licensing changing limits or thresholds LICENSE_ parameters of ALTER SYSTEM

LOB columns add to a table or modify ALTER TABLE add_column_options,
modify_column_options,
LOB_storage_clause

location transparency provide CREATE SYNONYM

materialized view automatic refresh, change the
mode or timing of

ALTER MATERIALIZED VIEW
refresh_clause

change from rowid-based to
primary-key-based

ALTER MATERIALIZED VIEW

ALTER MATERIALIZED VIEW LOG

degree of parallelism, specify or
change

ALTER MATERIALIZED VIEW
parallel_clause

divide into partitions ALTER MATERIALIZED VIEW
partitioning_clauses

LOB storage characteristics,
change

ALTER MATERIALIZED VIEW
modify_LOB_storage_clause

LOB storage characteristics,
specify

ALTER MATERIALIZED VIEW
LOB_storage_clause

log changes to ALTER MATERIALIZED VIEW ... LOGGING

make eligible for query rewrite ALTER MATERIALIZED VIEW ... QUERY
REWRITE

ALTER SESSION SET
QUERY_REWRITE_ENABLED

make frequently accessed data
accessible

ALTER MATERIALIZED VIEW ... CACHE

revalidate ALTER MATERIALIZED VIEW ... COMPILE

storage characteristics, change ALTER MATERIALIZED VIEW
physical_attributes_clause

Database Object /
Task Operation SQL Statement
About SQL Statements 6-13

Finding the SQL Statement for a Database Task
materialized view log automatic refresh, change the
mode and timing of

ALTER MATERIALIZED VIEW LOG

change from rowid-based to
primary-key-based

ALTER MATERIALIZED VIEW LOG

divide into partitions ALTER MATERIALIZED VIEW LOG
partitioning_clauses

physical and storage
characteristics, change

ALTER MATERIALIZED VIEW LOG ...
physical_attributes_clause

save both old and new values ALTER MATERIALIZED VIEW LOG ...NEW
VALUES

store primary key of changed
rows

ALTER MATERIALIZED VIEW LOG ... ADD

store rowid of changed rows ALTER MATERIALIZED VIEW LOG ... ADD

media recovery avoid on startup ALTER DATABASE DATAFILE END BACKUP

from specified redo log file ALTER DATABASE
general_recovery_clause

prepare for ALTER DATABASE ARCHIVELOG

national character set specify for a database CREATE DATABASE

national language
support

change settings for the session ALTER SESSION SET NLS_ parameters

nested table update in a view create an INSTEAD OF trigger

nested table columns indexing CREATE INDEX

numbers format See Table 2–7, "Number Format Elements" on
page 2-44.

object references. See REFs

online redo log reinitialize ALTER DATABASE CLEAR LOGFILE

outline assign to a different category ALTER OUTLINE ... CHANGE CATEGORY TO

recompile ALTER OUTLINE ... REBUILD

rename ALTER OUTLINE ... RENAME

automatically create and store ALTER SESSION SET
CREATE_STORED_OUTLINES

Database Object /
Task Operation SQL Statement
6-14 SQL Reference

Finding the SQL Statement for a Database Task
use to generate execution plans ALTER SESSION SET USE_STORED_OUTLINES

package avoid run-time compilation ALTER PACKAGE

compile explicitly ALTER PACKAGE

package body avoid run-time compilation ALTER PACKAGE

recompile explicitly ALTER PACKAGE

parallelism specify for a table CREATE TABLE

specify for DML on a table CREATE TABLE

parameter,
initialization

change the setting for the current
session

ALTER SESSION set_clause

parameter, session set or change the setting of ALTER SESSION set_clause

partition add to a table or modify ALTER TABLE

default attributes, change ALTER TABLE
modify_default_attributes_clause

logging characteristics, change ALTER TABLE logging_clause

merge with another partition ALTER TABLE merge_partitions_clause

point to data in a nonpartitioned
table

ALTER TABLE exchange_partition_clause

real attributes, change ALTER TABLE modify_partition_clause

password complexity of, guarantee PASSWORD_VERIFY_FUNCTIONparameter

make unavailable PASSWORD_REUSE_TIMEparameter

number of days account will be
locked after failed login attempts,
specify

PASSWORD_LOCK_TIMEparameter

number of days before reuse, limit PASSWORD_REUSE_TIMEparameter

number of days in grace period,
specify

PASSWORD_GRACE_TIMEparameter

number of days usable, limit PASSWORD_LIFE_TIMEparameter

number of times reused, limit PASSWORD_REUSE_MAXparameter

special characters in, allow PASSWORD_VERIFY_FUNCTIONparameter

Database Object /
Task Operation SQL Statement
About SQL Statements 6-15

Finding the SQL Statement for a Database Task
performance optimize for index access path ALTER SESSION SET
OPTIMIZER_INDEX_COST_ADJ

optimize for nested loop joins ALTER SESSION SET
OPTIMIZER_INDEX_CACHING

specify the optimizer approach for
the session

ALTER SESSION SET OPTIMIZER_MODE

procedure allow to or prevent from
committing a transaction

ALTER SESSION

avoid run-time compilation ALTER PROCEDURE

recompile explicitly ALTER PROCEDURE

profile resource limit, add to ALTER PROFILE

resource limit, change ALTER PROFILE

resource limit, drop from ALTER PROFILE

recovery distributed, enable or disable ALTER SYSTEM
distributed_recovery_clause

recovery data discard ALTER DATABASE RESETLOGS

redo log remove changes from ALTER DATABASE OPEN RESETLOGS

reset sequence of ALTER DATABASE OPEN RESETLOGS

specify mode of CREATE DATABASE

redo log file add ALTER DATABASE ADD LOGFILE MEMBER

automatically generates names for ALTER DATABASE
general_recovery_clause

clear ALTER DATABASE CLEAR LOGFILE

drop ALTER DATABASE DROP LOGFILE

enable or disable thread ALTER DATABASE ENABLE THREAD

rename ALTER DATABASE RENAME FILE

number of, establish for a
database

CREATE DATABASE

archive manually or automatically ALTER SYSETM archive_log_clause

number of, establish for a
database

CREATE DATABASE

Database Object /
Task Operation SQL Statement
6-16 SQL Reference

Finding the SQL Statement for a Database Task
specify a path for ALTER SESSION SET LOG_ARCHIVE_DEST_n

switch manually ALTER SYSTEM switch_logfile_clause

REFS validate and update ANALYZE

role change authorization required ALTER ROLE

rollback segment bring online ALTER ROLLBACK SEGMENT

reduce in size ALTER ROLLBACK SEGMENT

storage characteristics, change ALTER ROLLBACK SEGMENT

take offline ALTER ROLLBACK SEGMENT

rowid examine query the ROWID pseudocolumn

extended, interpreting contents DBMS_ROWIDpackage; see Oracle8i Supplied PL/
SQL Packages Reference

schema change during the session ALTER SESSION SET CURRENT_SCHEMA

schema object reference without referencing its
location

CREATE SYNONYM

reference without referencing its
owner

CREATE SYNONYM

specify another name for CREATE SYNONYM

validate structure of ANALYZE

sequence cached sequence values, change
number of

ALTER SEQUENCEcache_clause

consecutive order of values,
guarantee

CREATE SEQUENCE ... ORDER

ALTER SEQUENCE ... ORDER

create CREATE SEQUENCE

determine current value of See "CURRVAL and NEXTVAL" on page 2-59.

increment value, set CREATE SEQUENCE ... INCREMENT BY

ALTER SEQUENCE ... INCREMENT BY

maximum or minimum value,
eliminate

ALTER SEQUENCE

minimum or maximum value, set CREATE SEQUENCE

ALTER SEQUENCE

Database Object /
Task Operation SQL Statement
About SQL Statements 6-17

Finding the SQL Statement for a Database Task
preallocate values for faster access CREATE SEQUENCE

ALTER SEQUENCE

restart after a predefined limit CREATE SEQUENCE ... CYCLE

ALTER SEQUENCE ... CYCLE

starting value, set CREATE SEQUENCE

server processes multi-threaded server, manage MTS_ parameters of ALTER SYSTEM

session CPU time for, limit CPU_PER_SESSIONparameter

data blocks read, limit LOGICAL_READS_PER_SESSIONparameter

enable or disable parallel
transactions in

ALTER SESSION

inactive period duration, limit IDLE_TIME parameter

private SGA space for, limit PRIVATE_SGA parameter

resource costs allowed, change ALTER RESOURCE COST

restrict to privileged users ALTER SYSTEM
restricted_session_clause

terminate ALTER SYSTEM kill_session_clause

total elapsed time, limit CONNECT_TIMEparameter

total resources for, limit COMPOSITE_LIMIT parameter

SGA flush data from shared pool ALTER SYSTEM flush_shared_pool_clause

shared pool flush ALTER SYSTEM flush_shared_pool_clause

snapshot. See "materialized view".

sort operations linguistic sequence, change ALTER SESSION SET NLS_SORT

standby database activate ALTER DATABASE ACTIVATE STANDBY
DATABASE

recover ALTER DATABASE recover_clauses

statistics on a schema object, collect ANALYZE

on a schema object, delete ANALYZE

on scalar object attributes, collect ANALYZE

subpartition add to a table or modify ALTER TABLE

Database Object /
Task Operation SQL Statement
6-18 SQL Reference

Finding the SQL Statement for a Database Task
default attributes, change ALTER TABLE
modify_default_attributes_clause,
modify_partition_clause

logging characteristics, change ALTER TABLE logging_clause

real attributes, change ALTER TABLE
modify_subpartition_clause

system resources enable or disable RESOURCE_LIMITS parameter of ALTER
SYSTEM

table allocate space for ALTER TABLE allocate_extent_clause

characteristics, change ALTER TABLE
physical_attributes_clause,
modify_storage_clauses

column, drop from table ALTER TABLE drop_column_clause

degree of parallelism, change ALTER TABLE parallel_clause

logging characteristics, change ALTER TABLE logging_clause

make read-only, read-write ALTER TABLE

migrated or chained rows,
identify

ANALYZE

organization, define CREATE TABLE

partition, point to the contents of
another table

ALTER TABLE exchange_partition_clause

partitioning, specify CREATE TABLE

rename ALTER TABLE

unused space of, release ALTER TABLE deallocate_unused_clause

heap or index organized CREATE TABLE

include in a cluster CREATE TABLE

replicate asynchronous, maintain CREATE TRIGGER

storage characteristics of, set CREATE TABLE

tablespace allow or disallow writing to ALTER TABLESPACE READ WRITE/ONLY

datafiles, add or rename ALTER TABLESPACE datafile/
tempfile_clauses

Database Object /
Task Operation SQL Statement
About SQL Statements 6-19

Finding the SQL Statement for a Database Task
logging characteristics, change ALTER TABLESPACE

minimum extent length, change ALTER TABLESPACE

reconstruct damaged ALTER DATABASE
general_recovery_clause

reconstruct lost or damaged ALTER DATABASE CREATE DATAFILE

recover specified ALTER DATABASE
general_recovery_clause

specifying for a table CREATE TABLE

storage characteristics, change ALTER TABLESPACE

take online or offline ALTER TABLESPACE

user quota on, change ALTER USER

assign to a user CREATE USER

space quota for a user, allocate CREATE USER

tempfile allow for automatic extension of ALTER DATABASE TEMPFILE

resize ALTER DATABASE TEMPFILE

transaction distributed, force commit of ALTER SESSION

distributed, force rollback of ALTER SESSION

trigger enable or disable ALTER TABLE

user authentication, change ALTER USER

database resources limits, change ALTER USER profile_clause

default roles, change ALTER USER

failed attempts to log in, limit FAILED_LOGIN_ATTEMPTS parameter

number of sessions, limit SESSIONS_PER_USERparameter

password, change ALTER USER

resource limits, set CREATE USER

Database Object /
Task Operation SQL Statement
6-20 SQL Reference

Finding the SQL Statement for a Database Task
restrict access to Oracle ALTER SYSTEM
restricted_session_clause

tablespace quota, allocate CREATE USER

tablespaces, assign CREATE USER

Database Object /
Task Operation SQL Statement
About SQL Statements 6-21

Finding the SQL Statement for a Database Task
6-22 SQL Reference

SQL Statements: ALTER CLUSTER to ALTER SYS
7

SQL Statements:

ALTER CLUSTER to ALTER SYSTEM

All SQL statements in this chapter, as well as in Chapters 8 through 11, are

organized into the following sections:

Syntax The syntax diagrams show the keywords and parameters

that make up the statement.

Caution: Not all keywords and parameters are valid in

all circumstances. Be sure to refer to the "Keywords and

Parameters" section of each statement and clause to

learn about any restrictions on the syntax.

Purpose The "Purpose" section describes the basic uses of the

statement.

Prerequisites The "Prerequisites" section lists privileges you must have

and steps that you must take before using the statement. In

addition to the prerequisites listed, most statements also

require that the database be opened by your instance, unless

otherwise noted.

Keywords and
Parameters

The "Keywords and Parameters" section describes the

purpose of each keyword and parameter. (The conventions

for keywords and parameters used in this chapter are

explained in the Preface of this reference.) Restrictions and

usage notes also appear in this section.

Examples The "Examples" section shows how to use various clauses

and parameters of the statement.
TEM 7-1

This chapter contains the following SQL statements:

■ ALTER CLUSTER

■ ALTER DATABASE

■ ALTER DIMENSION

■ ALTER FUNCTION

■ ALTER INDEX

■ ALTER JAVA

■ ALTER MATERIALIZED VIEW

■ ALTER MATERIALIZED VIEW LOG

■ ALTER OUTLINE

■ ALTER PACKAGE

■ ALTER PROCEDURE

■ ALTER PROFILE

■ ALTER RESOURCE COST

■ ALTER ROLE

■ ALTER ROLLBACK SEGMENT

■ ALTER SEQUENCE

■ ALTER SESSION

■ ALTER SYSTEM
7-2 SQL Reference

ALTER CLUSTER
ALTER CLUSTER

Purpose
Use the ALTER CLUSTER statement to redefine storage and parallelism

characteristics of a cluster.

Prerequisites
The cluster must be in your own schema or you must have ALTER ANY CLUSTER
system privilege.

Syntax

Note: You cannot use this statement to change the number or the

name of columns in the cluster key, and you cannot change the

tablespace in which the cluster is stored.

See Also:

■ CREATE CLUSTER on page 9-3 for information on creating a

cluster

■ DROP CLUSTER on page 10-126and DROP TABLE on

page 11-7 for information on removing tables from a cluster

ALTER CLUSTER
schema .

cluster

physical_attributes_clause

SIZE integer

K

M

allocate_extent_clause

deallocate_unused_clause

parallel_clause
;

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-3

ALTER CLUSTER
physical_attributes_clause :=

storage_clause : See storage_clause on page 11-129.

allocate_extent_clause ::=

deallocate_unused_clause ::=

parallel_clause ::=

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

DEALLOCATE UNUSED
KEEP integer

K

M

NOPARALLEL

PARALLEL
integer
7-4 SQL Reference

ALTER CLUSTER
Keywords and Parameters

schema
Specify the schema containing the cluster. If you omit schema , Oracle assumes the

cluster is in your own schema.

cluster
Specify the name of the cluster to be altered.

physical_attributes_clause
Use this clause to change the values of the PCTUSED, PCTFREE, INITRANS , and

MAXTRANS parameters of the cluster.

SIZE integer
Use the SIZE clause to specify the number of cluster keys that will be stored in data

blocks allocated to the cluster.

Restriction: You can change the SIZE parameter only for an indexed cluster, not for

a hash cluster.

allocate_extent_clause
Specify the ALLOCATE EXTENT clause to explicitly allocate a new extent for the

cluster.

Restriction: You can allocate a new extent only for an indexed cluster, not for a hash

cluster.

See Also: CREATE CLUSTER on page 9-3 for a description of

these parameters

storage_
clause

Use the STORAGE clause to change the storage characteristics for

the cluster.

Restriction: You cannot change the values of the storage

parameters INITIAL and MINEXTENTS for a cluster.

See Also: storage_clause on page 11-129

See Also: CREATE CLUSTER on page 9-3 for a description of the

SIZE parameter
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-5

ALTER CLUSTER
deallocate_unused_clause
Specify the DEALLOCATE UNUSEDclause to explicitly deallocate unused space at the

end of the cluster and makes the freed space available for other segments. Only

unused space above the high water mark can be freed.

parallel_clause
Specify the parallel_clause to change the default degree of parallelism for

queries and DML on the cluster.

SIZE integer Use the SIZE parameter to specify the size of the extent in bytes.

Use K or M to specify the extent size in kilobytes or megabytes.

When you explicitly allocate an extent with this clause, Oracle

does not evaluate the cluster’s storage parameters and determine

a new size for the next extent to be allocated (as it does when you

create a table). Therefore, specify SIZE if you do not want Oracle

to use a default value.

DATAFILE
’ filename ’

Use the DATAFILE parameter to specify one of the datafiles in the

cluster’s tablespace to contain the new extent. If you omit this

parameter, Oracle chooses the datafile.

INSTANCE
integer

Use the INSTANCE parameter to make the new extent available to

the specified instance. An instance is identified by the value of its

initialization parameter INSTANCE_NUMBER. If you omit

INSTANCE, the extent is available to all instances.

Note: Use this parameter only if you are using Oracle with the

Parallel Server option in parallel mode.

KEEP integer Use the KEEP parameter to specify the number of bytes above the

high water mark that the cluster will have after deallocation. If the

number of remaining extents is less than MINEXTENTS, then

MINEXTENTS is set to the current number of extents. If the initial

extent becomes smaller than INITIAL , then INITIAL is set to the

value of the current initial extent. If you omit KEEP, all unused

space is freed.

See Also: ALTER TABLE on page 8-2 for a more complete

description of this clause
7-6 SQL Reference

ALTER CLUSTER
Restriction: If the tables in cluster contain any columns of LOB or user-defined

object type, this statement as well as subsequent INSERT, UPDATE, or DELETE
operations on cluster are executed serially without notification.

Examples

Modifying a Cluster Example The following statement alters the CUSTOMER
cluster in the schema scott :

ALTER CLUSTER scott.customer
 SIZE 512
 STORAGE (MAXEXTENTS 25);

Oracle allocates 512 bytes for each cluster key value. Assuming a data block size of

2 kilobytes, future data blocks within this cluster contain 4 cluster keys per data

block, or 2 kilobytes divided by 512 bytes. The cluster can have a maximum of 25

extents.

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLEL if you want Oracle to select a degree of

parallelism equal to the number of CPUs available on all

participating instances times the value of the PARALLEL_
THREADS_PER_CPU initialization parameter.

PARALLEL
integer

Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel

operation. Each parallel thread may use one or two parallel

execution servers. Normally Oracle calculates the optimum

degree of parallelism, so it is not necessary for you to specify

integer .

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 10-41
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-7

ALTER CLUSTER
Deallocating Unused Space Example The following statement deallocates unused

space from the CUSTOMER cluster, keeping 30 kilobytes of unused space for future

use:

ALTER CLUSTER scott.customer
 DEALLOCATE UNUSED KEEP 30 K;
7-8 SQL Reference

ALTER DATABASE
ALTER DATABASE

Purpose
Use the ALTER DATABASE statement to modify, maintain, or recover an existing

database.

Prerequisites
You must have ALTER DATABASE system privilege.

To specify the RECOVER clause, you must also have the OSDBA role enabled.

See Also:

■ Oracle8i Administrator’s Guide for more information on using the

ALTER DATABASE statement for database maintenance

■ Oracle8i Administrator’s Guide, Oracle8i Recovery Manager User’s Guide
and Reference, and Oracle8i Backup and Recovery Guide for examples of

performing media recovery

■ CREATE DATABASE on page 9-21 for information on creating a

database
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-9

ALTER DATABASE
Syntax

ALTER DATABASE
database

recover_clauses

datafile/tempfile_clauses

logfile_clauses

controlfile_clauses

MOUNT

STANDBY

CLONE
DATABASE

CONVERT

OPEN

READ WRITE RESETLOGS

NORESETLOGS

READ ONLY

ACTIVATE STANDBY DATABASE

RENAME GLOBAL_NAME TO database . domain

RENAME FILE ’ filename ’

,

TO ’ filename ’

,

RESET COMPATIBILITY

ENABLE
PUBLIC

THREAD integer

DISABLE THREAD integer

CHARACTER SET character_set

NATIONAL CHARACTER SET character_set

;

7-10 SQL Reference

ALTER DATABASE
recover_clauses ::=

general_recovery_clause ::=

RECOVER
general_recovery_clause

managed_recovery_clause

parallel_clause
;

AUTOMATIC FROM ’ location ’

STANDBY
DATABASE

UNTIL

CANCEL

TIME date

CHANGE integer

USING BACKUP CONTROLFILE

STANDBY

TABLESPACE tablespace

,

DATAFILE ’ filename ’

, UNTIL
CONSISTENT WITH

CONTROLFILE

TABLESPACE tablespace

,

DATAFILE ’ filename ’

,

LOGFILE ’ filename ’

CONTINUE
DEFAULT

CANCEL
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-11

ALTER DATABASE
managed_recovery_clause ::=

datafile_tempfile_clauses ::=

MANAGED STANDBY DATABASE

TIMEOUT integer

CANCEL
IMMEDIATE

CREATE DATAFILE ’ filename ’
AS filespec

DATAFILE ’ filename ’

ONLINE

OFFLINE
DROP

RESIZE integer

K

M

autoextend_clause

END BACKUP

TEMPFILE , filename ,

RESIZE integer

K

M

autoextend_clause

DROP

ONLINE

OFFLINE
7-12 SQL Reference

ALTER DATABASE
autoextend_clause ::=

filespec : See filespec on page 11-27.

logfile_clauses ::=

AUTOEXTEND

OFF

ON
NEXT integer

K

M
maxsize_clause

ARCHIVELOG

NOARCHIVELOG

ADD LOGFILE
THREAD integer GROUP integer

filespec

,

ADD LOGFILE MEMBER ’ filename ’
REUSE

,

TO logfile_descriptor

,

DROP LOGFILE logfile_descriptor

,

DROP LOGFILE MEMBER ’ filename ’

,

CLEAR
UNARCHIVED

LOGFILE logfile_descriptor

,
UNRECOVERABLE DATAFILE
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-13

ALTER DATABASE
logfile_descriptor ::=

controlfile_clauses ::=

maxsize_clause ::=

parallel_clause ::=

GROUP integer

(’ filename ’

,

)

’ filename ’

CREATE STANDBY CONTROLFILE AS ’ filename ’
REUSE

BACKUP CONTROLFILE TO

’ filename ’
REUSE

TRACE

RESETLOGS

NORESETLOGS

MAXSIZE

UNLIMITED

integer

K

M

NOPARALLEL

PARALLEL
integer
7-14 SQL Reference

ALTER DATABASE
Keywords and Parameters

database
Specify the name of the database to be altered. The database name can contain only

ASCII characters. If you omit database, Oracle alters the database identified by the

value of the initialization parameter DB_NAME. You can alter only the database

whose control files are specified by the initialization parameter CONTROL_FILES.
The database identifier is not related to the Net8 database specification.

recover_clauses
You can use the following clauses when your instance has the database mounted,

open or closed, and the files involved are not in use.

general_recovery_clause

The general_recovery_clause lets you design media recovery for the database

or standby database, or for specified tablespaces or files.

Restrictions:

■ You can recover the entire database only when the database is closed.

■ Your instance must have the database mounted in exclusive mode.

■ You can recover tablespaces or datafiles when the database is open or closed,

provided that the tablespaces or datafiles to be recovered are offline.

■ You cannot perform media recovery if you are connected to Oracle through the

multi-threaded server architecture.

Note: If you do not have special media requirements, Oracle

Corporation recommends that you use the SQL*Plus RECOVER
statement.

See Also:

■ Oracle8i Backup and Recovery Guide for more information on

media recovery

■ SQL*Plus User’s Guide and Reference
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-15

ALTER DATABASE
AUTOMATIC Specify AUTOMATIC if you want Oracle to automatically generate

the name of the next archived redo log file needed to continue the

recovery operation. If the LOG_ARCHIVE_DEST_n parameters are

defined, Oracle scans those that are valid and enabled for the first

local destination. It uses that destination in conjunction with LOG_
ARCHIVE_FORMAT to generate the target redo log filename. If the

LOG_ARCHIVE_DEST_n parameters are not defined, Oracle uses

the value of the LOG_ARCHIVE_DEST parameter instead.

If the resulting file is found, Oracle applies the redo contained in

that file. If the file is not found, Oracle prompts you for a filename,

displaying the generated filename as a suggestion.

If you specify neither AUTOMATIC nor LOGFILE, Oracle prompts

you for a filename, displaying the generated filename as a

suggestion. You can then accept the generated filename or replace

it with a fully qualified filename. If you know the archived

filename differs from what Oracle would generate, you can save

time by using the LOGFILE clause.

FROM
’location ’

Specify FROMlocation to indicate the location from which the
archived redo log file group is read. The value of location must
be a fully specified file location following the conventions of your
operating system. If you omit this parameter, Oracle assumes the
archived redo log file group is in the location specified by the
initialization parameter LOG_ARCHIVE_DEST or LOG_ARCHIVE_
DEST_1.

STANDBY
DATABASE

Specify the STANDBY DATABASE clause to recover the standby
database using the control file and archived redo log files copied
from the primary database. The standby database must be
mounted but not open.

DATABASE Specify the DATABASE clause to recover the entire database. This
is the default. You can use this clause only when the database is
closed.

Note: This clause recovers only online datafiles.

■ UNTIL : Use the UNTIL clause to specify the duration of the

recovery operation.
7-16 SQL Reference

ALTER DATABASE
- CANCEL indicates cancel-based recovery. This clause

recovers the database until you issue the ALTER DATABASE
RECOVER statement with the RECOVER CANCEL clause.

- TIME indicates time-based recovery. This parameter recovers

the database to the time specified by the date. The date must

be a character literal in the format ’YYYY-MM-

DD:HH24:MI:SS’.

- CHANGE indicates change-based recovery. This parameter

recovers the database to a transaction-consistent state

immediately before the system change number (SCN)

specified by integer.

■ USING BACKUP CONTROLFILE: Specify this clause if you

want to use a backup control file instead of the current control

file.

TABLESPACE Specify the TABLESPACE clause to recover only the specified
tablespaces. You can use this clause if the database is open or
closed, provided the tablespaces to be recovered are offline.

DATAFILE Specify the DATAFILE clause to recover the specified datafiles.
You can use this clause when the database is open or closed,
provided the datafiles to be recovered are offline.

STANDBY
TABLESPACE

Specify STANDBY TABLESPACE to reconstruct a lost or damaged
tablespace in the standby database using archived redo log files
copied from the primary database and a control file.

STANDBY |
DATAFILE

Specify STANDBY DATAFILE to reconstruct a lost or damaged

datafile in the standby database using archived redo log files

copied from the primary database and a control file.

■ UNTIL [CONSISTENT WITH] CONTROLFILE: Specify this

clause if you want the recovery of an old standby datafile or

tablespace to use the current standby database control file.

However, any redo in advance of the standby controlfile will

not be applied. The keywords CONSISTENT WITH are

optional and are provided for semantic clarity.

LOGFILE Specify the LOGFILE clause to continue media recovery by

applying the specified redo log file.

CONTINUE Specify CONTINUE to continue multi-instance recovery after it has

been interrupted to disable a thread.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-17

ALTER DATABASE
managed_recovery_clause

The managed_recovery_clause specifies automated standby recovery mode.

This mode assumes that the automated standby database is an active component of

an overall standby database architecture. A primary database actively archives its

redo log files to the standby site. As these archived redo logs arrive at the standby

site, they become available for use by a managed standby recovery operation.

Automated standby recovery is restricted to media recovery.

Restrictions: The same restrictions apply as are listed under general_recovery_
clause .

CONTINUE
DEFAULT

Specify CONTINUE DEFAULT to continue recovery using the redo

log file that Oracle would automatically generate if no other

logfile were specified. This clause is equivalent to specifying

AUTOMATIC, except that Oracle does not prompt for a filename.

CANCEL Specify CANCEL to terminate cancel-based recovery.

See Also: Oracle8i Backup and Recovery Guide for more information

on the parameters of this clause.

TIMEOUT
integer

Use the TIMEOUT clause to specify in minutes the wait period of

the managed recovery operation. The recovery process waits for

integer minutes for a requested archived log redo to be available

for writing to the automated standby database. If the redo log file

does not become available within that time, the recovery process

terminates with an error message. You can then issue the

statement again to return to automated standby recovery mode.

If you do not specify this clause, the database remains in

automated standby recovery mode until you reissue the statement

with the RECOVER CANCEL clause or until instance shutdown or

failure.

CANCEL Use the CANCEL clause to terminate the managed recovery

operation after applying all the redo in the current archived redo

file.
7-18 SQL Reference

ALTER DATABASE
parallel_clause

Use the PARALLEL clause to specify whether the recovery of media will be

parallelized.

datafile_tempfile_clauses
The datafile and tempfile clauses let you modify datafiles and tempfiles.

You can use any of the following clauses when your instance has the database

mounted, open or closed, and the files involved are not in use:

CANCEL
IMMEDIATE

Specify CANCEL IMMEDIATE to terminate the managed recovery

operation after applying all the redo in the current archived redo

file or after the next redo log file read, whichever comes first.

Restriction: This clause cannot be issued from the same session

that issued the RECOVER MANAGED STANDBY DATABASE
statement.

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLEL if you want Oracle to select a degree of

parallelism equal to the number of CPUs available on all

participating instances times the value of the PARALLEL_
THREADS_PER_CPU initialization parameter.

PARALLEL
integer

Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel

operation. Each parallel thread may use one or two parallel

execution servers. Normally Oracle calculates the optimum

degree of parallelism, so it is not necessary for you to specify

integer .

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 10-41
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-19

ALTER DATABASE
CREATE
DATAFILE

Use the CREATE DATAFILE clause to create a new empty datafile

in place of an old one. You can use this clause to re-create a datafile

that was lost with no backup. The ’filename ’ must identify a file

that is or was once part of the database. The filespec specifies

the name and size of the new datafile. If you omit the AS clause,

Oracle creates the new file with the name and size as the file

specified by ’filename ’.

During recovery, all archived redo logs written to since the original

datafile was created must be applied to the new, empty version of

the lost datafile.

Oracle creates the new file in the same state as the old file when it

was created. You must perform media recovery on the new file to

return it to the state of the old file at the time it was lost.

Restriction: You cannot create a new file based on the first datafile

of the SYSTEM tablespace.

DATAFILE
’ filename ’

The DATAFILE clauses affect your database files as follows:

ONLINE Specify ONLINE to bring the datafile online.

OFFLINE Specify OFFLINE to take the datafile offline. If

the database is open, you must perform media

recovery on the datafile before bringing it back

online, because a checkpoint is not performed

on the datafile before it is taken offline.

DROP takes a datafile offline when the database

is in NOARCHIVELOG mode.

RESIZE Specify RESIZE if you want Oracle to attempt to

increase or decrease the size of the datafile to the

specified absolute size in bytes. Use K or M to

specify this size in kilobytes or megabytes. There

is no default, so you must specify a size.

If sufficient disk space is not available for the

increased size, or if the file contains data beyond

the specified decreased size, Oracle returns an

error.
7-20 SQL Reference

ALTER DATABASE
autoextend_
clause

Use the autoextend_clause to enable or

disable the automatic extension of a datafile. If

you do not specify this clause, datafiles are not

automatically extended.

OFF disables autoextend if it is turned on. NEXT
and MAXSIZE are set to zero. Values for NEXT
and MAXSIZE must be respecified in further

ALTER DATABASE AUTOEXTEND statements.

■ ON enables autoextend.

■ NEXT specifies in bytes the size of the next

increment of disk space to be automatically

allocated to the datafile when more extents

are required. Use K or M to specify this size

in kilobytes or megabytes. The default is one

data block.

■ MAXSIZE specifies the maximum disk space

allowed for automatic extension of the

datafile.

■ UNLIMITED sets no limit on allocating disk

space to the datafile.

END BACKUP Specify END BACKUPto avoid media recovery on

database startup after an online tablespace

backup was interrupted by a system failure or

instance failure or SHUTDOWN ABORT.

Caution: Do not use ALTER TABLESPACE ... END BACKUP if
you have restored any of the files affected from a backup.

Media recovery is fully described in Oracle8i Backup and
Recovery Guide.

TEMPFILE
’ filename ’

Lets you resize your temporary datafile or specify the

autoextend_clause , with the same effect as with a permanent

datafile.

Restriction: You cannot specify TEMPFILE unless the database is

open.

DROP Specify DROP to drop tempfile from the

database. The tablespace remains.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-21

ALTER DATABASE
logfile_clauses
The logfile clauses let you add, drop, or modify log files.

ARCHIVELOG Specify ARCHIVELOG if you want the contents of a redo log file

group to be archived before the group can be reused. This mode

prepares for the possibility of media recovery. Use this clause only

after shutting down your instance normally or immediately with

no errors and then restarting it, mounting the database in parallel

server disabled mode.

NOARCHIVELOG Specify NOARCHIVELOG if you do not want the contents of a redo

log file group to be archived so that the group can be reused. This

mode does not prepare for recovery after media failure.

Use the ARCHIVELOGclause and NOARCHIVELOGclause only if your instance has the

database mounted in Oracle Parallel Server disabled mode, but not open.

ADD LOGFILE Use the ADD LOGFILE clause to add one or more redo log file

groups to the specified thread, making them available to the

instance assigned the thread.

THREAD
integer

The THREAD clause is applicable only if you are

using Oracle with the Parallel Server option in

parallel mode. integer is the thread number.

The number of threads you can create is limited

by the value of the MAXINSTANCES parameter

specified in the CREATE DATABASE statement.

If you omit THREAD, the redo log file group is

added to the thread assigned to your instance.

GROUP
integer

The GROUP clause uniquely identifies the redo

log file group among all groups in all threads

and can range from 1 to the MAXLOGFILES
value. You cannot add multiple redo log file

groups having the same GROUP value. If you

omit this parameter, Oracle generates its value

automatically. You can examine the GROUPvalue

for a redo log file group through the dynamic

performance view V$LOG.
7-22 SQL Reference

ALTER DATABASE
filespec Each filespec specifies a redo log file group

containing one or more members, or copies.

See Also: the syntax description of

filespec in filespec on page 11-27

ADD LOGFILE
MEMBER

Use the ADD LOGFILE MEMBER clause to add new members to

existing redo log file groups. Each new member is specified by

’filename ’. If the file already exists, it must be the same size as

the other group members, and you must specify REUSE. If the file

does not exist, Oracle creates a file of the correct size. You cannot

add a member to a group if all of the group’s members have been

lost through media failure.

You can specify an existing redo log file group in one of these

ways:

GROUP
integer

Specify the value of the GROUP parameter that

identifies the redo log file group.

filename[s] List all members of the redo log file group. You

must fully specify each filename according to

the conventions of your operating system.

DROP LOGFILE Use the DROP LOGFILE clause to drop all members of a redo log

file group. Specify a redo log file group as indicated for the ADD
LOGFILE MEMBER clause.

■ To drop the current log file group, you must first issue an

ALTER SYSTEM SWITCH LOGFILE statement.

See Also: ALTER SYSTEM on page 7-127

■ You cannot drop a redo log file group if it needs archiving.

■ You cannot drop a redo log file group if doing so would cause

the redo thread to contain less than two redo log file groups.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-23

ALTER DATABASE
DROP LOGFILE
MEMBER

Use the DROP LOGFILE MEMBER clause to drop one or more redo

log file members. Each ’filename ’ must fully specify a member

using the conventions for filenames on your operating system.

■ To drop a log file in the current log, you must first issue an

ALTER SYSTEM SWITCH LOGFILE statement.

See Also: ALTER SYSTEM on page 7-127

■ You cannot use this clause to drop all members of a redo log

file group that contains valid data. To perform this operation,

use the DROP LOGFILE clause.

CLEAR LOGFILE Use the CLEAR LOGFILE clause to reinitialize an online redo log,

optionally without archiving the redo log. CLEAR LOGFILE is
similar to adding and dropping a redo log, except that the

statement may be issued even if there are only two logs for the

thread and also may be issued for the current redo log of a closed

thread.

UNARCHIVED You must specify UNARCHIVED if you want to

reuse a redo log that was not archived.

Caution: Specifying UNARCHIVED makes

backups unusable if the redo log is needed

for recovery.

UNRECOVER-
ABLE DATA-
FILE

You must specify UNRECOVERABLE DATAFILEif
you have taken the datafile offline with the

database in ARCHIVELOG mode (that is, you

specified ALTER DATABSE ... DATAFILE
OFFLINE without the DROPkeyword), and if the

unarchived log to be cleared is needed to

recover the datafile before bringing it back

online. In this case, you must drop the datafile

and the entire tablespace once the CLEAR
LOGFILE statement completes.

Do not use CLEAR LOGFILE to clear a log needed for media

recovery. If it is necessary to clear a log containing redo after the

database checkpoint, you must first perform incomplete media

recovery. The current redo log of an open thread can be cleared.

The current log of a closed thread can be cleared by switching logs

in the closed thread.
7-24 SQL Reference

ALTER DATABASE
controlfile_clauses

If the CLEAR LOGFILE statement is interrupted by a system or

instance failure, then the database may hang. If this occurs, reissue

the statement after the database is restarted. If the failure occurred

because of I/O errors accessing one member of a log group, then

that member can be dropped and other members added.

CREATE
STANDBY
CONTROLFILE

Use the CREATE STANDBY CONTROLFILE clause to create a

control file to be used to maintain a standby database. If the file

already exists, you must specify REUSE.

See Also: Oracle8i Standby Database Concepts and
Administration.

BACKUP
CONTROLFILE

Use the BACKUP CONTROLFILE clause to back up the current

control file.

TO ’filename ’ Specify the file to which the control file is backed

up. You must fully specify the filename using

the conventions for your operating system. If the

specified file already exists, you must specify

REUSE.

TO TRACE Specify TO TRACE if you want Oracle to write

SQL statements to the database’s trace file rather

than making a physical backup of the control

file. The SQL statements can start up the

database, re-create the control file, and recover

and open the database appropriately, based on

the created control file.

You can copy the statements from the trace file

into a script file, edit the statements as necessary,

and use the database if all copies of the control

file are lost (or to change the size of the control

file).
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-25

ALTER DATABASE
MOUNT
Use the MOUNT clause to mount the database. Do not use this clause when the

database is mounted.

CONVERT
Use the CONVERT clause to complete the conversion of the Oracle7 data dictionary.

After you use this clause, the Oracle7 data dictionary no longer exists in the Oracle

database.

ACTIVATE STANDBY DATABASE
The ACTIVATE STANDBY DATABASE clause changes the state of a standby database

to an active database. Do not use this clause when the database is mounted.

■ RESETLOGS indicates that the SQL

statement written to the trace file for starting

the database is ALTER DATABASE OPEN
RESETLOGS.

■ NORESETLOGS indicates that the SQL

statement written to the trace file for starting

the database is ALTER DATABASE OPEN
NORESETLOGS.

STANDBY
DATABASE

Specify STANDBY to mount the standby database.

See Also: Oracle8i Standby Database Concepts and
Administration

CLONE
DATABASE

Specify CLONE to mount the clone database.

See Also: Oracle8i Backup and Recovery Guide

Note: Use this clause only when you are migrating to Oracle8i, and

do not use this clause when the database is mounted.

See Also: Oracle8i Migration

See Also: Oracle8i Standby Database Concepts and Administration
7-26 SQL Reference

ALTER DATABASE
OPEN
Use the OPEN clause to make the database available for normal use. You must

mount the database before you can open it. You must activate a standby database

before you can open it.

READ ONLY Specify READ ONLY to restrict users to read-only transactions,

preventing them from generating redo logs. You can use this

clause to make a standby database available for queries even

while archive logs are being copied from the primary database

site.

Restrictions:

■ You cannot open a database READ ONLY if it is currently

opened READ WRITE by another instance.

■ You cannot open a database READ ONLY if it requires recovery.

■ You cannot take tablespaces offline while the database is open

READ ONLY. However, you can take datafiles offline and

online, and you can recover offline datafiles and tablespaces

while the database is open READ ONLY.

READ WRITE Specify READ WRITE to open the database in read-write mode,

allowing users to generate redo logs. This is the default.

RESETLOGS Specify RESETLOGS to reset the current log

sequence number to 1 and discards any redo

information that was not applied during

recovery, ensuring that it will never be applied.

This effectively discards all changes that are in

the redo log, but not in the database.

You must specify RESETLOGS to open the

database after performing media recovery with

an incomplete recovery using the RECOVER
clause or with a backup control file. After

opening the database with this clause, you

should perform a complete database backup.

NORESETLOGS Specify NORESETLOGS to retain the current stat

of the log sequence number and redo log files.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-27

ALTER DATABASE
RENAME GLOBAL_NAME
Specify RENAME GLOBAL_NAME to change the global name of the database. The

database is the new database name and can be as long as eight bytes. The optional

domain specifies where the database is effectively located in the network hierarchy.

Do not use this clause when the database is mounted.

RENAME FILE
Use the RENAME FILE clause to rename datafiles, tempfiles, or redo log file

members. This clause renames only files in the control file. It does not actually

rename them on your operating system. You must specify each filename using the

conventions for filenames on your operating system before specifying this clause.

Do not use this clause when the database is mounted.

RESET COMPATIBILITY
Specify RESET COMPATIBILITY to mark the database to be reset to an earlier

version of Oracle when the database is next restarted. Do not use this clause when

the database is mounted.

Restriction: You can specify RESETLOGS and NORESETLOGS only

after performing incomplete media recovery or complete media

recovery with a backup control file. In any other case, Oracle uses

the NORESETLOGS automatically.

Note: Renaming your database does not change global references

to your database from existing database links, synonyms, and

stored procedures and functions on remote databases. Changing

such references is the responsibility of the administrator of the

remote databases.

See Also: Oracle8i Distributed Database Systems for more

information on global names

Note: RESET COMPATIBILITYworks only if you have successfully

disabled Oracle features that affect backward compatibility.
7-28 SQL Reference

ALTER DATABASE
ENABLE THREAD
In an Oracle Parallel Server environment, specify ENABLE THREAD to enable the

specified thread of redo log file groups. The thread must have at least two redo log

file groups before you can enable it. The database must be open.

DISABLE THREAD
Specify DISABLE THREAD to disable the specified thread, making it unavailable to

all instances. The database must be open, but you cannot disable a thread if an

instance using it has the database mounted.

CHARACTER SET, NATIONAL CHARACTER SET
CHARACTER SET changes the character set the database uses to store data.

NATIONAL CHARACTER SET changes the national character set used to store data in

columns specifically defined as NCHAR, NCLOB, or NVARCHAR2. Specify

character_set without quotation marks. The database must be open.

See Also: Oracle8i Migration for more information on

downgrading to an earlier version of Oracle

PUBLIC Specify PUBLIC to make the enabled thread available to any

instance that does not explicitly request a specific thread with the

initialization parameter THREAD. If you omit PUBLIC, the thread

is available only to the instance that explicitly requests it with the

initialization parameter THREAD.

See Also: Oracle8i Parallel Server Admininstration and Tuning for

more information on enabling and disabling threads.

See Also: Oracle8i Parallel Server Admininstration and Tuning for

more information on enabling and disabling threads.

Caution: You cannot roll back an ALTER DATABASE CHARACTER
SET or ALTER DATABASE NATIONAL CHARACTER SET statement.

Therefore, you should perform a full backup before issuing either

of these statements.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-29

ALTER DATABASE
Restrictions:

■ You must have SYSDBAsystem privilege, and you must start up the database in

restricted mode (for example, with the SQL*Plus STARTUP RESTRICT
command).

■ The current character set must be a strict subset of the character set to which

you change. That is, each character represented by a codepoint value in the

source character set must be represented by the same codepoint value in the

target character set.

Examples

READ ONLY / READ WRITE Example The first statement below opens the

database in read-only mode. The second statement returns the database to read-

write mode and clears the online redo logs:

ALTER DATABASE OPEN READ ONLY;

ALTER DATABASE OPEN READ WRITE RESETLOGS;

PARALLEL Example The following statement performs tablespace recovery using

parallel recovery processes:

ALTER DATABASE
 RECOVER TABLESPACE binky
 PARALLEL;

Redo Log File Group Example The following statement adds a redo log file group

with two members and identifies it with a GROUP parameter value of 3:

ALTER DATABASE stocks
 ADD LOGFILE GROUP 3
 (’diska:log3.log’ ,
 ’diskb:log3.log’) SIZE 50K;

Redo Log File Group Member Example The following statement adds a member

to the redo log file group added in the previous example:

ALTER DATABASE stocks
 ADD LOGFILE MEMBER ’diskc:log3.log’
 TO GROUP 3;

See Also: Oracle8i National Language Support Guide for a list of

valid character sets
7-30 SQL Reference

ALTER DATABASE
Dropping a Log File Member The following statement drops the redo log file

member added in the previous example:

ALTER DATABASE stocks
 DROP LOGFILE MEMBER ’diskc:log3.log’;

Renaming a Log File Member Example The following statement renames a redo

log file member:

ALTER DATABASE stocks
 RENAME FILE ’diskb:log3.log’ TO ’diskd:log3.log’;

The above statement only changes the member of the redo log group from one file

to another. The statement does not actually change the name of the file

’diskbk:log3.log’ to ’diskd:log3.log’ . You must perform this operation

through your operating system.

Dropping All Log File Group Members Example The following statement drops all

members of the redo log file group 3:

ALTER DATABASE stocks DROP LOGFILE GROUP 3;

Adding a Redo Log File Group Example The following statement adds a redo log

file group containing three members to thread 5 (in an Oracle Parallel Server

environment) and assigns it a GROUP parameter value of 4:

ALTER DATABASE stocks
 ADD LOGFILE THREAD 5 GROUP 4
 (’diska:log4.log’,
 ’diskb:log4:log’,
 ’diskc:log4.log’);

Disabling a Parallel Server Thread Example The following statement disables

thread 5 in an Oracle Parallel Server environment:

ALTER DATABASE stocks
 DISABLE THREAD 5;

Enabling a Parallel Server Thread Example The following statement enables

thread 5 in an Oracle Parallel Server, making it available to any Oracle instance that

does not explicitly request a specific thread:

ALTER DATABASE stocks
 ENABLE PUBLIC THREAD 5;
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-31

ALTER DATABASE
Creating a New Datafile Example The following statement creates a new datafile

’disk2:db1.dat’ based on the file ’disk1:db1.dat’ :

ALTER DATABASE
 CREATE DATAFILE ’disk1:db1.dat’ AS ’disk2:db1.dat’;

Changing the Global Database Name Example The following statement changes

the global name of the database and includes both the database name and domain:

ALTER DATABASE
 RENAME GLOBAL_NAME TO sales.australia.acme.com;

CHARACTER SET Example The following statements change the database

character set and national character set to the WE8ISO8859P1 character set:

ALTER DATABASE db1 CHARACTER SET WE8ISO8859P1;
ALTER DATABASE db1 NATIONAL CHARACTER SET WE8ISO8859P1;

The database name is optional, and the character set name is specified without

quotation marks.

Resizing a Datafile Example The following statement attempts to change the size

of datafile ’disk1:db1.dat’ :

ALTER DATABASE
 DATAFILE ’disk1:db1.dat’ RESIZE 10 M;

Clearing a Log File The following statement clears a log file:

ALTER DATABASE
 CLEAR LOGFILE ’disk3:log.dbf’;

Database Recovery Examples The following statement performs complete

recovery of the entire database, letting Oracle generate the name of the next

archived redo log file needed:

ALTER DATABASE
 RECOVER AUTOMATIC DATABASE;

The following statement explicitly names a redo log file for Oracle to apply:

ALTER DATABASE
 RECOVER LOGFILE ’diska:arch0006.arc’;

The following statement performs time-based recovery of the database:

ALTER DATABASE
7-32 SQL Reference

ALTER DATABASE
 RECOVER AUTOMATIC UNTIL TIME ’1998-10-27:14:00:00’;

Oracle recovers the database until 2:00 pm on October 27, 1998.

The following statement recovers the tablespace user5 :

ALTER DATABASE
 RECOVER TABLESPACE user5;

The following statement recovers the standby datafile /finance/stbs_21.f ,

using the corresponding datafile in the original standby database, plus all relevant

archived logs and the current standby database control file:

ALTER DATABASE
 RECOVER STANDBY DATAFILE ’/finance/stbs_21.f’
 UNTIL CONTROLFILE;

Managed Standby Database Examples The following statement recovers the

standby database in automated standby recovery mode:

ALTER DATABASE
 RECOVER MANAGED STANDBY DATABASE;

The following statement puts the database in automated standby recovery mode.

The managed recovery process will wait up to 60 minutes for the next archive log:

ALTER DATABASE
 RECOVER MANAGED STANDBY DATABASE TIMEOUT 60;

 If each subsequent log arrives within 60 minutes of the last log, recovery continues

indefinitely or until manually terminated.

The following statement terminates the managed recovery operation:

ALTER DATABASE
 RECOVER MANAGED STANDBY DATABASE CANCEL IMMEDIATE;

The managed recovery operation terminates before the next group of redo is read

from the current redo log file. Media recovery ends in the "middle" of applying redo

from the current redo log file.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-33

ALTER DIMENSION
ALTER DIMENSION

Purpose
Use the ALTER DIMENSION statement to change the hierarchical relationships or

dimension attributes of a dimension.

Prerequisites
The dimension must be in your schema or you must have the ALTER ANY
DIMENSION system privilege to use this statement.

A dimension is always altered under the rights of the owner.

Syntax

See Also: CREATE DIMENSION on page 9-34 for more

information on dimensions

ALTER DIMENSION
schema .

dimension

ADD

level_clause

hierarchy_clause

attribute_clause

DROP

LEVEL level

RESTRICT

CASCADE

HIERARCHY hierarchy

ATTRIBUTE level

COMPILE

;

7-34 SQL Reference

ALTER DIMENSION
level_clause ::=

hierarchy_clause ::=

join_clause ::=

attribute_clause ::=

Keywords and Parameters
The following keywords and parameters have meaning unique to ALTER
DIMENSION. The remaining keywords and parameters have the same functionality

that they have in the CREATE DIMENSION statement.

See Also: CREATE DIMENSION on page 9-34

LEVEL level IS

level_table . level_column

(level_table . level_column

,

)

HIERARCHY hierarchy (child_level CHILD OF parent_level
join_clause

)

JOIN KEY

child_key_column

(child_key_column

,

)

REFERENCES parent_level

ATTRIBUTE level DETERMINES

dependent_column

(dependent_column

,

)

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-35

ALTER DIMENSION
schema
Specify the schema of the dimension you want to modify. If you do not specify

schema , Oracle assumes the dimension is in your own schema.

dimension
Specify the name of the dimension. This dimension must already exist.

ADD
The ADD clauses let you add a level, hierarchy, or attribute to the dimension.

Adding one of these elements does not invalidate any existing materialized view.

Oracle processes ADD LEVEL clauses prior to any other ADD clauses.

DROP
The DROP clauses let you drop a level, hierarchy, or attribute from the dimension.

Any level, hierarchy, or attribute you specify must already exist.

Restriction: If any attributes or hierarchies reference a level, you cannot drop the

level until you either drop all the referencing attributes and hierarchies or specify

CASCADE.

COMPILE
Specify COMPILE to explicitly recompile an invalidated dimension. Oracle

automatically compiles a dimension when you issue an ADD clause or DROP clause.

However, if you alter an object referenced by the dimension (for example, if you

drop and then re-create a table referenced in the dimension), the dimension will be

invalidated, and you must recompile it explicitly.

Example

Modifying a Dimension Example This example modifies the time dimension:

ALTER DIMENSION time
 DROP HIERARCHY week_month;

CASCADE Specify CASCADE if you want Oracle to drop any attributes or

hierarchies that reference the level, along with the level itself.

RESTRICT Specify RESTRICT if you want to prevent Oracle from dropping a

level that is referenced by any attributes or hierarchies. This is the

default.
7-36 SQL Reference

ALTER DIMENSION
ALTER DIMENSION time
 DROP ATTRIBUTE cur_date;
ALTER DIMENSION time
 ADD LEVEL day IS time_tab.t_day
 ADD ATTRIBUTE day DETERMINES t_holiday;
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-37

ALTER FUNCTION
ALTER FUNCTION

Purpose
Use the ALTER FUNCTION statement to recompile an invalid standalone stored

function. Explicit recompilation eliminates the need for implicit run-time

recompilation and prevents associated run-time compilation errors and

performance overhead.

The ALTER FUNCTION statement is similar to ALTER PROCEDURE on page 7-88.

For information on how Oracle recompiles functions and procedures, see Oracle8i
Concepts.

Prerequisites
The function must be in your own schema or you must have ALTER ANY
PROCEDURE system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the function. If you omit schema , Oracle assumes

the function is in your own schema.

function
Specify the name of the function to be recompiled.

Note: This statement does not change the declaration or definition

of an existing function. To redeclare or redefine a function, use the

CREATE FUNCTION statement with the OR REPLACE clause; see

CREATE FUNCTION on page 9-43.

ALTER FUNCTION
schema .

function COMPILE
DEBUG

;

7-38 SQL Reference

ALTER FUNCTION
COMPILE
Specify COMPILE to cause Oracle to recompile the function. The COMPILE keyword

is required. If Oracle does not compile the function successfully, you can see the

associated compiler error messages with the SQL*Plus command SHOW ERRORS.

DEBUG
Specify DEBUG to instruct the PL/SQL compiler to generate and store the code for

use by the PL/SQL debugger.

Example

Recompiling a Function Example To explicitly recompile the function get_bal
owned by the user merriweather , issue the following statement:

ALTER FUNCTION merriweather.get_bal
 COMPILE;

If Oracle encounters no compilation errors while recompiling get_bal , get_bal
becomes valid. Oracle can subsequently execute it without recompiling it at run

time. If recompiling get_bal results in compilation errors, Oracle returns an error,

and get_bal remains invalid.

Oracle also invalidates all objects that depend upon get_bal . If you subsequently

reference one of these objects without explicitly recompiling it first, Oracle

recompiles it implicitly at run time.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-39

ALTER INDEX
ALTER INDEX

Purpose
Use the ALTER INDEX statement to change or rebuild an existing index.

Prerequisites
The index must be in your own schema or you must have ALTER ANY INDEX
system privilege.

Schema object privileges are granted on the parent index, not on individual index

partitions or subpartitions.

You must have tablespace quota to modify, rebuild, or split an index partition or to

modify or rebuild an index subpartition.

See Also: CREATE INDEX on page 9-52 for information on

creating an index
7-40 SQL Reference

ALTER INDEX
Syntax

deallocate_unused_clause ::=

ALTER INDEX
schema .

index

deallocate_unused_clause

allocate_extent_clause

parallel_clause

physical_attributes_clause

LOGGING

NOLOGGING

rebuild_clause

PARAMETERS (’ alter_parameters ’)

ENABLE

DISABLE

UNUSABLE

RENAME TO new_index_name

COALESCE

partitioning_clauses

;

DEALLOCATE UNUSED
KEEP integer

K

M

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-41

ALTER INDEX
allocate_extent_clause ::=

parallel_clause ::=

physical_attributes_clause ::=

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

NOPARALLEL

PARALLEL
integer

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause
7-42 SQL Reference

ALTER INDEX
storage_clause : See storage_clause on page 11-129.

rebuild_clause ::=

compression_clause ::=

partitioning_clauses ::=

REBUILD

PARTITION partition

SUBPARTITION subpartition

REVERSE

NOREVERSE

parallel_clause

TABLESPACE tablespace

ONLINE

COMPUTE STATISTICS

physical_attributes_clause

compression_clause

LOGGING

NOLOGGING

PARAMETERS (’ rebuild_parameters ’)

COMPRESS
integer

NOCOMPRESS

modify_default_attributes_clause

modify_partition_clause

rename_partition/subpartition_clause

drop_partition_clause

split_partition_clause

modify_subpartition_clause
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-43

ALTER INDEX
modify_default_attributes_clause ::=

modify_partition_clause ::=

rename_partition / subpartition_clause ::=

drop_partition_clause ::=

MODIFY DEFAULT ATTRIBUTES
FOR PARTITION partition

physical_attributes_clause

TABLESPACE
tablespace

DEFAULT

LOGGING

NOLOGGING

MODIFY PARTITION partition

physical_attributes_clause

LOGGING

NOLOGGING

deallocate_unused_clause

allocate_extent_clause

COALESCE

UNUSABLE

RENAME
PARTITION

SUBPARTITION
current_name TO new_name

DROP PARTITION partition_name
7-44 SQL Reference

ALTER INDEX
split_partition_clause ::=

index_partition_description ::=

modify_subpartition_clause ::=

Keywords and Parameters

schema
Specify the schema containing the index. If you omit schema , Oracle assumes the

index is in your own schema.

index
Specify the name of the index to be altered.

Restrictions:

■ If index is a domain index, you can specify only the PARAMETERS clause, the

RENAME clause, or the rebuild_clause (with or without the PARAMETERS
clause). No other clauses are valid.

SPLIT PARTITION partition_name_old AT (value_list)

INTO (index_partition_description , index_partition_descrpition) parallel_clause

PARTITION
partition

segment_attributes_clause

compression_clause

MODIFY SUBPARTITION subpartition

UNUSABLE

allocate_extent_clause

deallocate_unused_clause
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-45

ALTER INDEX
■ You cannot alter or rename a domain index that is marked LOADING or

FAILED . If an index is marked FAILED , the only clause you can specify is

REBUILD.

deallocate_unused_clause
The deallocate_unused_clause lets you explicitly deallocate unused space at

the end of the index and makes the freed space available for other segments in the

tablespace. Only unused space above the high water mark can be freed.

If index is range-partitioned or hash-partitioned, Oracle deallocates unused space

from each index partition. If index is a local index on a composite-partitioned

table, Oracle deallocates unused space from each index subpartition.

Restrictions:

■ You cannot specify this clause for an index on a temporary table.

■ You cannot specify this clause and also specify the rebuild_clause .

allocate_extent_clause
The allocate_extent_clause lets you explicitly allocate a new extent for the

index. For a local index on a hash-partitioned table, Oracle allocates a new extent

for each partition of the index.

Restriction: You cannot specify this clause for an index on a temporary table or for

a range-partitioned or composite-partitioned index.

See Also: Oracle8i Data Cartridge Developer’s Guide for information

on the LOADING and FAILED states of domain indexes

See Also: ALTER TABLE on page 8-2 for more information on this

clause

KEEP integer The KEEP clause lets you specify the number of bytes above the

high water mark that the index will have after deallocation. If the

number of remaining extents are less than MINEXTENTS, then

MINEXTENTS is set to the current number of extents. If the initial

extent becomes smaller than INITIAL , then INITIAL is set to the

value of the current initial extent. If you omit KEEP, all unused

space is freed.

See Also: ALTER TABLE on page 8-2 for a complete

description of this clause
7-46 SQL Reference

ALTER INDEX
parallel_clause
Use the PARALLEL clause to change the default degree of parallelism for queries

and DML on the index.

Restriction: You cannot specify this clause for an index on a temporary table.

SIZE integer Specify the size of the extent in bytes. Use K or M to specify the

extent size in kilobytes or megabytes. If you omit SIZE , Oracle

determines the size based on the values of the index’s storage

parameters.

DATAFILE
’filename ’

Specify one of the datafiles in the index’s tablespace to contain the

new extent. If you omit DATAFILE, Oracle chooses the datafile.

INSTANCE
integer

Use the INSTANCE clause to make the new extent available to the

specified instance. An instance is identified by the value of its

initialization parameter INSTANCE_NUMBER. If you omit this

parameter, the extent is available to all instances. Use this

parameter only if you are using Oracle with the Parallel Server

option in parallel mode.

Explicitly allocating an extent with this clause does not change the values of the

NEXT and PCTINCREASE storage parameters, so does not affect the size of the next

extent to be allocated.

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLEL if you want Oracle to select a degree of

parallelism equal to the number of CPUs available on all

participating instances times the value of the PARALLEL_
THREADS_PER_CPU initialization parameter.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-47

ALTER INDEX
physical_attributes_clause
Use the physical_attributes_clause to change the values of parameters for a

nonpartitioned index, all partitions and subpartitions of a partitioned index, a

specified partition, or all subpartitions of a specified partition.

Restrictions:

■ You cannot specify this clause for an index on a temporary table.

■ You cannot specify the PCTUSED parameter when altering an index.

■ You cannot change the value of the PCTFREE parameter for the index as a

whole (ALTER INDEX) or for a partition (ALTER INDEX... MODIFY PARTITION).

You can specify PCTFREE in all other forms of the ALTER INDEX statement.

PARALLEL
integer

Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel

operation. Each parallel thread may use one or two parallel

execution servers. Normally Oracle calculates the optimum

degree of parallelism, so it is not necessary for you to specify

integer .

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 10-41

See Also: the physical attributes parameters in CREATE TABLE on

page 10-7

storage_
clause

Use the storage_clause to change the storage parameters for a

nonpartitioned index, index partition, or all partitions of a

partitioned index, or default values of these parameters for a

partitioned index.

See Also: storage_clause on page 11-129

LOGGING|
NOLOGGING

Use LOGGING or NOLOGGING to specify whether subsequent

Direct Loader (SQL*Loader) and direct-load INSERT operations

against a nonpartitioned index, a range or hash index partition, or

all partitions or subpartitions of a composite-partitioned index

will be logged (LOGGING) or not logged (NOLOGGING) in the redo

log file.
7-48 SQL Reference

ALTER INDEX
rebuild_clause
Use the rebuild_clause to re-create an existing index or one of its partitions or

subpartitions. For a function-based index, this clause also enables the index. If the

function on which the index is based does not exist, the rebuild statement will fail.

Restrictions:

■ You cannot rebuild an index on a temporary table.

In NOLOGGING mode, data is modified with minimal logging (to

mark new extents invalid and to record dictionary changes).

When applied during media recovery, the extent invalidation

records mark a range of blocks as logically corrupt, because the

redo data is not logged. Therefore, if you cannot afford to lose this

index, you must take a backup after the operation in NOLOGGING
mode.

If the database is run in ARCHIVELOG mode, media recovery from

a backup taken before an operation in LOGGING mode will re-

create the index. However, media recovery from a backup taken

before an operation in NOLOGGING mode will not re-create the

index.

An index segment can have logging attributes different from those

of the base table and different from those of other index segments

for the same base table.

Restriction: You cannot specify this clause for an index on a

temporary table.

See Also: Oracle8i Concepts and the Oracle8i Parallel Server
Concepts for more information about LOGGING and parallel

DML

RECOVERABLE
|

UNRECOVER-
ABLE

These keywords are deprecated and have been replaced with

LOGGING and NOLOGGING, respectively. Although RECOVERABLE
and UNRECOVERABLE are supported for backward compatibility,

Oracle Corporation strongly recommends that you use the

LOGGING and NOLOGGING keywords.

RECOVERABLE is not a valid keyword for creating partitioned

tables or LOB storage characteristics. UNRECOVERABLE is not a

valid keyword for creating partitioned or index-organized tables.

Also, it can be specified only with the AS subquery clause of

CREATE INDEX.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-49

ALTER INDEX
■ You cannot rebuild an entire partitioned index. You must rebuild each partition

or subpartition, as described below.

■ You cannot also specify the deallocate_unused_clause in this statement.

■ You cannot change the value of the PCTFREE parameter for the index as a

whole (ALTER INDEX) or for a partition (ALTER INDEX... MODIFY PARTITION).

You can specify PCTFREE in all other forms of the ALTER INDEX statement.

PARTITION
partition

Use the PARTITION clause to rebuild one partition of an index.

You can also use this clause to move an index partition to another

tablespace or to change a create-time physical attribute.

Restriction: You cannot specify this clause for a local index on a

composite-partitioned table. Instead, use the REBUILD
SUBPARTITION clause.

See Also: Oracle8i Administrator’s Guide for more information

about partition maintenance operations

SUBPARTITION
subpartition

Use the SUBPARTITION clause to rebuild one subpartition of an

index. You can also use this clause to move an index subpartition

to another tablespace. If you do not specify TABLESPACE, the

subpartition is rebuilt in the same tablespace.

Restrictions: The only parameters you can specify for a

subpartition are TABLESPACE and the parallel_clause .

REVERSE |
NOREVERSE

Indicate whether the bytes of the index block are stored in reverse

order:

■ REVERSE stores the bytes of the index block in reverse order

and excludes the rowid when the index is rebuilt.

■ NOREVERSE stores the bytes of the index block without

reversing the order when the index is rebuilt. Rebuilding a

REVERSE index without the NOREVERSE keyword produces a

rebuilt, reverse-keyed index.

Restrictions:

■ You cannot reverse a bitmap index or an index-organized

table.

■ You cannot specify REVERSE or NOREVERSE for a partition or

subpartition.
7-50 SQL Reference

ALTER INDEX
TABLESPACE
tablespace

Specify the tablespace where the rebuilt index, index partition, or

index subpartition will be stored. The default is the default

tablespace where the index or partition resided before you rebuilt

it.

COMPRESS Specify COMPRESS to enable key compression, which eliminates

repeated occurrence of key column values. Use integer to specify

the prefix length (number of prefix columns to compress).

■ For unique indexes, the range of valid prefix length values is

from 1 to the number of key columns minus 1. The default

prefix length is the number of key columns minus 1.

■ For nonunique indexes, the range of valid prefix length values

is from 1 to the number of key columns. The default prefix

length is number of key columns.

Oracle compresses only nonpartitioned indexes that are

nonunique or unique indexes of at least two columns.

Restriction: You cannot specify COMPRESS for a bitmap index.

NOCOMPRESS Specify NOCOMPRESS to disable key compression. This is the

default.

ONLINE Specify ONLINE to allow DML operations on the table or partition

during rebuilding of the index.

Restrictions:

■ You cannot specify ONLINE when rebuilding the secondary

index of an index-organized table.

■ Parallel DML is not supported during online index building.

If you specify ONLINE and then issue parallel DML

statements, Oracle returns an error.

COMPUTE
STATISTICS

Specify COMPUTE STATISTICS if you want to collect statistics at

relatively little cost during the rebuilding of an index. These

statistics are stored in the data dictionary for ongoing use by the

optimizer in choosing a plan of execution for SQL statements.

The types of statistics collected depend on the type of index you

are rebuilding.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-51

ALTER INDEX
PARAMETERS
The PARAMETERS clause applies only to domain indexes. This clause specifies the

parameter string for altering the index (or, in the rebuild_clause , rebuilding the

index). The maximum length of the parameter string is 1000 characters. This string

is passed uninterpreted to the appropriate indextype routine.

Restrictions:

■ You cannot specify this clause for any indexes other than domain indexes.

■ The parameter string is passed to the appropriate routine only if index is not

marked UNUSABLE.

ENABLE
ENABLE applies only to a function-based index that has been disabled because a

user-defined function used by the index was dropped or replaced. This clause

enables such an index if these conditions are true:

■ The function is currently valid

■ The signature of the current function matches the signature of the function

when the index was created

Note: If you create an index using another index (instead of a

table), the original index might not provide adequate

statistical information. Therefore, Oracle generally uses the

base table to compute the statistics, which will improve the

statistics but may negatively affect performance.

Additional methods of collecting statistics are available in PL/

SQL packages and procedures.

See Also: Oracle8i Supplied PL/SQL Packages Reference

LOGGING |
NOLOGGING

Specify whether the ALTER INDEX ... REBUILD operation will be

logged.

See Also:

■ Oracle8i Data Cartridge Developer’s Guide for more information

on indextype routines

■ CREATE INDEX on page 9-52 for more information on domain

indexes
7-52 SQL Reference

ALTER INDEX
■ The function is currently marked as DETERMINISTIC

Restriction: You cannot specify any other clauses of ALTER INDEX in the same

statement with ENABLE.

DISABLE
DISABLE applies only to a function-based index. This clause enables you to disable

the use of a function-based index. You might want to do so, for example, while

working on the body of the function. Afterward you can either rebuild the index or

specify another ALTER INDEX statement with the ENABLE keyword.

UNUSABLE
Specify UNUSABLE to mark the index or index partition(s) or index subpartition(s)

UNUSABLE. An unusable index must be rebuilt, or dropped and re-created, before it

can be used. While one partition is marked UNUSABLE, the other partitions of the

index are still valid. You can execute statements that require the index if the

statements do not access the unusable partition. You can also split or rename the

unusable partition before rebuilding it.

Restriction: You cannot specify this clause for an index on a temporary table.

RENAME TO
Use the RENAME clause to rename index to new_index_name . The new_index_
name is a single identifier and does not include the schema name.

COALESCE
Specify COALESCE to instruct Oracle to merge the contents of index blocks where

possible to free blocks for reuse.

Restriction: You cannot specify this clause for an index on a temporary table.

partitioning_clauses
The partitioning clauses of the ALTER INDEX statement are valid only for

partitioned indexes.

Restrictions:

■ You cannot specify any of these clauses for an index on a temporary table.

See Also: Oracle8i Administrator’s Guide for more information on

space management and coalescing indexes
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-53

ALTER INDEX
■ You can combine several operations on the base index into one ALTER INDEX
statement (except RENAME and REBUILD), but you cannot combine partition

operations with other partition operations or with operations on the base index.

modify_default_attributes_clause

Specify new values for the default attributes of a partitioned index.

Restriction: The only attribute you can specify for an index on a hash-partitioned or

composite-partitioned table is TABLESPACE.

modify_partition_clause

Use the modify_partition_clause to modify the real physical attributes,

logging attribute, or storage characteristics of index partition partition or its

subpartitions.

Restriction: You cannot specify the physical_attributes_clause for an index

on a hash-partitioned table.

rename_partition / subpartition_clause

Use the rename_partition or rename_subpartition to rename index

partition or subpartition to new_name.

TABLESPACE Specify the default tablespace for new partitions of an index or

subpartitions of an index partition.

LOGGING |
NOLOGGING

Specify the default logging attribute of a partitioned index or an

index partition.

FOR
PARTITION
partition

Use the FOR PARTITION clause to specify the default attributes

for the subpartitions of a partition of a local index on a composite-

partitioned table.

Note: If the index is a local index on a composite-partitioned

table, the changes you specify here will override any attributes

specified earlier for the subpartitions of index, as well as establish

default values of attributes for future subpartitions of that partition.

To change the default attributes of the partition without overriding

the attributes of subpartitions, use ALTER TABLE ... MODIFY
DEFAULT ATTRIBUTES OF PARTITION.
7-54 SQL Reference

ALTER INDEX
drop_partition_clause

Use the drop_partition_clause to remove a partition and the data in it from a

partitioned global index. When you drop a partition of a global index, Oracle marks

the index’s next partition UNUSABLE. You cannot drop the highest partition of a

global index.

split_partition_clause

Use the split_partition_clause to split a partition of a global partitioned

index into two partitions, adding a new partition to the index.

Splitting a partition marked UNUSABLE results in two partitions, both marked

UNUSABLE. You must rebuild the partitions before you can use them.

Splitting a usable partition results in two partitions populated with index data. Both

new partitions are usable.

modify_subpartition_clause

Use the modify_subpartition_clause to mark UNUSABLE or allocate or

deallocate storage for a subpartition of a local index on a composite-partitioned

table. All other attributes of such a subpartition are inherited from partition-level

default attributes.

Examples

Modifying Real Attributes Example This statement alters Scott’s customer index

so that future data blocks within this index use 5 initial transaction entries and an

incremental extent of 100 kilobytes:

ALTER INDEX scott.customer
 INITRANS 5
 STORAGE (NEXT 100K);

AT (value_
list)

Specify the new noninclusive upper bound for split_
partition_1 . The value_list must evaluate to less than the

presplit partition bound for partition_name_old and greater

than the partition bound for the next lowest partition (if there is

one).

INTO index_
partition_
description

Specify (optionally) the name and physical attributes of each of

the two partitions resulting from the split.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-55

ALTER INDEX
If the scott.customer index is partitioned, this statement also alters the default

attributes of future partitions of the index. New partitions added in the future will

use 5 initial transaction entries and an incremental extent of 100K.

Dropping an Index Partition Example The following statement drops index

partition ix_antarctica :

ALTER INDEX sales_area_ix
 DROP PARTITION ix_antarctica;

Modifying Default Attributes Example This statement alters the default attributes

of local partitioned index sales_ix3 . New partitions added in the future will use

5 initial transaction entries and an incremental extent of 100K:

ALTER INDEX sales_ix3
 MODIFY DEFAULT ATTRIBUTES INITRANS 5 STORAGE (NEXT 100K);

Marking an Index Unusable Example The following statement marks the odx_
acctno index as UNUSABLE:

ALTER INDEX idx_acctno UNUSABLE;

Marking a Partition Unusable Example The following statement marks partition

idx_feb96 of index idx_acctno as UNUSABLE:

ALTER INDEX idx_acctno MODIFY PARTITION idx_feb96 UNUSABLE;

Changing MAXEXTENTS Example The following statement changes the

maximum number of extents for partition brix_ny and changes the logging

attribute:

ALTER INDEX branch_ix MODIFY PARTITION brix_ny
 STORAGE(MAXEXTENTS 30) LOGGING;

Disabling Parallel Queries Example The following statement sets the parallel

attributes for index artist_ix so that scans on the index will not be parallelized:

ALTER INDEX artist_ix NOPARALLEL;

Rebuilding a Partition Example The following statement rebuilds partition p063
in index artist_ix . The rebuilding of the index partition will not be logged:

ALTER INDEX artist_ix
 REBUILD PARTITION p063 NOLOGGING;

Renaming an Index Example The following statement renames an index:
7-56 SQL Reference

ALTER INDEX
ALTER INDEX emp_ix1 RENAME TO employee_ix1;

Renaming an Index Partition Example The following statement renames an index

partition:

ALTER INDEX employee_ix1 RENAME PARTITION emp_ix1_p3
 TO employee_ix1_p3;

Splitting a Partition Example The following statement splits partition partnum_
ix_p6 in partitioned index partnum_ix into partnum_ix_p5 and partnum_ix_
p6 :

ALTER INDEX partnum_ix
 SPLIT PARTITION partnum_ix_p6 AT (5001)
 INTO (PARTITION partnum_ix_p5 TABLESPACE ts017 LOGGING,
 PARTITION partnum_ix_p6 TABLESPACE ts004);

The second partition retains the name of the old partition.

Storing Index Blocks in Reverse Order Example The following statement rebuilds

index emp_ix so that the bytes of the index block are stored in REVERSE order:

ALTER INDEX emp_ix REBUILD REVERSE;

Collecting Index Statistics Example The following statement collects statistics on

the nonpartitioned emp_indx index:

ALTER INDEX emp_indx REBUILD COMPUTE STATISTICS;

The type of statistics collected depends on the type of index you are rebuilding.

PARALLEL Example The following statement causes the index to be rebuilt from

the existing index by using parallel execution processes to scan the old and to build

the new index:

ALTER INDEX emp_idx
 REBUILD
 PARALLEL;

See Also: Oracle8i Concepts.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-57

ALTER JAVA
ALTER JAVA

Purpose
Use the ALTER JAVA statement to force the resolution of a Java class schema object

or compilation of a Java source schema object. (You cannot call the methods of a

Java class before all its external references to Java names are associated with other

classes.)

Prerequisites
The Java source or class must be in your own schema, or you must have the ALTER
ANY PROCEDURE system privilege. You must also have the EXECUTE object

privilege on Java classes.

Syntax

invoker_rights_clause ::=

See Also: Oracle8i Java Stored Procedures Developer’s Guide for more

information on resolving Java classes and compiling Java sources

ALTER JAVA
SOURCE

CLASS

schema .
object_name

RESOLVER ((match_string
, schema_name

–
)) COMPILE

RESOLVE

invoker_rights_clause

;

AUTHID
CURRENT_USER

DEFINER
7-58 SQL Reference

ALTER JAVA
Keywords and Parameters

JAVA SOURCE
Use ALTER JAVA SOURCE to compile a Java source schema object.

JAVA CLASS
Use ALTER JAVA CLASS to resolve a Java class schema object.

object_name
Specify a previously created Java class or source schema object. Use double

quotation marks to preserve lower- or mixed-case names.

RESOLVER
The RESOLVER clause lets you specify how schemas are searched for referenced

fully specified Java names, using the mapping pairs specified when the Java class or

source was created.

RESOLVE | COMPILE
RESOLVE and COMPILE are synonymous keywords. They let you specify that

Oracle should attempt to resolve the primary Java class schema object.

■ When applied to a class, resolution of referenced names to other class schema

objects occurs.

■ When applied to a source, source compilation occurs.

invoker_rights_clause
The invoker_rights_clause lets you specify whether the methods of the class

execute with the privileges and in the schema of the user who defined it or with the

privileges and in the schema of CURRENT_USER.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the member functions and procedures

of the type.

See Also: CREATE JAVA on page 9-79
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-59

ALTER JAVA
Example

Resolving a Java Class Example The following statement forces the resolution of

a Java class:

ALTER JAVA CLASS "Agent"
 RESOLVER (("/home/java/bin/*" scott)(* public))
 RESOLVE;

AUTHID
CURRENT_USER

Specify CURRENT_USER if you want the methods of the class to

execute with the privileges of CURRENT_USER. This clause is the

default and creates an "invoker-rights class."

This clause also specifies that external names in queries, DML

operations, and dynamic SQL statements resolve in the schema of

CURRENT_USER. External names in all other statements resolve in

the schema in which the methods reside.

AUTHID
DEFINER

Specify DEFINER if you want the methods of the class to execute

with the privileges of the user who defined it.

This clause also specifies that external names resolve in the

schema where the methods reside.

See Also:

■ Oracle8i Concepts and Oracle8i Application Developer’s Guide -
Fundamentals for information on how CURRENT_USER is
determined

■ Oracle8i Java Stored Procedures Developer’s Guide
7-60 SQL Reference

ALTER MATERIALIZED VIEW
ALTER MATERIALIZED VIEW

Purpose
A materialized view is a database object that contains the results of a query of one

or more tables. Use the ALTER MATERIALIZED VIEW statement to modify an

existing materialized view in one or more of the following ways:

■ To change its storage characteristics

■ To change its refresh method, mode, or time

■ To alter its structure so that it is a different type of materialized view

■ To enable or disable query rewrite.

The tables in the query are called master tables (a replication term) or detail tables
(a data warehouse term). This reference uses "master tables" for consistency. The

databases containing the master tables are called the master databases.

Prerequisites
The privileges required to alter a materialized view should be granted directly, as

follows:

The materialized view must be in your own schema, or you must have the ALTER
ANY MATERIALIZED VIEW system privilege.

To enable a materialized view for query rewrite:

Note: The keyword SNAPSHOT is supported in place of

MATERIALIZED VIEW for backward compatibility.

See Also:

■ CREATE MATERIALIZED VIEW on page 9-88for more

information on creating materialized views

■ Oracle8i Replication for information on materialized views in a

replication environment

■ Oracle8i Data Warehousing Guide for information on

materialized views in a data warehousing environment
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-61

ALTER MATERIALIZED VIEW
■ If all of the master tables in the materialized view are in your schema, you must

have the QUERY REWRITE privilege.

■ If any of the master tables are in another schema, you must have the GLOBAL
QUERY REWRITE privilege.

■ If the materialized view is in another user’s schema, both you and the owner of

that schema must have the appropriate QUERY REWRITE privilege, as described

in the preceding two items. In addition, the owner of the materialized view

must have SELECT access to any master tables that the materialized view

owner does not own.

See Also: Oracle8i Replication and Oracle8i Data Warehousing Guide
7-62 SQL Reference

ALTER MATERIALIZED VIEW
Syntax

ALTER
MATERIALIZED VIEW

SNAPSHOT

schema .
materialized_view / snapshot

physical_attributes_clause

LOB_storage_clause

,

modify_LOB_storage_clause

,

partitioning_clauses

parallel_clause

LOGGING

NOLOGGING

allocate_extent_clause

CACHE

NOCACHE

USING INDEX physical_attributes_clause refresh_clause

ENABLE

DISABLE
QUERY REWRITE

COMPILE

CONSIDER FRESH
;

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-63

ALTER MATERIALIZED VIEW
LOB_storage_clause : See ALTER TABLE on page 8-2.

modify_LOB_storage_clause : See ALTER TABLE on page 8-2.

partitioning_clauses : See ALTER TABLE on page 8-2.

parallel_clause ::=

allocate_extent_clause ::=

refresh_clause ::=

NOPARALLEL

PARALLEL
integer

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

REFRESH

FAST

COMPLETE

FORCE

ON
DEMAND

COMMIT

START WITH

NEXT
date

WITH PRIMARY KEY

USING
DEFAULT MASTER ROLLBACK SEGMENT

MASTER ROLLBACK SEGMENT rollback_segment
7-64 SQL Reference

ALTER MATERIALIZED VIEW
physical_attributes_clause ::=

storage_clause : See the storage_clause on page 11-129.

Keywords and Parameters

schema
Specify the schema containing the materialized view. If you omit schema , Oracle

assumes the materialized view is in your own schema.

materialized_view
Specify the name of the materialized view to be altered.

physical_attributes_clause
Specify new values for the PCTFREE, PCTUSED, INITRANS , and MAXTRANS
parameters (or, when used in the USING INDEX clause, for the INITRANS and

MAXTRANS parameters only) and the storage characteristics for the materialized

view.

LOB_storage_clause
The LOB_storage_clause lets you specify the LOB storage characteristics.

See Also:

■ ALTER TABLE on page 8-2 for information on the PCTFREE,
PCTUSED, INITRANS , and MAXTRANS parameters

■ storage_clause on page 11-129 for information about

storage characteristics

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-65

ALTER MATERIALIZED VIEW
modify_LOB_storage_clause
The modify_LOB_storage_clause lets you modify the physical attributes of the

LOB attribute lob_item or LOB object attribute.

partitioning_clauses
The syntax and general functioning of the partitioning clauses for materialized

views is the same as for partitioned tables.

Restrictions:

■ You cannot use the LOB_storage_clause or modify_LOB_storage_
clause when modifying a materialized view.

■ If you attempt to drop, truncate, or exchange a materialized view partition,

Oracle raises an error.

See Also: ALTER TABLE on page 8-2 for information about

specifying the parameters of this clause

See Also: ALTER TABLE on page 8-2 for information about

specifying the parameters of this clause

See Also: ALTER TABLE on page 8-2

Note: If you wish to keep the contents of the materialized view

synchronized with those of the master table, Oracle Corporation

recommends that you manually perform a complete refresh of all

materialized views dependent on the table after dropping or

truncating a table partition.

MODIFY PARTITION UNUSABLE LOCAL INDEXES

Use this clause to mark UNUSABLE all the local index partitions

associated with partition .

MODIFY PARTITION REBUILD UNUSABLE LOCAL INDEXES

Use this clause to rebuild the unusable local index partitions

associated with partition .
7-66 SQL Reference

ALTER MATERIALIZED VIEW
parallel_clause
The parallel_clause lets you change the default degree of parallelism for the

materialized view.

LOGGING | NOLOGGING
Specify or change the logging characteristics of the materialized view.

allocate_extent_clause
The allocate_extent_clause lets you explicitly allocate a new extent for the

materialized view.

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLEL if you want Oracle to select a degree of

parallelism equal to the number of CPUs available on all

participating instances times the value of the PARALLEL_
THREADS_PER_CPU initialization parameter.

PARALLEL
integer

Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel

operation. Each parallel thread may use one or two parallel

execution servers. Normally Oracle calculates the optimum

degree of parallelism, so it is not necessary for you to specify

integer .

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 10-41

See Also: ALTER TABLE on page 8-2 for information about logging

characteristics

See Also: ALTER TABLE on page 8-2
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-67

ALTER MATERIALIZED VIEW
CACHE | NOCACHE
For data that will be accessed frequently, CACHE specifies that the blocks retrieved

for this table are placed at the most recently used end of the LRU list in the buffer

cache when a full table scan is performed. This attribute is useful for small lookup

tables. NOCACHE specifies that the blocks are placed at the least recently used end of

the LRU list.

USING INDEX
Use this clause to change the value of INITRANS , MAXTRANS, and STORAGE
parameters for the index Oracle uses to maintain the materialized view’s data.

Restriction: You cannot specify the PCTUSED or PCTFREE parameters in this clause.

refresh_clause
Use the refresh_clause to change the default method and mode and the default

times for automatic refreshes. If the contents of a materialized view’s master tables

are modified, the data in the materialized view must be updated to make the

materialized view accurately reflect the data currently in its master table(s). This

clause lets you schedule the times and specify the method and mode for Oracle to

refresh the materialized view.

See Also: ALTER TABLE on page 8-2 for information about

specifying CACHE or NOCACHE

Note: This clause only sets the default refresh options. For

instructions on actually implementing the refresh, refer to Oracle8i
Replication and Oracle8i Data Warehousing Guide.

FAST Specify FAST for incremental refresh method, which performs the

refresh according to the changes that have occurred to the master

tables. The changes are stored either in the materialized view log

associated with the master table (for conventional DML changes)

or in the direct loader log (for direct-load INSERT operations).
7-68 SQL Reference

ALTER MATERIALIZED VIEW
For both conventional DML changes and for direct-path loads,

other conditions may restrict the eligibility of a materialized view

for fast refresh.

See Also:

- Oracle8i Replication for restrictions on fast refresh in

replication environments

- Oracle8i Data Warehousing Guide for restrictions on fast

refresh in data warehouse environments

Restrictions:

■ When you specify FAST refresh at create time, Oracle verifies

that the materialized view you are creating is eligible for fast

refresh. When you change the refresh method to FAST in an

ALTER MATERIALIZED VIEW statement, Oracle does not

perform this verification. If the materialized view is not

eligible for fast refresh, Oracle will return an error when you

attempt to refresh this view.

■ Materialized views are not eligible for fast refresh if the

defining query contains an analytic function.

See Also: "Analytic Functions" on page 4-8

COMPLETE Specify COMPLETE for the complete refresh method, which is

implemented by executing the materialized view’s defining query.

If you request a complete refresh, Oracle performs a complete

refresh even if a fast refresh is possible.

FORCE Specify FORCE if, when a refresh occurs, you want Oracle to

perform a fast refresh if one is possible or a complete refresh

otherwise.

ON COMMIT Specify ON COMMIT if you want a fast refresh to occur whenever

Oracle commits a transaction that operates on a master table of the

materialized view.

Restriction: This clause is supported only for materialized join

views and single-table materialized aggregate views.

See Also: Oracle8i Replication and Oracle8i Data Warehousing
Guide
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-69

ALTER MATERIALIZED VIEW
ON DEMAND Specify ON DEMAND if you want the materialized view to be

refreshed on demand by calling one of the three DBMS_MVIEW
refresh procedures. If you omit both ON COMMIT and ON DEMAND,
ON DEMAND is the default.

See Also:

- Oracle8i Supplied PL/SQL Packages Reference for information

on these procedures

- Oracle8i Data Warehousing Guide on the types of materialized

views you can create by specifying REFRESH ON DEMAND

Note: If you specify ON COMMIT or ON DEMAND, you cannot

also specify START WITH or NEXT.

START WITH Specify START WITHdate to indicate a date for the first

automatic refresh time.

NEXT Specify NEXT to indicate a date expression for calculating the

interval between automatic refreshes.

Both the START WITH and NEXT values must evaluate to a time in the future. If you

omit the START WITH value, Oracle determines the first automatic refresh time by

evaluating the NEXTexpression with respect to the creation time of the materialized

view. If you specify a START WITH value but omit the NEXT value, Oracle refreshes

the materialized view only once. If you omit both the START WITH and NEXT
values, or if you omit the refresh_clause entirely, Oracle does not automatically

refresh the materialized view.

WITH PRIMARY
KEY

Specify WITH PRIMARY KEY to change a rowid materialized view

to a primary key materialized view. Primary key materialized

views allow materialized view master tables to be reorganized

without affecting the materialized view’s ability to continue to fast

refresh. The master table must contain an enabled primary key

constraint.

See Also: Oracle8i Replication for detailed information about

primary key materialized views
7-70 SQL Reference

ALTER MATERIALIZED VIEW
QUERY REWRITE
Use this clause to determine whether the materialized view is eligible to be used for

query rewrite.

USING
ROLLBACK
SEGMENT

Specify USING ROLLBACK SEGMENTto change the remote rollback

segment to be used during materialized view refresh, where

rollback_segment is the name of the rollback segment to be

used.

See Also: Oracle8i Replication for information on changing the

local materialized view rollback segment using the DBMS_
REFRESH package

DEFAULT Specify DEFAULT if you want Oracle to choose

the rollback segment to use. If you specify

DEFAULT, you cannot specify rollback_
segment .

MASTER ...
rollback_
segment

 Specify the remote rollback segment to be used

at the remote master for the individual

materialized view. (To change the local

materialized view rollback segment, use the

DBMS_REFRESH package, described in Oracle8i
Replication.)

The master rollback segment is stored on a per-

materialized-view basis and is validated during

materialized view creation and refresh. If the

materialized view is complex, the master

rollback segment, if specified, is ignored.

ENABLE Specify ENABLEto enable the materialized view for query rewrite.

See Also: Oracle8i Data Warehousing Guide for more

information on query rewrite.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-71

ALTER MATERIALIZED VIEW
COMPILE
Specify COMPILE to explicitly revalidate a materialized view. If an object upon

which the materialized view depends is dropped or altered, the materialized view

remains accessible, but it is invalid for query rewrite. You can use this clause to

explicitly revalidate the materialized view to make it eligible for query rewrite.

If the materialized view fails to revalidate, it cannot be refreshed or used for query

rewrite.

CONSIDER FRESH
CONSIDER FRESH directs Oracle to consider the materialized view fresh and

therefore eligible for query rewrite in the TRUSTED or STALE_TOLERATED modes.

Because Oracle cannot guarantee the freshness of the materialized view, query

rewrite in ENFORCEDmode is not supported. This clause also sets the staleness state

of the materialized view to UNKNOWN. The staleness state is displayed in the

STALENESS column of the ALL_MVIEWS, DBA_MVIEWS, and USER_MVIEWS data

dictionary views.

This clause is useful after performing partition maintenance operations against the

master table. Such operations would otherwise render the materialized view

Restrictions:

■ If the materialized view is in an invalid or unusable state, it is

not eligible for query rewrite in spite of the ENABLE mode.

■ You cannot enable query rewrite if the materialized view was

created totally or in part from a view.

■ You can enable query rewrite only if all user-defined functions

in the materialized view are DETERMINISTIC.

See Also: CREATE FUNCTION on page 9-43

■ You can enable query rewrite only if expressions in the

statement are repeatable. For example, you cannot include

CURRENT_TIME or USER.

See Also: Oracle8i Data Warehousing Guide

DISABLE Specify DISABLE if you do not want the materialized view to be

eligible for use by query rewrite. (If a materialized view is in the

invalid state, it is not eligible for use by query rewrite, whether or

not it is disabled.) However, a disabled materialized view can be

refreshed.
7-72 SQL Reference

ALTER MATERIALIZED VIEW
ineligible for fast refresh, and eligible for query rewrite only in STALE_TOLERATED
mode.

Examples

Automatic Refresh Example The following statement changes the default refresh

method for the hq_emp materialized view to FAST:

CREATE MATERIALIZED VIEW hq_emp
 REFRESH COMPLETE
 START WTIH SYSDATE NEXT SYSDATE +1/4096
 AS SELECT * FROM hq_emp;

ALTER MATERIALIZED VIEW hq_emp
 REFRESH FAST;

The next automatic refresh of the materialized view will be a fast refresh provided it

is a simple materialized view and its master table has a materialized view log that

was created before the materialized view was created or last refreshed.

Because the REFRESH clause does not specify START WITH or NEXT values, the

refresh intervals established by the REFRESH clause when the hq_emp materialized

view was created or last altered are still used.

NEXT Example The following statement stores a new interval between automatic

refreshes for the branch_emp materialized view:

ALTER MATERIALIZED VIEW branch_emp
 REFRESH NEXT SYSDATE+7;

Because the REFRESH clause does not specify a START WITH value, the next

automatic refresh occurs at the time established by the START WITH and NEXT

Note: A materialized view is stale if changes have been made to the

contents of any of its master tables. This clause directs Oracle to

assume that the materialized view is fresh and that no such changes

have been made. Therefore, actual updates to those tables pending

refresh are purged with respect to the materialized view.

See Also: Oracle8i Data Warehousing Guide for more information on

query rewrite and the implications of performing partition

maintenance operations on master tables
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-73

ALTER MATERIALIZED VIEW
values specified when the branch_emp materialized view was created or last

altered.

At the time of the next automatic refresh, Oracle refreshes the materialized view,

evaluates the NEXT expression SYSDATE+7 to determine the next automatic refresh

time, and continues to refresh the materialized view automatically once a week.

Because the REFRESH clause does not explicitly specify a refresh method, Oracle

continues to use the refresh method specified by the REFRESHclause of the CREATE
MATERIALIZED VIEW or most recent ALTER MATERIALIZED VIEW statement.

Complete Refresh Example The following statement specifies a new refresh

method, a new next refresh time, and a new interval between automatic refreshes of

the sf_emp materialized view:

ALTER MATERIALIZED VIEW sf_emp
 REFRESH COMPLETE
 START WITH TRUNC(SYSDATE+1) + 9/24
 NEXT SYSDATE+7;

The START WITH value establishes the next automatic refresh for the materialized

view to be 9:00 a.m. tomorrow. At that point, Oracle performs a complete refresh of

the materialized view, evaluates the NEXT expression, and subsequently refreshes

the materialized view every week.

Enabling Query Rewrite Example The following statement enables query rewrite

on the materialized view mv1 and implicitly revalidates it.

ALTER MATERIALIZED VIEW mv1
 ENABLE QUERY REWRITE;

Rollback Segment Examples The following statement changes the remote master

rollback segment used during materialized view refresh to master_seg :

ALTER MATERIALIZED VIEW inventory
 REFRESH USING MASTER ROLLBACK SEGMENT master_seg;

The following statement changes the remote master rollback segment used during

materialized view refresh to one chosen by Oracle:

ALTER MATERIALIZED VIEW sales
 REFRESH USING DEFAULT MASTER ROLLBACK SEGMENT;

Primary Key Example The following statement changes a rowid materialized view

to a primary key materialized view:
7-74 SQL Reference

ALTER MATERIALIZED VIEW
ALTER MATERIALIZED VIEW emp_rs
 REFRESH WITH PRIMARY KEY;

COMPILE Example The following statement revalidates the materialized view

store_mv :

ALTER MATERIALIZED VIEW store_mv COMPILE;

Modifying Refresh Method Example The following statement changes the refresh

method of materialized view store_mv to FAST;

ALTER MATERIALIZED VIEW store_mv REFRESH FAST;

CONSIDER FRESH Example The following statement instructs Oracle that

materialized view mv1 should be considered fresh. This statement allows mv1 to be

eligible for query rewrite in TRUSTED mode even after you have performed

partition maintenance operations on the master tables of mv1:

ALTER MATERIALIZED VIEW mv1 CONSIDER FRESH;
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-75

ALTER MATERIALIZED VIEW LOG
ALTER MATERIALIZED VIEW LOG

Purpose
Use the ALTER MATERIALIZED VIEW LOG statement to alter the storage

characteristics, refresh mode or time, or type of an existing materialized view log. A

materialized view log is a table associated with the master table of a materialized

view.

Prerequisites
Only the owner of the master table or a user with the SELECT privilege for the

master table can alter a materialized view log.

Note: The keyword SNAPSHOT is supported in place of

MATERIALIZED VIEW for backward compatibility.

See Also:

■ ALTER MATERIALIZED VIEW on page 7-61 for more

information on materialized views, including refreshing them

■ CREATE MATERIALIZED VIEW on page 9-88 for a description

of the various types of materialized views

See Also: Oracle8i Replication for detailed information about the

prerequisites for ALTER MATERIALIZED VIEW LOG
7-76 SQL Reference

ALTER MATERIALIZED VIEW LOG
Syntax

physical_attributes_clause ::=

ALTER
MATERIALIZED VIEW

SNAPSHOT
LOG ON

schema .
table

physical_attributes_clause

partitioning_clauses

parallel_clause

LOGGING

NOLOGGING

allocate_extent_clause

CACHE

NOCACHE

ADD

PRIMARY KEY

ROWID

(filter_column

,

)

(filter_column

,

)

INCLUDING

EXCLUDING
NEW VALUES

;

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-77

ALTER MATERIALIZED VIEW LOG
storage_clause : See storage_clause on page 11-129.

partitioning_clauses : See ALTER TABLE on page 8-2.

allocate_extent_clause ::=

parallel_clause ::=

Keywords and Parameters

schema
Specify the schema containing the master table. If you omit schema , Oracle

assumes the materialized view log is in your own schema.

table
Specify the name of the master table associated with the materialized view log to be

altered.

physical_attributes_clause
The physical_attributes_clause lets you change the value of PCTFREE,
PCTUSED, INITRANS , and MAXTRANS parameters for the table, the partition, the

overflow data segment, or the default characteristics of a partitioned table.

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

NOPARALLEL

PARALLEL
integer
7-78 SQL Reference

ALTER MATERIALIZED VIEW LOG
partitioning_clauses
The syntax and general functioning of the partitioning clauses is the same as for the

ALTER TABLE statement

Restrictions:

■ You cannot use the LOB_storage_clause or modify_LOB_storage_
clause when modifying a materialized view log.

■ If you attempt to drop, truncate, or exchange a materialized view log partition,

Oracle raises an error.

parallel_clause
The parallel_clause lets you specify whether parallel operations will be

supported for the materialized view log.

See Also: CREATE TABLE on page 10-7 and the "Materialized View

Storage Example" on page 7-81 for a description of these

parameters

See Also: ALTER TABLE on page 8-2

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLEL if you want Oracle to select a degree of

parallelism equal to the number of CPUs available on all

participating instances times the value of the PARALLEL_
THREADS_PER_CPU initialization parameter.

PARALLEL
integer

Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel

operation. Each parallel thread may use one or two parallel

execution servers. Normally Oracle calculates the optimum

degree of parallelism, so it is not necessary for you to specify

integer .
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-79

ALTER MATERIALIZED VIEW LOG
LOGGING | NOLOGGING
Specify the logging attribute of the materialized view log.

allocate_extent_clause
The allocate_extent_clause lets you explicitly allocate a new extent for the

materialized view log.

CACHE | NOCACHE
For data that will be accessed frequently, CACHE specifies that the blocks retrieved

for this log are placed at the most recently used end of the LRU list in the buffer

cache when a full table scan is performed. This attribute is useful for small lookup

tables. NOCACHE specifies that the blocks are placed at the least recently used end of

the LRU list.

ADD
The ADD clause lets you augment the materialized view log so that it records the

primary key values or rowid values when rows in the materialized view master

table are updated. This clause can also be used to record additional filter columns.

To stop recording any of this information, you must first drop the materialized view

log and then re-create it. Dropping the materialized view log and then re-creating it

forces each of the existing materialized views that depend on the master table to

complete refresh on its next refresh.

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 10-41

See Also: ALTER TABLE on page 8-2 for information about

specifying this attribute

See Also: ALTER TABLE on page 8-2

See Also: ALTER TABLE on page 8-2 for information about

specifying CACHE or NOCACHE

PRIMARY KEY Specify PRIMARY KEY if you want the primary-key values of all

rows that are updated to be recorded in the materialized view log.

ROWID Specify ROWID if you want the rowid values of all rows that are

updated to be recorded in the materialized view log.
7-80 SQL Reference

ALTER MATERIALIZED VIEW LOG
Restriction: You can specify only one PRIMARY KEY, one ROWID, and one filter

column list per materialized view log. Therefore, if any of these three values were

specified at create time (either implicitly or explicitly), you cannot specify those

values in this ALTER statement.

NEW VALUES
The NEW VALUES clause lets you specify whether Oracle saves both old and new

values in the materialized view log. The value you set in this clause applies to all

columns in the log, not only to primary key, rowid, or filter columns you may have

added in this statement.

Examples

Materialized View Storage Example The following statement changes the

MAXEXTENTS value of a materialized view log:

ALTER MATERIALIZED VIEW LOG ON dept
 STORAGE MAXEXTENTS 50;

filter_
column(s)

Specify the columns whose values you want to be recorded in the

materialized view log for all rows that are updated. Filter columns

are non-primary-key columns referenced by materialized views.

See Also:

■ CREATE MATERIALIZED VIEW on page 9-88 for information

on explicit and implicit inclusion of materialized view log

values

■ Oracle8i Replication for more information about filter columns

INCLUDING Specify INCLUDING to save both new and old values in the log. If

this log is for a table on which you have a single-table

materialized aggregate view, and if you want the materialized

view to be eligible for fast refresh, you must specify INCLUDING.

EXCLUDING Specify EXCLUDING to disable the recording of new values in the

log. You can use this clause to avoid the overhead of recording

new values. However, do not use this clause if you have a fast-

refreshable single-table materialized aggregate view defined on

this table.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-81

ALTER MATERIALIZED VIEW LOG
PRIMARY KEY Example The following statement alters an existing rowid

materialized view log to also record primary key information:

ALTER MATERIALIZED VIEW LOG ON sales
 ADD PRIMARY KEY;
7-82 SQL Reference

ALTER OUTLINE
ALTER OUTLINE

Purpose
Use the ALTER OUTLINE statement to rename a stored outline, reassign it to a

different category, or regenerate it by compiling the outline’s SQL statement and

replacing the old outline data with the outline created under current conditions.

Prerequisites
To modify an outline, you must have the ALTER ANY OUTLINE system privilege.

Syntax

Keywords and Parameters

outline
Specify the name of the outline to be modified.

REBUILD
Specify REBUILD to regenerate the execution plan for outline using current

conditions.

RENAME TOnew_outline_name
Use the RENAME TO clause to specify an outline name to replace outline .

CHANGE CATEGORY TOnew_category_name
Use the CHANGE CATEGORY TO clause to specify the name of the category into

which the outline will be moved.

See Also: CREATE OUTLINE on page 9-119 and Oracle8i Performance
Guide and Reference for more information on outlines

ALTER OUTLINE outline

REBUILD

RENAME TO new_outline_name

CHANGE CATEGORY TO new_category_name

;

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-83

ALTER OUTLINE
Example

ALTER OUTLINE Example The following statement regenerates a stored outline

called salaries by compiling the outline’s text and replacing the old outline data

with the outline created under current conditions.

ALTER OUTLINE salaries REBUILD;
7-84 SQL Reference

ALTER PACKAGE
ALTER PACKAGE

Purpose
Use the ALTER PACKAGE statement to explicitly recompile a package specification,

body, or both. Explicit recompilation eliminates the need for implicit run-time

recompilation and prevents associated run-time compilation errors and

performance overhead.

Because all objects in a package are stored as a unit, the ALTER PACKAGE statement

recompiles all package objects together. You cannot use the ALTER PROCEDURE
statement or ALTER FUNCTION statement to recompile individually a procedure or

function that is part of a package.

Prerequisites
For you to modify a package, the package must be in your own schema or you must

have ALTER ANY PROCEDURE system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the package. If you omit schema , Oracle assumes the

package is in your own schema.

Note: This statement does not change the declaration or definition

of an existing package. To redeclare or redefine a package, use the

CREATE PACKAGE or the CREATE PACKAGE BODY on

page 9-122 statement with the OR REPLACE clause.

ALTER PACKAGE
schema .

package COMPILE
DEBUG

PACKAGE

SPECIFICATION

BODY
;

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-85

ALTER PACKAGE
package
Specify the name of the package to be recompiled.

COMPILE
You must specify COMPILE to recompile the package specification or body. The

COMPILE keyword is required.

If recompiling the package results in compilation errors, Oracle returns an error and

the body remains invalid. You can see the associated compiler error messages with

the SQL*Plus command SHOW ERRORS.

SPECIFICATION
Specify SPECIFICATION to recompile only the package specification, regardless of

whether it is invalid. You might want to recompile a package specification to check

for compilation errors after modifying the specification.

When you recompile a package specification, Oracle invalidates any local objects

that depend on the specification, such as procedures that call procedures or

functions in the package. The body of a package also depends on its specification. If

you subsequently reference one of these dependent objects without first explicitly

recompiling it, Oracle recompiles it implicitly at run time.

BODY
Specify BODYto recompile only the package body regardless of whether it is invalid.

You might want to recompile a package body after modifying it. Recompiling a

package body does not invalidate objects that depend upon the package

specification.

When you recompile a package body, Oracle first recompiles the objects on which

the body depends, if any of those objects are invalid. If Oracle recompiles the body

successfully, the body becomes valid.

PACKAGE
Specify PACKAGE to recompile both the package specification and the package

body if one exists, regardless of whether they are invalid. This is the default. The

recompilation of the package specification and body lead to the invalidation and

recompilation as described above for SPECIFICATION and BODY.

See Also: Oracle8i Concepts for information on how Oracle

maintains dependencies among schema objects, including remote

objects
7-86 SQL Reference

ALTER PACKAGE
DEBUG
Specify DEBUG to instruct the PL/SQL compiler to generate and store the code for

use by the PL/SQL debugger.

Examples

Recompiling a Package Examples This statement explicitly recompiles the

specification and body of the accounting package in the schema blair :

ALTER PACKAGE blair.accounting
 COMPILE PACKAGE;

If Oracle encounters no compilation errors while recompiling the accounting
specification and body, accounting becomes valid. Blair can subsequently call or

reference all package objects declared in the specification of accounting without

run-time recompilation. If recompiling accounting results in compilation errors,

Oracle returns an error and accounting remains invalid.

Oracle also invalidates all objects that depend upon accounting . If you

subsequently reference one of these objects without explicitly recompiling it first,

Oracle recompiles it implicitly at run time.

To recompile the body of the accounting package in the schema blair , issue the

following statement:

ALTER PACKAGE blair.accounting
 COMPILE BODY;

If Oracle encounters no compilation errors while recompiling the package body, the

body becomes valid. Blair can subsequently call or reference all package objects

declared in the specification of accounting without run-time recompilation. If

recompiling the body results in compilation errors, Oracle returns an error message

and the body remains invalid.

Because this statement recompiles the body and not the specification of

accounting , Oracle does not invalidate dependent objects.

See Also: Oracle8i Supplied PL/SQL Packages Reference for

information on debugging packages
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-87

ALTER PROCEDURE
ALTER PROCEDURE

Purpose
Use the ALTER PROCEDURE statement to explicitly recompile a stand-alone stored

procedure. Explicit recompilation eliminates the need for implicit run-time

recompilation and prevents associated run-time compilation errors and

performance overhead.

To recompile a procedure that is part of a package, recompile the entire package

using the ALTER PACKAGE statement (see ALTER PACKAGE on page 7-85).

The ALTER PROCEDURE statement is quite similar to the ALTER FUNCTION
statement.

Prerequisites
The procedure must be in your own schema or you must have ALTER ANY
PROCEDURE system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the procedure. If you omit schema , Oracle assumes

the procedure is in your own schema.

Note: This statement does not change the declaration or definition

of an existing procedure. To redeclare or redefine a procedure, use

the CREATE PROCEDURE statement with the OR REPLACE clause

(see CREATE PROCEDURE on page 9-132)

See Also: ALTER FUNCTION on page 7-38

ALTER PROCEDURE
schema .

procedure COMPILE
DEBUG

;

7-88 SQL Reference

ALTER PROCEDURE
procedure
Specify the name of the procedure to be recompiled.

COMPILE
Specify COMPILE to recompile the procedure. The COMPILE keyword is required.

Oracle recompiles the procedure regardless of whether it is valid or invalid.

■ Oracle first recompiles objects upon which the procedure depends, if any of

those objects are invalid.

■ Oracle also invalidates any local objects that depend upon the procedure, such

as procedures that call the recompiled procedure or package bodies that define

procedures that call the recompiled procedure.

■ If Oracle recompiles the procedure successfully, the procedure becomes valid. If

recompiling the procedure results in compilation errors, then Oracle returns an

error and the procedure remains invalid. You can see the associated compiler

error messages with the SQL*Plus command SHOW ERRORS.

DEBUG
Specify DEBUG to instruct the PL/SQL compiler to generate and store the code for

use by the PL/SQL debugger.

Example

Recompiling a Procedure Example To explicitly recompile the procedure close_
acct owned by the user henry , issue the following statement:

ALTER PROCEDURE henry.close_acct
 COMPILE;

If Oracle encounters no compilation errors while recompiling close_acct ,

close_acct becomes valid. Oracle can subsequently execute it without

recompiling it at run time. If recompiling close_acct results in compilation

errors, Oracle returns an error and close_acct remains invalid.

See Also: Oracle8i Concepts for information on how Oracle

maintains dependencies among schema objects, including remote

objects

See Also: Oracle8i Application Developer’s Guide - Fundamentals for

information on debugging procedures
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-89

ALTER PROCEDURE
Oracle also invalidates all dependent objects. These objects include any procedures,

functions, and package bodies that call close_acct . If you subsequently reference

one of these objects without first explicitly recompiling it, Oracle recompiles it

implicitly at run time.
7-90 SQL Reference

ALTER PROFILE
ALTER PROFILE

Purpose
Use the ALTER PROFILE statement to add, modify, or remove a resource limit or

password management parameter in a profile.

Changes made to a profile with an ALTER PROFILE statement affect users only in

their subsequent sessions, not in their current sessions.

Prerequisites
You must have ALTER PROFILE system privilege to change profile resource limits.

To modify password limits and protection, you must have ALTER PROFILE and

ALTER USER system privileges.

Syntax

See Also: CREATE PROFILE on page 9-139 for information on

creating a profile

ALTER PROFILE profile LIMIT
resource_parameters

password_parameters
;

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-91

ALTER PROFILE
resource_parameters ::=

password_parameters ::=

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

integer

K

M

UNLIMITED

DEFAULT

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT
7-92 SQL Reference

ALTER PROFILE
Keywords and Parameters
The keywords and parameters in the ALTER PROFILE statement all have the same

meaning as in the CREATE PROFILE statement.

 Examples

Making a Password Unavailable Example The following statement makes a

password unavailable for reuse for 90 days:

ALTER PROFILE prof
 LIMIT PASSWORD_REUSE_TIME 90
 PASSWORD_REUSE_MAX UNLIMITED;

Setting Default Values Example The following statement defaults the PASSWORD_
REUSE_TIME value to its defined value in the DEFAULT profile:

ALTER PROFILE prof
 LIMIT PASSWORD_REUSE_TIME DEFAULT
 PASSWORD_REUSE_MAX UNLIMITED;

Limiting Login Attempts and Password Lock Time Example The following

statement alters profile prof with FAILED_LOGIN_ATTEMPTS set to 5 and

PASSWORD_LOCK_TIME set to 1:

ALTER PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LOCK_TIME 1;

This statement causes prof ’s account to become locked for 1 day after 5

unsuccessful login attempts.

Changing Password Lifetime and Grace Period Example The following statement

modifies profile prof ’s PASSWORD_LIFE_TIME to 60 days and PASSWORD_
GRACE_TIME to 10 days:

ALTER PROFILE prof LIMIT
 PASSWORD_LIFE_TIME 60
 PASSWORD_GRACE_TIME 10;

Note: You cannot remove a limit from the DEFAULT profile.

See Also: CREATE PROFILE on page 9-139
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-93

ALTER PROFILE
Limiting Concurrent Sessions Example This statement defines a new limit of 5

concurrent sessions for the engineer profile:

ALTER PROFILE engineer LIMIT SESSIONS_PER_USER 5;

If the engineer profile does not currently define a limit for SESSIONS_PER_USER,
the above statement adds the limit of 5 to the profile. If the profile already defines a

limit, the above statement redefines it to 5. Any user assigned the engineer profile

is subsequently limited to 5 concurrent sessions.

Removing Limits Example This statement removes the IDLE_TIME limit from

the engineer profile:

ALTER PROFILE engineer LIMIT IDLE_TIME DEFAULT;

Any user assigned the engineer profile is subject in their subsequent sessions to

the IDLE_TIME limit defined in the DEFAULT profile.

Limiting Idle Time Example This statement defines a limit of 2 minutes of idle time

for the DEFAULT profile:

ALTER PROFILE default LIMIT IDLE_TIME 2;

This IDLE_TIME limit applies to these users:

■ Users who are not explicitly assigned any profile

■ Users who are explicitly assigned a profile that does not define an IDLE_TIME
limit

This statement defines unlimited idle time for the engineer profile:

ALTER PROFILE engineer LIMIT IDLE_TIME UNLIMITED;

Any user assigned the engineer profile is subsequently permitted unlimited idle

time.
7-94 SQL Reference

ALTER RESOURCE COST
ALTER RESOURCE COST

Purpose
Use the ALTER RESOURCE COST statement to specify or change the formula by

which Oracle calculates the total resource cost used in a session. The weight that

you assign to each resource determines how much the use of that resource

contributes to the total resource cost. If you do not assign a weight to a resource, the

weight defaults to 0, and use of the resource subsequently does not contribute to the

cost. The weights you assign apply to all subsequent sessions in the database.

Oracle calculates the total resource cost by first multiplying the amount of each

resource used in the session by the resource’s weight, and then summing the

products for all four resources. For any session, this cost is limited by the value of

the COMPOSITE_LIMIT parameter in the user’s profile. Both the products and the

total cost are expressed in units called service units.

Although Oracle monitors the use of other resources, only the four resources shown

in the syntax can contribute to the total resource cost for a session.

Once you have specified a formula for the total resource cost, you can limit this cost

for a session with the COMPOSITE_LIMIT parameter of the CREATE PROFILE
statement. If a session’s cost exceeds the limit, Oracle aborts the session and returns

an error. If you use the ALTER RESOURCE COST statement to change the weight

assigned to each resource, Oracle uses these new weights to calculate the total

resource cost for all current and subsequent sessions.

Prerequisites
You must have ALTER RESOURCE COST system privilege.

See Also: CREATE PROFILE on page 9-139 for information on all

resources and on establishing resource limits
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-95

ALTER RESOURCE COST
Syntax

Keywords and Parameters

CPU_PER_SESSION
Specify the amount of CPU time that can be used by a session measured in

hundredth of seconds.

CONNECT_TIME
Specify the elapsed time allowed for a session measured in minutes.

LOGICAL_READS_PER_SESSION
Specify the number of data blocks that can be read during a session, including

blocks read from both memory and disk.

PRIVATE_SGA
Specify the number of bytes of private space in the system global area (SGA) that

can be used by a session. This limit applies only if you are using the multi-threaded

server architecture and allocating private space in the SGA for your session.

integer
Specify the weight of each resource.

Example

Altering Resource Costs Example The following statement assigns weights to the

resources CPU_PER_SESSION and CONNECT_TIME:

ALTER RESOURCE COST
 CPU_PER_SESSION 100
 CONNECT_TIME 1;

ALTER RESOURCE COST

CPU_PER_SESSION

CONNECT_TIME

LOGICAL_READS_PER_SESSION

PRIVATE_SGA

integer ;
7-96 SQL Reference

ALTER RESOURCE COST
The weights establish this cost formula for a session:

cost = (100 * CPU_PER_SESSION) + (1 * CONNECT_TIME)

where the values of CPU_PER_SESSION and CONNECT_TIME are either values in

the DEFAULT profile or in the profile of the user of the session.

Because the above statement assigns no weight to the resources LOGICAL_READS_
PER_SESSION and PRIVATE_SGA, these resources do not appear in the formula.

If a user is assigned a profile with a COMPOSITE_LIMIT value of 500, a session

exceeds this limit whenever cost exceeds 500. For example, a session using 0.04

seconds of CPU time and 101 minutes of elapsed time exceeds the limit. A session

0.0301 seconds of CPU time and 200 minutes of elapsed time also exceeds the limit.

You can subsequently change the weights with another ALTER RESOURCE
statement:

ALTER RESOURCE COST
 LOGICAL_READS_PER_SESSION 2
 CONNECT_TIME 0;

These new weights establish a new cost formula:

cost = (100 * CPU_PER_SESSION) + (2 * LOGICAL_READ_PER_SECOND)

where the values of CPU_PER_SESSION and LOGICAL_READS_PER_SECOND are

either the values in the DEFAULT profile or in the profile of the user of this session.

This ALTER RESOURCE COST statement changes the formula in these ways:

■ The statement omits a weight for the CPU_PER_SESSION resource and the

resource was already assigned a weight, so the resource remains in the formula

with its original weight.

■ The statement assigns a weight to the LOGICAL_READS_PER_SESSION
resource, so this resource now appears in the formula.

■ The statement assigns a weight of 0 to the CONNECT_TIME resource, so this

resource no longer appears in the formula.

■ The statement omits a weight for the PRIVATE_SGA resource and the resource

was not already assigned a weight, so the resource still does not appear in the

formula.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-97

ALTER ROLE
ALTER ROLE

Purpose
Use the ALTER ROLE statement to change the authorization needed to enable a role.

Prerequisites
You must either have been granted the role with the ADMIN OPTION or have ALTER
ANY ROLE system privilege.

Before you alter a role to IDENTIFIED GLOBALLY, you must:

■ Revoke all grants of roles identified externally to the role and

■ Revoke the grant of the role from all users, roles, and PUBLIC.

The one exception to this rule is that you should not revoke the role from the user

who is currently altering the role.

Syntax

Keywords and Parameters
The keywords and parameters in the ALTER ROLE statement all have the same

meaning as in the CREATE ROLE statement.

See Also:

■ CREATE ROLE on page 9-146 for information on creating a role

■ SET ROLE on page 11-122 for information on enabling or

disabling a role for your session

ALTER ROLE role

NOT IDENTIFIED

IDENTIFIED

BY password

EXTERNALLY

GLOBALLY

;

7-98 SQL Reference

ALTER ROLE
Examples
The following statement changes the role analyst to IDENTIFIED GLOBALLY:

ALTER ROLE analyst IDENTIFIED GLOBALLY;

This statement changes the password on the teller role to letter :

ALTER ROLE teller
 IDENTIFIED BY letter;

Users granted the teller role must subsequently enter the new password "letter"

to enable the role.

Note: If you have the ALTER ANY ROLE system privilege and you

change a role that is IDENTIFIED GLOBALLY to IDENTIFIED BY
password , IDENTIFIED EXTERNALLY, or NOT IDENTIFIED , then

Oracle grants you the altered role with the ADMIN OPTION, as it

would have if you had created the role identified nonglobally.

See Also: CREATE ROLE on page 9-146
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-99

ALTER ROLLBACK SEGMENT
ALTER ROLLBACK SEGMENT

Purpose
Use the ALTER ROLLBACK SEGMENTstatement to bring a rollback segment online or

offline, to change its storage characteristics, or to shrink it to an optimal or specified

size.

Prerequisites
You must have ALTER ROLLBACK SEGMENT system privilege.

Syntax

storage_clause : See storage_clause on page 11-129.

Keywords and Parameters

rollback_segment
Specify the name of an existing rollback segment.

ONLINE
Specify ONLINE to bring the rollback segment online. When you create a rollback

segment, it is initially offline and not available for transactions. This clause brings

the rollback segment online, making it available for transactions by your instance.

See Also: CREATE ROLLBACK SEGMENT on page 9-149 for

information on creating a rollback segment

ALTER ROLLBACK SEGMENT rollback_segment

ONLINE

OFFLINE

storage_clause

SHRINK
TO integer

K

M

;

7-100 SQL Reference

ALTER ROLLBACK SEGMENT
You can also bring a rollback segment online when you start your instance with the

initialization parameter ROLLBACK_SEGMENTS.

OFFLINE
Specify OFFLINE to take the rollback segment offline.

■ If the rollback segment does not contain any information needed to roll back an

active transaction, Oracle takes it offline immediately.

■ If the rollback segment does contain information for active transactions, Oracle

makes the rollback segment unavailable for future transactions and takes it

offline after all the active transactions are committed or rolled back.

Once the rollback segment is offline, it can be brought online by any instance.

To see whether a rollback segment is online or offline, query the data dictionary

view DBA_ROLLBACK_SEGS. Online rollback segments have a STATUS value of IN_
USE. Offline rollback segments have a STATUS value of AVAILABLE.

Restriction: You cannot take the SYSTEM rollback segment offline.

storage_clause
Use the storage_clause to change the rollback segment’s storage characteristics.

Restriction: You cannot change the values of the INITIAL and MINEXTENTS for an

existing rollback segment.

SHRINK
Specify SHRINK if you want Oracle to attempt to shrink the rollback segment to an

optimal or specified size. The success and amount of shrinkage depend on the

available free space in the rollback segment and how active transactions are holding

space in the rollback segment.

The value of integer is in bytes, unless you specify K or M for kilobytes or

megabytes.

If you do not specify TOinteger , then the size defaults to the OPTIMAL value of

the storage_clause of the CREATE ROLLBACK SEGMENT statement that created

See Also: Oracle8i Administrator’s Guide for more information on

making rollback segments available and unavailable

See Also: storage_clause on page 11-129 for syntax and

additional information
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-101

ALTER ROLLBACK SEGMENT
the rollback segment. If OPTIMAL was not specified, then the size defaults to the

MINEXTENTS value of the storage_clause of the CREATE ROLLBACK SEGMENT
statement.

Regardless of whether you specify TOinteger :

■ The value to which Oracle shrinks the rollback segment is valid for the

execution of the statement. Thereafter, the size reverts to the OPTIMAL value of

the CREATE ROLLBACK SEGMENT statement.

■ The rollback segment cannot shrink to less than two extents.

To determine the actual size of a rollback segment after attempting to shrink it,

query the BYTES, BLOCKS, and EXTENTS columns of the DBA_SEGMENTS view.

Restriction: For Oracle Parallel Server, you can shrink only rollback segments that

are online to your instance.

Examples

Bringing a Rollback Segment Online Example This statement brings the rollback

segment RSONE online:

ALTER ROLLBACK SEGMENT rsone ONLINE;

Changing Rollback Segment Storage Example This statement changes the

STORAGE parameters for RSONE:

ALTER ROLLBACK SEGMENT rsone
 STORAGE (NEXT 1000 MAXEXTENTS 20);

Resizing a Rollback Segment Example This statement attempts to resize a

rollback segment to 100 megabytes:

ALTER ROLLBACK SEGMENT rsone
 SHRINK TO 100 M;
7-102 SQL Reference

ALTER SEQUENCE
ALTER SEQUENCE

Purpose
Use the ALTER SEQUENCE statement to change the increment, minimum and

maximum values, cached numbers, and behavior of an existing sequence. This

statement affects only future sequence numbers.

Prerequisites
The sequence must be in your own schema, or you must have the ALTER object

privilege on the sequence, or you must have the ALTER ANY SEQUENCE system

privilege.

Syntax

See Also: CREATE SEQUENCE on page 9-155 for additional

information on sequences

ALTER SEQUENCE
schema .

sequence

INCREMENT BY integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER

;

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-103

ALTER SEQUENCE
Keywords and Parameters
The keywords and parameters in this statement serve the same purposes they serve

when you create a sequence.

■ To restart the sequence at a different number, you must drop and re-create it.

■ If you change the INCREMENT BY value before the first invocation of NEXTVAL,
some sequence numbers will be skipped. Therefore, if you want to retain the

original START WITH value, you must drop the sequence and re-create it with

the original START WITH value and the new INCREMENT BY value.

■ Oracle performs some validations. For example, a new MAXVALUE cannot be

imposed that is less than the current sequence number.

Examples

Modifying a Sequence Examples This statement sets a new maximum value for

the eseq sequence:

ALTER SEQUENCE eseq
 MAXVALUE 1500;

This statement turns on CYCLE and CACHE for the eseq sequence:

ALTER SEQUENCE eseq
 CYCLE
 CACHE 5;

See Also:

■ CREATE SEQUENCE on page 9-155 for information on

creating a sequence

■ DROP SEQUENCE on page 11-3 for information on dropping

and re-creating a sequence
7-104 SQL Reference

ALTER SESSION
ALTER SESSION

Purpose
Use the ALTER SESSION statement to specify or modify any of the conditions or

parameters that affect your connection to the database. The statement stays in effect

until you disconnect from the database.

Prerequisites
To enable and disable the SQL trace facility, you must have ALTER SESSIONsystem

privilege.

You do not need any privileges to perform the other operations of this statement

unless otherwise indicated.

Syntax

set_clause ::=

ALTER SESSION

ADVISE

COMMIT

ROLLBACK

NOTHING

CLOSE DATABASE LINK dblink

ENABLE

DISABLE
COMMIT IN PROCEDURE

ENABLE

DISABLE

FORCE

PARALLEL

DML

DDL

QUERY

PARALLEL integer

set_clause

;

SET parameter_name = parameter_value
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-105

ALTER SESSION
Keywords and Parameters

ADVISE
The ADVISE clause sends advice to a remote database to force a distributed

transaction. The advice appears in the ADVICE column of the DBA_2PC_PENDING
view on the remote database (the value ’C’ for COMMIT, ’R’ for ROLLBACK, and ’ ’ for

NOTHING). If the transaction becomes in doubt, the administrator of that database

can use this advice to decide whether to commit or roll back the transaction.

You can send different advice to different remote databases by issuing multiple

ALTER SESSION statements with the ADVISE clause in a single transaction. Each

such statement sends advice to the databases referenced in the following statements

in the transaction until another such statement is issued.

CLOSE DATABASE LINK
Specify CLOSE DATABASE LINK to close the database link dblink. When you issue a

statement that uses a database link, Oracle creates a session for you on the remote

database using that link. The connection remains open until you end your local

session or until the number of database links for your session exceeds the value of

the initialization parameter OPEN_LINKS. If you want to reduce the network

overhead associated with keeping the link open, use this clause to close the link

explicitly if you do not plan to use it again in your session.

ENABLE | DISABLE COMMIT IN PROCEDURE
Procedures and stored functions written in PL/SQL can issue COMMIT and

ROLLBACK statements. If your application would be disrupted by a COMMIT or

ROLLBACK statement not issued directly by the application itself, use the DISABLE
form of the COMMIT IN PROCEDURE clause to prevent procedures and stored

functions called during your session from issuing these statements.

You can subsequently allow procedures and stored functions to issue COMMIT and

ROLLBACK statements in your session by issuing the ENABLE form of this clause.

See Also: Oracle8i Distributed Database Systems for more

information on distributed transactions and how to decide whether

to commit or roll back in-doubt distributed transactions

Note: You must first close all cursors that use the link and then

end your current transaction if it uses the link.
7-106 SQL Reference

ALTER SESSION
Some applications (such as SQL*Forms) automatically prohibit COMMIT and

ROLLBACKstatements in procedures and stored functions. Refer to your application

documentation.

PARALLEL DML | DDL | QUERY
The PARALLEL parameter determines whether all subsequent DML, DDL, or query

statements in the session will be considered for parallel execution. This clause

enables you to override the degree of parallelism of tables during the current

session without changing the tables themselves. Uncommitted transactions must

either be committed or rolled back prior to executing this clause for DML.

Note: This statement does not apply to database triggers. Triggers

can never issue COMMIT or ROLLBACK statements.

Note: You can execute this clause for DML only between

committed transactions.

ENABLE Specify ENABLEto execute subsequent statements in the session in

parallel. This is the default for DDL and query statements.

■ DML: The session’s DML statements are executed in parallel

mode if a parallel hint or a parallel clause is specified.

■ DDL: The session’s DDL statements are executed in parallel

mode if a parallel clause is specified.

■ QUERY: The session’s queries are executed in parallel mode if

a parallel hint or a parallel clause is specified

Restriction: You cannot specify the optional PARALLELinteger
with ENABLE.

DISABLE Specify DISABLE to execute subsequent statements serially. This

is the default for DML statements.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-107

ALTER SESSION
■ DML: The session’s DML statements are executed serially.

■ DDL: The session’s DDL statements are executed serially.

■ QUERY: The session’s queries are executed serially.

Restriction: You cannot specify the optional PARALLELinteger
with DISABLE.

FORCE FORCE forces parallel execution of subsequent statements in the

session. If no parallel clause or hint is specified, then a default

degree of parallelism is used. This clause overrides any parallel_
clause specified in subsequent statements in the session, but is

overridden by a parallel hint.

■ DML: Provided no parallel DML restrictions are violated,

subsequent DML statements in the session are executed with

the default degree of parallelism, unless a specific degree is

specified in this clause.

■ DDL: Subsequent DDL statements in the session are executed

with the default degree of parallelism, unless a specific degree

is specified in this clause. Resulting database objects will have

associated with them the prevailing degree of parallelism.

■ Using FORCE DDL automatically causes all tables created in

this session to be created with a default level of parallelism.

The effect is the same as if you had specified the parallel_clause
(with default degree) with the CREATE TABLE statement.

■ QUERY: Subsequent queries are executed with the default

degree of parallelism, unless a specific degree is specified in

this clause.

■ PARALLELinteger: Specify an integer to explicitly specify a

degree of parallelism

- For force DDL, the degree overrides any parallel clause in

subsequent DDL statements.

- For force DML and QUERY, the degree overrides the degree

currently stored for the table in the data dictionary.

- A degree specified in a statement through a hint will

override the degree being forced.
7-108 SQL Reference

ALTER SESSION
The following types of DML operations are not parallelized regardless of this

clause:

■ Operations on clustered tables

■ Operations with embedded functions that either write or read database or

package states

■ Operations on tables with triggers that could fire

■ Operations on tables or schema objects containing object types, or LONG or LOB

datatypes.

set_clause
Use the set_clause to set the session parameters that follow (parameters that are

dynamic in the scope of the ALTER SESSION statement). You can set values for

multiple parameters in the same set_clause .

CONSTRAINT[S] = {immediate | deferred | default }

The CONSTRAINT[S] parameter determines when conditions specified by a

deferrable constraint are enforced. CONSTRAINT[S] is a session parameter only, not

an initialization parameter.

■ immediate indicates that the conditions specified by the deferrable constraint

are checked immediately after each DML statement. This setting is equivalent to

issuing the SET CONSTRAINTS ALL IMMEDIATE statement at the beginning of

each transaction in your session.

See Also: Oracle8i Performance Guide and Reference for a detailed

description of parallel DML features and hints

Caution: Unless otherwise indicated, the parameters described

here are initialization parameters, and the descriptions indicate

only the general nature of the parameters. Before changing the

values of initialization parameters, please refer to their full

description in Oracle8i Reference or Oracle8i National Language
Support Guide.

See Also: the IMMEDIATE parameter of SET CONSTRAINT[S] on

page 11-120
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-109

ALTER SESSION
■ deferred indicates that the conditions specified by the deferrable constraint

are checked when the transaction is committed. This setting is equivalent to

issuing the SET CONSTRAINTS ALL DEFERRED statement at the beginning of

each transaction in your session.

■ default restores all constraints at the beginning of each transaction to their

initial state of DEFERRED or IMMEDIATE.

CREATE_STORED_OUTLINES = { true | false| ’category_name’ }

The CREATE_STORED_OUTLINES parameter determines whether Oracle should

automatically create and store an outline for each query submitted during the

session. CREATE_STORED_OUTLINES is not an initialization parameter.

■ true enables automatic outline creation for subsequent queries in the same

session. These outlines receive a unique system-generated name and are stored

in the DEFAULT category. If a particular query already has an outline defined

for it in the DEFAULT category, that outline will remain and a new outline will

not be created.

■ false disables automatic outline creation during the session. This is the

default.

■ category_name has the same behavior as TRUE except that any outline

created during the session is stored in the category_name category.

CURRENT_SCHEMA =schema

The CURRENT_SCHEMA parameter changes the current schema of the session to the

specified schema. Subsequent unqualified references to schema objects during the

session will resolve to objects in the specified schema. The setting persists for the

duration of the session or until you issue another ALTER SESSION SET CURRENT_
SCHEMA statement. CURRENT_SCHEMA is a session parameter only, not an

initialization parameter.

This setting offers a convenient way to perform operations on objects in a schema

other than that of the current user without having to qualify the objects with the

schema name. This setting changes the current schema, but it does not change the

session user or the current user, nor does it give you any additional system or object

privileges for the session.

See Also: the DEFERRED parameter of SET CONSTRAINT[S] on

page 11-120.
7-110 SQL Reference

ALTER SESSION
CURSOR_SHARING = {force | exact}

The CURSOR_SHARING parameter determines what kind of SQL statements can

share the same cursors.

■ exact causes only identical SQL statements to share a cursor.

■ force forces statements that may differ in some literals, but are otherwise

identical, to share a cursor, unless the literals affect the meaning of the

statement.

DB_BLOCK_CHECKING = {true | false}

The DB_BLOCK_CHECKING parameter controls whether data block checking is

done. The default is false .

DB_FILE_MULTIBLOCK_READ_COUNT =integer

The DB_FILE_MULTIBLOCK_READ_COUNT parameter specifies with integer the

maximum number of blocks read in one I/O operation during a sequential scan.

The default is 8.

FAST_START_IO_TARGET = integer

The FAST_START_IO_TARGET parameter specifies the target number of I/Os

(reads and writes) to and from buffer cache that Oracle should perform upon crash

or instance recovery. Oracle continuously calculates the actual number of I/Os that

would be needed for recovery and compares that number against the target. If the

actual number is greater than the target, Oracle attempts to write additional dirty

buffers to advance the checkpoint, while minimizing the affect on performance.

FLAGGER = { entry | intermediate | full | off }

The FLAGGER parameter specifies FIPS flagging, which causes an error message to

be generated when a SQL statement issued is an extension of ANSI SQL92.

FLAGGER is a session parameter only, not an initialization parameter.

See Also: Oracle8i Application Developer’s Guide - Fundamentals for

more information on this parameter

See Also: Oracle8i Performance Guide and Reference for information

on setting this parameter in these and other environments

See Also: Oracle8i Performance Guide and Reference for information

on how to tune this parameter
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-111

ALTER SESSION
In Oracle, there is currently no difference between Entry, Intermediate, or Full level

flagging. Once flagging is set in a session, a subsequent ALTER SESSION SET
FLAGGER statement will work, but generates the message, ORA-00097. This allows

FIPS flagging to be altered without disconnecting the session. off turns off

flagging.

GLOBAL_NAMES = { true | false }

When you start an instance, Oracle determines whether to enforce global name

resolution for remote objects accessed in SQL statements based on the value of the

initialization parameter GLOBAL_NAMES. This parameter enables or disables global

name resolution for the duration of the session. true enables the enforcement of

global names. false disables the enforcement of global names. You can also enable

or disable global name resolution for your instance with the GLOBAL_NAMES
parameter of the ALTER SYSTEM statement.

Oracle recommends that you enable global name resolution if you use or plan to use

distributed processing.

HASH_AREA_SIZE = integer

The HASH_AREA_SIZE parameter specifies in bytes the amount of memory to use

for hash join operations. The default is twice the value of the SORT_AREA_SIZE
initialization parameter.

HASH_JOIN_ENABLED = {true | false}

The HASH_JOIN_ENABLED parameter enables or disables the use of the hash join

operation in queries. The default is true , which enables hash joins.

HASH_MULTIBLOCK_IO_COUNT =integer

The HASH_MULTIBLOCK_IO_COUNT parameter specifies the number of data blocks

to read and write during a hash join operation. The value multiplied by the DB_
BLOCK_SIZE initialization parameter should not exceed 64 K. The default value for

this parameter is 1. If the multi-threaded server is used, the value is always 1, and

any value specified here is ignored.

See Also: "Referring to Objects in Remote Databases" on

page 2-90 and Oracle8i Distributed Database Systems for more

information on global name resolution and how Oracle enforces it
7-112 SQL Reference

ALTER SESSION
INSTANCE = integer

The INSTANCE parameter in an Oracle Parallel Server environment accesses

database files as if the session were connected to the instance specified by integer.

INSTANCEis a session parameter only, not an initialization parameter. For optimum

performance, each instance of Oracle Parallel Server uses its own private rollback

segments, freelist groups, and so on. In an Oracle Parallel Server environment, you

normally connect to a particular instance and access data that is partitioned

primarily for your use. If you must connect to another instance, the data

partitioning can be lost. Setting this parameter lets you access an instance as if you

were connected to your own instance.

ISOLATION_LEVEL = { SERIALIZABLE | READ COMMITTED }

The ISOLATION_LEVEL parameter specifies how transactions containing database

modifications are handled. ISOLATION_LEVEL is a session parameter only, not an

initialization parameter.

■ SERIALIZABLE indicates that transactions in the session use the serializable

transaction isolation mode as specified in SQL92. That is, if a serializable

transaction attempts to execute a DML statement that updates rows currently

being updated by another uncommitted transaction at the start of the

serializable transaction, then the DML statement fails. A serializable transaction

can see its own updates.

■ READ COMMITTED indicates that transactions in the session will use the default

Oracle transaction behavior. Thus, if the transaction contains DML that requires

row locks held by another transaction, then the DML statement will wait until

the row locks are released.

LOG_ARCHIVE_DEST_n
LOG_ARCHIVE_DEST_n = { null_string

| {LOCATION= local_pathname | SERVICE= tnsnames_service }
 [MANDATORY | OPTIONAL] [REOPEN[= integer]]}

The LOG_ARCHIVE_DEST_n parameter specifies up to five session-specific valid

operating system pathnames or Oracle service names (plus other related options) as

destinations for archive redo log file groups (n = integers 1 through 5).

Restrictions: If you set a value for this parameter, you cannot:

■ Have definitions for the parameters LOG_ARCHIVE_DEST and LOG_ARCHIVE_
DUPLEX_DEST in your initialization parameter file, nor can you set values for

those parameters with the ALTER SYSTEM statement.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-113

ALTER SESSION
■ Start archiving to a specific location using the ALTER SYSTEM ARCHIVE LOG TO
location statement.

LOG_ARCHIVE_DEST_STATE_n = {ENABLE | DEFER}

The LOG_ARCHIVE_DEST_STATE_n parameter specifies the session-specific state

associated with the corresponding LOG_ARCHIVE_DEST_n parameter.

■ ENABLE specifies that any associated valid destination can be used for

archiving. This is the default.

■ DEFER specifies that Oracle will not consider for archiving any destination

associated with the corresponding LOG_ARCHIVE_DEST_n parameter.

LOG_ARCHIVE_MIN_SUCCEED_DEST= integer

The LOG_ARCHIVE_MIN_SUCCEED_DEST parameter specifies the session-specific

minimum number of destinations that must succeed in order for the online log file

to be available for reuse.

MAX_DUMP_FILE_SIZE = { size | UNLIMITED }

The MAX_DUMP_FILE_SIZE parameter specifies the upper limit of trace dump file

size. Specify the maximum size as either a nonnegative integer that represents the

number of blocks, or as UNLIMITED. If you specify UNLIMITED, no upper limit is

imposed.

NLS Parameters
When you start an instance, Oracle establishes support based on the values of

initialization parameters that begin with "NLS". You can query the dynamic

performance table V$NLS_PARAMETERS to see the current NLS attributes for your

session. For more information about NLS parameters, see Oracle8i National Language
Support Guide.

NLS_CALENDAR = ’ text ’

The NLS_CALENDAR parameter explicitly specifies a new calendar type.

See Also:

■ Oracle8i Reference for a description of the options

■ the LOG_ARCHIVE_DEST_n parameter in Oracle8i Reference for

detailed information on specifying pathnames
7-114 SQL Reference

ALTER SESSION
NLS_COMP = ’ text ’

The NLS_COMP parameter specifies that linguistic comparison is to be used

according to the NLS_SORT parameter. This parameter obviates the need to specify

NLS_SORT in SQL statements.

NLS_CURRENCY = ’text ’

The NLS_CURRENCY parameter explicitly specifies a new value for the L number

format element (the local currency symbol). The symbol cannot exceed 10

characters.

NLS_DATE_FORMAT = ’ fmt ’

The NLS_DATE_FORMAT parameter explicitly specifies a new default date format.

The fmt value must be a valid date format model.

NLS_DATE_LANGUAGE =language

The NLS_DATE_LANGUAGE parameter explicitly changes the language for names

and abbreviations of days and months, and for spelled-out values of other date

format elements.

NLS_DUAL_CURRENCY = ’text ’

The NLS_DUAL_CURRENCY parameter explicitly specifies a new "Euro" (or other)

dual currency symbol. The value of text is returned by the number format element

U, and text cannot exceed 10 characters.

NLS_ISO_CURRENCY =territory

The NLS_ISO_CURRENCY parameter explicitly specifies the territory whose ISO

currency symbol should be used. That territory’s currency symbol then becomes the

value of the C number format element.

NLS_LANGUAGE =language

The NLS_LANGUAGE parameter changes the language in which Oracle returns

errors and other messages. This parameter also implicitly specifies new values for

these items:

See Also: "Date Format Models" on page 2-47 for information on

valid date format models

See Also: "Number Format Models" on page 2-43 for information

on number format elements
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-115

ALTER SESSION
■ Language for day and month names and abbreviations and spelled values of

other elements

■ Linguistic sort sequences or binary sorts

■ B.C. and A.D. indicators

■ A.M. and P.M. meridian indicators

NLS_NUMERIC_CHARACTERS = ’text ’

The NLS_NUMERIC_CHARACTERS parameter explicitly specifies a new decimal

character and group separator. The text value must have this form:

’dg’

where: d is the new decimal character, and g is the new group separator.

The decimal character and the group separator must be two different single-byte

characters, and cannot be a numeric value or any of the following characters: plus

sign ("+"), minus sign or hyphen ("–"), less-than sign ("<"), or greater-than sign

(">").

If the decimal character is not a period (.), you must use single quotation marks to

enclose all number values that appear in expressions in your SQL statements. When

not using a period for the decimal point, use the TO_NUMBERfunction to ensure that

a valid number is retrieved.

NLS_SORT = { sort | BINARY}

The NLS_SORT parameter changes the sequence into which Oracle sorts character

values. sort specifies the name of a linguistic sort sequence. BINARY specifies a

binary sort. The default is BINARY.

NLS_TERRITORY = territory

The NLS_TERRITORY parameter implicitly specifies new values for these items:

■ Default date format

■ Decimal character and group separators

■ Local currency symbol

■ ISO currency symbol

■ First day of the week for D date format element
7-116 SQL Reference

ALTER SESSION
OBJECT_CACHE_MAX_SIZE_PERCENT =integer

The OBJECT_CACHE_MAX_SIZE_PERCENT parameter specifies the percentage of

the optimal cache size that the session object cache can grow beyond the optimal

size. The default is 10.

OBJECT_CACHE_OPTIMAL_SIZE = integer

The OBJECT_CACHE_OPTIMAL_SIZE parameter specifies (in kilobytes) the size to

which the session object cache is reduced when it exceeds maximum size. The

default is 100.

OPTIMIZER_INDEX_CACHING = integer

The OPTIMIZER_INDEX_CACHING parameter lets you tune the optimizer to favor

nested loops joins and IN-list iterators. The value of integer indicates the

percentage of the index blocks assumed to be in the cache.

OPTIMIZER_INDEX_COST_ADJ = integer

The OPTIMIZER_INDEX_COST_ADJ parameter lets you tune optimizer behavior

for access path selection to make the optimizer more likely to select an index access

path than a full table scan. The value of integer is a percentage indicating the

importance the optimizer attaches to the index path compared with "normal". The

default is 100 (indicating 100%), which makes the optimizer cost index access paths

at the regular cost.

OPTIMIZER_MAX_PERMUTATIONS =integer

The OPTIMIZER_MAX_PERMUTATIONS parameter lets you limit the amount of

work the optimizer expends on optimizing queries with large joins. The value of

integer is the number of permutations of the tables the optimizer will consider

with large joins.

OPTIMIZER_MODE = { all_rows | first_rows | rule | choose }

The OPTIMIZER_MODE parameter specifies the approach and mode of the

optimizer for your session.

■ all_rows specifies the cost-based approach and optimizes for best

throughput.

See Also: Oracle8i Concepts and Oracle8i Performance Guide and
Reference for information on how to choose a goal for the cost-based

approach based on the characteristics of your application
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-117

ALTER SESSION
■ first_rows specifies the cost-based approach and optimizes for best response

time.

■ rule specifies the rule-based approach. (The rule-based optimizer does not use

function-based indexes.)

■ choose causes the optimizer to choose an optimization approach based on the

presence of statistics in the data dictionary.

OPTIMIZER_PERCENT_PARALLEL = integer

The OPTIMIZER_PERCENT_PARALLEL parameter specifies the amount of

parallelism the optimizer uses in its cost functions. The default is 0 (no parallelism).

PARALLEL_BROADCAST_ENABLED = { true | false }

The PARALLEL_BROADCAST_ENABLED parameter lets you enhance performance

during hash and merge joins.

PARALLEL_INSTANCE_GROUP = ’ text ’

The PARALLEL_INSTANCE_GROUP parameter identifies the parallel instance group

to be used for spawning parallel query slaves. The default is all active instances.

PARALLEL_MIN_PERCENT = integer

The PARALLEL_MIN_PERCENT parameter specifies the minimum percent of

threads required for parallel query. The default is 0 (no parallelism).

PARTITION_VIEW_ENABLED = { true | false }

The PARTITION_VIEW_ENABLED parameter, when set to true , causes the

optimizer to skip unnecessary table accesses in a partition view.

PLSQL_V2_COMPATIBILITY = { true | false }

The PLSQL_V2_COMPATIBILITY parameter, if true , modifies the compile-time

behavior of PL/SQL programs to allow language constructs that are illegal in

Note: Set this parameter only if you are running Oracle Parallel

Server in parallel mode.

Note: For important information on partition views, see "Partition

Views" on page 10-106.
7-118 SQL Reference

ALTER SESSION
Oracle8 and Oracle8i (PL/SQL V3), but were legal in Oracle7 (PL/SQL V2). false
disallows illegal Oracle7 PL/SQL V2 constructs. This is the default.

QUERY_REWRITE_ENABLED = { true | false }

The QUERY_REWRITE_ENABLED parameter enables or disables query rewrite on all

materialized views that have not been explicitly disabled. Query rewrite is disabled

by default. It is also disabled by rule-based optimization (that is, if the OPTIMIZER_
MODE parameter is set to rule).

This parameter has the following additional effect on the use of function-based

indexes:

■ true : Oracle will use function-based indexes to derive values of SQL

expressions. If in addition the QUERY_REWRITE_INTEGRITY parameter is set

to any value other than enforced , Oracle will derive such values even if the

index is based on a user-defined (rather than SQL) function.

■ false : Oracle will not use function-based indexes to derive values of SQL

expressions, but it will use such indexes to obtain values of real columns in the

index.

Enabling or disabling query rewrite does not affect descending indexes.

A setting of true has no effect on materialized views that cannot be created with

the ENABLE QUERY REWRITEclause, such as materialized views created totally or in

part from a view.

QUERY_REWRITE_INTEGRITY

QUERY_REWRITE_INTEGRITY =
 { enforced | trusted | stale_tolerated }

The QUERY_REWRITE_INTEGRITY parameter sets the minimum consistency level

for query rewrite. The following values are permitted:

■ enforced is the safest level. It relies only on system-enforced relationships so

that data integrity and correctness can be guaranteed. This level ensures that

query rewrite will not use any function-based index or any materialized view

that includes a call to a user-defined function.

See Also: PL/SQL User’s Guide and Reference and Oracle8i Reference
for more information about this session parameter

See Also: Oracle8i Data Warehousing Guide for more information

on query rewrite
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-119

ALTER SESSION
In addition, this level ensures that query rewrite will not use any dimensional

information or any constraints enabled with the RELY keyword.

■ trusted specifies that materialized views created with the ON PREBUILT
TABLE clause are supported, and trusted but unenforced join relationships are

accepted. Query rewrite uses join information from dimensions and enables

unenforced constraints with the RELY keyword.

■ stale_tolerated specifies that any stale, usable materialized view may be

used.

This parameter does not affect descending indexes.

REMOTE_DEPENDENCIES_MODE = { timestamp | signature }

The REMOTE_DEPENDENCIES_MODE specifies how dependencies of remote stored

procedures are handled by the session.

SESSION_CACHED_CURSORS =integer

The SESSION_CACHED_CURSORS parameter specifies the number of frequently

used cursors that can be retained in the cache. The cursors can be open or closed,

which is particularly useful for Oracle tools that close all session cursors associated

with a form when switching to another form. In such cases, frequently used cursors

do not have to be reparsed. A least recently used algorithm ages out entries in the

cache to make room for new entries when needed.

See Also:

■ Oracle8i Data Warehousing Guide for more information on query

rewrite integrity level

■ CREATE DIMENSION on page 9-34 for information on

dimensions

■ constraint_clause on page 8-136for information on constraints

enabled with the RELY keyword

See Also: Oracle8i Application Developer’s Guide - Fundamentals

See Also: Oracle8i Performance Guide and Reference for more

information on session cursor caching
7-120 SQL Reference

ALTER SESSION
SKIP_UNUSABLE_INDEXES = { true | false }

The SKIP_UNUSABLE_INDEXES parameter controls the use and reporting of tables

with unusable indexes or index partitions. SKIP_UNUSABLE_INDEXES is a session

parameter only, not an initialization parameter.

■ true disables error reporting of indexes and index partitions marked

UNUSABLE. Allows all operations (inserts, deletes, updates, and selects) to

tables with unusable indexes or index partitions.

■ false enables error reporting of indexes marked UNUSABLE. Does not allow

inserts, deletes, and updates to tables with unusable indexes or index partitions.

This is the default.

SORT_AREA_RETAINED_SIZE = integer

The SORT_AREA_RETAINED_SIZE parameter specifies (in bytes) the maximum

amount of memory that each sort operation will retain after the first fetch is done,

until the cursor ends. If you do not explicitly set this parameter in the initialization

parameter file or dynamically, Oracle uses the value of the SORT_AREA_SIZE
parameter.

SORT_AREA_SIZE = integer

The SORT_AREA_SIZE parameter specifies (in bytes) the maximum amount of

memory to use for each sort operation. The default is OS-dependent.

SORT_MULTIBLOCK_READ_COUNT =integer

The SORT_MULTIBLOCK_READ_COUNTparameter specifies the number of database

blocks to read each time a sort performs a read from temporary segments. The

default is 2.

SQL_TRACE = { true | false }

The SQL trace facility generates performance statistics for the processing of SQL

statements. When you begin a session, Oracle enables or disables the SQL trace

facility based on the value of this parameter. You can subsequently enable or disable

Note: Statements that would normally use the unusable indexes

or index partitions may be compiled with suboptimal optimizer

plans, occasionally resulting in major degradation in response time

and resource utilization.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-121

ALTER SESSION
the SQL trace facility for your own session with the SQL_TRACE parameter of the

ALTER SESSION statement.

■ true enables the SQL trace facility.

■ false disables the SQL trace facility.

SQL_TRACE is an initialization parameter. However, when you change its value

with an ALTER SESSION statement, the results are not reflected in the

V$PARAMETER view. Therefore, in this context it is considered a session parameter

only.

STAR_TRANSFORMATION_ENABLED = { true | false }

The STAR_TRANSFORMATION_ENABLED parameter determines whether a cost-

based query transformation will be applied to star queries. The default is false .

TIMED_STATISTICS = {true | false }

The TIMED_STATISTICS parameter specifies whether the server requests the time

from the operating system when generating time-related statistics. The default is

false .

USE_STORED_OUTLINES = { true | false | ’ category_name ’ }

The USE_STORED_OUTLINESparameter determines whether the optimizer will use

stored outlines to generate execution plans. USE_STORED_OUTLINES is not an

initialization parameter.

■ true causes the optimizer to use outlines stored in the DEFAULTcategory when

compiling requests.

■ false specifies that the optimizer should not use stored outlines. This is the

default.

■ category_name causes the optimizer to use outlines stored in the category_
name category when compiling requests.

See Also: Oracle8i Performance Guide and Reference for more

information on the SQL trace facility, including how to format and

interpret its output
7-122 SQL Reference

ALTER SESSION
Examples

Enabling Parallel DML Example Issue the following statement to enable parallel

DML mode for the current session:

ALTER SESSION ENABLE PARALLEL DML;

Forcing a Distributed Transaction Example The following transaction inserts an

employee record into the emp table on the database identified by the database link

site1 and deletes an employee record from the emp table on the database

identified by site2 :

ALTER SESSION
 ADVISE COMMIT;

INSERT INTO emp@site1
 VALUES (8002, ’FERNANDEZ’, ’ANALYST’, 7566,
 TO_DATE(’04-OCT-1992’, ’DD-MON-YYYY’), 3000, NULL, 20);

ALTER SESSION
 ADVISE ROLLBACK;

DELETE FROM emp@site2
 WHERE empno = 8002;

COMMIT;

This transaction has two ALTER SESSIONstatements with the ADVISE clause. If the

transaction becomes in doubt, site1 is sent the advice ’COMMIT’ by virtue of the

first ALTER SESSION statement and site2 is sent the advice ’ROLLBACK’ by virtue

of the second.

Closing a Database Link Example This statement updates the employee table on

the sales database using a database link, commits the transaction, and explicitly

closes the database link:

Note: If you want the execution plan to consider materialized

views, you must specify them in the outline. If the outline does not

use a materialized view, then the query that uses the outline will

not use the materialized view either, even if you have enabled

query rewrite.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-123

ALTER SESSION
UPDATE emp@sales
 SET sal = sal + 200
 WHERE empno = 9001;

COMMIT;

ALTER SESSION
 CLOSE DATABASE LINK sales;

Changing the Date Format Dynamically Example The following statement

dynamically changes the default date format for your session to ’YYYY MM DD-

HH24:MI:SS’:

ALTER SESSION
 SET NLS_DATE_FORMAT = ’YYYY MM DD HH24:MI:SS’;

Oracle uses the new default date format:

SELECT TO_CHAR(SYSDATE) Today
 FROM DUAL;

TODAY

1997 08 12 14:25:56

Changing the Date Language Dynamically Example The following statement

changes the language for date format elements to French:

ALTER SESSION
 SET NLS_DATE_LANGUAGE = French;

SELECT TO_CHAR(SYSDATE, ’Day DD Month YYYY’) Today
 FROM DUAL;

TODAY

Mardi 28 Février 1997

Changing the ISO Currency Example The following statement dynamically

changes the ISO currency symbol to the ISO currency symbol for the territory

America:

ALTER SESSION
 SET NLS_ISO_CURRENCY = America;

SELECT TO_CHAR(SUM(sal), ’C999G999D99’) Total
7-124 SQL Reference

ALTER SESSION
 FROM emp;

TOTAL

USD29,025.00

Changing the Decimal Character and Group Separator Example The following

statement dynamically changes the decimal character to comma (,) and the group

separator to period (.):

ALTER SESSION SET NLS_NUMERIC_CHARACTERS = ’,.’ ;

Oracle returns these new characters when you use their number format elements:

SELECT TO_CHAR(SUM(sal), ’L999G999D99’) Total FROM emp ;

TOTAL

FF29.025,00

Changing the NLS Currency Example The following statement dynamically

changes the local currency symbol to ’DM’:

ALTER SESSION
 SET NLS_CURRENCY = ’DM’;

SELECT TO_CHAR(SUM(sal), ’L999G999D99’) Total
 FROM emp;

TOTAL

DM29.025,00

Changing the NLS Language Example The following statement dynamically

changes to French the language in which error messages are displayed:

ALTER SESSION
 SET NLS_LANGUAGE = FRENCH;

SELECT * FROM DMP;

ORA-00942: Table ou vue inexistante

Changing the Linguistic Sort Sequence Example The following statement

dynamically changes the linguistic sort sequence to Spanish:
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-125

ALTER SESSION
ALTER SESSION
 SET NLS_SORT = XSpanish;

Oracle sorts character values based on their position in the Spanish linguistic sort

sequence.

Enabling SQL Trace Example To enable the SQL trace facility for your session,

issue the following statement:

ALTER SESSION
 SET SQL_TRACE = TRUE;

Enabling Query Rewrite Example This statement enables query rewrite in the

current session for all materialized views that have not been explicitly disabled:

ALTER SESSION SET QUERY_REWRITE_ENABLED = TRUE;
7-126 SQL Reference

ALTER SYSTEM
ALTER SYSTEM

Purpose
Use the ALTER SYSTEM statement to dynamically alter your Oracle instance. The

settings stay in effect as long as the database is mounted.

Prerequisites
You must have ALTER SYSTEM system privilege.

To specify the archive_log_clause , you must have the OSDBA or OSOPER role

enabled.

Syntax

ALTER SYSTEM

archive_log_clause

CHECKPOINT

GLOBAL

LOCAL

CHECK DATAFILES

GLOBAL

LOCAL

ENABLE

DISABLE
DISTRIBUTED RECOVERY

ENABLE

DISABLE
RESTRICTED SESSION

FLUSH SHARED_POOL

end_session_clauses

SWITCH LOGFILE

SUSPEND

RESUME

SHUTDOWN
IMMEDIATE

dispatcher_name

set_clause

;

SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-127

ALTER SYSTEM
archive_log_clause ::=

end_session_clauses ::=

set_clause ::=

Keywords and Parameters

archive_log_clause
The archive_log_clause manually archives redo log files or enables or disables

automatic archiving. To use this clause, your instance must have the database

mounted. The database can be either open or closed unless otherwise noted.

ARCHIVE LOG
THREAD integer

SEQUENCE integer

CHANGE integer

CURRENT

GROUP integer

LOGFILE ’ filename ’

NEXT

ALL

START

TO ’ location ’

STOP

DISCONNECT SESSION ’ integer1 , integer2 ’
POST_TRANSACTION

KILL SESSION ’ integer1 , integer2 ’

IMMEDIATE

SET parameter_name = parameter_value
7-128 SQL Reference

ALTER SYSTEM
Notes:

■ You can also manually archive redo log file groups with the

ARCHIVE LOG SQL*Plus statement.

■ You can also have Oracle archive redo log files groups

automatically. You can always manually archive redo log file

groups regardless of whether automatic archiving is enabled.

See Also:

■ Oracle8i Administrator’s Guide for information on automatic

archiving

■ SQL*Plus User’s Guide and Reference for information on the

ARCHIVE LOG statement

THREAD
integer

Specify THREAD to indicate the thread containing the redo log file

group to be archived.

Restriction: Set this parameter only if you are using Oracle with

the Parallel Server option in parallel mode.

SEQUENCE
integer

Specify SEQUENCE to manually archive the online redo log file

group identified by the log sequence number integer in the

specified thread. If you omit the THREAD parameter, Oracle

archives the specified group from the thread assigned to your

instance.

CHANGE
integer

Specify CHANGEto manually archive the online redo log file group

containing the redo log entry with the system change number

(SCN) specified by integer in the specified thread. If the SCN is

in the current redo log file group, Oracle performs a log switch. If

you omit the THREAD parameter, Oracle archives the groups

containing this SCN from all enabled threads.

Restriction: You can use this clause only when your instance has

the database open.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-129

ALTER SYSTEM
CURRENT Specify CURRENT to manually archive the current redo log file

group of the specified thread, forcing a log switch. If you omit the

THREAD parameter, Oracle archives all redo log file groups from

all enabled threads, including logs previous to current logs.

Restriction: You can use this clause only when your instance has

the database open.

Note: If you specify a redo log file group for archiving with the CHANGE or

CURRENT clause, and earlier redo log file groups are not yet archived, Oracle

archives all unarchived groups up to and including the specified group.

GROUP
integer

Specify GROUP to manually archive the online redo log file group

with the GROUP value specified by integer . You can determine

the GROUP value for a redo log file group by examining the data

dictionary view DBA_LOG_FILES. If you specify both the THREAD
and GROUP parameters, the specified redo log file group must be

in the specified thread.

LOGFILE
’ filename ’

Specify LOGFILE to manually archive the online redo log file

group containing the redo log file member identified by

’filename ’. If you specify both the THREAD and LOGFILE
parameters, the specified redo log file group must be in the

specified thread.

Restriction: You must archive redo log file groups in the order in

which they are filled. If you specify a redo log file group for

archiving with the LOGFILE parameter, and earlier redo log file

groups are not yet archived, Oracle returns an error.

NEXT Specify NEXT to manually archive the next online redo log file

group from the specified thread that is full but has not yet been

archived. If you omit the THREAD parameter, Oracle archives the

earliest unarchived redo log file group from any enabled thread.

Note: The parameters SEQUENCE, CHANGE, CURRENT, GROUP, LOGFILE, and

NEXTimplicitly refer to one redo log file or group. However, Oracle maintains a

"force system change number (SCN)." Whenever archiving occurs, Oracle

archives all redo log files with SCNs lower than or equal to the force SCN.

Therefore, when you specify any of these parameters, Oracle sometimes

archives more than one redo log file or group.
7-130 SQL Reference

ALTER SYSTEM
CHECKPOINT
Specify CHECKPOINT to explicitly force Oracle to perform a checkpoint, ensuring

that all changes made by committed transactions are written to datafiles on disk.

You can specify this clause only when your instance has the database open. Oracle

does not return control to you until the checkpoint is complete.

ALL Specify ALL to manually archive all online redo log file groups

from the specified thread that are full but have not been archived.

If you omit the THREAD parameter, Oracle archives all full

unarchived redo log file groups from all enabled threads.

START Specify START to enable automatic archiving of redo log file

groups.

Restriction: You can enable automatic archiving only for the

thread assigned to your instance.

TO’location ’ Specify TO ’location ’ to indicate the primary location to which

the redo log file groups are archived. The value of this parameter

must be a fully specified file location following the conventions of

your operating system. If you omit this parameter, Oracle archives

the redo log file group to the location specified by the

initialization parameters LOG_ARCHIVE_DEST or LOG_ARCHIVE_
DEST_n.

Note: You can enhance recovery reliability by setting the

related archive parameters LOG_ARCHIVE_DEST_DUPLEX
and LOG_ARCHIVE_MIN_SUCCEED_DEST.

STOP Specify to disable automatic archiving of redo log file groups. You

can disable automatic archiving only for the thread assigned to

your instance.

GLOBAL In an Oracle Parallel Server environment, this setting causes

Oracle to perform a checkpoint for all instances that have opened

the database. This is the default.

LOCAL In an Oracle Parallel Server environment, this setting causes

Oracle to performs a checkpoint only for the thread of redo log file

groups for your instance.

See Also: Oracle8i Concepts for more information on checkpoints
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-131

ALTER SYSTEM
CHECK DATAFILES
In a distributed database system, such as an Oracle Parallel Server environment,

this clause updates an instance’s SGA from the database control file to reflect

information on all online datafiles.

Your instance should have the database open.

end_session_clauses

GLOBAL Specify GLOBAL to perform this synchronization for all instances

that have opened the database. This is the default.

LOCAL Specify LOCAL to perform this synchronization only for the local

instance.

See Also: Oracle8i Parallel Server Installation, Configuration, and
Administration

DISCONNECT
SESSION

Use the DISCONNECT SESSION clause to disconnect the current

session by destroying the dedicated server process (or virtual

circuit if the connection was made by way of a multi-threaded

server). To use this clause, your instance must have the database

open. You must identify the session with both of the following

values from the V$SESSION view:

integer1 The first integer is the value of the SID column.

integer2 The second integer is the value of the SERIAL#
column.

If system parameters are appropriately configured, application

failover will take effect.

See Also: Oracle8i Parallel Server Installation, Configuration, and
Administration for more information about application failover

POST_
TRANSACTION

The POST_TRANSACTION setting allows

ongoing transactions to complete before the

session is disconnected. If the session has no

ongoing transactions, this clause has the same

effect as KILL SESSION, described below.
7-132 SQL Reference

ALTER SYSTEM
IMMEDIATE The IMMEDIATE setting disconnects the session

and recovers the entire session state

immediately, without waiting for ongoing

transactions to complete.

■ If you also specify POST_TRANSACTION
and the session has ongoing transactions,

the IMMEDIATE keyword is ignored.

■ If you do not specify POST_TRANSACTION,
or you specify POST_TRANSACTION but the

session has no ongoing transactions, this

clause has the same effect as KILL SESSION
IMMEDIATE, described below.

KILL SESSION The KILL SESSION clause lets you mark a session as dead, roll

back ongoing transactions, release all session locks, and partially

recover session resources. To use this clause, your instance must

have the database open, and your session and the session to be

killed must be on the same instance. You must identify the session

with both of the following values from the V$SESSION view:

integer1 The first integer is the value of the SID column.

integer2 The second is the value of the SERIAL#
column.

If the session is performing some activity that must be completed,

such as waiting for a reply from a remote database or rolling back

a transaction, Oracle waits for this activity to complete, marks the

session as dead, and then returns control to you. If the waiting

lasts a minute, Oracle marks the session to be killed and returns

control to you with a message that the session is marked to be

killed. The PMON background process then marks the session as

dead when the activity is complete.

Whether or not the session has an ongoing transaction, Oracle

does not recover the entire session state until the session user

issues a request to the session and receives a message that the

session has been killed.

IMMEDIATE Specify IMMEDIATE to roll back ongoing

transactions, release all session locks, recover the

entire session state, and return control to

yourself immediately.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-133

ALTER SYSTEM
DISTRIBUTED RECOVERY
The DISTRIBUTED RECOVERY clause lets you enable or disable distributed

recovery. To use this clause, your instance must have the database open.

RESTRICTED SESSION
The RESTRICTED SESSION clause lets you restrict logon to Oracle.

You can use this clause regardless of whether your instance has the database

dismounted or mounted, open or closed.

FLUSH SHARED_POOL
The FLUSH SHARED POOL clause lets you clear all data from the shared pool in the

system global area (SGA). The shared pool stores

■ Cached data dictionary information and

■ Shared SQL and PL/SQL areas for SQL statements, stored procedures, function,

packages, and triggers.

ENABLE Specify ENABLEto enable distributed recovery. In a single-process

environment, you must use this clause to initiate distributed

recovery.

You may need to issue the ENABLE DISTRIBUTED RECOVERY
statement more than once to recover an in-doubt transaction if the

remote node involved in the transaction is not accessible. In-doubt

transactions appear in the data dictionary view DBA_2PC_
PENDING.

See Also: Oracle8i Distributed Database Systems for more

information about distributed transactions and distributed

recovery

DISABLE Specify DISABLE to disable distributed recovery.

ENABLE Specify ENABLEto allows only users with RESTRICTED SESSION
system privilege to log on to Oracle. Existing sessions are not

terminated.

DISABLE Specify DISABLE to reverse the effect of the ENABLE RESTRICTED
SESSION clause, allowing all users with CREATE SESSION
system privilege to log on to Oracle. This is the default.
7-134 SQL Reference

ALTER SYSTEM
This statement does not clear shared SQL and PL/SQL areas for items that are

currently being executed. You can use this clause regardless of whether your

instance has the database dismounted or mounted, open or closed.

SWITCH LOGFILE
The SWITCH LOGFILE clause lets you explicitly force Oracle to begin writing to a

new redo log file group, regardless of whether the files in the current redo log file

group are full. When you force a log switch, Oracle begins to perform a checkpoint.

Oracle returns control to you immediately rather than when the checkpoint is

complete. To use this clause, your instance must have the database open.

SUSPEND | RESUME

SHUTDOWN
The SHUTDOWN clause is relevant only if your system is using Oracle’s multi-

threaded server architecture. It shuts down a dispatcher identified by

dispatcher_name . The dispatcher_name must be a string of the form ’Dxxx ’,

where xxx indicates the number of the dispatcher. (For a listing of dispatcher

names, query the NAME column of the V$DISPATCHER dynamic performance view.)

■ If you specify IMMEDIATE, the dispatcher stops accepting new connections

immediately and Oracle terminates all existing connections through that

dispatcher. After all sessions are cleaned up, the dispatcher process literally

shuts down.

SUSPEND The SUSPEND clause lets you suspend all I/O (datafile, control

file, and file header) as well as queries, in all instances, enabling

you to make copies of the database without having to handle

ongoing transactions.

Restrictions:

■ Do not use this clause unless you have put the database

tablespaces in hot backup mode.

■ If you start a new instance while the system is suspended, that

new instance will not be suspended.

RESUME The RESUME clause lets you make the database available once

again for queries and I/O.

See Also: Oracle8i Backup and Recovery Guide for more

information on the SUSPEND clause and RESUME clause
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-135

ALTER SYSTEM
■ If you do not specify IMMEDIATE, the dispatcher stops accepting new

connections immediately but waits for all its users to disconnect and for all its

database links to terminate. Then it literally shuts down.

set_clause
The set_clause lets you set the system parameters that follow. You can set values for

multiple parameters in the same set_clause .

AQ_TM_PROCESSES =integer

AQ_TM_PROCESSES is an Advanced Queuing parameter that specifies whether a

queue monitor process is created. Accepted values are 1 (creates one queue monitor

process to monitor messages) and 0 (kills any existing queue monitor processes,

whether they were created using an initialization parameter or another ALTER
SYSTEM statement). You can create up to 10 queue monitor processes if you use this

parameter in an initialization parameter file.

BACKGROUND_DUMP_DEST = ’text ’

The BACKGROUND_DUMP_DEST parameter specifies the pathname for a directory

where debugging trace files for the background processes are written during Oracle

operations.

See Also: Oracle8i Administrator’s Guide, Net8 Administrator’s
Guide, and Oracle8i Performance Guide and Reference for more

information on dispatchers and multi-threaded server architecture

Note: The DEFERRED keyword sets or modifies the value of the

parameter for future sessions that connect to the database.

Caution: Unless otherwise noted, these parameters are

initialization parameters, and the descriptions provided here

indicate only the general nature of the parameters. Before changing

the values of initialization parameters, please refer to their full

description in Oracle8i Reference and Oracle8i National Language
Support Guide.
7-136 SQL Reference

ALTER SYSTEM
BACKUP_TAPE_IO_SLAVES = {TRUE | FALSE} DEFERRED

The BACKUP_TAPE_IO_SLAVES parameter lets you specify whether I/O slaves are

used by the Recovery Manager to back up, copy, or restore data to tape.

CONTROL_FILE_RECORD_KEEP_TIME =integer

The CONTROL_FILE_RECORD_KEEP_TIME parameter lets you specify the

minimum of days before a reusable record in the control file can be reused.

CORE_DUMP_DEST = ’text ’

The CORE_DUMP_DEST parameter lets you specify the directory where Oracle

dumps core files.

CREATE_STORED_OUTLINES= { true | false | ’category_name’ }
[nooverride]

The CREATE_STORED_OUTLINES parameter determines whether Oracle should

automatically create and store an outline for each query submitted on the system.

CREATE_STORED_OUTLINES is not an initialization parameter.

■ true enables automatic outline creation for subsequent queries in the system.

These outlines receive a unique system-generated name and are stored in the

DEFAULT category. If a particular query already has an outline defined for it in

the DEFAULT category, that outline will remain and a new outline will not be

created.

■ false disables automatic outline creation for the system. This is the default.

■ category_name has the same behavior as true except that any outline

created in the system is stored in the category_name category.

■ nooverride specifies that this system setting will not override the setting for

any session in which this parameter was explicitly set. If you do not specify

nooverride , this setting takes effect in all sessions.

CURSOR_SHARING = {force | exact}

The CURSOR_SHARING parameter determines what kind of SQL statements can

share the same cursors.

■ exact causes only identical SQL statements to share a cursor.

■ force forces statements that may differ in some literals, but are otherwise

identical, to share a cursor, unless the literals affect the meaning of the

statement.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-137

ALTER SYSTEM
DB_BLOCK_CHECKING = {true | false} deferred

The DB_BLOCK_CHECKING parameter controls whether data block checking is

done. The default is false , for compatibility with earlier releases where block

checking is disabled as a default.

DB_BLOCK_CHECKSUM = {true | false}

The DB_BLOCK_CHECKSUM parameter determines whether the database writer

background process and the direct loader will calculate a checksum and store it in

the cache header of every data lock when writing to disk.

DB_BLOCK_MAX_DIRTY_TARGET =integer

The DB_BLOCK_MAX_DIRTY_TARGET parameter limits to integer the number of

dirty buffers in the cache and reduces the number of buffers that will need to be

read during crash or instance recovery. This parameter does not relate to media

recovery. A value of 0 disables this parameter. The minimum accepted value to

enable the parameter is 1000.

DB_FILE_DIRECT_IO_COUNT = integer deferred

The DB_FILE_DIRECT_IO_COUNT parameter determines the number of blocks

Oracle should use for I/O during backup, restore, or direct-path read and write

operations.

See Also: Oracle8i Performance Guide and Reference for information

on setting this parameter in these and other environments

Note: Oracle Corporation recommends that Enterprise Edition

users who were using incremental checkpointing in an earlier

release now use fast-start checkpointing in Oracle8i. In fast-start

checkpointing, the FAST_START_IO_TARGET parameter takes the

place of DB_FILE_MAX_DIRTY_TARGET. See FAST_START_IO_
TARGET below.

See Also:

■ Oracle8i Backup and Recovery Guide for information on fast-start

checkpointing

■ Oracle8i Reference for information on the new parameters
7-138 SQL Reference

ALTER SYSTEM
DB_FILE_MULTIBLOCK_READ_COUNT =integer

The DB_FILE_MULTIBLOCK_READ_COUNT parameter determines the maximum

number of blocks read in one I/O operation during a sequential scan.

FAST_START_IO_TARGET = integer

The FAST_START_IO_TARGET determines the target number of I/Os (reads and

writes) to and from buffer cache that Oracle should perform upon crash or instance

recovery. Oracle continuously calculates the actual number of I/Os that would be

needed for recovery and compares that number against the target. If the actual

number is greater than the target, Oracle attempts to write additional dirty buffers

to advance the checkpoint, while minimizing the affect on performance.

FAST_START_PARALLEL_ROLLBACK = { false | low | high}

The FAST_START_PARALLEL_ROLLBACK parameter determines the number of

processes spawned to perform parallel recovery.

■ false specifies no parallel recovery. SMON will serially recover dead

transactions.

■ low specifies that the number of recovery servers may not exceed twice the

value of the CPU_COUNT parameter.

■ high specifies that the number of recovery servers may not exceed four times

the value of the CPU_COUNT parameter.

FIXED_DATE = { ’ DD_MM_YY’ | ’ YYYY_MI_DD_HH24_MI-SS’ }

The FIXED_DATE lets you specify a constant date for SYSDATE instead of the

current date.

GC_DEFER_TIME = integer

The GC_DEFER_TIME parameter lets you specify the time (in hundredths of

seconds) that Oracle waits before responding to forced-write requests from other

instances.

GLOBAL_NAMES = {true | false}

When you start an instance, Oracle determines whether to enforce global name

resolution for remote objects accessed in SQL statements based on the value of the

initialization parameter GLOBAL_NAMES. This system parameter enables or disables

See Also: Oracle8i Performance Guide and Reference for information

on how to tune this parameter
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-139

ALTER SYSTEM
global name resolution while your instance is running. A setting of true enables

the enforcement of global names. A setting of false disables the enforcement of

global names. You can also enable or disable global name resolution for your

session with the GLOBAL_NAMES parameter of the ALTER SESSION statement.

Oracle recommends that you enable global name resolution if you use or plan to use

distributed processing.

HASH_MULTIBLOCK_IO_COUNT =integer

The HASH_MULTIBLOCK_IO_COUNT parameter determines the number of data

blocks Oracle reads and writes during a hash join operation. The value multiplied

by the DB_BLOCK_SIZE initialization parameter should not exceed 64K. The

default value for this parameter is 1. If the multi-threaded server is used, the value

is always 1, and any value given here is ignored.

HS_AUTOREGISTER = {true | false}

The HS_AUTOREGISTER lets you enable or disable automatic self-registration of

non-Oracle system characteristics in the Oracle server’s data dictionary by

Heterogeneous Services agents.

JOB_QUEUE_PROCESSES =integer

The JOB_QUEUE_PROCESSES determines the number of job queue processes per

instance (SNPn, where n is 0 to 9 followed by A to Z). Set this parameter to 1 or

higher if you wish to have your snapshots updated automatically. One job queue

process is usually sufficient unless you have many snapshots that refresh

simultaneously.

Oracle also uses job queue processes to process requests created by the DBMS_JOB
package.

See Also: "Referring to Objects in Remote Databases" on

page 2-90 and Oracle8i Distributed Database Systems for more

information on global name resolution and how Oracle enforces it

See Also: Oracle8i Distributed Database Systems for more

information on accessing non-Oracle systems through

Heterogeneous Services

See Also: Oracle8i Replication for more information on managing

table snapshots
7-140 SQL Reference

ALTER SYSTEM
LICENSE_MAX_SESSIONS = integer

The LICENSE_MAX_SESSIONS parameter lets you reset (for the current instance)

the value of the initialization parameter LICENSE_MAX_SESSIONS, which

establishes the concurrent usage licensing limit, or the limit for concurrent sessions.

Once this limit is reached, only users with RESTRICTED SESSION system privilege

can connect. A value of 0 disables the limit.

If you reduce the limit on sessions below the current number of sessions, Oracle

does not end existing sessions to enforce the new limit. However, users without

RESTRICTED SESSION system privilege can begin new sessions only when the

number of sessions falls below the new limit.

LICENSE_MAX_USERS = integer

The LICENSE_MAX_USERS parameter lets you reset (for the current instance) the

value of the initialization parameter LICENSE_MAX_USERS, which establishes the

limit for users connected to your database. Once this limit is reached, more users

cannot connect. A value of 0 disables the limit.

Restriction: You cannot reduce the limit on users below the current number of users

created for the database.

LICENSE_SESSIONS_WARNING =integer

The LICENSE_SESSIONS_WARNING parameter lets you reset (for the current

instance) the value of the initialization parameter LICENSE_SESSIONS_WARNING,
which establishes a warning threshold for concurrent usage. Once this threshold is

reached, Oracle writes warning messages to the database ALERT file for each

subsequent session. Also, users with RESTICTED SESSIONsystem privilege receive

warning messages when they begin subsequent sessions. A value of 0 disables the

warning threshold.

If you reduce the warning threshold for sessions below the current number of

sessions, Oracle writes a message to the ALERT file for all subsequent sessions.

Note: Do not disable or raise session limits unless you have

appropriately upgraded your Oracle license. For more information,

contact your Oracle sales representative.

Note: Do not disable or raise user limits unless you have

appropriately upgraded your Oracle license. For more information,

contact your Oracle sales representative.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-141

ALTER SYSTEM
LOG_ARCHIVE_DEST = string

The LOG_ARCHIVE_DEST parameter lets you specify a valid operating system

pathname as the primary destination for all archive redo log file groups.

Restrictions: If you set a value for this parameter:

■ You cannot have a value for LOG_ARCHIVE_DEST_n in your initialization

parameter file, nor can you set a value for that parameter using the ALTER
SESSION or ALTER SYSTEM statement.

■ You cannot set a value for the parameter LOG_ARCHIVE_MIN_SUCCEED_DEST
using the ALTER SESSION statement.

LOG_ARCHIVE_DEST_n
LOG_ARCHIVE_DEST_n = {null_string

| {LOCATION=local_pathname | SERVICE=tnsnames_service}
 [MANDATORY | OPTIONAL] [REOPEN[=integer]]}

The LOG_ARCHIVE_DEST_n parameter lets you specify up to five valid operating

system pathnames or Oracle service names (plus other related options) as

destinations for archive redo log file groups (n = integers 1 through 5). For a

description of the options, refer to Oracle8i Reference.

Restrictions: If you set a value for this parameter:

■ You cannot have definitions for the parameters LOG_ARCHIVE_DEST or LOG_
ARCHIVE_DUPLEX_DEST in your initialization parameter file, nor can you set

values for those parameters using the ALTER SYSTEM statement.

■ You cannot start archiving to a specific location using the ALTER SYSTEM
ARCHIVE LOG TOlocation statement.

LOG_ARCHIVE_DEST_STATE_n = {enable | defer}

The LOG_ARCHIVE_DEST_STATE_n parameter lets you specify the state

associated with the corresponding LOG_ARCHIVE_DEST_n parameter.

■ enable specifies that any associated valid destination can be used for

archiving. This is the default.

See Also: The LOG_ARCHIVE_DEST parameter in Oracle8i
Reference for detailed information on specifying string

See Also: The LOG_ARCHIVE_DEST_n parameter in Oracle8i
Reference for detailed information on specifying pathnames
7-142 SQL Reference

ALTER SYSTEM
■ defer specifies that Oracle will not consider for archiving any destination

associated with the corresponding LOG_ARCHIVE_DEST_n parameter.

LOG_ARCHIVE_DUPLEX_DEST =string

The LOG_ARCHIVE_DUPLEX_DEST parameter lets you specify a valid operating

system pathname as the secondary destination for all archive redo log file groups.

Restriction: If you set a value for this parameter:

■ You must have a definition for LOG_ARCHIVE_DEST.

■ You cannot have a value for the parameter LOG_ARCHIVE_DEST_n in your

initialization parameter file, nor can you set a value for that parameter using the

ALTER SYSTEM or ALTER SESSION statement.

■ You cannot set a value for the parameter LOG_ARCHIVE_MIN_SUCCEED_DEST
using the ALTER SESSION statement.

LOG_ARCHIVE_MAX_PROCESSES =integer

The LOG_ARCHIVE_MAX_PROCESSES lets you specify the number of archiver

processes that are invoked. Permitted values are integers 1 through 10, inclusive.

The default is 1.

LOG_ARCHIVE_MIN_SUCCEED_DEST =integer

The LOG_ARCHIVE_MIN_SUCCEED_DEST parameter lets you specify the minimum

number of destinations that must succeed in order for the online log file to be

available for reuse.

LOG_ARCHIVE_TRACE = integer

The LOG_ARCHIVE_TRACE parameter controls the type of output information

generated by archivelog processes.

LOG_CHECKPOINT_INTERVAL =integer

The LOG_CHECKPOINT_INTERVAL lets you limit to integer the number of redo

blocks that can exist between an incremental checkpoint and the last block written

to the redo log.

See Also:

■ Oracle8i Backup and Recovery Guide for more information on

using this parameter

■ Oracle8i Reference for a listing of valid values
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-143

ALTER SYSTEM
LOG_CHECKPOINT_TIMEOUT =integer

The LOG_CHECKPOINT_TIMEOUT parameter lets you limit the incremental

checkpoint to be at the position where the last write to the redo log (sometimes

called the "tail of the log") was integer seconds ago. This parameter signifies that

no buffer will remain dirty (in the cache) for more than integer seconds. The default

is 1800 seconds.

MAX_DUMP_FILE_SIZE = { size | ’unlimited’} [deferred]

The MAX_DUMP_FILE_SIZElets you specify the trace dump file size upper limit for

all user sessions. Specify the maximum size as either a nonnegative integer that

represents the number of blocks, or as ’unlimited ’. If you specify ’unlimited ’,

no upper limit is imposed.

Multi-Threaded Server Parameters
When you start your instance, Oracle creates shared server processes and

dispatcher processes for the multi-threaded server architecture based on the values

of the MTS_SERVERS and MTS_DISPATCHERS initialization parameters. You can

set the MTS_SERVERS and MTS_DISPATCHERS session parameters to perform one

of the following operations while the instance is running:

■ Create additional shared server processes by increasing the minimum number

of shared server processes.

■ Terminate existing shared server processes after their current calls finish

processing.

■ Create more dispatcher processes for a specific protocol, up to a maximum

across all protocols specified by the initialization parameter MTS_MAX_
DISPATCHERS.

■ Terminate existing dispatcher processes for a specific protocol after their current

user processes disconnect from the instance.

MTS_DISPATCHERS = ’ dispatch_clause ’

dispatch_clause::=

See Also:

■ Oracle8i Concepts

■ Oracle8i Performance Guide and Reference

■ Oracle8i Parallel Server Concepts.
7-144 SQL Reference

ALTER SYSTEM
(PROTOCOL = protocol) |
(ADDRESS = address) |
(DESCRIPTION = description)
[options_clause]

options_clause::=

(DISPATCHERS = integer |
 SESSIONS = integer |
 CONNECTIONS = integer |
 TICKS = seconds |
 POOL = { 1 | on | yes | true | both |
 ({in|out} = ticks) | 0 | off | no |
 false | ticks} |
 MULTIPLEX = {1 | on | yes | true | 0 | off | no |
 false | both | in | out} |
 LISTENER = tnsname |
 SERVICE = service |
 INDEX = integer)

The MTS_DISPATCHERS parameter lets you modify or create the configuration of

dispatcher processes. A description of the parameters appears in Oracle8i Reference.

You can specify multiple MTS_DISPATCHERS parameters in a single statement for

multiple network protocols.

MTS_SERVERS =integer

The MTS_SERVERS parameter lets you specify a new minimum number of shared

server processes.

OBJECT_CACHE_MAX_SIZE_PERCENT =integer deferred

The OBJECT_CACHE_MAX_SIZE_PERCENT parameter lets you specify the

percentage of the optimal cache size that the session object cache can grow past the

optimal size.

OBJECT_CACHE_OPTIMAL_SIZE = integer deferred

The OBJECT_CACHE_OPTIMAL_SIZE parameter lets you specify (in kilobytes) the

size to which the session object cache is reduced if it exceeds the maximum size.

See Also: Oracle8i Administrator’s Guide for more information on

this parameter, see Net8 Administrator’s Guide
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-145

ALTER SYSTEM
OPTIMIZER_MAX_PERMUTATIONS = integer nooverride

The OPTIMIZER_MAX_PERMUTATIONS parameter lets you limit the amount of

work the optimizer expends on optimizing queries with large joins. The value of

integer is the number of permutations of the tables the optimizer will consider with

large joins.

nooverride specifies that this system setting will not override the setting for any

session in which this parameter was explicitly set.

PARALLEL_ADAPTIVE_MULTI_USER = {true | false}

The PARALLEL_ADAPTIVE_MULTI_USER parameter lets you specify that Oracle

should vary the degree of parallelism based on the total perceived load on the

system.

PARALLEL_INSTANCE_GROUP = ’text ’

The PARALLEL_INSTANCE_GROUP parameter lets you specify the name of the

Oracle Parallel Server instance group to be used for spawning parallel query slaves.

PARALLEL_THREADS_PER_CPU =integer

Use the PARALLEL_THREADS_PER_CPU parameter to specify the degree of

parallelism for parallel operations where the degree of parallelism is unset. The

default is operating system dependent.

PLSQL_V2_COMPATIBILITY = {true | false} [deferred]

Use the PLSQL_V2_COMPATIBILITY parameter to modify the compile-time

behavior of PL/SQL programs to allow language constructs that are illegal in

Oracle8 and Oracle8i (PL/SQL V3), but were legal in Oracle7 (PL/SQL V2).

■ Specify true to enable Oracle8i PL/SQL V3 programs to execute Oracle7 PL/

SQL V2 constructs.

■ Specify false to disallow illegal Oracle7 PL/SQL V2 constructs. This is the

default.

QUERY_REWRITE_ENABLED = { true | false } [deferred |
nooverride]

The QUERY_REWRITE_ENABLEDparameter lets you enable or disable query rewrite

on all materialized views that have not been explicitly disabled. By default, true

See Also: PL/SQL User’s Guide and Reference and Oracle8i Reference
for more information about this system parameter
7-146 SQL Reference

ALTER SYSTEM
enables query rewrite for all sessions immediately. Query rewrite is superseded and

disabled by rule-based optimization (that is, if the OPTIMIZER_MODE parameter is

set to rule). Also enables or disables use of any function-based indexes defined on

the materialized view.

■ deferred specifies that query rewrite is enabled or disabled only for future

sessions.

■ nooverride specifies that query rewrite is enabled or disabled for all sessions

that have not explicitly set this parameter using ALTER SESSION.

■ Enabling or disabling query rewrite does not affect queries that have already

been compiled, even if they are reissued.

■ Enabling or disabling query rewrite does not affect descending indexes.

■ A true setting has no effect on materialized views that cannot be created with

the ENABLE QUERY REWRITE clause, such as materialized views created totally

or in part from a view.

QUERY_REWRITE_INTEGRITY

QUERY_REWRITE_INTEGRITY =
{ enforced | trusted | stale_tolerated }

The QUERY_REWRITE_INTEGRITY parameter lets you set the minimum

consistency level for query rewrite for the duration of the instance. The following

values are permitted:

■ enforced is the safest level. It relies only on system-enforced relationships so

that data integrity and correctness can be guaranteed. This level ensures that

query rewrite will not use any function-based index or any materialized view

that includes a call to a user-defined function.

In addition, this level ensures that query rewrite will not use any dimensional

information or any constraints enabled with the RELY keyword.

■ trusted specifies that materialized views created with the ON PREBUILT

TABLE clause are supported, and trusted but unenforced join relationships are

accepted. Query rewrite uses join information from dimensions and enables

unenforced constraints with the RELY keyword.

See Also: Oracle8i Data Warehousing Guide for more information

on query rewrite
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-147

ALTER SYSTEM
■ stale_tolerated specifies that any stale, usable materialized view may be

used.

This parameter does not affect descending indexes.

REMOTE_DEPENDENCIES_MODE = {timestamp | signature}

The REMOTE_DEPENDENCIES_MODE paraleter lets you specify how dependencies

of remote stored procedures are handled by the server.

RESOURCE_LIMIT = {true | false}

When you start an instance, Oracle enforces resource limits assigned to users based

on the value of the RESOURCE_LIMIT initialization parameter. This system

parameter enables or disables resource limits for subsequent sessions. true
enables resource limits. false disables resource limits.

Enabling resource limits only causes Oracle to enforce the resource limits already

assigned to users. To choose resource limit values for a user, you must create a

profile and assign that profile to the user.

RESOURCE_MANAGER_PLAN =plan_name

The RESOURCE_MANAGER_PLAN parameter lets you specify the name of the

resource plan Oracle should use to allocate system resources among resource

consumer groups.

See Also:

■ Oracle8i Data Warehousing Guide for more information on query

rewrite integrity level

■ CREATE DIMENSION on page 9-34 for information on

dimensions

■ constraint_clause on page 8-136 for information on constraints

enabled with the RELY keyword

See Also: Oracle8i Application Developer’s Guide - Fundamentals

See Also: CREATE PROFILE on page 9-139 and CREATE USER

on page 10-99.

See Also: Oracle8i Administrator’s Guide for information on

resource consumer groups and resource plans
7-148 SQL Reference

ALTER SYSTEM
SORT_AREA_RETAINED_SIZE = integer deferred

The SORT_AREA_RETAINED_SIZE parameter lets you specify (in bytes) the

maximum amount of memory that each sort operation will retain after the first fetch

is done, until the cursor ends. If you do not explicitly set this parameter in the

initialization parameter file or dynamically, Oracle uses the value of the SORT_
AREA_SIZE parameter.

SORT_AREA_SIZE = integer deferred

The SORT_AREA_SIZE parameter lets you specify (in bytes) the maximum amount

of memory to use for each sort operation. The default is operating system

dependent.

SORT_MULTIBLOCK_READ_COUNT =integer deferred

The SORT_MULTIBLOCK_READ_COUNT parameter lets you specify the number of

database blocks to read each time a sort performs a read from temporary segments.

The default is 2.

STANDBY_ARCHIVE_DEST =string

The STANDBY_ARCHIVE_DESTparameter lets you specify a valid operating system

pathname as the standby database destination for the archive redo log files.

TIMED_STATISTICS = {true | false}

The TIMED_STATISTICS parameter lets you specify whether the server requests

the time from the operating system when generating time-related statistics. The

default is false .

TIMED_OS_STATISTICS = integer

The TIMED_OS_STATISTICS lets you specify that operating system statistics will

be collected when a request is made from a client to the server or when a request

completes.

TRANSACTION_AUDITING = {true | false} deferred

The TRANSACTION_AUDITING parameter lets you specify whether the transaction

layer generates a special redo record containing session and user information.

USE_STORED_OUTLINES = { true | false | ’category_name ’ } [nooverride]
The USE_STORED_OUTLINESparameter determines whether the optimizer will use

stored outlines to generate execution plans. USE_STORED_OUTLINES is not an

initialization parameter.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-149

ALTER SYSTEM
■ true causes the optimizer to use outlines stored in the DEFAULTcategory when

compiling requests.

■ false specifies that the optimizer should not use stored outlines. This is the

default.

■ category_name causes the optimizer to use outlines stored in the category_
name category when compiling requests.

■ nooverride specifies that this system setting will not override the setting for

any session in which this parameter was explicitly set. If you do not specify

nooverride , this setting takes effect in all sessions.

USER_DUMP_DEST = ’directory_name ’

The USER_DUMP_DEST parameter lets you specify the pathname where Oracle will

write debugging trace files on behalf of a user process.

Examples

Archiving Redo Logs Manually Examples The following statement manually

archives the redo log file group with the log sequence number 4 in thread number 3:

ALTER SYSTEM ARCHIVE LOG THREAD 3 SEQUENCE 4;

The following statement manually archives the redo log file group containing the

redo log entry with the SCN 9356083:

ALTER SYSTEM ARCHIVE LOG CHANGE 9356083;

The following statement manually archives the redo log file group containing a

member named ’diskl:log6.log ’ to an archived redo log file in the location

’diska:[arch$]’:

ALTER SYSTEM ARCHIVE LOG
 LOGFILE ’diskl:log6.log’
 TO ’diska:[arch$]’;

Note: If you want the execution plan to consider materialized

views, you must specify them in the outline. If the outline does not

use a materialized view, then the query that uses the outline will

not use the materialized view either, even if you have enabled

query rewrite.
7-150 SQL Reference

ALTER SYSTEM
Enabling Query Rewrite Example This statement enables query rewrite in all

sessions for all materialized views that have not been explicitly disabled:

ALTER SYSTEM SET QUERY_REWRITE_ENABLED = TRUE;

Restricting Session Logons Example You may want to restrict logons if you are

performing application maintenance and you want only application developers

with RESTRICTED SESSION system privilege to log on. To restrict logons, issue the

following statement:

ALTER SYSTEM
 ENABLE RESTRICTED SESSION;

You can then terminate any existing sessions using the KILL SESSION clause of the

ALTER SYSTEM statement.

After performing maintenance on your application, issue the following statement to

allow any user with CREATE SESSION system privilege to log on:

ALTER SYSTEM
 DISABLE RESTRICTED SESSION;

Clearing the Shared Pool Example You might want to clear the shared pool before

beginning performance analysis. To clear the shared pool, issue the following

statement:

ALTER SYSTEM FLUSH SHARED_POOL;

Forcing a Checkpoint Example The following statement forces a checkpoint:

ALTER SYSTEM CHECKPOINT;

Enabling Resource Limits Example This ALTER SYSTEM statement dynamically

enables resource limits:

ALTER SYSTEM SET RESOURCE_LIMIT = TRUE;

Multi-Threaded Server Examples The following statement changes the minimum

number of shared server processes to 25:

ALTER SYSTEM SET MTS_SERVERS = 25;

If there are currently fewer than 25 shared server processes, Oracle creates more. If

there are currently more than 25, Oracle terminates some of them when they are

finished processing their current calls if the load could be managed by the

remaining 25.
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-151

ALTER SYSTEM
The following statement dynamically changes the number of dispatcher processes

for the TCP/IP protocol to 5 and the number of dispatcher processes for the

DECNet protocol to 10:

ALTER SYSTEM
 SET MTS_DISPATCHERS =
 ’(INDEX=0)(PROTOCOL=TCP)(DISPATCHERS=5)’,
 ’(INDEX=1)(PROTOCOL=DECNet)(DISPATCHERS=10)’;

If there are currently fewer than 5 dispatcher processes for TCP, Oracle creates new

ones. If there are currently more than 5, Oracle terminates some of them after the

connected users disconnect.

If there are currently fewer than 10 dispatcher processes for DECNet, Oracle creates

new ones. If there are currently more than 10, Oracle terminates some of them after

the connected users disconnect.

If there are currently existing dispatchers for another protocol, the above statement

does not affect the number of dispatchers for that protocol.

Changing Licensing Parameters Examples The following statement dynamically

changes the limit on sessions for your instance to 64 and the warning threshold for

sessions on your instance to 54:

ALTER SYSTEM
 SET LICENSE_MAX_SESSIONS = 64
 LICENSE_SESSIONS_WARNING = 54;

If the number of sessions reaches 54, Oracle writes a warning message to the ALERT
file for each subsequent session. Also, users with RESTRICTED SESSION system

privilege receive warning messages when they begin subsequent sessions.

If the number of sessions reaches 64, only users with RESTRICTED SESSIONsystem

privilege can begin new sessions until the number of sessions falls below 64 again.

The following statement dynamically disables the limit for sessions on your

instance. After you issue the above statement, Oracle no longer limits the number of

sessions on your instance.

ALTER SYSTEM SET LICENSE_MAX_SESSIONS = 0;

The following statement dynamically changes the limit on the number of users in

the database to 200. After you issue the above statement, Oracle prevents the

number of users in the database from exceeding 200.

ALTER SYSTEM SET LICENSE_MAX_USERS = 200;
7-152 SQL Reference

ALTER SYSTEM
Forcing a Log Switch Example You may want to force a log switch to drop or

rename the current redo log file group or one of its members, because you cannot

drop or rename a file while Oracle is writing to it. The forced log switch affects only

your instance’s redo log thread. The following statement forces a log switch:

ALTER SYSTEM
 SWITCH LOGFILE;

Enabling Distributed Recovery Example The following statement enables

distributed recovery:

ALTER SYSTEM ENABLE DISTRIBUTED RECOVERY;

You may want to disable distributed recovery for demonstration or testing

purposes.You can disable distributed recovery in both single-process and

multiprocess mode with the following statement:

ALTER SYSTEM DISABLE DISTRIBUTED RECOVERY;

When your demonstration or testing are complete, you can then enable distributed

recovery again by issuing an ALTER SYSTEM statement with the ENABLE
DISTRIBUTED RECOVERY clause.

Killing a Session Example You may want to kill the session of a user that is

holding resources needed by other users. The user receives an error message

indicating that the session has been killed. That user can no longer make calls to the

database without beginning a new session. Consider this data from the V$SESSION
dynamic performance table:

SELECT sid, serial#, username
FROM v$session

 SID SERIAL# USERNAME
----- --------- ----------------
 1 1
 2 1
 3 1
 4 1
 5 1
 7 1
 8 28 OPS$BQUIGLEY
 10 211 OPS$SWIFT
 11 39 OPS$OBRIEN
 12 13 SYSTEM
 13 8 SCOTT
SQL Statements: ALTER CLUSTER to ALTER SYSTEM 7-153

ALTER SYSTEM
The following statement kills the session of the user scott using the SID and

SERIAL# values from V$SESSION:

ALTER SYSTEM KILL SESSION ’13, 8’;

Disconnecting a Session Example The following statement disconnects user

scott ’s session, using the SID and SERIAL# values from V$SESSION:

ALTER SYSTEM DISCONNECT SESSION ’13, 8’ POST_TRANSACTION;

See Also: Oracle8i Parallel Server Concepts and Oracle8i Performance
Guide and Reference for more information about application failover
7-154 SQL Reference

SQL Statements: ALTER TABLE to constraint_c
8

SQL Statements:

ALTER TABLE to constraint_clause

This chapter contains the following SQL statements:

■ ALTER TABLE

■ ALTER TABLESPACE

■ ALTER TRIGGER

■ ALTER TYPE

■ ALTER USER

■ ALTER VIEW

■ ANALYZE

■ ASSOCIATE STATISTICS

■ AUDIT

■ CALL

■ COMMENT

■ COMMIT

■ constraint_clause
lause 8-1

ALTER TABLE
ALTER TABLE

Purpose
Use the ALTER TABLE statement to alter the definition of a nonpartitioned table, a

partitioned table, a table partition, or a table subpartition.

■

Prerequisites
The table must be in your own schema, or you must have ALTER privilege on the

table, or you must have ALTER ANY TABLE system privilege. For some operations

you may also need the CREATE ANY INDEX privilege.

Additional Prerequisites for Partitioning Operations In addition, if you are not the

owner of the table, you need the DROP ANY TABLE privilege in order to use the

drop_partition_clause or truncate_partition_clause .

You must also have space quota in the tablespace in which space is to be acquired in

order to use the add_partition_clause , modify_partition_clause , move_
partition_clause , and split_partition_clause .

Additional Prerequisites for Constraints and Triggers To enable a UNIQUE or

PRIMARY KEY constraint, you must have the privileges necessary to create an index

on the table. You need these privileges because Oracle creates an index on the

columns of the unique or primary key in the schema containing the table.

To enable or disable triggers, the triggers must be in your schema or you must have

the ALTER ANY TRIGGER system privilege.

Additional Prerequisites When Using Object Types To use an object type in a

column definition when modifying a table, either that object must belong to the

same schema as the table being altered, or you must have either the EXECUTE ANY
TYPE system privilege or the EXECUTE schema object privilege for the object type.

See Also: CREATE INDEX on page 9-52 for information on the

privileges needed to create indexes
8-2 SQL Reference

ALTER TABLE
Syntax

ALTER TABLE
schema .

table

ADD (add_column_options)

MODIFY (modify_column_options)

move_table_clause

physical_attributes_clause

LOGGING

NOLOGGING

modify_collection_retrieval_clause

modify_storage_clauses

MODIFY CONSTRAINT constraint constraint_state

drop_constraint_clause

drop_column_clause

allocate_extent_clause

deallocate_unused_clause

CACHE

NOCACHE

MONITORING

NOMONITORING

RENAME TO new_table_name

records_per_block_clause

alter_overflow_clause

partitioning_clauses
SQL Statements: ALTER TABLE to constraint_clause 8-3

ALTER TABLE
add_column_options ::=

column_constraint , table_constraint , column_ref_constraint , table_ref_
constraint , constraint_state : See the constraint_clause on page 8-136.

LOB_storage_clause ::=

parallel_clause

enable_disable_clause

ENABLE

DISABLE

TABLE LOCK

ALL TRIGGERS
;

column datatype
DEFAULT expr column_ref_constraint column_constraint

table_constraint

table_ref_constraint

,

LOB_storage_clause

varray_storage_clause

nested_table_storage_clause (partition_storage_clause

,

)

LOB

(LOB_item

,

) STORE AS (LOB_parameters)

(LOB_item) STORE AS

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)
8-4 SQL Reference

ALTER TABLE
LOB_parameters ::=

storage_clause : See storage_clause on page 11-129.

varray_storage_clause ::=

nested_table_storage_clause ::=

TABLESPACE tablespace

ENABLE

DISABLE
STORAGE IN ROW

storage_clause

CHUNK integer

PCTVERSION integer

CACHE

NOCACHE

CACHE READS

LOGGING

NOLOGGING

VARRAY varray_item STORE AS LOB

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

NESTED TABLE nested_item STORE AS storage_table

((object_properties)
physical_properties

)

RETURN AS
LOCATOR

VALUE
SQL Statements: ALTER TABLE to constraint_clause 8-5

ALTER TABLE
object_properties ::=

physical_properties ::=

partition_storage_clause ::=

modify_column_options ::=

column

attribute

DEFAULT expr column_ref_constraint column_constraint

table_constraint

table_ref_constraint

segment_attributes_clause

ORGANIZATION
HEAP

segment_attributes_clause

INDEX index_organized_table_clause

CLUSTER cluster (column

,

)

LOB_storage_clause

varray_storage_clause

nested_table_storage_clause

PARTITION partition
LOB_storage_clause

varray_storage_clause

(SUBPARTITION subpartition
LOB_storage_clause

varray_storage_clause
)

column
datatype DEFAULT expr column_constraint

,

8-6 SQL Reference

ALTER TABLE
move_table_clause ::=

segment_attributes_clause ::=

physical_attributes_clause ::=

index_organized_table_clause ::=

MOVE
ONLINE segment_attributes_clause

index_organized_table_clause

LOB_storage_clause

varray_storage_clause

physical_attributes_clause

TABLESPACE tablespace

LOGGING

NOLOGGING

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

segment_attributes_clause

PCTTHRESHOLD integer

compression_clause

index_organized_overflow_clause
SQL Statements: ALTER TABLE to constraint_clause 8-7

ALTER TABLE
compression_clause ::=

index_organized_overflow_clause ::=

modify_collection_retrieval_clause ::=

modify_storage_clauses ::=

modify_LOB_storage_clause ::=

COMPRESS
integer

NOCOMPRESS

INCLUDING column_name
OVERFLOW

segment_attributes_clause

MODIFY NESTED TABLE collection_item RETURN AS
LOCATOR

VALUE

modify_LOB_storage_clause

modify_varray_storage_clause

MODIFY LOB (LOB_item) (modify_LOB_storage_parameters)
8-8 SQL Reference

ALTER TABLE
modify_LOB_storage_parameters ::=

allocate_extent_clause ::=

deallocate_unused_clause ::=

modify_varray_storage_clause ::=

storage_clause

PCTVERSION integer

CACHE

NOCACHE

CACHE READS

LOGGING

NOLOGGING

allocate_extent_clause

deallocate_unused_clause

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

DEALLOCATE UNUSED
KEEP integer

K

M

MODIFY VARRAY varray_item (modify_LOB_storage_parameters)
SQL Statements: ALTER TABLE to constraint_clause 8-9

ALTER TABLE
drop_constraint_clause ::=

drop_column_clause ::=

records_per_block_clause ::=

DROP

PRIMARY KEY

UNIQUE (column

,

)

CASCADE

CONSTRAINT constraint

SET UNUSED

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE

DROP

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE CHECKPOINT integer

DROP
UNUSED COLUMNS

COLUMNS CONTINUE

CHECKPOINT integer

MINIMIZE

NOMINIMIZE
RECORDS_PER_BLOCK
8-10 SQL Reference

ALTER TABLE
alter_overflow_clause ::=

overflow_clause ::=

add_overflow_clause ::=

PCTTHRESHOLD integer

INCLUDING column

overflow_clause

add_overflow_clause

OVERFLOW

physical_attributes_clause

allocate_extent_clause

deallocate_unused_clause

LOGGING

NOLOGGING

ADD OVERFLOW
segment_attributes_clause (PARTITION

segment_attributes_clause

,

)

SQL Statements: ALTER TABLE to constraint_clause 8-11

ALTER TABLE
partitioning_clauses ::=

modify_default_attributes_clause ::=

modify_default_attributes_clause

modify_partition_clause

modify_subpartition_clause

move_partition_clause

move_subpartition_clause

add_range_partition_clause

add_hash_partition_clause

coalesce_partition_clause

drop_partition_clause

rename_partition/subpartition_clause

truncate_partition/subpartition_clause

split_partition_clause

merge_partitions_clause

exchange_partition/subpartition_clause

row_movement_clause

MODIFY DEFAULT ATTRIBUTES
FOR PARTITION partition

segment_attributes_clause

PCTTHRESHOLD integer

COMPRESS

NOCOMPRESS

overflow_clause

LOB LOB_item

VARRAY varray
LOB_parameters
8-12 SQL Reference

ALTER TABLE
modify_partition_clause ::=

partition_attributes ::=

add_subpartition_clause ::=

subpartition_description ::=

MODIFY PARTITION partition

partition_attributes

add_subpartition_clause

COALESCE SUBPARTITION
parallel_clause

REBUILD
UNUSABLE LOCAL INDEXES

physical_attributes_clause

LOGGING

NOLOGGING

allocate_extent_clause

deallocate_unused_clause

OVERFLOW physical_attributes_clause

LOB LOB_item

VARRAY varray
modify_LOB_storage_parameters

ADD SUBPARTITION
subpartition

subpartition_description

TABLESPACE tablespace

LOB_storage_clause

varray_storage_clause parallel_clause
SQL Statements: ALTER TABLE to constraint_clause 8-13

ALTER TABLE
modify_subpartition_clause ::=

move_partition_clause ::=

table_partition_description ::=

partition_level_subpartitioning ::=

MODIFY SUBPARTITION subpartition

allocate_extent_clause

deallocate_unused_clause

LOB LOB_item

VARRAY varray
modify_LOB_storage_parameters

REBUILD
UNUSABLE LOCAL INDEXES

MOVE PARTITION partition
partition_description parallel_clause

segment_attributes_clause compression_clause

OVERFLOW
segment_attributes_clause

LOB_storage_clause

varray_storage_clause

partition_level_subpartitioning

SUBPARTITIONS quantity
STORE IN (tablespace

,

)

(SUBPARTITION
subpartition hash_partitioning_storage_clause

,

)

8-14 SQL Reference

ALTER TABLE
hash_partitioning_storage_clause ::=

move_subpartition_clause ::=

add_range_partition_clause ::=

add_hash_partition_clause ::=

coalesce_partition_clause ::=

drop_partition_clause ::=

TABLESPACE tablespace

LOB (LOB_item) STORE AS (TABLESPACE tablespace)

VARRAY varray_item STORE AS LOB (TABLESPACE tablespace)

MOVE SUBPARTITION subpartition subpartition_description

ADD PARTITION
partition

VALUES LESS THAN (value_list)
partition_description

ADD PARTITION
partition hash_partitioning_storage_clause

parallel_clause

COALESCE PARTITION
parallel_clause

DROP PARTITION partition
SQL Statements: ALTER TABLE to constraint_clause 8-15

ALTER TABLE
rename_partition/ subpartition_clause ::=

truncate_partition_clause and truncate_subpartition_clause ::=

split_partition_clause ::=

merge_partitions_clause ::=

partition_spec ::=

RENAME
PARTITION

SUBPARTITION
current_name TO new_name

TRUNCATE
PARTITION partition

SUBPARTITION subpartition

DROP

REUSE
STORAGE

SPLIT PARTITION partition_name_old AT (value_list)

INTO (partition_spec , partition_spec) parallel_clause

MERGE PARTITIONS partition_1 , partition_2
INTO partition_spec

PARTITION
partition_name partition_description
8-16 SQL Reference

ALTER TABLE
exchange_partition_clause and exchange_subpartition_clause ::=

row_movement_clause ::=

parallel_clause ::=

enable_disable_clause ::=

EXCHANGE
PARTITION partition

SUBPARTITION subpartition
WITH TABLE table

INCLUDING

EXCLUDING
INDEXES

WITH

WITHOUT
VALIDATION

EXCEPTIONS INTO
schema .

table

ENABLE

DISABLE
ROW MOVEMENT

NOPARALLEL

PARALLEL
integer

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint

using_index_clause EXCEPTIONS INTO
schema .

table CASCADE
SQL Statements: ALTER TABLE to constraint_clause 8-17

ALTER TABLE
using_index_clause ::=

Keywords and Parameters
The clauses described below have specialized meaning in the ALTER TABLE
statement. For descriptions of the remaining keywords, see CREATE TABLE on

page 10-7.

schema
Specify the schema containing the table. If you omit schema , Oracle assumes the

table is in your own schema.

table
Specify the name of the table to be altered.

You can modify, or drop columns from, or rename a temporary table. However, for

a temporary table, you cannot:

Note: Operations performed by the ALTER TABLE statement can

cause Oracle to invalidate procedures and stored functions that

access the table. For information on how and when Oracle

invalidates such objects, see Oracle8i Concepts.

USING INDEX

LOCAL

global_index_clause

PCTFREE integer

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

storage_clause

NOSORT

LOGGING

NOLOGGING
8-18 SQL Reference

ALTER TABLE
■ Add columns of nested-table or varray type. You can add columns of other

types.

■ Specify referential integrity (foreign key) constraints for an added or modified

column

■ Specify the following clauses of the LOB_storage_clause for an added or

modified LOB column: TABLESPACE, storage_clause , LOGGING or

NOLOGGING, or the LOB_index_clause .

■ Specify the physical_attribute_clause , nested_table_storage_
clause , parallel_clause , allocate_extent_clause , deallocate_
unused_clause , or any of the index _organized _table clauses

■ Exchange partitions between a partition and a temporary table

■ Specify LOGGING or NOLOGGING

■ Specify MOVE

add_column_options
ADDadd_column_options lets you add a column or integrity constraint.

If you add a column, the initial value of each row for the new column is null unless

you specify the DEFAULT clause. In this case, Oracle updates each row in the new

column with the value you specify for DEFAULT. This update operation, in turn,

fires any AFTER UPDATE triggers defined on the table.

You can add an overflow data segment to each partition of a partitioned index-

organized table.

Note: If you alter a table that is a master table for one or more

materialized views, the materialized views are marked INVALID .

Invalid materialized views cannot be used by query rewrite and

cannot be refreshed. To revalidate a materialized view, see ALTER

MATERIALIZED VIEW on page 7-61.

See Also: Oracle8i Data Warehousing Guide for more information on

materialized views in general.

See Also: CREATE TABLE on page 10-7 for a description of the

keywords and parameters of this clause
SQL Statements: ALTER TABLE to constraint_clause 8-19

ALTER TABLE
You can add LOB columns to nonpartitioned and partitioned tables. You can specify

LOB storage at the table and at the partition or subpartition level.

If you previously created a view with a query that used the "SELECT * " syntax to

select all columns from table, and you now add a column to table, Oracle does not

automatically add the new column to the view. To add the new column to the view,

re-create the view using the CREATE VIEW statement with the OR REPLACE clause.

Restrictions:

■ You cannot add a LOB column to a partitioned index-organized table. (This

restriction does not apply to nonpartitioned index-organized tables.)

■ You cannot add a column with a NOT NULL constraint if table has any rows

unless you also specify the DEFAULT clause.

■ If you specify this clause for an index-organized table, you cannot specify any

other clauses in the same statement.

See Also: CREATE VIEW on page 10-105

DEFAULT Use the DEFAULTclause to specify a default for a new column or a

new default for an existing column. Oracle assigns this value to

the column if a subsequent INSERT statement omits a value for

the column. If you are adding a new column to the table and

specify the default value, Oracle inserts the default column value

into all rows of the table.

The datatype of the default value must match the datatype

specified for the column. The column must also be long enough to

hold the default value. A DEFAULT expression cannot contain

references to other columns, the pseudocolumns CURRVAL,
NEXTVAL, LEVEL, and ROWNUM, or date constants that are not fully

specified.

table_ref_
constraint

and

column_ref_
constraint

These clauses let you further describe a column of type REF. The

only difference between these clauses is that you specify table_
ref from the table level, so you must identify the REF column or

attribute you are defining. You specify column_ref after you

have already identified the REF column or attribute.

See Also: constraint_clause on page 8-136 for syntax and

description of these constraints, including restrictions
8-20 SQL Reference

ALTER TABLE
LOB_storage_clause

Use the LOB_storage_clause to specify the LOB storage characteristics for the

newly added LOB column. You cannot use this clause to modify an existing LOB

column. Instead, you must use the modify_LOB_storage_clause .

Restrictions:

■ The only parameter of LOB_parameters you can specify for a hash partition

or hash subpartition is TABLESPACE.

■ You cannot specify the LOB_index_clause if table is partitioned.

column_
constraint

Use column_constraint to add or remove a NOT NULL
constraint to or from an existing column. You cannot use this

clause to modify any other type of constraint using ALTER TABLE.

See Also: constraint_clause on page 8-136

table_
constraint

Use table_constraint to add or modify an integrity constraint

on the table.

See Also: constraint_clause on page 8-136

lob_item Specify the LOB column name or LOB object attribute for which

you are explicitly defining tablespace and storage characteristics

that are different from those of the table.

lob_segname Specify the name of the LOB data segment. You cannot use lob_
segname if more than one lob_item is specified.

ENABLE |
DISABLE
STORAGE IN
ROW

Specify whether the LOB value is to be stored in the row (inline)

or outside of the row. (The LOB locator is always stored in the row

regardless of where the LOB value is stored.)

■ ENABLE specifies that the LOB value is stored inline if its

length is less than approximately 4000 bytes minus system

control information. This is the default.

■ DISABLE specifies that the LOB value is stored outside of the

row regardless of the length of the LOB value.

Restriction: You cannot change STORAGE IN ROW once it is set.

Therefore, you cannot specify this clause as part of the modify_
column_options clause. However, you can change this setting

when adding a new column (add_column_options) or when

moving the table (move_table_clause).
SQL Statements: ALTER TABLE to constraint_clause 8-21

ALTER TABLE
varray_storage_clause

The varray_storage_clause lets you specify separate storage characteristics for

the LOB in which a varray will be stored. In addition, if you specify this clause,

Oracle will always store the varray in a LOB, even if it is small enough to be stored

inline.

Restriction: You cannot specify the TABLESPACE clause of LOB_parameters as

part of this clause. The LOB tablespace for a varray defaults to the containing table’s

tablespace.

CHUNK
integer

Specify the number of bytes to be allocated for LOB manipulation.

If integer is not a multiple of the database block size, Oracle

rounds up (in bytes) to the next multiple. For example, if the

database block size is 2048 and integer is 2050, Oracle allocates

4096 bytes (2 blocks).The maximum value is 32768 (32 K), which is

the largest Oracle block size allowed. The default CHUNK size is

one Oracle database block.

You cannot change the value of CHUNK once it is set.

Note: The value of CHUNK must be less than or equal to the

value of NEXT (either the default value or that specified in the

storage clause). If CHUNK exceeds the value of NEXT, Oracle

returns an error.

PCTVERSION
integer

Specify the maximum percentage of overall LOB storage space to

be used for creating new versions of the LOB. The default value is

10, meaning that older versions of the LOB data are not

overwritten until 10% of the overall LOB storage space is used.

LOB_index_
clause

This clause is deprecated as of Oracle8i. Oracle generates an index

for each LOB column. The LOB indexes are system named and

system managed, and reside in the same tablespace as the LOB

data segments.

It is still possible for you to specify this clause in some cases.

However, Oracle Corporation strongly recommends that you no

longer do so. In any event, do not put the LOB index in a different

tablespace from the LOB data.

See Also: Oracle8i Migration for information on how Oracle

manages LOB indexes in tables migrated from earlier versions
8-22 SQL Reference

ALTER TABLE
nested_table_storage_clause

the nested_table_storage_clause lets you specify separate storage

characteristics for a nested table, which in turn enables you to define the nested

table as an index-organized table. You must include this clause when creating a

table with columns or column attributes whose type is a nested table. (Clauses

within this clause that function the same way they function for parent object tables

are not repeated here.)

Restrictions:

■ You cannot specify the parallel_clause .

■ You cannot specify TABLESPACE (as part of the segment_attributes_
clause) for a nested table. The tablespace is always that of the parent table.

partition_storage_clause

The partition_storage_clause lets you specify a separate LOB_storage_
clause or varray_storage_clause for each partition. You must specify the

partitions in the order of partition position.

If you do not specify a LOB_storage_clause or varray_storage_clause for

a particular partition, the storage characteristics are those specified for the LOB item

at the table level. If you also did not specify any storage characteristics at the table

level for the LOB item, Oracle stores the LOB data partition in the same tablespace

as the table partition to which it corresponds.

Restriction: You can specify only one list of partition_storage_clauses per

ALTER TABLE statement, and all LOB_storage_clauses and varray_storage_
clauses must precede the list of partition_storage_clauses .

modify_column_options
Use MODIFYmodify_column_options to modify the definition of an existing

column. If you omit any of the optional parts of the column definition (datatype,

default value, or column constraint), these parts remain unchanged.

nested_item Specify the name of a column (or a top-level attribute of the table’s

object type) whose type is a nested table.

storage_
table

Specify the name of the table where the rows of nested_item
reside. The storage table is created in the same schema and the

same tablespace as the parent table.
SQL Statements: ALTER TABLE to constraint_clause 8-23

ALTER TABLE
■ You can change a CHAR column to VARCHAR2 (or VARCHAR) and a VARCHAR2
(or VARCHAR) to CHAR only if the column contains nulls in all rows or if you do

not attempt to change the column size.

■ You can change any column’s datatype or decrease any column’s size if all rows

for the column contain nulls.

■ You can always increase the size of a character or raw column or the precision

of a numeric column, whether or not all the columns contain nulls.

Restrictions:

■ You cannot modify the datatype or length of a column that is part of a table or

index partitioning or subpartitioning key.

■ You cannot modify the definition of a column on which a domain index has

been built.

■ If you specify this clause for an index-organized table, you cannot specify any

other clauses in the same statement.

column Specify the name of the column to be added or modified.

The only type of integrity constraint that you can add to an

existing column using the MODIFY clause with the column

constraint syntax is a NOT NULLconstraint, and only if the column

contains no nulls. To define other types of integrity constraints

(UNIQUE, PRIMARY KEY, referential integrity, and CHECK
constraints) on existing columns, using the ADD clause and the

table constraint syntax.

datatype Specify a new datatype for an existing column.

You can omit the datatype only if the statement also designates

the column as part of the foreign key of a referential integrity

constraint. Oracle automatically assigns the column the same

datatype as the corresponding column of the referenced key of the

referential integrity constraint.

If you change the datatype of a column in a materialized view

container table, the corresponding materialized view is

invalidated.

See Also: ALTER MATERIALIZED VIEW on page 7-61 for

information on revalidating a materialized view
8-24 SQL Reference

ALTER TABLE
move_table_clause
For a heap-organized table, use the segment_attributes_clause of the syntax.

The move_table_clause lets you relocate data of a nonpartitioned table into a

new segment, optionally in a different tablespace, and optionally modify any of its

storage attributes.

You can also move any LOB data segments associated with the table using the LOB_
storage_clause . (LOB items not specified in this clause are not moved.)

For an index-organized table, use the index_organized_table_clause of the

syntax. The move_table_clause rebuilds the index-organized table’s primary

key index B*-tree. The overflow data segment is not rebuilt unless the OVERFLOW
keyword is explicitly stated, with two exceptions:

■ If you alter the values of PCTTHRESHOLD or the INCLUDING column as part of

this ALTER TABLE statement, the overflow data segment is rebuilt.

■ If any of out-of-line columns (LOBs, varrays, nested table columns) in the

index-organized table are moved explicitly, then the overflow data segment is

also rebuilt.

The index and data segments of LOB columns are not rebuilt unless you specify the

LOB columns explicitly as part of this ALTER TABLE statement.

Restrictions:

■ You cannot specify a column of datatype ROWID for an index-

organized table, but you can specify a column of type

UROWID.

■ You cannot change a column’s datatype to LOB or REF.

MODIFY
CONSTRAINT
constraint

MODIFY CONSTRAINT lets you change the state of an existing

constraint named constraint .

See Also: constraint_clause on page 8-136 for a description of

all the keywords and parameters of constraint_state
SQL Statements: ALTER TABLE to constraint_clause 8-25

ALTER TABLE
Restrictions on the move_table_clause:

■ If you specify MOVE, it must be the first clause. For an index-organized table, the

only clauses outside this clause that are allowed are the physical_
attribute_clause and the parallel_clause . For heap-organized tables,

you can specify those two clauses and the LOB_storage_clauses .

■ You cannot MOVE an entire partitioned table (either heap or index organized).

You must move individual partitions or subpartitions.

ONLINE Specify ONLINE if you want DML operations on the index-

organized table to be allowed during rebuilding of the table’s

primary key index B*-tree.

Restrictions:

■ You can specify this clause only for a nonpartitioned index-

organized table.

■ Parallel DML is not supported during online MOVE. If you

specify ONLINE and then issue parallel DML statements,

Oracle returns an error.

compression_
clause

Use the compression_clause to enable and disable key

compression in an index-organized table.

■ COMPRESS enables key compression, which eliminates

repeated occurrence of primary key column values in index-

organized tables. Use integer to specify the prefix length

(number of prefix columns to compress).

The valid range of prefix length values is from 1 to the

number of primary key columns minus 1. The default prefix

length is the number of primary key columns minus 1.

Restrictions:

- You can specify this clause only for an index-organized table.

- You can specify compression for a partition of an index-

organized table only if compression has been specified at the

table level.

■ NOCOMPRESS disables key compression in index-organized

tables. This is the default.

TABLESPACE
tablespace

Specify the tablespace into which the rebuilt index-organized

table is stored.
8-26 SQL Reference

ALTER TABLE
physical_attributes_clause
The physical_attributes_clause lets you change the value of PCTFREE,
PCTUSED, INITRANS , and MAXTRANS parameters and storage characteristics.

Restriction: You cannot specify the PCTUSEDparameter for the index segment of an

index-organized table.

See Also: move_partition_clause on page 8-44 and move_
subpartition_clause on page 8-45

Notes regarding LOBs:

For any LOB columns you specify in a move_table_clause :

■ Oracle drops the old LOB data segment and corresponding

index segment and creates new segments, even if you do not

specify a new tablespace.

■ If the LOB index in table resided in a different tablespace

from the LOB data, Oracle collocates the LOB index with the

LOB data in the LOB data’s tablespace after the move.

See Also: The PCTFREE, PCTUSED, INITRANS , and MAXTRANS
parameters of CREATE TABLE on page 10-7 and the storage_
clause on page 11-129
SQL Statements: ALTER TABLE to constraint_clause 8-27

ALTER TABLE
modify_collection_retrieval_clause
Use the modify_collection_retrieval_clause to change what is returned

when a collection item is retrieved from the database.

Cautions:

■ For a nonpartitioned table, the values you specify override any

values specified for the table at create time.

■ For a range- or hash-partitioned table, the values you specify

are the default values for the table and the actual values for

every existing partition, overriding any values already set for

the partitions. To change default table attributes without

overriding existing partition values, use the modify_
default_attributes_clause .

■ For a composite-partitioned table, the values you specify are

the default values for the table and all partitions of the table

and the actual values for all subpartitions of the table,

overriding any values already set for the subpartitions. To

change default partition attributes without overriding existing

subpartition values, use the modify_default_attributes_
clause with the FOR PARTITION clause.

collection_
item

Specify the name of a column-qualified attribute whose type is

nested table or varray.

RETURN AS Specify what Oracle should return as the result of a query.

■ LOCATOR specifies that a unique locator for the nested table is

returned.

■ VALUE specifies that a copy of the nested table itself is

returned.
8-28 SQL Reference

ALTER TABLE
modify_storage_clauses

drop_constraint_clause
The drop_constraint_clause lets you drop an integrity constraint from the database.

Oracle stops enforcing the constraint and removes it from the data dictionary. You

can specify only one constraint for each drop_constraint_clause, but you can specify

multiple drop_constraint_clauses in one statement.

Restrictions on the drop_constraint_clause:

■ You cannot drop a UNIQUE or PRIMARY KEY constraint that is part of a

referential integrity constraint without also dropping the foreign key. To drop

the referenced key and the foreign key together, use the CASCADE clause. If you

modify_LOB_
storage_
clause

The modify_LOB_storage_clause lets you change the

physical attributes of the LOB lob_item . You can specify only

one lob_item for each modify_LOB_storage_clause .

Restrictions:

■ You cannot modify the value of the INITIAL parameter in the

storage_clause when modifying the LOB storage

attributes.

■ You cannot specify both the allocate_extent_clause
and the deallocate_unused_clause in the same

statement.

modify_
varray_
storage_
clause

The modify_varray_storage_clause lets you change the

storage characteristics of an existing LOB in which a varray is

stored.

Restriction: You cannot specify the TABLESPACE clause of LOB_
parameters as part of this clause. The LOB tablespace for a

varray defaults to the containing table’s tablespace.

PRIMARY KEY Specify PRIMARY KEY to drop the table’s PRIMARY KEY constraint.

UNIQUE Specify UNIQUE to drop the UNIQUE constraint on the specified

columns.

CONSTRAINT
constraint

Specify the integrity constraint you want dropped.

CASCADE Specify CASCADE if you want all other integrity constraints that

depend on the dropped integrity constraint to be dropped as well.
SQL Statements: ALTER TABLE to constraint_clause 8-29

ALTER TABLE
omit CASCADE, Oracle does not drop the PRIMARY KEY or UNIQUE constraint if

any foreign key references it.

■ You cannot drop a primary key constraint (even with the CASCADE clause) on a

table that uses the primary key as its object identifier (OID).

■ If you drop a referential integrity constraint on a REF column, the REF column

remains scoped to the referenced table.

■ You cannot drop the scope of the column.

drop_column_clause
The drop_column_clause lets you free space in the database by dropping

columns you no longer need, or by marking them to be dropped at a future time

when the demand on system resources is less.

■ If you drop a nested table column, its storage table is removed.

■ If you drop a LOB column, the LOB data and its corresponding LOB index

segment are removed.

■ If you drop a BFILE column, only the locators stored in that column are

removed, not the files referenced by the locators.

■ If you drop (or mark unused) a column defined as an INCLUDING column, the

column stored immediately before this column will become the new

INCLUDING column.

SET UNUSED Use SET UNUSED to mark one or more columns as unused.

Specifying this clause does not actually remove the target columns

from each row in the table (that is, it does not restore the disk

space used by these columns). Therefore, the response time is

faster than it would be if you execute the DROP clause.

You can view all tables with columns marked as unused in the

data dictionary views USER_UNUSED_COL_TABS, DBA_UNUSED_
COL_TABS, and ALL_UNUSED_COL_TABS.

See Also: Oracle8i Reference for information on these views
8-30 SQL Reference

ALTER TABLE
Unused columns are treated as if they were dropped, even though

their column data remains in the table’s rows. After a column has

been marked as unused, you have no access to that column. A

"SELECT *" query will not retrieve data from unused columns. In

addition, the names and types of columns marked unused will not

be displayed during a DESCRIBE, and you can add to the table a

new column with the same name as an unused column.

Note: Until you actually drop these columns, they continue to

count toward the absolute limit of 1000 columns per table.

However, as with all DDL statements, you cannot roll back

the results of this clause. That is, you cannot issue SET USED
counterpart to retrieve a column that you have SET UNUSED.

Also, if you mark a column of datatype LONG as UNUSED, you

cannot add another LONG column to the table until you

actually drop the unused LONG column.

See Also: CREATE TABLE on page 10-7 for more information

on the 1000 column limit

DROP Specify DROP to remove the column descriptor and the data

associated with the target column from each row in the table. If

you explicitly drop a particular column, all columns currently

marked as unused in the target table are dropped at the same

time.

When the column data is dropped:

■ All indexes defined on any of the target columns are also

dropped.

■ All constraints that reference a target column are removed.

■ If any statistics types are associated with the target columns,

Oracle disassociates the statistics from the column with the

FORCE option and drops any statistics collected using the

statistics type.

See Also: DISASSOCIATE STATISTICS on page 10-123 for

more information on disassociating statistics types
SQL Statements: ALTER TABLE to constraint_clause 8-31

ALTER TABLE
Note: If the target column is a parent key of a nontarget

column, or if a check constraint references both the target and

nontarget columns, Oracle returns an error and does not drop

the column unless you have specified the CASCADE
CONSTRAINTS clause. If you have specified that clause,

Oracle removes all constraints that reference any of the target

columns.

DROP UNUSED
COLUMNS

Specify DROP UNUSED COLUMNS to remove from the table all

columns currently marked as unused. Use this statement when

you want to reclaim the extra disk space from unused columns in

the table. If the table contains no unused columns, the statement

returns with no errors.

column Specify one or more columns to be set as unused or dropped. Use

the COLUMN keyword only if you are specifying only one column.

If you specify a column list, it cannot contain duplicates.

CASCADE
CONSTRAINTS

Specify CASCADE CONSTRAINTS if you want to drop all

referential integrity constraints that refer to the primary and

unique keys defined on the dropped columns, and drop all

multicolumn constraints defined on the dropped columns. If any

constraint is referenced by columns from other tables or

remaining columns in the target table, then you must specify

CASCADE CONSTRAINTS. Otherwise, the statement aborts and an

error is returned.

INVALIDATE
Note: Currently, Oracle executes this clause regardless of

whether you specify the keyword INVALIDATE .

Oracle invalidates all dependent objects, such as views, triggers,

and stored program units. Object invalidation is a recursive

process. Therefore, all directly dependent and indirectly

dependent objects are invalidated. However, only local

dependencies are invalidated, because Oracle manages remote

dependencies differently from local dependencies.

An object invalidated by this statement is automatically

revalidated when next referenced. You must then correct any

errors that exist in that object before referencing it.

See Also: Oracle8i Concepts for more information on

dependencies
8-32 SQL Reference

ALTER TABLE
Restrictions on the drop_column_clause :

■ Each of the parts of this clause can be specified only once in the statement and

cannot be mixed with any other ALTER TABLE clauses. For example, the

following statements are not allowed:

ALTER TABLE t1 DROP COLUMN f1 DROP (f2);
ALTER TABLE t1 DROP COLUMN f1 SET UNUSED (f2);
ALTER TABLE t1 DROP (f1) ADD (f2 NUMBER);
ALTER TABLE t1 SET UNUSED (f3)
 ADD (CONSTRAINT ck1 CHECK (f2 > 0));

■ You can drop an object type column only as an entity. Dropping an attribute

from an object type column is not allowed.

■ You can drop a column from an index-organized table only if it is not a primary

key column. The primary key constraint of an index-organized table can never

be dropped, so you cannot drop a primary key column even if you have

specified CASCADE CONSTRAINTS.

■ You can export tables with dropped or unused columns. However, you can

import a table only if all the columns specified in the export files are present in

the table (that is, none of those columns has been dropped or marked unused).

Otherwise, Oracle returns an error.

CHECKPOINT Specify CHECKPOINTif you want Oracle to apply a checkpoint for

the drop column operation after processing integer rows;

integer is optional and must be greater than zero. If integer is

greater than the number of rows in the table, Oracle applies a

checkpoint after all the rows have been processed. If you do not

specify integer , Oracle sets the default of 512.

Checkpointing cuts down the amount of undo logs accumulated

during the drop column operation to avoid running out of

rollback segment space. However, if this statement is interrupted

after a checkpoint has been applied, the table remains in an

unusable state. While the table is unusable, the only operations

allowed on it are DROP TABLE, TRUNCATE TABLE, and ALTER
TABLE DROP COLUMNS CONTINUE (described below).

You cannot use this clause with SET UNUSED, because that clause

does not remove column data.

DROP COLUMNS
CONTINUE

Specify DROP COLUMNS CONTINUE to continue the drop column

operation from the point at which it was interrupted. Submitting

this statement while the table is in a valid state results in an error.
SQL Statements: ALTER TABLE to constraint_clause 8-33

ALTER TABLE
■ You cannot drop a column on which a domain index has been built.

■ You cannot use this clause to drop:

■ A pseudocolumn, clustered column, or partitioning column. (You can drop

nonpartitioning columns from a partitioned table if all the tablespaces

where the partitions were created are online and in read-write mode.)

■ A column from a nested table, an object table, or a table owned by SYS

allocate_extent_clause
The allocate_extent_clause lets you explicitly allocates a new extent for the

table, the partition or subpartition, the overflow data segment, the LOB data

segment, or the LOB index.

Restriction: You cannot allocate an extent for a range- or composite-partitioned

table.

Note: Explicitly allocating an extent with this clause does affect

the size for the next extent to be allocated as specified by the NEXT
and PCTINCREASE storage parameters.

SIZE integer Specify the size of the extent in bytes. Use K or M to specify the

extent size in kilobytes or megabytes. If you omit this parameter,

Oracle determines the size based on the values of the STORAGE
parameters of the table’s overflow data segment or of the LOB

index.

DATAFILE
’filename’

Specify one of the datafiles in the tablespace of the table, overflow

data segment, LOB data tablespace, or LOB index to contain the

new extent. If you omit this parameter, Oracle chooses the

datafile.

INSTANCE
integer

Specifying INSTANCE integer makes the new extent available

to the freelist group associated with the specified instance. If the

instance number exceeds the maximum number of freelist groups,

the former is divided by the latter, and the remainder is used to

identify the freelist group to be used. An instance is identified by

the value of its initialization parameter INSTANCE_NUMBER. If
you omit this parameter, the space is allocated to the table, but is

not drawn from any particular freelist group. Rather, the master

freelist is used, and space is allocated as needed.
8-34 SQL Reference

ALTER TABLE
deallocate_unused_clause
Use the deallocate_unused_clause to explicitly deallocate unused space at the

end of the table, partition or subpartition, overflow data segment, LOB data

segment, or LOB index and makes the space available for other segments in the

tablespace. You can free only unused space above the high water mark (that is, the

point beyond which database blocks have not yet been formatted to receive data).

Oracle credits the amount of the released space to the user quota for the tablespace

in which the deallocation occurs.

Oracle deallocates unused space from the end of the object toward the high water

mark at the beginning of the object. If an extent is completely contained in the

deallocation, then the whole extent is freed for reuse. If an extent is partially

contained in the deallocation, then the used part up to the high water mark

becomes the extent, and the remaining unused space is freed for reuse.

The exact amount of space freed depends on the values of the INITIAL ,

MINEXTENTS, and NEXT parameters.

Note: Use this parameter only if you are using Oracle with the

Parallel Server option in parallel mode.

See Also: Oracle8i Concepts

See Also: storage_clause on page 11-129 for a description of

these parameters

KEEPinteger Specify the number of bytes above the high water mark that the

table, overflow data segment, LOB data segment, or LOB index is

to have after deallocation.

■ If you omit KEEP and the high water mark is above the size of

INITIAL and MINEXTENTS, then all unused space above the

high water mark is freed. When the high water mark is less

than the size of INITIAL or MINEXTENTS, then all unused

space above MINEXTENTS is freed.
SQL Statements: ALTER TABLE to constraint_clause 8-35

ALTER TABLE
CACHE | NOCACHE

■ If you specify KEEP, then the specified amount of space is kept

and the remaining space is freed. When the remaining

number of extents is less than MINEXTENTS, then

MINEXTENTS is adjusted to the new number of extents. If the

initial extent becomes smaller than INITIAL , then INITIAL
is adjusted to the new size.

■ In either case, NEXTis set to the size of the last extent that was

deallocated.

CACHE For data that is accessed frequently, this clause indicates that the

blocks retrieved for this table are placed at the most recently used

end of the LRU list in the buffer cache when a full table scan is

performed. This attribute is useful for small lookup tables.

As a parameter in the LOB_storage_clause , CACHE specifies

that Oracle places LOB data values in the buffer cache for faster

access.

Restriction: You cannot specify CACHE for an index-organized

table. However, index-organized tables implicitly provide CACHE
behavior.

NOCACHE For data that is not accessed frequently, this clause indicates that

the blocks retrieved for this table are placed at the least recently

used end of the LRU list in the buffer cache when a full table scan

is performed.

As a parameter in the LOB_storage_clause , NOCACHEspecifies

that the LOB value is either not brought into the buffer cache or

brought into the buffer cache and placed at the least recently used

end of the LRU list. (The latter is the default behavior.) NOCACHE
is the default for LOB storage.

Restriction: You cannot specify NOCACHEfor index-organized

tables.
8-36 SQL Reference

ALTER TABLE
MONITORING | NOMONITORING

LOGGING | NOLOGGING

CACHE READS CACHE READS applies only to LOB storage. It indicates that LOB

values are brought into the buffer cache only during read

operations, but not during write operations.

■ When you add a new LOB column, you can specify the

logging attribute with CACHE READS, as you can when

defining a LOB column at create time.

■ When you modify a LOB column from CACHE or NOCACHE to
CACHE READS, or from CACHE READS to CACHE or NOCACHE,
you can change the logging attribute. If you do not specify the

LOGGING or NOLOGGING, this attribute defaults to the current

logging attribute of the LOB column.

For existing LOBs, if you do not specify CACHE, NOCACHE, or CACHE READS, Oracle

retains the existing values of the LOB attributes.

MONITORING Specify MONITORING if you want Oracle to collect modification

statistics on table . These statistics are estimates of the number of

rows affected by DML statements over a particular period of time.

They are available for use by the optimizer or for analysis by the

user.

See Also: Oracle8i Performance Guide and Reference for more

information on using this clause

NOMONITORINGSpecify NOMONITORING if you do not want Oracle to collect

modification statistics on table .

Restriction: You cannot specify MONITORING or NOMONITORING
for a temporary table.

LOGGING |
NOLOGGING

Specify whether subsequent Direct Loader (SQL*Loader) and

direct-load INSERT operations against a nonpartitioned table,

table partition, all partitions of a partitioned table, or all

subpartitions of a partition will be logged (LOGGING) or not

logged (NOLOGGING) in the redo log file.

When used with the modify_default_attributes_clause ,

this clause affects the logging attribute of a partitioned table.
SQL Statements: ALTER TABLE to constraint_clause 8-37

ALTER TABLE
RENAME TO

LOGGING|NOLOGGING also specifies whether ALTER TABLE ...
MOVE and ALTER TABLE ... SPLIT operations will be logged or

not logged.

For a table or table partition, if you omit LOGGING|NOLOGGING,
the logging attribute of the table or table partition defaults to the

logging attribute of the tablespace in which it resides.

For LOBs, if you omit LOGGING|NOLOGGING,

■ If you specify CACHE, then LOGGING is used (because you

cannot have CACHE NOLOGGING).

■ If you specify NOCACHE or CACHE READS, the logging

attribute defaults to the logging attribute of the tablespace in

which it resides.

NOLOGGING does not apply to LOBs that are stored inline with

row data. That is, if you specify NOLOGGING for LOBs with values

less than 4000 bytes and you have not disabled STORAGE IN ROW,
Oracle ignores the NOLOGGING specification and treats the LOB

data the same as other table data.

In NOLOGGING mode, data is modified with minimal logging (to

mark new extents invalid and to record dictionary changes).

When applied during media recovery, the extent invalidation

records mark a range of blocks as logically corrupt, because the

redo data is not logged. Therefore, if you cannot afford to lose this

table, it is important to take a backup after the NOLOGGING
operation.

If the database is run in ARCHIVELOG mode, media recovery from

a backup taken before the LOGGING operation will restore the

table. However, media recovery from a backup taken before the

NOLOGGING operation will not restore the table.

The logging attribute of the base table is independent of that of its

indexes.

See Also: Oracle8i Parallel Server Concepts for more

information about the logging_clause and parallel DML

RENAME TO Use the RENAME clause to rename table to new_table_name .
8-38 SQL Reference

ALTER TABLE
records_per_block_clause
The records_per_block_clause lets you specify whether Oracle restricts the

number of records that can be stored in a block. This clause ensures that any bitmap

indexes subsequently created on the table will be as small (compressed) as possible.

Restrictions:

■ You cannot specify either MINIMIZE or NOMINIMIZE if a bitmap index has

already been defined on table. You must first drop the bitmap index.

■ You cannot specify this clause for an index-organized table or nested table

alter_overflow_clause
The alter_overflow_clause lets you change the definition of an index-

organized table. Index-organized tables keep data sorted on the primary key and

are therefore best suited for primary-key-based access and manipulation.

Note: Using this clause will invalidate any dependent

materialized views.

See Also: CREATE MATERIALIZED VIEW on page 9-88 and

Oracle8i Data Warehousing Guide for more information on

materialized views

MINIMIZE Specify MINIMIZE to instruct Oracle to calculate the largest

number of records in any block in the table, and limit future

inserts so that no block can contain more than that number of

records.

Restriction: You cannot specify MINIMIZE for an empty table.

NOMINIMIZE Specify NOMINIMIZE to disable the MINIMIZE feature. This is the

default.

Note: When you alter an index-organized table, Oracle evaluates

the maximum size of each column to estimate the largest possible

row. If an overflow segment is needed but you have not specified

OVERFLOW, Oracle raises an error and does not execute the ALTER
TABLE statement. This checking function guarantees that

subsequent DML operations on the index-organized table will not

fail because an overflow segment is lacking.
SQL Statements: ALTER TABLE to constraint_clause 8-39

ALTER TABLE
PCTTHRESHOLD
integer

Specify the percentage of space reserved in the index block for an

index-organized table row. All trailing columns of a row, starting

with the column that causes the specified threshold to be

exceeded, are stored in the overflow segment. PCTTHRESHOLDmust

be a value from 1 to 50. If you do not specify PCTTHRESHOLD, the

default is 50.

Restrictions:

■ PCTTHRESHOLD must be large enough to hold the primary key.

■ You cannot specify PCTTHRESHOLD for individual partitions of

an index-organized table.

See Also: the INCLUDING clause of the index_organized_
table_clause

INCLUDING

column_name
Specify a column at which to divide an index-organized table row

into index and overflow portions. The primary key columns are

always stored in the index. column_name can be either the last

primary-key column or any non-primary-key column. All non-

primary-key columns that follow column_name are stored in the

overflow data segment.

Restriction: You cannot specify this clause for individual

partitions of an index-organized table.

Note: If an attempt to divide a row at column_name causes

the size of the index portion of the row to exceed the

PCTTHRESHOLD value (either specified or default), Oracle

breaks up the row based on the PCTTHRESHOLD value.

overflow_
clause

The overflow_clause lets you specify the overflow data

segment physical storage and logging attributes to be modified for

the index-organized table. Parameters specified in this clause are

applicable only to the overflow data segment.

Restriction: You cannot specify OVERFLOW for a partition of a

partitioned index-organized table unless the table already has an

overflow segment.

See Also: CREATE TABLE on page 10-7
8-40 SQL Reference

ALTER TABLE
partitioning_clauses
The following clauses apply only to partitioned tables. You cannot combine

partition operations with other partition operations or with operations on the base

table in one ALTER TABLE statement.

modify_default_attributes_clause

The modify_default_attributes_clause lets you specify new default values

for the attributes of table . Partitions and LOB partitions you create subsequently

will inherit these values unless you override them explicitly when creating the

partition or LOB partition. Existing partitions and LOB partitions are not affected by

this clause.

add_
overflow_
clause

The add_overflow_clause lets you add an overflow data

segment to the specified index-organized table.

For a partitioned index-organized table:

■ If you do not specify PARTITION, Oracle automatically

allocates an overflow segment for each partition. The physical

attributes of these segments are inherited from the table level.

■ If you wish to specify separate physical attributes for one or

more partitions, you must specify such attributes for every
partition in the table. You do not specify the name of the

partitions, but you must specify their attributes in the order in

which they were created.

You can find the order of the partitions by querying the

PARTITION_NAME and PARTITION_POSITION columns of the

USER_IND_PARTITIONS view.

If you do not specify TABLESPACE for a particular partition,

Oracle uses the tablespace specified for the table. If you do not

specify TABLESPACE at the table level, Oracle uses the tablespace

of the partition’s primary key index segment.

Note: If you drop, exchange, truncate, move, modify, or split a

partition on a table that is a master table for one or more

materialized views, existing bulk load information about the table

will be deleted. Therefore, be sure to refresh all dependent

materialized views before performing any of these operations.
SQL Statements: ALTER TABLE to constraint_clause 8-41

ALTER TABLE
Only attributes named in the statement are affected, and the default values specified

are overridden by any attributes specified at the individual partition level.

Restrictions:

■ The PCTTHRESHOLD, COMPRESS, physical_attributes_clause , and

overflow_clause are valid only for partitioned index-organized tables.

■ You cannot specify the PCTUSED parameter for the index segment of an index-

organized table.

■ You can specify COMPRESS only if compression is already specified at the table

level.

modify_partition_clause

The modify_partition_clause lets you change the real physical attributes of

the partition table partition. Optionally modifies the storage attributes of one or

more LOB items for the partition. You can specify new values for any of the

following physical attributes for the partition: the logging attribute; PCTFREE,
PCTUSED, INITRANS , or MAXTRANS parameter; or storage parameters.

If table is composite-partitioned:

■ If you specify the allocate_extent_clause , Oracle will allocate an extent

for each subpartition of partition .

■ If you specify deallocate_unused_clause , Oracle will deallocate unused

storage from each subpartition of partition .

■ Any other attributes changed in this clause will be changed in subpartitions of

partition as well, overriding existing values. To avoid changing the attributes of

existing subpartitions, use the FOR PARTITION clause of the modify_
default_attributes_clause .

Restriction: If table is hash partitioned, you can specify only the allocate_
extent and deallocate_unused clauses. All other attributes of the partition are

inherited from the table-level defaults except TABLESPACE, which stays the same as

it was at create time.

FOR
PARTITION

FOR PARTITION applies only to composite-partitioned tables.

This clause specifies new default values for the attributes of

partition. Subpartitions and LOB subpartitions of partition that

you create subsequently will inherit these values, unless you

override them explicitly when creating the subpartition or LOB

subpartition. Existing subpartitions are not affected by this clause.
8-42 SQL Reference

ALTER TABLE
modify_subpartition_clause

The modify_subpartition_clause lets you allocate or deallocate storage for an

individual subpartition of table .

add_
subpartitio
n_clause

The add_subpartition_clause lets you add a hash

subpartition to partition. Oracle populates the new subpartition

with rows rehashed from the other subpartition(s) of partition
as determined by the hash function.

Oracle marks UNUSABLE, and you must rebuild, the local index

subpartitions corresponding to the added and to the rehashed

subpartitions.

If you do not specify subpartition , Oracle assigns a name in

the form SYS_SUBPnnn

If you do not specify TABLESPACE, the new subpartition will

reside in the default tablespace of partition .

COALESCE
SUBPARTITION

Specify COALESCE PARTITIONif you want Oracle to select a hash

subpartition, distribute its contents into one or more remaining

subpartitions (determined by the hash function), and then drop

the selected subpartition.

Local index subpartitions corresponding to the selected

subpartition are also dropped. Oracle marks UNUSABLE, and you

must rebuild, the index subpartitions corresponding to one or

more absorbing subpartitions.

UNUSABLE
LOCAL
INDEXES

The next two clauses modify the attributes of local index
partitions corresponding to partition .

■ UNUSABLE LOCAL INDEXES marks UNUSABLE all the local

index partitions associated with partition .

■ REBUILD UNUSABLE LOCAL INDEXES rebuilds the unusable

local index partitions associated with partition .

Restrictions:

■ You cannot specify this clause with any other clauses of the

modify_partition_clause .

■ You cannot specify this clause for partitions that are

subpartitioned.
SQL Statements: ALTER TABLE to constraint_clause 8-43

ALTER TABLE
Restriction: The only modify_LOB_storage_parameters you can specify for

subpartition are the allocate_extent_clause and deallocate_unused_
clause .

■ UNUSABLE LOCAL INDEXES marks UNUSABLE all the local index subpartitions

associated with subpartition .

■ REBUILD UNUSABLE LOCAL INDEXES rebuilds the unusable local index

subpartitions associated with subpartition .

rename_partition/ subpartition_clause

Use the rename_partition_clause or rename_subpartition_clause to

rename a table partition or subpartition current_name to new_name. For both

partitions and subpartitions, new_name must be different from all existing

partitions and subpartitions of the same table.

move_partition_clause

Use the move_partition_clause to move table partition partition to another

segment. You can move partition data to another tablespace, recluster data to

reduce fragmentation, or change create-time physical attributes.

If the table contains LOB columns, you can use the LOB_storage_clause to

move the LOB data and LOB index segments associated with this partition. Only

the LOBs named are affected. If you do not specify the LOB_storage_clause for

a particular LOB column, its LOB data and LOB index segments are not moved.

If partition is not empty, MOVE PARTITION marks UNUSABLE all corresponding

local index partitions and all global nonpartitioned indexes, and all the partitions of

global partitioned indexes.

When you move a LOB data segment, Oracle drops the old data segment and

corresponding index segment and creates new segments even if you do not specify

a new tablespace.

The move operation obtains its parallel attribute from the parallel_clause , if

specified. If not specified, the default parallel attributes of the table, if any, are used.

If neither is specified, Oracle performs the move without using parallelism.

The parallel_clause on MOVE PARTITION does not change the default parallel

attributes of table .
8-44 SQL Reference

ALTER TABLE
Restrictions:

■ If partition is a hash partition, the only attribute you can specify in this

clause is TABLESPACE.

■ You cannot move a partition of a composite-partitioned table. You must move

each subpartition separately with the move_subpartition_clause .

■ You cannot specify this clause for a partition containing subpartitions.

However, you can move subpartitions using the move_subpartition_
clause .

move_subpartition_clause

Use the move_subpartition_clause to move the table subpartition

subpartition to another segment. If you do not specify TABLESPACE, the

subpartition will remain in the same tablespace.

Unless the subpartition is empty, Oracle marks UNUSABLE all local index

subpartitions corresponding to the subpartition being moved, as well as global

nonpartitioned indexes and partitions of global indexes.

If the table contains LOB columns, you can use the LOB_storage_clause to

move the LOB data and LOB index segments associated with this subpartition.

Only the LOBs named are affected. If you do not specify the LOB_storage_
clause for a particular LOB column, its LOB data and LOB index segments are not

moved.

When you move a LOB data segment, Oracle drops the old data segment and

corresponding index segment and creates new segments even if you do not specify

a new tablespace.

Note: For index-organized tables, Oracle uses the address of the

primary key, as well as its value, to construct logical rowids. The

logical rowids are stored in the secondary index of the table. If you

move a partition of an index-organized table, the address portion of

the rowids will change, which can hamper performance. To ensure

optimal performance, rebuild the secondary index(es) on the

moved partition to update the rowids.

See Also: Oracle8i Concepts for more information on logical

rowids
SQL Statements: ALTER TABLE to constraint_clause 8-45

ALTER TABLE
add_range_partition_clause

The add_range_partition_clause lets you add a new range partition

partition to the "high" end of a partitioned table (after the last existing partition).

You can specify any create-time physical attributes for the new partition. If the table

contains LOB columns, you can also specify partition-level attributes for one or

more LOB items.

You can specify up to 64K-1 partitions.

Restrictions:

■ If the first element of the partition bound of the high partition is MAXVALUE,
you cannot add a partition to the table. Instead, use the split_partition_
clause to add a partition at the beginning or the middle of the table.

■ The compression_clause , physical_attributes_clause , and

OVERFLOW are valid only for a partitioned index-organized table.

■ You cannot specify the PCTUSED parameter for the index segment of an index-

organized table.

■ You can specify OVERFLOW only if the partitioned table already has an overflow

segment.

■ You can specify compression only if compression is enabled at the table level.

See Also: Oracle8i Administrator’s Guide for a discussion of factors

that might impose practical limits less than this number

VALUES LESS
THAN (value_
list)

Specify the upper bound for the new partition. The value_list
is a comma-separated, ordered list of literal values corresponding

to column_list . The value_list must collate greater than the

partition bound for the highest existing partition in the table.

partition_
level_sub-
partitioning

The partition_level_subpartitioning clause is permitted

only for a composite-partitioned table. This clause lets you specify

particular hash subpartitions for partition . You specify

composite partitioning in one of two ways:
8-46 SQL Reference

ALTER TABLE
add_hash_partition_clause

The add_hash_partition_clause lets you add a new hash partition to the

"high" end of a partitioned table. Oracle will populate the new partition with rows

rehashed from other partitions of table as determined by the hash function.

You can specify a name for the partition, and optionally a tablespace where it

should be stored. If you do not specify new_partition_name , Oracle assigns a

partition name of the form SYS_Pnnn . If you do not specify TABLESPACE, the new

partition is stored in the table’s default tablespace. Other attributes are always

inherited from table-level defaults.

■ You can specify individual subpartitions by name, and

optionally the tablespace where each should be stored, or

■ You can specify the number of subpartitions (and optionally

one or more tablespaces where they are to be stored). In this

case, Oracle assigns partition names of the form SYS_
SUBPnnn . The number of tablespaces does not have to equal

the number of subpartitions. If the number of subpartitions is

greater than the number of tablespaces, Oracle cycles through

the names of the tablespaces.

The subpartitions inherit all their attributes from any attributes

specified for new_partition , except for TABLESPACE, which

you can specify at the subpartition level. Any attributes not

specified at the subpartition or partition level are inherited from

table-level defaults.

This clause overrides any subpartitioning specified at the table

level.

If you do not specify this clause but you specified default

subpartitioning at the table level, new_partition_name will

inherit the table-level default subpartitioning.

See Also: CREATE TABLE on page 10-7

See Also: CREATE TABLE on page 10-7 and Oracle8i Concepts for

more information on hash partitioning

parallel_
clause

lets you specify whether to parallelize the creation of the new

partition.
SQL Statements: ALTER TABLE to constraint_clause 8-47

ALTER TABLE
coalesce_partition_clause

COALESCE applies only to hash-partitioned tables. This clause specifies that Oracle

should select a hash partition, distribute its contents into one or more remaining

partitions (determined by the hash function), and then drop the selected partition.

Local index partitions corresponding to the selected partition are also dropped.

Oracle marks UNUSABLE, and you must rebuild, the local index partitions

corresponding to one or more absorbing partitions.

drop_partition_clause

The drop_partition_clause applies only to tables partitioned using the range

or composite method. This clause removes partition partition , and the data in

that partition, from a partitioned table. If you want to drop a partition but keep its

data in the table, you must merge the partition into one of the adjacent partitions.

If the table has LOB columns, the LOB data and LOB index partitions (and their

subpartitions, if any) corresponding to partition are also dropped.

■ Oracle drops local index partitions and subpartitions corresponding to

partition , even if they are marked UNUSABLE.

■ Oracle marks UNUSABLE all global nonpartitioned indexes defined on the table

and all partitions of global partitioned indexes, unless the partition being

dropped or all of its subpartitions are empty.

■ If you drop a partition and later insert a row that would have belonged to the

dropped partition, Oracle stores the row in the next higher partition. However,

if that partition is the highest partition, the insert will fail because the range of

values represented by the dropped partition is no longer valid for the table.

Restriction: If table contains only one partition, you cannot drop the partition.

You must drop the table.

truncate_partition_clause and truncate_subpartition_clause

TRUNCATE PARTITION removes all rows from partition or, if the table is

composite-partitioned, all rows from partition ’s subpartitions. TRUNCATE
SUBPARTITION removes all rows from subpartition .

If the table contains any LOB columns, the LOB data and LOB index segments for

this partition are also truncated. If the table is composite-partitioned, the LOB data

and LOB index segments for this partition’s subpartitions are truncated.

See Also: merge_partitions_clause on page 8-50
8-48 SQL Reference

ALTER TABLE
If the partition or subpartition to be truncated contains data, you must first disable

any referential integrity constraints on the table. Alternatively, you can delete the

rows and then truncate the partition.

For each partition or subpartition truncated, Oracle also truncates corresponding

local index partitions and subpartitions. If those index partitions or subpartitions

are marked UNUSABLE, Oracle truncates them and resets the UNUSABLE marker to

VALID . In addition, if the truncated partition or subpartition, or any of the

subpartitions of the truncated partition are not empty, Oracle marks as UNUSABLE
all global nonpartitioned indexes and partitions of global indexes defined on the

table.

split_partition_clause

The split_partition_clause lets you create, from an original partition

partition_name_old , two new partitions, each with a new segment and new

physical attributes, and new initial extents. The segment associated with

partition_name_old is discarded.

Restriction: You cannot specify this clause for a hash-partitioned table.

DROP STORAGESpecify DROP STORAGE to deallocate space from the deleted rows

and make it available for use by other schema objects in the

tablespace.

REUSE
STORAGE

Specify REUSE STORAGE to keep space from the deleted rows

allocated to the partition or subpartition. The space is

subsequently available only for inserts and updates to the same

partition or subpartition.

AT (value_
list)

Specify the new noninclusive upper bound for split_
partition_1 . The value_list must compare less than the

original partition bound for partition_name_old and greater

than the partition bound for the next lowest partition (if there is

one).

INTO

partition_
spec ,
partition_
spec

The INTO clause lets you describe the two partitions resulting

from the split. The keyword PARTITION is required. Specify

optional names and physical attributes of the two partitions

resulting from the split. If you do not specify new partition names,

Oracle assigns names of the form SYS_Pn. Any attributes you do

not specify are inherited from partition_name_old .
SQL Statements: ALTER TABLE to constraint_clause 8-49

ALTER TABLE
If you specify subpartitioning for the new partitions, you can specify only

TABLESPACE for the subpartitions. All other attributes will be inherited from the

containing new partition.

If partition_name_old is subpartitioned, and you do not specify any

subpartitioning for the new partitions, the new partitions will inherit the number

and tablespaces of the subpartitions in partition_name_old .

Oracle also splits corresponding local index partitions, even if they are marked

UNUSABLE. The resulting local index partitions inherit all their partition-level

default attributes from the local index partition being split.

If partition_name_old was not empty, Oracle marks UNUSABLEall global

nonpartitioned indexes and all partitions of global indexes on the table. (This action

on global indexes does not apply to index-organized tables.) In addition, if any

partitions or subpartitions resulting from the split are not empty, Oracle marks as

UNUSABLE all corresponding local index partitions and subpartitions.

If table contains LOB columns, you can use the LOB_storage_clause to specify

separate LOB storage attributes for the LOB data segments resulting from the split.

Oracle drops the LOB data and LOB index segments of partition_name_old
and creates new segments for each LOB column, for each partition, even if you do

not specify a new tablespace.

merge_partitions_clause

The merge_partitions_clause lets you merge the contents of two adjacent

partitions of table into one new partition, and then drops the original two partitions.

The new partition inherits the partition-bound of the higher of the two original

partitions.

Any attributes not specified in the segment_attributes_clause are inherited

from table-level defaults.

Restriction:

■ You can specify the compression_clause , physical_
attributes_clause , and OVERFLOW only for a partitioned

index-organized table.

■ You cannot specify the PCTUSED parameter for the index

segment of an index-organized table.

parallel_
clause

The parallel_clause lets you parallelize the

split operation, but does not change the default

parallel attributes of the table.
8-50 SQL Reference

ALTER TABLE
If you do not specify a new partition_name , Oracle assigns a name of the form

SYS_Pnnn . If the new partition has subpartitions, Oracle assigns subpartition

names of the form SYS_SUBPnnn .

If either or both of the original partitions was not empty, Oracle marks UNUSABLE
all global nonpartitioned global indexes and all partitions of global indexes on the

table. In addition, if the partition or any of its subpartitions resulting from the

merge is not empty, Oracle marks UNUSABLE all corresponding local index

partitions and subpartitions.

Restriction: You cannot specify this clause for an index-organized table or for a

table partitioned using the hash method.

exchange_partition_clause and exchange_subpartition_clause

Use the EXCHANGE PARTITION or EXCHANGE SUBPARTITION clause to exchange

the data and index segments of

■ One nonpartitioned table with one hash or range partition (or subpartition)

■ One hash-partitioned table with the hash subpartitions of a range partition of a

composite-partitioned table

All of the segment attributes of the two objects (including tablespace) are also

exchanged.

The default behavior is EXCLUDING INDEXES WITH VALIDATION. You must have

ALTER TABLE privileges on both tables to perform this operation.

This clause facilitates high-speed data loading when used with transportable

tablespaces.

partition_
level_sub-
partitioning

The partition_level_subpartitioning clause lets you

specify hash subpartitioning attributes for the new partition. Any

attributes not specified in this clause are inherited from table-level

defaults.

If you do not specify this clause, the new merged partition inherits

subpartitioning attributes from table-level defaults.

parallel_
clause

The parallel_clause lets you parallelize the merging

operation.

See Also: Oracle8i Administrator’s Guide for information on

transportable tablespaces
SQL Statements: ALTER TABLE to constraint_clause 8-51

ALTER TABLE
If table contains LOB columns, for each LOB column Oracle exchanges LOB data

and LOB index partition or subpartition segments with corresponding LOB data

and LOB index segments of table .

All statistics of the table and partition are exchanged, including table, column, index

statistics, and histograms. The aggregate statistics of the table receiving the new

partition are recalculated.

The logging attribute of the table and partition is also exchanged.

Restriction: Both tables involved in the exchange must have the same primary key,

and no validated foreign keys can be referencing either of the tables unless the

referenced table is empty.

WITH TABLE
table

Specify the table with which the partition will be exchanged.

INCLUDING
INDEXES

Specify INCLUDING INDEXES if you want local index partitions

or subpartitions to be exchanged with the corresponding table

index (for a nonpartitioned table) or local indexes (for a hash-

partitioned table).

EXCLUDING
INDEXES

Specify EXCLUDING NDEXES if you want all index partitions or

subpartitions corresponding to the partition and all the regular

indexes and index partitions on the exchanged table to be marked

UNUSABLE.

WITH
VALIDATION

Specify WITH VALIDATION if you want Oracle to return an error if

any rows in the exchanged table do not map into partitions or

subpartitions being exchanged.

WITHOUT
VALIDATION

Specify WITHOUT VALIDATIONif you do not want Oracle to check

the proper mapping of rows in the exchanged table.

EXCEPTIONS
INTO

Specify a table into which Oracle should place the rowids of all

rows violating the constraint. If you omit schema , Oracle assumes

the exceptions table is in your own schema. If you omit this clause

altogether, Oracle assumes that the table is named EXCEPTIONS.
The exceptions table must be on your local database.

You can create the EXCEPTIONS table using one of these scripts:

■ UTLEXCPT.SQL uses physical rowids. Therefore it can

accommodate rows from conventional tables but not from

index-organized tables. (See the Note that follows.)

■ UTLEXPT1.SQL uses universal rowids, so it can

accommodate rows from both conventional and index-

organized tables.
8-52 SQL Reference

ALTER TABLE
Restrictions on exchanging partitions:

When exchanging between a hash-partitioned table and the range partition of a

composite-partitioned table, the following restrictions apply:

■ The partitioning key of the hash-partitioned table must be identical to the

subpartitioning key of the composite-partitioned table.

■ The number of partitions in the hash-partitioned table must be identical to the

number of subpartitions in the range partition of the composite-partitioned

table.

■ Oracle marks UNUSABLE all global indexes on both tables.

If you create your own exceptions table, it must follow the format

prescribed by one of these two scripts.

Note: If you are collecting exceptions from index-organized

tables based on primary keys (rather than universal rowids),

you must create a separate exceptions table for each index-

organized table to accommodate its primary-key storage. You

create multiple exceptions tables with different names by

modifying and resubmitting the script.

See Also:

- The DBMS_IOT package in Oracle8i Supplied PL/SQL Packages
Reference for information on the SQL scripts

- Oracle8i Performance Guide and Reference for information on

eliminating migrated and chained rows

- Oracle8i Migration for compatibility issues related to the use

of these scripts

Restrictions on EXCEPTIONS INTO clause:

■ This clause is not valid with subpartitions.

■ The partitioned table must have been defined with a UNIQUE
constraint, and that constraint must be in DISABLE
VALIDATE state.

If these conditions are not true, Oracle ignores this clause.

See Also: The constraint_clause on page 8-136 for more

information on constraint checking
SQL Statements: ALTER TABLE to constraint_clause 8-53

ALTER TABLE
For partitioned index-organized tables, the following additional restrictions apply:

■ The source and target table/partition must have their primary key set on the

same columns, in the same order.

■ If compression is enabled, it must be enabled for both the source and the target,

and with the same prefix length.

■ An index-organized table partition cannot be exchanged with a regular table or

vice versa.

■ Both the source and target must have overflow segments, or neither can have

overflow segments.

row_movement_clause

The row_movement_clause determines whether a row can be moved to a

different partition or subpartition because of a change to one or more of its key

values.

Restriction: You can specify this clause only for partitioned tables.

parallel_clause
The parallel_clause lets you change the default degree of parallelism for

queries and DML on the table.

ENABLE Specify ENABLE to allow Oracle to move a row to a different

partition or subpartition as the result of an update to the

partitioning or subpartitioning key.

Restriction: You cannot specify this clause if a domain index has

been built on any column of the table.

Caution: Moving a row in the course of an UPDATE operation

changes that row’s rowid.

DISABLE Specify DISABLE to have Oracle return an error if an update to a

partitioning or subpartitioning key would result in a row moving

to a different partition or subpartition. This is the default.
8-54 SQL Reference

ALTER TABLE
Restrictions:

■ If table contains any columns of LOB or user-defined object type, subsequent

INSERT, UPDATE, and DELETE operations on table are executed serially

without notification. Subsequent queries, however, will be executed in parallel.

■ If you specify the parallel_clause in conjunction with the move_table_
clause , the parallelism applies only to the move, not to subsequent DML and

query operations on the table.

enable_disable_clause
The enable_disable_clause lets you specify whether Oracle should apply an

integrity constraint.

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLEL if you want Oracle to select a degree of

parallelism equal to the number of CPUs available on all

participating instances times the value of the PARALLEL_
THREADS_PER_CPU initialization parameter.

PARALLEL
integer

Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel

operation. Each parallel thread may use one or two parallel

execution servers. Normally Oracle calculates the optimum

degree of parallelism, so it is not necessary for you to specify

integer .

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 10-41

See Also: The enable_disable_clause of CREATE TABLE on

page 10-41 for a complete description of this clause, including notes

and restrictions that relate to this statement
SQL Statements: ALTER TABLE to constraint_clause 8-55

ALTER TABLE
TABLE LOCK
Oracle permits DDL operations on a table only if the table can be locked during the

operation. Such table locks are not required during DML operations.

ALL TRIGGERS

Examples

Nested Table Example The following statement modifies the storage

characteristics of a nested table column projects in table emp so that when

queried it returns actual values instead of locators:

ALTER TABLE emp MODIFY NESTED TABLE projects RETURN AS VALUE;

PARALLEL Example The following statement specifies parallel processing for

queries to the emp table:

ALTER TABLE emp
 PARALLEL;

Note: Table locks are not acquired on temporary tables.

ENABLE TABLE
LOCK

Specify ENABLE TABLE LOCK to enable table locks, thereby

allowing DDL operations on the table.

DISABLE
TABLE LOCK

Specify DISABLE TABLE LOCK to disable table locks, thereby

preventing DML operations on the table.

ENABLE ALL
TRIGGERS

Specify ENABLE ALL TRIGGERS to enable all triggers associated

with the table. Oracle fires the triggers whenever their triggering

condition is satisfied. See CREATE TRIGGER on page 10-66.

To enable a single trigger, use the enable_clause of ALTER
TRIGGER.

See Also: ALTER TRIGGER on page 8-76

DISABLE ALL
TRIGGERS

Specify DISABLE ALL TRIGGERS to disable all triggers

associated with the table. Oracle will not fire a disabled trigger

even if the triggering condition is satisfied.
8-56 SQL Reference

ALTER TABLE
ENABLE VALIDATE Example The following statement places in ENABLE
VALIDATE state an integrity constraint named fk_deptno in the emp table:

ALTER TABLE emp
 ENABLE VALIDATE CONSTRAINT fk_deptno
 EXCEPTIONS INTO except_table;

Each row of the emp table must satisfy the constraint for Oracle to enable the

constraint. If any row violates the constraint, the constraint remains disabled. Oracle

lists any exceptions in the table except_table . You can also identify the

exceptions in the EMP table with the following statement:

SELECT emp.*
 FROM emp e, except_table ex
 WHERE e.row_id = ex.row_id
 AND ex.table_name = ’EMP’
 AND ex.constraint = ’FK_DEPTNO’;

ENABLE NOVALIDATE Example The following statement tries to place in ENABLE
NOVALIDATE state two constraints on the emp table:

ALTER TABLE emp
 ENABLE NOVALIDATE UNIQUE (ename)
 ENABLE NOVALIDATE CONSTRAINT nn_ename;

This statement has two ENABLE clauses:

■ The first places a unique constraint on the ename column in ENABLE
NOVALIDATE state.

■ The second places the constraint named nn_ename in ENABLE NOVALIDATE
state.

In this case, Oracle enables the constraints only if both are satisfied by each row in

the table. If any row violates either constraint, Oracle returns an error and both

constraints remain disabled.

Disabling a Constraint Example Consider a referential integrity constraint

involving a foreign key on the combination of the areaco and phoneno columns

of the phone_calls table. The foreign key references a unique key on the

combination of the areaco and phoneno columns of the customers table. The

following statement disables the unique key on the combination of the areaco and

phoneno columns of the customers table:

ALTER TABLE customers
 DISABLE UNIQUE (areaco, phoneno) CASCADE;
SQL Statements: ALTER TABLE to constraint_clause 8-57

ALTER TABLE
The unique key in the customers table is referenced by the foreign key in the

phone_calls table, so you must use the CASCADE clause to disable the unique

key. This clause disables the foreign key as well.

CHECK Constraint Example The following statement defines and disables a

CHECK constraint on the emp table:

ALTER TABLE emp
 ADD (CONSTRAINT check_comp CHECK (sal + comm <= 5000))
 DISABLE CONSTRAINT check_comp;

The constraint check_comp ensures that no employee’s total compensation

exceeds $5000. The constraint is disabled, so you can increase an employee’s

compensation above this limit.

Enabling Triggers Example The following statement enables all triggers

associated with the emp table:

ALTER TABLE emp
 ENABLE ALL TRIGGERS;

DEALLOCATE UNUSED Example The following statement frees all unused space

for reuse in table emp, where the high water mark is above MINEXTENTS:

ALTER TABLE emp
 DEALLOCATE UNUSED;

DROP COLUMN Example This statement illustrates the drop_column_clause
with CASCADE CONSTRAINTS. Assume table t1 is created as follows:

CREATE TABLE t1 (
 pk NUMBER PRIMARY KEY,
 fk NUMBER,
 c1 NUMBER,
 c2 NUMBER,
 CONSTRAINT ri FOREIGN KEY (fk) REFERENCES t1,
 CONSTRAINT ck1 CHECK (pk > 0 and c1 > 0),
 CONSTRAINT ck2 CHECK (c2 > 0)
);

An error will be returned for the following statements:

ALTER TABLE t1 DROP (pk); -- pk is a parent key
ALTER TABLE t1 DROP (c1); -- c1 is referenced by multicolumn
 constraint ck1
8-58 SQL Reference

ALTER TABLE
Submitting the following statement drops column pk , the primary key constraint,

the foreign key constraint, ri , and the check constraint, ck1 :

ALTER TABLE t1 DROP (pk) CASCADE CONSTRAINTS;

If all columns referenced by the constraints defined on the dropped columns are

also dropped, then CASCADE CONSTRAINTSis not required. For example, assuming

that no other referential constraints from other tables refer to column pk , then it is

valid to submit the following statement without the CASCADE CONSTRAINTS
clause:

ALTER TABLE t1 DROP (pk, fk, c1);

Index-Organized Table Examples This statement modifies the INITRANS
parameter for the index segment of index-organized table docindex :

ALTER TABLE docindex INITRANS 4;

The following statement adds an overflow data segment to index-organized table

docindex :

ALTER TABLE docindex ADD OVERFLOW;

This statement modifies the INITRANS parameter for the overflow data segment of

index-organized table docindex :

ALTER TABLE docindex OVERFLOW INITRANS 4;

ADD PARTITION Example The following statement adds a partition p3 and

specifies storage characteristics for three of the table’s LOB columns (b, c , and d):

ALTER TABLE pt ADD PARTITION p3 VALUES LESS THAN (30)
 LOB (b, d) STORE AS (TABLESPACE tsz)
 LOB (c) STORE AS mylobseg;

The LOB data and LOB index segments for columns b and d in partition p3 will

reside in tablespace tsz . The remaining attributes for these LOB columns will be

inherited first from the table-level defaults, and then from the tablespace defaults.

The LOB data segments for column c will reside in the mylobseg segment, and

will inherit all other attributes from the table-level defaults and then from the

tablespace defaults.

SPLIT PARTITION Example The following statement splits partition p3 into

partitions p3_1 andp3_2 :
SQL Statements: ALTER TABLE to constraint_clause 8-59

ALTER TABLE
ALTER TABLE pt SPLIT PARTITION p3 AT (25)
 INTO (PARTITION p3_1 TABLESPACE ts4
 LOB (b,d) STORE AS (TABLESPACE tsz),
 PARTITION p3_2 (TABLESPACE ts5)
 LOB (c) STORE AS (TABLESPACE ts5);

In partition p3_1 , Oracle creates the LOB segments for columns b and d in

tablespace tsz . In partition p3_2 , Oracle creates the LOB segments for column c in

tablespace ts5 . The LOB segments for columns b and d in partition p3_2 and those

for column c in partition p3_1 remain in original tablespace for the original

partition p3 . However, Oracle creates new segments for all the LOB data and LOB

index segments, even though they are not moved to a new tablespace.

User-Defined Object Identifier Example The following statements create an object

type, a corresponding object table with a primary-key-based object identifier, and a

table having a user-defined REF column:

CREATE TYPE emp_t AS OBJECT (empno NUMBER, address CHAR(30));

CREATE TABLE emp OF emp_t (
 empno PRIMARY KEY)
 OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE TABLE dept (dno NUMBER, mgr_ref REF emp_t SCOPE is emp);

The next statements add a constraint and a user-defined REFcolumn, both of which

reference table emp:

ALTER TABLE dept ADD CONSTRAINT mgr_cons FOREIGN KEY (mgr_ref)
 REFERENCES emp;
ALTER TABLE dept ADD sr_mgr REF emp_t REFERENCES emp;

Add Column Example The following statement adds a column named

thriftplan of datatype NUMBER with a maximum of seven digits and two

decimal places and a column named loancode of datatype CHARwith a size of one

and a NOT NULL integrity constraint:

ALTER TABLE emp
 ADD (thriftplan NUMBER(7,2),
 loancode CHAR(1) NOT NULL);

Modify Column Examples The following statement increases the size of the

thriftplan column to nine digits:

ALTER TABLE emp
8-60 SQL Reference

ALTER TABLE
 MODIFY (thriftplan NUMBER(9,2));

Because the MODIFY clause contains only one column definition, the parentheses

around the definition are optional.

The following statement changes the values of the PCTFREE and PCTUSED
parameters for the emp table to 30 and 60, respectively:

ALTER TABLE emp
 PCTFREE 30
 PCTUSED 60;

ALLOCATE EXTENT Example The following statement allocates an extent of 5

kilobytes for the emp table and makes it available to instance 4:

ALTER TABLE emp
 ALLOCATE EXTENT (SIZE 5K INSTANCE 4);

Because this statement omits the DATAFILE parameter, Oracle allocates the extent

in one of the datafiles belonging to the tablespace containing the table.

Default Column Value Examples This statement modifies the bal column of the

accounts table so that it has a default value of 0:

ALTER TABLE accounts
 MODIFY (bal DEFAULT 0);

If you subsequently add a new row to the accounts table and do not specify a

value for the bal column, the value of the bal column is automatically 0:

INSERT INTO accounts(accno, accname)
 VALUES (accseq.nextval, ’LEWIS’);

SELECT *
 FROM accounts
 WHERE accname = ’LEWIS’;

ACCNO ACCNAME BAL
------ ------- ---
815234 LEWIS 0

To discontinue previously specified default values, so that they are no longer

automatically inserted into newly added rows, replace the values with nulls, as

shown in this statement:

ALTER TABLE accounts
SQL Statements: ALTER TABLE to constraint_clause 8-61

ALTER TABLE
 MODIFY (bal DEFAULT NULL);

The MODIFYclause need only specify the column name and the modified part of the

definition, rather than the entire column definition. This statement has no effect on

any existing values in existing rows.

Drop Constraint Examples The following statement drops the primary key of the

dept table:

ALTER TABLE dept
 DROP PRIMARY KEY CASCADE;

If you know that the name of the PRIMARY KEY constraint is pk_dept , you could

also drop it with the following statement:

ALTER TABLE dept
 DROP CONSTRAINT pk_dept CASCADE;

The CASCADE clause drops any foreign keys that reference the primary key.

The following statement drops the unique key on the dname column of the dept
table:

ALTER TABLE dept
 DROP UNIQUE (dname);

The DROP clause in this statement omits the CASCADE clause. Because of this

omission, Oracle does not drop the unique key if any foreign key references it.

LOB Examples The following statement adds CLOB column resume to the

employee table and specifies LOB storage characteristics for the new column:

ALTER TABLE employee ADD (resume CLOB)
 LOB (resume) STORE AS resume_seg (TABLESPACE resume_ts);

To modify the LOB column resume to use caching, enter the following statement:

ALTER TABLE employee MODIFY LOB (resume) (CACHE);

Nested Table Examples The following statement adds the nested table column

skills to the employee table:

ALTER TABLE employee ADD (skills skill_table_type)
 NESTED TABLE skills STORE AS nested_skill_table;
8-62 SQL Reference

ALTER TABLE
You can also modify a nested table’s storage characteristics. Use the name of the

storage table specified in the nested_table_storage_clause to make the

modification. You cannot query or perform DML statements on the storage table.

Use the storage table only to modify the nested table column storage characteristics.

The following statement creates table vetservice with nested table column

client and storage table client_tab . Nested table vetservice is modified to

specify constraints:

CREATE TYPE pet_table AS OBJECT
 (pet_name VARCHAR2(10), pet_dob DATE);

CREATE TABLE vetservice (vet_name VARCHAR2(30),
 client pet_table)
 NESTED TABLE client STORE AS client_tab;

ALTER TABLE client_tab ADD UNIQUE (ssn);

The following statement adds a UNIQUE constraint to nested table nested_skill_
table :

ALTER TABLE nested_skill_table ADD UNIQUE (a);

The following statement alters the storage table for a nested table of REF values to

specify that the REF is scoped:

CREATE TYPE emp_t AS OBJECT (eno number, ename char(31));
CREATE TYPE emps_t AS TABLE OF REF emp_t;
CREATE TABLE emptab OF emp_t;
CREATE TABLE dept (dno NUMBER, employees emps_t)
 NESTED TABLE employees STORE AS deptemps;
ALTER TABLE deptemps ADD (SCOPE FOR (column_value) IS emptab);

Similarly, to specify storing the REF with rowid:

ALTER TABLE deptemps ADD (REF(column_value) WITH ROWID);

In order to execute these ALTER TABLE statements successfully, the storage table

deptemps must be empty. Also, because the nested table is defined as a table of

scalars (REFs), Oracle implicitly provides the column name COLUMN_VALUE for the

storage table.
SQL Statements: ALTER TABLE to constraint_clause 8-63

ALTER TABLE
REF Examples In the following statement an object type dept_t has been

previously defined. Now, create table emp as follows:

CREATE TABLE emp
 (name VARCHAR(100),
 salary NUMBER,
 dept REF dept_t);

An object table DEPARTMENTS is created as:

CREATE TABLE departments OF dept_t;

The dept column can store references to objects of dept_t stored in any table. If

you would like to restrict the references to point only to objects stored in the

departments table, you could do so by adding a scope constraint on the dept
column as follows:

ALTER TABLE emp
 ADD (SCOPE FOR (dept) IS departments);

The above ALTER TABLE statement will succeed only if the emp table is empty.

If you want the REF values in the dept column of emp to also store the rowids,

issue the following statement:

ALTER TABLE emp
 ADD (REF(dept) WITH ROWID);

Add Partition Example The following statement adds partition jan99 to

tablespace tsx :

ALTER TABLE sales
 ADD PARTITION jan99 VALUES LESS THAN(’970201’)
 TABLESPACE tsx;

Drop Partition Example The following statement drops partition dec98 :

ALTER TABLE sales DROP PARTITION dec98;

See Also:

■ CREATE TABLE on page 10-7 for more information about

nested table storage

■ Oracle8i Application Developer’s Guide - Fundamentals for more

information about nested tables
8-64 SQL Reference

ALTER TABLE
Exchange Partition Example The following statement converts partition feb97 to

table sales_feb97 without exchanging local index partitions with corresponding

indexes on sales_feb97 and without verifying that data in sales_feb97 falls

within the bounds of partition feb97 :

ALTER TABLE sales
 EXCHANGE PARTITION feb97 WITH TABLE sales_feb97
 WITHOUT VALIDATION;

Modify Partition Examples The following statement marks all the local index

partitions corresponding to the nov96 partition of the sales table UNUSABLE:

ALTER TABLE sales MODIFY PARTITION nov96
 UNUSABLE LOCAL INDEXES;

The following statement rebuilds all the local index partitions that were marked

UNUSABLE:

ALTER TABLE sales MODIFY PARTITION jan97
 REBUILD UNUSABLE LOCAL INDEXES;

The following statement changes MAXEXTENTS and logging attribute for partition

branch_ny :

ALTER TABLE branch MODIFY PARTITION branch_ny
 STORAGE (MAXEXTENTS 75) LOGGING;

Move Partition Example The following statement moves partition depot2 to

tablespace ts094 :

ALTER TABLE parts
 MOVE PARTITION depot2 TABLESPACE ts094 NOLOGGING;

Rename Partition Examples The following statement renames a table:

ALTER TABLE emp RENAME TO employee;

In the following statement, partition emp3 is renamed:

ALTER TABLE employee RENAME PARTITION emp3 TO employee3;

Split Partition Example The following statement splits the old partition depot4 ,

creating two new partitions, naming one depot9 and reusing the name of the old

partition for the other:

ALTER TABLE parts
 SPLIT PARTITION depot4 AT (’40-001’)
SQL Statements: ALTER TABLE to constraint_clause 8-65

ALTER TABLE
 INTO (PARTITION depot4 TABLESPACE ts009 STORAGE (MINEXTENTS 2),
 PARTITION depot9 TABLESPACE ts010)
 PARALLEL (10);

Truncate Partition Example The following statement deletes all the data in the

sys_p017 partition and deallocates the freed space:

ALTER TABLE deliveries
 TRUNCATE PARTITION sys_p017 DROP STORAGE;

Additional Examples For examples of defining integrity constraints with the

ALTER TABLE statement, see the constraint_clause on page 8-136.

For examples of changing the value of a table’s storage parameters, see the

storage_clause on page 11-129.
8-66 SQL Reference

ALTER TABLESPACE
ALTER TABLESPACE

Purpose
Use the ALTER TABLESPACE statement to alter an existing tablespace or one or

more of its datafiles or tempfiles.

Prerequisites
If you have ALTER TABLESPACE system privilege, you can perform any of this

statement’s operations. If you have MANAGE TABLESPACEsystem privilege, you can

only perform the following operations:

■ Take the tablespace online or offline

■ Begin or end a backup

■ Make the tablespace read only or read write

Before you can make a tablespace read only, the following conditions must be met:

■ The tablespace must be online.

■ The tablespace must not contain any active rollback segments. For this reason,

the SYSTEM tablespace can never be made read only, because it contains the

SYSTEM rollback segment. Additionally, because the rollback segments of a

read-only tablespace are not accessible, Oracle recommends that you drop the

rollback segments before you make a tablespace read only.

■ The tablespace must not be involved in an open backup, because the end of a

backup updates the header file of all datafiles in the tablespace.

Performing this function in restricted mode may help you meet these restrictions,

because only users with RESTRICTED SESSION system privilege can be logged on.

See Also: CREATE TABLESPACE on page 10-56 for information

on creating a tablespace
SQL Statements: ALTER TABLE to constraint_clause 8-67

ALTER TABLESPACE
Syntax

ALTER TABLESPACE tablespace

datafile/tempfile_clauses

DEFAULT storage_clause

MINIMUM EXTENT integer

K

M

ONLINE

OFFLINE

NORMAL

TEMPORARY

IMMEDIATE

FOR RECOVER

BEGIN

END
BACKUP

READ
ONLY

WRITE

PERMANENT

TEMPORARY

COALESCE

LOGGING

NOLOGGING

;

8-68 SQL Reference

ALTER TABLESPACE
datafile / tempfile_clauses ::=

filespec : See filespec on page 11-27.

autoextend_clause ::=

maxsize_clause ::=

storage_clause : See storage_clause on page 11-129.

Keywords and Parameters

tablespace
Specify the name of the tablespace to be altered.

ADD
DATAFILE

TEMPFILE
’ filespec ’

autoextend_clause

,

RENAME DATAFILE ’ filename ’

,

TO ’ filename ’

,

AUTOEXTEND

OFF

ON
NEXT integer

K

M
maxsize_clause

MAXSIZE

UNLIMITED

integer

K

M

SQL Statements: ALTER TABLE to constraint_clause 8-69

ALTER TABLESPACE
datafile / tempfile_clauses
The datafile and tempfile clauses let you add or modify a datafile or tempfile.

autoextend_clause
The autoextend_clause lets you enable or disable the automatic extending of

the size of the datafile in the tablespace.

Note: For locally managed temporary tablespaces, the only clause

you can specify in this statement in the ADD clause.

ADD DATAFILE
| TEMPFILE

Specify ADD to add to the tablespace a datafile or tempfile

specified by filespec .

You can add a datafile or tempfile to a locally managed tablespace

that is online or to a dictionary managed tablespace that is online

or offline. Be sure the file is not in use by another database.

See Also: filespec on page 11-27

Note: For locally managed temporary tablespaces, this is the

only clause you can specify at any time.

RENAME
DATAFILE

Specify RENAME DATAFILE to rename one or more of the

tablespace’s datafiles. Take the tablespace offline before renaming

the datafile. Each ’filename ’ must fully specify a datafile using

the conventions for filenames on your operating system.

This clause merely associates the tablespace with the new file

rather than the old one. This clause does not actually change the

name of the operating system file. You must change the name of

the file through your operating system.

OFF Specify OFF to disable autoextend if it is turned on. NEXT and

MAXSIZE are set to zero. Values for NEXT and MAXSIZE must be

respecified in further ALTER TABLESPACE AUTOEXTEND
statements.

ON Specify ON to enable autoextend.
8-70 SQL Reference

ALTER TABLESPACE
DEFAULTstorage_clause
DEFAULTstorage_clause lets you specify the new default storage parameters

for objects subsequently created in the tablespace. For a dictionary-managed

temporary table, Oracle considers only the NEXT parameter of the storage_
clause .

Restriction: You cannot specify this clause for a locally managed tablespace.

MINIMUM EXTENT
The MINIMUM EXTENT clause lets you control free space fragmentation in the

tablespace by ensuring that every used or free extent size in a tablespace is at least

as large as, and is a multiple of, integer . This clause is not relevant for a

dictionary-managed temporary tablespace.

Restriction: You cannot specify this clause for a locally managed tablespace.

ONLINE | OFFLINE
Specify ONLINE to bring the tablespace online.

Specify OFFLINE to take the tablespace offline and prevents further access to its

segments.

NEXTinteger Specify the size in bytes of the next increment of disk space to be

allocated automatically to the datafile when more extents are

required. Use K or M to specify this size in kilobytes or megabytes.

The default is one data block.

maxsize_
clause

The maxsize_clause lets you specify maximum disk space

allowed for automatic extension of the datafile.

UNLIMITED Specify UNLIMITED to set no limit on allocating

disk space to the datafile.

See Also: storage_clause on page 11-129

See Also: Oracle8i Administrator’s Guide for more information

about using MINIMUM EXTENT to control space fragmentation
SQL Statements: ALTER TABLE to constraint_clause 8-71

ALTER TABLESPACE
BEGIN BACKUP
Specify BEGIN BACKUP to indicate that an open backup is to be performed on the

datafiles that make up this tablespace. This clause does not prevent users from

accessing the tablespace. You must use this clause before beginning an open

backup.

Restrictions: You cannot specify this clause for a read-only tablespace or for a

temporary locally managed tablespace.

END BACKUP
Specify END BACKUP to indicate that an open backup of the tablespace is complete.

Use this clause as soon as possible after completing an open backup. You cannot use

this clause on a read-only tablespace.

If you forget to indicate the end of an online tablespace backup, and an instance

failure or SHUTDOWN ABORT occurs, Oracle assumes that media recovery (possibly

requiring archived redo log) is necessary at the next instance start up.

READ ONLY | READ WRITE
Specify READ ONLY to place the tablespace in transition read-only mode. In this

state, existing transactions can complete (commit or roll back), but no further write

operations (DML) are allowed to the tablespace except for rollback of existing

transactions that previously modified blocks in the tablespace.

Suggestion: Before taking a tablespace offline for a long time, you

may want to alter the tablespace allocation of any users who have

been assigned the tablespace as either a default or temporary

tablespace. When the tablespace is offline, these users cannot

allocate space for objects or sort areas in the tablespace.

See Also: ALTER USER on page 8-88

Note: While the backup is in progress, you cannot take the

tablespace offline normally, shut down the instance, or begin

another backup of the tablespace.

See Also: Oracle8i Administrator’s Guide for information on

restarting the database without media recovery
8-72 SQL Reference

ALTER TABLESPACE
Once a tablespace is read only, you can copy its files to read-only media. You must

then rename the datafiles in the control file to point to the new location by using the

SQL statement ALTER DATABASE ... RENAME.

Specify READ WRITE to indicate that write operations are allowed on a previously

read-only tablespace.

PERMANENT | TEMPORARY
Specify PERMANENT to indicate that the tablespace is to be converted from a

temporary to a permanent one. A permanent tablespace is one in which permanent

database objects can be stored. This is the default when a tablespace is created.

Specify TEMPORARY to indicate specifies that the tablespace is to be converted from

a permanent to a temporary one. A temporary tablespace is one in which no

permanent database objects can be stored. Objects in a temporary tablespace persist

only for the duration of the session.

COALESCE
For each datafile in the tablespace, this clause coalesces all contiguous free extents

into larger contiguous extents.

LOGGING | NOLOGGING
Specify LOGGING if you want logging of all tables, indexes, and partitions within

the tablespace. The tablespace-level logging attribute can be overridden by logging

specifications at the table, index, and partition levels.

When an existing tablespace logging attribute is changed by an ALTER
TABLESPACE statement, all tables, indexes, and partitions created after the

statement will have the new default logging attribute (which you can still

subsequently override). The logging attributes of existing objects are not changed.

Only the following operations support NOLOGGING mode:

■ DML: direct-load INSERT (serial or parallel); Direct Loader (SQL*Loader)

■ DDL: CREATE TABLE ... AS SELECT, CREATE INDEX, ALTER INDEX ...

REBUILD, ALTER INDEX ... REBUILD PARTITION, ALTER INDEX ... SPLIT

See Also:

■ Oracle8i Concepts for more information on read-only tablespaces

■ ALTER DATABASE on page 7-9
SQL Statements: ALTER TABLE to constraint_clause 8-73

ALTER TABLESPACE
PARTITION, ALTER TABLE ... SPLIT PARTITION , ALTER TABLE ... MOVE
PARTITION.

In NOLOGGING mode, data is modified with minimal logging (to mark new extents

invalid and to record dictionary changes). When applied during media recovery, the

extent invalidation records mark a range of blocks as logically corrupt, because the

redo data is not logged. Therefore, if you cannot afford to lose the object, it is

important to take a backup after the NOLOGGING operation.

Examples

Backup Examples The following statement signals to the database that a backup

is about to begin:

ALTER TABLESPACE accounting
 BEGIN BACKUP;

The following statement signals to the database that the backup is finished:

ALTER TABLESPACE accounting
 END BACKUP;

Moving and Renaming Example This example moves and renames a datafile

associated with the accounting tablespace from ’diska:pay1:dat ’ to

’diskb:receive1:dat ’:

1. Take the tablespace offline using an ALTER TABLESPACE statement with the

OFFLINE clause:

ALTER TABLESPACE accounting OFFLINE NORMAL;

2. Copy the file from ’diska:pay1.dat ’ to ’diskb:receive1.dat ’ using your

operating system’s commands.

3. Rename the datafile using the ALTER TABLESPACE statement with the RENAME
DATAFILE clause:

ALTER TABLESPACE accounting
 RENAME DATAFILE ’diska:pay1.dbf’
 TO ’diskb:receive1.dbf’;

4. Bring the tablespace back online using an ALTER TABLESPACE statement with

the ONLINE clause:

ALTER TABLESPACE accounting ONLINE;
8-74 SQL Reference

ALTER TABLESPACE
Adding a Datafile Example The following statement adds a datafile to the

tablespace and changes the default logging attribute to NOLOGGING. When more

space is needed, new extents of size 10 kilobytes will be added up to a maximum of

100 kilobytes:

ALTER TABLESPACE accounting NOLOGGING
 ADD DATAFILE ’disk3:pay3.dbf’
 SIZE 50K
 AUTOEXTEND ON
 NEXT 10K
 MAXSIZE 100K;

Altering a tablespace logging attribute has no affect on the logging attributes of the

existing schema objects within the tablespace. The tablespace-level logging attribute

can be overridden by logging specifications at the table, index, and partition levels.

Changing Extent Allocation Example The following statement changes the

allocation of every extent of tabspace_st to a multiple of 128K:

ALTER TABLESPACE tabspace_st MINIMUM EXTENT 128K;
SQL Statements: ALTER TABLE to constraint_clause 8-75

ALTER TRIGGER
ALTER TRIGGER

Purpose
Use the ALTER TRIGGERstatement to enable, disable, or compile a database trigger.

Prerequisites
The trigger must be in your own schema or you must have ALTER ANY TRIGGER
system privilege.

In addition, to alter a trigger on DATABASE, you must have the ADMINISTER
DATABASE TRIGGER system privilege.

Syntax

Note: This statement does not change the declaration or definition

of an existing trigger. To redeclare or redefine a trigger, use the

CREATE TRIGGER statement with OR REPLACE.

See Also:

■ CREATE TRIGGER on page 10-66 for information on creating a

trigger

■ DROP TRIGGER on page 11-13 for information on dropping a

trigger

See Also: CREATE TRIGGER on page 10-66 for more information

on triggers based on DATABASE

ALTER TRIGGER
schema.

trigger

ENABLE

DISABLE

COMPILE
DEBUG

;

8-76 SQL Reference

ALTER TRIGGER
Keywords and Parameters

schema
Specify the schema containing the trigger. If you omit schema , Oracle assumes the

trigger is in your own schema.

trigger
Specify the name of the trigger to be altered.

ENABLE
Specify ENABLE to enable the trigger. You can also use the ENABLE ALL TRIGGERS
clause of ALTER TABLE to enable all triggers associated with a table.

DISABLE
Specify DISABLE to disable the trigger. You can also use the DISABLE ALL
TRIGGERS clause of ALTER TABLE to disable all triggers associated with a table.

COMPILE
Specify COMPILE to explicitly compile the trigger, whether it is valid or invalid.

Explicit recompilation eliminates the need for implicit run-time recompilation and

prevents associated run-time compilation errors and performance overhead.

Oracle first recompiles objects upon which the trigger depends, if any of these

objects are invalid. If Oracle recompiles the trigger successfully, the trigger becomes

valid.

If recompiling the trigger results in compilation errors, then Oracle returns an error

and the trigger remains invalid. You can see the associated compiler error messages

with the SQL*Plus command SHOW ERRORS.

See Also: ALTER TABLE on page 8-2

See Also: ALTER TABLE on page 8-2

DEBUG Specify DEBUG to instruct the PL/SQL compiler to generate and

store the code for use by the PL/SQL debugger. This clause can be

used for normal triggers and for instead-of triggers.
SQL Statements: ALTER TABLE to constraint_clause 8-77

ALTER TRIGGER
Examples

Disable Trigger Example Consider a trigger named reorder created on the

inventory table. The trigger is fired whenever an UPDATE statement reduces the

number of a particular part on hand below the part’s reorder point. The trigger

inserts into a table of pending orders a row that contains the part number, a reorder

quantity, and the current date.

When this trigger is created, Oracle enables it automatically. You can subsequently

disable the trigger with the following statement:

ALTER TRIGGER reorder DISABLE;

When the trigger is disabled, Oracle does not fire the trigger when an UPDATE
statement causes the part’s inventory to fall below its reorder point.

Enable Trigger Example After disabling the trigger, you can subsequently enable

it with the following statement:

ALTER TRIGGER reorder ENABLE;

After you reenable the trigger, Oracle fires the trigger whenever a part’s inventory

falls below its reorder point as a result of an UPDATE statement. It is possible that a

part’s inventory falls below its reorder point while the trigger was disabled. In that

case, when you reenable the trigger, Oracle does not automatically fire the trigger

for this part until another transaction further reduces the inventory.

See Also:

■ Oracle8i Application Developer’s Guide - Fundamentals for

information on debugging procedures

■ Oracle8i Concepts for information on how Oracle maintains

dependencies among schema objects, including remote objects
8-78 SQL Reference

ALTER TYPE
ALTER TYPE

Purpose
Use the ALTER TYPE statement to recompile the specification and/or body, or to

change the specification of an object type by adding new object member

subprogram specifications.

You cannot change the existing properties (attributes, member subprograms, map

or order functions) of an object type, but you can add new member subprogram

specifications.

Prerequisites
The object type must be in your own schema and you must have CREATE TYPE or

CREATE ANY TYPE system privilege, or you must have ALTER ANY TYPE system

privileges.

Syntax

element_list ::=

ALTER TYPE
schema .

type

COMPILE
DEBUG

SPECIFICATION

BODY

REPLACE
invoker_rights_clause

AS OBJECT (element_list)

;

attribute datatype

, ,
MEMBER

STATIC

procedure_spec

function_spec

, pragma_clause

,
MAP

ORDER
MEMBER function_spec
SQL Statements: ALTER TABLE to constraint_clause 8-79

ALTER TYPE
invoker_rights_clause ::=

pragma_clause ::=

Keywords and Parameters

schema
Specify the schema that contains the type. If you omit schema , Oracle assumes the

type is in your current schema.

type
Specify the name of an object type, a nested table type, or a rowid type.

COMPILE
Specify COMPILE to compile the object type specification and body. This is the

default if neither SPECIFICATION nor BODY is specified.

If recompiling the type results in compilation errors, then Oracle returns an error

and the type remains invalid. You can see the associated compiler error messages

with the SQL*Plus command SHOW ERRORS.

DEBUG Specify DEBUG to instruct the PL/SQL compiler to generate and

store the code for use by the PL/SQL debugger.

AUTHID
CURRENT_USER

DEFINER

PRAGMA RESTRICT_REFERENCES (
method_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

)

8-80 SQL Reference

ALTER TYPE
REPLACE AS OBJECT
The REPLACE AS OBJECT clause lets you add new member subprogram

specifications. This clause is valid only for object types, not for nested table or

varray types.

element_list

Specify the elements of the object.

SPECIFICATION Specify SPECIFICATION to compile only the object type

specification.

BODY Specify BODY to compile only the object type body.

attribute Specify an object attribute name. Attributes are data items with a

name and a type specifier that form the structure of the object.

MEMBER |
STATIC

This clause lets you specify a function or procedure subprogram

associated with the object type which is referenced as an attribute.

You must specify a corresponding method body in the object type

body for each procedure or function specification.

See Also:

- CREATE TYPE on page 10-80 for a description of the

difference between member and static methods, and for

examples

- PL/SQL User’s Guide and Reference for information about

overloading subprogram names within a package

- CREATE TYPE BODY on page 10-93

procedure_
spec

Enter the specification of a procedure

subprogram.

function_
spec

Enter the specification of a function subprogram.

pragma_
clause

The pragma_clause is a complier directive that denies member

functions read/write access to database tables, packaged

variables, or both, and thereby helps to avoid side effects.

See Also: Oracle8i Application Developer’s Guide - Fundamentals
SQL Statements: ALTER TABLE to constraint_clause 8-81

ALTER TYPE
method Specify the name of the MEMBER function or

procedure to which the pragma is being applied.

DEFAULT Specify DEFAULT if you want Oracle to apply

the pragma to all methods in the type for which

a pragma has not been explicitly specified.

WNDS Specify WNDS to enforce the constraint writes no
database state (does not modify database

tables).

WNPS Specify WNPS to enforce the constraint writes no
package state (does not modify packaged

variables).

RNDS Specify RNDS to enforce the constraint reads no
database state (does not query database tables).

RNPS Specify WNPS to enforce the constraint reads no
package state (does not reference package

variables).

TRUST Specify TRUST to indicate that the restrictions

listed in the pragma are not actually to be

enforced, but are simply trusted to be true.

MAP | ORDER
MEMBER
function_
spec

You can declare either a MAPmethod or an ORDERmethod, but not

both. If you declare either method, you can compare object

instances in SQL.

If you do not declare either method, you can compare object

instances only for equality or inequality. Instances of the same

type definition are equal only if each pair of their corresponding

attributes is equal. No comparison method needs to be specified

to determine the equality of two object types.

See Also: "Object Values" on page 2-29for more information

about object value comparisons
8-82 SQL Reference

ALTER TYPE
MAP Specify a member function (MAP method) that

returns the relative position of a given instance

in the ordering of all instances of the object. A

map method is called implicitly and induces an

ordering of object instances by mapping them to

values of a predefined scalar type. Oracle uses

the ordering for comparison operators and

ORDER BY clauses.

If the argument to the map method is null, the

map method returns null and the method is not

invoked.

An object specification can contain only one map

method, which must be a function. The result

type must be a predefined SQL scalar type, and

the map function can have no arguments other

than the implicit SELF argument.

Note: If type_name will be referenced in

queries involving sorts (through ORDER BY,
GROUP BY, DISTINCT , or UNION clauses) or

joins, and you want those queries to be

parallelized, you must specify a MAP
member function.

ORDER Specify a member function (ORDERmethod) that

takes an instance of an object as an explicit

argument and the implicit SELF argument and

returns either a negative, zero, or positive

integer. The negative, zero, or positive indicates

that the implicit SELF argument is less than,

equal to, or greater than the explicit argument.

If either argument to the order method is null,

the order method returns null and the method is

not invoked.

When instances of the same object type

definition are compared in an ORDER BY clause,

the order method function is invoked.
SQL Statements: ALTER TABLE to constraint_clause 8-83

ALTER TYPE
invoker_rights_clause
The invoker_rights_clause lets you specify whether the member functions

and procedures of the object type execute with the privileges and in the schema of

the user who owns the object type or with the privileges and in the schema of

CURRENT_USER. This specification applies to the corresponding type body as well.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the member functions and procedures

of the type.

Restriction: You can specify this clause only for an object type, not for a nested table

or varray type.

An object specification can contain only one

ORDER method, which must be a function

having the return type NUMBER.

AUTHID
CURRENT_USER

Specify CURRENT_USER if you want the member functions and

procedures of the object type to execute with the privileges of

CURRENT_USER. This clause creates an invoker-rights type.

This clause also specifies that external names in queries, DML

operations, and dynamic SQL statements resolve in the schema of

CURRENT_USER. External names in all other statements resolve in

the schema in which the type resides.

Note: You must specify this clause to maintain invoker-rights

status for the type if you created it with this status. Otherwise

the status will revert to definer rights.

AUTHID
DEFINER

Specify DEFINER if you want the member functions and

procedures of the object type to execute with the privileges of the

owner of the schema in which the functions and procedures

reside, and that external names resolve in the schema where the

member functions and procedures reside. This is the default.
8-84 SQL Reference

ALTER TYPE
Examples

Adding a Member Function In the following example, member function qtr is

added to the type definition of data_t .

CREATE TYPE data_t AS OBJECT
 (year NUMBER,
 MEMBER FUNCTION prod(invent NUMBER) RETURN NUMBER
);

 CREATE TYPE BODY data_t IS
 MEMBER FUNCTION prod (invent NUMBER) RETURN NUMBER IS
 BEGIN
 RETURN (year + invent);
 END;
 END;

 ALTER TYPE data_t REPLACE AS OBJECT
 (year NUMBER,
 MEMBER FUNCTION prod(invent NUMBER) RETURN NUMBER,
 MEMBER FUNCTION qtr(der_qtr DATE) RETURN CHAR
);

 CREATE OR REPLACE TYPE BODY data_t IS
 MEMBER FUNCTION prod (invent NUMBER) RETURN NUMBER IS
 MEMBER FUNCTION qtr(der_qtr DATE) RETURN CHAR IS
 BEGIN
 RETURN (year + invent);
 END;
 BEGIN
 RETURN ’FIRST’;
 END;
 END;

Recompiling a Type The following example creates and then recompiles type

loan_t :

See Also:

■ Oracle8i Concepts and Oracle8i Application Developer’s Guide -
Fundamentals for information on how CURRENT_USER is
determined

■ PL/SQL User’s Guide and Reference
SQL Statements: ALTER TABLE to constraint_clause 8-85

ALTER TYPE
CREATE TYPE loan_t AS OBJECT
 (loan_num NUMBER,
 interest_rate FLOAT,
 amount FLOAT,
 start_date DATE,
 end_date DATE);

ALTER TYPE loan_t COMPILE;

Recompiling a Type Body The following example compiles the type body of

link2 .

CREATE TYPE link1 AS OBJECT
 (a NUMBER);

CREATE TYPE link2 AS OBJECT
 (a NUMBER,
 b link1,
 MEMBER FUNCTION p(c1 NUMBER) RETURN NUMBER);

CREATE TYPE BODY link2 AS
 MEMBER FUNCTION p(c1 NUMBER) RETURN NUMBER IS t13 link1;
 BEGIN t13 := link1(13);
 dbms_output.put_line(t13.a);
 RETURN 5;
 END;
 END;

CREATE TYPE link3 AS OBJECT (a link2);
CREATE TYPE link4 AS OBJECT (a link3);
CREATE TYPE link5 AS OBJECT (a link4);
ALTER TYPE link2 COMPILE BODY;

Recompiling a Type Specification The following example compiles the type

specification of link2 .

CREATE TYPE link1 AS OBJECT
 (a NUMBER);

CREATE TYPE link2 AS OBJECT
 (a NUMBER,
 b link1,
 MEMBER FUNCTION p(c1 NUMBER) RETURN NUMBER);

CREATE TYPE BODY link2 AS
8-86 SQL Reference

ALTER TYPE
 MEMBER FUNCTION p(c1 NUMBER) RETURN NUMBER IS t14 link1;
 BEGIN t14 := link1(14);
 dbms_output.put_line(t14.a);
 RETURN 5;
 END;
 END;

CREATE TYPE link3 AS OBJECT (a link2);
CREATE TYPE link4 AS OBJECT (a link3);
CREATE TYPE link5 AS OBJECT (a link4);
ALTER TYPE link2 COMPILE SPECIFICATION;
SQL Statements: ALTER TABLE to constraint_clause 8-87

ALTER USER
ALTER USER

Purpose
Use the ALTER USER statement to change the authentication or database resource

characteristics of a database user.

To permit a proxy server to connect as a client without authentication.

Prerequisites
You must have the ALTER USER system privilege. However, you can change your

own password without this privilege.

Note: ALTER USER syntax does not accept the old password.

Therefore it neither authenticates using the old password nor

checks the new password against the old before setting the new

password. If these checks against the old password are important,

use the OCIPasswordChange() call instead of ALTER USER. For

more information, see Oracle Call Interface Programmer’s Guide.
8-88 SQL Reference

ALTER USER
Syntax

ALTER USER

user

IDENTIFIED

BY password

EXTERNALLY

GLOBALLY AS ’ external_name ’

DEFAULT TABLESPACE tablespace

TEMPORARY TABLESPACE tablespace

QUOTA
integer

K

M

UNLIMITED
ON tablespace

PROFILE profile

DEFAULT ROLE

role

,

ALL
EXCEPT role

,

NONE

PASSWORD EXPIRE

ACCOUNT
LOCK

UNLOCK

user

,

proxy_clause

;

SQL Statements: ALTER TABLE to constraint_clause 8-89

ALTER USER
proxy_clause ::=

Keywords and Parameters
The keywords and parameters shown below are unique to ALTER USER or have

different functionality than they have in CREATE USER. All the remaining keywords

and parameters in the ALTER USER statement have the same meaning as in the

CREATE USER statement.

IDENTIFIED

See Also:

■ CREATE USER on page 10-99 for information on the keywords

and parameters

■ CREATE PROFILE on page 9-139 for information on assigning

limits on database resources to a user

BYpassword Specify a password for the user.

Note: Oracle expects a different timestamp for each resetting

of a particular password. If you reset one password multiple

times within one second (for example, by cycling through a

set of passwords using a script), Oracle may return an error

message that the password cannot be reused. For this reason,

Oracle Corporation recommends that you avoid using scripts

to reset passwords.

GRANT

REVOKE
CONNECT THROUGH proxy

WITH

ROLE

role_name

,

ALL EXCEPT role_name

,

NONE
8-90 SQL Reference

ALTER USER
DEFAULT ROLE
Specify the roles granted by default to the user at logon. This clause can contain

only roles that have been granted directly to the user with a GRANT statement. You

cannot use the DEFAULT ROLE clause to enable:

■ Roles not granted to the user

■ Roles granted through other roles

■ Roles managed by an external service (such as the operating system), or by the

Oracle Internet Directory

Oracle enables default roles at logon without requiring the user to specify their

passwords.

proxy_clause
The proxy_clause lets you control the ability of a proxy (an application or

application server) to connect as the specified user and to activate all, some, or none

of the user’s roles.

GLOBALLY AS Specify ’external_name ’ to indicate that the user must be

authenticated by way of an LDAP V3 compliant directory service

such as Oracle Internet Directory.

You can change a user’s access verification method to

IDENTIFIED GLOBALLY AS ’external_name ’ only if all external

roles granted directly to the user are revoked.

You can change a user created as IDENTIFIED GLOBALLY AS
’external_name ’ to IDENTIFIED BY password or

IDENTIFIED EXTERNALLY.

See Also: CREATE USER on page 10-99

See Also: CREATE ROLE on page 9-146

See Also: Oracle8i Concepts for more information on proxies and

their use of the database

GRANT Specify GRANT to allow the connection.

REVOKE Specify REVOKE to prohibit the connection.

proxy Identify the proxy connecting to Oracle.
SQL Statements: ALTER TABLE to constraint_clause 8-91

ALTER USER
Examples

ALTER USER Examples The following statement changes the user scott ’s

password to lion and default tablespace to the tablespace tstest :

ALTER USER scott
 IDENTIFIED BY lion
 DEFAULT TABLESPACE tstest;

The following statement assigns the clerk profile to scott :

ALTER USER scott
 PROFILE clerk;

In subsequent sessions, scott restricted by limits in the clerk profile.

The following statement makes all roles granted directly to scott default roles,

except the agent role:

ALTER USER scott
 DEFAULT ROLE ALL EXCEPT agent;

At the beginning of scott ’s next session, Oracle enables all roles granted directly

to scott except the agent role.

User Authentication Examples The following statement changes user tom ’s

authentication mechanism:

ALTER USER tom IDENTIFIED GLOBALLY AS ’CN=tom,O=oracle,C=US’;

WITH Clause Specify the roles that the application is permitted to activate after

it connects as the user. If you do not include this clause, Oracle

activates all roles granted to the specified user automatically.

■ ROLErole_name permits the proxy to connect as the

specified user and to activate only the roles that are specified

by role_name .

■ ROLE ALL EXCEPTrole_name permits the proxy to connect

as the specified user and to activate all roles associated with

that user except those specified by role_name .

■ NONE permits the proxy to connect as the specified user, but

prohibits the proxy from activating any of that user’s roles

after connecting.
8-92 SQL Reference

ALTER USER
The following statement causes user fred ’s password to expire:

ALTER USER fred PASSWORD EXPIRE;

If you cause a database user’s password to expire with PASSWORD EXPIRE, the user

(or the DBA) must change the password before attempting to log in to the database

following the expiration. However, tools such as SQL*Plus allow you to change the

password on the first attempted login following the expiration.

Proxy User Examples The following statement permits the proxy user

APPSERVER1 to connect as the user JANE. It also allows APPSERVER1 to activate

the role INVENTORY:

ALTER USER jane GRANT CONNECT THROUGH appserver1 WITH ROLE
inventory;

The following statement takes away the right of proxy user appserver1 to connect

as the user jane :

ALTER USER jane REVOKE CONNECT THROUGH appserver1;
SQL Statements: ALTER TABLE to constraint_clause 8-93

ALTER VIEW
ALTER VIEW

Purpose
Use the ALTER VIEW statement to explicitly recompile a view that is invalid.

Explicit recompilation allows you to locate recompilation errors before run time.

You may want to recompile a view explicitly after altering one of its base tables to

ensure that the alteration does not affect the view or other objects that depend on it.

When you issue an ALTER VIEW statement, Oracle recompiles the view regardless

of whether it is valid or invalid. Oracle also invalidates any local objects that

depend on the view.

Prerequisites
The view must be in your own schema or you must have ALTER ANY TABLEsystem

privilege.

Notes:

■ This statement does not change the definition of an existing

view. To redefine a view, you must use CREATE VIEW with OR
REPLACE.

■ If you alter a view that is referenced by one or more

materialized views, those materialized views are invalidated.

Invalid materialized views cannot be used by query rewrite

and cannot be refreshed.

See Also:

■ CREATE VIEW on page 10-105 for information on redefining a

view

■ ALTER MATERIALIZED VIEW on page 7-61 for information

on revalidating an invalid materialized view

■ Oracle8i Data Warehousing Guide for general information on data

warehouses

■ Oracle8i Concepts for more about dependencies among schema

objects
8-94 SQL Reference

ALTER VIEW
Syntax

Keywords and Parameters

schema
Specify the schema containing the view. If you omit schema , Oracle assumes the

view is in your own schema.

view
Specify the name of the view to be recompiled.

COMPILE
The COMPILE keyword is required. It directs Oracle to recompile the view.

Example

ALTER VIEW example To recompile the view customer_view , issue the

following statement:

ALTER VIEW customer_view
 COMPILE;

If Oracle encounters no compilation errors while recompiling customer_view ,

customer_view becomes valid. If recompiling results in compilation errors,

Oracle returns an error and customer_view remains invalid.

Oracle also invalidates all dependent objects. These objects include any procedures,

functions, package bodies, and views that reference customer_view . If you

subsequently reference one of these objects without first explicitly recompiling it,

Oracle recompiles it implicitly at run time.

ALTER VIEW
schema.

view COMPILE ;
SQL Statements: ALTER TABLE to constraint_clause 8-95

ANALYZE
ANALYZE

Purpose
Use the ANALYZE statement to:

■ Collect or delete statistics about an index or index partition, table or table

partition, index-organized table, cluster, or scalar object attribute.

■ Validate the structure of an index or index partition, table or table partition,

index-organized table, cluster, or object reference (REF).

■ Identify migrated and chained rows of a table or cluster.

For most statistics collection purposes, Oracle Corporation recommends that you

use the DBMS_STATS package. That package lets you collect statistics in parallel,

collect global statistics for partitioned objects, and fine tune your statistics collection

in other ways.

However, you can use this statement for any of the purposes described in this

section, and you must use this statement (rather than the DBMS_STATSpackage) for

the following purposes:

■ To use the VALIDATE or LIST CHAINED ROWS clauses

■ To sample a number (rather than a percentage) of rows

■ To collect statistics not used by the optimizer (such as information on freelist

blocks)

Prerequisites
The schema object to be analyzed must be local, and it must be in your own schema

or you must have the ANALYZE ANY system privilege.

If you want to list chained rows of a table or cluster into a list table, the list table

must be in your own schema, or you must have INSERT privilege on the list table,

or you must have INSERT ANY TABLE system privilege.

If you want to validate a partitioned table, you must have INSERT privilege on the

table into which you list analyzed rowids, or you must have INSERT ANY TABLE
system privilege.

See Also: Oracle8i Supplied PL/SQL Packages Reference for more

information on this package
8-96 SQL Reference

ANALYZE
Syntax

ANALYZE

TABLE
schema .

table

PARTITION (partition)

SUBPARTITION (subpartition)

INDEX
schema .

index

PARTITION (partition)

SUBPARTITION (subpartition)

CLUSTER
schema .

cluster

COMPUTE STATISTICS
for_clause

ESTIMATE STATISTICS
for_clause

SAMPLE integer
ROWS

PERCENT

DELETE STATISTICS

VALIDATE REF UPDATE
SET DANGLING TO NULL

VALIDATE STRUCTURE
CASCADE INT0

schema .
table

LIST CHAINED ROWS
INT0

schema .
table

;

SQL Statements: ALTER TABLE to constraint_clause 8-97

ANALYZE
for_clause ::=

Keywords and Parameters

schema
Specify the schema containing the index, table, or cluster. If you omit schema ,

Oracle assumes the index, table, or cluster is in your own schema.

INDEX index
Specify an index to be analyzed (if no for_clause is used).

Oracle collects the following statistics for an index. Statistics marked with an

asterisk are always computed exactly. For conventional indexes, the statistics

appear in the data dictionary views USER_INDEXES, ALL_INDEXES, and DBA_
INDEXES in the columns in parentheses.

■ Depth of the index from its root block to its leaf blocks* (BLEVEL)

■ Number of leaf blocks (LEAF_BLOCKS)

■ Number of distinct index values (DISTINCT_KEYS)

■ Average number of leaf blocks per index value (AVG_LEAF_BLOCKS_PER_KEY)

■ Average number of data blocks per index value (for an index on a table) (AVG_
DATA_BLOCKS_PER_KEY)

■ Clustering factor (how well ordered the rows are about the indexed values)

(CLUSTERING_FACTOR)

For domain indexes, this statement invokes the user-defined statistics collection

function specified in the statistics type associated with the index (see ASSOCIATE

FOR

TABLE

ALL
INDEXED

COLUMNS
SIZE integer

COLUMNS
SIZE integer column

attribute

SIZE integer

ALL
LOCAL

INDEXES
8-98 SQL Reference

ANALYZE
STATISTICS on page 8-110). If no statistics type is associated with the domain index,

the statistics type associated with its indextype is used. If no statistics type exists for

either the index or its indextype, no user-defined statistics are collected. User-

defined index statistics appear in the STATISTICS column of the data dictionary

views USER_USTATS, ALL_USTATS, and DBA_USTATS.

Restriction: You cannot analyze a domain index that is marked LOADING or

FAILED .

TABLEtable
Specify a table to be analyzed. When you collect statistics for a table, Oracle also

automatically collects the statistics for each of the table’s indexes and domain

indexes, provided that no for_clauses are used.

When you analyze a table, Oracle collects statistics about expressions occurring in

any function-based indexes as well. Therefore, be sure to create function-based

indexes on the table before analyzing the table.

When analyzing a table, Oracle skips all domain indexes marked LOADING or

FAILED .

Oracle collects the following statistics for a table. Statistics marked with an asterisk

are always computed exactly. Table statistics, including the status of domain

indexes, appear in the data dictionary views USER_TABLES, ALL_TABLES, and

DBA_TABLES in the columns shown in parentheses.

■ Number of rows (NUM_ROWS)

■ * Number of data blocks below the high water mark (that is, the number of data

blocks that have been formatted to receive data, regardless whether they

currently contain data or are empty) (BLOCKS)

■ * Number of data blocks allocated to the table that have never been used

(EMPTY_BLOCKS)

See Also:

■ CREATE INDEX on page 9-52 for more information on domain

indexes

■ Oracle8i Reference for information on the data dictionary views

See Also: CREATE INDEX on page 9-52 for more information
about function-based indexes
SQL Statements: ALTER TABLE to constraint_clause 8-99

ANALYZE
■ Average available free space in each data block in bytes (AVG_SPACE)

■ Number of chained rows (CHAIN_COUNT)

■ Average row length, including the row’s overhead, in bytes (AVG_ROW_LEN)

Restrictions:

■ You cannot use ANALYZE to collect statistics on data dictionary tables.

■ You cannot use ANALYZE to collect default statistics on a temporary table.

However, if you have created an association between one or more columns of a

temporary table and a user-defined statistics type, you can use ANALYZE to
collect the user-defined statistics on the temporary table. (The association must

already exist.)

■ You cannot compute or estimate statistics for the following column types: REFs,

varrays, nested tables, LOBs (LOBs are not analyzed, they are skipped), LONGs,
or object types. However, if a statistics type is associated with such a column,

user-defined statistics are collected.

PARTITION | SUBPARTITION
Specify the partition or subpartition on which you want statistics to be

gathered. You cannot use this clause when analyzing clusters.

If you specify PARTITION and table is composite-partitioned, Oracle analyzes all

the subpartitions within the specified partition.

CLUSTERcluster
Specify a cluster to be analyzed. When you collect statistics for a cluster, Oracle also

automatically collects the statistics for all the cluster’s tables and all their indexes,

including the cluster index.

For both indexed and hash clusters, Oracle collects the average number of data

blocks taken up by a single cluster key (AVG_BLOCKS_PER_KEY). These statistics

appear in the data dictionary views ALL_CLUSTERS, USER_CLUSTERS and DBA_
CLUSTERS.

See Also:

■ ASSOCIATE STATISTICS on page 8-110

■ Oracle8i Reference for information on the data dictionary views

See Also: Oracle8i Reference for information on the data dictionary

views
8-100 SQL Reference

ANALYZE
COMPUTE STATISTICS
COMPUTE STATISTICS instructs Oracle to compute exact statistics about the

analyzed object and store them in the data dictionary. When you analyze a table,

both table and column statistics are collected.

Both computed and estimated statistics are used by the Oracle optimizer to choose

the execution plan for SQL statements that access analyzed objects. These statistics

may also be useful to application developers who write such statements.

for_clause

The for_clause lets you specify whether an entire table or index, or just

particular columns, will be analyzed. The following clauses apply only to the

ANALYZE TABLE version of this statement:

See Also: Oracle8i Performance Guide and Reference for information

on how these statistics are used

FOR TABLE Specify FOR TABLE to restrict the statistics collected to only table

statistics rather than table and column statistics.

FOR COLUMNS Specify FOR COLUMNS to restrict the statistics collected to only

column statistics for the specified columns and scalar object

attributes, rather than for all columns and attributes; attribute
specifies the qualified column name of an item in an object.

FOR ALL
COLUMNS

Specify FOR ALL COLUMNS to collect column statistics for all

columns and scalar object attributes.

FOR ALL
INDEXED
COLUMNS

Specify FOR ALL INDEXED COLUMNS to collect column statistics

for all indexed columns in the table.

Column statistics can be based on the entire column or can use a

histogram by specifying SIZE integer (see below).

Oracle collects the following column statistics:

■ Number of distinct values in the column as a whole

■ Maximum and minimum values in each band

See Also: Oracle8i Performance Guide and Reference and

"Histogram Examples" on page 8-107 for more information on

histograms
SQL Statements: ALTER TABLE to constraint_clause 8-101

ANALYZE
Column statistics appear in the data dictionary views USER_TAB_
COLUMNS, ALL_TAB_COLUMNS, and DBA_TAB_COLUMNS.

Histograms appear in the data dictionary views USER_TAB_
HISTOGRAMS, DBA_TAB_HISTOGRAMS, and ALL_TAB_
HISTOGRAMS; USER_PART_HISTOGRAMS, DBA_PART_
HISTOGRAMS, and ALL_PART_HISTOGRAMS; and USER_
SUBPART_HISTOGRAMS, DBA_SUBPART_HISTOGRAMS, and ALL_
SUBPART_HISTOGRAMS.

Note: The MAXVALUE and MINVALUE columns of USER_,
DBA_, and ALL_TAB_COLUMNS have a length of 32 bytes. If

you analyze columns with a length >32 bytes, and if the

columns are padded with leading blanks, Oracle may take

into account only the leading blanks and return unexpected

statistics.

If a user-defined statistics type has been associated with any

columns, the for_clause collects user-defined statistics using that

statistics type. If no statistics type is associated with a column,

Oracle checks to see if any statistics type has been associated with

the type of the column, and uses that statistics type. If no statistics

type has been associated with either the column or its user-

defined type, no user-defined statistics are collected. User-defined

column statistics appear in the STATISTICS column of the data

dictionary views USER_USTATS, ALL_USTATS, and DBA_
USTATS.

If you want to collect statistics on both the table as a whole and on

one or more columns, be sure to generate the statistics for the

table first, and then for the columns. Otherwise, the table-only

ANALYZE will overwrite the histograms generated by the column

ANALYZE. For example, issue the following statements:

ANALYZE TABLE emp ESTIMATE STATISTICS;
ANALYZE TABLE emp ESTIMATE STATISTICS
 FOR ALL COLUMNS;

FOR ALL
INDEXES

Specify FOR ALL INDEXES if you want all

indexes associated with the table to be analyzed.
8-102 SQL Reference

ANALYZE
ESTIMATE STATISTICS
ESTIMATE STATISTICS instructs Oracle to estimate statistics about the analyzed

object and stores them in the data dictionary.

Both computed and estimated statistics are used by the Oracle optimizer to choose

the execution plan for SQL statements that access analyzed objects. These statistics

may also be useful to application developers who write such statements.

FOR ALL LOCAL
INDEXES

Specify FOR ALL LOCAL INDEXES if you want

all local index partitions to be analyzed. You

must specify the keyword LOCAL if the

PARTITION clause and INDEX are specified.

SIZE integer Specify the maximum number of buckets in the

histogram. The default value is 75, minimum

value is 1, and maximum value is 254.

Note: Oracle does not create a histogram

with more buckets than the number of rows

in the sample. Also, if the sample contains

any values that are very repetitious, Oracle

creates the specified number of buckets, but

the value indicated by the NUM_BUCKETS
column of the ALL_, DBA_, and USER_TAB_
COLUMNS views may be smaller because of

an internal compression algorithm.

See Also: Oracle8i Performance Guide and Reference for information

on how these statistics are used

for_clause See the description under COMPUTE STATISTICS on page 8-101

SAMPLE
integer

Specify the amount of data from the analyzed object Oracle

should sample to estimate statistics. If you omit this parameter,

Oracle samples 1064 rows.

The default sample value is adequate for tables up to a few

thousand rows. If your tables are larger, specify a higher value for

SAMPLE. If you specify more than half of the data, Oracle reads all

the data and computes the statistics.
SQL Statements: ALTER TABLE to constraint_clause 8-103

ANALYZE
DELETE STATISTICS
Specify DELETE STATISTICS to delete any statistics about the analyzed object that

are currently stored in the data dictionary. Use this statement when you no longer

want Oracle to use the statistics.

When you use this clause on a table, Oracle also automatically removes statistics for

all the table’s indexes. When you use this clause on a cluster, Oracle also

automatically removes statistics for all the cluster’s tables and all their indexes,

including the cluster index.

If user-defined column or index statistics were collected for an object, Oracle also

removes the user-defined statistics by invoking the statistics deletion function

specified in the statistics type that was used to collect the statistics.

VALIDATE REF UPDATE
Specify VALIDATE REF UPDATE to validate the REFs in the specified table, checks

the rowid portion in each REF, compares it with the true rowid, and corrects, if

necessary. You can use this clause only when analyzing a table.

VALIDATE STRUCTURE
Specify VALIDATE STRUCTURE to validate the structure of the analyzed object. The

statistics collected by this clause are not used by the Oracle optimizer, as are

■ ROWS causes Oracle to sample integer rows of the table or

cluster or integer entries from the index. The integer must be at

least 1.

■ PERCENT causes Oracle to sample integer percent of the

rows from the table or cluster or integer percent of the

index entries. The integer can range from 1 to 99.

SET DANGLING
TO NULL

SET DANGLING TO NULL sets to NULL any REFs (whether or not

scoped) in the specified table that are found to point to an invalid

or nonexistent object.

Note: If the owner of the table does not have SELECT object

privilege on the referenced objects, Oracle will consider them

invalid and set them to NULL. Subsequently these REFs will

not be available in a query, even if it is issued by a user with

appropriate privileges on the objects.
8-104 SQL Reference

ANALYZE
statistics collected by the COMPUTE STATISTICS and ESTIMATE STATISTICS
clauses.

■ For a table, Oracle verifies the integrity of each of the table’s data blocks and

rows.

■ For a cluster, Oracle automatically validates the structure of the cluster’s tables.

■ For a partitioned table, Oracle also verifies that each row belongs to the correct

partition. If a row does not collate correctly, its rowid is inserted into the

INVALID_ROWS table.

■ For a temporary table, Oracle validates the structure of the table and its indexes

during the current session.

■ For an index, Oracle verifies the integrity of each data block in the index and

checks for block corruption. This clause does not confirm that each row in the

table has an index entry or that each index entry points to a row in the table.

You can perform these operations by validating the structure of the table with

the CASCADE clause (described below).

Oracle stores statistics about the index in the data dictionary views INDEX_STATS
and INDEX_HISTOGRAM.

Validating the structure of an object prevents SELECT, INSERT, UPDATE, and

DELETE statements from concurrently accessing the object. Therefore, do not use

this clause on the tables, clusters, and indexes of your production applications

during periods of high database activity.

If Oracle encounters corruption in the structure of the object, an error message is

returned to you. In this case, drop and re-create the object.

See Also: Oracle8i Reference for information on these views

INTO table Specify a table into which Oracle lists the rowids of the partitions

whose rows do not collate correctly. If you omit schema , Oracle

assumes the list is in your own schema. If you omit this clause

altogether, Oracle assumes that the table is named INVALID_
ROWS. The SQL script used to create this table is UTLVALID.SQL .
SQL Statements: ALTER TABLE to constraint_clause 8-105

ANALYZE
LIST CHAINED ROWS
LIST CHAINED ROWS lets you identify migrated and chained rows of the analyzed

table or cluster. You cannot use this clause when analyzing an index.

CASCADE Specify CASCADE if you want Oracle to validate the structure of

the indexes associated with the table or cluster. If you use this

clause when validating a table, Oracle also validates the table’s

indexes. If you use this clause when validating a cluster, Oracle

also validates all the clustered tables’ indexes, including the

cluster index.

If you use this clause to validate an enabled (but previously

disabled) function-based index, validation errors may result. In

this case, you must rebuild the index.

INTO table Specify a table into which Oracle lists the migrated and chained

rows. If you omit schema , Oracle assumes the list table is in your

own schema. If you omit this clause altogether, Oracle assumes

that the table is named CHAINED_ROWS. The list table must be on

your local database.

You can create the CHAINED_ROWS table using one of these

scripts:

■ UTLCHAIN.SQL uses physical rowids. Therefore it can

accommodate rows from conventional tables but not from

index-organized tables. (See the Note that follows.)

■ UTLCHN1.SQL uses universal rowids, so it can accommodate

rows from both conventional and index-organized tables.

If you create your own chained-rows table, it must follow the

format prescribed by one of these two scripts.

See Also: Oracle8i Migration for compatibility issues related to

the use of these scripts
8-106 SQL Reference

ANALYZE
Examples

Analyzing a Cluster Example The following statement estimates statistics for the

cust_history table and all of its indexes:

ANALYZE TABLE cust_history
 ESTIMATE STATISTICS;

Deleting Statistics Example The following statement deletes statistics about the

cust_history table and all its indexes from the data dictionary:

ANALYZE TABLE cust_history
 DELETE STATISTICS;

Histogram Examples The following statement creates a 10-band histogram on the

SAL column of the EMP table:

ANALYZE TABLE emp
 COMPUTE STATISTICS FOR COLUMNS sal SIZE 10;

You can then query the USER_TAB_COLUMNS data dictionary view to retrieve

statistics:

SELECT NUM_DISTINCT, NUM_BUCKETS, SAMPLE_SIZE
 FROM USER_TAB_COLUMNS
 WHERE TABLE_NAME = ’EMP’ AND COLUMN_NAME = ’SAL’;

Note: If you are analyzing index-organized tables based on

primary keys (rather than universal rowids), you must create a

separate chained-rows table for each index-organized table to

accommodate its primary-key storage. Use the SQL scripts

DBMSIOTC.SQL and PRVTIOTC.PLB to define the BUILD_
CHAIN_ROWS_TABLE procedure, and then execute this procedure

to create an IOT_CHAINED_ROWS table for each such index-

organized table.

See Also:

■ The DBMS_IOT package in Oracle8i Supplied PL/SQL Packages
Reference for information on the SQL scripts

■ Oracle8i Performance Guide and Reference for information on

eliminating migrated and chained rows
SQL Statements: ALTER TABLE to constraint_clause 8-107

ANALYZE
NUM_DISTINCT NUM_BUCKETS SAMPLE_SIZE
------------ ----------- -----------
 12 7 14

Even though the ANALYZE statement specified 10 buckets, Oracle created only 7 in

this example. For an explanation, see the note on SIZE integer on page 8-103.

You can also collect histograms for a single partition of a table. The following

statement analyzes the emp table partition p1 :

ANALYZE TABLE emp PARTITION (p1) COMPUTE STATISTICS;

Analyzing an Index Example The following statement validates the structure of

the index parts_index :

ANALYZE INDEX parts_index VALIDATE STRUCTURE;

Analyzing a Table Examples The following statement analyzes the emp table and

all of its indexes:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE;

For a table, the VALIDATE REF UPDATE clause verifies the REFs in the specified

table, checks the rowid portion of each REF, and then compares it with the true

rowid. If the result is an incorrect rowid, the REF is updated so that the rowid

portion is correct.

The following statement validates the REFs in the emp table:

ANALYZE TABLE emp
 VALIDATE REF UPDATE;

Analyzing a Cluster Example The following statement analyzes the order_
custs cluster, all of its tables, and all of their indexes, including the cluster index:

ANALYZE CLUSTER order_custs
 VALIDATE STRUCTURE CASCADE;

Listing Chained Rows Example The following statement collects information

about all the chained rows of the table order_hist :

ANALYZE TABLE order_hist
 LIST CHAINED ROWS INTO cr;
8-108 SQL Reference

ANALYZE
The preceding statement places the information into the table cr . You can then

examine the rows with this query:

SELECT *
 FROM cr;

OWNER_NAME TABLE_NAME CLUSTER_NAME HEAD_ROWID TIMESTAMP
---------- ---------- ------------ ------------------ ---------
SCOTT ORDER_HIST AAAAZzAABAAABrXAAA 15-MAR-96

COMPUTE STATISTICS Example The following statement calculates statistics for a

scalar object attribute:

ANALYZE TABLE emp COMPUTE STATISTICS FOR COLUMNS addr.street;
SQL Statements: ALTER TABLE to constraint_clause 8-109

ASSOCIATE STATISTICS
ASSOCIATE STATISTICS

Purpose
Use the ASSOCIATE STATISTICS statement to associate a statistics type (or default

statistics) containing functions relevant to statistics collection, selectivity, or cost

with one or more columns, standalone functions, packages, types, domain indexes,

or indextypes.

For a listing of all current statistics type associations, refer to the USER_
ASSOCIATIONS table. If you analyze the object with which you are associating

statistics, you can also view the associations in the USER_USTATS table.

Prerequisites
To issue this statement, you must have the appropriate privileges to alter the base

object (table, function, package, type, domain index, or indextype). In addition,

unless you are associating only default statistics, you must have execute privilege

on the statistics type. The statistics type must already have been defined.

Syntax

column_association ::=

See Also: ANALYZE on page 8-96 for information on the order of

precedence with which ANALYZE uses associations

See Also: CREATE TYPE on page 10-80 for information on

defining types

ASSOCIATE STATISTICS WITH
column_association

function_association
;

COLUMNS
schema .

table . column

,

using_clause
8-110 SQL Reference

ASSOCIATE STATISTICS
function_association ::=

using_clause ::=

default_cost_clause ::=

default_selectivity_clause ::=

FUNCTIONS
schema .

function

,

PACKAGES
schema .

package

,

TYPES
schema .

type

,

INDEXES
schema .

index

,

INDEXTYPES
schema .

indextype

,

using_clause

default_cost_clause
, default_selectivity_clause

default_selectivity_clause
, default_cost_clause

USING
schema .

statistics_type

DEFAULT COST (cpu_cost , io_cost , network_cost)

DEFAULT SELECTIVITY default_selectivity
SQL Statements: ALTER TABLE to constraint_clause 8-111

ASSOCIATE STATISTICS
Keywords and Parameters

column_association
Specify one or more table columns. If you do not specify schema , Oracle assumes

the table is in your own schema.

function_association
Specify one or more standalone functions, packages, user-defined datatypes,

domain indexes, or indextypes. If you do not specify schema , Oracle assumes the

object is in your own schema.

■ FUNCTIONS refers only to standalone functions, not to method types or to built-

in functions.

■ TYPES refers only to user-defined types, not to internal SQL datatypes.

Restriction: You cannot specify an object for which you have already defined an

association. You must first disassociate the statistics from this object.

using_clause
Specify the statistics type being associated with columns, functions, packages,

types, domain indexes, or indextypes. The statistics_type must already have

been created.

default_cost_clause
Specify default costs for standalone functions, packages, types, domain indexes, or

indextypes. If you specify this clause, you must include one number each for CPU

cost, I/O cost, and network cost, in that order. Each cost is for a single execution of

the function or method or for a single domain index access. Accepted values are

integers of zero or greater.

default_selectivity_clause
Specify as a percent the default selectivity for predicates with standalone functions,

types, packages, or user-defined operators. The default_selectivity must be a

whole number between 0 and 100. Values outside this range are ignored.

Restriction: You cannot specify DEFAULT SELECTIVITY for domain indexes or

indextypes.

See Also: DISASSOCIATE STATISTICS on page 10-123
8-112 SQL Reference

ASSOCIATE STATISTICS
Examples

Standalone Function Example This statement creates an association for a

standalone function FN and causes the optimizer to call the appropriate cost

function (if present) in the statistics type stat_fn .

ASSOCIATE STATISTICS WITH FUNCTIONS fn USING stat_fn;

Default Cost Example This statement specifies that using the domain index t_a to

implement a given predicate always has a CPU cost of 100, I/O of 5, and network

cost of 0.

ASSOCIATE STATISTICS WITH INDEXES t_a DEFAULT COST (100,5,0);

The optimizer will simply use these default costs instead of calling a cost function.
SQL Statements: ALTER TABLE to constraint_clause 8-113

AUDIT
AUDIT

Purpose
Use the AUDIT statement to:

■ Track the occurrence of SQL statements in subsequent user sessions. You can

track the occurrence of a specific SQL statement or of all SQL statements

authorized by a particular system privilege. Auditing operations on SQL

statements apply only to subsequent sessions, not to current sessions.

■ Track operations on a specific schema object. Auditing operations on schema

objects apply to current sessions as well as to subsequent sessions.

Prerequisites
To audit occurrences of a SQL statement, you must have AUDIT SYSTEM system

privilege.

To audit operations on a schema object, the object you choose for auditing must be

in your own schema or you must have AUDIT ANY system privilege. In addition, if

the object you choose for auditing is a directory object, even if you created it, you

must have AUDIT ANY system privilege.

To collect auditing results, you must set the initialization parameter AUDIT_TRAIL
to DB. You can specify auditing options regardless of whether auditing is enabled.

However, Oracle does not generate audit records until you enable auditing.

See Also: NOAUDIT on page 11-66 for information on disabling

auditing of SQL statement

See Also: Oracle8i Reference for information on the AUDIT_TRAIL
parameter
8-114 SQL Reference

AUDIT
Syntax

sql_statement_clause ::=

auditing_by_clause ::=

schema_object_clause ::=

AUDIT
sql_statement_clause

schema_object_clause

BY
SESSION

ACCESS WHENEVER
NOT

SUCCESSFUL
;

statement_option

ALL

,

system_privilege

ALL PRIVILEGES

,
auditing_by_clause

BY

proxy

, ON BEHALF OF
user

,

ANY

user

,

object_option

,

ALL
auditing_on_clause
SQL Statements: ALTER TABLE to constraint_clause 8-115

AUDIT
auditing_on_clause ::=

Keywords and Parameters

sql_statement_clause

statement_
option

Specify a statement option to audit specific SQL statements.

See Also: Table 8–1 on page 8-120 and Table 8–2 on page 8-122

for a list of these statement options and the SQL statements

they audit

For each audited operation, Oracle produces an audit record

containing this information:

■ The user performing the operation

■ The type of operation

■ The object involved in the operation

■ The date and time of the operation

Oracle writes audit records to the audit trail, which is a database

table containing audit records. You can review database activity

by examining the audit trail through data dictionary views.

See Also: Oracle8i Reference for information on these views

system_
privilege

Specify a system privilege to audit SQL statements that are

authorized by the specified system privilege.

See Also: Table 11–1, " System Privileges" for a list of all

system privileges and the SQL statements that they authorize

ON

schema .
object

DIRECTORY directory_name

DEFAULT
8-116 SQL Reference

AUDIT
Rather than specifying many individual system privileges, you

can specify the roles CONNECT, RESOURCE, and DBA. Doing so is

equivalent to auditing all of the system privileges granted to those

roles.

See Also: GRANT on page 11-31 for more information on

these roles

Oracle also provides two shortcuts for specifying groups of

system privileges and statement options at once:

ALL Specify ALL to audit all statements options

shown in Table 8–1 but not the additional

statement options shown in Table 8–2.

ALL
PRIVILEGES

Specify ALL PRIVILEGES to audit system

privileges.

Note: Oracle Corporation recommends that you specify

individual system privileges and statement options for

auditing rather than roles or shortcuts. The specific system

privileges and statement options encompassed by roles and

shortcuts change from one release to the next and may not be

supported in future versions of Oracle.

auditing_by_
clause

Specify the auditing_by_clause to audit only those SQL

statements issued by particular users. If you omit this clause,

Oracle audits all users’ statements.

BYuser Use this clause to restrict auditing to only SQL

statements issued by the specified users.

BYproxy Use this clause to restrict auditing to only SQL

statements issued by the specified proxies.

See Also: Oracle8i Concepts for more

information on proxies and their use of the

database

ON BEHALF OF ■ user indicates auditing of statements

executed on behalf of a particular user.

■ ANY indicates auditing of statements

executed on behalf of any user.
SQL Statements: ALTER TABLE to constraint_clause 8-117

AUDIT
schema_object_clause

object_
option

Specify the particular operation for auditing. Table 8–3 on

page 8-124 shows each object option and the types of objects to

which it applies. The name of each object option specifies a SQL

statement to be audited. For example, if you choose to audit a

table with the ALTER option, Oracle audits all ALTER TABLE
statements issued against the table. If you choose to audit a

sequence with the SELECT option, Oracle audits all statements

that use any of the sequence’s values.

ALL Specify ALL as a shortcut equivalent to specifying all object

options applicable for the type of object.

auditing_on_
clause

The auditing_on_clause lets you specify the particular

schema object to be audited.

schema Specify the schema containing the object chosen

for auditing. If you omit schema , Oracle

assumes the object is in your own schema.

object Specify the name of the object to be audited. The

object must be a table, view, sequence, stored

procedure, function, package, materialized view,

or library.

You can also specify a synonym for a table, view,

sequence, procedure, stored function, package,

or materialized view.

ON DEFAULT Specify ON DEFAULT to establish the specified

object options as default object options for

subsequently created objects. Once you have

established these default auditing options, any

subsequently created object is automatically

audited with those options. The default auditing

options for a view are always the union of the

auditing options for the view’s base tables. You

can see the current default auditing options by

querying the ALL_DEF_AUDIT_OPTS data

dictionary view.
8-118 SQL Reference

AUDIT
If you change the default auditing options, the

auditing options for previously created objects

remain the same. You can change the auditing

options for an existing object only by specifying

the object in the ON clause of the AUDIT
statement.

ON DIRECTORY
directory_
name

The ON DIRECTORY clause lets you specify the

name of a directory chosen for auditing.

BY SESSION Specify BY SESSION if you want Oracle to write a single record

for all SQL statements of the same type issued and operations of

the same type executed on the same schema objects in the same

session.

BY ACCESS Specify BY ACCESS if you want Oracle to write one record for

each audited statement and operation.

If you specify statement options or system privileges that audit

data definition language (DDL) statements, Oracle automatically

audits by access regardless of whether you specify the BY
SESSION clause or BY ACCESS clause.

For statement options and system privileges that audit SQL

statements other than DDL, you can specify either BY SESSIONor

BY ACCESS. BY SESSION is the default.

WHENEVER
[NOT]
SUCCESSFUL

Specify WHENEVER SUCCESSFUL to audit only SQL statements

and operations that succeed.

Specify WHENEVER NOT SUCCESSFUL to audit only statements

and operations that fail or result in errors.

If you omit this clause, Oracle performs the audit regardless of

success or failure.
SQL Statements: ALTER TABLE to constraint_clause 8-119

AUDIT
Tables of Auditing Options

Table 8–1 Statement Auditing Options for Database Objects

Statement Option SQL Statements and Operations

CLUSTER CREATE CLUSTER

AUDIT CLUSTER

DROP CLUSTER

TRUNCATE CLUSTER

CONTEXT CREATE CONTEXT

DROP CONTEXT

DATABASE LINK CREATE DATABASE LINK

DROP DATABASE LINK

DIMENSION CREATE DIMENSION

ALTER DIMENSION

DROP DIMENSION

DIRECTORY CREATE DIRECTORY

DROP DIRECTORY

INDEX CREATE INDEX

ALTER INDEX

DROP INDEX

NOT EXISTS All SQL statements that fail because a specified object does not
exist.

PROCEDUREa CREATE FUNCTION

CREATE LIBRARY

CREATE PACKAGE

CREATE PACKAGE BODY

CREATE PROCEDURE

DROP FUNCTION

DROP LIBRARY

DROP PACKAGE

DROP PROCEDURE
8-120 SQL Reference

AUDIT
PROFILE CREATE PROFILE

ALTER PROFILE

DROP PROFILE

PUBLIC DATABASE
LINK

CREATE PUBLIC DATABASE LINK

DROP PUBLIC DATABASE LINK

PUBLIC SYNONYM CREATE PUBLIC SYNONYM

DROP PUBLIC SYNONYM

ROLE CREATE ROLE

ALTER ROLE

DROP ROLE

SET ROLE

ROLLBACK
STATEMENT

CREATE ROLLBACK SEGMENT

ALTER ROLLBACK SEGMENT

DROP ROLLBACK SEGMENT

SEQUENCE CREATE SEQUENCE

DROP SEQUENCE

SESSION Logons

SYNONYM CREATE SYNONYM

DROP SYNONYM

SYSTEM AUDIT AUDIT sql_statements

NOAUDIT sql_statements

SYSTEM GRANT GRANTsystem_privileges_and_roles

REVOKEsystem_privileges_and_roles

TABLE CREATE TABLE

DROP TABLE

TRUNCATE TABLE

TABLESPACE CREATE TABLESPACE

ALTER TABLESPACE

DROP TABLESPACE

Table 8–1 (Cont.) Statement Auditing Options for Database Objects

Statement Option SQL Statements and Operations
SQL Statements: ALTER TABLE to constraint_clause 8-121

AUDIT
TRIGGER CREATE TRIGGER

ALTER TRIGGER

with ENABLE and DISABLE clauses

DROP TRIGGER

ALTER TABLE

with ENABLE ALL TRIGGERS clause

and DISABLE ALL TRIGGERS clause

TYPE CREATE TYPE

CREATE TYPE BODY

ALTER TYPE

DROP TYPE

DROP TYPE BODY

USER CREATE USER

ALTER USER

DROP USER

VIEW CREATE VIEW

DROP VIEW

aJava schema objects (sources, classes, and resources) are considered the same as procedures
for purposes of auditing SQL statements.

Table 8–2 Additional Statement Auditing Options for SQL Statements

Statement Option SQL Statements and Operations

ALTER SEQUENCE ALTER SEQUENCE

ALTER TABLE ALTER TABLE

COMMENT TABLE COMMENT ON TABLEtable, view, materialized
view

COMMENT ON COLUMNtable.column,
view.column, materialized view.column

DELETE TABLE DELETE FROMtable, view

Table 8–1 (Cont.) Statement Auditing Options for Database Objects

Statement Option SQL Statements and Operations
8-122 SQL Reference

AUDIT
EXECUTE PROCEDURE CALL

Execution of any procedure or function or access to any
variable, library, or cursor inside a package.

GRANT DIRECTORY GRANT privilege ON directory

REVOKE privilege ON directory

GRANT PROCEDURE GRANT privilege ON procedure, function,
package

REVOKE privilege ON procedure, function,
package

GRANT SEQUENCE GRANT privilege ON sequence

REVOKE privilege ON sequence

GRANT TABLE GRANT privilege ON table, view,
materialized view.

REVOKE privilege ON table, view,
materialized view

GRANT TYPE GRANT privilege ON TYPE

REVOKE privilege ON TYPE

INSERT TABLE INSERT INTO table, view

LOCK TABLE LOCK TABLE table, view

SELECT SEQUENCE Any statement containing sequence.CURRVAL
or sequence.NEXTVAL

SELECT TABLE SELECT FROM table, view, materialized view

UPDATE TABLE UPDATE table, view

Table 8–2 (Cont.) Additional Statement Auditing Options for SQL Statements

Statement Option SQL Statements and Operations
SQL Statements: ALTER TABLE to constraint_clause 8-123

AUDIT
Examples

Audit SQL Statements Relating to Roles Example To choose auditing for every

SQL statement that creates, alters, drops, or sets a role, regardless of whether the

statement completes successfully, issue the following statement:

AUDIT ROLE;

To choose auditing for every statement that successfully creates, alters, drops, or

sets a role, issue the following statement:

AUDIT ROLE
 WHENEVER SUCCESSFUL;

Table 8–3 Object Auditing Options

Object
Option Table View Sequence

Procedure

Function

Package a

Material-
ized View

/ Snap-
shot Directory Library

Object

Type Context

ALTER X X X X

AUDIT X X X X X X X X

COMMENT X X X

DELETE X X X

EXECUTE X X

GRANT X X X X X X X X

INDEX X X

INSERT X X X

LOCK X X X

READ X

RENAME X X X X

SELECT X X X X

UPDATE X X X

a Java schema objects (sources, classes, and resources) are considered the same as procedures, functions, and
packages for purposes of auditing options.
8-124 SQL Reference

AUDIT
To choose auditing for every CREATE ROLE, ALTER ROLE, DROP ROLE, or SET ROLE
statement that results in an Oracle error, issue the following statement:

AUDIT ROLE
 WHENEVER NOT SUCCESSFUL;

Audit Query and Update SQL Statements Example To choose auditing for any

statement that queries or updates any table, issue the following statement:

AUDIT SELECT TABLE, UPDATE TABLE;

To choose auditing for statements issued by the users scott and blake that query

or update a table or view, issue the following statement:

AUDIT SELECT TABLE, UPDATE TABLE
 BY scott, blake;

Audit Deletions Example To choose auditing for statements issued using the

DELETE ANY TABLE system privilege, issue the following statement:

AUDIT DELETE ANY TABLE;

Audit Statements Relating to Directories Example To choose auditing for

statements issued using the CREATE ANY DIRECTORY system privilege, issue the

following statement:

AUDIT CREATE ANY DIRECTORY;

To choose auditing for CREATE DIRECTORY (and DROP DIRECTORY) statements

that do not use the CREATE ANY DIRECTORY system privilege, issue the following

statement:

AUDIT DIRECTORY;

Audit Queries on a Table Example To choose auditing for every SQL statement

that queries the emp table in the schema scott , issue the following statement:

AUDIT SELECT
 ON scott.emp;

To choose auditing for every statement that successfully queries the emptable in the

schema scott , issue the following statement:

AUDIT SELECT
 ON scott.emp
 WHENEVER SUCCESSFUL;
SQL Statements: ALTER TABLE to constraint_clause 8-125

AUDIT
To choose auditing for every statement that queries the emp table in the schema

scott and results in an Oracle error, issue the following statement:

AUDIT SELECT
 ON scott.emp
 WHENEVER NOT SUCCESSFUL;

Audit Inserts and Updates on a Table Example To choose auditing for every

statement that inserts or updates a row in the dept table in the schema blake ,

issue the following statement:

AUDIT INSERT, UPDATE
 ON blake.dept;

Audit All Operations on a Sequence Example To choose auditing for every

statement that performs any operation on the order sequence in the schema

adams, issue the following statement:

AUDIT ALL
 ON adams.order;

The above statement uses the ALL shortcut to choose auditing for the following

statements that operate on the sequence:

■ ALTER SEQUENCE

■ AUDIT

■ GRANT

■ any statement that accesses the sequence’s values using the pseudocolumns

CURRVAL or NEXTVAL

Audit Read Operations on a Directory Example To choose auditing for every

statement that reads files from the bfile_dir1 directory, issue the following

statement:

AUDIT READ ON DIRECTORY bfile_dir1;

Set Default Auditing Options Example The following statement specifies default

auditing options for objects created in the future:

AUDIT ALTER, GRANT, INSERT, UPDATE, DELETE
 ON DEFAULT;

Any objects created later are automatically audited with the specified options that

apply to them, provided that auditing has been enabled:
8-126 SQL Reference

AUDIT
■ If you create a table, Oracle automatically audits any ALTER, GRANT, INSERT,

UPDATE, or DELETE statements issued against the table.

■ If you create a view, Oracle automatically audits any GRANT, INSERT, UPDATE,
or DELETE statements issued against the view.

■ If you create a sequence, Oracle automatically audits any ALTER or GRANT
statements issued against the sequence.

■ If you create a procedure, package, or function, Oracle automatically audits any

ALTER or GRANT statements issued against it.
SQL Statements: ALTER TABLE to constraint_clause 8-127

CALL
CALL

Purpose
Use the CALL statement to execute a routine (a standalone procedure or function, or

a procedure or function defined within a type or package) from within SQL.

Prerequisites
You must have EXECUTE privilege on the standalone routine or on the type or pack-

age in which the routine is defined.

Syntax

Keywords and Parameters

schema
Specify the schema in which the standalone routine (or the package or type

containing the routine) resides. If you do not specify schema , Oracle assumes the

routine is in your own schema.

type or package
Specify the type or package in which the routine is defined.

See Also: PL/SQL User’s Guide and Reference for information on

creating such routine

CALL
schema .

type .

package .
function

procedure

method

@ dblink_name

(expr

,

)
INTO : host_variable

INDICATOR
: indicator_variable

;

8-128 SQL Reference

CALL
function | procedure | method
Specify the name of the function or procedure being called, or a synonym that

translates to a function or procedure.

When you call a type’s member function or procedure, if the first argument (SELF)

is a null IN OUT argument, Oracle returns an error. If SELF is a null IN argument,

Oracle returns null. In both cases, the function or procedure is not invoked.

Restriction: If the routine is a function, the INTO clause is mandatory.

@dblink
In a distributed database system, specify the name of the database containing the

standalone routine (or the package or function containing the routine). If you omit

dblink , Oracle looks in your local database.

expr
Specify one or more arguments to the routine.

Restrictions:

■ An expr cannot be a pseudocolumn or either of the object reference functions

VALUE or REF.

■ Any expr that is an IN OUTor OUTargument of the routine must correspond to a

host variable expression.

INTO :host_variable
The INTO clause applies only to calls to functions. Specify which host variable will

store the return value of the function.

:indicator_variable
Specify the value or condition of the host variable.

Example

Calling a Procedure Example The following statement creates a procedure

updatesalary , and then calls the procedure, which updates the specified

employee ID with a new salary.

See Also: Pro*C/C++ Precompiler Programmer’s Guide for more

information on host variables and indicator variables
SQL Statements: ALTER TABLE to constraint_clause 8-129

CALL
CREATE OR REPLACE PROCEDURE updateSalary
 (id NUMBER, newsalary NUMBER) IS
 BEGIN
 UPDATE emp SET sal=newsalary WHERE empno=id;
 END;

CALL updateSalary(1404, 50000);
8-130 SQL Reference

COMMENT
COMMENT

Purpose
Use the COMMENT statement to add a comment about a table, view, snapshot, or

column into the data dictionary.

You can view the comments on a particular table or column by querying the data

dictionary views USER_TAB_COMMENTS, DBA_TAB_COMMENTS, or ALL_TAB_
COMMENTS or USER_COL_COMMENTS, DBA_COL_COMMENTS, or ALL_COL_
COMMENTS.

To drop a comment from the database, set it to the empty string ’ ’.

Prerequisites
The table, view, or snapshot must be in your own schema or you must have

COMMENT ANY TABLE system privilege.

Syntax

See Also:

■ COMMENT on page 8-131

■ Oracle8i Reference for information on the data dictionary views

COMMENT ON

TABLE
schema .

table

view

snapshot

COLUMN
schema .

table

view
.

snapshot .

column

IS ’ text ’ ;
SQL Statements: ALTER TABLE to constraint_clause 8-131

COMMENT
Keywords and Parameters

TABLE
Specify the schema and name of the table, view, or materialized view to be

commented. If you omit schema , Oracle assumes the table, view, or snapshot is in

your own schema.

COLUMN
Specify the name of the column of a table, view, or snapshot to be commented. If

you omit schema , Oracle assumes the table, view, or snapshot is in your own

schema.

IS ’text ’
Specify the text of the comment.

Example

COMMENT Example To insert an explanatory remark on the notes column of the

shipping table, you might issue the following statement:

COMMENT ON COLUMN shipping.notes
 IS ’Special packing or shipping instructions’;

To drop this comment from the database, issue the following statement:

COMMENT ON COLUMN shipping.notes IS ’ ’;

See Also: "Text" on page 2-33 for a syntax description of ’text’
8-132 SQL Reference

COMMIT
COMMIT

Purpose
Use the COMMIT statement to end your current transaction and make permanent all

changes performed in the transaction. A transaction is a sequence of SQL

statements that Oracle treats as a single unit. This statement also erases all

savepoints in the transaction and releases the transaction’s locks.

You can also use this statement to

■ Commit an in-doubt distributed transaction manually

■ Terminate a read-only transaction begun by a SET TRANSACTION statement.

Oracle Corporation recommends that you explicitly end every transaction in your

application programs with a COMMIT or ROLLBACK statement, including the last

transaction, before disconnecting from Oracle. If you do not explicitly commit the

transaction and the program terminates abnormally, the last uncommitted

transaction is automatically rolled back.

A normal exit from most Oracle utilities and tools causes the current transaction to

be committed. A normal exit from an Oracle precompiler program does not commit

the transaction and relies on Oracle to roll back the current transaction.

Prerequisites
You need no privileges to commit your current transaction.

To manually commit a distributed in-doubt transaction that you originally

committed, you must have FORCE TRANSACTION system privilege. To manually

commit a distributed in-doubt transaction that was originally committed by another

user, you must have FORCE ANY TRANSACTION system privilege.

Note: Oracle issues an implicit COMMIT before and after any data

definition language (DDL) statement.

See Also:

■ Oracle8i Concepts for more information on transactions

■ SET TRANSACTION on page 11-125 for more information on

specifying characteristics of a transaction
SQL Statements: ALTER TABLE to constraint_clause 8-133

COMMIT
Syntax

Keywords and Parameters

WORK
The WORKkeyword is supported for compliance with standard SQL. The statements

COMMIT and COMMIT WORK are equivalent.

COMMENT ’text ’
Specify a comment to be associated with the current transaction. The ’text ’ is a

quoted literal of up to 50 characters that Oracle stores in the data dictionary view

DBA_2PC_PENDING along with the transaction ID if the transaction becomes in-

doubt.

FORCE ’text ’
In a distributed database system, the FORCE clause lets you manually commit an in-

doubt distributed transaction. The transaction is identified by the ’text ’ containing

its local or global transaction ID. To find the IDs of such transactions, query the data

dictionary view DBA_2PC_PENDING. You can use integer to specifically assign

the transaction a system change number (SCN). If you omit integer , the

transaction is committed using the current SCN.

Restriction: COMMIT statements using the FORCE clause are not supported in PL/

SQL.

See Also: COMMENT on page 8-131 for more information on

adding comments to SQL statements

Note: A COMMITstatement with a FORCEclause commits only the

specified transaction. Such a statement does not affect your current

transaction.

COMMIT
WORK

COMMENT ’ text ’

FORCE ’ text ’
, integer

;

8-134 SQL Reference

COMMIT
Examples

Committing an Insert Example This statement inserts a row into the dept table

and commits this change:

INSERT INTO dept VALUES (50, ’MARKETING’, ’TAMPA’);
COMMIT WORK;

COMMIT and COMMENT Example The following statement commits the current

transaction and associates a comment with it:

COMMIT
 COMMENT ’In-doubt transaction Code 36, Call (415) 555-2637’;

If a network or machine failure prevents this distributed transaction from

committing properly, Oracle stores the comment in the data dictionary along with

the transaction ID. The comment indicates the part of the application in which the

failure occurred and provides information for contacting the administrator of the

database where the transaction was committed.

Forcing an In-Doubt Transaction Example The following statement manually

commits an in-doubt distributed transaction:

COMMIT FORCE ’22.57.53’;

See Also: Oracle8i Distributed Database Systems for more

information on these topics
SQL Statements: ALTER TABLE to constraint_clause 8-135

constraint_clause
constraint_clause

Purpose
Use the constraint_clause in a CREATE TABLE or ALTER TABLE statement to define

an integrity constraint. An integrity constraint is a rule that restricts the values for

one or more columns in a table or an index-organized table.

Prerequisites
Constraint clauses can appear in either CREATE TABLEor ALTER TABLEstatements.

To define an integrity constraint, you must have the privileges necessary to issue

one of these statements.

To create a referential integrity constraint, the parent table must be in your own

schema, or you must have the REFERENCES privilege on the columns of the

referenced key in the parent table.

Syntax
table_constraint ::=

Note: Oracle does not support constraints on columns or

attributes whose type is an object, nested table, varray, REF, or LOB.

The only exception is that NOT NULL constraints are supported for

columns or attributes whose type is object, VARRAY, REF, or LOB.

See Also: CREATE TABLE on page 10-7 and ALTER TABLE on

page 8-2

CONSTRAINT constraint

UNIQUE

PRIMARY KEY
(column

,

)

foreign_key_clause

CHECK (condition)

constraint_state
8-136 SQL Reference

constraint_clause
column_constraint ::=

table_ref_constraint::=

column_ref_constraint::=

CONSTRAINT constraint

NOT
NULL

UNIQUE

PRIMARY KEY

REFERENCES
schema .

table
(column)

ON DELETE
CASCADE

SET NULL

CHECK (condition)

constraint_state

SCOPE FOR (
ref_column

ref_attribute
) IS

schema .
scope_table_name

REF (
ref_column

ref_attribute
) WITH ROWID

CONSTRAINT constraint_name
FOREIGN KEY (

ref_column

ref_attribute
) references_clause

SCOPE IS
schema .

scope_table_name

WITH ROWID

CONSTRAINT constraint_name
references_clause
SQL Statements: ALTER TABLE to constraint_clause 8-137

constraint_clause
references_clause ::=

constraint_state ::=

REFERENCES
schema .

object_table

ON DELETE
CASCADE

SET NULL constraint_state

NOT
DEFERRABLE

INITIALLY
IMMEDIATE

DEFERRED

INITIALLY
IMMEDIATE

DEFERRED
NOT

DEFERRABLE

RELY

NORELY using_index_clause

ENABLE

DISABLE

VALIDATE

NOVALIDATE EXCEPTIONS INTO
schema .

table
8-138 SQL Reference

constraint_clause
using_index_clause ::=

global_index_clause ::=

global_partition_clause ::=

USING INDEX

LOCAL

global_index_clause

PCTFREE integer

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

storage_clause

NOSORT

LOGGING

NOLOGGING

GLOBAL PARTITION BY RANGE (column_list) (global_partition_clause

,

)

PARTITION
partition

VALUES LESS THAN (value_list)

physical_attributes_clause

TABLESPACE tablespace

LOGGING

NOLOGGING
SQL Statements: ALTER TABLE to constraint_clause 8-139

constraint_clause
foreign_key_clause ::=

physical_attributes_clause ::=

storage_clause : See the storage_clause on page 11-129.

Keywords and Parameters

table_constraint
The table_constraint syntax is part of the table definition. An integrity

constraint defined with this syntax can impose rules on any columns in the table.

The table_constraint syntax can appear in a CREATE TABLE or ALTER TABLE
statement. This syntax can define any type of integrity constraint except a NOT NULL
constraint.

column_constraint
The column_constraint syntax is part of a column definition. Usually, an

integrity constraint defined with this syntax can impose rules only on the column in

which it is defined.

■ The column_constraint syntax that appears in a CREATE TABLE or ALTER
TABLE ADD statement can define any type of integrity constraint.

FOREIGN KEY (column

,

) REFERENCES
schema .

table
(column

,

)
ON DELETE

CASCADE

SET NULL

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause
8-140 SQL Reference

constraint_clause
■ Column_constraint syntax that appears in an ALTER TABLE MODIFY
column_options statement can only define or remove a NOT NULL constraint.

Restriction: The only column constraint allowed on a VARRAYcolumn is NOT NULL.
However, you can specify any type of column constraint on the scalar attributes of a

NESTED TABLE column.

CONSTRAINT
Specify a name for the constraint. Oracle stores this name in the data dictionary

along with the definition of the integrity constraint. If you omit this identifier,

Oracle generates a name with the form SYS_Cn.

If you do not specify NULL or NOT NULL in a column definition, NULL is the default.

Restriction: You cannot create a constraint on columns or attributes whose type is

user-defined object, LOB, or REF, with the following exceptions:

■ You can specify a NOT NULL constraint on columns or attributes of user-defined

object type, varray, and LOB.

■ You can specify NOT NULLand referential integrity constraints on a column of

type REF.

UNIQUE
Specify UNIQUE to designate a column or combination of columns as a unique key.

To satisfy a UNIQUEconstraint, no two rows in the table can have the same value for

the unique key. However, the unique key made up of a single column can contain

nulls.

A composite unique key is made up of a combination of columns. To define a

composite unique key, you must use table_constraint syntax rather than

column_constraint syntax. Any row that contains nulls in all key columns

automatically satisfies the constraint. However, two rows that contain nulls for one

or more key columns and the same combination of values for the other key columns

violate the constraint.

Restrictions:

■ For a composite unique key, no two rows in the table can have the same

combination of values in the key columns.

■ A composite unique key cannot have more than 32 columns. The overall size of

the key (in bytes) should not exceed approximately the width of all indexed

columns plus the number of indexed columns.
SQL Statements: ALTER TABLE to constraint_clause 8-141

constraint_clause
■ A unique key column cannot be of datatype LONG or LONG RAW.

■ You cannot designate the same column or combination of columns as both a

unique key and a primary key.

PRIMARY KEY
Specify PRIMARY KEY to designate a column or combination of columns as the

table’s primary key. A composite primary key is made up of a combination of

columns. To define a composite primary key, you must use the table_
constraint syntax rather than the column_constraint syntax.

Restrictions:

■ A table can have only one primary key.

■ None of the columns in the primary key can have datatype LONG, LONG RAW,
VARRAY, NESTED TABLE, OBJECT, LOB, BFILE , or REF.

■ No primary key value can appear in more than one row in the table.

■ No column that is part of the primary key can contain a null.

■ The size of the PRIMARY KEY of an index-organized table cannot exceed one-

half of the database block size or 3800 bytes, whichever is less. (PRIMARY KEYis
required for an index-organized table.)

■ A composite primary key cannot have more than 32 columns. The overall size

of the key (in bytes) should not exceed approximately the width of all indexed

columns plus the number of indexed columns.

■ You cannot designate the same column or combination of columns as both a

primary key and a unique key.

NULL | NOT NULL
Indicate whether a column can contain nulls. You must specify NULLand NOT NULL
with column_constraint syntax, not with table_constraint syntax.

NULL Specify NULL if a column can contain null values. The NULL
keyword does not actually define an integrity constraint. If you do

not specify either NOT NULLor NULL, the column can contain nulls

by default.

NOT NULL Specify NOT NULL if a column cannot contain null values. To

satisfy this constraint, every row in the table must contain a value

for the column.
8-142 SQL Reference

constraint_clause
Restriction: You cannot specify NULL or NOT NULL for an attribute of an object.

Instead, use a CHECK constraint with the IS [NOT] NULL condition.

Referential Integrity Constraints
Referential integrity constraints designate a column or combination of columns as

the foreign key and establish a relationship between that foreign key and a specified

primary or unique key, called the referenced key. The table containing the foreign

key is called the child table, and the table containing the referenced key is called the

parent table. The foreign key and the referenced key can be in the same table. In

this case, the parent and child tables are the same.

■ From the table level, specify referential integrity using the foreign_key_
clause with the table_constraint syntax. This syntax allows you to

specify a composite foreign key, which is made up of a combination of

columns.

■ From the column level, use the REFERENCES clause of the column_
constraint syntax to specify a referential integrity constraint in which the

foreign key is made up of a single column.

You can designate the same column or combination of columns as both a foreign

key and a primary or unique key. You can also designate the same column or

combination of columns as both a foreign key and a cluster key.

You can define multiple foreign keys in a table. Also, a single column can be part of

more than one foreign key.

Restrictions on referential integrity constraints:

■ A foreign key cannot be of type LONG or LONG RAW.

■ The referenced UNIQUE or PRIMARY KEY constraint on the parent table must

already be defined.

■ The child and parent tables must be on the same database. To enable referential

integrity constraints across nodes of a distributed database, you must use

database triggers.

■ You cannot define a referential integrity constraint in a CREATE TABLE
statement that contains an ASsubquery clause. Instead, you must create the

table without the constraint and then add it later with an ALTER TABLE
statement.

See Also: "Attribute-Level Constraints Example" on page 8-154
SQL Statements: ALTER TABLE to constraint_clause 8-143

constraint_clause
foreign_key_clause
The foreign_key_clause lets you designate a column or combination of

columns as the foreign key from the table level. You must use this syntax to define a

composite foreign key.

To satisfy a referential integrity constraint involving composite keys, either the

values of the foreign key columns must match the values of the referenced key

columns in a row in the parent table, or the value of at least one of the columns of

the foreign key must be null.

Restrictions:

■ A composite foreign key cannot have more than 32 columns. The overall size of

the key (in bytes) should not exceed approximately the width of all indexed

columns plus the number of indexed columns.

■ A composite foreign key must refer to a composite unique key or a composite

primary key.

CHECK Constraints
The CHECK clause lets you specify a condition that each row in the table must

satisfy. To satisfy the constraint, each row in the table must make the condition

See Also: Oracle8i Application Developer’s Guide - Fundamentals

REFERENCES The REFERENCES clause lets you designate the current column or

attribute as the foreign key and identifies the parent table and the

column or combination of columns that make up the referenced

key. If you identify only the parent table and omit the column

names, the foreign key automatically references the primary key

of the parent table. The corresponding columns of the referenced

key and the foreign key must match in number and datatypes.

ON DELETE The ON DELETE clause lets you determine how Oracle

automatically maintains referential integrity if you remove a

referenced primary or unique key value. If you omit this clause,

Oracle does not allow you to delete referenced key values in the

parent table that have dependent rows in the child table.

■ Specify CASCADE if you want Oracle to remove dependent

foreign key values.

■ Specify SET NULL if you want Oracle to convert dependent

foreign key values to NULL.
8-144 SQL Reference

constraint_clause
either TRUE or unknown (due to a null). When Oracle evaluates a CHECK constraint

condition for a particular row, any column names in the condition refer to the

column values in that row.

If you create multiple CHECK constraints for a column, design them carefully so

their purposes do not conflict, and do not assume any particular order of evaluation

of the conditions. Oracle does not verify that CHECK conditions are not mutually

exclusive.

Restrictions:

■ The condition of a CHECK constraint can refer to any column in the table, but it

cannot refer to columns of other tables.

■ CHECK constraint conditions cannot contain the following constructs:

■ - Queries to refer to values in other rows

■ - Calls to the functions SYSDATE, UID , USER, or USERENV

■ - The pseudocolumns CURRVAL, NEXTVAL, LEVEL, or ROWNUM

■ - Date constants that are not fully specified

table_ref_constraint and column_ref_constraint
The table_ref and column_ref constraints let you further describe a column of

type REF. The only difference between these clauses is that you specify table_
ref_constraint from the table level, so you must identify the REF column or

attribute you are defining. You specify column_ref_constraint after you have

already identified the REF column or attribute. Both types of constraint let you

specify a SCOPE constraint, a WITH ROWID constraint, or a referential integrity

constraint.

As is the case for regular table and column constraints, you use FOREIGN KEY
syntax for a referential integrity constraint at the table level, and REFERENCES
syntax for a referential integrity constraint at the column level.

If the REF column’s scope table or reference table has a primary-key-based object

identifier, then it is a user-defined REF column.

See Also: "Conditions" on page 5-15 for additional information

and syntax

See Also: Oracle8i Concepts for more information on REFs and

"Referential Integrity Constraints" on page 8-143
SQL Statements: ALTER TABLE to constraint_clause 8-145

constraint_clause
ref_column Specify the name of a REF column of an object or relational table.

ref_
attribute

Specify an embedded REF attribute within an object column of a

relational table.

SCOPE In a table with a REF column, each REF value in the column can

conceivably reference a row in a different object table. The SCOPE
clause restricts the scope of references to a single table, scope_
table_name . The values in the REF column or attribute point to

objects in scope_table_name , in which object instances (of the

same type as the REFcolumn) are stored. You can only specify one

scope table per REF column.

Restrictions:

■ You can add a SCOPE constraint to an existing column only if

the table is empty.

■ You cannot specify SCOPE for the REF elements of a varray

column.

■ You must specify this clause if you specify ASsubquery and

the subquery returns user-defined REFs.

■ The scope_table_name must be in your own schema or

you must have SELECT privileges on scope_table_name
or SELECT ANY TABLE system privileges.

■ You cannot drop a SCOPE table constraint from a REF column.

WITH ROWID Specify WITH ROWID to store the rowid along with the REF value

in ref_column or ref_attribute . Storing a REF value with a

rowid can improve the performance of dereferencing operations,

but will also use more space. Default storage of REF values is

without rowids.

Restrictions:

■ You cannot specify a WITH ROWID constraint for the REF
elements of a varray column.

■ You cannot drop a WITH ROWID constraint from a REF
column.

■ If the REF column or attribute is scoped, then this clause is

ignored and the rowid is not stored with the REF value.
8-146 SQL Reference

constraint_clause
DEFERRABLE | NOT DEFERRABLE
Specify DEFERRABLE to indicate that constraint checking can be deferred until the

end of the transaction by using the SET CONSTRAINT(S) statement.

Specify NOT DEFERRABLE to indicate that this constraint is checked at the end of

each DML statement. If you do not specify either word, then NOT DEFERRABLE is
the default.

references_
clause

The references_clause lets you specify a referential integrity

constraint on the REF column.This clause also implicitly restricts

the scope of the REF column or attribute to the reference table.

If you do not specify CONSTRAINT, Oracle generates a system

name for the constraint.

Restrictions:

■ If you add a referential integrity constraint to an existing REF
column that is scoped, then the referenced table must be the

same as the scope table of the REF column.

■ The system adds a scope constraint when you add a

referential integrity constraint to an existing unscoped REF
column. Therefore, all the restrictions that apply for the

SCOPE constraint also apply in this case.

■ If you later drop the referential integrity constraint, the REF
column will remain scoped to the referenced table.

See Also:

■ SET CONSTRAINT[S] on page 11-120 for information on

checking constraints after each DML statement

■ Oracle8i Administrator’s Guide and Oracle8i Concepts for more

information about deferred constraints

INITIALLY
IMMEDIATE

Specify INITIALLY IMMEDIATE to indicate that at the start of

every transaction, the default is to check this constraint at the end

of every DML statement. If you do not specify INITIALLY ,

INITIALLY IMMEDIATE is the default.
SQL Statements: ALTER TABLE to constraint_clause 8-147

constraint_clause
Restrictions:

■ You cannot defer a NOT DEFERRABLEconstraint with the SET CONSTRAINT(S)
statement.

■ You cannot specify either DEFERRABLE or NOT DEFERRABLE if you are

modifying an existing constraint directly (that is, by specifying the ALTER
TABLE ... MODIFYconstraint statement).

■ You cannot alter a constraint’s deferrability status. You must drop the constraint

and re-create it.

RELY | NORELY
The RELY and NORELY parameters specify whether a constraint in NOVALIDATE
mode is to be taken into account for query rewrite. Specify RELY to activate an

existing constraint in NOVALIDATE mode for query rewrite in an unenforced query

rewrite integrity mode. The constraint is in NOVALIDATE mode, so Oracle does not

enforce it. The default is NORELY.

Unenforced constraints are generally useful only with materialized views and

query rewrite. Depending on the QUERY_REWRITE_INTEGRITY mode (see ALTER

SESSION on page 7-105), query rewrite can use only constraints that are in

VALIDATE mode, or that are in NOVALIDATEmode with the RELYparameter set, to

determine join information.

Restrictions:

■ RELY and NORELY are relevant only if you are modifying an existing constraint

(that is, you have issued the ALTER TABLE . .. MODIFY constraint statement).

■ You cannot set a NOT NULL constraint to RELY.

using_index_clause
The using_index_clause lets you specify parameters for the index Oracle uses

to enable a UNIQUE or PRIMARY KEY constraint. The name of the index is the same

as the name of the constraint.

INITIALLY
DEFERRED

Specify INITIALLY DEFERRED to indicate that this constraint is

DEFERRABLE and that, by default, the constraint is checked only

at the end of each transaction.

See Also: Oracle8i Data Warehousing Guide for more information

on materialized views and query rewrite
8-148 SQL Reference

constraint_clause
You can choose the values of the INITRANS , MAXTRANS, TABLESPACE, STORAGE,
and PCTFREE parameters for the index.

If table is partitioned, you can specify a locally or globally partitioned index for the

unique or primary key constraint.

Restriction: Use this clause only when enabling UNIQUE and PRIMARY KEY
constraints.

NOSORT
Specify NOSORT to indicate that the rows are stored in the database in ascending

order and therefore Oracle does not have to sort the rows when creating the index.

ENABLE
Specify ENABLE if you want the constraint to be applied to all new data in the table.

Before you can enable a referential integrity constraint, its referenced constraint

must be enabled.

■ ENABLE VALIDATE additionally indicates that all old data also complies with

the constraint. An enabled validated constraint guarantees that all data is and

will continue to be valid.

If you place a primary key constraint in ENABLE VALIDATE mode, the

validation process will verify that the primary key columns contain no nulls. To

avoid this overhead, mark each column in the primary key NOT NULL before

enabling the table’s primary key constraint. (For optimal results, do this before

inserting data into the column.)

■ ENABLE NOVALIDATE ensures that all new DML operations on the constrained

data comply with the constraint, but does not ensure that existing data in the

table complies with the constraint.

Enabling a primary key or unique key constraint automatically creates a unique

index to enforce the constraint. This index is dropped if the constraint is

subsequently disabled, causing Oracle to rebuild the index every time the

See Also:

■ CREATE TABLE on page 10-7 for information on these

parameters

■ CREATE INDEX on page 9-52 for a description of LOCAL and

global_index_clause , and for a description of NOSORTand

LOGGING|NOLOGGING in relation to indexes
SQL Statements: ALTER TABLE to constraint_clause 8-149

constraint_clause
constraint is enabled. To avoid this behavior, create new primary key and

unique key constraints initially disabled. Then create nonunique indexes or use

existing nonunique indexes to enforce the constraints.

DISABLE
Specify DISABLE to disable the integrity constraint. If you do not specify this clause

when creating a constraint, Oracle automatically enables the constraint.

■ DISABLE VALIDATE disables the constraint and drops the index on the

constraint, but keeps the constraint valid. This feature is most useful in data

warehousing situations, where the need arises to load into a range-partitioned

table a quantity of data with a distinct range of values in the unique key. In such

situations, the disable validate state enables you to save space by not having an

index. You can then load data from a nonpartitioned table into a partitioned

table using the exchange_partition_clause of the ALTER TABLE
statement or using SQL*Loader. All other modifications to the table (inserts,

updates, and deletes) by other SQL statements are disallowed.

If the unique key coincides with the partitioning key of the partitioned table,

disabling the constraint saves overhead and has no detrimental effects. If the

unique key does not coincide with the partitioning key, Oracle performs

automatic table scans during the exchange to validate the constraint, which

might offset the benefit of loading without an index.

■ DISABLE NOVALIDATE signifies that Oracle makes no effort to maintain the

constraint (because it is disabled) and cannot guarantee that the constraint is

true (because it is not being validated).

You cannot drop a table whose primary key is being referenced by a foreign key

even if the foreign key constraint is in DISABLE NOVALIDATEstate. Further, the

optimizer can use constraints in DISABLE NOVALIDATE state.

■ If you specify neither VALIDATE nor NOVALIDATE, the default is NOVALIDATE.

■ If you disable a unique or primary key constraint that is using a unique index,

Oracle drops the unique index.

See Also: the enable_disable_clause of CREATE TABLE on

page 10-41 for additional notes and restrictions

See Also: Oracle8i Performance Guide and Reference for information

on when to use this setting
8-150 SQL Reference

constraint_clause
EXCEPTIONS INTO
The EXCEPTIONS INTO clause lets you specify a table into which Oracle places the

rowids of all rows violating the constraint. If you omit schema, Oracle assumes the

exceptions table is in your own schema. If you omit this clause altogether, Oracle

assumes that the table is named EXCEPTIONS. The exceptions table must be on

your local database.

The EXCEPTIONS INTO clause is valid only when validating a constraint.

You can create the EXCEPTIONS table using one of these scripts:

■ UTLEXCPT.SQLuses physical rowids. Therefore it can accommodate rows from

conventional tables but not from index-organized tables. (See the Note that

follows.)

■ UTLEXPT1.SQL uses universal rowids, so it can accommodate rows from both

conventional and index-organized tables.

If you create your own exceptions table, it must follow the format prescribed by one

of these two scripts.

Restriction: You cannot specify this clause in a CREATE TABLE statement, because

no rowids exist until after the successful completion of the statement.

Note: If you are collecting exceptions from index-organized tables

based on primary keys (rather than universal rowids), you must

create a separate exceptions table for each index-organized table to

accommodate its primary-key storage. You create multiple

exceptions tables with different names by modifying and

resubmitting the script.

See Also:

■ Oracle8i Migration for compatibility issues related to the use of

these scripts

■ The DBMS_IOT package in Oracle8i Supplied PL/SQL Packages
Reference for information on the SQL scripts

■ Oracle8i Performance Guide and Reference for information on

eliminating migrated and chained rows
SQL Statements: ALTER TABLE to constraint_clause 8-151

constraint_clause
Examples

Unique Key Example The following statement creates the dept table and defines

and enables a unique key on the dname column:

CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(9) CONSTRAINT unq_dname UNIQUE,
 loc VARCHAR2(10));

The constraint unq_dname identifies the dname column as a unique key. This

constraint ensures that no two departments in the table have the same name.

However, the constraint does allow departments without names.

Alternatively, you can define and enable this constraint with the table_
constraint syntax:

CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(9),
 loc VARCHAR2(10),
 CONSTRAINT unq_dname
 UNIQUE (dname)
 USING INDEX PCTFREE 20
 TABLESPACE user_x
 STORAGE (INITIAL 8K NEXT 6K));

The above statement also uses the USING INDEX clause to specify storage

characteristics for the index that Oracle creates to enable the constraint.

Composite Unique Key Example The following statement defines and enables a

composite unique key on the combination of the city and state columns of the

census table:

ALTER TABLE census
 ADD CONSTRAINT unq_city_state
 UNIQUE (city, state)
 USING INDEX PCTFREE 5
 TABLESPACE user_y
 EXCEPTIONS INTO bad_keys_in_ship_cont;

The unq_city_state constraint ensures that the same combination of city and

state values does not appear in the table more than once.

The ADD CONSTRAINT clause also specifies other properties of the constraint:
8-152 SQL Reference

constraint_clause
■ The USING INDEX clause specifies storage characteristics for the index Oracle

creates to enable the constraint.

■ The EXCEPTIONS INTO clause causes Oracle to write information to the bad_
keys_in_ship_cont table about any rows currently in the census table that

violate the constraint.

Primary Key Example The following statement creates the dept table and defines

and enables a primary key on the deptno column:

CREATE TABLE dept
 (deptno NUMBER(2) CONSTRAINT pk_dept PRIMARY KEY,
 dname VARCHAR2(9),
 loc VARCHAR2(10));

The pk_dept constraint identifies the deptno column as the primary key of the

dept table. This constraint ensures that no two departments in the table have the

same department number and that no department number is NULL.

Alternatively, you can define and enable this constraint with table_constraint
syntax:

CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(9),
 loc VARCHAR2(10),
 CONSTRAINT pk_dept PRIMARY KEY (deptno));

Composite Primary Key Example The following statement defines a composite

primary key on the combination of the ship_nop and container_no columns of

the ship_cont table:

ALTER TABLE ship_cont
 ADD PRIMARY KEY (ship_no, container_no) DISABLE;

This constraint identifies the combination of the ship_no and container_no
columns as the primary key of the ship_cont table. The constraint ensures that no

two rows in the table have the same values for both the ship_no column and the

container_no column.

The CONSTRAINT clause also specifies the following properties of the constraint:

■ The constraint definition does not include a constraint name, so Oracle

generates a name for the constraint.

■ The DISABLE clause causes Oracle to define the constraint but not enable it.
SQL Statements: ALTER TABLE to constraint_clause 8-153

constraint_clause
NOT NULL Example The following statement alters the emp table and defines and

enables a NOT NULL constraint on the SAL column:

ALTER TABLE emp
 MODIFY (sal NUMBER CONSTRAINT nn_sal NOT NULL);

nn_sal ensures that no employee in the table has a null salary.

Attribute-Level Constraints Example The following example guarantees that a

value exists for both the first_name and last_name attributes of the name
column in the students table:

CREATE TYPE person_name AS OBJECT
 (first_name VARCHAR2(30), last_name VARCHAR2(30));

CREATE TABLE students (name person_name, age INTEGER,
 CHECK (name.first_name IS NOT NULL AND
 name.last_name IS NOT NULL));

Referential Integrity Constraint Example The following statement creates the emp
table and defines and enables a foreign key on the deptno column that references

the primary key on the deptno column of the dept table:

CREATE TABLE emp
 (empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno CONSTRAINT fk_deptno REFERENCES dept(deptno));

The constraint fk_deptno ensures that all departments given for employees in the

emp table are present in the dept table. However, employees can have null

department numbers, meaning they are not assigned to any department. To ensure

that all employees are assigned to a department, you could create a NOT NULL
constraint on the deptno column in theemp table, in addition to the REFERENCES
constraint.

Before you define and enable this constraint, you must define and enable a

constraint that designates the deptno column of the dept table as a primary or

unique key.
8-154 SQL Reference

constraint_clause
The referential integrity constraint definition does not use the FOREIGN KEY
keyword to identify the columns that make up the foreign key. Because the

constraint is defined with a column constraint clause on the deptno column, the

foreign key is automatically on the deptno column.

The constraint definition identifies both the parent table and the columns of the

referenced key. Because the referenced key is the parent table’s primary key, the

referenced key column names are optional.

The above statement omits the deptno column’s datatype. Because this column is a

foreign key, Oracle automatically assigns it the datatype of the dept.deptno
column to which the foreign key refers.

Alternatively, you can define a referential integrity constraint with table_
constraint syntax:

CREATE TABLE emp
 (empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno,
 CONSTRAINT fk_deptno
 FOREIGN KEY (deptno)
 REFERENCES dept(deptno));

The foreign key definitions in both statements of this statement omit the ON DELETE
clause, causing Oracle to forbid the deletion of a department if any employee works

in that department.

ON DELETE Example This statement creates the emp table, defines and enables

two referential integrity constraints, and uses the ON DELETE clause:

CREATE TABLE emp
 (empno NUMBER(4) PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4) CONSTRAINT fk_mgr
 REFERENCES emp ON DELETE SET NULL,
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
SQL Statements: ALTER TABLE to constraint_clause 8-155

constraint_clause
 deptno NUMBER(2) CONSTRAINT fk_deptno
 REFERENCES dept(deptno)
 ON DELETE CASCADE);

Because of the first ON DELETE clause, if manager number 2332 is deleted from the

emp table, Oracle sets to null the value of mgr for all employees in the emp table

who previously had manager 2332.

Because of the second ON DELETE clause, Oracle cascades any deletion of a deptno
value in the dept table to the deptno values of its dependent rows of the emp
table. For example, if Department 20 is deleted from the dept table, Oracle deletes

the department’s employees from the emp table.

Composite Referential Integrity Constraint Example The following statement

defines and enables a foreign key on the combination of the areaco and phoneno
columns of the phone_calls table:

ALTER TABLE phone_calls
 ADD CONSTRAINT fk_areaco_phoneno
 FOREIGN KEY (areaco, phoneno)
 REFERENCES customers(areaco, phoneno)
 EXCEPTIONS INTO wrong_numbers;

The constraint fk_areaco_phoneno ensures that all the calls in the phone_calls
table are made from phone numbers that are listed in the customers table. Before

you define and enable this constraint, you must define and enable a constraint that

designates the combination of the areaco and phoneno columns of the

customers table as a primary or unique key.

The EXCEPTIONS INTO clause causes Oracle to write information to the wrong_
numbers table about any rows in the phone_calls table that violate the

constraint.

CHECK Constraint Examples The following statement creates the dept table and

defines a check constraint in each of the table’s columns:

CREATE TABLE dept
 (deptno NUMBER CONSTRAINT check_deptno
 CHECK (deptno BETWEEN 10 AND 99)
 DISABLE,
 dname VARCHAR2(9) CONSTRAINT check_dname
 CHECK (dname = UPPER(dname))
 DISABLE,
 loc VARCHAR2(10) CONSTRAINT check_loc
 CHECK (loc IN (’DALLAS’,’BOSTON’,
8-156 SQL Reference

constraint_clause
 ’NEW YORK’,’CHICAGO’))
 DISABLE);

Each constraint restricts the values of the column in which it is defined:

■ check_deptno ensures that no department numbers are less than 10 or greater

than 99.

■ check_dname ensures that all department names are in uppercase.

■ check_loc restricts department locations to Dallas, Boston, New York, or

Chicago.

Because each CONSTRAINTclause contains the DISABLE clause, Oracle only defines

the constraints and does not enable them.

The following statement creates the emp table and uses a table_constraint_
clause to define and enable a CHECK constraint:

CREATE TABLE emp
 (empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 CHECK (sal + comm <= 5000));

This constraint uses an inequality condition to limit an employee’s total

compensation, the sum of salary and commission, to $5000:

■ If an employee has non-null values for both salary and commission, the sum of

these values must not exceed $5000 to satisfy the constraint.

■ If an employee has a null salary or commission, the result of the condition is

unknown and the employee automatically satisfies the constraint.

Because the CONSTRAINTclause in this example does not supply a constraint name,

Oracle generates a name for the constraint.

The following statement defines and enables a PRIMARY KEY constraint, two

referential integrity constraints, a NOT NULL constraint, and two CHECK constraints:

CREATE TABLE order_detail
 (CONSTRAINT pk_od PRIMARY KEY (order_id, part_no),
 order_id NUMBER
SQL Statements: ALTER TABLE to constraint_clause 8-157

constraint_clause
 CONSTRAINT fk_oid REFERENCES scott.order (order_id),
 part_no NUMBER
 CONSTRAINT fk_pno REFERENCES scott.part (part_no),
 quantity NUMBER
 CONSTRAINT nn_qty NOT NULL
 CONSTRAINT check_qty_low CHECK (quantity > 0),
 cost NUMBER
 CONSTRAINT check_cost CHECK (cost > 0));

The constraints enable the following rules on table data:

■ pk_od identifies the combination of the order_id and part_no columns as

the primary key of the table. To satisfy this constraint, no two rows in the table

can contain the same combination of values in the order_id and the part_no
columns, and no row in the table can have a null in either the order_id
column or the part_no column.

■ fk_oid identifies the order_id column as a foreign key that references the

order_id column in the order table in scott ’s schema. All new values

added to the column order_detail .order_id must already appear in the

column scott.order.order_id .

■ fk_pno identifies the part_no column as a foreign key that references the

part_no column in the part table owned by scott . All new values added to

the column order_detail.part_no must already appear in the column

scott.part.part_no .

■ nn_qty forbids nulls in the quantity column.

■ check_qty ensures that values in the quantity column are always greater

than zero.

■ check_cost ensures the values in the cost column are always greater than

zero.

This example also illustrates the following points about constraint clauses and

column definitions:

■ Table_constraint syntax and column definitions can appear in any order. In

this example, the table_constraint syntax that defines the pk_od
constraint precedes the column definitions.

■ A column definition can use column_constraint syntax multiple times. In

this example, the definition of the quantity column contains the definitions of

both the nn_qty and check_qty constraints.
8-158 SQL Reference

constraint_clause
■ A table can have multiple CHECK constraints. Multiple CHECK constraints, each

with a simple condition enforcing a single business rule, is better than a single

CHECK constraint with a complicated condition enforcing multiple business

rules. When a constraint is violated, Oracle returns an error identifying the

constraint. Such an error more precisely identifies the violated business rule if

the identified constraint enables a single business rule.

DEFERRABLE Constraint Examples The following statement creates table games
with a NOT DEFERRABLE INITIALLY IMMEDIATE constraint check on the scores
column:

CREATE TABLE games (scores NUMBER CHECK (scores >= 0));

To define a unique constraint on a column as INITIALLY DEFERRED DEFERRABLE,
issue the following statement:

CREATE TABLE orders
 (ord_num NUMBER CONSTRAINT unq_num UNIQUE (ord_num)
 INITIALLY DEFERRED DEFERRABLE);
SQL Statements: ALTER TABLE to constraint_clause 8-159

constraint_clause
8-160 SQL Reference

SQL Statements: CREATE CLUSTER to CREATE SEQUE
9

SQL Statements:

CREATE CLUSTER to CREATE SEQUENCE

This chapter contains the following SQL statements:

■ CREATE CLUSTER

■ CREATE CONTEXT

■ CREATE CONTROLFILE

■ CREATE DATABASE

■ CREATE DATABASE LINK

■ CREATE DIMENSION

■ CREATE DIRECTORY

■ CREATE FUNCTION

■ CREATE INDEX

■ CREATE INDEXTYPE

■ CREATE JAVA

■ CREATE LIBRARY

■ CREATE MATERIALIZED VIEW

■ CREATE MATERIALIZED VIEW LOG

■ CREATE OPERATOR

■ CREATE OUTLINE

■ CREATE PACKAGE
NCE 9-1

■ CREATE PACKAGE BODY

■ CREATE PROCEDURE

■ CREATE PROFILE

■ CREATE ROLE

■ CREATE ROLLBACK SEGMENT

■ CREATE SCHEMA

■ CREATE SEQUENCE
9-2 SQL Reference

CREATE CLUSTER
CREATE CLUSTER

Purpose
Use the CREATE CLUSTER statement to create a cluster. A cluster is a schema object

that contains data from one or more tables, all of which have one or more columns

in common. Oracle stores together all the rows (from all the tables) that share the

same cluster key.

For information on existing clusters, query the USER_CLUSTERS, ALL_CLUSTERS,
and DBA_CLUSTERS data dictionary views.

Prerequisites
To create a cluster in your own schema, you must have CREATE CLUSTER system

privilege. To create a cluster in another user’s schema, you must have CREATE ANY
CLUSTER system privilege. Also, the owner of the schema to contain the cluster

must have either space quota on the tablespace containing the cluster or

UNLIMITED TABLESPACE system privilege.

Oracle does not automatically create an index for a cluster when the cluster is

initially created. Data manipulation language (DML) statements cannot be issued

against clustered tables until a cluster index has been created.

See Also:

■ Oracle8i Concepts for general information on clusters

■ Oracle8i Application Developer’s Guide - Fundamentals for

information on performance considerations of clusters

■ Oracle8i Performance Guide and Reference for suggestions on

when to use clusters

■ Oracle8i Reference for information on the data dictionary views
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-3

CREATE CLUSTER
Syntax

physical_attributes_clause ::=

storage_clause : See the storage_clause on page 11-129.

CREATE CLUSTER
schema .

cluster (column datatype

,

)

physical_attributes_clause

SIZE integer

K

M

TABLESPACE tablespace

INDEX

SINGLE TABLE
HASHKEYS integer

HASH IS expr

parallel_clause

CACHE

N0CACHE
;

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause
9-4 SQL Reference

CREATE CLUSTER
parallel_clause ::=

Keywords and Parameters

schema
Specify the schema to contain the cluster. If you omit schema , Oracle creates the

cluster in your current schema.

cluster
Specify is the name of the cluster to be created.

After you create a cluster, you add tables to it. A cluster can contain a maximum of

32 tables. After you create a cluster and add tables to it, the cluster is transparent.

You can access clustered tables with SQL statements just as you can nonclustered

tables.

column
Specify one or more names of columns in the cluster key. You can specify up to 16

cluster key columns. These columns must correspond in both datatype and size to

columns in each of the clustered tables, although they need not correspond in name.

You cannot specify integrity constraints as part of the definition of a cluster key

column. Instead, you can associate integrity constraints with the tables that belong

to the cluster.

datatype
Specify the datatype of each cluster key column.

Restrictions:

■ You cannot specify a cluster key column of datatype LONG, LONG RAW, REF,
nested table, varray, BLOB, CLOB, BFILE , or user-defined object type.

See Also: CREATE TABLE on page 10-7 for information on

adding tables to a cluster

NOPARALLEL

PARALLEL
integer
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-5

CREATE CLUSTER
■ You cannot use the HASH IS clause if any column datatype is not INTEGER or

NUMBER with scale 0.

■ You can specify a column of type ROWID, but Oracle does not guarantee that the

values in such columns are valid rowids.

physical_attributes_clause
The physical_attributes_clause lets you specify the storage characteristics

of the cluster. Each table in the cluster uses these storage characteristics as well.

See Also: "Datatypes" on page 2-2 for information on datatypes

PCTUSED Specify the limit that Oracle should use to determine when

additional rows can be added to a cluster’s data block. The value

of this parameter is expressed as a whole number and interpreted

as a percentage.

PCTFREE Specify the space to be reserved in each of the cluster’s data

blocks for future expansion. The value of the parameter is

expressed as a whole number and interpreted as a percentage.

INITRANS Specify the initial number of concurrent update transactions

allocated for data blocks of the cluster. The value of this parameter

for a cluster cannot be less than 2 or more than the value of the

MAXTRANS parameter. The default value is 2 or the INITRANS
value for the cluster’s tablespace, whichever is greater.

MAXTRANS Specify the maximum number of concurrent update transactions

for any given data block belonging to the cluster. The value of this

parameter cannot be less than the value of the INITRANS
parameter. The maximum value of this parameter is 255. The

default value is the MAXTRANS value for the tablespace to contain

the cluster.

See Also: CREATE TABLE on page 10-7 for a complete description of the

PCTUSED, PCTFREE, INITRANS , and MAXTRANS parameters

storage_
clause

The storage_clause lets you specify how data blocks are

allocated to the cluster.

See Also: storage_clause on page 11-129
9-6 SQL Reference

CREATE CLUSTER
SIZE
Specify the amount of space in bytes to store all rows with the same cluster key

value or the same hash value. Use K or M to specify this space in kilobytes or

megabytes. This space determines the maximum number of cluster or hash values

stored in a data block. If SIZE is not a divisor of the data block size, Oracle uses the

next largest divisor. If SIZE is larger than the data block size, Oracle uses the

operating system block size, reserving at least one data block per cluster or hash

value.

Oracle also considers the length of the cluster key when determining how much

space to reserve for the rows having a cluster key value. Larger cluster keys require

larger sizes. To see the actual size, query the KEY_SIZE column of the USER_
CLUSTERSdata dictionary view. (This does not apply to hash clusters, because hash

values are not actually stored in the cluster.)

If you omit this parameter, Oracle reserves one data block for each cluster key value

or hash value.

TABLESPACE
Specify the tablespace in which the cluster is created.

INDEX | HASH

INDEX Specify INDEX to create an indexed cluster. In an indexed cluster,

Oracle stores together rows having the same cluster key value.

Each distinct cluster key value is stored only once in each data

block, regardless of the number of tables and rows in which it

occurs.

After you create an indexed cluster, you must create an index on

the cluster key before you can issue any data manipulation

language (DML) statements against a table in the cluster. This

index is called the cluster index.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-7

CREATE CLUSTER
Note: You cannot create a cluster index for a hash cluster, and

you need not create an index on a hash cluster key. If you

specify neither INDEX nor HASHKEYS, Oracle creates an

indexed cluster by default.

See Also: CREATE INDEX on page 9-52 for information on

creating a cluster index and Oracle8i Concepts for general

information in indexed clusters

HASHKEYS Specify the HASHKEYSclause to create a hash cluster and specifies

the number of hash values for a hash cluster. In a hash cluster,

Oracle stores together rows that have the same hash key value.

The hash value for a row is the value returned by the cluster’s

hash function.

Oracle rounds up the HASHKEYS value to the nearest prime

number to obtain the actual number of hash values. The minimum

value for this parameter is 2. If you omit both the INDEX clause

and the HASHKEYS parameter, Oracle creates an indexed cluster

by default.

When you create a hash cluster, Oracle immediately allocates

space for the cluster based on the values of the SIZE and

HASHKEYS parameters.

See Also: Oracle8i Concepts for more information on how

Oracle allocates space for clusters

SINGLE TABLE SINGLE TABLE indicates that the cluster is a

type of hash cluster containing only one table.

This clause can provide faster access to rows

than would result if the table were not part of a

cluster.

Restriction: Only one table can be present in the

cluster at a time. However, you can drop the

table and create a different table in the same

cluster.

HASH ISexpr Specify an expression to be used as the hash

function for the hash cluster. The expression:
9-8 SQL Reference

CREATE CLUSTER
parallel_clause
The parallel_clause lets you parallelize the creation of the cluster.

■ Must evaluate to a positive value

■ Must contain at least one column with

referenced columns of any datatype as long

as the entire expression evaluates to a

number of scale 0. For example: NUM_
COLUMN * length(VARCHAR2_COLUMN)

■ Cannot reference user-defined PL/SQL

functions

■ Cannot reference SYSDATE, USERENV, TO_
DATE, UID , USER, LEVEL, or ROWNUM

■ Cannot evaluate to a constant

■ Cannot contain a subquery

■ Cannot contain columns qualified with a

schema or object name (other than the

cluster name)

If you omit the HASH IS clause, Oracle uses an internal hash

function for the hash cluster.

For information on existing hash functions, query the USER_,
ALL_, and DBA_CLUSTER_HASH_EXPRESSIONS data dictionary

tables.

See Also: Oracle8i Reference for information on the data

dictionary views

The cluster key of a hash column can have one or more columns

of any datatype. Hash clusters with composite cluster keys or

cluster keys made up of noninteger columns must use the internal

hash function.

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-9

CREATE CLUSTER
Restriction: If the tables in cluster contain any columns of LOB or user-defined

object type, this statement as well as subsequent INSERT, UPDATE, or DELETE
operations on cluster are executed serially without notification.

CACHE | NOCACHE

Examples

Creating a Cluster Example The following statement creates an indexed cluster

named personnel with the cluster key column department_number , a cluster

size of 512 bytes, and storage parameter values:

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLEL if you want Oracle to select a degree of

parallelism equal to the number of CPUs available on all

participating instances times the value of the PARALLEL_
THREADS_PER_CPU initialization parameter.

PARALLEL
integer

Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel

operation. Each parallel thread may use one or two parallel

execution servers. Normally Oracle calculates the optimum

degree of parallelism, so it is not necessary for you to specify

integer .

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 10-41

CACHE Specify CACHE if you want the blocks retrieved for this table to be

placed at the most recently used end of the LRU list in the buffer

cache when a full table scan is performed. This clause is useful for

small lookup tables.

NOCACHE Specify NOCACHE if you want the blocks retrieved for this table to

be placed at the least recently used end of the LRU list in the

buffer cache when a full table scan is performed. This is the

default behavior.

Note: NOCACHEhas no effect on clusters for which you specify

KEEP in the storage_clause .
9-10 SQL Reference

CREATE CLUSTER
CREATE CLUSTER personnel
 (department_number NUMBER(2))
 SIZE 512
 STORAGE (INITIAL 100K NEXT 50K);

Adding Tables to a Cluster Example The following statements add the emp and

dept tables to the cluster:

CREATE TABLE emp
 (empno NUMBER PRIMARY KEY,
 ename VARCHAR2(10) NOT NULL
 CHECK (ename = UPPER(ename)),
 job VARCHAR2(9),
 mgr NUMBER REFERENCES scott.emp(empno),
 hiredate DATE
 CHECK (hiredate < TO_DATE (’08-14-1998’, ’MM-DD-YYYY’)),
 sal NUMBER(10,2) CHECK (sal > 500),
 comm NUMBER(9,0) DEFAULT NULL,
 deptno NUMBER(2) NOT NULL)
 CLUSTER personnel (deptno);

CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(9),
 loc VARCHAR2(9))
 CLUSTER personnel (deptno);

Cluster Key Example The following statement creates the cluster index on the

cluster key of personnel :

CREATE INDEX idx_personnel ON CLUSTER personnel;

After creating the cluster index, you can insert rows into either the emp or dept
tables.

Hash Cluster Examples The following statement creates a hash cluster named

personnel with the cluster key column department_number , a maximum of 503

hash key values, each of which is allocated 512 bytes, and storage parameter values:

CREATE CLUSTER personnel
(department_number NUMBER)
 SIZE 512 HASHKEYS 500
 STORAGE (INITIAL 100K NEXT 50K);
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-11

CREATE CLUSTER
Because the above statement omits the HASH IS clause, Oracle uses the internal

hash function for the cluster.

The following statement creates a hash cluster named personnel with the cluster

key made up of the columns home_area_code and home_prefix , and uses a

SQL expression containing these columns for the hash function:

CREATE CLUSTER personnel
 (home_area_code NUMBER,
 home_prefix NUMBER)
 HASHKEYS 20
 HASH IS MOD(home_area_code + home_prefix, 101);

Single-Table Hash Cluster Example The following statement creates a single-table

hash cluster named personnel with the cluster key deptno and a maximum of

503 hash key values, each of which is allocated 512 bytes:

CREATE CLUSTER personnel
 (deptno NUMBER)
 SIZE 512 SINGLE TABLE HASHKEYS 500;
9-12 SQL Reference

CREATE CONTEXT
CREATE CONTEXT

Purpose
Use the CREATE CONTEXT statement to create a namespace for a context (a set of

application-defined attributes that validates and secures an application) and to

associate the namespace with the externally created package that sets the context.

You can use the DBMS_SESSION.set_context procedure in your designated

package to set or reset the attributes of the context.

Prerequisites
To create a context namespace, you must have CREATE ANY CONTEXT system

privilege.

Syntax

Keywords and Parameters

OR REPLACE
Specify OR REPLACE to redefine an existing context namespace using a different

package.

namespace
Specify the name of the context namespace to create or modify. Context namespaces

are always stored in the schema SYS.

See Also:

■ Oracle8i Concepts for a definition and discussion of contexts

■ Oracle8i Supplied PL/SQL Packages Reference for information on

the DBMS_SESSION.set_context procedure

CREATE
OR REPLACE

CONTEXT namespace USING
schema .

package ;
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-13

CREATE CONTEXT
schema
Specify the schema owning package . If you omit schema , Oracle uses the current

schema.

package
Specify the PL/SQL package that sets or resets the context attributes under the

namespace for a user session.

Examples

CREATE CONTEXT Example Suppose you have a human resources (hr)

application and a PL/SQL package (hr_secure_context), which validates and

secures the hr application. The following statement creates the context namespace

hr_context and associates it with the package hr_secure_context :

CREATE CONTEXT hr_context USING hr_secure_context;

You can control data access based on this context using the SYS_CONTEXTfunction.

For example, suppose your hr_secure_context package has defined an attribute

org_id as a particular organization identifier. You can secure a base table hr_org_
unit by creating a view that restricts access based on the value of org_id , as

follows:

CREATE VIEW hr_org_secure_view AS
 SELECT * FROM hr_org_unit
 WHERE organization_id = SYS_CONTEXT(’hr_context’, ’org_id’);

Note: To provide some design flexibility, Oracle does not verify

the existence of the schema or the validity of the package at the

time you create the context.

See Also: Oracle8i Supplied PL/SQL Packages Reference for more

information on setting the package

See Also: SYS_CONTEXT on page 4-101 for more information on

the SYS_CONTEXT function
9-14 SQL Reference

CREATE CONTROLFILE
CREATE CONTROLFILE

Purpose
Use the CREATE CONTROLFILE statement to re-create a control file in one of the

following cases:

■ All copies of your existing control files have been lost through media failure.

■ You want to change the name of the database.

■ You want to change the maximum number of redo log file groups, redo log file

members, archived redo log files, datafiles, or instances that can concurrently

have the database mounted and open.

When you issue a CREATE CONTROLFILE statement, Oracle creates a new control

file based on the information you specify in the statement. If you omit any clauses,

Oracle uses the default values rather than the values for the previous control file.

After successfully creating the control file, Oracle mounts the database in the mode

specified by the initialization parameter PARALLEL_SERVER. You then must

perform media recovery before opening the database. It is recommended that you

then shut down the instance and take a full backup of all files in the database.

Prerequisites
You must have the OSDBA role enabled. The database must not be mounted by any

instance.

If the REMOTE_LOGIN_PASSWORDFILE initialization parameter is set to

exclusive , Oracle returns an error when you attempt to re-create the control file.

To avoid this message, either set the parameter to shared , or re-create your

password file before re-creating the control file.

Caution: Oracle recommends that you perform a full backup of all

files in the database before using this statement. For more

information, see Oracle8i Backup and Recovery Guide.

See Also: Oracle8i Backup and Recovery Guide

See Also: Oracle8i Reference for more information about the

REMOTE_LOGIN_PASSWORDFILE parameter
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-15

CREATE CONTROLFILE
Syntax

logfile_clause ::=

datafile_clause ::=

character_set_clause ::=

filespec : See filespec on page 11-27.

CREATE CONTROLFILE
REUSE SET

DATABASE database

logfile_clause datafile_clause
character_set_clause

;

LOGFILE
GROUP integer

filespec

,

RESETLOGS

NORESETLOGS

DATAFILE filespec

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

MAXDATAFILES integer

MAXINSTANCES integer

ARCHIVELOG

NOARCHIVELOG

CHARACTER SET character_set
;

9-16 SQL Reference

CREATE CONTROLFILE
Keywords and Parameters

REUSE
Specify REUSE to indicate that existing control files identified by the initialization

parameter CONTROL_FILES can be reused, thus ignoring and overwriting any

information they may currently contain. If you omit this clause and any of these

control files already exists, Oracle returns an error.

DATABASEdatabase
Specify the name of the database. The value of this parameter must be the existing

database name established by the previous CREATE DATABASE statement or

CREATE CONTROLFILE statement.

SET DATABASEdatabase
Use SET DATABASE to change the name of the database. The name of a database

can be as long as eight bytes.

logfile_clause

LOGFILE
filespec

Specify the redo log files for your database. You must list all

members of all redo log file groups.

See Also: filespec on page 11-27 for the syntax of

filespec

GROUP
integer

Specify the logfile group number. If you specify

GROUP values, Oracle verifies these values with

the GROUP values when the database was last

open.

RESETLOGS Specify RESETLOGS if you want Oracle to ignore the contents of

the files listed in the LOGFILE clause. These files do not have to

exist. Each filespec in the LOGFILE clause must specify the

SIZE parameter. Oracle assigns all online redo log file groups to

thread 1 and enables this thread for public use by any instance.

After using this clause, you must open the database using the

RESETLOGS clause of the ALTER DATABASE statement.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-17

CREATE CONTROLFILE
datafile_clause

NORESETLOGS Specify NORESETLOGS if you want Oracle to use all files in the

LOGFILE clause as they were when the database was last open.

These files must exist and must be the current online redo log files

rather than restored backups. Oracle reassigns the redo log file

groups to the threads to which they were previously assigned and

reenables the threads as they were previously enabled.

DATAFILE
filespec

Specify the datafiles of the database. You must list all datafiles.

These files must all exist, although they may be restored backups

that require media recovery. See the syntax description of

filespec in filespec on page 11-27.

MAXLOGFILES
integer

Specify the maximum number of online redo log file groups that

can ever be created for the database. Oracle uses this value to

determine how much space in the control file to allocate for the

names of redo log files. The default and maximum values depend

on your operating system. The value that you specify should not

be less than the greatest GROUP value for any redo log file group.

MAX-
LOGMEMBERS
integer

Specify the maximum number of members, or identical copies, for

a redo log file group. Oracle uses this value to determine how

much space in the control file to allocate for the names of redo log

files. The minimum value is 1. The maximum and default values

depend on your operating system.

MAX-
LOGHISTORY
integer

Specify the maximum number of archived redo log file groups for

automatic media recovery of the Oracle Parallel Server. Oracle

uses this value to determine how much space in the control file to

allocate for the names of archived redo log files. The minimum

value is 0. The default value is a multiple of the MAXINSTANCES
value and depends on your operating system. The maximum

value is limited only by the maximum size of the control file. This

parameter is useful only if you are using Oracle with the Parallel

Server option in both parallel mode and archivelog mode.
9-18 SQL Reference

CREATE CONTROLFILE
character_set_clause
If you specify a character set, Oracle reconstructs character set information in the

control file. In case media recovery of the database is required, this information will

be available before the database is open, so that tablespace names can be correctly

interpreted during recovery. This clause is useful only if you are using a character

set other than the default US7ASCII.

If you are re-creating your control file and you are using Recovery Manager for

tablespace recovery, and if you specify a different character set from the one stored

in the data dictionary, then tablespace recovery will not succeed. (However, at

database open, the control file character set will be updated with the correct

character set from the data dictionary.)

MAX-
DATAFILES
integer

Specify the initial sizing of the datafiles section of the control file

at CREATE DATABASEor CREATE CONTROLFILEtime. An attempt

to add a file whose number is greater than MAXDATAFILES, but

less than or equal to DB_FILES , causes the Oracle control file to

expand automatically so that the datafiles section can

accommodate more files.

The number of datafiles accessible to your instance is also limited

by the initialization parameter DB_FILES .

MAX-
INSTANCES
integer

Specify the maximum number of instances that can

simultaneously have the database mounted and open. This value

takes precedence over the value of the initialization parameter

INSTANCES. The minimum value is 1. The maximum and default

values depend on your operating system.

ARCHIVELOG Specify ARCHIVELOG to archive the contents of redo log files

before reusing them. This clause prepares for the possibility of

media recovery as well as instance or crash recovery.

NOARCHIVELOGIf you omit both the ARCHIVELOG clause and NOARCHIVELOG
clause, Oracle chooses NOARCHIVELOG mode by default. After

creating the control file, you can change between ARCHIVELOG
mode and NOARCHIVELOG mode with the ALTER DATABASE
statement.

Note: You cannot modify the character set of the database with

this clause.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-19

CREATE CONTROLFILE
Example

CREATE CONTROLFILE Example This statement re-creates a control file. In this

statement, database orders_2 was created with the F7DEC character set.

CREATE CONTROLFILE REUSE
 DATABASE orders_2
 LOGFILE GROUP 1 (’diskb:log1.log’, ’diskc:log1.log’) SIZE 50K,
 GROUP 2 (’diskb:log2.log’, ’diskc:log2.log’) SIZE 50K
 NORESETLOGS
 DATAFILE ’diska:dbone.dat’ SIZE 2M
 MAXLOGFILES 5
 MAXLOGHISTORY 100
 MAXDATAFILES 10
 MAXINSTANCES 2
 ARCHIVELOG
 CHARACTER SET F7DEC;

See Also: Oracle8i Recovery Manager User’s Guide and Reference for

more information on tablespace recovery
9-20 SQL Reference

CREATE DATABASE
CREATE DATABASE

Purpose
Use the CREATE DATABASE statement to create a database, making it available for

general use.

This statement erases all data in any specified datafiles that already exist in order to

prepare them for initial database use. If you use the statement on an existing

database, all data in the datafiles is lost.

After creating the database, this statement mounts it in either exclusive or parallel

mode (depending on the value of the PARALLEL_SERVER initialization parameter)

and opens it, making it available for normal use. You can then create tablespaces

and rollback segments for the database.

Prerequisites
You must have the OSDBA role enabled.

If the REMOTE_LOGIN_PASSWORDFILE initialization parameter is set to

exclusive , Oracle returns an error when you attempt to re-create the database. To

avoid this message, either set the parameter to shared , or re-create your password

file before re-creating the database.

Caution: This statement prepares a database for initial use and

erases any data currently in the specified files. Use this statement

only when you understand its ramifications.

See Also:

■ ALTER DATABASE on page 7-9 for information on modifying a

database

■ Oracle8i Java Developer’s Guide for information on creating an

Oracle8i Java virtual machine

■ CREATE ROLLBACK SEGMENT on page 9-149 and CREATE

TABLESPACE on page 10-56 for information on creating

rollback segments and tablespaces
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-21

CREATE DATABASE
Syntax

autoextend_clause ::=

See Also: Oracle8i Reference for more information about the

REMOTE_LOGIN_PASSWORDFILE parameter

CREATE DATABASE
database

CONTROLFILE REUSE

LOGFILE
GROUP integer

filespec

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

MAXDATAFILES integer

MAXINSTANCES integer

ARCHIVELOG

NOARCHIVELOG

CHARACTER SET charset

NATIONAL CHARACTER SET charset

DATAFILE filespec
autoextend_clause

,

;

AUTOEXTEND

OFF

ON
NEXT integer

K

M
maxsize_clause
9-22 SQL Reference

CREATE DATABASE
maxsize_clause ::=

filespec : See filespec on page 11-27.

Keyword and Parameters

database
Specify the name of the database to be created and can be up to 8 bytes long. The

database name can contain only ASCII characters. Oracle writes this name into the

control file. If you subsequently issue an ALTER DATABASEstatement that explicitly

specifies a database name, Oracle verifies that name with the name in the control

file.

If you omit the database name from a CREATE DATABASE statement, Oracle uses

the name specified by the initialization parameter DB_NAME. If the DB_NAME
initialization parameter has been set, and you specify a different name from the

value of that parameter, Oracle returns an error.

CONTROLFILE REUSE
Specify CONTROLFILE REUSE to reuse existing control files identified by the

initialization parameter CONTROL_FILES, thus ignoring and overwriting any

information they currently contain. Normally you use this clause only when you are

re-creating a database, rather than creating one for the first time. You cannot use this

clause if you also specify a parameter value that requires that the control file be

Note: You cannot use special characters from European or Asian

character sets in a database name. For example, characters with

umlauts are not allowed.

See Also: "Schema Object Naming Guidelines" on page 2-87 for

additional rules to which database names should adhere

MAXSIZE

UNLIMITED

integer

K

M

SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-23

CREATE DATABASE
larger than the existing files. These parameters are MAXLOGFILES,
MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES, and MAXINSTANCES.

If you omit this clause and any of the files specified by CONTROL_FILES already

exist, Oracle returns an error.

LOGFILE filespec
Specify one or more files to be used as redo log files. Each filespec specifies a

redo log file group containing one or more redo log file members (copies). All redo

log files specified in a CREATE DATABASE statement are added to redo log thread

number 1.

If you omit the LOGFILE clause, Oracle creates two redo log file groups by default.

The names and sizes of the default files depend on your operating system.

MAXLOGFILESinteger
Specify the maximum number of redo log file groups that can ever be created for

the database. Oracle uses this value to determine how much space in the control file

to allocate for the names of redo log files. The default, minimum, and maximum

values depend on your operating system.

MAXLOGMEMBERSinteger
Specify the maximum number of members, or copies, for a redo log file group.

Oracle uses this value to determine how much space in the control file to allocate

for the names of redo log files. The minimum value is 1. The maximum and default

values depend on your operating system.

See Also: filespec on page 11-27 for the syntax of filespec

GROUPinteger Specify the number that identifies the redo log file group. The

value of integer can range from 1 to the value of the

MAXLOGFILESparameter. A database must have at least two redo

log file groups. You cannot specify multiple redo log file groups

having the same GROUP value. If you omit this parameter, Oracle

generates its value automatically. You can examine the GROUP
value for a redo log file group through the dynamic performance

table V$LOG.
9-24 SQL Reference

CREATE DATABASE
MAXLOGHISTORYinteger
Specify the maximum number of archived redo log files for automatic media

recovery with Oracle Parallel Server. Oracle uses this value to determine how much

space in the control file to allocate for the names of archived redo log files. The

minimum value is 0. The default value is a multiple of the MAXINSTANCES value

and depends on your operating system. The maximum value is limited only by the

maximum size of the control file.

MAXDATAFILESinteger
Specify the initial sizing of the datafiles section of the control file at CREATE
DATABASE or CREATE CONTROLFILE time. An attempt to add a file whose number

is greater than MAXDATAFILES, but less than or equal to DB_FILES , causes the

Oracle control file to expand automatically so that the datafiles section can

accommodate more files.

The number of datafiles accessible to your instance is also limited by the

initialization parameter DB_FILES .

MAXINSTANCESinteger
Specify the maximum number of instances that can simultaneously have this

database mounted and open. This value takes precedence over the value of

initialization parameter INSTANCES. The minimum value is 1. The maximum and

default values depend on your operating system.

ARCHIVELOG | NOARCHIVELOG

Note: This parameter is useful only if you are using Oracle with

the Parallel Server option in parallel mode, and archivelog mode

enabled.

ARCHIVELOG Specify ARCHIVELOG if you want the contents of a redo log file

group to be archived before the group can be reused. This clause

prepares for the possibility of media recovery.

NOARCHIVELOG Specify NOARCHIVELOG if the contents of a redo log file group

need not be archived before the group can be reused. This clause

does not allow for the possibility of media recovery.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-25

CREATE DATABASE
CHARACTER SETcharacter_set
Specify the character set the database uses to store data. The supported character

sets and default value of this parameter depend on your operating system.

Restriction: You cannot specify any fixed-width multibyte character sets as the

database character set.

NATIONAL CHARACTER SETcharacter_set
Specify the national character set used to store data in columns specifically defined

as NCHAR, NCLOB, or NVARCHAR2. If not specified, the national character set defaults

to the database character set.

DATAFILE filespec
Specify one or more files to be used as datafiles. All these files become part of the

SYSTEM tablespace. If you omit this clause, Oracle creates one datafile by default.

The name and size of this default file depend on your operating system.

autoextend_clause

The autoextend_clause lets you enable or disable the automatic extension of a

datafile. If you do not specify this clause, datafiles are not automatically extended.

The default is NOARCHIVELOG mode. After creating the database,

you can change between ARCHIVELOGmode and NOARCHIVELOG
mode with the ALTER DATABASE statement.

See Also: Oracle8i National Language Support Guide for more

information about character sets

See Also: Oracle8i National Language Support Guide for valid

character set names

Note: Oracle recommends that the total initial space allocated for

the SYSTEM tablespace be a minimum of 5 megabytes.

See Also: filespec on page 11-27 for syntax
9-26 SQL Reference

CREATE DATABASE
Examples

CREATE DATABASE Example The following statement creates a small database

using defaults for all arguments:

CREATE DATABASE;

The following statement creates a database and fully specifies each argument:

CREATE DATABASE newtest
CONTROLFILE REUSE
LOGFILE
 GROUP 1 (’diskb:log1.log’, ’diskc:log1.log’) SIZE 50K,
 GROUP 2 (’diskb:log2.log’, ’diskc:log2.log’) SIZE 50K
MAXLOGFILES 5
MAXLOGHISTORY 100
DATAFILE ’diska:dbone.dat’ SIZE 2M
MAXDATAFILES 10
MAXINSTANCES 2
ARCHIVELOG
CHARACTER SET US7ASCII
NATIONAL CHARACTER SET JA16SJISFIXED
DATAFILE
’disk1:df1.dbf’ AUTOEXTEND ON
’disk2:df2.dbf’ AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED;

OFF Specify OFF to disable autoextend if it is turned on. NEXT and

MAXSIZE are set to zero. Values for NEXT and MAXSIZE must be

respecified in ALTER DATABASE AUTOEXTEND or ALTER
TABLESPACE AUTOEXTEND statements.

ON Specify ON to enable autoextend.

NEXTinteger Specify the size in bytes of the next increment of disk space to be

allocated to the datafile automatically when more extents are

required. Use K or M to specify this size in kilobytes or megabytes.

The default is the size of one data block.

MAXSIZE Specify the maximum disk space allowed for automatic extension

of the datafile:

■ integer indicates the maximum disk space in bytes. Use K
or M to specify this size in kilobytes or megabytes.

■ UNLIMITED indicates that there is no limit on the allocation of

disk space to the datafile.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-27

CREATE DATABASE LINK
CREATE DATABASE LINK

Purpose
Use the CREATE DATABASE LINK statement to create a database link. A database
link is a schema object in the local database that enables you to access objects on a

remote database. The remote database need not be an Oracle system.

Once you have created a database link, you can use it to refer to tables and views on

the remote database. You can refer to a remote table or view in a SQL statement by

appending @dblink to the table or view name. You can query a remote table or

view with the SELECT statement. If you are using Oracle with the distributed

option, you can also access remote tables and views using any INSERT, UPDATE,
DELETE, or LOCK TABLE statement.

Prerequisites
To create a private database link, you must have CREATE DATABASE LINK system

privilege. To create a public database link, you must have CREATE PUBLIC
DATABASE LINKsystem privilege. Also, you must have CREATE SESSIONprivilege

on the remote Oracle database.

See Also:

■ Oracle8i Application Developer’s Guide - Fundamentals for

information about accessing remote tables or views with PL/

SQL functions, procedures, packages, and datatypes

■ Oracle8i Distributed Database Systems for information on

distributed database systems

■ Oracle8i Reference for descriptions of existing database links in

the ALL_DB_LINKS, DBA_DB_LINKS, and USER_DB_LINKS
data dictionary views and to monitor the performance of

existing links through the V$DBLINK dynamic performance

view

■ DROP DATABASE LINK on page 10-129 for information on

dropping existing database links

■ INSERT on page 11-51, UPDATE on page 11-141, DELETE on

page 10-115, and LOCK TABLE on page 11-62 for using links in

DML operations
9-28 SQL Reference

CREATE DATABASE LINK
Net8 must be installed on both the local and remote Oracle databases.

To access non-Oracle systems you must use the Oracle Heterogeneous Services.

Syntax

authenticated_clause ::=

Keyword and Parameters

SHARED
Specify SHARED to use a single network connection to create a public database link

that can be shared between multiple users. This clause is available only with the

multi-threaded server configuration.

PUBLIC
Specify PUBLIC to create a public database link available to all users. If you omit

this clause, the database link is private and is available only to you.

See Also: Oracle8i Distributed Database Systems for more

information about shared database links

See Also: The "PUBLIC Database Link Example" on page 9-32

CREATE
SHARED PUBLIC

DATABASE LINK dblink

CONNECT TO

CURRENT_USER

user IDENTIFIED BY password
authenticated_clause

authenticated_clause

USING ’ connect_string ’
;

AUTHENTICATED BY user IDENTIFIED BY password
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-29

CREATE DATABASE LINK
dblink
Specify the complete or partial name of the database link. The value of the GLOBAL_
NAMESinitialization parameter determines whether the database link must have the

same name as the database to which it connects.

The maximum number of database links that can be open in one session or one

instance of an Oracle Parallel Server configuration depends on the value of the

OPEN_LINKS and OPEN_LINKS_PER_INSTANCE initialization parameters.

Restriction: You cannot create a database link in another user’s schema, and you

cannot qualify dblink with the name of a schema. (Periods are permitted in names

of database links, so Oracle interprets the entire name, such as

ralph.linktosales , as the name of a database link in your schema rather than

as a database link named linktosales in the schema ralph .)

CONNECT TO
The CONNECT TO clause lets you enable a connection to the remote database.

See Also:

■ "Referring to Objects in Remote Databases" on page 2-90 for

guidelines for naming database links

■ Oracle8i Reference for information on the GLOBAL_NAMES,
OPEN_LINKS, and OPEN_LINKS_PER_INSTANCEinitialization

parameters

CURRENT_USERSpecify CURRENT_USER to create a current user database link.

The current user must be a global user with a valid account on the

remote database for the link to succeed.

If the database link is used directly, that is, not from within a
stored object, then the current user is the same as the connected
user.

When executing a stored object (such as a procedure, view, or

trigger) that initiates a database link, CURRENT_USER is the

username that owns the stored object, and not the username that

called the object. For example, if the database link appears inside

procedure scott.p (created by scott), and user jane calls

procedure scott.p , the current user is scott .
9-30 SQL Reference

CREATE DATABASE LINK
authenticated_clause
Specify the username and password on the target instance. This clause authenticates

the user to the remote server and is required for security. The specified username

and password must be a valid username and password on the remote instance. The

username and password are used only for authentication. No other operations are

performed on behalf of this user.

You must specify this clause when using the SHARED clause.

USING ’connect string ’
Specify the service name of a remote database.

Examples

CURRENT_USER Example The following statement defines a current-user

database link:

CREATE DATABASE LINK sales.hq.acme.com

However, if the stored object is an invoker-rights function,

procedure, or package, the invoker’s authorization ID is used to

connect as a remote user. For example, if the privileged database

link appears inside procedure scott.p (an invoker-rights

procedure created by scott), and user jane calls procedure

scott.p , then CURRENT_USER is jane and the procedure

executes with Jane’s privileges.

See Also:

- CREATE FUNCTION on page 9-43 for more information on

invoker-rights functions

- "CURRENT_USER Example" on page 9-31

user
IDENTIFIED
BYpassword

Specify the username and password used to connect to the remote

database (fixed user database link). If you omit this clause, the

database link uses the username and password of each user who

is connected to the database (connected user database link).

See Also: The "Fixed User Example" on page 9-32

See Also: Net8 Administrator’s Guide for information on specifying

remote databases
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-31

CREATE DATABASE LINK
 CONNECT TO CURRENT_USER
 USING ’sales’;

Fixed User Example The following statement defines a fixed-user database link

named sales.hq.acme.com :

CREATE DATABASE LINK sales.hq.acme.com
 CONNECT TO scott IDENTIFIED BY tiger
 USING ’sales’;

Once this database link is created, you can query tables in the schema scott on the

remote database in this manner:

SELECT *
 FROM emp@sales.hq.acme.com;

You can also use DML statements to modify data on the remote database:

INSERT INTO accounts@sales.hq.acme.com(acc_no, acc_name, balance)
 VALUES (5001, ’BOWER’, 2000);

UPDATE accounts@sales.hq.acme.com
 SET balance = balance + 500;

DELETE FROM accounts@sales.hq.acme.com
 WHERE acc_name = ’BOWER’;

You can also access tables owned by other users on the same database. This

statement assumes scott has access to Adam’s dept table:

SELECT *
 FROM adams.dept@sales.hq.acme.com;

The previous statement connects to the user scott on the remote database and

then queries Adam’s dept table.

A synonym may be created to hide the fact that Scott’s emp table is on a remote

database. The following statement causes all future references to emp to access a

remote emp table owned by scott :

CREATE SYNONYM emp
 FOR scott.emp@sales.hq.acme.com;

PUBLIC Database Link Example The following statement defines a shared public

fixed user database link named sales.hq.acme.com that refers to user scott
with password tiger on the database specified by the string service name ’sales ’:
9-32 SQL Reference

CREATE DATABASE LINK
CREATE SHARED PUBLIC DATABASE LINK sales.hq.acme.com
 CONNECT TO scott IDENTIFIED BY tiger
 AUTHENTICATED BY anupam IDENTIFIED BY bhide
 USING ’sales’;
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-33

CREATE DIMENSION
CREATE DIMENSION

Purpose
Use the CREATE DIMENSION statement to create a dimension. A dimension defines

a parent-child relationship between pairs of column sets, where all the columns of a

column set must come from the same table. However, columns in one column set

(or "level") can come from a different table than columns in another set. The

optimizer uses these relationships with materialized views to perform query
rewrite. The Summary Advisor uses these relationships to recommend creation of

specific materialized views.

Prerequisites
To create a dimension in your own schema, you must have the CREATE DIMENSION
system privilege. To create a dimension in another user’s schema, you must have

the CREATE ANY DIMENSION system privilege. In either case, you must have the

SELECT object privilege on any objects referenced in the dimension.

Note: Oracle does not automatically validate the relationships you

declare when creating a dimension. To validate the relationships

specified in the hierarchy_clause and the join_clause , you

must run the DBMS_OLAP.validate_dimension procedure. For

information on this procedure, see Oracle8i Supplied PL/SQL
Packages Reference.

See Also:

■ CREATE MATERIALIZED VIEW on page 9-88 for more

information on materialized views

■ Oracle8i Data Warehousing Guide for more information on query

rewrite, the optimizer and the Summary Advisor
9-34 SQL Reference

CREATE DIMENSION
Syntax

level_clause ::=

hierarchy_clause ::=

join_clause ::=

attribute_clause ::=

CREATE DIMENSION
schema .

dimension

level_clause
hierarchy_clause

attribute_clause
;

LEVEL level IS

level_table . level_column

(level_table . level_column

,

)

HIERARCHY hierarchy (child_level CHILD OF parent_level
join_clause

)

JOIN KEY

child_key_column

(child_key_column

,

)

REFERENCES parent_level

ATTRIBUTE level DETERMINES

dependent_column

(dependent_column

,

)

SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-35

CREATE DIMENSION
Keywords and Parameters

schema
Specify the schema in which the dimension will be created. If you do not specify

schema , Oracle creates the dimension in your own schema.

dimension
Specify the name of the dimension. The name must be unique within its schema.

level_clause
The level_clause defines a level in the dimension. A level defines dimension

hierarchies and attributes.

hierarchy_clause
The hierarchy_clause defines a linear hierarchy of levels in the dimension. Each

hierarchy forms a chain of parent-child relationships among the levels in the

dimension. Hierarchies in a dimension are independent of each other. They may

(but need not) have columns in common.

Each level in the dimension should be specified at most once in this clause, and

each level must already have been named in the level_clause .

level Specify the name of the level

level_table
. level_
column

Specify the columns in the level. You can specify up to 32

columns. The tables you specify in this clause must already exist.

Restrictions:

■ All of the columns in a level must come from the same table.

■ If columns in different levels come from different tables, then

you must specify the join_clause .

■ The set of columns you specify must be unique to this level.

■ The columns you specify cannot be specified in any other

dimension.

■ Each level_column must be non-null. (However, these

columns need not have NOT NULL constraints.)
9-36 SQL Reference

CREATE DIMENSION
join_clause
The join_clause lets you specify an inner equijoin relationship for a dimension

whose columns are contained in multiple tables. This clause is required and

permitted only when the columns specified in the hierarchy are not all in the same

table.

Restrictions:

■ The child_key_columns must be non-null and the parent key must be

unique and non-null. You need not define constraints to enforce these

conditions, but queries may return incorrect results if these conditions are not

true.

■ Each child key must join with a key in the parent_level table.

■ Self-joins are not permitted (that is, the child_key_columns cannot be in the

same table as parent_level).

hierarchy Specify the name of the hierarchy. This name must be unique in

the dimension.

child_level Specify the name of a level that has an n:1 relationship with a

parent level: the level_columns of child_level cannot be

null, and each child_level value uniquely determines the

value of the next named parent_level .

If the child level_table is different from the parent level_
table , you must specify a join relationship between them in the

join_clause .

parent_level Specify the name of a level.

child_key_
column

Specify one or more columns that are join-compatible with

columns in the parent level.

If you do not specify the schema and table of each child_
column , the schema and table are inferred from the CHILD OF
relationship in the hierarchy_clause . If you do specify the

schema and column of a child_key_column , the schema and

table must match the schema and table of columns that comprise

the child of parent_level in the hierarchy_clause .
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-37

CREATE DIMENSION
attribute_clause
The attribute_clause lets you specify the columns that are uniquely

determined by a hierarchy level. The columns in level must all come from the

same table as the dependent_columns . The dependent_columns need not have

been specified in the level_clause .

For example, if the hierarchy levels are city , state , and country , then city
might determine mayor , state might determine governor , and country might

determine president .

Examples

CREATE DIMENSION Example This statement creates a time dimension on table

time_tab , and creates a geog dimension on tables city , state , and country .

CREATE DIMENSION time
 LEVEL curDate IS time_tab.curDate
 LEVEL month IS time_tab.month
 LEVEL qtr IS time_tab.qtr
 LEVEL year IS time_tab.year
 LEVEL fiscal_week IS time_tab.fiscal_week
 LEVEL fiscal_qtr IS time_tab.fiscal_qtr
 LEVEL fiscal_year IS time_tab.fiscal_year
 HIERARCHY month_rollup (
 curDate CHILD OF
 month CHILD OF
 qtr CHILD OF
 year)
 HIERARCHY fiscal_year_rollup (

Restrictions:

■ All of the child-key columns must come from the same table.

■ The number of child-key columns must match the number of

columns in parent_level , and the columns must be

joinable.

■ Do not specify multiple child key columns unless the parent

level consists of multiple columns.

■ You can specify only one join_clause for a given pair of

levels in the same hierarchy.

parent_level Specify the name of a level.
9-38 SQL Reference

CREATE DIMENSION
 curDate CHILD OF
 fiscal_week CHILD OF
 fiscal_qtr CHILD OF
 fiscal_year)
 ATTRIBUTE curDate DETERMINES (holiday, dayOfWeek)
 ATTRIBUTE month DETERMINES (yr_ago_month, qtr_ago_month)
 ATTRIBUTE fiscal_qtr DETERMINES yr_ago_qtr
 ATTRIBUTE year DETERMINES yr_ago ;

CREATE DIMENSION geog
 LEVEL cityID IS (city.city, city.state)
 LEVEL stateID IS state.state
 LEVEL countryID IS country.country
 HIERARCHY political_rollup (
 cityID CHILD OF
 stateID CHILD OF
 countryID
 JOIN KEY city.state REFERENCES stateID
 JOIN KEY state.country REFERENCES countryID);
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-39

CREATE DIRECTORY
CREATE DIRECTORY

Purpose
Use the CREATE DIRECTORY statement to create a directory object. A directory

object specifies an alias for a directory on the server’s file system where external

binary file LOBs (BFILE s) are located. You can use directory names when referring

to BFILE s in your PL/SQL code and OCI calls, rather than hard-coding the

operating system pathname, thereby allowing greater file management flexibility.

All directories are created in a single namespace and are not owned by an

individual’s schema. You can secure access to the BFILE s stored within the

directory structure by granting object privileges on the directories to specific users.

Prerequisites
You must have CREATE ANY DIRECTORY system privileges to create directories.

When you create a directory, you are automatically granted the READ object

privilege and can grant READ privileges to other users and roles. The DBA can also

grant this privilege to other users and roles.

You must also create a corresponding operating system directory for file storage.

Your system or database administrator must ensure that the operating system

directory has the correct read permissions for Oracle processes.

Privileges granted for the directory are created independently of the permissions

defined for the operating system directory. Therefore, the two may or may not

correspond exactly. For example, an error occurs if user scott is granted READ
privilege on the directory schema object, but the corresponding operating system

directory does not have READ permission defined for Oracle processes.

See Also:

■ "Large Object (LOB) Datatypes" on page 2-16 for more

information on BFILE objects

■ GRANT on page 11-31 for more information on granting object

privileges
9-40 SQL Reference

CREATE DIRECTORY
Syntax

Keywords and Parameters

OR REPLACE
Specify OR REPLACE to re-create the directory database object if it already exists.

You can use this clause to change the definition of an existing directory without

dropping, re-creating, and regranting database object privileges previously granted

on the directory.

Users who had previously been granted privileges on a redefined directory can still

access the directory without being regranted the privileges

directory
Specify the name of the directory object to be created. The maximum length of

directory is 30 bytes. You cannot qualify a directory object with a schema name.

’path_name ’
Specify the full pathname of the operating system directory on the server where the

files are located. The single quotes are required, with the result that the path name is

case sensitive.

See Also: DROP DIRECTORY on page 10-133 for information on

removing a directory from the database

Note: Oracle does not verify that the directory you specify

actually exists. Therefore, take care that you specify a valid

directory in your operating system. In addition, if your operating

system uses case-sensitive pathnames, be sure you specify the

directory in the correct format. (However, you need not include a

trailing slash at the end of the pathname.)

CREATE
OR REPLACE

DIRECTORY directory AS ’ path_name ’ ;
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-41

CREATE DIRECTORY
Example

CREATE DIRECTORY Example The following statement redefines directory

database object bfile_dir to enable access to BFILE s stored in the operating

system directory /private1/lob/files :

CREATE OR REPLACE DIRECTORY bfile_dir AS ’/private1/LOB/files’;
9-42 SQL Reference

CREATE FUNCTION
CREATE FUNCTION

Purpose
Use the CREATE FUNCTION statement to create a standalone stored function or a

call specification. (You can also create a function as part of a package using the

CREATE PACKAGE statement.)

A stored function (also called a user function) is a set of PL/SQL statements you

can call by name. Stored functions are very similar to procedures, except that a

function returns a value to the environment in which it is called. User functions can

be used as part of a SQL expression.

A call specification declares a Java method or a third-generation language (3GL)

routine so that it can be called from SQL and PL/SQL. The call specification tells

Oracle which Java method, or which named function in which shared library, to

invoke when a call is made. It also tells Oracle what type conversions to make for

the arguments and return value.

See Also:

■ CREATE PROCEDURE on page 9-132 for a general discussion

of procedures and functions

■ "Examples" on page 9-50 for examples of creating functions

■ CREATE PACKAGE on page 9-122 for information on creating

packages

■ ALTER FUNCTION on page 7-38 for information on modifying

a function

■ CREATE LIBRARY on page 9-86 for information on shared

libraries

■ DROP FUNCTION on page 10-134 for information on

dropping a standalone function

■ Oracle8i Application Developer’s Guide - Fundamentals for more

information about registering external functions
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-43

CREATE FUNCTION
Prerequisites
Before a stored function can be created, the user SYS must run the SQL script

DBMSSTDX.SQL. The exact name and location of this script depend on your

operating system.

To create a function in your own schema, you must have the CREATE PROCEDURE
system privilege. To create a function in another user’s schema, you must have the

CREATE ANY PROCEDURE system privilege. To replace a function in another user’s

schema, you must have the ALTER ANY PROCEDURE system privilege.

To invoke a call specification, you may need additional privileges (for example,

EXECUTE privileges on C library for a C call specification).

To embed a CREATE FUNCTION statement inside an Oracle precompiler program,

you must terminate the statement with the keyword END-EXEC followed by the

embedded SQL statement terminator for the specific language.

Syntax

See Also: PL/SQL User’s Guide and Reference or Oracle8i Java Stored
Procedures Developer’s Guide for more information on such

prerequisites

CREATE
OR REPLACE

FUNCTION
schema .

function

(argument

IN

OUT

IN OUT NOCOPY
datatype

,

)

RETURN datatype

invoker_rights_clause

DETERMINISTIC

PARALLEL_ENABLE IS

AS

pl/sql_function_body

call_spec
;

9-44 SQL Reference

CREATE FUNCTION
invoker_rights_clause ::=

call_spec ::=

Java_declaration ::=

C_declaration ::=

Keywords and Parameters

OR REPLACE
Specify OR REPLACE to re-create the function if it already exists. Use this clause to

change the definition of an existing function without dropping, re-creating, and

regranting object privileges previously granted on the function. If you redefine a

function, Oracle recompiles it.

Users who had previously been granted privileges on a redefined function can still

access the function without being regranted the privileges.

If any function-based indexes depend on the function, Oracle marks the indexes

DISABLED.

See Also: ALTER FUNCTION on page 7-38 for information on

recompiling functions

AUTHID
CURRENT_USER

DEFINER

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
WITH CONTEXT

PARAMETERS (parameters)
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-45

CREATE FUNCTION
schema
Specify the schema to contain the function. If you omit schema , Oracle creates the

function in your current schema.

function
Specify the name of the function to be created. If creating the function results in

compilation errors, Oracle returns an error. You can see the associated compiler

error messages with the SHOW ERRORS command.

Restrictions on User-Defined Functions

User-defined functions cannot be used in situations that require an unchanging

definition. Thus, you cannot use user-defined functions:

■ In a CHECK constraint clause of a CREATE TABLE or ALTER TABLE statement

■ In a DEFAULT clause of a CREATE TABLE or ALTER TABLE statement

In addition, when a function is called from within a query or DML statement, the

function cannot:

■ Have OUT or IN OUT parameters

■ Commit or roll back the current transaction, create or roll back to a savepoint, or

alter the session or the system. DDL statements implicitly commit the current

transaction, so a user-defined function cannot execute any DDL statements.

■ Write to the database, if the function is being called from a SELECT statement.

However, a function called from a subquery in a DML statement can write to

the database.

■ Write to the same table that is being modified by the statement from which the

function is called, if the function is called from a DML statement.

Except for the restriction on OUT and IN OUT parameters, Oracle enforces these

restrictions not only for the function called directly from the SQL statement, but

also for any functions that function calls, and on any functions called from the SQL

statements executed by that function or any function it calls.

argument
Specify the name of an argument to the function. If the function does not accept

arguments, you can omit the parentheses following the function name.

IN Specify IN to indicate that you must supply a value for the

argument when calling the function. This is the default.
9-46 SQL Reference

CREATE FUNCTION
RETURN

OUT Specify OUT to indicate that the function will set the value of the

argument.

IN OUT Specify IN OUT to indicate that a value for the argument can be

supplied by you and may be set by the function.

NOCOPY Specify NOCOPY to instruct Oracle to pass this argument as fast as

possible. This clause can significantly enhance performance when

passing a large value like a record, an index-by table, or a varray

to an OUT or IN OUT parameter. (IN parameter values are always

passed NOCOPY.)

■ When you specify NOCOPY, assignments made to a package

variable may show immediately in this parameter (or

assignments made to this parameter may show immediately

in a package variable) if the package variable is passed as the

actual assignment corresponding to this parameter.

■ Similarly, changes made either to this parameter or to another

parameter may be visible immediately through both names if

the same variable is passed to both.

■ If the function is exited with an unhandled exception, any

assignment made to this parameter may be visible in the

caller’s variable.

These effects may or may not occur on any particular call. You

should use NOCOPY only when these effects would not matter.

datatype Specify the datatype of an argument. An argument can have any

datatype supported by PL/SQL.

The datatype cannot specify a length, precision, or scale. Oracle

derives the length, precision, or scale of an argument from the

environment from which the function is called.

datatype Specify the datatype of the function’s return value. Because every

function must return a value, this clause is required. The return

value can have any datatype supported by PL/SQL.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-47

CREATE FUNCTION
invoker_rights_clause
The invoker_rights_clause lets you specify whether the function executes

with the privileges and in the schema of the user who owns it or with the privileges

and in the schema of CURRENT_USER.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the function.

DETERMINISTIC
DETERMINISTIC is an optimization hint that allows the system to use a saved copy

of the function’s return result (if such a copy is available). The saved copy could

come from a materialized view, a function-based index, or a redundant call to the

same function in the same SQL statement. The query optimizer can choose whether

to use the saved copy or re-call the function.

The datatype cannot specify a length, precision, or scale. Oracle

derives the length, precision, or scale of the return value from the

environment from which the function is called.

See Also: PL/SQL User’s Guide and Reference for information

on PL/SQL datatypes

AUTHID
CURRENT_USER

Specify CURRENT_USER if you want the function to execute with

the privileges of CURRENT_USER. This clause creates an "invoker-

rights function."

This clause also specifies that external names in queries, DML

operations, and dynamic SQL statements resolve in the schema of

CURRENT_USER. External names in all other statements resolve in

the schema in which the function resides.

AUTHID
DEFINER

Specify DEFINER if you want the function to execute with the

privileges of the owner of the schema in which the function

resides, and that external names resolve in the schema where the

function resides. This is the default.

See Also:

■ Oracle8i Concepts and Oracle8i Application Developer’s Guide -
Fundamentals for information on how CURRENT_USER is
determined

■ PL/SQL User’s Guide and Reference
9-48 SQL Reference

CREATE FUNCTION
The function should reliably return the same result value whenever it is called with

the same values for its arguments. Therefore, do not define the function to use

package variables or to access the database in any way that might affect the

function’s return result, because the results of doing so will not be captured if the

system chooses not to call the function.

A function must be declared DETERMINISTIC in order to be called in the

expression of a function-based index, or from the query of a materialized view if

that view is marked REFRESH FAST or ENABLE QUERY REWRITE.

PARALLEL_ENABLE
PARALLEL_ENABLE is an optimization hint indicating that the function can be

executed from a parallel execution server of a parallel query operation. The function

should not use session state, such as package variables, as those variables may not

be shared among the parallel execution servers.

IS | AS

See Also:

■ Oracle8i Data Warehousing Guide for information on

materialized views

■ CREATE INDEX on page 9-52 for information on function-

based indexes

See Also: Oracle8i Application Developer’s Guide - Fundamentals

pl/sql_
subprogram_
body

Declare the function in a PL/SQL subprogram body.

See Also: Oracle8i Application Developer’s Guide - Fundamentals
for more information on PL/SQL subprograms
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-49

CREATE FUNCTION
Examples

CREATE FUNCTION Examples The following statement creates the function get_
bal .

CREATE FUNCTION get_bal(acc_no IN NUMBER)
 RETURN NUMBER
 IS acc_bal NUMBER(11,2);
 BEGIN
 SELECT balance
 INTO acc_bal
 FROM accounts
 WHERE account_id = acc_no;
 RETURN(acc_bal);
 END;

The get_bal function returns the balance of a specified account.

When you call the function, you must specify the argument acc_no , the number of

the account whose balance is sought. The datatype of acc_no is number.

The function returns the account balance. The RETURN clause of the CREATE
FUNCTION statement specifies the datatype of the return value to be NUMBER.

The function uses a SELECT statement to select the balance column from the row

identified by the argument acc_no in the accounts table. The function uses a

call_spec The call_spec lets you map a Java or C method name,

parameter types, and return type to their SQL counterparts. In

Java_declaration, ’string ’ identifies the Java

implementation of the method.

See Also:

- Oracle8i Java Stored Procedures Developer’s Guide

- Oracle8i Application Developer’s Guide - Fundamentals for an

explanation of the parameters and semantics of the C_
declaration

AS EXTERNAL AS EXTERNAL is an alternative way of declaring

a C method. This clause has been deprecated

and is supported for backward compatibility

only. Oracle Corporation recommends that you

use the AS LANGUAGE C syntax.
9-50 SQL Reference

CREATE FUNCTION
RETURN statement to return this value to the environment in which the function is

called.

The function created above can be used in a SQL statement. For example:

SELECT get_bal(100) FROM DUAL;

The following statement creates PL/SQL standalone function get_val that

registers the C routine c_get_val as an external function. (The parameters have

been omitted from this example.)

CREATE FUNCTION get_val
(x_val IN NUMBER,
y_val IN NUMBER,
image IN LONG RAW)
RETURN BINARY_INTEGER AS LANGUAGE C
 NAME "c_get_val"
 LIBRARY c_utils
 PARAMETERS (...);
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-51

CREATE INDEX
CREATE INDEX

Purpose
Use the CREATE INDEX statement to create an index on

■ One or more columns of a table, a partitioned table, an index-organized table, or

a cluster

■ One or more scalar typed object attributes of a table or a cluster

■ A nested table storage table for indexing a nested table column

An index is a schema object that contains an entry for each value that appears in the

indexed column(s) of the table or cluster and provides direct, fast access to rows.

Oracle supports several types of index:

■ Conventional (B*-tree) indexes

■ Bitmap indexes, which store rowids associated with a key value as a bitmap

■ Partitioned indexes, which consist of partitions containing an entry for each

value that appears in the indexed column(s) of the table.

■ Function-based indexes, which are based on expressions. They enable you to

construct queries that evaluate the value returned by an expression, which in

turn may include functions (built-in or user-defined).

■ Domain indexes, which are instances of an application-specific index of type .

Prerequisites
To create an index in your own schema, one of the following conditions must be

true:

■ The table or cluster to be indexed must be in your own schema.

■ You must have INDEX privilege on the table to be indexed.

See Also:

■ Oracle8i Concepts for a discussion of indexes

■ ALTER INDEX on page 7-40 for information on modifying an

index

■ DROP INDEX on page 10-136 for information on dropping an

index
9-52 SQL Reference

CREATE INDEX
■ You must have CREATE ANY INDEX system privilege.

To create an index in another schema, you must have CREATE ANY INDEX system

privilege. Also, the owner of the schema to contain the index must have either space

quota on the tablespaces to contain the index or index partitions, or UNLIMITED
TABLESPACE system privilege.

To create a domain index in your own schema, in addition to the prerequisites for

creating a conventional index, you must also have EXECUTE privilege on the

indextype. If you are creating a domain index in another user’s schema, the index

owner also must have EXECUTE privilege on the indextype and its underlying

implementation type. Before creating a domain index, you should first define the

indextype. See .

To create a function-based index in your own schema on your own table, in

addition to the prerequisites for creating a conventional index, you must have the

QUERY REWRITE system privilege. To create the index in another schema or on

another schema's table, you must have the GLOBAL QUERY REWRITE privilege. In

both cases, the table owner must also have the EXECUTE object privilege on the

function(s) used in the function-based index. In addition, in order for Oracle to use

function-based indexes in queries, the QUERY_REWRITE_ENABLED parameter must

be set to true , and the QUERY_REWRITE_INTEGRITY parameter must be set to

trusted .

Syntax

cluster_index_clause ::=

See Also: CREATE INDEXTYPE on page 9-76

CREATE

UNIQUE

BITMAP
INDEX

schema .
index ON

cluster_index_clause

table_index_clause
;

CLUSTER
schema .

cluster index_attributes
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-53

CREATE INDEX
table_index_clause ::=

index_expr_list ::=

schema .
table

t_alias
(index_expr_list

ASC

DESC

,

)

global_index_clause

local_index_clause
index_attributes

domain_index_clause

column

column_expression
9-54 SQL Reference

CREATE INDEX
index_attributes ::=

physical_attributes_clause ::=

domain_index_clause ::=

physical_attributes_clause

LOGGING

NOLOGGING

ONLINE

COMPUTE STATISTICS

TABLESPACE
tablespace

DEFAULT

COMPRESS integer

NOCOMPRESS

NOSORT

REVERSE

parallel_clause

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

INDEXTYPE IS indextype
PARAMETERS (’ string ’)
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-55

CREATE INDEX
global_index_clause ::=

global_partition_clause ::=

local_index_clauses ::=

on_range_partitioned_table_clause ::=

GLOBAL PARTITION BY RANGE (column_list) (global_partition_clause

,

)

PARTITION
partition

VALUES LESS THAN (value_list)

physical_attributes_clause

TABLESPACE tablespace

LOGGING

NOLOGGING

LOCAL

on_range_partitioned_table_clause

on_hash_partitioned_table_clause

on_composite_partitioned_table_clause

(PARTITION
partition

segment_attributes_clause

,

)

9-56 SQL Reference

CREATE INDEX
segment_attributes_clause ::=

on_hash_partitioned_table_clause ::=

on_composite_partitioned_table_clause ::=

physical_attributes_clause

TABLESPACE tablespace

LOGGING

NOLOGGING

STORE IN (
tablespace

,

DEFAULT
)

(PARTITION
partition

TABLESPACE tablespace

,

)

STORE IN (
tablespace

,

DEFAULT
)

(PARTITION
partition

segment_attribute_clause index_subpartition_clause

,

)

SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-57

CREATE INDEX
index_subpartition_clause ::=

parallel_clause ::=

storage_clause : See storage_clause on page 11-129.

Keywords and Parameters

UNIQUE
Specify UNIQUE to indicate that the value of the column (or columns) upon which

the index is based must be unique. If the index is local nonprefixed (see below),

then the index key must contain the partitioning key.

Oracle recommends that you do not explicitly define UNIQUE indexes on tables.

Uniqueness is strictly a logical concept and should be associated with the

definition of a table. Therefore, define UNIQUE integrity constraints on the

desired columns.

Restrictions:

■ You cannot specify both UNIQUE and BITMAP.

■ You cannot specify UNIQUE for a domain index.

See Also: constraint_clause on page 8-136 for information on

integrity constraints

STORE IN (
tablespace

,

DEFAULT
)

(SUBPARTITION
subpartition

TABLESPACE tablespace

,

)

NOPARALLEL

PARALLEL
integer
9-58 SQL Reference

CREATE INDEX
BITMAP
Specify BITMAP to indicate that index is to be created as a bitmap, rather than as a

B-tree. Bitmap indexes store the rowids associated with a key value as a bitmap.

Each bit in the bitmap corresponds to a possible rowid, and if the bit is set, it means

that the row with the corresponding rowid contains the key value. The internal

representation of bitmaps is best suited for applications with low levels of

concurrent transactions, such as data warehousing.

Restrictions:

■ You cannot specify BITMAP when creating a global partitioned index or an

index-organized table.

■ You cannot specify both UNIQUE and BITMAP.

■ You cannot specify BITMAP for a domain index.

schema
Specify the schema to contain the index. If you omit schema , Oracle creates the

index in your own schema.

index
Specify the name of the index to be created. An index can contain several

partitions.

cluster_index_clause
Use the cluster_index_clause to identify the cluster for which a cluster index

is to be created. If you do not qualify cluster with schema , Oracle assumes the

cluster is in your current schema. You cannot create a cluster index for a hash

cluster.

table_index_clause
Specify the table (and its attributes) on which you are defining the index. If you do

not qualify table with schema , Oracle assumes the table is contained in your own

schema.

See Also: Oracle8i Concepts and Oracle8i Performance Guide and
Reference for more information about using bitmap indexes

See Also: CREATE CLUSTER on page 9-3
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-59

CREATE INDEX
You create an index on a nested table column by creating the index on the nested

table storage table. Include the NESTED_TABLE_ID pseudocolumn of the storage

table to create a UNIQUE index, which effectively ensures that the rows of a nested

table value are distinct.

Restrictions:

■ If the index is local, then table must be partitioned.

■ If the table is index-organized, this statement creates a secondary index. You

cannot specify BITMAPor REVERSEfor this secondary index, and the combined

size of the index key and the logical rowid should be less than half the block

size.

■ If table is a temporary table, the index will also be temporary with the same

scope (session or transaction) as table . The following restrictions apply to

indexes on temporary table:

■ The index cannot be a partitioned index or a domain index.

■ You cannot specify the physical_attributes_clause or the

parallel_clause .

■ You cannot specify LOGGING, NOLOGGING, or TABLESPACE.

index_expr_list

The index_expr_list lets you specify the column or column expression upon

which the index is based.

See Also: CREATE TABLE on page 10-7 and Oracle8i Concepts for

more information on temporary tables

t_alias Specify a correlation name (alias) for the table upon which you are

building the index.

Note: This alias is required if the index_expression_list
references any object type attributes or object type methods.

See "Function-based Index on Type Method Example" on

page 9-73.
9-60 SQL Reference

CREATE INDEX
column Specify the name of a column in the table. A bitmap index can

have a maximum of 30 columns. Other indexes can have as many

as 32 columns.

Restriction: You cannot create an index on columns or attributes

whose type is user-defined, LONG, LONG RAW, LOB, or REF, except

that Oracle supports an index on REF type columns or attributes

that have been defined with a SCOPE clause.

You can create an index on a scalar object attribute column or on

the system-defined NESTED_TABLE_ID column of the nested

table storage table. If you specify an object attribute column, the

column name must be qualified with the table name. If you

specify a nested table column attribute, it must be qualified with

the outermost table name, the containing column name, and all

intermediate attribute names leading to the nested table column

attribute.

column_
expression

is an expression built from columns of table , constants, SQL

functions, and user-defined functions. When you specify

column_expression , you create a function-based index.

Name resolution of the function is based on the schema of the

index creator. User-defined functions used in column_
expression are fully name resolved during the CREATE INDEX
operation.

After creating a function-based index, collect statistics on both the

index and its base table using the ANALYZE statement. Oracle

cannot use the function-based index until these statistics have

been generated.

See Also: ANALYZE on page 8-96

Notes on function-based indexes:

■ When you subsequently query a table that uses a function-

based index, you must ensure in the query that column_
expression is not null. However, Oracle will use a function-

based index in a query even if the columns specified in the

WHERE clause are in a different order than their order in the

column_expression that defined the function-based index.

See Also: The "Function-Based Index Example" on page 9-72
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-61

CREATE INDEX
■ If the function on which the index is based becomes invalid or

is dropped, Oracle marks the index DISABLED. Queries on a

DISABLED index fail if the optimizer chooses to use the index.

DML operations on a DISABLED index fail unless the index is

also marked UNUSABLEand the parameter SKIP_UNUSABLE_
INDEXES is set to true .

See Also: ALTER SESSION on page 7-105 for more

information on this parameter

■ Oracle’s use of function-based indexes is also affected by the

setting of the QUERY_REWRITE_ENABLED session parameter.

See Also: ALTER SESSION on page 7-105

■ If a public synonym for a function, package, or type is used in

column_expression , and later an actual object with the

same name is created in the table owner's schema, then Oracle

will disable the function-based index. When you subsequently

enable the function-based index using ALTER INDEX ...

ENABLE or ALTER INDEX ... REBUILD, the function, package,

or type used in the column_expression will continue to

resolve to the function, package, or type to which the public

synonym originally pointed. It will not resolve to the new

function, package, or type.

■ If the definition of a function-based index generates internal

conversion to character data, use caution when changing NLS

parameter settings. Function-based indexes use the current

database settings for NLS parameters. If you reset these

parameters at the session level, queries using the function-

based index may return incorrect results. Two exceptions are

the collation parameters (NLS_SORT and NLS_COMP). Oracle

handles the conversions correctly even if these have been reset

at the session level.

Restrictions on function-based indexes:

■ Any user-defined function referenced in column_
expression must be DETERMINISTIC.

■ For a function-based globally partitioned index, the column_
expression cannot be the partitioning key.
9-62 SQL Reference

CREATE INDEX
■ All functions must be specified with parentheses, even if they

have no parameters. Otherwise Oracle interprets them as

column names.

■ Any function you specify in column_expression must

return a repeatable value. For example, you cannot specify the

SYSDATE or USER function or the ROWNUM pseudocolumn.

■ You cannot build a function-based index on LOB, REF, nested

table, or varray columns. In addition, the function in

column_expression cannot take as arguments any objects

with attributes of type LOB, REF, nested table, or varray.

■ The column_expression cannot contain any aggregate

functions.

See Also: CREATE FUNCTION on page 9-43 and PL/SQL
User’s Guide and Reference

ASC | DESC Use ASC or DESC to indicate whether the index should be created

in ascending or descending order. Indexes on character data are

created in ascending or descending order of the character values

in the database character set.

Oracle treats descending indexes as if they were function-based

indexes. You do not need the QUERY REWRITE or GLOBAL QUERY
REWRITE privileges to create them, as you do with other function-

based indexes. However, as with other function-based indexes,

Oracle does not use descending indexes until you first analyze the

index and the table on which the index is defined. See the

column_expression clause of this statement.

Restriction: You cannot specify either of these clauses for a

domain index. You cannot specify DESC for a reverse index.

Oracle ignores DESC if index is bitmapped or if the

COMPATIBLE initialization parameter is set to a value less than

8.1.0.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-63

CREATE INDEX
index_attributes

physical_
attributes_
clause

Use the physical_attributes_clause to establish values for

physical and storage characteristics for the index. See CREATE

TABLE on page 10-7.

Restriction: You cannot specify the PCTUSED parameter for an

index.

PCTFREE Specify the percentage of space to leave free for

updates and insertions within each of the

index’s data blocks.

storage_
clause

Use the storage_clause to establish the storage

characteristics for the index.

See Also: storage_clause on page 11-129

TABLESPACE Specify the name of the tablespace to hold the index, index

partition, or index subpartition. If you omit this clause, Oracle

creates the index in the default tablespace of the owner of the

schema containing the index.

For a local index, you can specify the keyword DEFAULT in place

of tablespace . New partitions or subpartitions added to the

local index will be created in the same tablespace(s) as the

corresponding partitions or subpartitions of the underlying table.

COMPRESS Specify COMPRESS to enable key compression, which eliminates

repeated occurrence of key column values and may substantially

reduce storage. Use integer to specify the prefix length (number

of prefix columns to compress).

■ For unique indexes, the valid range of prefix length values is

from 1 to the number of key columns minus 1. The default

prefix length is the number of key columns minus 1.

■ For nonunique indexes, the valid range of prefix length values

is from 1 to the number of key columns. The default prefix

length is the number of key columns.

Oracle compresses only nonpartitioned indexes that are

nonunique or unique indexes of at least two columns.

Restriction: You cannot specify COMPRESS for a bitmap index.
9-64 SQL Reference

CREATE INDEX
NOCOMPRESS Specify NOCOMPRESS to disable key compression. This is the

default.

NOSORT Specify NOSORT to indicate to Oracle that the rows are stored in

the database in ascending order, so that Oracle does not have to

sort the rows when creating the index. If the rows of the indexed

column or columns are not stored in ascending order, Oracle

returns an error. For greatest savings of sort time and space, use

this clause immediately after the initial load of rows into a table.

Restrictions:

■ You cannot specify REVERSE with this clause.

■ You cannot use this clause to create a cluster, partitioned, or

bitmap index.

■ You cannot specify this clause for a secondary index on an

index-organized table.

REVERSE Specify REVERSE to store the bytes of the index block in reverse

order, excluding the rowid. You cannot specify NOSORT with this

clause.

You cannot reverse a bitmap index or an index-organized table.

LOGGING |
NOLOGGING

Indicate whether the creation of the index will be logged

(LOGGING) or not logged (NOLOGGING) in the redo log file. It also

specifies that subsequent Direct Loader (SQL*Loader) and direct-

load INSERT operations against the index are logged or not

logged. LOGGING is the default.

If index is nonpartitioned, this is the logging attribute of the

index.

If index is partitioned, the logging attribute specified is

■ The default value of all partitions specified in the CREATE
statement (unless you specify LOGGING|NOLOGGING in the

PARTITION description clause)

■ The default value for the segments associated with the index

partitions

■ The default value for local index partitions or subpartitions

added implicitly during subsequent ALTER TABLE ... ADD
PARTITION operations
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-65

CREATE INDEX
In NOLOGGING mode, data is modified with minimal logging (to

mark new extents INVALID and to record dictionary changes).

When applied during media recovery, the extent invalidation

records mark a range of blocks as logically corrupt, since the redo

data is not logged. Thus if you cannot afford to lose this index, it

is important to take a backup after the NOLOGGING operation.

If the database is run in ARCHIVELOG mode, media recovery from

a backup taken before the LOGGING operation will re-create the

index. However, media recovery from a backup taken before the

NOLOGGING operation will not re-create the index.

The logging attribute of the index is independent of that of its

base table.

If you omit this clause, the logging attribute is that of the

tablespace in which it resides.

See Also: Oracle8i Concepts and Oracle8i Parallel Server
Concepts for more information about logging and parallel

DML

ONLINE Specify ONLINE to indicate that DML operations on the table will

be allowed during creation of the index.

Restriction: Parallel DML is not supported during online index

building. If you specify ONLINE and then issue parallel DML

statements, Oracle returns an error.

See Also: Oracle8i Concepts for a description of online index

building and rebuilding

COMPUTE
STATISTICS

Specify COMPUTE STATISTICS to collect statistics at relatively

little cost during the creation of an index. These statistics are

stored in the data dictionary for ongoing use by the optimizer in

choosing a plan of execution for SQL statements.

The types of statistics collected depend on the type of index you

are creating.

Note: If you create an index using another index (instead of a

table), the original index might not provide adequate

statistical information. Therefore, Oracle generally uses the

base table to compute the statistics, which will improve the

statistics but may negatively affect performance.
9-66 SQL Reference

CREATE INDEX
global_index_clause

The global_index_clause lets you specify that the partitioning of the index is

user defined and is not equipartitioned with the underlying table. By default,

nonpartitioned indexes are global indexes.

Additional methods of collecting statistics are available in PL/

SQL packages and procedures.

See Also: Oracle8i Supplied PL/SQL Packages Reference

parallel_
clause

Specify the parallel_clause if you want creation of the index

to be parallelized.

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLEL if you want Oracle to select a degree of

parallelism equal to the number of CPUs available on all

participating instances times the value of the PARALLEL_
THREADS_PER_CPU initialization parameter.

PARALLEL
integer

Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel

operation. Each parallel thread may use one or two parallel

execution servers. Normally Oracle calculates the optimum

degree of parallelism, so it is not necessary for you to specify

integer .

PARTITION BY
RANGE

Specify PARTITION BY RANGE to indicate that the global index is

partitioned on the ranges of values from the columns specified in

column_list . You cannot specify this clause for a local index.

(column_
list)

Specify the name of the column(s) of a table on which the index is

partitioned. The column_list must specify a left prefix of the

index column list.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-67

CREATE INDEX
local_index_clauses

The local_index_clauses let you specify that the index is partitioned on the

same columns, with the same number of partitions and the same partition bounds

You cannot specify more than 32 columns in column_list, and

the columns cannot contain the ROWID pseudocolumn or a

column of type ROWID.

Note: If your enterprise has or will have databases using

different character sets, use caution when partitioning on

character columns. The sort sequence of characters is not

identical in all character sets.

See Also: Oracle8i National Language Support Guide for more

information on character set support

PARTITION
partition

The PARTITION clause lets you describe the individual partitions.

The number of clauses determines the number of partitions. If you

omit partition , Oracle generates a name with the form SYS_Pn.

VALUES LESS
THAN (value_
list)

Specify the (noninclusive) upper bound for the current partition in

a global index. The value_list is a comma-separated, ordered

list of literal values corresponding to column_list in the

partition_by_range_clause . Always specify MAXVALUE as

the value_list of the last partition.

Restriction: You cannot specify this clause for a local index.

Note: If index is partitioned on a DATE column, and if the

NLS date format does not specify the first two digits of the

year, you must use the TO_DATE function with a 4-character

format mask for the year. The NLS date format is determined

implicitly by NLS_TERRITORY or explicitly by NLS_DATE_
FORMAT.

See Also:

- Oracle8i National Language Support Guide for more

information on these initialization parameters

- "Partitioned Table Example" on page 10-51
9-68 SQL Reference

CREATE INDEX
as table . Oracle automatically maintains LOCAL index partitioning as the

underlying table is repartitioned.

on_range_
partitioned_
table_clause

Specify the name and attributes of an index on a range-partitioned

table.

PARTITION
partition

Specify the names of the individual partitions.

The number of clauses determines the number

of partitions. For a local index, the number of

index partitions must be equal to the number of

the table partitions, and in the same order.

If you omit partition , Oracle generates a

name that is consistent with the corresponding

table partition. If the name conflicts with an

existing index partition name, the form SYS_Pn
is used.

on_hash_
partitioned_
table_clause

Specify the name and attributes of an index on a hash-partitioned

table. If you do not specify partition , Oracle uses the name of

the corresponding base table partition, unless it conflicts with an

explicitly specified name of another index partition. In this case,

Oracle generates a name of the form SYS_Pnnn .

You can optionally specify TABLESPACEfor all index partitions or

for one or more individual partitions. If you do not specify

TABLESPACE at the index or partition level, Oracle stores each

index partition in the same tablespace as the corresponding table

partition.

on_
composite_
partitioned_
table_clause

Specify the name and attributes of an index on a composite-

partitioned table. The first STORE IN clause specifies the default

tablespace for the index subpartitions. You can override this

storage by specifying a different tablespace in the index_
subpartitioning_clause .

If you do not specify TABLESPACE for subpartitions either in this

clause or in the index_subpartitioning_clause , Oracle uses

the tablespace specified for index . If you also do not specify

TABLESPACE for index , Oracle stores the subpartition in the

same tablespace as the corresponding table subpartition.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-69

CREATE INDEX
STORE IN The STORE IN clause lets you specify how index hash partitions

(for a hash-partitioned index) or index subpartitions (for a

composite-partitioned index) are to be distributed across various

tablespaces. The number of tablespaces does not have to equal the

number of index partitions. If the number of index partitions is

greater than the number of tablespaces, Oracle cycles through the

names of the tablespaces.

DEFAULT The DEFAULT clause is valid only for a local

index on a hash or composite-partitioned table.

This clause overrides any tablespace specified at

the index level for a partition or subpartition,

and stores the index partition or subpartition in

the same partition as the corresponding table

partition or subpartition.

index_
subpartition_
clause

The index_subpartition_clause lets you

specify one or more tablespaces in which to

store all subpartitions in partition or one or

more individual subpartitions in partition .

The subpartition inherits all other attributes

from partition . Attributes not specified for

partition are inherited from index .

domain_
index_clause

Use the domain_index_clause to indicate that index is a

domain index.

Restrictions:

■ The index_expr_list can specify only a single column.

■ You can define only one domain index on a column.

■ You cannot specify a bitmap, unique, or function-based

domain index.

■ You cannot create a local domain index on a partitioned table.

■ You cannot create a domain index on a partitioned table with

row movement enabled.
9-70 SQL Reference

CREATE INDEX
Examples

PARALLEL Example The following statement creates an index using 10 parallel

execution servers, 5 to scan scott.emp and another 5 to populate the emp_ix
index:

CREATE INDEX emp_idx
 ON scott.emp (ename)
 PARALLEL 5;

column Specify the table columns or object attributes on

which the index is defined. Each column can

have only one domain index defined on it.

Restrictions:

■ You cannot create a domain index on a

column of datatype REF, varray, nested

table, LONG, or LONG RAW.

■ You can create a domain index on a column

of user-defined type, but not on an attribute

of a column of user-defined type if that

attribute itself is a user-defined type.

indextype Specify the name of the indextype. This name

should be a valid schema object that you have

already defined.

See Also: CREATE INDEXTYPE on

page 9-76

PARAMETERS
’string ’

Specify the parameter string that is passed

uninterpreted to the appropriate indextype

routine. The maximum length of the parameter

string is 1000 characters.

Once the domain index is created, Oracle

invokes this routine (see .) If the routine does not

return successfully, the domain index is marked

FAILED . The only operation supported on an

failed domain index is DROP INDEX.

See Also: Oracle8i Data Cartridge Developer’s
Guide for information on these routines
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-71

CREATE INDEX
COMPRESS Example To create an index with the COMPRESS clause, you might

issue the following statement:

CREATE INDEX emp_idx2 ON emp(job, ename) COMPRESS 1;

The index will compress repeated occurrences of job column values.

NOLOGGING Example To quickly create an index in parallel on a table that was

created using a fast parallel load (so all rows are already sorted), you might issue

the following statement. (Oracle will choose the appropriate degree of parallelism.)

CREATE INDEX i_loc
 ON big_table (akey)
 NOSORT
 NOLOGGING
 PARALLEL;

Cluster Index Example To create an index for the employee cluster, issue the

following statement:

CREATE INDEX ic_emp ON CLUSTER employee;

No index columns are specified, because the index is automatically built on all the

columns of the cluster key. For cluster indexes, all rows are indexed.

NULL Example Consider the following statement:

SELECT ename FROM emp WHERE comm IS NULL;

The above query does not use an index created on the comm column unless it is a

bitmap index.

Function-Based Index Example The following statements creates a function-based

index on the emp table based on an uppercase evaluation of the ename column:

CREATE INDEX emp_i ON emp (UPPER(ename));

To ensure that Oracle will use the index rather than performing a full table scan, be

sure that the value of the function is not null in subsequent queries. For example,

the statement

SELECT * FROM emp WHERE UPPER(ename) IS NOT NULL
 ORDER BY UPPER(ename);

is guaranteed to use the index, but without the WHEREclause, Oracle may perform a

full table scan.
9-72 SQL Reference

CREATE INDEX
In the next statements showing index creation and subsequent query, Oracle will

use index emp_fi even though the columns are in reverse order in the query:

CREATE INDEX emp_fi ON emp(cola + colb);

SELECT * FROM emp WHERE colb + cola > 500;

Function-based Index on Type Method Example This example entails an object

type rectangle containing two number attributes: length and width. The area()
method computes the area of the rectangle.

CREATE TYPE rectangle AS OBJECT
(length NUMBER,
 width NUMBER,
 MEMBER FUNCTION area RETURN NUMBER DETERMINISTIC
);

CREATE OR REPLACE TYPE BODY rectangle AS
 MEMBER FUNCTION area RETURN NUMBER IS

BEGIN
 RETURN (length*width);
 END;
END;

Now, if you create a table rectab of type rectangle , you can create a function-

based index on the area() method as follows:

CREATE TABLE recttab OF rectangle;
CREATE INDEX area_idx ON recttab x (x.area());

You can use this index efficiently to evaluate a query of the form:

SELECT * FROM recttab x WHERE x.area() > 100;

Computing Statistics Example The following statement collects statistics on the

nonpartitioned emp_indx index:

CREATE INDEX emp_indx ON emp(empno) COMPUTE STATISTICS;

The type of statistics collected depends on the type of index you are creating.

Partitioned Index Example The following statement creates a global prefixed

index stock_ix on table stock_xactions with two partitions, one for each half

of the alphabet. The index partition names are system generated:

See Also: Oracle8i Concepts
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-73

CREATE INDEX
CREATE INDEX stock_ix ON stock_xactions
 (stock_symbol, stock_series)
 GLOBAL PARTITION BY RANGE (stock_symbol)
 (PARTITION VALUES LESS THAN (’N’) TABLESPACE ts3,
 PARTITION VALUES LESS THAN (MAXVALUE) TABLESPACE ts4);

Index on Hash-Partitioned Table Example. This statement creates a local index on

the item column of the sales table. The STORE IN clause immediately following

LOCAL indicates that sales is hash partitioned. Oracle will distribute the hash

partitions between the tbs1 and tbs2 tablespaces:

CREATE INDEX sales_idx ON sales(item) LOCAL
 STORE IN (tbs1, tbs2);

Index on Composite-Partitioned Table Example. This statement creates a local

index on the sales table, which is composite-partitioned. The STORAGE clause

specifies default storage attributes for the index. The STORE IN clause specifies one

or more default tablespaces for the index subpartitions. However, this default is

overridden for the four subpartitions of partition q3_1977 , because separate

TABLESPACE is specified.

CREATE INDEX sales_idx ON sales(sale_date, item)
 STORAGE (INITIAL 1M, MAXEXTENTS UNLIMITED)
 LOCAL
 STORE IN (tbs1, tbs2, tbs3, tbs4, tbs5)
 (PARTITION q1_1997, PARTITION q2_1997,
 PARTITION q3_1997
 (SUBPARTITION q3_1997_s1 TABLESPACE ts2,
 SUBPARTITION q3_1997_s2 TABLESPACE ts4,
 SUBPARTITION q3_1997_s3 TABLESPACE ts6,
 SUBPARTITION q3_1997_s4 TABLESPACE ts8),
 PARTITION q4_1997,
 PARTITION q1_1998);

Bitmap Index Example To create a bitmap partitioned index on a table with four

partitions, issue the following statement:

CREATE BITMAP INDEX partno_ix
ON lineitem(partno)
TABLESPACE ts1
LOCAL (PARTITION quarter1 TABLESPACE ts2,
 PARTITION quarter2 STORAGE (INITIAL 10K NEXT 2K),
 PARTITION quarter3 TABLESPACE ts2,
 PARTITION quarter4);
9-74 SQL Reference

CREATE INDEX
Index on Nested Table Example In the following example, UNIQUE index uniq_
proj_indx is created on storage table nested_project_table . Including

pseudocolumn nested_table_id ensures distinct rows in nested table column

projs_managed :

CREATE TYPE proj_type AS OBJECT
 (proj_num NUMBER, proj_name VARCHAR2(20));
CREATE TYPE proj_table_type AS TABLE OF proj_type;
CREATE TABLE employee (emp_num NUMBER, emp_name CHAR(31),
 projs_managed proj_table_type)
 NESTED TABLE projs_managed STORE AS nested_project_table;
CREATE UNIQUE INDEX uniq_proj_indx
 ON nested_project_table (NESTED_TABLE_ID, proj_num);
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-75

CREATE INDEXTYPE
CREATE INDEXTYPE

Purpose

Use the CREATE INDEXTYPE statement to create an indextype, which is an object

that specifies the routines that manage a domain (application-specific) index.

Indextypes reside in the same namespace as tables, views, and other schema objects.

This statement binds the indextype name to an implementation type, which in turn

specifies and refers to user-defined index functions and procedures that implement

the indextype.

Prerequisites
To create an indextype in your own schema, you must have the CREATE
INDEXTYPE system privilege. To create an indextype in another schema, you must

have CREATE ANY INDEXTYPE system privilege. In either case, you must have the

EXECUTE object privilege on the implementation type and the supported operators.

An indextype supports one or more operators, so before creating an indextype, you

should first design the operator or operators to be supported and provide

functional implementation for those operators.

Syntax

See Also: Oracle8i Data Cartridge Developer’s Guide and Oracle8i
Concepts for more information on implementing indextypes

See Also: CREATE OPERATOR on page 9-115

CREATE INDEXTYPE
schema .

indextype

FOR
schema .

operator (paramater_type

,

)

,

USING
schema .

implementation_type ;
9-76 SQL Reference

CREATE INDEXTYPE
Keywords and Parameters

schema
Specify the name of the schema in which the indextype resides. If you omit schema ,

Oracle creates the indextype in your own schema.

indextype
Specify the name of the indextype to be created.

FOR
Use the FOR clause to specify the list of operators supported by the indextype.

USING
The USINGclause lets you specify the type that provides the implementation for the

new indextype.

schema Specify the schema containing the operator. If you omit schema ,

Oracle assumes the operator is in your own schema.

operator Specify the name of the operator supported by the indextype.

All the operators listed in this clause should be valid operators.

parameter_
type

Lists the types of parameters to the operator.

implementat
ion_type

Specify the name of the type that implements the appropriate

Oracle Data Cartridge interface (ODCI).

■ You must specify a valid type that implements the routines in

the ODCI interface.

■ The implementation type must reside in the same schema as

the indextype.

See Also: Oracle8i Data Cartridge Developer’s Guide for

additional information on this interface
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-77

CREATE INDEXTYPE
Example

CREATE INDEXTYPE Example The following statement creates an indextype

named TextIndexType and specifies the contains operator that is supported by

the indextype and the TextIndexMethods type that implements the index interface:

CREATE INDEXTYPE TextIndexType
 FOR contains (VARCHAR2, VARCHAR2)
 USING TextIndexMethods;
9-78 SQL Reference

CREATE JAVA
CREATE JAVA

Purpose
Use the CREATE JAVA statement to create a schema object containing a Java source,

class, or resource.

Prerequisites
To create or replace a schema object containing a Java source, class, or resource in

your own schema, you must have CREATE PROCEDURE system privilege. To create

such a schema object in another user’s schema, you must have CREATE ANY
PROCEDURE system privilege. To replace such a schema object in another user’s

schema, you must also have ALTER ANY PROCEDURE system privilege.

See Also:

■ Oracle8i Java Developer’s Guide for Java concepts

■ Oracle8i Java Stored Procedures Developer’s Guide for Java stored

procedures

■ Oracle8i SQLJ Developer’s Guide and Reference for SQLJ

■ Oracle8i JDBC Developer’s Guide and Reference for JDBC

■ Oracle8i Enterprise JavaBeans Developer’s Guide and Reference for

CORBA and EJB
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-79

CREATE JAVA
Syntax

invoker_rights_clause ::=

Keywords and Parameters

OR REPLACE
Specify OR REPLACEto re-create the schema object containing the Java class, source,

or resource if it already exists. Use this clause to change the definition of an existing

CREATE
OR REPLACE

AND
RESOLVE

COMPILE NOFORCE

JAVA

SOURCE

RESOURCE
NAMED

schema .
primary_name

CLASS
SCHEMA schema

invoker_rights_clause
RESOLVER ((match_string

, schema_name

–
))

USING

BFILE (directory_object_name , server_file_name)

CLOB

BLOB

BFILE

subquery

’ key_for_BLOB ’

AS source_text

;

AUTHID
CURRENT_USER

DEFINER
9-80 SQL Reference

CREATE JAVA
object without dropping, re-creating, and regranting object privileges previously

granted.

If you redefine a Java schema object and specify RESOLVE or COMPILE, Oracle

recompiles or resolves the object. Whether or not the resolution or compilation is

successful, Oracle invalidates classes that reference the Java schema object.

Users who had previously been granted privileges on a redefined function can still

access the function without being regranted the privileges.

RESOLVE | COMPILE
RESOLVE and COMPILE are synonymous keywords. They specify that Oracle

should attempt to resolve the Java schema object that is created if this statement

succeeds.

■ When applied to a class, resolution of referenced names to other class schema

objects occurs.

■ When applied to a source, source compilation occurs.

Restriction: You cannot specify this clause for a Java resource.

NOFORCE
Specify NOFORCE to roll back the results of this CREATE command if you have

specified either RESOLVE or COMPILE, and the resolution or compilation fails. If

you do not specify this option, Oracle takes no action if the resolution or

compilation fails (that is, the created schema object remains).

JAVA SOURCE
Specify JAVA SOURCE to load a Java source file.

JAVA CLASS
Specify JAVA CLASS to load a Java class file.

JAVA RESOURCE
Specify JAVA RESOURCE to load a Java resource file.

See Also: ALTER JAVA on page 7-58 for additional information
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-81

CREATE JAVA
NAMED
The NAMED clause is required for a Java source or resource. The primary_name
must be enclosed in double quotation marks.

■ For a Java source, this clause specifies the name of the schema object in which

the source code is held. A successful CREATE JAVA SOURCE statement will also

create additional schema objects to hold each of the Java classes defined by the

source.

■ For a Java resource, this clause specifies the name of the schema object to hold

the Java resource.

Use double quotation marks to preserve lower- or mixed-case primary_name .

If you do not specify schema , Oracle creates the object in your own schema.

Restrictions:

■ You cannot specify NAMED for a Java class.

■ The primary_name cannot contain a database link.

SCHEMAschema
The SCHEMA clause applies only to a Java class. This optional clause specifies the

schema in which the object containing the Java file will reside. If you do not specify

this clause, Oracle creates the object in your own schema.

invoker_rights_clause
Use the invoker_rights_clause to indicate whether the methods of the class

execute with the privileges and in the schema of the user who owns the class or

with the privileges and in the schema of CURRENT_USER.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the member functions and procedures

of the type.

AUTHID
CURRENT_USER

CURRENT_USER indicates that the methods of the class execute

with the privileges of CURRENT_USER. This clause is the default

and creates an "invoker-rights class."

This clause also specifies that external names in queries, DML

operations, and dynamic SQL statements resolve in the schema of

CURRENT_USER. External names in all other statements resolve in

the schema in which the methods reside.
9-82 SQL Reference

CREATE JAVA
RESOLVER
The RESOLVERclause lets you specify a mapping of the fully qualified Java name to

a Java schema object, where

■ match_string is either a fully qualified Java name, a wildcard that can match

such a Java name, or a wildcard that can match any name.

■ schema_name designates a schema to be searched for the corresponding Java

schema object.

■ A dash (-) as an alternative to schema_name indicates that if match_string
matches a valid Java name, Oracle can leave the name unresolved. The

resolution succeeds, but the name cannot be used at run time by the class.

This mapping is stored with the definition of the schema objects created in this

command for use in later resolutions (either implicit or in explicit ALTER ...

RESOLVE statements).

USING
The USING clause determines a sequence of character (CLOB or BFILE) or binary

(BLOB or BFILE) data for the Java class or resource. Oracle uses the sequence of

characters to define one file for a Java class or resource, or one source file and one or

more derived classes for a Java source.

AUTHID
DEFINER

DEFINER indicates that the methods of the class execute with the

privileges of the owner of the schema in which the class resides,

and that external names resolve in the schema where the class

resides.

See Also:

■ Oracle8i Java Stored Procedures Developer’s Guide

■ Oracle8i Concepts and Oracle8i Application Developer’s Guide -
Fundamentals for information on how CURRENT_USER is
determined

BFILE Specify the directory and filename of a previously created file on

the operating system (directory_object_name) and server file

(server_file_name) containing the sequence. BFILE is usually

interpreted as a character sequence by CREATE JAVA SOURCE and

as a binary sequence by CREATE JAVA CLASS or CREATE JAVA
RESOURCE.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-83

CREATE JAVA
ASsource_text
Specify a sequence of characters for a Java or SQLJ source.

Examples

Java Class Example The following statement creates a schema object containing a

Java class using the name found in a Java binary file:

CREATE JAVA CLASS USING BFILE (bfile_dir, ’Agent.class’);

This example assumes the directory object bfile_dir , which points to the

operating system directory containing the Java class Agent.class, already exists. In

this example, the name of the class determines the name of the Java class schema

object.

Java Source Example The following statement creates a Java source schema

object:

CREATE JAVA SOURCE NAMED "Hello" AS
 public class Hello {
 public static String hello() {
 return "Hello World"; } } ;

Java Resource Example The following statement creates a Java resource schema

object named apptext from a bfile :

CLOB/BLOB/

BFILE
subquery

Specify a query that selects a single row and column of the type

specified (CLOB, BLOB, or BFILE). The value of the column makes

up the sequence of characters.

Note: The USING clause implicitly supplies the keyword

SELECT. Therefore, omit this keyword from the subquery.

key_for_BLOB The key_for_BLOB clause supplies the following implicit query:

SELECT LOB FROM CREATE$JAVA$LOB$TABLE
 WHERE NAME = ’key_for_BLOB’;

Restriction: To use this case, the table

CREATE$JAVA$LOB$TABLE must exist in the current schema and

must have a column LOB of type BLOB and a column NAME of

type VARCHAR2.
9-84 SQL Reference

CREATE JAVA
CREATE JAVA RESOURCE NAMED "appText"
 USING BFILE (bfile_dir, ’textBundle.dat’);
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-85

CREATE LIBRARY
CREATE LIBRARY

Purpose
Use the CREATE LIBRARY statement to create a schema object associated with an

operating-system shared library. The name of this schema object can then be used in

the call_spec of CREATE FUNCTION or CREATE PROCEDURE statements, or when

declaring a function or procedure in a package or type, so that SQL and PL/SQL

can call to third-generation-language (3GL) functions and procedures.

Prerequisites
To create a library in your own schema, you must have the CREATE LIBRARY
system privilege. To create a library in another user’s schema, you must have the

CREATE ANY LIBRARYsystem privilege. To use the procedures and functions stored

in the library, you must have EXECUTE object privileges on the library.

The CREATE LIBRARY statement is valid only on platforms that support shared

libraries and dynamic linking.

Syntax

filespec : See filespec on page 11-27.

Keywords and Parameters

OR REPLACE
Specify OR REPLACE to re-create the library if it already exists. Use this clause to

change the definition of an existing library without dropping, re-creating, and

regranting schema object privileges granted on it.

See Also: CREATE FUNCTION on page 9-43 and PL/SQL User’s
Guide and Reference for more information on functions and

procedures

CREATE
OR REPLACE

LIBRARY
schema .

libname
IS

AS
’ filespec ’ ;
9-86 SQL Reference

CREATE LIBRARY
Users who had previously been granted privileges on a redefined library can still

access the library without being regranted the privileges.

libname
Specify the name you with to create to represent this library when declaring a

function or procedure with a call_spec .

’filespec ’
Specify a string literal, enclosed in single quotes. This string should be the path or

filename your operating system recognizes as naming the shared library.

The ’filespec ’ is not interpreted during execution of the CREATE LIBRARY
statement. The existence of the library file is not checked until an attempt is made to

execute a routine from it.

Examples

CREATE LIBRARY Examples The following statement creates library ext_lib :

CREATE LIBRARY ext_lib AS ’/OR/lib/ext_lib.so’;

The following statement re-creates library ext_lib :

CREATE OR REPLACE LIBRARY ext_lib IS ’/OR/newlib/ext_lib.so’;
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-87

CREATE MATERIALIZED VIEW
CREATE MATERIALIZED VIEW

Purpose
Use the CREATE MATERIALIZED VIEWstatement to create a materialized view. The

terms snapshot and materialized view are synonymous in Oracle documentation.

This reference uses "materialized view" for consistency. Both refer to a database

object that contains the results of a query of one or more tables.

The tables in the query are called master tables (a replication term) or detail tables
(a data warehouse term). This reference uses "master tables" for consistency. The

databases containing the master tables are called the master databases.

For replication purposes, materialized views allow you to maintain copies of remote

data on your local node. The copies can be updatable with the Advanced

Replication feature and are read-only without this feature. You can select data from

a materialized view as you would from a table or view. In replication environments,

the materialized views commonly created are primary key, rowid, and subquery
materialized views.

For data warehousing purposes, the materialized views commonly created are

materialized aggregate views, single-table materialized aggregate views, and

materialized join views. All three types of materialized views can be used by query

rewrite, an optimization technique that transforms a user request written in terms

of master tables into a semantically equivalent request that includes one or more

materialized view. In a data warehousing environment, all master tables must be

local.

Prerequisites
The privileges required to create a materialized view should be granted directly.

To create a materialized view in your own schema:

See Also:

■ Oracle8i Replication for information on the types of materialized

views used to support replication

■ Oracle8i Data Warehousing Guide for information on the types of

materialized views used to support data warehousing
9-88 SQL Reference

CREATE MATERIALIZED VIEW
■ You must have been granted either the CREATE MATERIALIZED VIEW or

CREATE SNAPSHOT system privilege and either the CREATE TABLE or CREATE
ANY TABLE system privilege.

■ You must also have access to any master tables of the materialized view that

you do not own, either through a SELECT object privilege on each of the tables

or through the SELECT ANY TABLE system privilege.

To create a materialized view in another user’s schema:

■ You must have the CREATE ANY MATERIALIZED VIEW or CREATE ANY
SNAPSHOT system privilege and access to any master tables of the materialized

view that you do not own, either through a SELECT object privilege on each of

the tables or through the SELECT ANY TABLE system privilege.

■ The owner or the materialized view must have the CREATE TABLE system

privilege. The owner must also have access to any master tables of the

materialized view that the schema owner does not own and to any materialized

view logs defined on those master tables, either through a SELECT object

privilege on each of the tables or through the SELECT ANY TABLE system

privilege.

To create the materialized view with query rewrite enabled, in addition to the

preceding privileges:

■ The owner of the master tables must have the QUERY REWRITE system

privilege.

■ If you are not the owner of the master tables, you must have the GLOBAL QUERY
REWRITE system privilege.

■ If the schema owner does not own the master tables, then the schema owner

must have the GLOBAL QUERY REWRITE privilege.

The user whose schema contains the materialized view must have sufficient quota

in the target tablespace to store the materialized view’s master table and index, or

must have the UNLIMITED TABLESPACE system privilege.

When you create a materialized view, Oracle creates one internal table and at least

one index, and may create one view, all in the schema of the materialized view.

Oracle uses these objects to maintain the materialized view’s data. You must have

the privileges necessary to create these objects.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-89

CREATE MATERIALIZED VIEW
Syntax

See Also:

■ CREATE TABLE on page 10-7, CREATE VIEW on page 10-105, and

CREATE INDEX on page 9-52 for information on these privileges

■ Oracle8i Replication for information about the prerequisites that apply to

creating replication materialized views

■ Oracle8i Data Warehousing Guide for information about the prerequisites

that apply to creating data warehousing materialized views

CREATE
MATERIALIZED VIEW

SNAPSHOT

schema .
materialized_view / snapshot

segment_attributes_clause

LOB_storage_clause

CACHE

NOCACHE

CLUSTER cluster (column

,

)

partitioning_clauses parallel_clause build_clause

ON PREBUILT TABLE

WITH

WITHOUT
REDUCED PRECISION

USING INDEX

physical_attributes_clause

TABLESPACE tablespace
refresh_clause

FOR UPDATE

DISABLE

ENABLE
QUERY REWRITE

AS subquery ;
9-90 SQL Reference

CREATE MATERIALIZED VIEW
refresh_clause ::=

segment_attributes_clause : See CREATE TABLE on page 10-7.

parallel_clause ::=

REFRESH

FAST

COMPLETE

FORCE

ON
DEMAND

COMMIT

START WITH

NEXT
date

WITH
PRIMARY KEY

ROWID

USING

DEFAULT

MASTER

LOCAL
ROLLBACK SEGMENT

MASTER

LOCAL
ROLLBACK SEGMENT rollback_segment

NEVER REFRESH

NOPARALLEL

PARALLEL
integer
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-91

CREATE MATERIALIZED VIEW
build_clause ::=

subquery : See SELECT and subquery on page 11-88.

LOB_storage_clause : See CREATE TABLE on page 10-7.

partitioning_clauses : See CREATE TABLE on page 10-7.

Keywords and Parameters

schema
Specify the schema to contain the materialized view. If you omit schema , Oracle

creates the materialized view in your schema.

materialized_view
Specify the name of the materialized view to be created. Oracle generates names for

the table and indexes used to maintain the materialized view by adding a prefix or

suffix to the materialized view name.

segment_attributes_clause
Use the segment_attributes_clause to establish values for the PCTFREE,
PCTUSED, INITRANS , and MAXTRANS parameters (or, when used in the USING
INDEX clause, for the INITRANS and MAXTRANS parameters only), the storage

characteristics for the materialized view, to assign a tablespace, and to specify

whether logging is to occur.

See Also:

■ CREATE TABLE on page 10-7 for information on the PCTFREE,
PCTUSED, INITRANS , and MAXTRANS, TABLESPACE, and

LOGGING|NOLOGGING parameters

■ storage_clause on page 11-129 for information about

storage characteristics

BUILD
IMMEDIATE

DEFERRED
9-92 SQL Reference

CREATE MATERIALIZED VIEW
TABLESPACE
Specify the tablespace in which the materialized view is to be created. If you omit

this clause, Oracle creates the materialized view in the default tablespace of the

owner of the materialized view’s schema.

LOB_storage_clause
The LOB_storage_clause lets you specify the LOB storage characteristics.

LOGGING | NOLOGGING
Specify LOGGING or NOLOGGING to establish the logging characteristics for the

materialized view.

CACHE | NOCACHE
For data that will be accessed frequently, CACHE specifies that the blocks retrieved

for this table are placed at the most recently used end of the LRU list in the buffer

cache when a full table scan is performed. This attribute is useful for small lookup

tables. NOCACHE specifies that the blocks are placed at the least recently used end of

the LRU list.

CLUSTER
Use the CLUSTER clause to create the materialized view as part of the specified

cluster. A clustered materialized view uses the cluster’s space allocation. Therefore,

do not use the physical_attributes_clause or the TABLESPACE clause with

the CLUSTER clause.

See Also: CREATE TABLE on page 10-7 for detailed information

about specifying the parameters of this clause

See Also: CREATE TABLE on page 10-7 for a description of

logging characteristics

Note: NOCACHEhas no effect on materialized views for which you

specify KEEP in the storage_clause.

See Also: CREATE TABLE on page 10-7 for information about

specifying CACHE or NOCACHE
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-93

CREATE MATERIALIZED VIEW
partitioning_clauses
The partitioning_clauses let you specify that the materialized view is

partitioned on specified ranges of values or on a hash function. Partitioning of

materialized views is the same as partitioning tables.

parallel_clause
The parallel_clause lets you indicate whether parallel operations will be

supported for the materialized view and sets the default degree of parallelism for

queries and DML on the materialized view after creation.

build_clause
The build_clause lets you specify when to populate the materialized view.

See Also: CREATE TABLE on page 10-7

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLEL if you want Oracle to select a degree of

parallelism equal to the number of CPUs available on all

participating instances times the value of the PARALLEL_
THREADS_PER_CPU initialization parameter.

PARALLEL
integer

Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel

operation. Each parallel thread may use one or two parallel

execution servers. Normally Oracle calculates the optimum

degree of parallelism, so it is not necessary for you to specify

integer .

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 10-41
9-94 SQL Reference

CREATE MATERIALIZED VIEW
ON PREBUILT TABLE
The ON PREBUILT TABLE clause lets you register an existing table as a

preinitialized materialized view. This is particularly useful for registering large

materialized views in a data warehousing environment. The table must have the

same name and be in the same schema as the resulting materialized view.

If the materialized view is dropped, the preexisting table reverts to its identity as a

table.

Restrictions:

■ Each column alias in subquery must correspond to a column in table_name ,

and corresponding columns must have matching datatypes.

■ If you specify this clause, you cannot specify a NOT NULL constraint for any

column that is unmanaged (that is, not referenced in subquery) unless you

also specify a default value for that column.

IMMEDIATE Specify IMMEDIATE to indicate that the materialized view is

populated immediately. This is the default.

DEFERRED Specify DEFERRED to indicate that the materialized view will be

populated by the next REFRESH operation. The first (deferred)

refresh must always be a complete refresh. Until then, the

materialized view has a staleness value of UNUSABLE, so it cannot

be used for query rewrite.

Caution: This clause assumes that the table object reflects the

materialization of a subquery. Oracle Corporation strongly

recommends that you ensure that this assumption is true in order

to ensure that the materialized view correctly reflects the data in its

master tables.

WITH REDUCED
PRECISION

Specify WITH REDUCED PRECISION to authorize the loss of

precision that will result if the precision of the table or

materialized view columns do not exactly match the precision

returned by subquery.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-95

CREATE MATERIALIZED VIEW
USING INDEX
The USING INDEXclause lets you establish the value of INITRANS , MAXTRANS, and

STORAGE parameters for the index Oracle uses to maintain the materialized view’s

data. If USING INDEX is not specified, then default values are used for the index.

Restriction: You cannot specify the PCTUSED or PCTFREE parameters in this clause.

refresh_clause
Use the refresh_clause to specify the default methods, modes, and times for

Oracle to refresh the materialized view. If a materialized view’s master tables are

modified, the data in a materialized view must be updated to make the materialized

view accurately reflect the data currently in its master tables. This clause lets you

schedule the times and specify the method and mode for Oracle to refresh the

materialized view.

WITHOUT
REDUCED
PRECISION

Specify WITHOUT REDUCED PRECISION to require that the

precision of the table or materialized view columns match exactly

the precision returned by subquery , or the create operation will

fail. This is the default.

Note: This clause only sets the default refresh options. For

instructions on actually implementing the refresh, refer to Oracle8i
Replication and Oracle8i Data Warehousing Guide.

FAST Specify FAST to indicate the incremental refresh method, which

performs the refresh according to the changes that have occurred

to the master tables. The changes are stored either in the

materialized view log associated with the master table (for

conventional DML changes) or in the direct loader log (for direct-

load INSERT operations).

You can create a materialized aggregate view even if you have not

yet created materialized view logs for the underlying master

tables. However, if you are creating any other type of materialized

view, the CREATE statement will fail unless those materialized

view logs already exist. (Oracle creates the direct loader log

automatically when a direct-load INSERT takes place. No user

intervention is needed.)
9-96 SQL Reference

CREATE MATERIALIZED VIEW
After create time, Oracle will perform the fast refresh for

conventional DML only if the appropriate materialized view logs

exist.

For both conventional DML changes and for direct-path loads,

other conditions may restrict the eligibility of a materialized view

for fast refresh.

Materialized views are not eligible for fast refresh if the defining

query contains an analytic function.

See Also:

- Oracle8i Replication for restrictions on fast refresh in

replication environments

- Oracle8i Data Warehousing Guide for restrictions on fast

refresh in data warehouse environments

- "Analytic Functions" on page 4-8

COMPLETE Specify COMPLETEto indicate the complete refresh method, which

is implemented by executing the materialized view’s defining

query. If you request a complete refresh, Oracle performs a

complete refresh even if a fast refresh is possible.

FORCE Specify FORCE to indicate that when a refresh occurs, Oracle will

perform a fast refresh if one is possible or a complete refresh

otherwise. If you do not specify a refresh method (FAST,
COMPLETE, or FORCE), FORCE is the default.

ON COMMIT Specify ON COMMIT to indicate that a fast refresh is to occur

whenever Oracle commits a transaction that operates on a master

table of the materialized view.

Restriction: This clause is supported only for materialized join

views and single-table materialized aggregate views.

See Also: Oracle8i Replication and Oracle8i Data Warehousing
Guide
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-97

CREATE MATERIALIZED VIEW
ON DEMAND Specify ON DEMAND to indicate that the materialized view will be

refreshed on demand by calling one of the three DBMS_MVIEW
refresh procedures. If you omit both ON COMMIT and ON DEMAND,
ON DEMAND is the default.

See Also:

- Oracle8i Supplied PL/SQL Packages Reference for information

on these procedures

- Oracle8i Data Warehousing Guide on the types of materialized

views you can create by specifying REFRESH ON DEMAND

If you specify ON COMMIT or ON DEMAND, you cannot also specify START WITH or

NEXT.

START WITH Specify a date expression for the first automatic refresh time.

NEXT Specify a date expression for calculating the interval between

automatic refreshes.

Both the START WITH and NEXT values must evaluate to a time in the future. If you

omit the START WITH value, Oracle determines the first automatic refresh time by

evaluating the NEXTexpression with respect to the creation time of the materialized

view. If you specify a START WITH value but omit the NEXT value, Oracle refreshes

the materialized view only once. If you omit both the START WITH and NEXT
values, or if you omit the refresh_clause entirely, Oracle does not automatically

refresh the materialized view.

WITH PRIMARY
KEY

Specify WITH PRIMARY KEY to indicate that a primary key

materialized view is to be created. This is the default, and should

be used in all cases except those described for WITH ROWID.
Primary key materialized views allow materialized view master

tables to be reorganized without affecting the materialized view’s

ability to continue to fast refresh. The master table must contain

an enabled primary key constraint.

See Also: Oracle8i Replication for detailed information about

primary key materialized views

WITH ROWID Specify WITH ROWID to indicate that a rowid materialized view is

to be created. Rowid materialized views provide compatibility

with master tables in releases of Oracle prior to 8.0.
9-98 SQL Reference

CREATE MATERIALIZED VIEW
You can also use rowid materialized views if the materialized

view does not include all primary key columns of the master

tables. Rowid materialized views must be based on a single

remote table and cannot contain any of the following:

■ Distinct or aggregate functions

■ GROUP BY or CONNECT BY clauses

■ Subqueries

■ Joins

■ Set operations

Rowid materialized views cannot be fast refreshed after a master

table reorganization until a complete refresh has been performed.

USING
ROLLBACK
SEGMENT
rollback_
segment

Specify the remote rollback segment to be used during

materialized view refresh, where rollback_segment is the

name of the rollback segment to be used.

■ DEFAULT specifies that Oracle will choose automatically

which rollback segment to use. If you specify DEFAULT, you

cannot specify rollback_segment .

DEFAULT is most useful when modifying a materialized view.

See Also: ALTER MATERIALIZED VIEW on page 7-61

■ MASTER specifies the remote rollback segment to be used at

the remote master site for the individual materialized view.

■ LOCAL specifies the remote rollback segment to be used for

the local refresh group that contains the materialized view.

See Also: Oracle8i Replication for information on specifying

the local materialized view rollback segment using the DBMS_
REFRESH package.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-99

CREATE MATERIALIZED VIEW
FOR UPDATE
Specify FOR UPDATE to allow a subquery, primary key, or rowid materialized view

to be updated. When used in conjunction with Advanced Replication, these updates

will be propagated to the master.

QUERY REWRITE
The QUERY REWRITE clause lets you specify whether the materialized view is

eligible to be used for query rewrite.

If you do not specify MASTER or LOCAL, Oracle uses LOCAL by

default. If you do not specify rollback_segment , Oracle

automatically chooses the rollback segment to be used.

The master rollback segment is stored on a per-materialized-view

basis and is validated during materialized view creation and

refresh. If the materialized view is complex, the master rollback

segment, if specified, is ignored.

NEVER
REFRESH

Specify NEVER REFRESH to prevent the materialized view from

being refreshed with any Oracle refresh mechanism or procedure.

If you issue a REFRESH statement on the materialized view,

Oracle returns an error.

See Also: Oracle8i Replication

ENABLE Specify ENABLEto enable the materialized view for query rewrite.

See Also: Oracle8i Data Warehousing Guide for more

information on query rewrite

Notes:

■ Query rewrite is disabled by default, so you must specify this

clause to make materialized views eligible for query rewrite.

■ Be sure to analyze the materialized view after you create it.

Oracle needs the statistics generated by the ANALYZE
operation to optimize query rewrite.
9-100 SQL Reference

CREATE MATERIALIZED VIEW
ASsubquery
Specify the materialized view’s defining query. When you create the materialized

view, Oracle executes this query and places the results in the materialized view.

This query is any valid SQL query. However, not all queries are fast refreshable, nor

are all queries eligible for query rewrite.

Notes on the materialized view subquery:

■ Oracle does not execute the query immediately if you specify BUILD
DEFERRED.

■ Oracle recommends that you qualify each table and view in the FROM clause of

the materialized view query with the schema containing it.

Restrictions on the materialized view subquery:

■ A materialized view query can select from tables or views owned by the user

SYS, but you cannot enable QUERY REWRITE on such a materialized view.

■ You cannot refer to a user-defined type anywhere in the materialized view

query.

Restrictions:

■ You can enable query rewrite only if all user-defined functions

in the materialized view are DETERMINISTIC.

■ You can enable query rewrite only if expressions in the

statement are repeatable. For example, you cannot include

CURRENT_TIME or USER, sequence values (such as the

CURRVALor NEXTVALpseudocolumns), or the SAMPLEclause

(which may sample different rows as the contents of the

materialized view change).

See Also: CREATE FUNCTION on page 9-43 and Oracle8i
Data Warehousing Guide

DISABLE Specify DISABLE to indicate that the materialized view is not

eligible for use by query rewrite. However, a disabled

materialized view can be refreshed.

See Also: the AS subquery clause of CREATE TABLE on

page 10-7 for some additional caveats
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-101

CREATE MATERIALIZED VIEW
■ Materialized join views and materialized aggregate views with a GROUP BY
clause cannot select from an index-organized table.

■ Materialized views cannot contain columns of datatype LONG.

■ If the subquery refers to a temporary table, you cannot create a materialized

view log for this materialized view, nor can you specify the QUERY REWRITE
clause of CREATE MATERIALIZED VIEW or ALTER MATERIALIZED VIEW.

■ If the FROM list of the materialized view references another materialized view,

you must control the refresh order of the materialized views manually. That is,

you must refresh the materialized view depended upon and then the

dependent materialized view in order to maintain freshness.

If you are creating a materialized view enabled for query rewrite:

■ The subquery cannot contain (either directly or through a view) references to

ROWNUM, USER, SYSDATE, remote tables, sequences, or PL/SQL functions that

write or read database or package state.

■ The materialized view and the master tables of the materialized view must be

local.

If you want the materialized view to be eligible for fast refresh using a materialized

view log, some additional restrictions may apply.

Examples

Materialized Aggregate View Examples The following statement creates and

populates a materialized aggregate view and specifies the default refresh method,

mode, and time:

CREATE MATERIALIZED VIEW mv1 REFRESH FAST ON COMMIT
 BUILD IMMEDIATE
 AS SELECT t.month, p.prod_name, SUM(f.sales) AS sum_sales
 FROM time t, product p, fact f
 WHERE f.curDate = t.curDate AND f.item = p.item
 GROUP BY t.month, p.prod_name;

See Also:

■ Oracle8i Data Warehousing Guide for more information on

restrictions relating to data warehousing

■ Oracle8i Replication for more information on restrictions relating

to replication
9-102 SQL Reference

CREATE MATERIALIZED VIEW
The following statement creates and populates the materialized aggregate view

sales_by_month_by_state . The materialized view will be populated with data

as soon as the statement executes successfully. By default, subsequent refreshes will

be accomplished by reexecuting the materialized view’s query:

CREATE MATERIALIZED VIEW sales_by_month_by_state
 TABLESPACE my_ts PARALLEL (10)
 ENABLE QUERY REWRITE
 BUILD IMMEDIATE
 REFRESH COMPLETE
 AS SELECT t.month, g.state, SUM(f.sales) AS sum_sales
 FROM fact f, time t, geog g
 WHERE f.cur_date = t.cur_date AND f.city_id = g.city_id
 GROUP BY month, state;

Prebuilt Materialized View Example The following statement creates a

materialized aggregate view for the preexisting summary table, sales_sum_
table :

CREATE TABLE sales_sum_table
 (month DATE, state VARCHAR2(25), sales NUMBER);

CREATE MATERIALIZED VIEW sales_sum_table
 ON PREBUILT TABLE
 ENABLE QUERY REWRITE
 AS SELECT t.month, g.state, SUM(f.sales) AS sum_sales
 FROM fact f, time t, geog g
 WHERE f.cur_date = t.cur_date AND f.city_id = g.city_id
 GROUP BY month, state;

In this example, the materialized view has the same name as the prebuilt table and

also has the same number of columns with the same datatypes as the prebuilt table.

Materialized Join View Example The following statement creates the materialized

join view mjv :

CREATE MATERIALIZED VIEW mjv
 REFRESH FAST
 AS SELECT l.rowid as l_rid, l.pk, l.ofk, l.c1, l.c2,
 o.rowid as o_rid, o.pk, o.cfk, o.c1, o.c2,
 c.rowid as c_rid, c.pd, c.c1, c.c2
 FROM l, o, c
 WHERE l.ofk = o.pk(+) AND o.ofk = c.pk(+);
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-103

CREATE MATERIALIZED VIEW
Subquery Materialized View Example The following statement creates a subquery

materialized view based on the orders and customers tables in the sales
schema at a remote database:

CREATE MATERIALIZED VIEW sales.orders FOR UPDATE
 AS SELECT * FROM sales.orders@dbs1.acme.com o
 WHERE EXISTS
 (SELECT * FROM sales.customers@dbs1.acme.com c
 WHERE o.c_id = c.c_id);

Primary Key Example The following statement creates the primary-key

materialized view human_genome:

CREATE MATERIALIZED VIEW human_genome
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE + 1/4096
 WITH PRIMARY KEY
 AS SELECT * FROM genome_catalog;

Rowid Example The following statement creates a rowid materialized view:

CREATE MATERIALIZED VIEW emp_data REFRESH WITH ROWID
AS SELECT * FROM emp_table73;

Periodic Refresh Example The following statement creates the primary key

materialized view emp_sf and populates it with data from scott ’s employee table

in New York:

CREATE MATERIALIZED VIEW emp_sf
 PCTFREE 5 PCTUSED 60
 TABLESPACE users
 STORAGE (INITIAL 50K NEXT 50K)
 REFRESH FAST NEXT sysdate + 7
 AS SELECT * FROM scott.emp@ny;

The statement does not include a START WITH parameter, so Oracle determines the

first automatic refresh time by evaluating the NEXT value using the current

SYSDATE. Provided that a materialized view log currently exists for the employee

table in New York, Oracle performs a fast refresh of the materialized view every 7

days, beginning 7 days after the materialized view is created.

Because the materialized view conforms to the conditions for fast refresh, Oracle

will perform a fast refresh. The above statement also establishes storage

characteristics that Oracle uses to maintain the materialized view.
9-104 SQL Reference

CREATE MATERIALIZED VIEW
Automatic Refresh Times Example The following statement creates the complex

materialized view all_emps that queries the employee tables in Dallas and

Baltimore:

CREATE MATERIALIZED VIEW all_emps
 PCTFREE 5 PCTUSED 60
 TABLESPACE users
 STORAGE INITIAL 50K NEXT 50K
 USING INDEX STORAGE (INITIAL 25K NEXT 25K)
 REFRESH START WITH ROUND(SYSDATE + 1) + 11/24
 NEXT NEXT_DAY(TRUNC(SYSDATE, ’MONDAY’) + 15/24
 AS SELECT * FROM fran.emp@dallas
 UNION
 SELECT * FROM marco.emp@balt;

Oracle automatically refreshes this materialized view tomorrow at 11:00 am and

subsequently every Monday at 3:00 pm. The default refresh method is FORCE. all_
emps contains a UNION, which is not supported for fast refresh, so Oracle will

automatically perform a complete refresh.

The above statement also establishes storage characteristics for both the

materialized view and the index that Oracle uses to maintain it:

■ The first storage_clause establishes the sizes of the first and second extents

of the materialized view as 50 kilobytes each.

■ The second storage_clause (appearing with the USING INDEX clause)

establishes the sizes of the first and second extents of the index as 25 kilobytes

each.

Rollback Segment Example The following statement creates the primary key

materialized view sales_emp with rollback segment master_seg at the remote

master and rollback segment snap_seg for the local refresh group that contains the

materialized view:

CREATE MATERIALIZED VIEW sales_emp
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE + 7
 USING MASTER ROLLBACK SEGMENT master_seg
 LOCAL ROLLBACK SEGMENT snap_seg
 AS SELECT * FROM bar;

The following statement is incorrect and generates an error because it specifies a

segment name with a DEFAULT rollback segment:

CREATE MATERIALIZED VIEW bogus
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE + 7
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-105

CREATE MATERIALIZED VIEW
 USING DEFAULT ROLLBACK SEGMENT snap_seg
 AS SELECT * FROM faux;
9-106 SQL Reference

CREATE MATERIALIZED VIEW LOG
CREATE MATERIALIZED VIEW LOG

Purpose
Use the CREATE MATERIALIZED VIEW LOGstatement to create a materialized view
log, which is a table associated with the master table of a materialized view. The

terms snapshot and materialized view are synonymous. Both refer to a table that

contains the results of a query of one or more tables, each of which may be located

on the same or on a remote database.

When DML changes are made to the master table’s data, Oracle stores rows

describing those changes in the materialized view log and then uses the

materialized view log to refresh materialized views based on the master table. This

process is called a fast refresh . Without a materialized view log, Oracle must

reexecute the materialized view query to refresh the materialized view. This process

is called a complete refresh . Usually, a fast refresh takes less time than a

complete refresh.

A materialized view log is located in the master database in the same schema as the

master table. You need only a single materialized view log for a master table. Oracle

can use this materialized view log to perform fast refreshes for all fast-refreshable

materialized views based on the master table.

To fast refresh a materialized join view (a materialized view containing a join), you

must create a materialized view log for each of its master tables.

See Also:

■ CREATE MATERIALIZED VIEW on page 9-88, Oracle8i
Concepts, Oracle8i Data Warehousing Guide and Oracle8i
Replication for information on materialized views in general

■ ALTER MATERIALIZED VIEW LOG on page 7-76 for

information on modifying a materialized view log

■ DROP MATERIALIZED VIEW LOG on page 10-145 for

information on dropping a materialized view log

■ Oracle8i Concepts for information on using direct loader logs
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-107

CREATE MATERIALIZED VIEW LOG
Prerequisites
The privileges required to create a materialized view log directly relate to the

privileges necessary to create the underlying objects associated with a materialized

view log.

■ If you own the master table, you can create an associated materialized view log

if you have the CREATE TABLE privilege.

■ If you are creating a materialized view log for a table in another user’s schema,

you must have the CREATE ANY TABLE and COMMENT ANY TABLE privileges, as

well as either the SELECT privilege for the master table or SELECT ANY TABLE.

In either case, the owner of the materialized view log must have sufficient quota in

the tablespace intended to hold the materialized view log or must have the

UNLIMITED TABLESPACE system privilege.

See Also: Oracle8i Data Warehousing Guide for more information

about the prerequisites for creating a materialized view log
9-108 SQL Reference

CREATE MATERIALIZED VIEW LOG
Syntax

CREATE
MATERIALIZED VIEW

SNAPSHOT
LOG ON

schema .
table

physical_attributes_clause

TABLESPACE tablespace

LOGGING

NOLOGGING

CACHE

NOCACHE parallel_clause partitioning_clauses

WITH

PRIMARY KEY

ROWID

(filter_column

,

)

(filter_column

,

)

,

INCLUDING

EXCLUDING
NEW VALUES

;

SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-109

CREATE MATERIALIZED VIEW LOG
physical_attributes_clause ::=

storage_clause : See storage_clause on page 11-129.

parallel_clause ::=

partitioning_clauses : See table_properties CREATE TABLE on page 10-34.

Keywords and Parameters

schema
Specify the schema containing the materialized view log’s master table. If you omit

schema , Oracle assumes the master table is contained in your own schema. Oracle

creates the materialized view log in the schema of its master table. You cannot

create a materialized view log for a table in the schema of the user SYS.

table
Specify the name of the master table for which the materialized view log is to be

created. You cannot create a materialized view log for a view.

physical_attributes_clause
Use the physical_attributes_clause to establish values for physical and

storage characteristics for the materialized view log.

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

NOPARALLEL

PARALLEL
integer
9-110 SQL Reference

CREATE MATERIALIZED VIEW LOG
TABLESPACE
Specify the tablespace in which the materialized view log is to be created. If you

omit this clause, Oracle creates the materialized view log in the default tablespace

of the owner of the materialized view log’s schema.

LOGGING | NOLOGGING
Specify either LOGGING or NOLOGGING to establish the logging characteristics for

the materialized view log.

CACHE | NOCACHE
For data that will be accessed frequently, CACHE specifies that the blocks retrieved

for this log are placed at the most recently used end of the LRU list in the buffer

cache when a full table scan is performed. This attribute is useful for small lookup

tables. NOCACHE specifies that the blocks are placed at the least recently used end of

the LRU list.

parallel_clause
The parallel_clause lets you indicate whether parallel operations will be

supported for the materialized view log.

See Also: CREATE TABLE on page 10-7 and storage_clause
on page 11-129

See Also: CREATE TABLE on page 10-7 for a description of

logging characteristics

Note: NOCACHE has no effect on materialized view logs for which

you specify KEEP in the storage_clause .

See Also: ALTER TABLE on page 8-2 for information about

specifying CACHE or NOCACHE

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-111

CREATE MATERIALIZED VIEW LOG
partitioning_clauses
Use the partitioning_clauses to indicate that the materialized view log is

partitioned on specified ranges of values or on a hash function. Partitioning of

materialized view logs is the same as partitioning of tables, as described in CREATE

TABLE on page 10-7.

WITH
Use the WITH clause to indicate whether the materialized view log should record

the primary key, the rowid, or both the primary key and rowid when rows in the

master are updated.

This clause also specifies whether the materialized view log records filter columns,

which are non-primary-key columns referenced by subquery materialized views.

If you omit this clause, primary key values are stored by default. Primary key

values are implicitly stored when you specify a filter column list by itself. However,

primary key values are not implicitly stored if you specify only ROWID or

ROWID (filter_column) at create time.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLEL if you want Oracle to select a degree of

parallelism equal to the number of CPUs available on all

participating instances times the value of the PARALLEL_
THREADS_PER_CPU initialization parameter.

PARALLEL
integer

Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel

operation. Each parallel thread may use one or two parallel

execution servers. Normally Oracle calculates the optimum

degree of parallelism, so it is not necessary for you to specify

integer .

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 10-41

PRIMARY KEY Specify PRIMARY KEY to indicate that the primary key of all rows

updated should be recorded in the materialized view log. The

primary key of updated rows in the master table must be recorded

in the materialized view log.
9-112 SQL Reference

CREATE MATERIALIZED VIEW LOG
Restrictions:

■ You can specify only one PRIMARY KEY, one ROWID, and one filter column list

specification per materialized view log.

■ Because PRIMARY KEY is implicitly included in filter_column , you cannot

specify either of the following combinations:

ADD PRIMARY KEY,(filter_column)
ADD (filter_column), PRIMARY KEY

NEW VALUES
The NEW VALUES clause lets you indicate whether Oracle saves both old and new

values in the materialized view log.

Examples

Primary Key Examples The following statement creates a materialized view log

on an employee table that records only primary key values:

CREATE MATERIALIZED VIEW LOG ON emp WITH PRIMARY KEY;

ROWID Specify ROWID to indicate that the rowid of all rows updated

should be recorded in the materialized view log. The rowid must

be recorded in the materialized view log.

filter_
column

Specify a comma-separated list that specifies the filter columns to

be recorded in the materialized view log. For fast-refreshable

primary-key materialized views defined with subqueries, all filter

columns referenced by the defining subquery must be recorded in

the materialized view log.

INCLUDING Specify INCLUDING to save both new and old values in the log. If

this log is for a table on which you have a single-table

materialized aggregate view, and if you want the materialized

view to be eligible for fast refresh, you must specify INCLUDING.

EXCLUDING Specify EXCLUDING to disable the recording of new values in the

log. This is the default. You can use this clause to avoid the

overhead of recording new values. However, do not use this

clause if you have a fast-refreshable single-table materialized

aggregate view defined on this table.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-113

CREATE MATERIALIZED VIEW LOG
Oracle can use this materialized view log to perform a fast refresh on any simple

primary key materialized view subsequently created on the emp table.

The following statement also creates a materialized view log that record only the

primary keys of updated rows:

CREATE MATERIALIZED VIEW LOG ON emp
 PCTFREE 5
 TABLESPACE users
 STORAGE (INITIAL 10K NEXT 10K);

ROWID Example The following statement creates a materialized view log that

records both the primary keys and the rowids of updated rows:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID, PRIMARY KEY;

Filter Column Example The following statement creates a materialized view log

that records primary keys and updates to the filter column zip :

CREATE MATERIALIZED VIEW LOG ON address WITH (zip);

NEW VALUES Example The following example creates a master table, then creates

a materialized view log that specifies INCLUDING NEW VALUES:

CREATE TABLE agg
 (u NUMBER, a NUMBER, b NUMBER, c NUMBER, d NUMBER);

CREATE MATERIALIZED VIEW LOG ON agg
 WITH ROWID (u,a,b,c,d)
 INCLUDING NEW VALUES;

You could create the following materialized aggregate view to use the agg log:

CREATE MATERIALIZED VIEW sn0
 REFRESH FAST ON COMMIT
 AS SELECT SUM(b+c), COUNT(*), a, d, COUNT(b+c)
 FROM agg
 GROUP BY a,d;

This materialized view is eligible for fast refresh because the log it uses includes

both old and new values.
9-114 SQL Reference

CREATE OPERATOR
CREATE OPERATOR

Purpose
Use the CREATE OPERATOR statement to create a new operator and define its

bindings.

Operators can be referenced by indextypes and by DML and query SQL statements.

The operators, in turn, reference functions, packages, types, and other user-defined

objects.

Prerequisites
To create an operator in your own schema, you must have CREATE OPERATOR
system privilege. To create an operator in another schema, you must have the

CREATE ANY OPERATOR system privilege. In either case, you must also have

EXECUTE privilege on the functions and operators referenced.

Syntax

binding_clause ::=

See Also: Oracle8i Data Cartridge Developer’s Guide and Oracle8i
Concepts for a discussion of these dependencies, and of operators in

general

CREATE
OR REPLACE

OPERAT0R
schema .

operator binding_clause ;

BINDING (parameter_type

,

) RETURN return_type implementation_clause

,

SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-115

CREATE OPERATOR
implementation_clause ::=

context_clause ::=

using_clause ::=

Keywords and Parameters

OR REPLACE
Specify OR REPLACE to replace the definition of the operator schema object.

Restriction: You can replace the definition only if the operator has no dependent

objects (for example, indextypes supporting the operator).

schema
Specify the schema containing the operator. If you omit schema , Oracle assumes

the operator is in your own schema.

operator
Specify the name of the operator to be created.

ANCILLARY TO primary_operator (parameter_type

,

)

,

context_clause
COMPUTE ANCILLARY DATA

using_clause

WITH INDEX CONTEXT , SCAN CONTEXT implementation_type

USING
schema .

package .

type .
function_name
9-116 SQL Reference

CREATE OPERATOR
binding_clause
Use the binding_clause to specify one or more parameter datatypes

(parameter_type) for binding the operator to a function. The signature of each

binding (that is, the sequence of the datatypes of the arguments to the

corresponding function) must be unique according to the rules of overloading.

The parameter_type can itself be an object type. If it is, you can optionally

qualify it with its schema.

Restriction: You cannot specify a parameter_type of REF, LONG, or LONG RAW.

See Also: PL/SQL User’s Guide and Reference for more information

about overloading

RETURN
return_type

Specify the return datatype for the binding.

The return_type can itself be an object type. If so, you can

optionally qualify it with its schema.

Restriction: You cannot specify a return_type of REF, LONG, or

LONG RAW.

implementat
ion_clause

ANCILLARY TO
primary_
operator

Use the ANCILLARY TO clause to indicate that

the operator binding is ancillary to the specified

primary operator binding (primary_
operator). If you specify this clause, do not

specify a previous binding with just one number

parameter.

context_
clause

Specify the name of the implementation type

used by the functional implementation of the

operator as a scan context.

COMPUTE
ANCILLARY
DATA

Specify COMPUTE ANCILLARY DATA to indicate

that the operator binding computes ancillary

data.

using_clause The using_clause lets you specify the function that provides

the implementation for the binding.

function_
name

Specify the name of the function. The function

can be a standalone function, packaged function,

type method, or a synonym for any of these.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-117

CREATE OPERATOR
Example

CREATE OPERATOR Example This example creates an operator called MERGE in

the scott schema with two bindings. The first binding is for merging two

VARCHAR2 values and returning a VARCHAR2 result. The second binding is for

merging two geometries into a single geometry. The corresponding functional

implementations for the bindings are also specified.

CREATE OPERATOR scott.merge
BINDING (varchar2, varchar2) RETURN varchar2
 USING text.merge,
 (spatial.geo, spatial.geo) RETURN spatial.geo
 USING spatial.merge;
9-118 SQL Reference

CREATE OUTLINE
CREATE OUTLINE

Purpose
Use the CREATE OUTLINE statement to create a stored outline, which is a set of

attributes used by the optimizer to generate an execution plan. You can then

instruct the optimizer to use a set of outlines to influence the generation of

execution plans whenever a particular SQL statement is issued, regardless of

changes in factors that can affect optimization. You can also modify an outline so

that it takes into account changes in these factors.

You enable or disable the use of stored outlines dynamically for an individual

session or for the system.

Prerequisites
To create an outline, you must have the CREATE ANY OUTLINE system privilege.

Syntax

See Also:

■ Oracle8i Performance Guide and Reference

■ ALTER OUTLINE on page 7-83 for information on modifying

an outline

■ ALTER SESSION on page 7-105 and ALTER SYSTEM on

page 7-127 for information on dynamically enabling and

disabling stored outlines

CREATE
OR REPLACE

OUTLINE
outline

FOR CATEGORY category
ON statement ;
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-119

CREATE OUTLINE
Keywords and Parameters

OR REPLACE
Specify OR REPLACE to replace an existing outline with a new outline of the same

name.

outline
Specify the unique name to be assigned to the stored outline. If you do not specify

outline , the system generates an outline name.

FOR CATEGORYcategory
Specify an optional name used to group stored outlines. For example, you could

specify a category of outlines for end-of-week use and another for end-of-quarter

use. If you do not specify category , the outline is stored in the DEFAULT category.

ONstatement
Specify the SQL statement for which Oracle will create an outline when the

statement is compiled. You can specify any one of the following statements:

■ SELECT

■ DELETE

■ UPDATE

■ INSERT ... SELECT

■ CREATE TABLE ... AS SELECT

Example

CREATE OUTLINE Example The following statement creates a stored outline by

compiling the ON statement. The outline is called salaries and is stored in the

category special .

CREATE OUTLINE salaries FOR CATEGORY special
 ON SELECT ename, sal FROM emp;

Note: You can specify multiple outlines for a single statement, but

each outline for the same statement must be in a different category.
9-120 SQL Reference

CREATE OUTLINE
When this same SELECT statement is subsequently compiled, if the USE_STORED_
OUTLINES parameter is set to special , Oracle generates the same execution plan

as was generated when the outline salaries was created.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-121

CREATE PACKAGE
CREATE PACKAGE

Purpose
Use the CREATE PACKAGEstatement to create the specification for a stored package,

which is an encapsulated collection of related procedures, functions, and other

program objects stored together in the database. The specification declares these

objects.

Prerequisites
Before a package can be created, the user SYS must run the SQL script

DBMSSTDX.SQL. The exact name and location of this script depend on your

operating system.

To create a package in your own schema, you must have CREATE PROCEDURE
system privilege. To create a package in another user’s schema, you must have

CREATE ANY PROCEDURE system privilege.

To embed a CREATE PACKAGE statement inside an Oracle precompiler program,

you must terminate the statement with the keyword END-EXEC followed by the

embedded SQL statement terminator for the specific language.

See Also:

■ CREATE FUNCTION on page 9-43 and CREATE PROCEDURE

on page 9-132 for information on creating standalone functions

and procedures

■ ALTER PACKAGE on page 7-85 for information on modifying

a package

■ DROP PACKAGE on page 10-150 for information on dropping

a package

■ Oracle8i Application Developer’s Guide - Fundamentals and

Oracle8i Supplied PL/SQL Packages Reference for detailed

discussions of packages and how to use them

See Also: PL/SQL User’s Guide and Reference
9-122 SQL Reference

CREATE PACKAGE
Syntax

invoker_rights_clause ::=

Keywords and Parameters

OR REPLACE
Specify OR REPLACE to re-create the package specification if it already exists. Use

this clause to change the specification of an existing package without dropping, re-

creating, and regranting object privileges previously granted on the package. If you

change a package specification, Oracle recompiles it.

Users who had previously been granted privileges on a redefined package can still

access the package without being regranted the privileges.

If any function-based indexes depend on the package, Oracle marks the indexes

DISABLED.

schema
Specify the schema to contain the package. If you omit schema , Oracle creates the

package in your own schema.

package
Specify the name of the package to be created.

See Also: ALTER PACKAGE on page 7-85 for information on

recompiling package specifications

CREATE
OR REPLACE

PACKAGE
schema .

package

invoker_rights_clause IS

AS
pl/sql_package_spec ;

AUTHID
CURRENT_USER

DEFINER
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-123

CREATE PACKAGE
If creating the package results in compilation errors, Oracle returns an error. You

can see the associated compiler error messages with the SHOW ERRORS command.

invoker_rights_clause
The invoker_rights_clause lets you specify whether the functions and

procedures in the package execute with the privileges and in the schema of the user

who owns it or with the privileges and in the schema of CURRENT_USER. This

specification applies to the corresponding package body as well.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the package.

pl/sql_package_spec
Specify the package specification, which can contain type definitions, cursor

declarations, variable declarations, constant declarations, exception declarations,

PL/SQL subprogram specifications, and call specifications (declarations of a C or

Java routine expressed in PL/SQL).

AUTHID
CURRENT_USER

Specify CURRENT_USERto indicate that the package executes with

the privileges of CURRENT_USER. This clause creates an "invoker-

rights package."

This clause also specifies that external names in queries, DML

operations, and dynamic SQL statements resolve in the schema of

CURRENT_USER. External names in all other statements resolve in

the schema in which the package resides.

AUTHID
DEFINER

Specify DEFINER to indicate that the package executes with the

privileges of the owner of the schema in which the package

resides and that external names resolve in the schema where the

package resides. This is the default.

See Also:

■ PL/SQL User’s Guide and Reference

■ Oracle8i Concepts and Oracle8i Application Developer’s Guide -
Fundamentals for information on how CURRENT_USER is
determined
9-124 SQL Reference

CREATE PACKAGE
Example

CREATE PACKAGE Example The following SQL statement creates the

specification of the emp_mgmt package:

CREATE PACKAGE emp_mgmt AS
 FUNCTION hire(ename VARCHAR2, job VARCHAR2, mgr NUMBER,
 sal NUMBER, comm NUMBER, deptno NUMBER)
 RETURN NUMBER;
 FUNCTION create_dept(dname VARCHAR2, loc VARCHAR2)
 RETURN NUMBER;
 PROCEDURE remove_emp(empno NUMBER);
 PROCEDURE remove_dept(deptno NUMBER);
 PROCEDURE increase_sal(empno NUMBER, sal_incr NUMBER);
 PROCEDURE increase_comm(empno NUMBER, comm_incr NUMBER);
 no_comm EXCEPTION;
 no_sal EXCEPTION;
END emp_mgmt;

The specification for the emp_mgmt package declares the following public program

objects:

■ the functions hire and create_dept

■ the procedures remove_emp , remove_dept , increase_sal , and

increase_comm

■ the exceptions no_comm and no_sal

All of these objects are available to users who have access to the package. After

creating the package, you can develop applications that call any of the package’s

public procedures or functions or raise any of the package’s public exceptions.

Before you can call this package’s procedures and functions, you must define these

procedures and functions in the package body. For an example of a CREATE

See Also:

■ PL/SQL User’s Guide and Reference for more information on PL/

SQL package program units

■ Oracle8i Supplied PL/SQL Packages Reference for information on

Oracle supplied packages

■ "Restrictions on User-Defined Functions" on page 9-46 for a list

of restrictions on user-defined functions in a package
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-125

CREATE PACKAGE
PACKAGE BODY statement that creates the body of the emp_mgmt package, see

CREATE PACKAGE BODY on page 9-127.
9-126 SQL Reference

CREATE PACKAGE BODY
CREATE PACKAGE BODY

Purpose
Use the CREATE PACKAGE BODY statement to create the body of a stored package,

which is an encapsulated collection of related procedures, stored functions, and

other program objects stored together in the database. The body defines these

objects.

Packages are an alternative to creating procedures and functions as standalone

schema objects.

Prerequisites
Before a package can be created, the user SYS must run the SQL script

DBMSSTDX.SQL. The exact name and location of this script depend on your

operating system.

To create a package in your own schema, you must have CREATE PROCEDURE
system privilege. To create a package in another user’s schema, you must have

CREATE ANY PROCEDURE system privilege.

To embed a CREATE PACKAGE BODY statement inside an Oracle precompiler

program, you must terminate the statement with the keyword END-EXEC followed

by the embedded SQL statement terminator for the specific language.

See Also:

■ CREATE FUNCTION on page 9-43 and CREATE PROCEDURE

on page 9-132 for information on creating standalone functions

and procedures

■ CREATE PACKAGE on page 9-122 for a discussion of

packages, including how to create packages

■ "Examples" on page 9-129 for some illustrations

■ ALTER PACKAGE on page 7-85 for information on modifying

a package

■ DROP PACKAGE on page 10-150 for information on removing

a package from the database

See Also: PL/SQL User’s Guide and Reference
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-127

CREATE PACKAGE BODY
Syntax

Keywords and Parameters

OR REPLACE
Specify OR REPLACE to re-create the package body if it already exists. Use this

clause to change the body of an existing package without dropping, re-creating, and

regranting object privileges previously granted on it. If you change a package body,

Oracle recompiles it.

Users who had previously been granted privileges on a redefined package can still

access the package without being regranted the privileges.

schema
Specify the schema to contain the package. If you omit schema , Oracle creates the

package in your current schema.

package
Specify the name of the package to be created.

pl/sql_package_body
Specify the package body, which can contain PL/SQL subprogram bodies or call

specifications (declarations of a C or Java routine expressed in PL/SQL).

See Also: ALTER PACKAGE on page 7-85 for information on

recompiling package bodies

CREATE
OR REPLACE

PACKAGE BODY
schema .

package

IS

AS
pl/sql_package_body ;
9-128 SQL Reference

CREATE PACKAGE BODY
Examples

CREATE PACKAGE BODY Example This SQL statement creates the body of the

emp_mgmt package:

CREATE PACKAGE BODY emp_mgmt AS
 tot_emps NUMBER;

 tot_depts NUMBER;

FUNCTION hire
 (ename VARCHAR2,
 job VARCHAR2,
 mgr NUMBER,
 sal NUMBER,
 comm NUMBER,
 deptno NUMBER)

RETURN NUMBER IS
 new_empno NUMBER(4);
BEGIN
 SELECT empseq.NEXTVAL
 INTO new_empno
 FROM DUAL;
 INSERT INTO emp
 VALUES (new_empno, ename, job, mgr, sal, comm, deptno,
 tot_emps := tot_emps + 1;
 RETURN(new_empno);
END;

FUNCTION create_dept(dname VARCHAR2, loc VARCHAR2)
 RETURN NUMBER IS
 new_deptno NUMBER(4);
 BEGIN
 SELECT deptseq.NEXTVAL

See Also:

■ Oracle8i Application Developer’s Guide - Fundamentals for more

information on writing PL/SQL or C package program units

■ Oracle8i Java Stored Procedures Developer’s Guide for information

on JAVA package program units

■ "Restrictions on User-Defined Functions" on page 9-46 for a list

of restrictions on user-defined functions in a package
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-129

CREATE PACKAGE BODY
 INTO new_deptno
 FROM dual;
 INSERT INTO dept
 VALUES (new_deptno, dname, loc);
 tot_depts := tot_depts + 1;
 RETURN(new_deptno);
 END;

PROCEDURE remove_emp(empno NUMBER) IS
 BEGIN
 DELETE FROM emp
 WHERE emp.empno = remove_emp.empno;
 tot_emps := tot_emps - 1;
 END;

PROCEDURE remove_dept(deptno NUMBER) IS
 BEGIN
 DELETE FROM dept
 WHERE dept.deptno = remove_dept.deptno;
 tot_depts := tot_depts - 1;
 SELECT COUNT(*)
 INTO tot_emps
 FROM emp;
 /* In case Oracle deleted employees from the EMP table
 to enforce referential integrity constraints, reset
 the value of the variable TOT_EMPS to the total
 number of employees in the EMP table. */
 END;

PROCEDURE increase_sal(empno NUMBER, sal_incr NUMBER) IS
 curr_sal NUMBER(7,2);
 BEGIN
 SELECT sal
 INTO curr_sal
 FROM emp
 WHERE emp.empno = increase_sal.empno;
 IF curr_sal IS NULL
 THEN RAISE no_sal;
 ELSE
 UPDATE emp
 SET sal = sal + sal_incr
 WHERE empno = empno;
 END IF;
 END;
9-130 SQL Reference

CREATE PACKAGE BODY
PROCEDURE increase_comm(empno NUMBER, comm_incr NUMBER) IS
 curr_comm NUMBER(7,2);
 BEGIN
 SELECT comm
 INTO curr_comm
 FROM emp
 WHERE emp.empno = increase_comm.empno
 IF curr_comm IS NULL
 THEN RAISE no_comm;
 ELSE
 UPDATE emp
 SET comm = comm + comm_incr;
 END IF;
 END;

END emp_mgmt;

This package body corresponds to the package specification in the example of the

CREATE PACKAGE statement earlier in this chapter. The package body defines the

public program objects declared in the package specification:

■ The functions hire and create_dept

■ The procedures remove_emp , remove_dept , increase_sal , and

increase_comm

These objects are declared in the package specification, so they can be called by

application programs, procedures, and functions outside the package. For example,

if you have access to the package, you can create a procedure increase_all_
comms separate from the emp_mgmt package that calls the increase_comm
procedure.

These objects are defined in the package body, so you can change their definitions

without causing Oracle to invalidate dependent schema objects. For example, if you

subsequently change the definition of hire , Oracle need not recompile increase_
all_comms before executing it.

The package body in this example also declares private program objects, the

variables tot_emps and tot_depts . These objects are declared in the package

body rather than the package specification, so they are accessible to other objects in

the package, but they are not accessible outside the package. For example, you

cannot develop an application that explicitly changes the value of the variable tot_
depts . However, the function create_dept is part of the package, so create_
dept can change the value of tot_depts.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-131

CREATE PROCEDURE
CREATE PROCEDURE

Purpose
Use the CREATE PROCEDURE statement to create a standalone stored procedure or a

call specification.

A procedure is a group of PL/SQL statements that you can call by name. A call
specification ("call spec") declares a Java method or a third-generation language

(3GL) routine so that it can be called from SQL and PL/SQL. The call spec tells

Oracle which Java method to invoke when a call is made. It also tells Oracle what

type conversions to make for the arguments and return value.

Stored procedures offer advantages in the areas of development, integrity, security,

performance, and memory allocation.

Prerequisites
Before creating a procedure, the user SYS must run the SQL script DBMSSTDX.SQL.
The exact name and location of this script depends on your operating system.

See Also:

■ Oracle8i Application Developer’s Guide - Fundamentals for more

information on stored procedures, including how to call stored

procedures

■ CREATE FUNCTION on page 9-43 for information specific to functions,

which are similar in many ways

■ CREATE PACKAGE on page 9-122 for information on creating

packages. (The CREATE PROCEDURE statement creates a procedure as a

standalone schema object. You can also create a procedure as part of a

package.

■ ALTER PROCEDURE on page 7-88 and DROP PROCEDURE on

page 10-152 for information on modifying and dropping a standalone

procedure

■ CREATE LIBRARY on page 9-86 for more information about shared

libraries

■ Oracle8i Application Developer’s Guide - Fundamentals for more

information about registering external procedures
9-132 SQL Reference

CREATE PROCEDURE
To create a procedure in your own schema, you must have the CREATE PROCEDURE
system privilege. To create a procedure in another user’s schema, you must have

CREATE ANY PROCEDURE system privilege. To replace a procedure in another

schema, you must have the ALTER ANY PROCEDURE system privilege.

To invoke a call spec, you may need additional privileges (for example, EXECUTE
privileges on the C library for a C call spec).

To embed a CREATE PROCEDURE statement inside an Oracle precompiler program,

you must terminate the statement with the keyword END-EXEC followed by the

embedded SQL statement terminator for the specific language.

Syntax

invoker_rights_clause ::=

See Also: PL/SQL User’s Guide and Reference or Oracle8i Java Stored
Procedures Developer’s Guide for more information on such

prerequisites

CREATE
OR REPLACE

PROCEDURE
schema .

procedure

(argument

IN

OUT

IN OUT NOCOPY
datatype

,

)

invoker_rights_clause IS

AS

pl/sql_subprogram_body

call_spec
;

AUTHID
CURRENT_USER

DEFINER
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-133

CREATE PROCEDURE
call_spec ::=

Java_declaration ::=

C_declaration ::=

Keywords and Parameters

OR REPLACE
Specify OR REPLACE to re-create the procedure if it already exists. Use this clause to

change the definition of an existing procedure without dropping, re-creating, and

regranting object privileges previously granted on it. If you redefine a procedure,

Oracle recompiles it.

Users who had previously been granted privileges on a redefined procedure can

still access the procedure without being regranted the privileges.

If any function-based indexes depend on the package, Oracle marks the indexes

DISABLED.

schema
Specify the schema to contain the procedure. If you omit schema , Oracle creates the

procedure in your current schema.

See Also: ALTER PROCEDURE on page 7-88 for information on

recompiling procedures

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
WITH CONTEXT

PARAMETERS (parameters)
9-134 SQL Reference

CREATE PROCEDURE
procedure
Specify the name of the procedure to be created.

If creating the procedure results in compilation errors, Oracle returns an error. You

can see the associated compiler error messages with the SQL*Plus command SHOW
ERRORS.

argument

argument Specify the name of an argument to the procedure. If the

procedure does not accept arguments, you can omit the

parentheses following the procedure name.

IN Specify IN to indicate that you must specify a value for the

argument when calling the procedure.

OUT Specify OUT to indicate that the procedure passes a value for this

argument back to its calling environment after execution.

IN OUT Specify IN OUT to indicate that you must specify a value for the

argument when calling the procedure and that the procedure

passes a value back to its calling environment after execution.

If you omit IN , OUT, and IN OUT, the argument defaults to IN .

NOCOPY Specify NOCOPY to instruct Oracle to pass this argument as fast as

possible. This clause can significantly enhance performance when

passing a large value like a record, an index-by table, or a varray

to an OUT or IN OUT parameter. (IN parameter values are always

passed NOCOPY.)

■ When you specify NOCOPY, assignments made to a package

variable may show immediately in this parameter (or

assignments made to this parameter may show immediately

in a package variable) if the package variable is passed as the

actual assignment corresponding to this parameter.

■ Similarly, changes made either to this parameter or to another

parameter may be visible immediately through both names if

the same variable is passed to both.

■ If the procedure is exited with an unhandled exception, any

assignment made to this parameter may be visible in the

caller’s variable.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-135

CREATE PROCEDURE
invoker_rights_clause
The invoker_rights_clause lets you specify whether the procedure executes

with the privileges and in the schema of the user who owns it or with the privileges

and in the schema of CURRENT_USER.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the procedure.

These effects may or may not occur on any particular call. You

should use NOCOPY only when these effects would not matter.

datatype Specify the datatype of the argument. An argument can have any

datatype supported by PL/SQL.

Datatypes cannot specify length, precision, or scale. For example,

VARCHAR2(10) is not valid, but VARCHAR2 is valid. Oracle derives

the length, precision, and scale of an argument from the

environment from which the procedure is called.

AUTHID
CURRENT_USER

Specify CURRENT_USER to indicate that the procedure executes

with the privileges of CURRENT_USER. This clause creates an

"invoker-rights procedure."

This clause also specifies that external names in queries, DML

operations, and dynamic SQL statements resolve in the schema of

CURRENT_USER. External names in all other statements resolve in

the schema in which the procedure resides.

AUTHID
DEFINER

Specify DEFINER to indicate that the procedure executes with the

privileges of the owner of the schema in which the procedure

resides, and that external names resolve in the schema where the

procedure resides. This is the default.

See Also:

■ PL/SQL User’s Guide and Reference

■ Oracle8i Concepts and Oracle8i Application Developer’s Guide -
Fundamentals for information on how CURRENT_USER is
determined
9-136 SQL Reference

CREATE PROCEDURE
IS | AS

Examples

CREATE PROCEDURE Example The following statement creates the procedure

credit in the schema sam:

CREATE PROCEDURE sam.credit (acc_no IN NUMBER, amount IN NUMBER) AS
 BEGIN
 UPDATE accounts
 SET balance = balance + amount
 WHERE account_id = acc_no;
 END;

The credit procedure credits a specified bank account with a specified amount.

When you call the procedure, you must specify the following arguments:

pl/sql_
subprogram_
body

In the PL/SQL subprogram body, declare the procedure in a PL/

SQL subprogram body.

See Also: Oracle8i Application Developer’s Guide - Fundamentals
for more information on PL/SQL subprograms

call_spec Use the call_spec to map a Java or C method name, parameter

types, and return type to their SQL counterparts.

In Java_declaration, ’string ’ identifies the Java

implementation of the method.

See Also:

- Oracle8i Java Stored Procedures Developer’s Guide

- Oracle8i Application Developer’s Guide - Fundamentals for an

explanation of the parameters and semantics of the C_
declaration

AS EXTERNAL The AS EXTERNAL clause is an alternative way

of declaring a C method. This clause has been

deprecated and is supported for backward

compatibility only. Oracle Corporation

recommends that you use the AS LANGUAGE C
syntax.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-137

CREATE PROCEDURE
The procedure uses an UPDATE statement to increase the value in the balance
column of the accounts table by the value of the argument amount for the

account identified by the argument acc_no .

In the following example, external procedure c_find_root expects a pointer as a

parameter. Procedure find_root passes the parameter by reference using the BY
REF phrase:

CREATE PROCEDURE find_root
 (x IN REAL)
 IS LANGUAGE C
 NAME "c_find_root"
 LIBRARY c_utils
 PARAMETERS (x BY REF);

ACC_NO is the number of the bank account to be credited. The

argument’s datatype is NUMBER.

AMOUNT is the amount of the credit. The argument’s datatype is

NUMBER.
9-138 SQL Reference

CREATE PROFILE
CREATE PROFILE

Purpose
Use the CREATE PROFILE statement to create a profile, which is a set of limits on

database resources. If you assign the profile to a user, that user cannot exceed these

limits.

Prerequisites
You must have CREATE PROFILE system privilege.

To specify resource limits for a user, you must:

■ Enable resource limits dynamically with the ALTER SYSTEM statement or with

the initialization parameter RESOURCE_LIMIT. (This parameter does not apply

to password resources. Password resources are always enabled.)

■ Create a profile that defines the limits using the CREATE PROFILE statement

■ Assign the profile to the user using the CREATE USER or ALTER USER statement

Syntax

See Also: Oracle8i Administrator’s Guide for a detailed description

and explanation of how to use password management and

protection

See Also:

■ ALTER SYSTEM on page 7-127 for information on enabling

resource limits dynamically

■ Oracle8i Reference for information on the RESOURCE_LIMIT
parameter

■ CREATE USER on page 10-99 and ALTER USER on page 8-88

for information on profiles

CREATE PROFILE profile LIMIT
resource_parameters

password_parameters
;

SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-139

CREATE PROFILE
resource_parameters ::=

password_parameters ::=

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

integer

K

M

UNLIMITED

DEFAULT

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT
9-140 SQL Reference

CREATE PROFILE
Keywords and Parameters

profile
Specify the name of the profile to be created. Use profiles to limit the database

resources available to a user for a single call or a single session.

Oracle enforces resource limits in the following ways:

■ If a user exceeds the CONNECT_TIME or IDLE_TIME session resource limit,

Oracle rolls back the current transaction and ends the session. When the user

process next issues a call, Oracle returns an error.

■ If a user attempts to perform an operation that exceeds the limit for other

session resources, Oracle aborts the operation, rolls back the current statement,

and immediately returns an error. The user can then commit or roll back the

current transaction, and must then end the session.

■ If a user attempts to perform an operation that exceeds the limit for a single call,

Oracle aborts the operation, rolls back the current statement, and returns an

error, leaving the current transaction intact.

UNLIMITED
When specified with a resource parameter, indicates that a user assigned this profile

can use an unlimited amount of this resource. When specified with a password

parameter, indicates that no limit has been set for the parameter.

DEFAULT
Specify DEFAULT if you want to omit a limit for this resource in this profile. A user

assigned this profile is subject to the limit for this resource specified in the DEFAULT
profile. The DEFAULT profile initially defines unlimited resources. You can change

those limits with the ALTER PROFILE statement.

Notes:

■ You can use fractions of days for all parameters that limit time,

with days as units. For example, 1 hour is 1/24 and 1 minute is

1/1440.

■ You can specify resource limits for users regardless of whether

the resource limits are enabled. However, Oracle does not

enforce the limits until you enable them.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-141

CREATE PROFILE
Any user who is not explicitly assigned a profile is subject to the limits defined in

the DEFAULT profile. Also, if the profile that is explicitly assigned to a user omits

limits for some resources or specifies DEFAULTfor some limits, the user is subject to

the limits on those resources defined by the DEFAULT profile.

resource_parameters

SESSIONS_
PER_USER

Specify the number of concurrent sessions to which you want to

limit the user.

CPU_PER_
SESSION

Specify the CPU time limit for a session, expressed in hundredth

of seconds.

CPU_PER_CALLSpecify the CPU time limit for a call (a parse, execute, or fetch),

expressed in hundredths of seconds.

CONNECT_TIMESpecify the total elapsed time limit for a session, expressed in

minutes.

IDLE_TIME Specify the permitted periods of continuous inactive time during

a session, expressed in minutes. Long-running queries and other

operations are not subject to this limit.

LOGICAL_
READS_PER_
SESSION

Specify the permitted number of data blocks read in a session,

including blocks read from memory and disk.

LOGICAL_
READS_PER_
CALL

Specify the permitted the number of data blocks read for a call to

process a SQL statement (a parse, execute, or fetch).

PRIVATE_SGA Specify the amount of private space a session can allocate in the

shared pool of the system global area (SGA), expressed in bytes.

Use K or M to specify this limit in kilobytes or megabytes.

Note: This limit applies only if you are using multi-threaded

server architecture. The private space for a session in the SGA

includes private SQL and PL/SQL areas, but not shared SQL

and PL/SQL areas.
9-142 SQL Reference

CREATE PROFILE
password_parameters

COMPOSITE_
LIMIT

Specify the total resources cost for a session, expressed in

service units . Oracle calculates the total service units as a

weighted sum of CPU_PER_SESSION, CONNECT_TIME,
LOGICAL_READS_PER_SESSION, and PRIVATE_SGA.

See Also: ALTER RESOURCE COST on page 7-95 for

information on how to specify the weight for each session

resource

FAILED_
LOGIN_
ATTEMPTS

Specify the number of failed attempts to log in to the user account

before the account is locked.

PASSWORD_
LIFE_TIME

Specify the number of days the same password can be used for

authentication. The password expires if it is not changed within

this period, and further connections are rejected.

PASSWORD_
REUSE_TIME

Specify the number of days before which a password cannot be

reused. If you set PASSWORD_REUSE_TIME to an integer value,

then you must set PASSWORD_REUSE_MAX to UNLIMITED.

PASSWORD_
REUSE_MAX

Specify the number of password changes required before the

current password can be reused. If you set PASSWORD_REUSE_
MAX to an integer value, then you must set PASSWORD_REUSE_
TIME to UNLIMITED.

PASSWORD_
LOCK_TIME

Specify the number of days an account will be locked after the

specified number of consecutive failed login attempts.

PASSWORD_
GRACE_TIME

Specify the number of days after the grace period begins during

which a warning is issued and login is allowed. If the password is

not changed during the grace period, the password expires.

PASSWORD_
VERIFY_
FUNCTION

The PASSWORD_VERIFY_FUNCTION clause lets allows a PL/SQL

password complexity verification script to be passed as an

argument to the CREATE PROFILE statement. Oracle provides a

default script, but you can create your own routine or use third-

party software instead.

function Specify the name of the password complexity

verification routine.

NULL Specify NULL to indicate that no password

verification is performed.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-143

CREATE PROFILE
Restrictions on password parameters:

■ If PASSWORD_REUSE_TIME is set to an integer value, PASSWORD_REUSE_MAX
must be set to UNLIMITED. If PASSWORD_REUSE_MAX is set to an integer

value, PASSWORD_REUSE_TIME must be set to UNLIMITED.

■ If both PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX are set to

UNLIMITED, then Oracle uses neither of these password resources.

■ If PASSWORD_REUSE_MAX is set to DEFAULT and PASSWORD_REUSE_TIME is

set to UNLIMITED, then Oracle uses the PASSWORD_REUSE_MAX value defined

in the DEFAULT profile.

■ If PASSWORD_REUSE_TIME is set to DEFAULT and PASSWORD_REUSE_MAX is

set to UNLIMITED, then Oracle uses the PASSWORD_REUSE_TIMEvalue defined

in the DEFAULT profile.

■ If both PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX are set to

DEFAULT, then Oracle uses whichever value is defined in the DEFAULT profile.

Examples

CREATE PROFILE Example The following statement creates the profile prof :

CREATE PROFILE prof
 LIMIT PASSWORD_REUSE_MAX DEFAULT
 PASSWORD_REUSE_TIME UNLIMITED;

Setting Resource Limits Example The following statement creates the profile

system_manager :

CREATE PROFILE system_manager
 LIMIT SESSIONS_PER_USER UNLIMITED
 CPU_PER_SESSION UNLIMITED
 CPU_PER_CALL 3000
 CONNECT_TIME 45
 LOGICAL_READS_PER_SESSION DEFAULT
 LOGICAL_READS_PER_CALL 1000
 PRIVATE SGA 15K
 COMPOSITE_LIMIT 5000000;

If you then assign the system_manager profile to a user, the user is subject to the

following limits in subsequent sessions:

■ The user can have any number of concurrent sessions.
9-144 SQL Reference

CREATE PROFILE
■ In a single session, the user can consume an unlimited amount of CPU time.

■ A single call made by the user cannot consume more than 30 seconds of CPU

time.

■ A single session cannot last for more than 45 minutes.

■ In a single session, the number of data blocks read from memory and disk is

subject to the limit specified in the DEFAULT profile.

■ A single call made by the user cannot read more than 1000 data blocks from

memory and disk.

■ A single session cannot allocate more than 15 kilobytes of memory in the SGA.

■ In a single session, the total resource cost cannot exceed 5 million service units.

The formula for calculating the total resource cost is specified by the ALTER
RESOURCE COST statement.

■ Since the system_manager profile omits a limit for IDLE_TIME and for

password limits, the user is subject to the limits on these resources specified in

the DEFAULT profile.

Setting Password Limits Example The following statement creates profile

myprofile with password profile limits values set:

CREATE PROFILE myprofile LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LIFE_TIME 60
 PASSWORD_REUSE_TIME 60
 PASSWORD_REUSE_MAX UNLIMITED
 PASSWORD_VERIFY_FUNCTION verify_function
 PASSWORD_LOCK_TIME 1/24
 PASSWORD_GRACE_TIME 10;
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-145

CREATE ROLE
CREATE ROLE

Purpose
Use the CREATE ROLEstatement to create a role, which is a set of privileges that can

be granted to users or to other roles. You can use roles to administer database

privileges. You can add privileges to a role and then grant the role to a user. The

user can then enable the role and exercise the privileges granted by the role.

A role contains all privileges granted to the role and all privileges of other roles

granted to it. A new role is initially empty. You add privileges to a role with the

GRANT statement.

When you create a role that is NOT IDENTIFIED or is IDENTIFIED EXTERNALLY
or BYpassword , Oracle grants you the role with ADMIN OPTION. However, when

you create a role IDENTIFIED GLOBALLY, Oracle does not grant you the role.

Prerequisites
You must have CREATE ROLE system privilege.

See Also:

■ GRANT on page 11-31 for information on granting roles

■ ALTER USER on page 8-88 for information on enabling roles

■ ALTER ROLE on page 7-98 for information on modifying a role

■ DROP ROLE on page 10-156 for information on removing a

role from the database

■ SET ROLE on page 11-122 for information on enabling and

disabling roles for the current session

■ Oracle8i Distributed Database Systems for a detailed description

and explanation of using global roles
9-146 SQL Reference

CREATE ROLE
Syntax

Keywords and Parameters

role
Specify the name of the role to be created. Oracle recommends that the role contain

at least one single-byte character regardless of whether the database character set

also contains multibyte characters.

Some roles are defined by SQL scripts provided on your distribution media.

NOT IDENTIFIED
Specify NOT IDENTIFIED to indicate that this role is authorized by the database

and that no password is required to enable the role.

IDENTIFIED
Use the IDENTIFIED clause to indicate that a user must be authorized by the

specified method before the role is enabled with the SET ROLE statement:

See Also: GRANT on page 11-31 for a list of these predefined

roles

BY password The BYpassword clause lets you create a local user and indicates

that the user must specify the password to Oracle when enabling

the role. The password can contain only single-byte characters

from your database character set regardless of whether this

character set also contains multibyte characters.

EXTERNALLY Specify EXTERNALLY to create an external user and indicates that

a user must be authorized by an external service (such as an

operating system or third-party service) before enabling the role.

CREATE ROLE role

NOT IDENTIFIED

IDENTIFIED

BY password

EXTERNALLY

GLOBALLY
;

SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-147

CREATE ROLE
If you omit both the NOT IDENTIFIED clause and the IDENTIFIED clause, the role

defaults to NOT IDENTIFIED .

Examples

CREATE ROLE Example The following statement creates global role vendor :

CREATE ROLE vendor IDENTIFIED GLOBALLY;

The following statement creates the role teller :

CREATE ROLE teller
 IDENTIFIED BY cashflow;

Users who are subsequently granted the teller role must specify the password

cashflow to enable the role with the SET ROLE statement.

Depending on the operating system, the user may have to specify

a password to the operating system before the role is enabled.

GLOBALLY Specify GLOBALLYto create a global user and indicates that a user

must be authorized to use the role by the enterprise directory

service before the role is enabled with the SET ROLE statement, or

at login.
9-148 SQL Reference

CREATE ROLLBACK SEGMENT
CREATE ROLLBACK SEGMENT

Purpose
Use the CREATE ROLLBACK SEGMENT statement to create a rollback segment,
which is an object that Oracle uses to store data necessary to reverse, or undo,

changes made by transactions.

Prerequisites
You must have CREATE ROLLBACK SEGMENT system privilege.

Syntax

storage_clause : See storage_clause on page 11-129.

Keyword and Parameters

PUBLIC
Specify PUBLIC to indicate that the rollback segment is public and is available to

any instance. If you omit this clause, the rollback segment is private and is available

only to the instance naming it in its initialization parameter ROLLBACK_SEGMENTS.

See Also:

■ ALTER ROLLBACK SEGMENT on page 7-100 for information

on altering a rollback segment

■ DROP ROLLBACK SEGMENT on page 10-157 for information

on removing a rollback segment

CREATE
PUBLIC

ROLLBACK SEGMENT rollback_segment

TABLESPACE tablespace

storage_clause
;

SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-149

CREATE ROLLBACK SEGMENT
rollback_segment
Specify the name of the rollback segment to be created.

TABLESPACE
Use the TABLESPACE clause to identify the tablespace in which the rollback

segment is created. If you omit this clause, Oracle creates the rollback segment in

the SYSTEM tablespace.

Restriction: You cannot create a rollback segment in a tablespace that is system

managed (that is, during creation you specified EXTENT MANAGEMENT LOCAL
AUTOALLOCATE).

storage_clause
The storage_clause lets you specify the characteristics for the rollback segment.

Notes:

■ A tablespace can have multiple rollback segments. Generally,

multiple rollback segments improve performance.

■ The tablespace must be online for you to add a rollback

segment to it.

■ When you create a rollback segment, it is initially offline. To

make it available for transactions by your Oracle instance,

bring it online using the ALTER ROLLBACK SEGMENTstatement.

To bring it online automatically whenever you start up the

database, add the segment’s name to the value of the

ROLLBACK_SEGMENTS initialization parameter.

See Also:

■ CREATE TABLESPACE on page 10-56

■ Oracle8i Administrator’s Guide for more information on creating

rollback segments and making them available
9-150 SQL Reference

CREATE ROLLBACK SEGMENT
Examples

CREATE ROLLBACK SEGMENT Example The following statement creates a

rollback segment with default storage values in the system tablespace:

CREATE ROLLBACK SEGMENT rbs_2
TABLESPACE system;

The above statement is equivalent to the following:

CREATE ROLLBACK SEGMENT rbs_2
 TABLESPACE system
 STORAGE
 (INITIAL 10K
 NEXT 10K
 MAXEXTENTS UNLIMITED);

Notes:

■ The OPTIMAL parameter of the storage_clause is of

particular interest, because it applies only to rollback segments.

■ You cannot specify the PCTINCREASE parameter of the

storage_clause with CREATE ROLLBACK SEGMENT.

See Also: storage_clause on page 11-129
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-151

CREATE SCHEMA
CREATE SCHEMA

Purpose
Use the CREATE SCHEMA to create multiple tables and views and perform multiple

grants in a single transaction.

To execute a CREATE SCHEMA statement, Oracle executes each included statement.

If all statements execute successfully, Oracle commits the transaction. If any

statement results in an error, Oracle rolls back all the statements.

Prerequisites
The CREATE SCHEMA statement can include CREATE TABLE, CREATE VIEW, and

GRANT statements. To issue a CREATE SCHEMA statement, you must have the

privileges necessary to issue the included statements.

Syntax

Keyword and Parameters

schema
Specify the name of the schema. The schema name must be the same as your Oracle

username.

Note: This statement does not actually create a schema. Oracle

automatically creates a schema when you create a user (see

CREATE USER on page 10-99). This statement lets you populate

your schema with tables and views and grant privileges on those

objects without having to issue multiple SQL statements in

multiple transactions.

CREATE SCHEMA AUTHORIZATION schema

create_table_statement

create_view_statement

grant_statement

;

9-152 SQL Reference

CREATE SCHEMA
create_table_statement
Specify a CREATE TABLE statement to be issued as part of this CREATE SCHEMA
statement. Do not end this statement with a semicolon (or other terminator

character).

create_view_statement
Specify a CREATE VIEW statement to be issued as part of this CREATE SCHEMA
statement. Do not end this statement with a semicolon (or other terminator

character).

grant_statement
Specify a GRANTobject_privileges statement to be issued as part of this

CREATE SCHEMA statement. Do not end this statement with a semicolon (or other

terminator character).

The CREATE SCHEMA statement supports the syntax of these statements only as

defined by standard SQL, rather than the complete syntax supported by Oracle.

The order in which you list the CREATE TABLE, CREATE VIEW, and GRANT
statements is unimportant. The statements within a CREATE SCHEMA statement can

reference existing objects or objects you create in other statements within the same

CREATE SCHEMA statement.

Restriction: The syntax of the parallel_clause is allowed for a CREATE TABLE
statement in CREATE SCHEMA, but parallelism is not used when creating the objects.

Example

CREATE SCHEMA Example The following statement creates a schema named

blair for the user Blair, creates the table sox , creates the view red_sox , and

grants SELECT privilege on the red_sox view to the user waites .

CREATE SCHEMA AUTHORIZATION blair

See Also: CREATE TABLE on page 10-7

See Also: CREATE VIEW on page 10-105

See Also: GRANT on page 11-31

See Also: the parallel_clause of CREATE TABLE on

page 10-40
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-153

CREATE SCHEMA
 CREATE TABLE sox
 (color VARCHAR2(10) PRIMARY KEY, quantity NUMBER)
 CREATE VIEW red_sox
 AS SELECT color, quantity FROM sox WHERE color = ’RED’
 GRANT select ON red_sox TO waites;
9-154 SQL Reference

CREATE SEQUENCE
CREATE SEQUENCE

Purpose
Use the CREATE SEQUENCE statement to create a sequence, which is a database

object from which multiple users may generate unique integers. You can use

sequences to automatically generate primary key values.

When a sequence number is generated, the sequence is incremented, independent

of the transaction committing or rolling back. If two users concurrently increment

the same sequence, the sequence numbers each user acquires may have gaps

because sequence numbers are being generated by the other user. One user can

never acquire the sequence number generated by another user. Once a sequence

value is generated by one user, that user can continue to access that value regardless

of whether the sequence is incremented by another user.

Sequence numbers are generated independently of tables, so the same sequence can

be used for one or for multiple tables. It is possible that individual sequence

numbers will appear to be skipped, because they were generated and used in a

transaction that ultimately rolled back. Additionally, a single user may not realize

that other users are drawing from the same sequence.

Once a sequence is created, you can access its values in SQL statements with the

CURRVAL pseudocolumn (which returns the current value of the sequence) or the

NEXTVAL pseudocolumn (which increments the sequence and returns the new

value).

Prerequisites
To create a sequence in your own schema, you must have CREATE SEQUENCE
privilege.

See Also:

■ "Pseudocolumns" on page 2-59 for more information on using

the CURRVAL and NEXTVAL

■ "How to Use Sequence Values" on page 2-61for information on

using sequences

■ ALTER SEQUENCE on page 7-103 or DROP SEQUENCE on

page 11-3 for information on modifying or dropping a sequence
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-155

CREATE SEQUENCE
To create a sequence in another user’s schema, you must have CREATE ANY
SEQUENCE privilege.

Syntax

Keywords and Parameters

schema
Specify the schema to contain the sequence. If you omit schema , Oracle creates the

sequence in your own schema.

sequence
Specify the name of the sequence to be created.

If you specify none of the following clauses, you create an ascending sequence that

starts with 1 and increases by 1 with no upper limit. Specifying only INCREMENT BY
-1 creates a descending sequence that starts with -1 and decreases with no lower

limit.

CREATE SEQUENCE
schema .

sequence

INCREMENT BY

START WITH
integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER
;

9-156 SQL Reference

CREATE SEQUENCE
■ To create a sequence that increments without bound, for ascending sequences,

omit the MAXVALUE parameter or specify NOMAXVALUE. For descending

sequences, omit the MINVALUE parameter or specify the NOMINVALUE.

■ To create a sequence that stops at a predefined limit, for an ascending

sequence, specify a value for the MAXVALUE parameter. For a descending

sequence, specify a value for the MINVALUE parameter. Also specify the

NOCYCLE. Any attempt to generate a sequence number once the sequence has

reached its limit results in an error.

■ To create a sequence that restarts after reaching a predefined limit, specify

values for both the MAXVALUE and MINVALUE parameters. Also specify the

CYCLE. If you do not specify MINVALUE, then it defaults to NOMINVALUE (that

is, the value 1).

Sequence Parameters

INCREMENT BY
integer

Specify the interval between sequence numbers. This integer

value can be any positive or negative integer, but it cannot be 0.

This value can have 28 or fewer digits. The absolute of this value

must be less than the difference of MAXVALUE and MINVALUE. If
this value is negative, then the sequence descends. If the

increment is positive, then the sequence ascends. If you omit this

clause, the interval defaults to 1.

START WITH
integer

Specify the first sequence number to be generated. Use this clause

to start an ascending sequence at a value greater than its

minimum or to start a descending sequence at a value less than its

maximum. For ascending sequences, the default value is the

sequence’s minimum value. For descending sequences, the

default value is the sequence’s maximum value. This integer value

can have 28 or fewer digits.

Note: This value is not necessarily the value to which an

ascending cycling sequence cycles after reaching its maximum

or minimum value.

MAXVALUE
integer

Specify the maximum value the sequence can generate. This

integer value can have 28 or fewer digits. MAXVALUE must be

equal to or greater than START WITH and must be greater than

MINVALUE.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-157

CREATE SEQUENCE
NOMAXVALUE Specify NOMAXVALUE to indicate a maximum value of 1027 for an

ascending sequence or -1 for a descending sequence. This is the

default.

MINVALUE
integer

Specify the sequence’s minimum value. This integer value can

have 28 or fewer digits. MINVALUE must be less than or equal to

START WITH and must be less than MAXVALUE.

NOMINVALUE Specify NOMINVALUE to indicate a minimum value of 1 for an

ascending sequence or -(1026) for a descending sequence. This is

the default.

CYCLE Specify CYCLE to indicate that the sequence continues to generate

values after reaching either its maximum or minimum value.

After an ascending sequence reaches its maximum value, it

generates its minimum value. After a descending sequence

reaches its minimum, it generates its maximum.

NOCYCLE Specify NOCYCLE to indicate that the sequence cannot generate

more values after reaching its maximum or minimum value. This

is the default.

CACHE
integer

Specify how many values of the sequence Oracle preallocates and

keeps in memory for faster access. This integer value can have 28

or fewer digits. The minimum value for this parameter is 2. For

sequences that cycle, this value must be less than the number of

values in the cycle. You cannot cache more values than will fit in a

given cycle of sequence numbers. Therefore, the maximum value

allowed for CACHE must be less than the value determined by the

following formula:

(CEIL (MAXVALUE - MINVALUE)) / ABS (INCREMENT)

If a system failure occurs, all cached sequence values that have not

been used in committed DML statements are lost. The potential

number of lost values is equal to the value of the CACHE

parameter.

NOCACHE Specify NOCACHE to indicate that values of the sequence are not

preallocated.

If you omit both CACHE and NOCACHE, Oracle caches 20 sequence numbers by

default.
9-158 SQL Reference

CREATE SEQUENCE
Example

CREATE SEQUENCE Example The following statement creates the sequence eseq:

CREATE SEQUENCE eseq
 INCREMENT BY 10;

The first reference to eseq.nextval returns 1. The second returns 11. Each

subsequent reference will return a value 10 greater than the one previous.

ORDER Specify ORDER to guarantee that sequence numbers are generated

in order of request. You may want to use this clause if you are

using the sequence numbers as timestamps. Guaranteeing order is

usually not important for sequences used to generate primary

keys.

ORDER is necessary only to guarantee ordered generation if you

are using Oracle with the Parallel Server option in parallel mode.

If you are using exclusive mode, sequence numbers are always

generated in order.

NOORDER Specify NOORDER if you do not want to guarantee sequence

numbers are generated in order of request. This is the default.
SQL Statements: CREATE CLUSTER to CREATE SEQUENCE 9-159

CREATE SEQUENCE
9-160 SQL Reference

SQL Statements: CREATE SYNONYM to DROP ROLLBACK SE
10

SQL Statements:

CREATE SYNONYM to
DROP ROLLBACK SEGMENT

This chapter contains the following SQL statements:

■ CREATE SYNONYM

■ CREATE TABLE

■ CREATE TABLESPACE

■ CREATE TEMPORARY TABLESPACE

■ CREATE TRIGGER

■ CREATE TYPE

■ CREATE TYPE BODY

■ CREATE USER

■ CREATE VIEW

■ DELETE

■ DISASSOCIATE STATISTICS

■ DROP CLUSTER

■ DROP CONTEXT

■ DROP DATABASE LINK

■ DROP DIMENSION

■ DROP DIRECTORY
GMENT 10-1

■ DROP FUNCTION

■ DROP INDEX

■ DROP INDEXTYPE

■ DROP JAVA

■ DROP LIBRARY

■ DROP MATERIALIZED VIEW

■ DROP MATERIALIZED VIEW LOG

■ DROP OPERATOR

■ DROP OUTLINE

■ DROP PACKAGE

■ DROP PROCEDURE

■ DROP PROFILE

■ DROP ROLE

■ DROP ROLLBACK SEGMENT
10-2 SQL Reference

CREATE SYNONYM
CREATE SYNONYM

Purpose
Use the CREATE SYNONYM statement to create a synonym, which is an alternative

name for a table, view, sequence, procedure, stored function, package, materialized

view, Java class schema object, or another synonym.

Synonyms provide both data independence and location transparency. Synonyms

permit applications to function without modification regardless of which user owns

the table or view and regardless of which database holds the table or view.

Table 10–1 lists the SQL statements in which you can refer to synonyms.

Prerequisites
To create a private synonym in your own schema, you must have CREATE SYNONYM
system privilege.

To create a private synonym in another user’s schema, you must have CREATE ANY
SYNONYM system privilege.

To create a PUBLIC synonym, you must have CREATE PUBLIC SYNONYM system

privilege.

Table 10–1 Using Synonyms

DML Statements DDL Statements

SELECT AUDIT

INSERT NOAUDIT

UPDATE GRANT

DELETE REVOKE

EXPLAIN PLAN COMMENT

LOCK TABLE

See Also: Oracle8i Concepts for general information on synonyms
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-3

CREATE SYNONYM
Syntax

Keywords and Parameters

PUBLIC
Specify PUBLIC to create a public synonym. Public synonyms are accessible to all

users.

Oracle uses a public synonym only when resolving references to an object if the

object is not prefaced by a schema and the object is not followed by a database link.

If you omit this clause, the synonym is private and is accessible only within its

schema. A private synonym name must be unique in its schema.

schema
Specify the schema to contain the synonym. If you omit schema , Oracle creates the

synonym in your own schema. You cannot specify a schema for the synonym if you

have specified PUBLIC.

synonym
Specify the name of the synonym to be created.

Caution: The functional maximum length of the synonym name

is 32 bytes. Names longer than 30 bytes are permitted for Java

functionality only. If you specify a name longer than 30 bytes,

Oracle encrypts the name and places a representation of the

encryption in the data dictionary. The actual encryption is not

accessible, and you cannot use either your original specification or

the data dictionary representation as the synonym name.

CREATE
PUBLIC

SYNONYM
schema .

synonym

FOR
schema .

object
@ dblink

;

10-4 SQL Reference

CREATE SYNONYM
FORobject
Specify the object for which the synonym is created. If you do not qualify object

with schema , Oracle assumes that the schema object is in your own schema. The

schema object can be of the following types:

■ Table or object table

■ View or object view

■ Sequence

■ Stored procedure, function, or package

■ Materialized view

■ Java class schema object

■ Synonym

The schema object need not currently exist and you need not have privileges to

access the object.

Restrictions:

■ The schema object cannot be contained in a package.

You cannot create a synonym for an object type.

dblink
You can use a complete or partial dblink to create a synonym for a schema object

on a remote database where the object is located. If you specify dblink and omit

schema , the synonym refers to an object in the schema specified by the database

link. Oracle Corporation recommends that you specify the schema containing the

object in the remote database.

If you omit dblink , Oracle assumes the object is located on the local database.

Restriction: You cannot specify dblink for a Java class synonym.

See Also:

■ "Referring to Objects in Remote Databases" on page 2-90 for

more information on referring to database links

■ CREATE DATABASE LINK on page 9-28 for more information

on creating database links
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-5

CREATE SYNONYM
Examples

CREATE SYNONYM Examples To define the synonym market for the table

market_research in the schema scott , issue the following statement:

CREATE SYNONYM market
 FOR scott.market_research;

To create a PUBLIC synonym for the emp table in the schema scott on the remote

SALES database, you could issue the following statement:

CREATE PUBLIC SYNONYM emp
 FOR scott.emp@sales;

A synonym may have the same name as the base table, provided the base table is

contained in another schema.

Resolution of Synonyms Example Oracle attempts to resolve references to objects

at the schema level before resolving them at the PUBLIC synonym level. For

example, assume the schemas scott and blake each contain tables named dept
and the user SYSTEM creates a PUBLIC synonym named dept for blake.dept . If

the user scott then issues the following statement, Oracle returns rows from

scott.dept :

SELECT * FROM dept;

To retrieve rows from blake.dept , the user scott must preface dept with the

schema name:

SELECT * FROM blake.dept;

If the user adam’s schema does not contain an object named dept , then adam can

access the dept table in blake ’s schema by using the public synonym dept :

SELECT * FROM dept;
10-6 SQL Reference

CREATE TABLE
CREATE TABLE

Purpose
Use the CREATE TABLE statement to create one of the following types of tables:

■ A relational table is the basic structure to hold user data.

■ An object table is a table that uses an object type for a column definition. An

object table is a table explicitly defined to hold object instances of a particular

type.

You can also create an object type and then use it in a column when creating a

relational table.

Tables are created with no data unless a query is specified. You can add rows to a

table with the INSERT statement. After creating a table, you can define additional

columns, partitions, and integrity constraints with the ADD clause of the ALTER
TABLE statement. You can change the definition of an existing column or partition

with the MODIFY clause of the ALTER TABLE statement.

Prerequisites
To create a relational table in your own schema, you must have system privilege.

To create a table in another user’s schema, you must have CREATE ANY TABLE
system privilege. Also, the owner of the schema to contain the table must have

either space quota on the tablespace to contain the table or UNLIMITED
TABLESPACE system privilege.

In addition to the table privileges above, to create an object table (or a relational

table with an object type column, the owner of the table must have the EXECUTE
object privilege in order to access all types referenced by the table, or you must have

the EXECUTE ANY TYPE system privilege. These privileges must be granted

explicitly and not acquired through a role.

Additionally, if the table owner intends to grant access to the table to other users,

the owner must have been granted the EXECUTE privileges to the referenced types

with the GRANT OPTION, or have the EXECUTE ANY TYPE system privilege with the

ADMIN OPTION. Without these privileges, the table owner has insufficient privileges

to grant access on the table to other users.

See Also: Oracle8i Application Developer’s Guide - Fundamentals and

CREATE TYPE on page 10-80 for more information about creating

objects
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-7

CREATE TABLE
To enable a UNIQUE or PRIMARY KEY constraint, you must have the privileges

necessary to create an index on the table. You need these privileges because Oracle

creates an index on the columns of the unique or primary key in the schema

containing the table.

Syntax
relational_table ::=

object_table ::=

See Also:

■ CREATE INDEX on page 9-52

■ Oracle8i Application Developer’s Guide - Fundamentals for more

information about the privileges required to create tables using

types

CREATE
GLOBAL TEMPORARY

TABLE
schema .

table

(relational_properties)
ON COMMIT

DELETE

PRESERVE
ROWS

physical_properties table_properties
;

CREATE
GLOBAL TEMPORARY

TABLE
schema .

table

ON COMMIT
DELETE

PRESERVE
ROWS

OF
schema .

object_type
(object_properties)

OID_clause OID_index_clause physical_properties table_properties
;

10-8 SQL Reference

CREATE TABLE
relational_properties ::=

object_properties ::=

physical_properties ::=

column datatype
DEFAULT expr column_ref_constraint column_constraint

table_constraint

table_ref_constraint

,

column

attribute

DEFAULT expr column_ref_constraint column_constraint

table_constraint

table_ref_constraint

segment_attributes_clause

ORGANIZATION
HEAP

segment_attributes_clause

INDEX index_organized_table_clause

CLUSTER cluster (column

,

)

LOB_storage_clause

varray_storage_clause

nested_table_storage_clause
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-9

CREATE TABLE
table_properties ::=

subquery ::= See SELECT and subquery on page 11-88.

table_constraint , column_constraint , table_ref_constraint , column_ref_
constraint , constraint_state : See the constraint_clause on page 8-136

OID_clause ::=

OID_index_clause ::=

range_partitioning_clause

hash_partitioning_clause

composite_partitioning_clause

row_movement_clause

CACHE

NOCACHE

MONITORING

NOMONITORING

parallel_clause enable_disable_clause AS subquery

OBJECT IDENTIFIER IS
SYSTEM GENERATED

PRIMARY KEY

OIDINDEX
index

(
physical_attributes_clause

TABLESPACE tablespace
)

10-10 SQL Reference

CREATE TABLE
segment_attributes_clause :=

row_movement_clause ::=

physical_attributes_clause ::=

storage_clause : See the storage_clause on page 11-129.

index_organized_table_clause ::=

physical_attributes_clause

TABLESPACE tablespace

LOGGING

NOLOGGING

ENABLE

DISABLE
ROW MOVEMENT

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

segment_attributes_clause

PCTTHRESHOLD integer

compression_clause

index_organized_overflow_clause
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-11

CREATE TABLE
compression_clause ::=

index_organized_overflow_clause ::=

LOB_storage_clause ::=

COMPRESS
integer

NOCOMPRESS

INCLUDING column_name
OVERFLOW

segment_attributes_clause

LOB

(LOB_item

,

) STORE AS (LOB_parameters)

(LOB_item) STORE AS

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)
10-12 SQL Reference

CREATE TABLE
LOB_parameters ::=

varray_storage_clause ::=

nested_table_storage_clause ::=

TABLESPACE tablespace

ENABLE

DISABLE
STORAGE IN ROW

storage_clause

CHUNK integer

PCTVERSION integer

CACHE

NOCACHE

CACHE READS

LOGGING

NOLOGGING

VARRAY varray_item STORE AS LOB

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

NESTED TABLE nested_item STORE AS storage_table

((object_properties)
physical_properties

)

RETURN AS
LOCATOR

VALUE
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-13

CREATE TABLE
range_partitioning_clause ::=

composite_partitioning_clause ::=

partition_definition ::=

subpartition_clause ::=

PARTITION BY RANGE (column_list) (partition_definition

,

)

PARTITION BY RANGE (column_list)
subpartition_clause

(partition_definition

,

)

PARTITION
partition

VALUES LESS THAN (value_list)

segment_attributes_clause

COMPRESS

NOCOMPRESS OVERFLOW
segment_attributes_clause

LOB_storage_clause

varray_storage_clause partition_level_subpartitioning

SUBPARTITION BY HASH (column_list

,

)

SUBPARTITIONS quantity
STORE IN (tablespace

,

)

10-14 SQL Reference

CREATE TABLE
partition_level_subpartitioning ::=

hash_partitioning_clause ::=

hash_partitioning_storage_clause ::=

SUBPARTITIONS quantity
STORE IN (tablespace

,

)

(SUBPARTITION
subpartition hash_partitioning_storage_clause

,

)

PARTITION BY HASH (column_list)

PARTITIONS quantity
STORE IN (tablespace

,

)

(PARTITION
partition hash_partitioning_storage_clause

,

)

TABLESPACE tablespace

LOB (LOB_item) STORE AS (TABLESPACE tablespace)

VARRAY varray_item STORE AS LOB (TABLESPACE tablespace)
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-15

CREATE TABLE
parallel_clause ::=

enable_disable_clause ::=

using_index_clause ::=

NOPARALLEL

PARALLEL
integer

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint

using_index_clause EXCEPTIONS INTO
schema .

table CASCADE

USING INDEX

LOCAL

global_index_clause

PCTFREE integer

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

storage_clause

NOSORT

LOGGING

NOLOGGING
10-16 SQL Reference

CREATE TABLE
global_index_clause ::=

global_partition_clause ::=

Keywords and Parameters

GLOBAL TEMPORARY
Specify GLOBAL TEMPORARY to indicate that the table is temporary and that its

definition is visible to all sessions. The data in a temporary table is visible only to

the session that inserts the data into the table.

A temporary table has a definition that persists the same as the definitions of

regular tables, but it contains either session-specific or transaction-specific data.

You specify whether the data is session- or transaction-specific with the ON COMMIT
keywords (below).

Restrictions:

■ Temporary tables cannot be partitioned, index-organized, or clustered.

■ You cannot specify any referential integrity (foreign key) constraints on

temporary tables.

■ Temporary tables cannot contain columns of nested table or varray type.

See Also: Oracle8i Concepts for information on temporary tables

GLOBAL PARTITION BY RANGE (column_list) (global_partition_clause

,

)

PARTITION
partition

VALUES LESS THAN (value_list)

physical_attributes_clause

TABLESPACE tablespace

LOGGING

NOLOGGING
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-17

CREATE TABLE
■ You cannot specify the following clauses of the LOB_storage_clause :

TABLESPACE, storage_clause , LOGGING or NOLOGGING, MONITORING or

NOMONITORING, or LOB_index_clause .

■ Parallel DML and parallel queries are not supported for temporary tables.

(Parallel hints are ignored. Specification of the parallel_clause returns an error.)

■ You cannot specify the segment_attributes_clause , nested_table_
storage_clause , or parallel_clause .

■ Distributed transactions are not supported for temporary tables.

schema
Specify the schema to contain the table. If you omit schema , Oracle creates the table

in your own schema.

table
Specify the name of the table (or object table) to be created.

OFobject_type
The OF clause lets you explicitly creates an object table of type object_type . The

columns of an object table correspond to the top-level attributes of type object_
type . Each row will contain an object instance, and each instance will be assigned a

unique, system-generated object identifier (OID) when a row is inserted. If you omit

schema , Oracle creates the object table in your own schema.

Objects residing in an object table are referenceable.

See Also:

■ CREATE TYPE on page 10-80 for more information about

creating objects

■ "User-Defined Type Categories" on page 2-24, "User-Defined

Functions" on page 4-128, "Expressions" on page 5-2, CREATE

TYPE on page 10-80, and Oracle8i Administrator’s Guide for

more information about using REF types
10-18 SQL Reference

CREATE TABLE
relational_properties

column Specify the name of a column of the table.

If you also specify ASsubquery , you can omit column and

datatype unless you are creating an index-organized table (IOT).

If you specify ASsubquery when creating an IOT, you must

specify column , and you must omit datatype .

The absolute maximum number of columns in a table is 1000.

However, when you create an object table (or a relational table

with columns of object, nested table, varray, or REF type), Oracle

maps the columns of the user-defined types to relational columns,

creating in effect "hidden columns" that count toward the 1000-

column limit. For details on how Oracle calculates the total

number of columns in such a table, please refer to Oracle8i
Administrator’s Guide.

datatype Specify the datatype of a column.

See Also: "Datatypes" on page 2-2for information on Oracle-

supplied datatypes

Restrictions:

■ You cannot specify a LOB column or a column of type

VARRAY for a partitioned index-organized table (IOT). The

datatypes for nonpartitioned IOTs are not restricted.

■ You can specify a column of type ROWID, but Oracle does not

guarantee that the values in such columns are valid rowids.

Note: You can omit datatype under these conditions:

■ If you also specify ASsubquery . (If you are creating an

index-organized table and you specify ASsubquery , you

must omit the datatype.)

■ If the statement also designates the column as part of a foreign

key in a referential integrity constraint. (Oracle automatically

assigns to the column the datatype of the corresponding

column of the referenced key of the referential integrity

constraint.)
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-19

CREATE TABLE
DEFAULT The DEFAULT clause lets you specify a value to be assigned to the

column if a subsequent INSERT statement omits a value for the

column. The datatype of the expression must match the datatype

of the column. The column must also be long enough to hold this

expression.

Restriction: A DEFAULT expression cannot contain references to

other columns, the pseudocolumns CURRVAL, NEXTVAL, LEVEL,

and ROWNUM, or date constants that are not fully specified.

See Also: "Expressions" on page 5-2 for the syntax of expr

table_ref_
constraint

and

column_ref_
constraint

These clauses let you further describe a column of type REF. The

only difference between these clauses is that you specify table_
ref from the table level, so you must identify the REF column or

attribute you are defining. You specify column_ref after you

have already identified the REF column or attribute.

See Also: constraint_clause on page 8-136 for syntax and

description of these constraints

column_
constraint

Use the column_constraint to define an integrity constraint as

part of the column definition.

You can create UNIQUE, PRIMARY KEY, and REFERENCES
constraints on scalar attributes of object type columns. You can

also create NOT NULL constraints on object type columns, and

CHECK constraints that reference object type columns or any

attribute of an object type column.

See Also: the syntax description of column_constraint in

the constraint_clause on page 8-136

table_
constraint

Use the table_constraint to define an integrity constraint as

part of the table definition.

See Also: the syntax description of table_constraint in

the constraint_clause on page 8-136

Note: You must specify a PRIMARY KEY constraint for an

index-organized table, and it cannot be DEFERRABLE.
10-20 SQL Reference

CREATE TABLE
object_properties
The properties of object tables are essentially the same as those of relational tables.

However, instead of specifying columns, you specify attributes of the object.

ON COMMIT
The ON COMMIT clause is relevant only if you are creating a temporary table. This

clause specifies whether the data in the temporary table persists for the duration of

a transaction or a session.

OID_clause

The OID_clause lets you specify whether the object identifier (OID) of the object

table should be system generated or should be based on the primary key of the

table. The default is SYSTEM GENERATED.

Restrictions:

■ You cannot specify OBJECT IDENTIFIER IS PRIMARY KEY unless you have

already specified a PRIMARY KEY constraint for the table.

■ You cannot specify this clause for a nested table.

OID_index_clause

This clause is relevant only if you have specified the OID_clause as SYSTEM
GENERATED. It specifies an index, and optionally its storage characteristics, on the

hidden object identifier column.

attribute Specify the qualified column name of an item in an object.

DELETE ROWS Specify DELETE ROWS for a transaction-specific temporary table

(this is the default). Oracle will truncate the table (delete all its

rows) after each commit.

PRESERVE
ROWS

Specify PRESERVE ROWS for a session-specific temporary table.

Oracle will truncate the table (delete all its rows) when you

terminate the session.

Note: A primary key OID is locally (but not necessarily globally)

unique. If you require a globally unique identifier, you must ensure

that the primary key is globally unique.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-21

CREATE TABLE
physical_properties

segment_attributes_clause

index Specify the name of the index on the hidden system-generated

object identifier column. If not specified, Oracle generates a name.

physical_
attributes_
clause

The physical_attributes_clause lets you specify the value

of the PCTFREE, PCTUSED, INITRANS , and MAXTRANS
parameters and the storage characteristics of the table.

■ For a nonpartitioned table, each parameter and storage

characteristic you specify determines the actual physical

attribute of the segment associated with the table.

■ For partitioned tables, the value you specify for the parameter

or storage characteristic is the default physical attribute of the

segments associated with all partitions specified in this

CREATE statement (and in subsequent ALTER TABLE ... ADD
PARTITION statements), unless you explicitly override that

value in the PARTITION clause of the statement that creates

the partition.

PCTFREE
integer

Specify the percentage of space in each data block of the table,

object table OID index, or partition reserved for future updates to

the table’s rows. The value of PCTFREE must be a value from 0 to

99. A value of 0 allows the entire block to be filled by inserts of

new rows. The default value is 10. This value reserves 10% of each

block for updates to existing rows and allows inserts of new rows

to fill a maximum of 90% of each block.

PCTFREE has the same function in the PARTITION description

and in the statements that create and alter clusters, indexes,

materialized views, and materialized view logs. The combination

of PCTFREE and PCTUSED determines whether new rows will be

inserted into existing data blocks or into new blocks.

PCTUSED
integer

Specify the minimum percentage of used space that Oracle

maintains for each data block of the table, object table OID index,

or index-organized table overflow data segment. A block becomes

a candidate for row insertion when its used space falls below

PCTUSED. PCTUSED is specified as a positive integer from 0 to 99

and defaults to 40.
10-22 SQL Reference

CREATE TABLE
PCTUSED has the same function in the PARTITION description

and in the statements that create and alter clusters, materialized

views, and materialized view logs.

PCTUSED is not a valid table storage characteristic for an index-

organized table (ORGANIZATION INDEX).

The sum of PCTFREE and PCTUSED must be equal to or less than

100. You can use PCTFREE and PCTUSED together to utilize space

within a table more efficiently.

See Also: Oracle8i Performance Guide and Reference for

information on the performance effects of different values

PCTUSED and PCTFREE

INITRANS
integer

Specify the initial number of transaction entries allocated within

each data block allocated to the table, object table OID index,

partition, LOB index segment, or overflow data segment. This

value can range from 1 to 255 and defaults to 1. In general, you

should not change the INITRANS value from its default.

Each transaction that updates a block requires a transaction entry

in the block. The size of a transaction entry depends on your

operating system.

This parameter ensures that a minimum number of concurrent

transactions can update the block and helps avoid the overhead of

dynamically allocating a transaction entry.

The INITRANS parameter serves the same purpose in the

PARTITION description, clusters, indexes, materialized views,

and materialized view logs as in tables. The minimum and default

INITRANS value for a cluster or index is 2, rather than 1.

MAXTRANS
integer

Specify the maximum number of concurrent transactions that can

update a data block allocated to the table, object table OID index,

partition, LOB index segment, or index-organized overflow data

segment. This limit does not apply to queries. This value can

range from 1 to 255 and the default is a function of the data block

size. You should not change the MAXTRANS value from its default.

If the number of concurrent transactions updating a block exceeds

the INITRANS value, Oracle dynamically allocates transaction

entries in the block until either the MAXTRANSvalue is exceeded or

the block has no more free space.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-23

CREATE TABLE
The MAXTRANS parameter serves the same purpose in the

PARTITION description, clusters, materialized views, and

materialized view logs as in tables.

storage_
clause

The storage_clause lets you specify storage characteristics for

the table, object table OID index, partition, LOB storage, LOB

index segment, or index-organized table overflow data segment.

This clause has performance ramifications for large tables. Storage

should be allocated to minimize dynamic allocation of additional

space.

See Also: the storage_clause on page 11-129

TABLESPACE Specify the tablespace in which Oracle creates the table, object

table OID index, partition, LOB storage, LOB index segment, or

index-organized table overflow data segment. If you omit

TABLESPACE, then Oracle creates that item in the default

tablespace of the owner of the schema containing the table.

For heap-organized tables with one or more LOB columns, if you

omit the TABLESPACE clause for LOB storage, Oracle creates the

LOB data and index segments in the tablespace where the table is

created.

However, for an index-organized table with one or more LOB

columns, if you omit TABLESPACE, the LOB data and index

segments are created in the tablespace in which the primary key

index segment of the index-organized table is created.

For nonpartitioned tables, the value specified for TABLESPACE is
the actual physical attribute of the segment associated with the

table. For partitioned tables, the value specified for TABLESPACE
is the default physical attribute of the segments associated with all

partitions specified in the CREATE statement (and on subsequent

ALTER TABLE ... ADD PARTITION statements), unless you specify

TABLESPACE in the PARTITION description.

See Also: CREATE TABLESPACE on page 10-56 for more

information on tablespaces
10-24 SQL Reference

CREATE TABLE
LOGGING |
NOLOGGING

Specify whether the creation of the table (and any indexes

required because of constraints), partition, or LOB storage

characteristics will be logged in the redo log file (LOGGING) or not

(NOLOGGING).The logging attribute of the table is independent of

that of its indexes.

This attribute also specifies that subsequent Direct Loader

(SQL*Loader) and direct-load INSERT operations against the

table, partition, or LOB storage are logged (LOGGING) or not

logged (NOLOGGING).

For a table or table partition, if you omit this clause, the logging

attribute of the table or table partition defaults to the logging

attribute of the tablespace in which it resides.

For LOBs, if you omit this clause,

■ If you specify CACHE, then LOGGING is used (because you

cannot have CACHE NOLOGGING).

■ If you specify NOCACHE or CACHE READS, the logging

attribute defaults to the logging attribute of the tablespace in

which it resides.

NOLOGGING does not apply to LOBs that are stored inline with

row data. That is, if you specify NOLOGGING for LOBs with values

less than 4000 bytes and you have not disabled STORAGE IN ROW,
Oracle ignores the NOLOGGING specification and treats the LOB

data the same as other table data.

For nonpartitioned tables, the value specified for LOGGING is the

actual physical attribute of the segment associated with the table.

For partitioned tables, the logging attribute value specified is the

default physical attribute of the segments associated with all

partitions specified in the CREATE statement (and in subsequent

ALTER TABLE ... ADD PARTITION statements), unless you specify

LOGGING|NOLOGGING in the PARTITION description.

In NOLOGGING mode, data is modified with minimal logging (to

mark new extents INVALID and to record dictionary changes).

When applied during media recovery, the extent invalidation

records mark a range of blocks as logically corrupt, because the

redo data is not fully logged. Therefore, if you cannot afford to

lose this table, you should take a backup after the NOLOGGING
operation.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-25

CREATE TABLE
ORGANIZATION
The ORGANIZATION clause lets you specify the order in which the data rows of the

table are stored.

index_organized_table_clause

Use the index_organized_table_clause to instruct Oracle to maintain the

table rows (both primary key column values and non-key column values) in a B*-

tree index built on the primary key. Index-organized tables are therefore best suited

The size of a redo log generated for an operation in NOLOGGING
mode is significantly smaller than the log generated with the

LOGGING attribute set.

If the database is run in ARCHIVELOG mode, media recovery from

a backup taken before the LOGGING operation restores the table.

However, media recovery from a backup taken before the

NOLOGGING operation does not restore the table.

See Also: Oracle8i Concepts and Oracle8i Administrator’s Guide
for more information about logging and parallel DML

RECOVERABLE |

UNRECOVERABLE

These keywords are deprecated and have been replaced with

LOGGING and NOLOGGING, respectively. Although RECOVERABLE
and UNRECOVERABLE are supported for backward compatibility,

Oracle Corporation strongly recommends that you use the

LOGGING and NOLOGGING keywords.

Restrictions:

■ You cannot specify RECOVERABLE for partitioned tables or

LOB storage characteristics.

■ You cannot specify UNRECOVERABLE for a partitioned or

index-organized tables.

■ You can specify UNRECOVERABLE only with ASsubquery .

HEAP HEAP indicates that the data rows of table are stored in no

particular order. This is the default.

INDEX INDEX indicates that table is created as an index-organized

table. In an index-organized table, the data rows are held in an

index defined on the primary key for the table.
10-26 SQL Reference

CREATE TABLE
for primary key-based access and manipulation. An index-organized table is an

alternative to

■ A nonclustered table indexed on the primary key by using the CREATE INDEX
statement

■ A clustered table stored in an indexed cluster that has been created using the

CREATE CLUSTER statement that maps the primary key for the table to the

cluster key

Restrictions:

■ You cannot specify a column of type ROWID for an index-organized table.

■ A partitioned index-organized table cannot contain columns of LOB or varray

type. (This restriction does not apply to nonpartitioned index-organized tables.)

Note: You must specify a primary key for an index-organized

table, because the primary key uniquely identifies a row. The

primary key cannot be DEFERRABLE. Use the primary key instead

of the rowid for directly accessing index-organized rows.

PCTTHRESHOLD
integer

Specify the percentage of space reserved in the index block for an

index-organized table row. All trailing columns of a row, starting

with the column that causes the specified threshold to be

exceeded, are stored in the overflow segment. PCTTHRESHOLD
must be a value from 1 to 50. If you do not specify

PCTTHRESHOLD, the default is 50.

Restrictions:

■ PCTTHRESHOLD must be large enough to hold the primary

key.

■ You cannot specify PCTTHRESHOLD for individual partitions

of an index-organized table.

See Also: the INCLUDING clause of the index_organized_
table_clause

compression_
clause

The compression_clause lets you enable or disable key

compression.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-27

CREATE TABLE
COMPRESS Specify COMPRESS to enable key compression,

which eliminates repeated occurrence of

primary key column values in index-organized

tables. Use integer to specify the prefix length

(number of prefix columns to compress).

The valid range of prefix length values is from 1

to the number of primary key columns minus 1.

The default prefix length is the number of

primary key columns minus 1.

Restriction: At the partition level, you can

specify COMPRESS, but you cannot specify the

prefix length with integer .

NOCOMPRESS Specify NOCOMPRESS to disable key

compression in index-organized tables. This is

the default.

index_
organized_
overflow_
clause

The index_organized_overflow_clause lets you instruct

Oracle that index-organized table data rows exceeding the

specified threshold are placed in the data segment specified in this

clause.

■ When you create an index-organized table, Oracle evaluates

the maximum size of each column to estimate the largest

possible row. If an overflow segment is needed but you have

not specified OVERFLOW, Oracle raises an error and does not

execute the CREATE TABLE statement. This checking function

guarantees that subsequent DML operations on the index-

organized table will not fail because an overflow segment is

lacking.

■ All physical attributes and storage characteristics you specify

in this clause after the OVERFLOW keyword apply only to the

overflow segment of the table. Physical attributes and storage

characteristics for the index-organized table itself, default

values for all its partitions, and values for individual

partitions must be specified before this keyword.

■ If the index-organized table contains one or more LOB

columns, the LOBs will be stored out-of-line unless you

specify OVERFLOW, even if they would otherwise be small

enough be to stored inline.
10-28 SQL Reference

CREATE TABLE
CLUSTER
The CLUSTER clause indicates that the table is to be part of cluster . The columns

listed in this clause are the table columns that correspond to the cluster’s columns.

Generally, the cluster columns of a table are the column or columns that make up its

primary key or a portion of its primary key.

Specify one column from the table for each column in the cluster key. The columns

are matched by position, not by name.

A clustered table uses the cluster’s space allocation. Therefore, do not use the

PCTFREE, PCTUSED, INITRANS , or MAXTRANS parameters, the TABLESPACE
clause, or the storage_clause with the CLUSTER clause.

Restrictions: Object tables and tables containing LOB columns cannot be part of a

cluster.

LOB_storage_clause

The LOB_storage_clause lets you specify the storage attributes of LOB data

segments.

■ For a nonpartitioned table (that is, when specified in the physical_
properties clause without any of the partitioning clauses), this clause

specifies the table’s storage attributes of LOB data segments.

INCLUDING
column_name

Specify a column at which to divide an index-organized table row

into index and overflow portions. The primary key columns are

always stored in the index. column_name can be either the last

primary-key column or any non-primary-key column. All non-

primary-key columns that follow column_name are stored in the

overflow data segment.

Restriction: You cannot specify this clause for individual

partitions of an index-organized table.

Note: If an attempt to divide a row at column_name causes

the size of the index portion of the row to exceed the

PCTTHRESHOLD value (either specified or default), Oracle

breaks up the row based on the PCTTHRESHOLD value.

See Also: CREATE CLUSTER on page 9-3
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-29

CREATE TABLE
■ For a partitioned table specified at the table level (that is, when specified in the

physical_properties clause along with one of the partitioning clauses),

this clause specifies the default storage attributes for LOB data segments

associated with each partition or subpartition. These storage attributes apply to

all partitions or subpartitions unless overridden by a LOB_storage_clause
at the partition or subpartition level.

■ For an individual partition of a partitioned table (that is, when specified as part

of a partition_definition), this clause specifies the storage attributes of

the data segments of that partition or the default storage attributes of any

subpartitions of this partition. A partition-level LOB_storage_clause
overrides a table-level LOB_storage_clause .

■ For an individual subpartition of a partitioned table (that is, when specified as

part of a subpartition_clause), this clause specifies the storage attributes

of the data segments of this subpartition. A subpartition-level LOB_storage_
clause overrides both partition-level and table-level LOB_storage_
clauses .

Restriction: You cannot specify the LOB_index_clause if table is partitioned.

See Also:

■ Oracle8i Application Developer’s Guide - Large Objects (LOBs) for

detailed information about LOBs, including guidelines for

creating gigabyte LOBs

■ "LOB Column Example" on page 10-50

LOB_item Specify the LOB column name or LOB object attribute for which

you are explicitly defining tablespace and storage characteristics

that are different from those of the table. Oracle automatically

creates a system-managed index for each LOB_item you create.

LOB_segname Specify the name of the LOB data segment. You cannot use LOB_
segname if you specify more than one LOB_item .

LOB_
parameters

The LOB_parameters clause lets you specify various elements of

LOB storage.
10-30 SQL Reference

CREATE TABLE
ENABLE
STORAGE IN
ROW

If you enable storage in row, the LOB value is

stored in the row (inline) if its length is less than

approximately 4000 bytes minus system control

information. This is the default.

Restriction: For an index-organized table, you

cannot specify this parameter unless you have

specified an OVERFLOW segment in the index_
organized_table_clause .

DISABLE
STORAGE IN
ROW

If you disable storage in row, the LOB value is

stored outside of the row regardless of the

length of the LOB value.

The LOB locator is always stored in the row regardless of where

the LOB value is stored. You cannot change the value of STORAGE
IN ROW once it is set except by moving the table.

See Also: move_table_clause of ALTER TABLE on

page 8-25.

CHUNKinteger Specify the number of bytes to be allocated for

LOB manipulation. If integer is not a multiple

of the database block size, Oracle rounds up (in

bytes) to the next multiple. For example, if the

database block size is 2048 and integer is 2050,

Oracle allocates 4096 bytes (2 blocks). The

maximum value is 32768 (32K), which is the

largest Oracle block size allowed. The default

CHUNK size is one Oracle database block.

You cannot change the value of CHUNK once it is

set.

Note: The value of CHUNK must be less than

or equal to the value of NEXT (either the

default value or that specified in the

storage_clause). If CHUNK exceeds the

value of NEXT, Oracle returns an error.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-31

CREATE TABLE
varray_storage_clause

The varray_storage_clause lets you specify separate storage characteristics for

the LOB in which a varray will be stored. In addition, if you specify this clause,

Oracle will always store the varray in a LOB, even if it is small enough to be stored

inline.

■ For a nonpartitioned table (that is, when specified in the physical_
properties clause without any of the partitioning clauses), this clause

specifies the storage attributes of the varray’s LOB data segments.

■ For a partitioned table specified at the table level (that is, when specified in the

physical_properties clause along with one of the partitioning clauses),

this clause specifies the default storage attributes for the varray’s LOB data

segments associated with each partition (or its subpartitions, if any).

■ For an individual partition of a partitioned table (that is, when specified as part

of a partition_definition), this clause specifies the storage attributes of

the varray’s LOB data segments of that partition or the default storage

attributes of the varray’s LOB data segments of any subpartitions of this

partition. A partition-level varray_storage_clause overrides a table-level

varray_storage_clause .

■ For an individual subpartition of a partitioned table (that is, when specified as

part of a subpartition_clause), this clause specifies the storage attributes

of the varray’s data segments of this subpartition. A subpartition-level

PCTVERSION
integer

Specify the maximum percentage of overall LOB

storage space used for creating new versions of

the LOB. The default value is 10, meaning that

older versions of the LOB data are not

overwritten until 10% of the overall LOB storage

space is used.

LOB_index_
clause

This clause is deprecated as of Oracle8i. Oracle generates an index

for each LOB column. Oracle names and manages the LOB

indexes internally.

Although it is still possible for you to specify this clause, Oracle

Corporation strongly recommends that you no longer do so. In

any event, do not put the LOB index in a different tablespace from

the LOB data.

See Also: Oracle8i Migration for information on how Oracle

manages LOB indexes in tables migrated from earlier versions
10-32 SQL Reference

CREATE TABLE
varray_storage_clause overrides both partition-level and table-level

varray_storage_clauses .

Restriction: You cannot specify the TABLESPACE parameter of LOB_parameters
as part of this clause. The LOB tablespace for a varray defaults to the containing

table’s tablespace.

nested_table_storage_clause

The nested_table_storage_clause lets you to specify separate storage

characteristics for a nested table, which in turn enables you to define the nested

table as an index-organized table. The storage table is created in the same tablespace

as its parent table (using the default storage characteristics) and stores the nested

table values of the column for which it was created.

You must include this clause when creating a table with columns or column

attributes whose type is a nested table. (Clauses within this clause that function the

same way they function for parent object tables are not repeated here.)

Restrictions:

■ You cannot specify this clause for a temporary table.

■ You cannot specify the OID_clause .

■ You cannot specify TABLESPACE (as part of the segment_attributes_
clause) for a nested table. The tablespace is always that of the parent table.

■ At create time, you cannot specify (as part of object_properties) a table_
ref_constraint , column_ref_constraint , or referential constraint for

the attributes of a nested table. However, you can modify a nested table to add

such constraints using ALTER TABLE.

■ You cannot query or perform DML statements on the storage table directly, but

you can modify the nested table column storage characteristics by using the

name of storage table in an ALTER TABLE statement.

See Also: ALTER TABLE on page 8-2 for information about

modifying nested table column storage characteristics

nested_item Specify the name of a column (or a top-level attribute of the table’s

object type) whose type is a nested table.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-33

CREATE TABLE
table_properties

range_partitioning_clause

Use the range_partitioning_clause to partition the table on ranges of values

from column_list . For an index-organized table, column_list must be a subset

of the primary key columns of the table.

storage_
table

Specify the name of the table where the rows of nested_item
reside. For a nonpartitioned table, the storage table is created in

the same schema and the same tablespace as the parent table. For

a partitioned table, the storage table is created in the default

tablespace of the schema.

Restriction: You cannot partition the storage table of a nested

table.

You cannot query or perform DML statements on storage_
table directly, but you can modify its storage characteristics by

specifying its name in an ALTER TABLE statement.

See Also: ALTER TABLE on page 8-2 for information about

modifying nested table column storage characteristics

RETURN AS Specify what Oracle returns as the result of a query.

■ VALUE returns a copy of the nested table itself.

■ LOCATOR returns a collection locator to the copy of the nested

table.

Note: The locator is scoped to the session and cannot be used

across sessions. Unlike a LOB locator, the collection locator

cannot be used to modify the collection instance.

If you do not specify the segment_attributes_clause or the LOB_storage_
clause , the nested table is heap organized and is created with default storage

characteristics.

column_list Specify an ordered list of columns used to determine into which

partition a row belongs (the partitioning key).

Restriction: The columns in column_list can be of any built-in

datatype except ROWID, LONG, or LOB.
10-34 SQL Reference

CREATE TABLE
hash_partitioning_clause

Use the hash_partitioning_clause to specify that the table is to be partitioned

using the hash method. Oracle assigns rows to partitions using a hash function on

values found in columns designated as the partitioning key.

Restrictions:

■ You cannot specify more than 16 columns in column_list .

■ The column_list cannot contain the ROWID or UROWID pseudocolumns.

■ The columns in column_list can be of any built-in datatype except ROWID,
LONG, or LOB.

You can specify hash partitioning in one of two ways:

■ You can specify the number of partitions. In this case, Oracle assigns partition

names of the form SYS_Pnnn . The STORE IN clause specifies one or more

tablespaces where the hash partitions are to be stored. The number of

tablespaces does not have to equal the number of partitions. If the number of

partitions is greater than the number of tablespaces, Oracle cycles through the

names of the tablespaces.

■ Alternatively, you can specify individual partitions by name. The TABLESPACE
clause specifies where the partition should be stored.

See Also: Oracle8i Concepts for more information on hash

partitioning

column_list Specify an ordered list of columns used to determine into which

partition a row belongs (the partitioning key).

Note: If your enterprise has or will have databases using different

character sets, use caution when partitioning on character columns.

The sort sequence of characters is not identical in all character sets.

See Also: Oracle8i National Language Support Guide for more

information on character set support
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-35

CREATE TABLE
composite_partitioning_clause

Use the composite_partitioning_clause to first partition table by range, and then

partition the partitions further into hash subpartitions. This combination of range

partitioning and hash subpartitioning is called composite partitioning.

partition_definition

Note: The only attribute you can specify for hash partitions (or

subpartitions) is TABLESPACE. Hash partitions inherit all other

attributes from table-level defaults. Hash subpartitions inherit any

attributes specified at the partition level, and inherit all other

attributes from the table-level defaults.

Tablespace storage specified at the table level is overridden by

tablespace storage specified at the partition level, which in turn is

overridden by tablespace storage specified at the subpartition level.

subpartition_
clause

Use the subpartition_clause to indicate that Oracle should

subpartition by hash each partition in table . The subpartitioning

column_list is unrelated to the partitioning key, but is subject

to the same restrictions.

SUBPARTITIONS

quantity
Specify the default number of subpartitions in each partition of

table , and optionally one or more tablespaces in which they are

to be stored.

The default value is 1. If you do not specify the subpartition_
clause here, Oracle will create each partition with one hash

subpartition unless you subsequently specify the partition_
level_hash_subpartitioning clause.

PARTITION
partition

Specify the physical partition attributes. If partition is omitted,

Oracle generates a name with the form SYS_Pn for the partition.

The partition must conform to the rules for naming schema

objects and their part as described in "Schema Object Naming

Rules" on page 2-83.
10-36 SQL Reference

CREATE TABLE
Notes:

■ You can specify up to 64K-1 partitions and 64K-1

subpartitions. For a discussion of factors that might impose

practical limits less than this number, please refer to Oracle8i
Administrator’s Guide.

■ You can create a partitioned table with just one partition.

Note, however, that a partitioned table with one partition is

different from a nonpartitioned table. For instance, you cannot

add a partition to a nonpartitioned table.

VALUES LESS
THANvalue_
list

Specify the noninclusive upper bound for the current partition.

value_list is an ordered list of literal values corresponding to

column_list in the partition_by_range_clause . You can

substitute the keyword MAXVALUE for any literal in value_list .
MAXVALUE specifies a maximum value that will always sort

higher than any other value, including NULL.

Specifying a value other than MAXVALUE for the highest partition

bound imposes an implicit integrity constraint on the table.

See Also: Oracle8i Concepts for more information about

partition bounds

Note: If table is partitioned on a DATE column, and if the NLS

date format does not specify the first two digits of the year, you

must use the TO_DATE function with the YYYY 4-character format

mask for the year. (The RRRR format mask is not supported.) The

NLS date format is determined implicitly by NLS_TERRITORY or

explicitly by NLS_DATE_FORMAT.

See Also:

- Oracle8i National Language Support Guide for more

information on these initialization parameters

- "Partitioned Table Example" on page 10-51
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-37

CREATE TABLE
row_movement_clause

The row_movement_clause lets you specify whether a row can be moved to a

different partition or subpartition because of a change to one or more of its key

values during an update operation.

Restriction: You can specify this clause only for a partitioned table.

LOB_storage_
clause

The LOB_storage_clause lets you specify LOB storage

characteristics for one or more LOB items in this partition. If you

do not specify the LOB_storage_clause for a LOB item, Oracle

generates a name for each LOB data partition. The system-

generated names for LOB data and LOB index partitions take the

form SYS_LOB_Pn and SYS_IL_P n, respectively, where P stands

for "partition" and n is a system-generated number.

varray_
storage_
clause

The varray_storage_clause lets you specify storage

characteristics for one or more varray items in this partition.

partition_
level_
subpartitio
ning

The partition_level_subpartitioning clause lets you

specify hash subpartitions for partition . This clause overrides

the default settings established in the subpartition_clause .

Restriction: You can specify this clause only for a composite-

partitioned table.

■ You can specify individual subpartitions by name, and

optionally the tablespace where each should be stored, or

■ You can specify the number of subpartitions (and optionally

one or more tablespaces where they are to be stored). In this

case, Oracle assigns subpartition names of the form SYS_

SUBPnnn. The number of tablespaces does not have to equal

the number of subpartitions. If the number of partitions is

greater than the number of tablespaces, Oracle cycles through

the names of the tablespaces.

ENABLE Specify ENABLE to allow Oracle to move a row to a different

partition or subpartition as the result of an update to the

partitioning or subpartitioning key.
10-38 SQL Reference

CREATE TABLE
CACHE | NOCACHE | CACHE READS

Caution: Moving a row in the course of an UPDATE operation

changes that row’s ROWID.

DISABLE Specify DISABLE if you want Oracle to return an error if an

update to a partitioning or subpartitioning key would result in a

row moving to a different partition or subpartition. This is the

default.

CACHE For data that will be accessed frequently, specify CACHE to
indicate that the blocks retrieved for this table are placed at the

most recently used end of the LRU list in the buffer cache when a

full table scan is performed. This clause is useful for small lookup

tables.

As a parameter in the LOB_storage_clause , CACHE specifies

that Oracle places the LOB values in the buffer cache for faster

access.

Restriction: You cannot specify CACHE for an index-organized

table. However, index-organized tables implicitly provide CACHE
behavior.

NOCACHE For data that will not be accessed frequently, specify NOCACHE to
indicate that the blocks retrieved for this table are placed at the

least recently used end of the LRU list in the buffer cache when a

full table scan is performed. This is the default.

As a parameter in the LOB_storage_clause , NOCACHEspecifies

that the LOB value either is not brought into the buffer cache or is

brought into the buffer cache and placed at the least recently used

end of the LRU list. (The latter is the default behavior.)

Restriction: You cannot specify NOCACHE for an index-organized

table.

Note: NOCACHE has no effect on tables for which you specify

KEEP in the storage_clause .
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-39

CREATE TABLE
MONITORING | NOMONITORING

parallel_clause

The parallel_clause lets you parallelize creation of the table and set the default

degree of parallelism for queries and DML on the table after creation.

CACHE READS CACHE READS applies only to LOB storage. It specifies that LOB

values are brought into the buffer cache only during read

operations, but not during write operations.

MONITORING Specify MONITORING if you want modification statistics to be

collected on this table. These statistics are estimates of the number

of rows affected by DML statements over a particular period of

time. They are available for use by the optimizer or for analysis by

the user.

Restriction: You cannot specify MONITORING for a temporary

table.

NOMONITORINGSpecify NOMONITORING if you do not want Oracle to collect

modification statistics on the table. This is the default.

Restriction: You cannot specify NOMONITORING for a temporary

table.

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLEL if you want Oracle to select a degree of

parallelism equal to the number of CPUs available on all

participating instances times the value of the PARALLEL_
THREADS_PER_CPU initialization parameter.
10-40 SQL Reference

CREATE TABLE
Notes on the parallel_clause

■ If table contains any columns of LOB or user-defined object type, this

statement as well as subsequent INSERT, UPDATE, or DELETE operations on

table are executed serially without notification. Subsequent queries, however,

will be executed in parallel.

■ For partitioned index-organized tables, CREATE TABLE ... AS SELECT is
executed serially, as are subsequent DML operations. Subsequent queries,

however, will be executed in parallel.

■ A parallel hint overrides the effect of the parallel_clause .

■ DML statements and CREATE TABLE ... AS SELECT statements that reference

remote objects can run in parallel. However, the "remote object" must really be

on a remote database. The reference cannot loop back to an object on the local

database (for example, by way of a synonym on the remote database pointing

back to an object on the local database).

enable_disable_clause

The enable_disable_clause lets you specify whether Oracle should apply a

constraint. By default, constraints are created in ENABLE VALIDATE state.

Restrictions:

■ To enable or disable any integrity constraint, you must have defined the

constraint in this or a previous statement.

■ You cannot enable a referential integrity constraint unless the referenced unique

or primary key constraint is already enabled.

PARALLEL
integer

Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel

operation. Each parallel thread may use one or two parallel

execution servers. Normally Oracle calculates the optimum

degree of parallelism, so it is not necessary for you to specify

integer .

See Also: Oracle8i Performance Guide and Reference, Oracle8i
Concepts, and Oracle8i Parallel Server Concepts for more information

on parallelized operations

See Also: constraint_clause on page 8-136 for more information on

constraints
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-41

CREATE TABLE
ENABLE Specify ENABLEif you want the constraint to be applied to all new

data in the table.

■ VALIDATE additionally specifies that all old data also

complies with the constraint. An enabled validated constraint

guarantees that all data is and will continue to be valid.

If any row in the table violates the integrity constraint, the

constraint remains disabled and Oracle returns an error. If all

rows comply with the constraint, Oracle enables the

constraint. Subsequently, if new data violates the constraint,

Oracle does not execute the statement and returns an error

indicating the integrity constraint violation.

If you place a primary key constraint in ENABLE VALIDATE
mode, the validation process will verify that the primary key

columns contain no nulls. To avoid this overhead, mark each

column in the primary key NOT NULL before enabling the

table’s primary key constraint. (For optimal results, do this

before entering data into the column.)

■ NOVALIDATE ensures that all new DML operations on the

constrained data comply with the constraint. This clause does

not ensure that existing data in the table complies with the

constraint and therefore does not require a table lock.

■ If you specify neither VALIDATE nor NOVALIDATE, the

default is VALIDATE.

■ If you enable a unique or primary key constraint, and if no

index exists on the key, Oracle creates a unique index. This

index is dropped if the constraint is subsequently disabled, so

Oracle rebuilds the index every time the constraint is enabled.

To avoid rebuilding the index and eliminate redundant

indexes, create new primary key and unique constraints

initially disabled. Then create (or use existing) nonunique

indexes to enforce the constraint. Oracle does not drop a

nonunique index when the constraint is disabled, so

subsequent ENABLE operations are facilitated.
10-42 SQL Reference

CREATE TABLE
■ If you change the state of any single constraint from ENABLE
NOVALIDATE to ENABLE VALIDATE, the operation can be

performed in parallel, and does not block reads, writes, or

other DDL operations.

Restriction: You cannot enable a foreign key that references a

unique or primary key that is disabled.

DISABLE Specify DISABLE to disable the integrity constraint. Disabled

integrity constraints appear in the data dictionary along with

enabled constraints. If you do not specify this clause when

creating a constraint, Oracle automatically enables the constraint.

■ DISABLE VALIDATE disables the constraint and drops the

index on the constraint, but keeps the constraint valid. This

feature is most useful in data warehousing situations, where

the need arises to load into a range-partitioned table a

quantity of data with a distinct range of values in the unique

key. In such situations, the disable validate state enables you

to save space by not having an index. You can then load data

from a nonpartitioned table into a partitioned table using the

exchange_partition_clause of the ALTER TABLE
statement or using SQL*Loader. All other modifications to the

table (inserts, updates, and deletes) by other SQL statements

are disallowed.

If the unique key coincides with the partitioning key of the

partitioned table, disabling the constraint saves overhead and

has no detrimental effects. If the unique key does not coincide

with the partitioning key, Oracle performs automatic table

scans during the exchange to validate the constraint, which

might offset the benefit of loading without an index.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-43

CREATE TABLE
using_index_clause

The using_index_clause lets you specify parameters for the index Oracle

creates to enforce a unique or primary key constraint. Oracle gives the index the

same name as the constraint.

You can choose the values of the INITRANS , MAXTRANS, TABLESPACE, STORAGE,
and PCTFREE parameters for the index. These parameters are described earlier in

this statement. If table is partitioned, you can specify a locally or globally

partitioned index for the unique or primary key constraint.

Restriction: Use these parameters only when enabling unique and primary key

constraints.

■ DISABLE NOVALIDATE signifies that Oracle makes no effort

to maintain the constraint (because it is disabled) and cannot

guarantee that the constraint is true (because it is not being

validated).

See Also: Oracle8i Performance Guide and Reference for

information on when to use this setting

You cannot drop a table whose primary key is being

referenced by a foreign key even if the foreign key constraint

is in DISABLE NOVALIDATE state. Further, the optimizer can

use constraints in DISABLE NOVALIDATE state.

■ If you specify neither VALIDATE nor NOVALIDATE, the

default is NOVALIDATE.

■ If you disable a unique or primary key constraint that is using

a unique index, Oracle drops the unique index.

UNIQUE The UNIQUE clause lets you enable or disable the unique

constraint defined on the specified column or combination of

columns.

PRIMARY KEY The PRIMARY KEY clause lets you enable or disable the table’s

primary key constraint.

CONSTRAINT The CONSTRAINT clause lets you enable or disable the integrity

constraint named constraint .

See Also: CREATE INDEX on page 9-52 for a description of

LOCAL and the global_index_clause , and for a description of

NOSORT and LOGGING|NOLOGGING in relation to indexes
10-44 SQL Reference

CREATE TABLE
EXCEPTIONS INTO

Specify a table into which Oracle places the rowids of all rows violating the

constraint. If you omit schema, Oracle assumes the exceptions table is in your own

schema. If you omit this clause altogether, Oracle assumes that the table is named

EXCEPTIONS. The exceptions table must be on your local database.

You can create the EXCEPTIONS table using one of these scripts:

■ UTLEXCPT.SQLuses physical rowids. Therefore it can accommodate rows from

conventional tables but not from index-organized tables. (See the Note that

follows.)

■ UTLEXPT1.SQL uses universal rowids, so it can accommodate rows from both

conventional and index-organized tables.

If you create your own exceptions table, it must follow the format prescribed by one

of these two scripts.

CASCADE

Specify CASCADE to disable any integrity constraints that depend on the specified

integrity constraint. To disable a primary or unique key that is part of a referential

integrity constraint, you must specify this clause.

Restriction: You can specify CASCADE only if you have specified DISABLE.

See Also: Oracle8i Migration for compatibility issues related to the

use of these scripts

Note: If you are collecting exceptions from index-organized tables

based on primary keys (rather than universal rowids), you must

create a separate exceptions table for each index-organized table to

accommodate its primary-key storage. You create multiple

exceptions tables with different names by modifying and

resubmitting the script.

See Also:

■ The DBMS_IOT package in Oracle8i Supplied PL/SQL Packages
Reference for information on the SQL scripts

■ Oracle8i Performance Guide and Reference for information on

eliminating migrated and chained rows
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-45

CREATE TABLE
AS subquery

Specify a subquery to determine the contents of the table. The rows returned by the

subquery are inserted into the table upon its creation.

For object tables, subquery can contain either one expression corresponding to the

table type, or the number of top-level attributes of the table type.

Restrictions:

■ The number of columns in the table must equal the number of expressions in

the subquery.

■ The column definitions can specify only column names, default values, and

integrity constraints, not datatypes.

■ You cannot define a referential integrity constraint in a CREATE TABLE
statement that contains ASsubquery . Instead, you must create the table

without the constraint and then add it later with an ALTER TABLE statement.

If you specify the parallel_clause in this statement, Oracle will ignore any

value you specify for the INITIAL storage parameter, and will instead use the

value of the NEXT parameter.

Oracle derives datatypes and lengths from the subquery. Oracle also follows the

following rules for integrity constraints:

■ Oracle automatically defines any NOT NULL constraints on columns in the new

table that existed on the corresponding columns of the selected table if the

subquery selects the column rather than an expression containing the column.

■ If a CREATE TABLE statement contains both ASsubquery and a CONSTRAINT
clause or an ENABLE clause with the EXCEPTIONS INTO clause, Oracle ignores

ASsubquery . If any rows violate the constraint, Oracle does not create the

table and returns an error.

If all expressions in subquery are columns, rather than expressions, you can omit

the columns from the table definition entirely. In this case, the names of the columns

of table are the same as the columns in subquery .

See Also: SELECT and subquery on page 11-88

See Also: storage_clause on page 11-129 for information on

these parameters
10-46 SQL Reference

CREATE TABLE
You can use subquery in combination with the TO_LOB function to convert the

values in a LONG column in another table to LOB values in a column of the table

you are creating.

Examples

General Example To define the emp table owned by scott , you could issue the

following statement:

CREATE TABLE scott.emp
 (empno NUMBER CONSTRAINT pk_emp PRIMARY KEY,
 ename VARCHAR2(10) CONSTRAINT nn_ename NOT NULL

See Also:

■ Oracle8i Migration for a discussion of why and when to copy

LONGs to LOBs

■ "Conversion Functions" on page 4-5 for a description of how to

use the TO_LOB function

Note: If subquery returns (in part or totally) the equivalent of an

existing materialized view, Oracle may use the materialized view

(for query rewrite) in place of one or more tables specified in

subquery.

See Also: Oracle8i Data Warehousing Guide for more information on

materialized views and query rewrite

order_by_
clause

The ORDER BY clause lets you order rows returned by the

statements.

See also: SELECT and subquery on page 11-88 for more

information on the order_by_clause

Note: When specified with CREATE TABLE, this clause does

not necessarily order data cross the entire table. (For example,

it does not order across partitions.) Specify this clause if you

intend to create an index on the same key as the ORDER BY
key column. Oracle will cluster data on the ORDER BY key so

that it corresponds to the index key.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-47

CREATE TABLE
 CONSTRAINT upper_ename
 CHECK (ename = UPPER(ename)),
 job VARCHAR2(9),
 mgr NUMBER CONSTRAINT fk_mgr
 REFERENCES scott.emp(empno),
 hiredate DATE DEFAULT SYSDATE,
 sal NUMBER(10,2) CONSTRAINT ck_sal
 CHECK (sal > 500),
 comm NUMBER(9,0) DEFAULT NULL,
 deptno NUMBER(2) CONSTRAINT nn_deptno NOT NULL
 CONSTRAINT fk_deptno
 REFERENCES scott.dept(deptno))
 PCTFREE 5 PCTUSED 75;

This table contains eight columns. The empno column is of datatype NUMBER and

has an associated integrity constraint named pk_emp. The hiredate column is of

datatype DATE and has a default value of SYSDATE, and so on.

This table definition specifies a PCTFREE of 5 and a PCTUSED of 75, which is

appropriate for a relatively static table. The definition also defines integrity

constraints on some columns of the emp table.

Temporary Table Example The following statement creates a temporary table

flight_schedule for use in an automated airline reservation scheduling system.

Each client has its own session and can store temporary schedules. The temporary

schedules are deleted at the end of the session.

CREATE GLOBAL TEMPORARY TABLE flight_schedule (
 startdate DATE,
 enddate DATE,
 cost NUMBER)
 ON COMMIT PRESERVE ROWS;

Storage Example To define the sample table salgrade in the human_resource
tablespace with a small storage capacity and limited allocation potential, issue the

following statement:

CREATE TABLE salgrade
 (grade NUMBER CONSTRAINT pk_salgrade
 PRIMARY KEY
 USING INDEX TABLESPACE users_a,
 losal NUMBER,
 hisal NUMBER)
 TABLESPACE human_resource
 STORAGE (INITIAL 6144
10-48 SQL Reference

CREATE TABLE
 NEXT 6144
 MINEXTENTS 1
 MAXEXTENTS 5);

The above statement also defines a primary key constraint on the grade column

and specifies that the index Oracle creates to enforce this constraint is created in the

users_a tablespace.

PARALLEL Example The following statement creates a table using an optimum

number of parallel execution servers to scan scott .emp and to populate emp_
dept :

CREATE TABLE emp_dept
 PARALLEL
 AS SELECT * FROM scott.emp
 WHERE deptno = 10;

Using parallelism speeds up the creation of the table because Oracle uses parallel

execution servers to create the table. After the table is created, querying the table is

also faster, because the same degree of parallelism is used to access the table.

NOPARALLEL Example The following statement creates a table serially.

Subsequent DML and queries on the table will also be serially executed.

CREATE TABLE emp_dept
 AS SELECT * FROM scott.emp
 WHERE deptno = 10;

ENABLE VALIDATE Example The following statement creates the dept table,

defines a primary key constraint, and places it in ENABLE VALIDATE state:

CREATE TABLE dept
 (deptno NUMBER (2) PRIMARY KEY,
 dname VARCHAR2(10),
 loc VARCHAR2(9))
 TABLESPACE user_a;

DISABLE Example The following statement creates the dept table and defines a

disabled primary key constraint:

CREATE TABLE dept
 (deptno NUMBER (2) PRIMARY KEY DISABLE,

See Also: The constraint_clause on page 8-136 for more examples

of defining integrity constraints.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-49

CREATE TABLE
 dname VARCHAR2(10),
 loc VARCHAR2(9));

EXCEPTIONS INTO Example The following example creates the order_
exceptions table to hold rows from an index-organized table orders that

violate integrity constraint check_orders :

CREATE TABLE orders
 (ord_num NUMBER PRIMARY KEY,
 ord_quantity NUMBER)
 ORGANIZATION INDEX;

EXECUTE DBMS_IOT.BUILD_EXCEPTIONS_TABLE
 (’SCOTT’, ’ORDERS’, ’ORDER_EXCEPTIONS’);

ALTER TABLE orders
 ADD CONSTRAINT CHECK_ORDERS CHECK (ord_quantity > 0)
 EXCEPTIONS INTO ORDER_EXCEPTIONS;

To specify an exception table, you must have the privileges necessary to insert rows

into the table. To examine the identified exceptions, you must have the privileges

necessary to query the exceptions table.

Nested Table Example The following statement creates relational table employee
with a nested table column projects :

CREATE TABLE employee
 (empno NUMBER, name CHAR(31), projects PROJ_TABLE_TYPE)
 NESTED TABLE projects STORE AS nested_proj_table(
 (PRIMARY KEY (nested_table_id, pno)) ORGANIZATION INDEX)
 RETURN AS LOCATOR;

LOB Column Example The following statement creates table lob_tab with two

LOB columns and specifies the LOB storage characteristics:

CREATE TABLE lob_tab (col1 BLOB, col2 CLOB)
 STORAGE (INITIAL 256 NEXT 256)
 LOB (col1, col2) STORE AS
 (TABLESPACE lob_seg_ts

See Also:

■ INSERT on page 11-51

■ SELECT and subquery on page 11-88 for information on the privileges

necessary to insert rows into tables
10-50 SQL Reference

CREATE TABLE
 STORAGE (INITIAL 6144 NEXT 6144)
 CHUNK 4000
 NOCACHE LOGGING);

In the example, Oracle rounds the value of CHUNK up to 4096 (the nearest multiple

of the block size of 2048).

Index-Organized Table Example The following statement creates an index-

organized table:

CREATE TABLE docindex
 (token CHAR(20),
 doc_oid INTEGER,
 token_frequency SMALLINT,
 token_occurrence_data VARCHAR2(512),
 CONSTRAINT pk_docindex PRIMARY KEY (token, doc_oid))
 ORGANIZATION INDEX TABLESPACE text_collection
 PCTTHRESHOLD 20 INCLUDING token_frequency
 OVERFLOW TABLESPACE text_collection_overflow;

Partitioned Table Example The following statement creates a table with three

partitions:

CREATE TABLE stock_xactions
 (stock_symbol CHAR(5),
 stock_series CHAR(1),
 num_shares NUMBER(10),
 price NUMBER(5,2),
 trade_date DATE)
 STORAGE (INITIAL 100K NEXT 50K) LOGGING
 PARTITION BY RANGE (trade_date)
 (PARTITION sx1992 VALUES LESS THAN (TO_DATE(’01-JAN-1993’,’DD-MON-YYYY’))
 TABLESPACE ts0 NOLOGGING,
 PARTITION sx1993 VALUES LESS THAN (TO_DATE(’01-JAN-1994’,’DD-MON-YYYY’))
 TABLESPACE ts1,
 PARTITION sx1994 VALUES LESS THAN (TO_DATE(’01-JAN-1995’,’DD-MON-YYYY’))
 TABLESPACE ts2);

Partitioned Table with LOB Columns Example This statement creates a

partitioned table pt with two partitions p1 and p2 , and three LOB columns, b, c ,

and d:

See Also: Oracle8i Administrator’s Guide for information about

partitioned table maintenance operations
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-51

CREATE TABLE
CREATE TABLE PT (A NUMBER, B BLOB, C CLOB, D CLOB)
 LOB (B,C,D) STORE AS (STORAGE (NEXT 20M))
 PARTITION BY RANGE (A)
 (PARTITION P1 VALUES LESS THAN (10) TABLESPACE TS1
 LOB (B,D) STORE AS (TABLESPACE TSA STORAGE (INITIAL 20M)),
 PARTITION P2 VALUES LESS THAN (20)
 LOB (B,C) STORE AS (TABLESPACE TSB)
 TABLESPACE TSX;

Partition p1 will be in tablespace ts1 . The LOB data partitions for b and d will be in

tablespace tsa . The LOB data partition for c will be in tablespace ts1 . The storage

attribute INITIAL is specified for LOB columns b and d; other attributes will be

inherited from the default table-level specification. The default LOB storage

attributes not specified at the table level will be inherited from the tablespace tsa
for columns b and d and tablespace ts1 for column c . LOB index partitions will be

in the same tablespaces as the corresponding LOB data partitions. Other storage

attributes will be based on values of the corresponding attributes of the LOB data

partitions and default attributes of the tablespace where the index partitions reside.

Partition p2 will be in the default tablespace tsx . The LOB data for b and c will be

in tablespace tsb . The LOB data for d will be in tablespace tsx . The LOB index for

columns b and c will be in tablespace tsb . The LOB index for column d will be in

tablespace tsx .

Hash-Partitioned Table Example This statement creates a table partitioned by hash

on columns containing data about chemicals. The hash partitions are stored in

tablespaces tbs1 , tbs2 , tbs3 , and tbs4 :

CREATE TABLE exp_data (
 d DATE, temperature NUMBER, Fe2O3_concentration NUMBER,
 HCl_concentration NUMBER, Au_concentration NUMBER,
 amps NUMBER, observation VARCHAR(4000))
 PARTITION BY HASH (HCl_concentration, Au_concentration)
 PARTITIONS 32 STORE IN (tbs1, tbs2, tbs3, tbs4);

Composite-Partitioned Table Example This statement creates a composite-

partitioned table. The range partitioning facilitates data and partition pruning by

sale date. The hash subpartitioning enables subpartition elimination for queries by a

specific item number. Most of the partitions consist of 8 subpartitions. However, the

partition covering the slowest quarter will have 4 subpartitions, and the partition

covering the busiest quarter will have 16 subpartitions.

CREATE TABLE sales (item INTEGER, qty INTEGER,
 store VARCHAR(30),
10-52 SQL Reference

CREATE TABLE
 dept NUMBER, sale_date DATE)
 PARTITION BY RANGE (sale_date)
 SUBPARTITION BY HASH(item)
 SUBPARTITIONS 8
 STORE IN (tbs1, tbs2, tbs3, tbs4, tbs5, tbs6, tbs7, tbs8)
 (PARTITION q1_1997
 VALUES LESS THAN (TO_DATE(’01-apr-1997’, ’dd-mon-yyyy’)),
 PARTITION q2_1997
 VALUES LESS THAN (TO_DATE(’01-jul-1997’, ’dd-mon-yyyy’)),
 PARTITION q3_1997
 VALUES LESS THAN (TO_DATE(’01-oct-1997’, ’dd-mon-yyyy’))
 (SUBPARTITION q3_1997_s1 TABLESPACE ts1,
 SUBPARTITION q3_1997_s2 TABLESPACE ts3,
 SUBPARTITION q3_1997_s3 TABLESPACE ts5,
 SUBPARTITION q3_1997_s4 TABLESPACE ts7),
 PARTITION q4_1997
 VALUES LESS THAN (TO_DATE(’01-jan-1998’, ’dd-mon-yyyy’))
 SUBPARTITIONS 16
 STORE IN (tbs1, tbs3, tbs5, tbs7, tbs8, tbs9, tbs10,
 tbs11),
 PARTITION q1_1998
 VALUES LESS THAN (TO_DATE(’01-apr-1998’, ’dd-mon-yyyy’)));

Object Table Examples Consider object type dept_t :

CREATE TYPE dept_t AS OBJECT
 (dname VARCHAR2(100),
 address VARCHAR2(200));

Object table dept holds department objects of type dept_t :

CREATE TABLE dept OF dept_t;

The following statement creates object table salesreps with a user-defined object

type, salesrep_t :

CREATE OR REPLACE TYPE salesrep_t AS OBJECT
 (repId NUMBER,
 repName VARCHAR2(64));
CREATE TABLE salesreps OF salesrep_t;

Nested Table Example The following statement creates relational table employee
with a nested table column projects :

CREATE TABLE employee (empno NUMBER, name CHAR(31),
 projects PROJ_TABLE_TYPE)
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-53

CREATE TABLE
 NESTED TABLE projects STORE AS nested_proj_table;

REF Example The following example creates object type dept_t and object table

dept to store instances of all departments. A table with a scoped REF is then

created.

CREATE TYPE dept_t AS OBJECT
 (dname VARCHAR2(100),
 address VARCHAR2(200));

CREATE TABLE dept OF dept_t;

CREATE TABLE emp
 (ename VARCHAR2(100),
 enumber NUMBER,
 edept REF dept_t SCOPE IS dept);

The following statement creates a table with a REF column which has a referential

constraint defined on it:

CREATE TABLE emp
 (ename VARCHAR2(100),
 enumber NUMBER,
 edept REF dept_t REFERENCES dept);

User-Defined OID Example This example creates an object type and a

corresponding object table whose OID is primary key based:

CREATE TYPE emp_t AS OBJECT (empno NUMBER, address CHAR(30));
CREATE TABLE emp OF emp_t (empno PRIMARY KEY)
 OBJECT IDENTIFIER IS PRIMARY KEY;

You can subsequently reference the emp object table in either of the following two

ways:

CREATE TABLE dept (dno NUMBER
 mgr_ref REF emp_t SCOPE IS emp);
CREATE TABLE dept (
 dno NUMBER,
 mgr_ref REF emp_t CONSTRAINT mgr_in_emp REFERENCES emp);

Constraints on Type Columns Example

CREATE TYPE address AS OBJECT
 (hno NUMBER,
 street VARCHAR2(40),
10-54 SQL Reference

CREATE TABLE
 city VARCHAR2(20),
 zip VARCHAR2(5),
 phone VARCHAR2(10));

CREATE TYPE person AS OBJECT
 (name VARCHAR2(40),
 dateofbirth DATE,
 homeaddress address,
 manager REF person);

CREATE TABLE persons OF person
 (homeaddress NOT NULL
 UNIQUE (homeaddress.phone),
 CHECK (homeaddress.zip IS NOT NULL),
 CHECK (homeaddress.city <> ’San Francisco’));

PARALLEL Example The following statement creates a table using 10 parallel

execution servers, 5 to scan scott.emp and another 5 to populate emp_dept :

CREATE TABLE emp_dept
 PARALLEL (5)
 AS SELECT * FROM scott.emp
 WHERE deptno = 10;
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-55

CREATE TABLESPACE
CREATE TABLESPACE

Purpose
Use the CREATE TABLESPACE statement to create a tablespace, which is an

allocation of space in the database that can contain persistent schema objects.

When you create a tablespace, it is initially a read-write tablespace. You can

subsequently use the ALTER TABLESPACE statement to take the tablespace offline

or online, add datafiles to it, or make it a read-only tablespace.

You can also drop a tablespace from the database with the DROP TABLESPACE
statement.

You can use the CREATE TEMPORARY TABLESPACE statement to create tablespaces

that contain schema objects only for the duration of a session.

Prerequisites
You must have CREATE TABLESPACE system privilege. Also, the SYSTEM
tablespace must contain at least two rollback segments including the SYSTEM
rollback segment.

Before you can create a tablespace, you must create a database to contain it, and the

database must be open.

See Also:

■ Oracle8i Concepts for information on tablespaces

■ ALTER TABLESPACE on page 8-67 for information on

modifying tablespaces

■ DROP TABLESPACE on page 11-10 for information on

dropping tablespaces

■ CREATE TEMPORARY TABLESPACE on page 10-63

See Also: CREATE DATABASE on page 9-21
10-56 SQL Reference

CREATE TABLESPACE
Syntax

filespec : See filespec on page 11-27.

autoextend_clause ::=

CREATE TABLESPACE tablespace DATAFILE filespec
autoextend_clause

,

MINIMUM EXTENT integer

K

M

LOGGING

NOLOGGING

DEFAULT storage_clause

ONLINE

OFFLINE

PERMANENT

TEMPORARY

extent_management_clause
;

AUTOEXTEND

OFF

ON
NEXT integer

K

M
maxsize_clause
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-57

CREATE TABLESPACE
maxsize_clause ::=

storage_clause : See storage_clause on page 11-129.

extent_management_clause ::=

Keywords and Parameters

tablespace
Specify the name of the tablespace to be created.

DATAFILE filespec
Specify the datafile or files to make up the tablespace.

Note: For operating systems that support raw devices, the REUSE
keyword of filespec has no meaning when specifying a raw

device as a datafile. Such a CREATE TABLESPACE statement will

succeed whether or not you specify REUSE.

See Also: filespec on page 11-27

MAXSIZE

UNLIMITED

integer

K

M

EXTENT MANAGEMENT

DICTIONARY

LOCAL

AUTOALLOCATE

UNIFORM
SIZE integer

K

M

10-58 SQL Reference

CREATE TABLESPACE
autoextend_clause
Use the autoextend_clause to enable or disable the automatic extension of the

datafile.

MINIMUM EXTENTinteger
Specify the minimum size of an extent in the tablespace. This clause lets you control

free space fragmentation in the tablespace by ensuring that every used or free extent

size in a tablespace is at least as large as, and is a multiple of, integer .

LOGGING | NOLOGGING
Specify the default logging attributes of all tables, indexes, and partitions within the

tablespace. LOGGING is the default.

The tablespace-level logging attribute can be overridden by logging specifications at

the table, index, and partition levels.

OFF Specify OFF to disable autoextend if it is turned on. NEXT and

MAXSIZE are set to zero. Values for NEXT and MAXSIZE must be

respecified in further ALTER TABLESPACE AUTOEXTEND
statements.

ON Specify ON to enable autoextend.

NEXTinteger Specify the disk space to allocate to the datafile when more

extents are required.

maxsize_
clause

The maxsize_clause lets you specify the maximum disk space

allowed for allocation to the datafile.

■ integer : Specify in bytes the maximum disk space allowed

for allocation to the tempfile. Use K or M to specify this space

in kilobytes or megabytes.

■ UNLIMITED: Specify UNLIMITED to set no limit on allocating

disk space to the datafile.

Note: This clause is not relevant for a dictionary-managed

temporary tablespace.

See Also: Oracle8i Concepts for more information about using

MINIMUM EXTENT to control fragmentation
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-59

CREATE TABLESPACE
Only the following operations support the NOLOGGING mode:

■ DML: direct-load INSERT (serial or parallel), Direct Loader (SQL*Loader)

■ DDL: CREATE TABLE ... AS SELECT, CREATE INDEX, ALTER INDEX ...

REBUILD, ALTER INDEX ... REBUILD PARTITION, ALTER INDEX ... SPLIT
PARTITION, ALTER TABLE ... SPLIT PARTITION , and ALTER TABLE ... MOVE
PARTITION

In NOLOGGING mode, data is modified with minimal logging (to mark new extents

INVALID and to record dictionary changes). When applied during media recovery,

the extent invalidation records mark a range of blocks as logically corrupt, because

the redo data is not logged. Therefore, if you cannot afford to lose the object, you

should take a backup after the NOLOGGING operation.

DEFAULTstorage_clause
Specify the default storage parameters for all objects created in the tablespace. For a

dictionary-managed temporary tablespace, Oracle considers only the NEXT
parameter of the storage_clause .

ONLINE | OFFLINE

PERMANENT | TEMPORARY

See Also: storage_clause on page 11-129 for information on

storage parameters

ONLINE Specify ONLINE to make the tablespace available immediately

after creation to users who have been granted access to the

tablespace. This is the default.

OFFLINE Specify OFFLINE to make the tablespace unavailable immediately

after creation.

The data dictionary view DBA_TABLESPACES indicates whether

each tablespace is online or offline.

PERMANENT Specify PERMANENT if the tablespace will be used to hold

permanent objects. This is the default.
10-60 SQL Reference

CREATE TABLESPACE
extent_management_clause
The extent_management_clause lets you specify how the extents of the

tablespace will be managed.

TEMPORARY Specify TEMPORARY if the tablespace will be used only to hold

temporary objects, for example, segments used by implicit sorts to

handle ORDER BY clauses.

Restriction: If you specify TEMPORARY, you cannot specify

EXTENT MANAGEMENT LOCAL.

Note: Once you have specified extent management with this

clause, you can change extent management only by migrating the

tablespace.

DICTIONARY Specify DICTIONARY if you want the tablespace to be managed

using dictionary tables. This is the default.

LOCAL Specify LOCAL if you want the tablespace to be locally managed.

Locally managed tablespaces have some part of the tablespace set

aside for a bitmap.

■ AUTOALLOCATE specifies that the tablespace is system

managed. Users cannot specify an extent size.

■ UNIFORM specifies that the tablespace is managed with

uniform extents of SIZE bytes. Use K or Mto specify the extent

size in kilobytes or megabytes. The default SIZE is 1

megabyte.

See Also: Oracle8i Concepts for a discussion of locally

managed tablespaces

If you do not specify either AUTOALLOCATE or UNIFORM, then

AUTOALLOCATE is the default.

Restriction: If you specify LOCAL, you cannot specify DEFAULT
storage_clause , MINIMUM EXTENT, or TEMPORARY.

See Also: Oracle8i Migration for information on changing extent management

by migrating tablespaces
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-61

CREATE TABLESPACE
Examples

DEFAULT Storage Example This statement creates a tablespace named

tabspace_2 with one datafile:

CREATE TABLESPACE tabspace_2
 DATAFILE ’diska:tabspace_file2.dat’ SIZE 20M
 DEFAULT STORAGE (INITIAL 10K NEXT 50K
 MINEXTENTS 1 MAXEXTENTS 999)
 ONLINE;

AUTOEXTEND Example This statement creates a tablespace named tabspace_3
with one datafile. When more space is required, 50 kilobyte extents will be added

up to a maximum size of 10 megabytes:

CREATE TABLESPACE tabspace_5
 DATAFILE ’diskb:tabspace_file3.dat’ SIZE 500K REUSE
 AUTOEXTEND ON NEXT 500K MAXSIZE 10M;

MINIMUM EXTENT Example This statement creates tablespace tabspace_5 with

one datafile and allocates every extent as a multiple of 64K:

CREATE TABLESPACE tabspace_3
 DATAFILE ’tabspace_file5.dbf’ SIZE 2M
 MINIMUM EXTENT 64K
 DEFAULT STORAGE (INITIAL 128K NEXT 128K)
 LOGGING;

Locally Managed Example In the following statement, we assume that the

database block size is 2K.

CREATE TABLESPACE tbs_1 DATAFILE ’file_1.f’ SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K;

This statement creates a locally managed tablespace in which every extent is 128K

and each bit in the bit map describes 64 blocks.
10-62 SQL Reference

CREATE TEMPORARY TABLESPACE
CREATE TEMPORARY TABLESPACE

Purpose
Use the CREATE TEMPORARY TABLESPACE statement to create a temporary
tablespace, which is an allocation of space in the database that can contain schema

objects for the duration of a session.

To create a tablespace to contain persistent schema objects, use the CREATE
TABLESPACE statement.

Prerequisites
You must have the CREATE TABLESPACE system privilege.

Syntax

filespec : See filespec on page 11-27.

autoextend_clause ::=

See Also: CREATE TABLESPACE on page 10-56

CREATE TEMPORARY TABLESPACE tablespace TEMPFILE filespec
autoextend_clause

EXTENT MANAGEMENT LOCAL UNIFORM
SIZE integer

K

M

;

AUTOEXTEND

OFF

ON
NEXT integer

K

M
maxsize_clause
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-63

CREATE TEMPORARY TABLESPACE
maxsize_clause ::=

Keywords and Parameters

tablespace
Specify the name of the temporary tablespace.

TEMPFILE filespec
Specify the tempfiles that make up the tablespace.

autoextend_clause
The autoextend_clause lets you enable or disable the automatic extension of the

tempfile.

Note: Media recovery does not recognize tempfiles.

See Also: filespec on page 11-27

OFF Specify OFF to disable autoextend if it is turned on. NEXT and

MAXSIZE are set to zero. Values for NEXT and MAXSIZE must be

respecified in further ALTER TABLESPACE AUTOEXTEND
statements.

ON Specify ON to enable autoextend.

NEXTinteger Specify the disk space to allocate to the tempfile when more

extents are required.

maxsize_
clause

The maxsize_clause lets you specify the maximum disk space

allowed for allocation to the tempfile.

MAXSIZE

UNLIMITED

integer

K

M

10-64 SQL Reference

CREATE TEMPORARY TABLESPACE
EXTENT MANAGEMENT LOCAL
The EXTENT MANAGEMENT clause lets you specify that the tablespace is locally

managed, meaning that some part of the tablespace is set aside for a bitmap.

Example

Temporary Tablespace Example This statement creates a temporary tablespace in

which each extent is 16M.

CREATE TEMPORARY TABLESPACE tbs_1 TEMPFILE ’file_1.f’
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 16M;

If we assume the default database block size of 2K, and that each bit in the map

represents one extent, then each bit maps 8,000 blocks.

■ integer : Specify in bytes the maximum disk space allowed

for allocation to the tempfile. Use K or M to specify this space

in kilobytes or megabytes.

■ UNLIMITED: Specify UNLIMITED to set no limit on allocating

disk space to the tempfile.

UNIFORM
integer

Specify the size of the extents of the temporary tablespace in

bytes. All extents of temporary tablespaces are the same size

(uniform). If you do not specify this clause, Oracle uses uniform

extents of 1M.

SIZE integer Specify in bytes the size of the tablespace extents. Use K or M to

specify the size in kilobytes or megabytes.

If you do not specify SIZE , Oracle uses the default extent size of

1M.

See Also: Oracle8i Concepts for a discussion of locally managed

tablespaces
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-65

CREATE TRIGGER
CREATE TRIGGER

Purpose
Use the CREATE TRIGGER statement to create and enable a database trigger, which

is

■ A stored PL/SQL block associated with a table, a schema, or the database

■ An anonymous PL/SQL block or a call to a procedure implemented in PL/SQL

or Java

Oracle automatically executes a trigger when specified conditions occur.

When you create a trigger, Oracle enables it automatically. You can subsequently

disable and enable a trigger with the DISABLE and ENABLE clause of the ALTER
TRIGGER or ALTER TABLE statement.

Prerequisites
Before a trigger can be created, the user SYS must run the SQL script

DBMSSTDX.SQL. The exact name and location of this script depend on your

operating system.

■ To create a trigger in your own schema on a table in your own schema or on

your own schema (SCHEMA), you must have the CREATE TRIGGER privilege.

■ To create a trigger in any schema on a table in any schema, or on another user’s

schema (schema .SCHEMA), you must have the CREATE ANY TRIGGERprivilege.

■ In addition to the preceding privileges, to create a trigger on DATABASE, you

must have the ADMINISTER DATABASE TRIGGER system privilege.

See Also:

■ Oracle8i Concepts for a description of the various types of

triggers

■ Oracle8i Application Developer’s Guide - Fundamentals for more

information on how to design triggers for the above purposes

■ ALTER TRIGGER on page 8-76 and ALTER TABLE on page 8-2

for information on enabling, disabling, and compiling triggers

■ DROP TRIGGER on page 11-13 for information on dropping a

trigger
10-66 SQL Reference

CREATE TRIGGER
If the trigger issues SQL statements or calls procedures or functions, then the owner

of the trigger must have the privileges necessary to perform these operations. These

privileges must be granted directly to the owner, rather than acquired through

roles.

Syntax

dml_event_clause ::=

CREATE
OR REPLACE

TRIGGER
schema .

trigger

BEFORE

AFTER

INSTEAD OF

dml_event_clause

ddl_event

OR

database_event

OR ON

schema .
SCHEMA

DATABASE

referencing_clause
WHEN (condition) pl/sql_block

call_procedure_statement

DELETE

INSERT

UPDATE
OF column

,

OR

ON

schema .
table

NESTED TABLE nested_table_column OF schema .
view
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-67

CREATE TRIGGER
referencing_clause ::=

Keywords and Parameters

OR REPLACE
Specify OR REPLACE to re-create the trigger if it already exists. Use this clause to

change the definition of an existing trigger without first dropping it.

schema
Specify the schema to contain the trigger. If you omit schema , Oracle creates the

trigger in your own schema.

trigger
Specify the name of the trigger to be created.

If a trigger produces compilation errors, it is still created, but it fails on execution.

You can see the associated compiler error messages with the SQL*Plus command

SHOW ERRORS. This means it effectively blocks all triggering DML statements until

it is disabled, replaced by a version without compilation errors, or dropped.

BEFORE
Specify BEFORE to cause Oracle to fire the trigger before executing the triggering

event. For row triggers, this is a separate firing before each affected row is changed.

Note: If you create a trigger on a base table of a materialized view,

you must ensure that the trigger does not fire during a refresh of

the materialized view. (During refresh, the DBMS_SNAPSHOT
procedure I_AM_A_REFRESH returns TRUE.)

REFERENCING

OLD
AS

old

NEW
AS

new

PARENT
AS

parent FOR EACH ROW
10-68 SQL Reference

CREATE TRIGGER
Restrictions:

■ You cannot specify a BEFORE trigger on a view or an object view.

■ When defining a BEFORE trigger for LOB columns, you can read the :OLD value

but not the :NEW value. You cannot write either the :OLD or the :NEW value.

AFTER
Specify AFTER to cause Oracle to fire the trigger after executing the triggering

event. For row triggers, this is a separate firing after each affected row is changed.

Restrictions:

■ You cannot specify an AFTER trigger on a view or an object view.

■ When defining an AFTER trigger for LOB columns, you can read the :OLD value

but not the :NEW value. You cannot write either the :OLD or the :NEW value.

INSTEAD OF
Specify INSTEAD OF to cause Oracle to fire the trigger instead of executing the

triggering event. By default, INSTEAD OF triggers are activated for each row.

If a view is inherently updatable and has INSTEAD OF triggers, the triggers take

preference. In other words, Oracle fires the triggers instead of performing DML on

the view.

Restrictions:

■ INSTEAD OF is a valid clause only for views. You cannot specify an INSTEAD
OF trigger on a table.

Note: When you create a materialized view log for a table, Oracle

implicitly creates an AFTER ROW trigger on the table. This trigger

inserts a row into the materialized view log whenever an INSERT,

UPDATE, or DELETEstatement modifies the table’s data. You cannot

control the order in which multiple row triggers fire. Therefore, you

should not write triggers intended to affect the content of the

materialized view.

See Also: CREATE MATERIALIZED VIEW LOG on page 9-107

for more information on materialized view logs
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-69

CREATE TRIGGER
■ If a view has INSTEAD OFtriggers, any views created on it must have INSTEAD
OF triggers, even if the views are inherently updatable.

■ When defining INSTEAD OF triggers for LOB columns, you can read both the

:OLD and the :NEW value, but you cannot write either the :OLD or the :NEW
values.

dml_event_clause
The dml_event_clause lets you specify one of three DML statements that can

cause the trigger to fire. Oracle fires the trigger in the existing user transaction.

Note: You can create multiple triggers of the same type (BEFORE,
AFTER, or INSTEAD OF) that fire for the same statement on the

same table. The order in which Oracle fires these triggers is

indeterminate. If your application requires that one trigger be fired

before another of the same type for the same statement, combine

these triggers into a single trigger whose trigger action performs

the trigger actions of the original triggers in the appropriate order.

DELETE Specify DELETE if you want Oracle to fire the trigger whenever a

DELETE statement removes a row from the table or an element

from a nested table.

INSERT Specify INSERT if you want Oracle to fire the trigger whenever an

INSERT statement adds a row to table or an element to a nested

table.

UPDATE Specify UPDATEif you want Oracle to fire the trigger whenever an

UPDATEstatement changes a value in one of the columns specified

after OF. If you omit OF, Oracle fires the trigger whenever an

UPDATE statement changes a value in any column of the table or

nested table.

For an UPDATE trigger, you can specify object type, varray, and

REF columns after OF to indicate that the trigger should be fired

whenever an UPDATE statement changes a value in one of the

columns. However, you cannot change the values of these

columns in the body of the trigger itself.
10-70 SQL Reference

CREATE TRIGGER
ddl_event
Specify one or more types of DDL statements that can cause the trigger to fire. You

can create triggers for these events on DATABASE or SCHEMA unless otherwise

noted. You can create BEFORE and AFTER triggers for these events. Oracle fires the

trigger in the existing user transaction. The following values are valid:

Note: Using OCI functions or the DBMS_LOB package to

update LOB values or LOB attributes of object columns does

not cause Oracle to fire triggers defined on the table

containing the columns or the attributes.

Restrictions:

■ You cannot specify OF with UPDATE for an INSTEAD OF
trigger. Oracle fires INSTEAD OF triggers whenever an

UPDATE changes a value in any column of the view.

■ You cannot specify nested table or LOB columns with OF.

See Also: ASsubquery of CREATE VIEW on page 10-105 for

a list of constructs that prevent inserts, updates, or deletes on

a view

Performing DML operations directly on nested table columns does not cause Oracle

to fire triggers defined on the table containing the nested table column

ALTER Specify ALTER to fire the trigger whenever an ALTER statement

modifies a database object in the data dictionary.

Restriction: The trigger will not be fired by an ALTER DATABASE
statement.

ANALYZE Specify ANALYZE to fire the trigger whenever Oracle collects or

deletes statistics or validates the structure of a database object.

ASSOCIATE
STATISTICS

Specify ASSOCIATE STATISTICS to fire the trigger whenever

Oracle associates a statistics type with a database object.

AUDIT Specify AUDIT to fire the trigger whenever Oracle tracks the

occurrence of a SQL statement or tracks operations on a schema

object.

COMMENT Specify COMMENT to fire the trigger whenever a comment on a

database object is added to the data dictionary.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-71

CREATE TRIGGER
database_event
Specify one or more particular states of the database that can cause the trigger to

fire. You can create triggers for these events on DATABASE or SCHEMA unless

otherwise noted. For each of these triggering events, Oracle opens an autonomous

transaction scope, fires the trigger, and commits any separate transaction

(regardless of any existing user transaction).

CREATE Specify CREATE to fire the trigger whenever a CREATE statement

adds a new database object to the data dictionary.

Restriction: The trigger will not be fired by a CREATE DATABASE
or CREATE CONTROLFILE statement.

DISASSOCIATE
STATISTICS

Specify DISASSOCIATE STATISTICS to fire the trigger whenever

Oracle disassociates a statistics type from a database object.

DROP Specify DROP to fire the trigger whenever a DROP statement

removes a database object from the data dictionary.

GRANT Specify GRANT to fire the trigger whenever a user grants system

privileges or roles or object privileges to another user or to a role.

NOAUDIT Specify NOAUDIT to fire the trigger whenever a NOAUDIT
statement instructs Oracle to stop tracking a SQL statement or

operations on a schema object.

RENAME Specify RENAME to fire the trigger whenever a RENAME statement

change the name of a database object.

REVOKE Specify REVOKE to fire the trigger whenever a REVOKE statement

removes system privileges or roles or object privileges from a user

or role.

TRUNCATE Specify TRUNCATE to fire the trigger whenever a TRUNCATE
statement removes the rows from a table or cluster and resets its

storage characteristics.

DDL Specify DDLto fire the trigger whenever any of the preceding DDL

statements is issued.

Restriction: You cannot specify as a triggering event any DDL operation performed

through a PL/SQL procedure.

See Also: PL/SQL User’s Guide and Reference for more information

on autonomous transaction scope
10-72 SQL Reference

CREATE TRIGGER
ON table | view
The ON clause lets you determine the database object on which the trigger is to be

created.

SERVERERRORSpecify SERVERERROR to fire the trigger whenever a server error

message is logged.

The following errors do not cause a SERVERERROR trigger to fire:

■ ORA-01403 : data not found

■ ORA-01422 : exact fetch returns more than requested number

of rows

■ ORA-01423 : error encountered while checking for extra rows

in exact fetch

■ ORA-01034 : ORACLE not available

■ ORA-04030 : out of process memory

LOGON Specify LOGON to fire the trigger whenever a client application

logs onto the database.

LOGOFF Specify LOGOFF to fire the trigger whenever a client applications

logs off the database.

STARTUP Specify STARTUP to fire the trigger whenever the database is

opened.

SHUTDOWN Specify SHUTDOWN to fire the trigger whenever an instance of the

database is shut down.

Notes:

■ Only AFTER triggers are relevant for LOGON, STARTUP, and SERVERERROR.

■ Only BEFORE triggers are relevant for LOGOFF and SHUTDOWN.

■ AFTER STARTUP and BEFORE SHUTDOWN triggers apply only to DATABASE.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-73

CREATE TRIGGER
referencing_clause
The referencing_clause lets you specify correlation names. You can use

correlation names in the PL/SQL block and WHEN condition of a row trigger to refer

specifically to old and new values of the current row. The default correlation names

are OLD and NEW. If your row trigger is associated with a table named OLD or NEW,
use this clause to specify different correlation names to avoid confusion between the

table name and the correlation name.

■ If the trigger is defined on a nested table, OLD and NEW refer to the row of the

nested table, and PARENT refers to the current row of the parent table.

■ If the trigger is defined on an object table or view, OLD and NEW refer to object

instances.

Restriction: This clause is valid only for DML event triggers (not DDL or database

event triggers).

[schema.]
table | view

Specify the schema and table or view name of one of the

following on which the trigger is to be created:

■ Table or view

■ Object table or object view

■ A column of nested-table type

If you omit schema , Oracle assumes the table is in your own

schema. You can create triggers on index-organized tables.

Restriction: You cannot create a trigger on a table in the schema

SYS.

NESTED TABLE Specify the nested_table_column of a view upon which the

trigger is being defined. Such a trigger will fire only if the DML

operates on the elements of the nested table.

Restriction: You can specify NESTED TABLE only for INSTEAD OF
triggers.

DATABASE Specify DATABASE to define the trigger on the entire database.

SCHEMA Specify SCHEMA to define the trigger on the current schema.
10-74 SQL Reference

CREATE TRIGGER
WHEN
Specify the trigger restriction, which is a SQL condition that must be satisfied for

Oracle to fire the trigger. See the syntax description of condition in "Conditions" on

page 5-15. This condition must contain correlation names and cannot contain a

query.

Restrictions:

■ You can specify a trigger restriction only for a row trigger. Oracle evaluates this

condition for each row affected by the triggering statement.

■ You cannot specify trigger restrictions for INSTEAD OF trigger statements.

■ You can reference object columns or their attributes, or varray, nested table, or

LOB columns. You cannot invoke PL/SQL functions or methods in the trigger

restriction.

pl/sql_block
Specify the PL/SQL block that Oracle executes to fire the trigger.

The PL/SQL block of a database trigger can contain one of a series of built-in

functions in the SYS schema designed solely to extract system event attributes.

These functions can be used only in the PL/SQL block of a database trigger.

FOR EACH ROWSpecify FOR EACH ROW to designate the trigger as a row trigger.

Oracle fires a row trigger once for each row that is affected by the

triggering statement and meets the optional trigger constraint

defined in the WHEN condition.

Note: This clause is applies only to DML events, not to DDL

or database events.

Except for INSTEAD OF triggers, if you omit this clause, the

trigger is a statement trigger. Oracle fires a statement trigger only

once when the triggering statement is issued if the optional

trigger constraint is met.

INSTEAD OF trigger statements are implicitly activated for each

row.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-75

CREATE TRIGGER
Restrictions:

■ The PL/SQL block of a trigger cannot contain transaction control SQL

statements (COMMIT, ROLLBACK, SAVEPOINT, and SET CONSTRAINT) if the

block is executed within the same transaction.

■ You can reference and use LOB columns in the trigger action inside the PL/SQL

block, but you cannot modify their values within the trigger action.

call_procedure_statement
The call_procedure_statement lets you call a stored procedure, rather than

specifying inline the trigger code as a PL/SQL block. The syntax of this statement is

the same as that for CALL on page 8-128, with the following exceptions:

■ You cannot specify the INTO clause of CALL, because it applies only to

functions.

■ You cannot specify bind variables in expr .

■ To reference columns of tables on which the trigger is being defined, you must

specify :NEW and :OLD.

Examples

DML Trigger Example This example creates a BEFORE statement trigger named

emp_permit_changes in the schema scott . You would write such a trigger to

place restrictions on DML statements issued on this table (such as when such

statements could be issued).

CREATE TRIGGER scott.emp_permit_changes
 BEFORE
 DELETE OR INSERT OR UPDATE
 ON scott.emp

See Also:

■ PL/SQL User’s Guide and Reference for information on PL/SQL,

including how to write PL/SQL blocks

■ Oracle8i Application Developer’s Guide - Fundamentals for

information on these functions

■ Oracle8i Application Developer’s Guide - Fundamentals

See Also: "Calling a Procedure in a Trigger Body Example" on

page 10-77
10-76 SQL Reference

CREATE TRIGGER
pl/sql block

Oracle fires this trigger whenever a DELETE, INSERT, or UPDATE statement affects

the emp table in the schema scott . The trigger emp_permit_changes is a

BEFORE statement trigger, so Oracle fires it once before executing the triggering

statement.

DML Trigger Example with Restriction This example creates a BEFORErow trigger

named salary_check in the schema scott . The PL/SQL block might specify, for

example, that the employee’s salary must fall within the established salary range for

the employee’s job:

CREATE TRIGGER scott.salary_check
 BEFORE
 INSERT OR UPDATE OF sal, job ON scott.emp
 FOR EACH ROW
 WHEN (new.job <> ’PRESIDENT’)

pl/sql_block

Oracle fires this trigger whenever one of the following statements is issued:

■ an INSERT statement that adds rows to the emp table

■ an UPDATEstatement that changes values of the sal or job columns of the emp
table

salary_check is a BEFORErow trigger, so Oracle fires it before changing each row

that is updated by the UPDATE statement or before adding each row that is inserted

by the INSERT statement.

salary_check has a trigger restriction that prevents it from checking the salary of

the company president.

Calling a Procedure in a Trigger Body Example You could create the salary_
check trigger described in the preceding example by calling a procedure instead of

providing the trigger body in a PL/SQL block. Assume you have defined a

procedure scott.salary_check , which verifies that an employee’s salary in in

an appropriate range. Then you could create the trigger salary_check as follows:

CREATE TRIGGER scott.salary_check
 BEFORE INSERT OR UPDATE OF sal, job ON scott.emp
 FOR EACH ROW
 WHEN (new.job <> ’PRESIDENT’)
 CALL check_sal(:new.job, :new.sal, :new.ename);
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-77

CREATE TRIGGER
The procedure check_sal could be implemented in PL/SQL, C, or Java. Also, you

can specify :OLD values in the CALL clause instead of :NEW values.

Database Event Trigger Example This example creates a trigger to log all errors.

The PL/SQL block does some special processing for a particular error (invalid

logon, error number 1017. This trigger is an AFTER statement trigger, so it is fired

after an unsuccessful statement execution (such as unsuccessful logon).

CREATE TRIGGER log_errors AFTER SERVERERROR ON DATABASE
 BEGIN
 IF (IS_SERVERERROR (1017)) THEN
 <special processing of logon error>
 ELSE
 <log error number>
 END IF;
 END;

DDL Trigger Example This example creates an AFTER statement trigger on any

DDL statement CREATE. Such a trigger can be used to audit the creation of new

data dictionary objects in your schema.

CREATE TRIOGGER audit_db_object AFTER CREATE
 ON SCHEMA

pl/sql_block

INSTEAD OF Trigger Example In this example, customer data is stored in two

tables. The object view all_customers is created as a UNION of the two tables,

customers_sj and customers_pa . An INSTEAD OF trigger is used to insert

values.

CREATE TABLE customers_sj
 (cust NUMBER(6),
 address VARCHAR2(50),
 credit NUMBER(9,2));

CREATE TABLE customers_pa
 (cust NUMBER(6),
 address VARCHAR2(50),
 credit NUMBER(9,2));

CREATE TYPE customer_t AS OBJECT
 (cust NUMBER(6),
 address VARCHAR2(50),
 credit NUMBER(9,2),
 location VARCHAR2(20));
10-78 SQL Reference

CREATE TRIGGER
CREATE VIEW all_customers (cust)
 AS SELECT customer_t (cust, address, credit, ’SAN_JOSE’)
 FROM customers_sj
 UNION ALL
 SELECT customer_t (cust, address, credit, ’PALO_ALTO’)
 FROM customers_pa;

CREATE TRIGGER instrig INSTEAD OF INSERT ON all_customers
 FOR EACH ROW
 BEGIN
 IF (:new.cust.location = ’SAN_JOSE’) THEN
 INSERT INTO customers_sj

VALUES (:new.cust.cust, :new.cust.address,:new.cust.credit);
 ELSE
 INSERT INTO customers_pa

VALUES (:new.cust.cust, :new.cust.address, :new.cust.credit);
 END IF;
 END;
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-79

CREATE TYPE
CREATE TYPE

Purpose
Use the CREATE TYPEstatement to create the specification of an object type, named

varying array (varray), nested table type, or an incomplete object type. You create

object types with the CREATE TYPE and the CREATE TYPE BODY statements. The

CREATE TYPE statement specifies the name of the object type, its attributes,

methods, and other properties. The CREATE TYPE BODY statement contains the

code for the methods in the type.

Oracle implicitly defines a constructor method for each user-defined type that you

create. A constructor is a system-supplied procedure that is used in SQL statements

or in PL/SQL code to construct an instance of the type value. The name of the

constructor method is the same as the name of the user-defined type.

The parameters of the object type constructor method are the data attributes of the

object type. They occur in the same order as the attribute definition order for the

object type. The parameters of a nested table or varray constructor are the elements

of the nested table or the varray.

An incomplete type is a type created by a forward type definition. It is called

"incomplete" because it has a name but no attributes or methods. It can be

referenced by other types, and so can be used to define types that refer to each

other. However, you must fully specify the type before you can use it to create a

table or an object column or a column of a nested table type.

Note: If you create an object type for which the type specification

declares only attributes but no methods, you need not specify a

type body.
10-80 SQL Reference

CREATE TYPE
Prerequisites
To create a type in your own schema, you must have the CREATE TYPE system

privilege. To create a type in another user’s schema, you must have the CREATE
ANY TYPEsystem privilege. You can acquire these privileges explicitly or be granted

them through a role.

The owner of the type must either be explicitly granted the EXECUTE object

privilege in order to access all other types referenced within the definition of the

type, or the type owner must be granted the EXECUTE ANY TYPE system privilege.

The owner cannot obtain these privileges through roles.

If the type owner intends to grant other users access to the type, the owner must be

granted the EXECUTE object privilege to the referenced types with the GRANT
OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN OPTION.
Otherwise, the type owner has insufficient privileges to grant access on the type to

other users.

Syntax
create_incomplete_type ::=

See Also:

■ CREATE TYPE BODY on page 10-93 for information on

creating the member methods of a type

■ PL/SQL User’s Guide and Reference, Oracle8i Application
Developer’s Guide - Fundamentals, and Oracle8i Concepts for more

information about objects, incomplete types, varrays, and

nested tables

CREATE
OR REPLACE

TYPE
schema .

type_name ;
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-81

CREATE TYPE
create_object_type ::=

element_list ::=

invoker_rights_clause ::=

pragma_clause ::=

CREATE
OR REPLACE

TYPE
schema .

type_name
invoker_rights_clause

IS

AS
OBJECT (element_list) ;

attribute datatype

, ,
MEMBER

STATIC

procedure_spec

function_spec

, pragma_clause

,
MAP

ORDER
MEMBER function_spec

AUTHID
CURRENT_USER

DEFINER

PRAGMA RESTRICT_REFERENCES (
method_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

)

10-82 SQL Reference

CREATE TYPE
procedure_spec or function_spec ::=

call_spec ::=

Java_declaration ::=

C_declaration ::=

create_varray_type ::=

PROCEDURE

FUNCTION
name (parameter datatype)

RETURN datatype

IS

AS
call_spec

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
WITH CONTEXT

PARAMETERS (parameters)

CREATE
OR REPLACE

TYPE
schema. .

type_name

IS

AS

VARRAY

VARYING ARRAY
(limit) OF datatype ;
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-83

CREATE TYPE
create_nested_table_type ::=

Keywords and Parameters

OR REPLACE
Specify OR REPLACE to re-create the type if it already exists. Use this clause to

change the definition of an existing type without first dropping it.

Users previously granted privileges on the re-created object type can use and

reference the object type without being granted privileges again.

If any function-based indexes depend on the type, Oracle marks the indexes

DISABLED.

schema
Specify the schema to contain the type. If you omit schema , Oracle creates the type

in your current schema.

type_name
Specify the name of an object type, a nested table type, or a varray type.

If creating the type results in compilation errors, Oracle returns an error. You can

see the associated compiler error messages with the SQL*Plus command SHOW
ERRORS.

create_object_type
Use the create_object_type clause to create a user-defined object type (rather

than an incomplete type). The variables that form the data structure are called

attributes. The member subprograms that define the object’s behavior are called

methods. AS OBJECT is required when creating an object type.

CREATE
OR REPLACE

TYPE
schema. .

type_name

IS

AS
TABLE OF datatype ;
10-84 SQL Reference

CREATE TYPE
invoker_rights_clause

The invoker_rights_clause lets you specify whether the member functions

and procedures of the object type execute with the privileges and in the schema of

the user who owns the object type or with the privileges and in the schema of

CURRENT_USER. This specification applies to the corresponding type body as well.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the member functions and procedures

of the type.

Restriction: You can specify this clause only for an object type, not for a nested table

or varray type.

AUTHID
CURRENT_USER

Specify CURRENT_USER if you want the member functions and

procedures of the object type to execute with the privileges of

CURRENT_USER. This clause creates an invoker-rights type.

This clause also indicates that external names in queries, DML

operations, and dynamic SQL statements resolve in the schema of

CURRENT_USER. External names in all other statements resolve in

the schema in which the type resides.

AUTHID
DEFINER

Specify DEFINER if you want the member functions and

procedures of the object type to execute with the privileges of the

owner of the schema in which the functions and procedures

reside, and that external names resolve in the schema where the

member functions and procedures reside. This is the default.

See Also:

■ Oracle8i Concepts and Oracle8i Application Developer’s Guide -
Fundamentals for information on how CURRENT_USER is
determined

■ PL/SQL User’s Guide and Reference
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-85

CREATE TYPE
element_list

datatype Specify the attribute’s Oracle built-in datatype or user-defined

type.

Restrictions:

■ You cannot specify attributes of type ROWID, LONG, or LONG
ROW.

■ You cannot create an object with NCLOB, NCHAR, or

NVARCHAR2 attributes, but you can specify parameters of

these datatypes in methods.

■ You cannot specify a datatype of UROWID for a user-defined

object type.

■ If you specify an object of type REF, the target object must

have an object identifier.

See Also: "Datatypes" on page 2-2 for a list of possible

datatypes

attribute Specify, for an object type, the name of an object attribute.

Attributes are data items with a name and a type specifier that

form the structure of the object. You must specify at least one

attribute for each object type.

MEMBER

procedure_
spec or

function_
spec

Specify a function or procedure subprogram associated with the

object type that is referenced as an attribute. Typically, you invoke

member methods in a "selfish" style, such as object_
expression.method() . This class of method has an implicit

first argument referenced as SELF in the method’s body, which

represents the object on which the method has been invoked.

STATIC

procedure_
spec or

function_
spec

Specify a function or procedure subprogram associated with the

object type. Unlike member methods, static methods do not have

any implicit parameters (that is, SELF is not referenceable in their

body). They are typically invoked as type_name.method().

For both member and static methods, you must specify a corresponding method

body in the object type body for each procedure or function specification.
10-86 SQL Reference

CREATE TYPE
The RETURN clause is valid only for a function. The syntax shown is an abbreviated

form.

If this subprogram does not include the declaration of the procedure or function,

you must issue a corresponding CREATE TYPE BODY statement.

See Also:

- PL/SQL User’s Guide and Reference for information about method invocation

and methods

- CREATE PROCEDURE on page 9-132 and CREATE FUNCTION on page 9-43

for the full syntax with all possible clauses

- CREATE TYPE BODY on page 10-93

- "Restrictions on User-Defined Functions" on page 9-46 for a list of restrictions

on user-defined functions

call_spec Specify the call specification ("call spec") that maps a Java or C

method name, parameter types, and return type to their SQL

counterparts. If all the member methods in the type have been

defined in this clause, you need not issue a corresponding

CREATE TYPE BODY statement.

In Java_declaration, ’string ’ identifies the Java

implementation of the method.

See Also:

- Oracle8i Java Stored Procedures Developer’s Guide

- Oracle8i Application Developer’s Guide - Fundamentals for an

explanation of the parameters and semantics of the C_
declaration

pragma_
clause

The pragma_clause lets you specify a compiler directive.

PRAGMA
RESTRICT_
REFERENCES

The PRAGMA RESTRICT_REFERENCES compiler directive denies

member functions read/write access to database tables, packaged

variables, or both, and thereby helps to avoid side effects.

See Also: Oracle8i Application Developer’s Guide - Fundamentals

method_name Specify the name of the MEMBER function or

procedure to which the pragma is being applied.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-87

CREATE TYPE
DEFAULT Specify DEFAULT to apply the pragma to all

methods in the type for which a pragma has not

been explicitly specified.

WNDS Specify WNDS to invoke the constraint writes no
database state (does not modify database

tables).

WNPS Specify WNPS to invoke the constraint writes no
package state (does not modify packaged

variables).

RNDS Specify RNDS to invoke the constraint reads no
database state (does not query database tables).

RNPS Specify RNPS to invoke the constraint reads no
package state (does not reference packages

variables).

TRUST TRUSTindicates that the restrictions listed in the

pragma are not actually to be enforced, but are

simply trusted to be true.

MAP MEMBER
function_
spec

This clause lets you specify a member function (MAP method) that

returns the relative position of a given instance in the ordering of

all instances of the object. A map method is called implicitly and

induces an ordering of object instances by mapping them to

values of a predefined scalar type. PL/SQL uses the ordering to

evaluate Boolean expressions and to perform comparisons.

If the argument to the map method is null, the map method

returns null and the method is not invoked.

An object specification can contain only one map method, which

must be a function. The result type must be a predefined SQL

scalar type, and the map function can have no arguments other

than the implicit SELF argument.

Note: If type_name will be referenced in queries involving

sorts (through an ORDER BY, GROUP BY, DISTINCT , or UNION
clause) or joins, and you want those queries to be parallelized,

you must specify a MAP member function.
10-88 SQL Reference

CREATE TYPE
create_varray_type
The create_varray_type lets you create the type as an ordered set of elements,

each of which has the same datatype. You must specify a name and a maximum

limit of zero or more. The array limit must be an integer literal. Oracle does not

support anonymous varrays.

The type name for the objects contained in the varray must be one of the following:

■ A built-in datatype,

ORDER MEMBER
function_
spec

This clause lets you specify a member function (ORDER method)

that takes an instance of an object as an explicit argument and the

implicit SELF argument and returns either a negative, zero, or

positive integer. The negative, positive, or zero indicates that the

implicit SELF argument is less than, equal to, or greater than the

explicit argument.

If either argument to the order method is null, the order method

returns null and the method is not invoked.

When instances of the same object type definition are compared in

an ORDER BY clause, the order method function_spec is

invoked.

An object specification can contain only one ORDER method,

which must be a function having the return type NUMBER.

You can define either a MAPmethod or an ORDERmethod in a type specification, but

not both. If you declare either method, you can compare object instances in SQL.

If neither a MAPnor an ORDERmethod is specified, only comparisons for equality or

inequality can be performed. Therefore object instances cannot be ordered.

Instances of the same type definition are equal only if each pair of their

corresponding attributes is equal. No comparison method needs to be specified to

determine the equality of two object types.

Use MAP if you are performing extensive sorting or hash join operations on object

instances. MAP is applied once to map the objects to scalar values and then the

scalars are used during sorting and merging. A MAP method is more efficient than

an ORDER method, which must invoke the method for each object comparison. You

must use a MAP method for hash joins. You cannot use an ORDER method because

the hash mechanism hashes on the object value.

See Also: Oracle8i Application Developer’s Guide - Fundamentals for more

information about object value comparisons
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-89

CREATE TYPE
■ A REF, or

■ An object type.

Restrictions:

■ A collection type cannot contain any other collection type, either directly or

indirectly. That is, a varray type cannot contain any elements that are or contain

varrays or nested tables.

■ You cannot create varray types of LOB datatypes.

create_nested_table_type
The create_nested_table_type lets you create a named nested table of type

datatype .

■ When datatype is an object type, the nested table type describes a table whose

columns match the name and attributes of the object type.

■ When datatype is a scalar type, then the nested table type describes a table

with a single, scalar type column called "column_value ".

Restrictions:

■ A collection type cannot contain any other collection type, either directly or

indirectly. That is, a nested table type cannot contain any elements that are or

contain varrays or nested tables.

■ You cannot specify NCLOB for datatype . However, you can specify CLOB or

BLOB.

Examples

Object Type Example The following example creates object type person_t with

LOB attributes:

CREATE TYPE person_t AS OBJECT
 (name CHAR(20),
 resume CLOB,
 picture BLOB);

Varray Type Example The following statement creates members_type as a varray

type with 100 elements:

CREATE TYPE members_type AS VARRAY(100) OF CHAR(5);
10-90 SQL Reference

CREATE TYPE
Nested Table Type Example The following example creates a named table type

project_table of object type project_t :

CREATE TYPE project_t AS OBJECT
 (pno CHAR(5),
 pname CHAR(20),
 budgets DEC(7,2));

CREATE TYPE project_table AS TABLE OF project_t;

Constructor Example The following example invokes method constructor

col.getbar() :

CREATE TYPE foo AS OBJECT (a1 NUMBER,
 MEMBER FUNCTION getbar RETURN NUMBER,);
CREATE TABLE footab(col foo);

SELECT col.getbar() FROM footab;

Unlike function invocations, method invocations require parentheses, even when

the methods do not have additional arguments.

The next example invokes the system-defined constructor to construct the foo_t
object and insert it into the foo_tab table:

CREATE TYPE foo_t AS OBJECT (a1 NUMBER, a2 NUMBER);
CREATE TABLE foo_tab (b1 NUMBER, b2 foo_t);
INSERT INTO foo_tab VALUES (1, foo_t(2,3));

Static Method Example The following example changes the definition of the

employee_t type to associate it with the construct_emp function:

CREATE OR REPLACE TYPE employee_t AS OBJECT(
 empid RAW(16),
 ename CHAR(31),
 dept REF department_t,
 STATIC function construct_emp
 (name VARCHAR2, dept REF department_t)
 RETURN employee_t
);

See Also: Oracle8i Application Developer’s Guide - Fundamentals and

PL/SQL User’s Guide and Reference for more information about

constructors
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-91

CREATE TYPE
This statement requires the following type body statement (PL/SQL is shown in

italics):

CREATE OR REPLACE TYPE BODY employee_t IS
 STATIC FUNCTION construct_emp
 (name varchar2, dept REF department_t)
 RETURN employee_t IS
 BEGIN
 return employee_t(SYS_GUID(),name,dept);
 END;
 END;

This type and type body definition allows the following operation:

INSERT INTO emptab
 VALUES (employee_t.construct_emp('John Smith', NULL));
10-92 SQL Reference

CREATE TYPE BODY
CREATE TYPE BODY

Purpose
Use the CREATE TYPE BODY to define or implement the member methods defined

in the object type specification. You create object types with the CREATE TYPE and

the CREATE TYPE BODYstatements. The CREATE TYPEstatement specifies the name

of the object type, its attributes, methods, and other properties. The CREATE TYPE
BODY statement contains the code for the methods in the type.

For each method specified in an object type specification for which you did not

specify the call_spec , you must specify a corresponding method body in the

object type body.

Prerequisites
Every member declaration in the CREATE TYPE specification for object types must

have a corresponding construct in the CREATE TYPE or CREATE TYPE BODY
statement.

To create or replace a type body in your own schema, you must have the CREATE
TYPE or the CREATE ANY TYPE system privilege. To create an object type in another

user’s schema, you must have the CREATE ANY TYPE system privileges. To replace

an object type in another user’s schema, you must have the DROP ANY TYPE system

privileges.

See Also: CREATE TYPE on page 10-80 and ALTER TYPE on

page 8-79 for information on creating and modifying a type

specification
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-93

CREATE TYPE BODY
Syntax

procedure_declaration | function_declaration ::=

call_spec ::=

Java_declaration ::=

C_declaration ::=

IS

AS

MEMBER

STATIC

procedure_declaration

function_declaration

MAP

ORDER
MEMBER function_declaration

END ;

CREATE
OR REPLACE

TYPE BODY
schema .

type_name

PROCEDURE

FUNCTION
name (parameter datatype)

RETURN datatype IS

AS

pl/sql_block

call_spec

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
WITH CONTEXT

PARAMETERS (parameters)
10-94 SQL Reference

CREATE TYPE BODY
Keywords and Parameters

OR REPLACE
Specify OR REPLACE to re-create the type body if it already exists. Use this clause to

change the definition of an existing type body without first dropping it.

Users previously granted privileges on the re-created object type body can use and

reference the object type body without being granted privileges again.

You can use this clause to add new member subprogram definitions to

specifications added with the ALTER TYPE ... REPLACE statement.

schema
Specify the schema to contain the type body. If you omit schema , Oracle creates the

type body in your current schema.

type_name
Specify the name of an object type.

IS | AS

MEMBER |
STATIC

Specify the type of method function or procedure subprogram

associated with the object type specification.

You must define a corresponding method name, optional

parameter list, and (for functions) a return type in the object type

specification for each procedure or function declaration.

procedure_
declaration

Declare a procedure subprogram.

function_
declaration

Declare a function subprogram.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-95

CREATE TYPE BODY
MAP | ORDER

See Also:

- CREATE TYPE on page 10-80 for a list of restrictions on user-

defined functions

- PL/SQL User’s Guide and Reference for information about

overloading subprogram names within a package

- CREATE PROCEDURE on page 9-132, CREATE FUNCTION

on page 9-43, and Oracle8i Application Developer’s Guide -
Fundamentals

MAP MEMBER Specify MAP MEMBER to declare or implement a member function

(MAP method) that returns the relative position of a given instance

in the ordering of all instances of the object. A map method is

called implicitly and specifies an ordering of object instances by

mapping them to values of a predefined scalar type. PL/SQL uses

the ordering to evaluate Boolean expressions and to perform

comparisons.

If the argument to the map method is null, the map method

returns null and the method is not invoked.

An object type body can contain only one map method, which

must be a function. The map function can have no arguments

other than the implicit SELF argument.

ORDER MEMBERSpecify ORDER MEMBER to specify a member function (ORDER
method) that takes an instance of an object as an explicit argument

and the implicit SELF argument and returns either a negative,

zero, or positive integer. The negative, positive, or zero indicates

that the implicit SELF argument is less than, equal to, or greater

than the explicit argument.

If either argument to the order method is null, the order method

returns null and the method is not invoked.

When instances of the same object type definition are compared in

an ORDER BY clause, Oracle invokes the order method

function_spec .

An object specification can contain only one ORDER method,

which must be a function having the return type NUMBER.
10-96 SQL Reference

CREATE TYPE BODY
You can declare either a MAP method or an ORDER method, but not both. If you

declare either method, you can compare object instances in SQL.

If you do not declare either method, you can compare object instances only for

equality or inequality. Instances of the same type definition are equal only if each

pair of their corresponding attributes is equal.

procedure_
declaration
| function_
declaration

Declare a procedure or function subprogram. The RETURN clause

is valid only for a function. The syntax shown is an abbreviated

form.

See Also: CREATE PROCEDURE on page 9-132 and CREATE

FUNCTION on page 9-43 for the full syntax with all possible

clauses

pl /sql_block Declare the procedure or function.

See Also: PL/SQL User’s Guide and Reference

call_spec Specify the call specification ("call spec") that

maps a Java or C method name, parameter

types, and return type to their SQL counterparts.

In Java_declaration, ’string ’ identifies

the Java implementation of the method.

See Also:

- Oracle8i Java Stored Procedures Developer’s
Guide

- Oracle8i Application Developer’s Guide -
Fundamentals for an explanation of the

parameters and semantics of the C_
declaration

AS EXTERNAL AS EXTERNAL is an alternative way of declaring

a C method. This clause has been deprecated

and is supported for backward compatibility

only. Oracle Corporation recommends that you

use the call_spec syntax with the C_
declaration .
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-97

CREATE TYPE BODY
Examples

Creating a Type Body Example The following object type body implements

member subprograms for rational . (PL/SQL is shown in italics.)

CREATE TYPE BODY rational
 IS
 MAP MEMBER FUNCTION rat_to_real RETURN REAL IS
 BEGIN
 RETURN numerator/denominator;
 END;

 MEMBER PROCEDURE normalize IS
gcd NUMBER := integer_operations.greatest_common_divisor

 (numerator, denominator);
 BEGIN
 numerator := numerator/gcd;
 denominator := denominator/gcd;
 END;

 MEMBER FUNCTION plus(x rational) RETURN rational IS
r rational := rational_operations.make_rational

 (numerator*x.denominator +
 x.numerator*denominator,
 denominator*x.denominator);
 BEGIN
 RETURN r;
 END;

 END;
10-98 SQL Reference

CREATE USER
CREATE USER

Purpose
Use the CREATE USER statement to create and configure a database user, or an

account through which you can log in to the database and establish the means by

which Oracle permits access by the user.

Prerequisites
You must have CREATE USER system privilege. When you create a user with the

CREATE USER statement, the user’s privilege domain is empty. To log on to Oracle,

a user must have CREATE SESSION system privilege. Therefore, after creating a

user, you should grant the user at least the CREATE SESSION privilege.

Note: You can enable a user to connect to Oracle through a proxy

(that is, an application or application server). For syntax and

discussion, refer to ALTER USER on page 8-88.

See Also: GRANT on page 11-31
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-99

CREATE USER
Syntax

Keywords and Parameters

user
Specify the name of the user to be created. This name can contain only characters

from your database character set and must follow the rules described in the section

"Schema Object Naming Rules" on page 2-83. Oracle recommends that the user

name contain at least one single-byte character regardless of whether the database

character set also contains multi-byte characters.

IDENTIFIED
The IDENTIFIED clause lets you indicate how Oracle authenticates the user.

See Also: Oracle8i Application Developer’s Guide - Fundamentals and

your operating system specific documentation for more

information

CREATE USER user IDENTIFIED

BY password

EXTERNALLY

GLOBALLY AS ’ external_name ’

DEFAULT TABLESPACE tablespace

TEMPORARY TABLESPACE tablespace

QUOTA
integer

K

M

UNLIMITED
ON tablespace

PROFILE profile

PASSWORD EXPIRE

ACCOUNT
LOCK

UNLOCK
;

10-100 SQL Reference

CREATE USER
BYpassword The BYpassword clause lets you creates a local user and

indicates that the user must specify password to log on.

Passwords can contain only single-byte characters from your

database character set regardless of whether this character set also

contains multibyte characters.

Passwords must follow the rules described in the section "Schema

Object Naming Rules" on page 2-83, unless you are using Oracle’s

password complexity verification routine. That routine requires a

more complex combination of characters than the normal naming

rules permit. You implement this routine with the UTLPWDMG.SQL
script, which is further described in Oracle8i Administrator’s Guide.

See Also: Oracle8i Administrator’s Guide to for a detailed

description and explanation of how to use password

management and protection

EXTERNALLY Specify EXTERNALLYto create an external user and indicate that a

user must be authenticated by an external service (such as an

operating system or a third-party service). Doing so causes Oracle

to rely on the login authentication of the operating system to

ensure that a specific operating system user has access to a specific

database user.

Caution: Oracle strongly recommends that you do not use

IDENTIFIED EXTERNALLY with operating systems that have

inherently weak login security. For more information, see

Oracle8i Administrator’s Guide.

GLOBALLY AS
’external_
name’

The GLOBALLY clause lets you create a global user and indicates

that a user must be authenticated by the enterprise directory

service. The ’external_name ’ string can take one of two forms:

■ The X.509 name at the enterprise directory service that

identifies this user. It should be of the form

’CN=username,other_attributes’ , where other_
attributes is the rest of the user’s distinguished name

(DN) in the directory.

■ A null string (’ ’) indicating that the enterprise directory

service will map authenticated global users to the appropriate

database schema with the appropriate roles
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-101

CREATE USER
DEFAULT TABLESPACE
Specify the default tablespace for objects that the user creates. If you omit this

clause, objects default to the SYSTEM tablespace.

TEMPORARY TABLESPACE
Specify the tablespace for the user’s temporary segments. If you omit this clause,

temporary segments default to the SYSTEM tablespace.

QUOTA
Use the QUOTA clause to allow the user to allocate space in the tablespace and

optionally establishes a quota of integer bytes. Use K or M to specify the quota in

kilobytes or megabytes. This quota is the maximum space in the tablespace the user

can allocate.

A CREATE USER statement can have multiple QUOTA clauses for multiple

tablespaces.

UNLIMITED allows the user to allocate space in the tablespace without bound.

PROFILE
Specify the the profile you want to reassign to the user. The profile limits the

amount of database resources the user can use. If you omit this clause, Oracle

assigns the DEFAULT profile to the user.

Note: You can control the ability of an application server to

connect as the specified user and to activate that user’s roles

using the ALTER USER statement.

See Also:

- Oracle Advanced Security Administrator’s Guide for more

information on global users

- ALTER USER on page 8-88

See Also: CREATE TABLESPACE on page 10-56 for more

information on tablespaces

See Also: GRANT on page 11-31 and CREATE PROFILE on

page 9-139
10-102 SQL Reference

CREATE USER
PASSWORD EXPIRE
Specify PASSWORD EXPIRE if you want the user’s password to expire. This setting

forces the user (or the DBA) to change the password before the user can log in to the

database.

ACCOUNT Clause

Examples

Creating a User Example If you create a new user with PASSWORD EXPIRE, the

user’s password must be changed before attempting to log in to the database. You

can create the user sidney by issuing the following statement:

CREATE USER sidney
 IDENTIFIED BY welcome
 DEFAULT TABLESPACE cases_ts
 QUOTA 10M ON cases_ts
 TEMPORARY TABLESPACE temp_ts
 QUOTA 5M ON system
 PROFILE engineer
 PASSWORD EXPIRE;

The user sidney has the following characteristics:

■ The password welcome

■ Default tablespace cases_ts , with a quota of 10 megabytes

■ Temporary tablespace temp_ts

■ Access to the tablespace SYSTEM, with a quota of 5 megabytes

■ Limits on database resources defined by the profile engineer

■ An expired password, which must be changed before sidney can log in to the

database

To create a user accessible only by the operating system account george , prefix

george by the value of the initialization parameter OS_AUTHENT_PREFIX. For

ACCOUNT LOCKSpecify ACCOUNT LOCK to lock the user’s account and disables

access.

ACCOUNT
UNLOCK

Specify ACCOUNT UNLOCK to unlock the user’s account and

enables access to the account.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-103

CREATE USER
example, if this value is "ops$ ", you can create the user ops$george with the

following statement:

CREATE USER ops$george
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE accs_ts
 TEMPORARY TABLESPACE temp_ts
 QUOTA UNLIMITED ON accs_ts;

The user ops$george has the following additional characteristics:

■ Default tablespace accs_ts

■ Default temporary tablespace temp_ts

■ Unlimited space on the tablespaces accs_ts and temp_ts

■ Limits on database resources defined by the DEFAULT profile

The following example creates user cindy as a global user:

CREATE USER cindy
 IDENTIFIED GLOBALLY AS ’CN=cindy,OU=division1,O=oracle,C=US’
 DEFAULT TABLESPACE legal_ts
 QUOTA 20M ON legal_ts
 PROFILE lawyer;
10-104 SQL Reference

CREATE VIEW
CREATE VIEW

Purpose
Use the CREATE VIEW statement to define a view, which is a logical table based on

one or more tables or views. A view contains no data itself. The tables upon which a

view is based are called base tables.

You can also create an object view or a relational view that supports LOB and object

datatypes (object types, REFs, nested table, or varray types) on top of the existing

view mechanism. An object view is a view of a user-defined type, where each row

contains objects, each object with a unique object identifier.

Prerequisites
To create a view in your own schema, you must have CREATE VIEW system

privilege. To create a view in another user’s schema, you must have CREATE ANY
VIEW system privilege.

The owner of the schema containing the view must have the privileges necessary to

either select, insert, update, or delete rows from all the tables or views on which the

view is based. The owner must be granted these privileges directly, rather than

through a role.

To use the basic constructor method of an object type when creating an object view,

one of the following must be true:

■ The object type must belong to the same schema as the view to be created.

■ You must have EXECUTE ANY TYPE system privileges.

■ You must have the EXECUTE object privilege on that object type.

See Also:

■ Oracle8i Concepts, Oracle8i Application Developer’s Guide -
Fundamentals, and Oracle8i Administrator’s Guidefor information

on various types of views and their uses

■ ALTER VIEW on page 8-94 for information on modifying a

view

■ DROP VIEW on page 11-21 for information on removing a view

from the database
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-105

CREATE VIEW
Partition Views
Partition views were introduced in Release 7.3 to provide partitioning capabilities

for applications requiring them. Partition views are supported in Oracle8i so that

you can upgrade applications from Release 7.3 without any modification. In most

cases, subsequent to migration to Oracle8i you will want to migrate partition views

into partitions.

With Oracle8i, you can use the CREATE TABLEstatement to create partitioned tables

easily. Partitioned tables offer the same advantages as partition views, while also

addressing their shortcomings. Oracle recommends that you use partitioned tables

rather than partition views in most operational environments.

See Also: SELECT and subquery on page 11-88, INSERT on

page 11-51, UPDATE on page 11-141, and DELETE on page 10-115

for information on the privileges required by the owner of a view

on the base tables or views of the view being created

See Also:

■ Oracle8i Concepts for more information on the shortcomings of

partition views

■ Oracle8i Administrator’s Guide for information on migrating

partition views into partitions

■ CREATE TABLE on page 10-7 for more information about

partitioned tables
10-106 SQL Reference

CREATE VIEW
Syntax

subquery : See SELECT and subquery on page 11-88.

with_clause ::=

Keywords and Parameters

OR REPLACE
Specify OR REPLACEto re-create the view if it already exists. You can use this clause

to change the definition of an existing view without dropping, re-creating, and

regranting object privileges previously granted on it.

INSTEAD OF triggers defined in the view are dropped when a view is re-created.

If any materialized views are dependent on view , those materialized views will be

marked UNUSABLE and will require a full refresh to restore them to a usable state.

Invalid materialized views cannot be used by query rewrite and cannot be refreshed

until they are recompiled.

CREATE
OR REPLACE

NO
FORCE

VIEW
schema .

view

(alias

,

)

OF
schema .

type_name

WITH OBJECT IDENTIFIER

DEFAULT

(attribute

,

)

AS subquery
with_clause

;

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-107

CREATE VIEW
FORCE
Specify FORCE if you want to create the view regardless of whether the view’s base

tables or the referenced object types exist or the owner of the schema containing the

view has privileges on them. These conditions must be true before any SELECT,
INSERT, UPDATE, or DELETE statements can be issued against the view.

NO FORCE
Specify NOFORCE if you want to create the view only if the base tables exist and the

owner of the schema containing the view has privileges on them. This is the default.

schema
Specify the schema to contain the view. If you omit schema , Oracle creates the view

in your own schema.

view
Specify the name of the view or the object view.

Restriction: If a view has INSTEAD OF triggers, any views created on it must have

INSTEAD OF triggers, even if the views are inherently updatable.

alias
Specify names for the expressions selected by the view’s query. The number of

aliases must match the number of expressions selected by the view. Aliases must

follow the rules for naming Oracle schema objects. Aliases must be unique within

the view.

If you omit the aliases, Oracle derives them from the columns or column aliases in

the view’s query. For this reason, you must use aliases if the view’s query contains

expressions rather than only column names.

Restriction: You cannot specify an alias when creating an object view.

See Also:

■ ALTER MATERIALIZED VIEW on page 7-61 for information

on refreshing invalid materialized views

■ Oracle8i Concepts for information on materialized views in

general

■ CREATE TRIGGER on page 10-66 for more information about

the INSTEAD OF clause
10-108 SQL Reference

CREATE VIEW
OFtype_name
Use this clause to explicitly creates an object view of type type_name . The columns

of an object view correspond to the top-level attributes of type type_name . Each

row will contain an object instance and each instance will be associated with an

object identifier (OID) as specified in the WITH OBJECT IDENTIFIER clause. If you

omit schema , Oracle creates the object view in your own schema.

See Also: "Syntax for Schema Objects and Parts in SQL

Statements" on page 2-88

WITH OBJECT
IDENTIFIER

The WITH OBJECT IDENTIFIER lets you specify the attributes of

the object type that will be used as a key to identify each row in

the object view. In most cases these attributes correspond to the

primary-key columns of the base table. You must ensure that the

attribute list is unique and identifies exactly one row in the view.

If you try to dereference or pin a primary key REF that resolves to

more than one instance in the object view, Oracle raises an error.

Note: The 8.0 syntax WITH OBJECT OID is replaced with this

syntax for clarity. The keywords WITH OBJECT OID are

supported for backward compatibility, but Oracle Corporation

recommends that you use the new syntax WITH OBJECT
IDENTIFIER .

 If the object view is defined on an object table or an object view,

you can omit this clause or specify DEFAULT.

DEFAULT Specify DEFAULT if you want Oracle to use the

intrinsic object identifier of the underlying object

table or object view to uniquely identify each

row.

attribute Specify an attribute of the object type from

which Oracle should create the object identifier

for the object view.

See Also: CREATE TYPE on page 10-80 for more information

about creating objects
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-109

CREATE VIEW
ASsubquery
Specify a subquery that identifies columns and rows of the table(s) that the view is

based on. The subquery’s select list can contain up to 1000 expressions.

If you create views that refer to remote tables and views, the database links you

specify must have been created using the CONNECT TO clause of the CREATE
DATABASE LINK statement, and you must qualify them with schema name in the

view query.

Restrictions on the view query:

■ The view query cannot select the CURRVAL or NEXTVAL pseudocolumns.

■ If the view query selects the ROWID, ROWNUM, or LEVEL pseudocolumns, those

columns must have aliases in the view query.

■ If the view query uses an asterisk (*) to select all columns of a table, and you

later add new columns to the table, the view will not contain those columns

until you re-create the view by issuing a CREATE OR REPLACE VIEW statement.

■ For object views, the number of elements in the view subquery select list must

be the same as the number of top-level attributes for the object type. The

datatype of each of the selecting elements must be the same as the

corresponding top-level attribute.

■ You cannot specify the SAMPLE clause.

The preceding restrictions apply to materialized views as well.

■ If you want the view to be inherently updatable, it must not contain any of the

following constructs:

■ A set operator

■ A DISTINCT operator

■ An aggregate or analytic function

■ A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

■ A collection expression in a SELECT list

■ A subquery in a SELECT list

■ Joins (with some exceptions). See Oracle8i Administrator’s Guide for details.

■ If an inherently updatable view contains pseudocolumns or expressions, the

UPDATE statement must not refer to any of these pseudocolumns or

expressions.
10-110 SQL Reference

CREATE VIEW
■ If you want a join view to be updatable, all of the following conditions must be

true:

■ The DML statement must affect only one table underlying the join.

■ For an UPDATE statement, all columns updated must be extracted from a

key-preserved table. If the view has the CHECK OPTION, join columns and

columns taken from tables that are referenced more than once in the view

must be shielded from UPDATE.

■ For a DELETE statement, the join can have one and only one key-preserved

table. That table can appear more than once in the join, unless the view has

the CHECK OPTION.

■ For an INSERT statement, all columns into which values are inserted must

come from a key-preserved table, and the view must not have the CHECK
OPTION.

with_clause
Use the with_clause to restrict the subquery in one of the following ways:

See Also:

Oracle8i Administrator’s Guide for more information on

updatable views

Oracle8i Application Developer’s Guide - Fundamentals for more

information about updating object views or relational views

that support object types

WITH READ
ONLY

Specify WITH READ ONLY if you want no deletes, inserts, or

updates to be performed through the view.

WITH CHECK
OPTION

Specify WITH CHECK OPTION to guarantee that inserts and

updates performed through the view will result in rows that the

view query can select. The CHECK OPTION cannot make this

guarantee if:

■ There is a subquery in the query of this view or any view on

which this view is based or

■ INSERT, UPDATE, or DELETE operations are performed using

INSTEAD OF triggers.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-111

CREATE VIEW
Examples

Basic View Example The following statement creates a view of the emptable

named dept20. The view shows the employees in Department 20 and their annual

salary:

CREATE VIEW dept20
 AS SELECT ename, sal*12 annual_salary
 FROM emp
 WHERE deptno = 20;

The view declaration need not define a name for the column based on the

expression sal *12, because the subquery uses a column alias (annual_salary)

for this expression.

Updatable View Example The following statement creates an updatable view

named clerk of all clerks in the emp table. Only the employees’ IDs, names, and

department numbers are visible in this view and only these columns can be

updated in rows identified as clerks:

CREATE VIEW clerk (id_number, person, department, position)
 AS SELECT empno, ename, deptno, job
 FROM emp
 WHERE job = ’CLERK’
 WITH CHECK OPTION CONSTRAINT wco;

Because of the CHECK OPTION, you cannot subsequently insert a new row into

clerk if the new employee is not a clerk.

Join View Example A join view is one whose view query contains a join. If at least

one column in the join has a unique index, then it may be possible to modify one

base table in a join view. You can query USER_UPDATABLE_COLUMNS to see

whether the columns in a join view are updatable. For example:

CREATE VIEW ed AS
 SELECT e.empno, e.ename, d.deptno, d.loc
 FROM emp e, dept d
 WHERE e.deptno = d.deptno

CONSTRAINT
constraint

Specify the name of the CHECK OPTIONconstraint. If you omit this

identifier, Oracle automatically assigns the constraint a name of

the form SYS_Cn, where n is an integer that makes the constraint

name unique within the database.
10-112 SQL Reference

CREATE VIEW
View created.

SELECT column_name, updatable
 FROM user_updatable_columns
 WHERE table_name = ’ED’;

COLUMN_NAME UPD
--------------- ---
ENAME YES
DEPTNO NO
EMPNO YES
LOC NO

INSERT INTO ed (ENAME, EMPNO) values (’BROWN’, 1234);

In the above example, there is a unique index on the deptno column of the dept
table. You can insert, update or delete a row from the empbase table, because all the

columns in the view mapping to the emp table are marked as updatable and

because the primary key of emp is included in the view.

Read-Only View Example The following statement creates a read-only view

named clerk of all clerks in the emp table. Only the employees’ IDs, names,

department numbers, and jobs are visible in this view:

CREATE VIEW clerk (id_number, person, department, position)
 AS SELECT empno, ename, deptno, job
 FROM emp
 WHERE job = ’CLERK’
 WITH READ ONLY;

Object View Example The following example creates object view emp_object_
view of employee_type :

CREATE TYPE employee_type AS OBJECT

Note: You cannot insert into the table using the view unless the

view contains all NOT NULL columns of all tables in the join, unless

you have specified DEFAULT values for the NOT NULL columns.

See Also: Oracle8i Application Developer’s Guide - Fundamentals for

more information on updating join views.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-113

CREATE VIEW
 (empno NUMBER(4),
 ename VARCHAR2(20),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2));

CREATE OR REPLACE VIEW emp_object_view OF employee_type
 WITH OBJECT IDENTIFIER (empno)
 AS SELECT empno, ename, job, mgr, hiredate, sal, comm
 FROM emp;
10-114 SQL Reference

DELETE
DELETE

Purpose
Use the DELETEstatement to remove rows from a table, a partitioned table, a view’s

base table, or a view’s partitioned base table.

Prerequisites
For you to delete rows from a table, the table must be in your own schema or you

must have DELETE privilege on the table.

For you to delete rows from the base table of a view, the owner of the schema

containing the view must have DELETEprivilege on the base table. Also, if the view

is in a schema other than your own, you must be granted DELETE privilege on the

view.

The DELETE ANY TABLE system privilege also allows you to delete rows from any

table or table partition, or any view’s base table.

If the SQL92_SECURITYinitialization parameter is set to true , then you must have

SELECT privilege on the table to perform a DELETE that references table columns

(such as the columns in a where_clause).

Syntax

DELETE
hint FROM

DML_table_expression_clause
where_clause returning_clause

;

SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-115

DELETE
DML_table_expression_clause ::=

subquery : See SELECT and subquery on page 11-88.

with_clause ::=

table_collection_expression ::=

where_clause ::=

returning_clause ::=

schema .
table

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

view

snapshot

@ dblink

(subquery
with_clause

)

table_collection_expression

t_alias

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

TABLE (collection_expression)
(+)

WHERE condition

RETURNING expr

,

INTO data_item

,

10-116 SQL Reference

DELETE
Keywords and Parameters

hint
Specify a comment that passes instructions to the optimizer on choosing an

execution plan for the statement.

DML_table_expression_clause

See Also: "Hints" on page 2-67 and Oracle8i Performance Guide and
Reference for the syntax and description of hints

schema Specify the schema containing the table or view. If you omit

schema , Oracle assumes the table or view is in your own

schema.

table | view
|snapshot |
subquery

Specify is the name of a table or view, or the column or columns

resulting from a subquery, from which the rows are to be

deleted. If you specify view , Oracle deletes rows from the view’s

base table.

If table (or the base table of view) contains one or more domain

index columns, this statements executes the appropriate

indextype delete routine.

See Also: Oracle8i Data Cartridge Developer’s Guide for more

information on these routines

PARTITION
(partition_
name) and

SUBPARTITION
(subpartition
_name)

Issuing a DELETE statement against a table fires any DELETE
triggers defined on the table.

All table or index space released by the deleted rows is retained

by the table and index.

Specify the name of the partition or subpartition within table
targeted for deletes.

You need not specify the partition name when deleting values

from a partitioned table. However, in some cases, specifying the

partition name is more efficient than a complicated where_
clause .
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-117

DELETE
Restrictions on the DML_table_expression_clause:

■ You cannot execute this statement if table (or the base table of view) contains

any domain indexes marked LOADING or FAILED .

■ You cannot specify the ORDER BY clause in the subquery of the DML_query_
expression_clause .

■ You cannot delete from a view except through INSTEAD OF triggers if the

view’s defining query contains one of the following constructs:

■ A set operator

dblink Specify the complete or partial name of a database link to a

remote database where the table or view is located. You can

delete rows from a remote table or view only if you are using

Oracle’s distributed functionality.

See Also: "Referring to Objects in Remote Databases" on

page 2-90 for information on referring to database links

If you omit dblink , Oracle assumes that the table or view is

located on the local database.

with_clause Use the with_clause to restrict the subquery in one of the

following ways:

■ WITH READ ONLY indicates that the subquery cannot be

updated.

■ WITH CHECK OPTION indicates that Oracle prohibits any

changes to that table that would produce rows that are not

included in the subquery.

See Also: "WITH CHECK OPTION Example" on page 11-108

table_
collection_
expression

The table_collection_expression lets you inform Oracle

that the collection value expression should be treated as a table.

You can use a table_collection_expression to delete only

those rows that also exist in another table.

For collection_expression , specify a subquery that selects

a nested table column from table or view .

Note: In earlier releases of Oracle, table_collection_
expression was expressed as "THEsubquery ". That usage

is now deprecated.
10-118 SQL Reference

DELETE
■ A DISTINCT operator

■ An aggregate or analytic function

■ A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

■ A collection expression in a SELECT list

■ A subquery in a SELECT list

■ Joins (with some exceptions). See Oracle8i Administrator’s Guide for details.

■ If you specify an index, index partition, or index subpartition that has been

marked UNUSABLE, the DELETE statement will fail unless the SKIP_
UNUSABLE_INDEXES parameter has been set to true .

where_clause
Use the where_clause to delete only rows that satisfy the condition. The condition

can reference the table and can contain a subquery. You can delete rows from a

remote table or view only if you are using Oracle’s distributed functionality.

If you omit dblink , Oracle assumes that the table or view is located on the local

database.

If you omit the where_clause , Oracle deletes all rows of the table or view.

See Also: ALTER SESSION on page 7-105

See Also: "Conditions" on page 5-15 for the syntax of condition

Note: If this clause contains a subquery that refers to remote

objects, the DELETE operation can run in parallel as long as the

reference does not loop back to an object on the local database.

However, if the subquery in the DML_query_expression_clause
refers to any remote objects, the UPDATE operation will run serially

without notification.

See Also: "parallel_clause" for CREATE TABLE on page 10-40

t_alias Provide a correlation name for the table, view, subquery, or

collection value to be referenced elsewhere in the statement. Table

aliases are generally used in DELETE statements with correlated

queries.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-119

DELETE
returning_clause

The returning clause retrieves the rows affected by a DML (INSERT, UPDATE, or

DELETE) statement. You can specify this clause for tables and snapshots, and for

views with a single base table.

■ When operating on a single row, a DML statement with a returning_clause
can retrieve column expressions using the affected row, rowid, and REFs to the

affected row and store them in host variables or PL/SQL variables.

■ When operating on multiple rows, a DML statement with the returning_
clause stores values from expressions, rowids, and REFs involving the

affected rows in bind arrays.

For each expression in the RETURNING list, you must specify a corresponding type-

compatible PL/SQL variable or host variable in the INTO list.

Restrictions:

■ You cannot use this clause with parallel DML or with remote objects.

■ You cannot retrieve LONG types with this clause.

■ You cannot specify this clause for a view on which an INSTEAD OF trigger has

been defined.

Note: This alias is required if the DML_query_expression_
clause references any object type attributes or object type

methods.

expr Each item in the expr list must be a valid expression syntax.

INTO The INTO clause indicates that the values of the changed rows are

to be stored in the variable(s) specified in data_item list.

data_item Each data_item is a host variable or PL/SQL variable that

stores the retrieved expr value.

See Also: PL/SQL User’s Guide and Reference for information on

using the BULK COLLECT clause to return multiple values to

collection variables
10-120 SQL Reference

DELETE
Examples

Basic Examples The following statement deletes all rows from a table named

temp_assign .

DELETE FROM temp_assign;

The following statement deletes from the emp table all sales staff who made less

than $100 commission last month:

DELETE FROM emp
 WHERE JOB = ’SALESMAN’
 AND COMM < 100;

The following statement has the same effect as the preceding example, but uses a

subquery:

DELETE FROM (select * from emp)
 WHERE JOB = ’SALESMAN’
 AND COMM < 100;

Remote Database Example The following statement deletes all rows from the

accounts table owned by the user blake on a database accessible by the database

link dallas :

DELETE FROM blake.accounts@dallas;

Nested Table Example The following example deletes rows of nested table projs
where the department number is either 123 or 456, or the department’s budget is

greater than 456.78:

DELETE THE(SELECT projs
 FROM dept d WHERE d.dno = 123) AS p
 WHERE p.pno IN (123, 456) OR p.budgets > 456.78;

Partition Example The following example removes rows from partition nov98 of

the sales table:

DELETE FROM sales PARTITION (nov98)
 WHERE amount_of_sale != 0;

Note: This clause lets you return values from deleted columns,

and thereby eliminate the need to issue a SELECT statement

following the DELETE statement.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-121

DELETE
RETURNING Clause Example The following example returns column sal from

the deleted rows and stores the result in bind array :1:

DELETE FROM emp
 WHERE job = ’SALESMAN’ AND COMM < 100
 RETURNING sal INTO :1;
10-122 SQL Reference

DISASSOCIATE STATISTICS
DISASSOCIATE STATISTICS

Purpose
Use the DISASSOCIATE STATISTICS statement to disassociate a statistics type (or

default statistics) from columns, standalone functions, packages, types, domain

indexes, or indextypes.

Prerequisites
To issue this statement, you must have the appropriate privileges to alter the base

object (table, function, package, type, domain index, or indextype).

See Also: ASSOCIATE STATISTICS on page 8-110 for more

information on statistics type associations
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-123

DISASSOCIATE STATISTICS
Syntax

Keywords and Parameters

FROM COLUMNS | FUNCTIONS | PACKAGES | TYPES | INDEXES |
INDEXTYPES
Specify one or more columns, standalone functions, packages, types, domain

indexes, or indextypes from which you are disassociating statistics.

If you do not specify schema , Oracle assumes the object is in your own schema.

If you have collected user-defined statistics on the object, the statement fails unless

you specify FORCE.

DISASSOCIATE STATISTICS FROM

COLUMNS
schema .

table . column

,

FUNCTIONS
schema .

function

,

PACKAGES
schema .

package

,

TYPES
schema .

type

,

INDEXES
schema .

index

,

INDEXTYPES
schema .

indextype

,

FORCE
;

10-124 SQL Reference

DISASSOCIATE STATISTICS
FORCE
Specify FORCE to delete the association regardless of whether any statistics exist for

the object using the statistics type. If statistics do exist, the statistics are deleted

before the association is deleted.

Example

Dissociating Statistics Example This statement disassociates statistics from the

pack package in the hr schema:

DISASSOCIATE STATISTICS FROM PACKAGES hr.pack;

Note: When you drop an object with which a statistics type has

been associated, Oracle automatically disassociates the statistics

type with the FORCE option and drops all statistics that have been

collected with the statistics type.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-125

DROP CLUSTER
DROP CLUSTER

Purpose
Use the DROP CLUSTER clause to remove a cluster from the database.

You cannot uncluster an individual table. Instead you must perform these steps:

1. Create a new table with the same structure and contents as the old one, but with

no CLUSTER clause.

2. Drop the old table.

3. Use the RENAME statement to give the new table the name of the old one.

4. Grant privileges on the new unclustered table, as grants on the old clustered

table do not apply.

Prerequisites
The cluster must be in your own schema or you must have the DROP ANY CLUSTER
system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the cluster. If you omit schema , Oracle assumes the

cluster is in your own schema.

See Also: CREATE TABLE on page 10-7, DROP TABLE on

page 11-7, RENAME on page 11-71, GRANT on page 11-31 for

information on these steps

DROP CLUSTER
schema .

cluster
INCLUDING TABLES

CASCADE CONSTRAINTS

;

10-126 SQL Reference

DROP CLUSTER
cluster
Specify the name of the cluster to be dropped. Dropping a cluster also drops the

cluster index and returns all cluster space, including data blocks for the index, to

the appropriate tablespace(s).

INCLUDING TABLES
Specify INCLUDING TABLES to drop all tables that belong to the cluster.

CASCADE CONSTRAINTS
Specify CASCADE CONSTRAINTS to drop all referential integrity constraints from

tables outside the cluster that refer to primary and unique keys in tables of the

cluster. If you omit this clause and such referential integrity constraints exist, Oracle

returns an error and does not drop the cluster.

Example

DROP CLUSTER Example This statement drops a cluster named geography , all

its tables, and any referential integrity constraints that refer to primary or unique

keys in those tables:

DROP CLUSTER geography
 INCLUDING TABLES
 CASCADE CONSTRAINTS;
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-127

DROP CONTEXT
DROP CONTEXT

Purpose
Use the DROP CONTEXT statement to remove a context namespace from the

database.

Prerequisites
You must have the DROP ANY CONTEXT system privilege.

Syntax

Keywords and Parameters

namespace
Specify the name of the context namespace to drop. You cannot drop the built-in

namespace USERENV.

Example

DROP CONTEXT Example The following statement drops the context created in

CREATE CONTEXT on page 9-13:

DROP CONTEXT hr_context;

Note: Removing a context namespace does not invalidate any

context under that namespace that has been set for a user session.

However, the context will be invalid the next time the user attempts

to set that context.

See Also: CREATE CONTEXT on page 9-13 and Oracle8i Concepts
for more information on contexts

DROP CONTEXT namespace ;
10-128 SQL Reference

DROP DATABASE LINK
DROP DATABASE LINK

Purpose
Use the DROP DATABASE LINK statement to remove a database link from the

database.

Prerequisites
To drop a private database link, the database link must be in your own schema. To

drop a PUBLIC database link, you must have the DROP PUBLIC DATABASE LINK
system privilege.

Syntax

Keywords and Parameters

PUBLIC
You must specify PUBLIC to drop a PUBLIC database link.

dblink
Specify the name of the database link to be dropped.

Restriction: You cannot drop a database link in another user’s schema, and you

cannot qualify dblink with the name of a schema. The reason is that periods are

permitted in names of database links. Therefore, Oracle interprets the entire name,

such as ralph.linktosales , as the name of a database link in your schema

rather than as a database link named linktosales in the schema ralph .

See Also: CREATE DATABASE LINK on page 9-28 for

information on creating database links

DROP
PUBLIC

DATABASE LINK dblink ;
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-129

DROP DATABASE LINK
Example

Dropping a Database Link Example The following statement drops a private

database link named boston :

DROP DATABASE LINK boston;
10-130 SQL Reference

DROP DIMENSION
DROP DIMENSION

Purpose
Use the DROP DIMENSION statement to remove the named dimension.

Prerequisites
The dimension must be in your own schema or you must have the DROP ANY
DIMENSION system privilege to use this statement.

Syntax

Keywords and Parameters

schema
Specify the name of the schema in which the dimension is located. If you omit

schema , Oracle assumes the dimension is in your own schema.

Note: This statement does not invalidate materialized views that

use relationships specified in dimensions. However, requests that

have been rewritten by query rewrite may be invalidated, and

subsequent operations on such views may execute more slowly.

See Also:

■ CREATE DIMENSION on page 9-34 for information on

creating a dimension

■ ALTER DIMENSION on page 7-34 for information on

modifying a dimension

■ Oracle8i Concepts

DROP DIMENSION
schema .

dimension ;
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-131

DROP DIMENSION
dimension
Specify the name of the dimension you want to drop. The dimension must already

exist.

Example

DROP DIMENSION Example This example drops the time dimension:

DROP DIMENSION time;
10-132 SQL Reference

DROP DIRECTORY
DROP DIRECTORY

Purpose
Use the DROP DIRECTORYstatement to remove a directory object from the database.

Prerequisites
To drop a directory you must have the DROP ANY DIRECTORY system privilege.

Syntax

Keywords and Parameters

directory_name
Specify the name of the directory database object to be dropped.

Oracle removes the directory object, but does not delete the associated operating

system directory on the server’s file system.

Example

DROP DIRECTORY Example The following statement drops the directory object

bfile_dir :

DROP DIRECTORY bfile_dir;

See Also: CREATE DIRECTORY on page 9-40 for information on

creating a directory

Caution: Do not drop a directory when files in the associated file

system are being accessed by PL/SQL or OCI programs.

DROP DIRECTORY directory_name ;
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-133

DROP FUNCTION
DROP FUNCTION

Purpose
Use the DROP FUNCTIONstatement to remove a standalone stored function from the

database.

Prerequisites
The function must be in your own schema or you must have the DROP ANY
PROCEDURE system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the function. If you omit schema , Oracle assumes

the function is in your own schema.

Note: Do not use this statement to remove a function that is part

of a package. Instead, either drop the entire package using the

DROP PACKAGE statement or redefine the package without the

function using the CREATE PACKAGE statement with the OR
REPLACE clause.

See Also:

■ CREATE FUNCTION on page 9-43 for information on creating

a function

■ ALTER FUNCTION on page 7-38 for information on modifying

a function

DROP FUNCTION
schema .

function_name ;
10-134 SQL Reference

DROP FUNCTION
function_name
Specify the name of the function to be dropped.

Oracle invalidates any local objects that depend on, or call, the dropped function. If

you subsequently reference one of these objects, Oracle tries to recompile the object

and returns an error if you have not re-created the dropped function.

If any statistics types are associated with the function, Oracle disassociates the

statistics types with the FORCE option and drops any user-defined statistics

collected with the statistics type.

Example

DROP FUNCTION Example The following statement drops the function new_
acct in the schema riddley and invalidates all objects that depend upon new_
acct :

DROP FUNCTION riddley.new_acct;

See Also:

■ Oracle8i Concepts for more information on how Oracle

maintains dependencies among schema objects, including

remote objects

■ ASSOCIATE STATISTICS on page 8-110 and DISASSOCIATE

STATISTICS on page 10-123 for more information on statistics

type associations
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-135

DROP INDEX
DROP INDEX

Purpose
Use the DROP INDEX statement to remove an index or domain index from the

database.

Prerequisites
The index must be in your own schema or you must have the DROP ANY INDEX
system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the index. If you omit schema , Oracle assumes the

index is in your own schema.

index
Specify the name of the index to be dropped. When the index is dropped, all data

blocks allocated to the index are returned to the index’s tablespace.

If you drop a domain index:

See Also:

■ CREATE INDEX on page 9-52 for information on creating an

index

■ ALTER INDEX on page 7-40 for information on modifying an

index

■ The domain_index_clause of CREATE INDEX on page 9-52 for

more information on domain indexes

DROP INDEX
schema .

index
FORCE

;

10-136 SQL Reference

DROP INDEX
■ Oracle invokes the appropriate indextype drop routine. For information on

these routines, see Oracle8i Data Cartridge Developer’s Guide.

■ In addition, if any statistics are associated with the domain index, Oracle

disassociates the statistics types with the FORCE clause and removes the user-

defined statistics collected with the statistics type.

If you drop a global partitioned index, a range-partitioned, or a hash-partitioned

index, all the index partitions are also dropped. If you drop a a composite-

partitioned index, all the index partitions and subpartitions are also dropped.

FORCE
FORCE applies only to domain indexes. This clause drops the domain index even if

the indextype routine invocation returns an error or the index is marked LOADING.

Without FORCE, you cannot drop a domain index if its indextype routine invocation

returns an error or the index is marked LOADING.

Example

DROP INDEX Example This statement drops an index named monolith :

DROP INDEX monolith;

See Also: ASSOCIATE STATISTICS on page 8-110 and

DISASSOCIATE STATISTICS on page 10-123 for more information

on statistics type associations
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-137

DROP INDEXTYPE
DROP INDEXTYPE

Purpose
Use the DROP INDEXTYPE statement to drop an indextype, as well as any

association with a statistics type.

Prerequisites
The indextype must be in your own schema or you must have the DROP ANY
INDEXTYPE system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the indextype. If you omit schema , Oracle assumes

the indextype is in your own schema.

indextype
Specify the name of the indextype to be dropped.

If any statistics types have been associated with indextype, Oracle disassociates the

statistics type from the indextype and drops any statistics that have been collected

using the statistics type.

See Also: CREATE INDEXTYPE on page 9-76 for more

information on indextypes

DROP INDEXTYPE
schema .

indextype
FORCE

;

10-138 SQL Reference

DROP INDEXTYPE
FORCE
Specify FORCE to drop the indextype even if the indextype is currently being

referenced by one or more domain indexes, and marks those domain indexes

INVALID . Without FORCE, you cannot drop an indextype if any domain indexes

reference the indextype.

Example

DROP INDEXTYPE Example The following statement drops the indextype

textindextype and marks INVALID any domain indexes defined on this

indextype:

DROP INDEXTYPE textindextype FORCE;

See Also: ASSOCIATE STATISTICS on page 8-110 and

DISASSOCIATE STATISTICS on page 10-123 for more information

on statistics associations
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-139

DROP JAVA
DROP JAVA

Purpose
Use the DROP JAVA statement to drop a Java source, class, or resource schema

object.

Prerequisites
The Java source, class, or resource must be in your own schema or you must have

the DROP ANY PROCEDURE system privilege. You also must have the EXECUTE
object privilege on Java classes to use this command.

Syntax

Keywords and Parameters

JAVA SOURCE
Specify SOURCE to drop a Java source schema object and all Java class schema

objects derived from it.

JAVA CLASS
Specify CLASS to drop a Java class schema object.

JAVA RESOURCE
Specify RESOURCE to drop a Java resource schema object.

See Also:

■ CREATE JAVA on page 9-79 for information on creating Java

objects

■ Oracle8i Java Stored Procedures Developer’s Guide for more

information on resolving Java sources, classes, and resources

DR0P JAVA

SOURCE

CLASS

RESOURCE

schema .
object_name ;
10-140 SQL Reference

DROP JAVA
object_name
Specify the name of an existing Java class, source, or resource schema object.

Enclose the object_name in double quotation marks to preserve lower- or mixed-

case names.

Example

DROP JAVA CLASS Example The following statement drops the Java class

MyClass :

DROP JAVA CLASS "MyClass";
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-141

DROP LIBRARY
DROP LIBRARY

Purpose
Use the DROP LIBRARY statement to remove an external procedure library from the

database.

Prerequisites
You must have the DROP LIBRARY system privilege.

Syntax

Keywords and Parameters

library_name
Specify the name of the external procedure library being dropped.

Example

DROP LIBRARY Example The following statement drops the ext_procs library:

DROP LIBRARY ext_procs;

See Also: CREATE LIBRARY on page 9-86 for information on

creating a library

DROP LIBRARY library_name ;
10-142 SQL Reference

DROP MATERIALIZED VIEW
DROP MATERIALIZED VIEW

Purpose
Use the DROP MATERIALIZED VIEW statement to remove an existing materialized

view from the database.

The terms "snapshot" and "materialized view" are synonymous.

Prerequisites
The materialized view must be in your own schema or you must have the DROP
ANY MATERIALIZED VIEW (or DROP ANY SNAPSHOT) system privilege. You must

also have the privileges to drop the internal table, views, and index that Oracle uses

to maintain the materialized view’s data.

Syntax

See Also:

■ CREATE MATERIALIZED VIEW on page 9-88 for more

information on materialized views, including a description of

the various types of materialized views

■ ALTER MATERIALIZED VIEW on page 7-61 for information

on modifying a materialized view

■ Oracle8i Replication for information on materialized views in a

replication environment

■ Oracle8i Data Warehousing Guide for information on

materialized views in a data warehousing environment

See Also: DROP TABLE on page 11-7, DROP VIEW on

page 11-21, and DROP INDEX on page 10-136 for information on

privileges required to drop objects that Oracle uses to maintain the

materialized view

DROP
MATERIALIZED VIEW

SNAPSHOT

schema .
materialized_view / snapshot ;
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-143

DROP MATERIALIZED VIEW
Keywords and Parameters

schema
Specify the schema containing the materialized view. If you omit schema , Oracle

assumes the materialized view is in your own schema.

materialized_view
Specify the name of the existing materialized view to be dropped.

■ If you drop a simple materialized view that is the least recently refreshed

materialized view of a master table, Oracle automatically purges from the detail

table’s materialized view log only the rows needed to refresh the dropped

materialized view.

■ If you drop a detail table, Oracle does not automatically drop materialized

views based on the table. However, Oracle returns an error when it tries to

refresh a materialized view based on a detail table that has been dropped.

■ If you drop a materialized view, any compiled requests that were rewritten to

use the materialized view will be invalidated and recompiled automatically. If

the materialized view was prebuilt on a table, the table is not dropped, but it

can no longer be maintained by the materialized view refresh mechanism.

Examples

DROP MATERIALIZED VIEW Examples The following statement drops the

materialized view parts owned by the user hq :

DROP SNAPSHOT hq.parts;

The following statement drops the sales_by_month materialized view and the

underlying table of the materialized view (unless the underlying table was

registered in the CREATE MATERIALIZED VIEW statement with the ON PREBUILT
TABLE clause):

DROP MATERIALIZED VIEW sales_by_month;
10-144 SQL Reference

DROP MATERIALIZED VIEW LOG
DROP MATERIALIZED VIEW LOG

Purpose
Use the DROP MATERIALIZED VIEW LOG statement to remove a materialized view

log from the database.

The terms "snapshot" and "materialized view" are synonymous.

Prerequisites
A materialized view log consists of a table and a trigger. To drop a materialized

view log, you must have the privileges needed to drop a table.

Syntax

See Also:

■ CREATE MATERIALIZED VIEW on page 9-88 and ALTER

MATERIALIZED VIEW on page 7-61 for more information on

materialized views

■ CREATE MATERIALIZED VIEW LOG on page 9-107 for

information on materialized view logs

■ Oracle8i Replication for information on materialized views in a

replication environment

■ Oracle8i Data Warehousing Guide for information on

materialized views in a data warehousing environment

See Also: DROP TABLE on page 11-7

DROP
MATERIALIZED VIEW

SNAPSHOT
LOG ON

schema .
table ;
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-145

DROP MATERIALIZED VIEW LOG
Keywords and Parameters

schema
Specify the schema containing the materialized view log and its master table. If you

omit schema , Oracle assumes the materialized view log and master table are in

your own schema.

table
Specify the name of the detail table associated with the materialized view log to be

dropped.

After you drop a materialized view log, some materialized views based on the

materialized view log’s detail table can no longer be fast refreshed. These

materialized views include rowid materialized views, primary key materialized

views, and subquery materialized views.

Example

DROP MATERIALIZED VIEW LOG Example The following statement drops the

materialized view log on the parts master table:

DROP MATERIALIZED VIEW LOG ON parts;

See Also: Oracle8i Data Warehousing Guide for a description of the

types of materialized views
10-146 SQL Reference

DROP OPERATOR
DROP OPERATOR

Purpose
Use the DROP OPERATOR statement to drop a user-defined operator.

Prerequisites
The operator must be in your schema or you must have the DROP ANY OPERATOR
system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the operator. If you omit schema , Oracle assumes

the operator is in your own schema.

operator
Specify the name of the operator to be dropped.

FORCE
Specify FORCEto drop the operator even if it is currently being referenced by one or

more schema objects (indextypes, packages, functions, procedures, and so on), and

marks those dependent objects INVALID . Without FORCE, you cannot drop an

operator if any schema objects reference it.

See Also:

■ CREATE OPERATOR on page 9-115 for information on creating

operators

■ "User-Defined Operators" on page 3-16 and Oracle8i Data
Cartridge Developer’s Guide for more information on operators in

general

DROP OPERATOR
schema .

operator
FORCE

;

SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-147

DROP OPERATOR
Example

DROP OPERATOR Example The following statement drops the operator merge :

DROP OPERATOR ordsys.merge;

Because the FORCE clause is not specified, this operation will fail if any of the

bindings of this operator are referenced by an indextype.
10-148 SQL Reference

DROP OUTLINE
DROP OUTLINE

Purpose
Use the DROP OUTLINE statement to drop a stored outline.

Prerequisites
To drop an outline, you must have the DROP ANY OUTLINE system privilege.

Syntax

Keywords and Parameters

outline
Specify the name of the outline to be dropped.

After the outline is dropped, if the SQL statement for which the stored outline was

created is compiled, the optimizer generates a new execution plan without the

influence of the outline.

Example

DROP OUTLINE Example The following statement drops the stored outline called

salaries .

DROP OUTLINE salaries;

See Also:

■ CREATE OUTLINE on page 9-119 for information on creating

an outline

■ Oracle8i Performance Guide and Reference for more information

on outlines in general

DROP OUTLINE outline ;
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-149

DROP PACKAGE
DROP PACKAGE

Purpose
Use the DROP PACKAGE statement to remove a stored package from the database.

This statement drops the body and specification of a package.

Prerequisites
The package must be in your own schema or you must have the DROP ANY
PROCEDURE system privilege.

Syntax

Keywords and Parameters

BODY
Specify BODY to drop only the body of the package. If you omit this clause, Oracle

drops both the body and specification of the package.

When you drop only the body of a package but not its specification, Oracle does not

invalidate dependent objects. However, you cannot call one of the procedures or

stored functions declared in the package specification until you re-create the

package body.

Note: Do not use this statement to remove a single object from a

package. Instead, re-create the package without the object using the

CREATE PACKAGEand CREATE PACKAGE BODYstatements with the

OR REPLACE clause.

See Also: CREATE PACKAGE on page 9-122

DROP PACKAGE
BODY schema .

package ;
10-150 SQL Reference

DROP PACKAGE
schema
Specify the schema containing the package. If you omit schema , Oracle assumes the

package is in your own schema.

package
Specify the name of the package to be dropped.

Oracle invalidates any local objects that depend on the package specification. If you

subsequently reference one of these objects, Oracle tries to recompile the object and

returns an error if you have not re-created the dropped package.

If any statistics types are associated with the package, Oracle disassociates the

statistics types with the FORCE clause and drops any user-defined statistics

collected with the statistics types.

Example

DROP PACKAGE Example The following statement drops the specification and

body of the banking package, invalidating all objects that depend on the

specification:

DROP PACKAGE banking;

See Also:

■ Oracle8i Concepts for information on how Oracle maintains

dependencies among schema objects, including remote objects

■ ASSOCIATE STATISTICS on page 8-110 and DISASSOCIATE

STATISTICS on page 10-123
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-151

DROP PROCEDURE
DROP PROCEDURE

Purpose
Use the DROP PROCEDURE statement to remove a standalone stored procedure from

the database. Do not use this statement to remove a procedure that is part of a

package. Instead, either drop the entire package using the DROP PACKAGE
statement, or redefine the package without the procedure using the CREATE
PACKAGE statement with the OR REPLACE clause.

Prerequisites
The procedure must be in your own schema or you must have the DROP ANY
PROCEDURE system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the procedure. If you omit schema , Oracle assumes

the procedure is in your own schema.

procedure
Specify the name of the procedure to be dropped.

When you drop a procedure, Oracle invalidates any local objects that depend upon

the dropped procedure. If you subsequently reference one of these objects, Oracle

See Also:

■ CREATE PROCEDURE on page 9-132 for information on

creating a procedure

■ ALTER PROCEDURE on page 7-88 for information on

modifying a procedure

DROP PR0CEDURE
schema .

procedure ;
10-152 SQL Reference

DROP PROCEDURE
tries to recompile the object and returns an error message if you have not re-created

the dropped procedure.

Example

DROP PROCEDURE Example The following statement drops the procedure

transfer owned by the user kerner and invalidates all objects that depend upon

transfer :

DROP PROCEDURE kerner.transfer

See Also: Oracle8i Concepts for information on how Oracle

maintains dependencies among schema objects, including remote

objects
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-153

DROP PROFILE
DROP PROFILE

Purpose
Use the DROP PROFILE statement to remove a profile from the database.

Prerequisites
You must have the DROP PROFILE system privilege.

Syntax

Keywords and Parameters

profile
Specify the name of the profile to be dropped.

Restriction: You cannot drop the DEFAULT profile.

CASCADE
Specify CASCADE to deassign the profile from any users to whom it is assigned.

Oracle automatically assigns the DEFAULT profile to such users. You must specify

this clause to drop a profile that is currently assigned to users.

Example

DROP PROFILE Example The following statement drops the profile engineer :

DROP PROFILE engineer CASCADE;

See Also:

■ CREATE PROFILE on page 9-139 for information on creating a

profile

■ ALTER PROFILE on page 7-91 for information on modifying a

profile

DROP PROFILE profile
CASCADE

;

10-154 SQL Reference

DROP PROFILE
Oracle drops the profile engineer and assigns the DEFAULT profile to any users

currently assigned the engineer profile.
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-155

DROP ROLE
DROP ROLE

Purpose
Use the DROP ROLEstatement to remove a role from the database. When you drop a

role, Oracle revokes it from all users and roles to whom it has been granted and

removes it from the database.

Prerequisites
You must have been granted the role with the ADMIN OPTION or you must have the

DROP ANY ROLE system privilege.

Syntax

Keywords and Parameters

role
Specify the name of the role to be dropped.

Example

DROP ROLE Example To drop the role florist , issue the following statement:

DROP ROLE florist;

See Also:

■ CREATE ROLE on page 9-146 for information on creating roles

■ ALTER ROLE on page 7-98 for information on changing the

authorization needed to enable a role

■ SET ROLE on page 11-122 for information on disabling roles for

the current session

DROP ROLE role ;
10-156 SQL Reference

DROP ROLLBACK SEGMENT
DROP ROLLBACK SEGMENT

Purpose
Use the DROP ROLLBACK SEGMENTto remove a rollback segment from the database.

When you drop a rollback segment, all space allocated to the rollback segment

returns to the tablespace.

Prerequisites
You must have the DROP ROLLBACK SEGMENT system privilege.

Syntax

Keywords and Parameters

rollback_segment
Specify the name the rollback segment to be dropped.

Restrictions:

■ You can drop a rollback segment only if it is offline. To determine whether a

rollback segment is offline, query the data dictionary view DBA_ROLLBACK_
SEGS. Offline rollback segments have the value AVAILABLE in the STATUS
column. You can take a rollback segment offline with the OFFLINE clause of the

ALTER ROLLBACK SEGMENT statement.

■ You cannot drop the SYSTEM rollback segment.

See Also:

■ CREATE ROLLBACK SEGMENT on page 9-149 for

information on creating a rollback segment

■ ALTER ROLLBACK SEGMENT on page 7-100 for information

on modifying a rollback segment

■ CREATE TABLESPACE on page 10-56

DROP ROLLBACK SEGMENT rollback_segment ;
SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT 10-157

DROP ROLLBACK SEGMENT
Example

DROP ROLLBACK SEGMENT Example The following statement drops the

rollback segment accounting :

DROP ROLLBACK SEGMENT accounting;
10-158 SQL Reference

SQL Statements: DROP SEQUENCE to
11

SQL Statements:

DROP SEQUENCE to UPDATE

This chapter contains the following SQL statements:

■ DROP SEQUENCE

■ DROP SYNONYM

■ DROP TABLE

■ DROP TABLESPACE

■ DROP TRIGGER

■ DROP TYPE

■ DROP TYPE BODY

■ DROP USER

■ DROP VIEW

■ EXPLAIN PLAN

■ filespec

■ GRANT

■ INSERT

■ LOCK TABLE

■ NOAUDIT

■ RENAME

■ REVOKE
UPDATE 11-1

■ ROLLBACK

■ SAVEPOINT

■ SELECT and subquery

■ SET CONSTRAINT[S]

■ SET ROLE

■ SET TRANSACTION

■ storage_clause

■ TRUNCATE

■ UPDATE
11-2 SQL Reference

DROP SEQUENCE
DROP SEQUENCE
Purpose

Use the DROP SEQUENCE statement to remove a sequence from the database.

You can also use this statement to restart a sequence by dropping and then re-

creating it. For example, if you have a sequence with a current value of 150 and you

would like to restart the sequence with a value of 27, you can drop the sequence

and then re-create it with the same name and a START WITH value of 27.

Prerequisites
The sequence must be in your own schema or you must have the DROP ANY
SEQUENCE system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the sequence. If you omit schema , Oracle assumes

the sequence is in your own schema.

sequence_name
Specify the name of the sequence to be dropped.

See Also:

■ CREATE SEQUENCE on page 9-155 for information on

creating a sequence

■ ALTER SEQUENCE on page 7-103 for more information on

modifying a sequence

DROP SEQUENCE
schema .

sequence_name ;
SQL Statements: DROP SEQUENCE to UPDATE 11-3

DROP SEQUENCE
Example

DROP SEQUENCE Example The following statement drops the sequence ESEQ

owned by the user elly . To issue this statement, you must either be connected as

user elly or have DROP ANY SEQUENCE system privilege:

DROP SEQUENCE elly.eseq;
11-4 SQL Reference

DROP SYNONYM
DROP SYNONYM

Purpose
Use the DROP SYNONYM statement to remove a synonym from the database, or to

change the definition of a synonym by dropping and re-creating it.

Prerequisites
To drop a private synonym, either the synonym must be in your own schema or

you must have the DROP ANY SYNONYM system privilege.

To drop a PUBLIC synonym, you must have the DROP PUBLIC SYNONYM system

privilege.

Syntax

Keywords and Parameters

PUBLIC
You must specify PUBLIC to drop a public synonym. You cannot specify schema if

you have specified PUBLIC.

schema
Specify the schema containing the synonym. If you omit schema , Oracle assumes

the synonym is in your own schema.

synonym
Specify the name of the synonym to be dropped.

If you drop a synonym for a materialized view, or its containing table or snapshot,

or any of its dependent tables, the materialized view will be invalidated.

See Also: CREATE SYNONYM on page 10-3 for more

information on synonyms

DROP
PUBLIC

SYNONYM
schema .

synonym ;
SQL Statements: DROP SEQUENCE to UPDATE 11-5

DROP SYNONYM
Example

DROP SYNONYM Example To drop a synonym named market , issue the

following statement:

DROP SYNONYM market;
11-6 SQL Reference

DROP TABLE
DROP TABLE

Purpose
Use the DROP TABLE statement to remove a table or an object table and all its data

from the database.

Prerequisites
The table must be in your own schema or you must have the DROP ANY TABLE
system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the table. If you omit schema , Oracle assumes the

table is in your own schema.

table
Specify the name of the table, object table, or index-organized table to be dropped.

Oracle automatically performs the following operations:

■ Removes all rows from the table (as if the rows were deleted).

■ Drops all the table’s indexes and domain indexes, regardless of who created

them or whose schema contains them.

See Also:

■ CREATE TABLE on page 10-7 for information on creating

tables

■ ALTER TABLE on page 8-2 for information on modifying tables

DROP TABLE
schema .

table
CASCADE CONSTRAINTS

;

SQL Statements: DROP SEQUENCE to UPDATE 11-7

DROP TABLE
■ If you drop a range-partitioned or hash-partitioned table, all the table

partitions are also dropped. If you drop a composite-partitioned table, all the

partitions and subpartitions are also dropped.

■ For a domain index, this statement invokes the appropriate drop routines.

■ If any statistic types are associated with the table, Oracle disassociates the

statistics types with the FORCE clause and removes any user-defined statistics

collected with the statistics type.

■ If the table is not part of a cluster, Oracle returns all data blocks allocated to the

table and its indexes to the tablespaces containing the table and its indexes.

■ If the table is a base table for a view, a container or master table of a

materialized view, or if it is referenced in a stored procedure, function, or

package, Oracle invalidates these dependent objects but does not drop them.

You cannot use these objects unless you re-create the table or drop and re-create

the objects so that they no longer depend on the table.

■ If you choose to re-create the table, it must contain all the columns selected by

the queries originally used to define the materialized views/snapshots and all

the columns referenced in the stored procedures, functions, or packages. Any

users previously granted object privileges on the views, stored procedures,

functions, or packages need not be regranted these privileges.

■ If the table is a detail table for a materialized view, the materialized view can

still be queried, but it cannot be refreshed unless the table is re-created so that it

contains all the columns selected by the materialized view’s query.

See Also: Oracle8i Data Cartridge Developer’s Guide for more

information on these routines

See Also: ASSOCIATE STATISTICS on page 8-110 and

DISASSOCIATE STATISTICS on page 10-123 for more information

on statistics type associations

Note: To drop a cluster and all its the tables, use the DROP
CLUSTER statement with the INCLUDING TABLES clause to avoid

dropping each table individually. See DROP CLUSTER on

page 10-126.
11-8 SQL Reference

DROP TABLE
■ If the table has a materialized view log, Oracle drops this log and any other

direct-load INSERT refresh information associated with the table.

CASCADE CONSTRAINTS
Specify CASCADE CONSTRAINTS to drop all referential integrity constraints that

refer to primary and unique keys in the dropped table. If you omit this clause, and

such referential integrity constraints exist, Oracle returns an error and does not drop

the table.

Example

DROP TABLE Example The following statement drops the test_data table:

DROP TABLE test_data;
SQL Statements: DROP SEQUENCE to UPDATE 11-9

DROP TABLESPACE
DROP TABLESPACE

Purpose
Use the DROP TABLESPACE statement to remove a tablespace from the database.

Prerequisites
You must have the DROP TABLESPACE system privilege. You cannot drop a

tablespace if it contains any rollback segments holding active transactions.

Syntax

Keywords and parameters

tablespace
Specify the name of the tablespace to be dropped.

You can drop a tablespace regardless of whether it is online or offline. Oracle

recommends that you take the tablespace offline before dropping it to ensure that

no SQL statements in currently running transactions access any of the objects in the

tablespace.

You may want to alert any users who have been assigned the tablespace as either a

default or temporary tablespace. After the tablespace has been dropped, these users

cannot allocate space for objects or sort areas in the tablespace. You can reassign

users new default and temporary tablespaces with the ALTER USER statement.

See Also:

■ CREATE TABLESPACE on page 10-56 for information on

creating a tablespace

■ ALTER TABLESPACE on page 8-67 for information on

modifying a tablespace

DROP TABLESPACE tablespace
INCLUDING CONTENTS

CASCADE CONSTRAINTS

;

11-10 SQL Reference

DROP TABLESPACE
Restrictions:

■ You cannot drop the SYSTEM tablespace.

■ You cannot drop a tablespace that contains a domain index or any objects

created by a domain index.

INCLUDING CONTENTS
Specify INCLUDING CONTENTS to drop all the contents of the tablespace. You must

specify this clause to drop a tablespace that contains any database objects. If you

omit this clause, and the tablespace is not empty, Oracle returns an error and does

not drop the tablespace.

For partitioned tables, DROP TABLESPACE will fail even if you specify INCLUDING
CONTENTS, if the tablespace contains some, but not all,

■ Partitions of a range- or hash-partitioned table, or

■ Subpartitions of a composite-partitioned table.

For a partitioned index-organized table, if all the primary key index segments are

in this tablespace, this clause will also drop any overflow segments that exist in

other tablespaces. If some of the primary key index segments are not in this

tablespace, the statement will fail. In that case, before you can drop the tablespace,

you must use ALTER TABLE ... MOVE PARTITION to move those primary key index

segments into this tablespace, drop the partitions whose overflow data segments

are not in this tablespace, and drop the partitioned index-organized table.

If the tablespace contains a container table or detail table of a materialized view,

Oracle invalidates the materialized view.

If the tablespace contains a materialized view/snapshot log, Oracle drops this log

and any other direct-load INSERT refresh information associated with the table.

See Also: Oracle8i Data Cartridge Developer’s Guide and Oracle8i
Concepts for more information on domain indexes

Note: If all the partitions of a partitioned table reside in

tablespace , DROP TABLESPACE ... INCLUDING CONTENTS will

drop tablespace , as well as any associated index segments, LOB

data segments, and LOB index segments in the other tablespace(s).
SQL Statements: DROP SEQUENCE to UPDATE 11-11

DROP TABLESPACE
CASCADE CONSTRAINTS
Specify CASCADE CONSTRAINTS to drop all referential integrity constraints from

tables outside tablespace that refer to primary and unique keys of tables inside

tablespace . If you omit this clause and such referential integrity constraints exist,

Oracle returns an error and does not drop the tablespace.

Example

DROP TABLESPACE Example The following statement drops the mfrg tablespace

and all its contents:

DROP TABLESPACE mfrg
 INCLUDING CONTENTS
 CASCADE CONSTRAINTS;
11-12 SQL Reference

DROP TRIGGER
DROP TRIGGER

Purpose
Use the DROP TRIGGER statement to remove a database trigger from the database.

Prerequisites
The trigger must be in your own schema or you must have the DROP ANY TRIGGER
system privilege.

In addition, to drop a trigger on DATABASE in another user’s schema, you must

have the ADMINISTER DATABASE TRIGGER system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the trigger. If you omit schema , Oracle assumes the

trigger is in your own schema.

trigger
Specify the name of the trigger to be dropped. Oracle removes it from the database

and does not fire it again.

See Also:

■ CREATE TRIGGER on page 10-66 for information on creating

triggers

■ ALTER TRIGGER on page 8-76 for information on enabling,

disabling, and compiling triggers

See Also: CREATE TRIGGER on page 10-66 for information on

these privileges

DROP TRIGGER
schema .

 trigger ;
SQL Statements: DROP SEQUENCE to UPDATE 11-13

DROP TRIGGER
Example

DROP TRIGGER Example The following statement drops the reorder trigger in

the schema ruth :

DROP TRIGGER ruth.reorder;
11-14 SQL Reference

DROP TYPE
DROP TYPE

Purpose
Use the DROP TYPE statement to drop the specification and body of an object, a

varray, or nested table type.

Prerequisites
The object, varray, or nested table type must be in your own schema or you must

have the DROP ANY TYPE system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the type. If you omit schema , Oracle assumes the

type is in your own schema.

type_name
Specify the name of the object, varray, or nested table type to be dropped. You can

drop only types with no type or table dependencies.

If type_name is a statistics type, this statement will fail unless you also specify

FORCE. If you specify FORCE, Oracle first disassociates all objects that are associated

with type_name , and then drops type_name .

See Also:

■ DROP TYPE BODY on page 11-17 for information on dropping

just the body of an object type

■ CREATE TYPE on page 10-80 for information on creating types.

DROP TYPE
schema .

type_name
FORCE

;

SQL Statements: DROP SEQUENCE to UPDATE 11-15

DROP TYPE
If type_name is an object type that has been associated with a statistics type,

Oracle first attempts to disassociate type_name from the statistics type and then

drop type_name . However, if statistics have been collected using the statistics

type, Oracle will be unable to disassociate type_name from the statistics type, and

this statement will fail.

If type_name is an implementation type for an indextype, the indextype will be

marked INVALID .

Unless you specify FORCE, you can drop only object, nested table, or varray types

that are standalone schema objects with no dependencies. This is the default

behavior.

FORCE
Specify FORCE to drop the type even if it has dependent database objects. Oracle

marks UNUSED all columns dependent on the type to be dropped, and those

columns become inaccessible.

Example

DROP TYPE Example The following statement removes object type person_t :

DROP TYPE person_t;

See Also: ASSOCIATE STATISTICS on page 8-110 and

DISASSOCIATE STATISTICS on page 10-123 for more information

on statistics types

See Also: CREATE INDEXTYPE on page 9-76

Caution: Oracle does not recommend that you specify FORCE to
drop types with dependencies. This operation is not recoverable

and could cause the data in the dependent tables or columns to

become inaccessible. For information about type dependencies, see

Oracle8i Application Developer’s Guide - Fundamentals.
11-16 SQL Reference

DROP TYPE BODY
DROP TYPE BODY

Purpose
Use the DROP TYPE BODY statement to drop the body of an object, varray, or nested

table type. When you drop a type body, the object type specification still exists, and

you can re-create the type body. Prior to re-creating the body, you can still use the

object type, although you cannot call the member functions.

Prerequisites
The object type body must be in your own schema, and you must have

■ The CREATE TYPE or CREATE ANY TYPE system privilege, or

■ The DROP ANY TYPE system privilege

Syntax

Keywords and Parameters

schema
Specify the schema containing the object type. If you omit schema , Oracle assumes

the object type is in your own schema.

type_name
Specify the name of the object type body to be dropped.

Restriction: You can drop a type body only if it has no type or table dependencies.

See Also:

■ DROP TYPE on page 11-15 for information on dropping the

specification of an object along with the body

■ CREATE TYPE BODY on page 10-93 for more information on

type bodies

DROP TYPE BODY
schema .

type_name ;
SQL Statements: DROP SEQUENCE to UPDATE 11-17

DROP TYPE BODY
Example

DROP TYPE BODY Example The following statement removes object type body

rational :

DROP TYPE BODY rational;
11-18 SQL Reference

DROP USER
DROP USER

Purpose
Use the DROP USER statement to remove a database user and optionally remove the

user’s objects.

Prerequisites
You must have the DROP USER system privilege.

Syntax

Keywords and Parameters

user
Specify the user to be dropped. Oracle does not drop users whose schemas contain

objects unless you specify CASCADE, or unless you first explicitly drop the user’s

objects.

CASCADE
Specify CASCADE to drop all objects in the user’s schema before dropping the user.

You must specify this clause to drop a user whose schema contains any objects.

■ If the user’s schema contains tables, Oracle drops the tables and automatically

drops any referential integrity constraints on tables in other schemas that refer

to primary and unique keys on these tables.

See Also:

■ CREATE USER on page 10-99 for information on creating a

user

■ ALTER USER on page 8-88 for information on modifying the

definition of a user

DROP USER user
CASCADE

;

SQL Statements: DROP SEQUENCE to UPDATE 11-19

DROP USER
■ If this clause results in tables being dropped, Oracle also drops all domain

indexes created on columns of those tables, and invokes appropriate drop

routines.

■ Oracle invalidates, but does not drop, the following objects in other schemas:

views or synonyms for objects in the dropped user’s schema; and stored

procedures, functions, or packages that query objects in the dropped user’s

schema.

■ Oracle does not drop materialized views on tables or views in the dropped

user’s schema, but if you specify CASCADE, the materialized views can no

longer be refreshed.

■ Oracle drops all triggers in the user’s schema.

■ Oracle does not drop roles created by the user.

Examples

DROP USER Example If user Bradley’s schema contains no objects, you can drop

bradley by issuing the statement:

DROP USER bradley;

If Bradley’s schema contains objects, you must use the CASCADE clause to drop

bradley and the objects:

DROP USER bradley CASCADE;

See Also: Oracle8i Data Cartridge Developer’s Guide for more

information on these routines

Caution: Oracle also drops with FORCE all types owned by the

user. See the FORCE keyword of DROP TYPE on page 11-16.
11-20 SQL Reference

DROP VIEW
DROP VIEW

Purpose
Use the DROP VIEW statement to remove a view or an object view from the

database. You can change the definition of a view by dropping and re-creating it.

Prerequisites
The view must be in your own schema or you must have the DROP ANY VIEW
system privilege.

Syntax

Keywords and Parameters

schema
Specify the schema containing the view. If you omit schema , Oracle assumes the

view is in your own schema.

view
Specify the name of the view to be dropped.

Views, materialized views, and synonyms that refer to the view are not dropped,

but become invalid. You can drop them or redefine views and synonyms, or you

can define other views in such a way that the invalid views and synonyms become

valid again.

See Also:

■ CREATE VIEW on page 10-105 for information on creating a

view

■ ALTER VIEW on page 8-94 for information on modifying a

view

DROP VIEW
schema .

view ;
SQL Statements: DROP SEQUENCE to UPDATE 11-21

DROP VIEW
Example

DROP VIEW Example The following statement drops the view_data view:

DROP VIEW view_data;

See Also:

■ CREATE TABLE on page 10-7 and CREATE SYNONYM on

page 10-3

■ ALTER MATERIALIZED VIEW on page 7-61 for information

on revalidating invalid materialized views
11-22 SQL Reference

EXPLAIN PLAN
EXPLAIN PLAN

Purpose
Use the EXPLAIN PLANstatement to determine the execution plan Oracle follows to

execute a specified SQL statement. This statement inserts a row describing each step

of the execution plan into a specified table. If you are using cost-based optimization,

this statement also determines the cost of executing the statement. If any domain

indexes are defined on the table, user-defined CPU and I/O costs will also be

inserted.

The definition of a sample output table PLAN_TABLE is available in a SQL script on

your distribution media. Your output table must have the same column names and

datatypes as this table. The common name of this script is UTLXPLAN.SQL. The

exact name and location depend on your operating system.

You can also issue the EXPLAIN PLAN statement as part of the SQL trace facility.

Prerequisites
To issue an EXPLAIN PLAN statement, you must have the privileges necessary to

insert rows into an existing output table that you specify to hold the execution plan.

You must also have the privileges necessary to execute the SQL statement for which

you are determining the execution plan. If the SQL statement accesses a view, you

must have privileges to access any tables and views on which the view is based. If

the view is based on another view that is based on a table, you must have privileges

to access both the other view and its underlying table.

To examine the execution plan produced by an EXPLAIN PLANstatement, you must

have the privileges necessary to query the output table.

The EXPLAIN PLAN statement is a data manipulation language (DML) statement,

rather than a data definition language (DDL) statement. Therefore, Oracle does not

implicitly commit the changes made by an EXPLAIN PLANstatement. If you want to

See Also:

■ Oracle8i Performance Guide and Reference for information on the

output of EXPLAIN PLAN

■ Oracle8i Performance Guide and Reference for information on how

to use the SQL trace facility, as well as a detailed discussion of

how to generate and interpret execution plans
SQL Statements: DROP SEQUENCE to UPDATE 11-23

EXPLAIN PLAN
keep the rows generated by an EXPLAIN PLAN statement in the output table, you

must commit the transaction containing the statement.

Syntax

Keywords and Parameters

SET STATEMENT_ID = ’text ’
Specify the value of the STATEMENT_ID column for the rows of the execution plan

in the output table. You can then use this value to identify these rows among others

in the output table. Be sure to specify a STATEMENT_ID value if your output table

contains rows from many execution plans. If you omit this clause, the STATEMENT_
ID value defaults to null.

INTO table
Specify the name of the output table, and optionally its schema and database. This

table must exist before you use the EXPLAIN PLAN statement.

If you omit schema , Oracle assumes the table is in your own schema.

The dblink can be a complete or partial name of a database link to a remote Oracle

database where the output table is located. You can specify a remote output table

only if you are using Oracle’s distributed functionality. If you omit dblink , Oracle

assumes the table is on your local database.

See Also: INSERT on page 11-51 and SELECT and subquery on

page 11-88 information on the privileges you need to populate and

query the plan table

See Also: "Referring to Objects in Remote Databases" on

page 2-90 for information on referring to database links

EXPLAIN PLAN
SET STATEMENT_ID = ’ text ’

INTO
schema .

table
 @ dblink

FOR statement ;
11-24 SQL Reference

EXPLAIN PLAN
If you omit INTO altogether, Oracle assumes an output table named PLAN_TABLE
in your own schema on your local database.

FORstatement
Specify a SELECT, INSERT, UPDATE, DELETE, CREATE TABLE, CREATE INDEX, or

ALTER INDEX ... REBUILD statement for which the execution plan is generated.

Examples

EXPLAIN PLAN Examples The following statement determines the execution plan

and cost for an UPDATE statement and inserts rows describing the execution plan

into the specified output table with the STATEMENT_ID value of ’Raise in

Chicago’:

EXPLAIN PLAN
 SET STATEMENT_ID = ’Raise in Chicago’
 INTO output
 FOR UPDATE emp
 SET sal = sal * 1.10
 WHERE deptno = (SELECT deptno
 FROM dept
 WHERE loc = ’CHICAGO’);

Notes:

■ If statement includes the parallel_clause , the resulting

execution plan will indicate parallel execution. However,

EXPLAIN PLAN actually inserts the statement into the plan

table, so that the parallel DML statement you submit is no

longer the first DML statement in the transaction. This violates

the Oracle restriction of one parallel DML statement per

transaction, and the statement will be executed serially. To

maintain parallel execution of the statements, you must commit

or roll back the EXPLAIN PLAN statement, and then submit the

parallel DML statement.

■ To determine the execution plan for an operation on a

temporary table, EXPLAIN PLAN must be run from the same

session, because the data in temporary tables is session specific.
SQL Statements: DROP SEQUENCE to UPDATE 11-25

EXPLAIN PLAN
The following SELECT statement queries the output table and returns the

execution plan and the cost:

SELECT LPAD(’ ’,2*(LEVEL-1))||operation operation, options,
object_name, position
 FROM output
 START WITH id = 0 AND statement_id = ’Raise in Chicago’
 CONNECT BY PRIOR id = parent_id AND
 statement_id = ’Raise in Chicago’;

The query returns this execution plan:

OPERATION OPTIONS OBJECT_NAME POSITION
--
UPDATE STATEMENT 1
 FILTER 0
 TABLE ACCESS FULL EMP 1
 TABLE ACCESS FULL DEPT 2

The value in the POSITION column of the first row shows that the statement has a

cost of 1.

EXPLAIN PLAN: Partitioned Example Assume that stocks is a table with eight

partitions on a stock_num column, and that a local prefixed index stock_ix on

column stock_num exists. The partition HIGHVALUES are 1000, 2000, 3000, 4000,

5000, 6000, 7000, and 8000.

Consider the query:

SELECT * FROM stocks WHERE stock_num BETWEEN 3800 AND :h;

(where :h represents a bind variable). EXPLAIN PLAN executes this query with

PLAN_TABLE as the output table. The basic execution plan, including partitioning

information, is obtained with the query:

SELECT id, operation, options, object_name,
 partition_start, partition_stop, partition_id FROM plan_table;
11-26 SQL Reference

filespec
filespec

Purpose
Use the filespec syntax to specify a file as a datafile or tempfile, or to specify a

group of one or more files as a redo log file group.

Prerequisites
A filespec can appear in the statements CREATE DATABASE, ALTER DATABASE,
CREATE TABLESPACE, ALTER TABLESPACE, CREATE CONTROLFILE, CREATE
LIBRARY, and CREATE TEMPORARY TABLESPACE. You must have the privileges

necessary to issue one of these statements.

Syntax
filespec_datafiles & filespec_tempfiles ::=

See Also:

■ CREATE DATABASE on page 9-21

■ ALTER DATABASE on page 7-9

■ CREATE TABLESPACE on page 10-56

■ ALTER TABLESPACE on page 8-67

■ CREATE CONTROLFILE on page 9-15

■ CREATE LIBRARY on page 9-86

■ CREATE TEMPORARY TABLESPACE on page 10-63

’ filename ’
SIZE integer

K

M
REUSE
SQL Statements: DROP SEQUENCE to UPDATE 11-27

filespec
filespec_redo_log_file_groups ::=

Keywords and Parameters

’filename ’
Specify the name of either a datafile, tempfile, or a redo log file member. A

’filename ’ can contain only single-byte characters from 7-bit ASCII or EBCDIC

character sets. Multibyte characters are not valid.

A redo log file group can have one or more members (copies). Each ’filename ’

must be fully specified according to the conventions for your operating system.

SIZE integer
Specify the size of the file in bytes. Use K or M to specify the size in kilobytes or

megabytes.

■ You can omit this parameter only if the file already exists.

■ The size of a tablespace must be one block greater than the sum of the sizes of

the objects contained in it.

REUSE
Specify REUSE to allow Oracle to reuse an existing file.

■ If the file already exists, Oracle verifies that its size matches the value of the

SIZE parameter (if you specify SIZE).

■ If the file does not exist, Oracle ignores this clause and creates the file.

■ You can omit this clause only if the file does not already exist. If you omit this

clause, Oracle creates the file.

Note: Whenever Oracle uses an existing file, the file’s previous

contents are lost.

’ filename ’

(’ filename ’

,

)

SIZE integer

K

M
REUSE
11-28 SQL Reference

filespec
Examples

Specifying a Log File Example The following statement creates a database named

payable that has two redo log file groups, each with two members, and one

datafile:

CREATE DATABASE payable
 LOGFILE GROUP 1 (’diska:log1.log’, ’diskb:log1.log’) SIZE 50K,
 GROUP 2 (’diska:log2.log’, ’diskb:log2.log’) SIZE 50K
 DATAFILE ’diskc:dbone.dat’ SIZE 30M;

The first filespec in the LOGFILE clause specifies a redo log file group with the

GROUP value 1. This group has members named ’diska:log1.log ’ and

’diskb:log1.log ’, each 50 kilobytes in size.

The second filespec in the LOGFILE clause specifies a redo log file group with

the GROUP value 2. This group has members named ’diska:log2.log ’ and

’diskb:log2.log ’, also 50 kilobytes in size.

The filespec in the DATAFILE clause specifies a datafile named

’diskc:dbone.dat ’, 30 megabytes in size.

Each filespec specifies a value for the SIZE parameter and omits the REUSE
clause, so none of these files can already exist. Oracle must create them.

Adding a Log File Example The following statement adds another redo log file

group with two members to the payable database:

ALTER DATABASE payable
 ADD LOGFILE GROUP 3 (’diska:log3.log’, ’diskb:log3.log’)
 SIZE 50K REUSE;

The filespec in the ADD LOGFILE clause specifies a new redo log file group with

the GROUP value 3. This new group has members named ’diska:log3.log ’ and

’diskb:log3.log ’, each 50 kilobytes in size. Because the filespec specifies the

REUSE clause, each member can already exist. If a member exists, it must have a

size of 50 kilobytes. If it does not exist, Oracle creates it with that size.

Specifying a Datafile Example The following statement creates a tablespace

named stocks that has three datafiles:

CREATE TABLESPACE stocks
 DATAFILE ’diskc:stock1.dat’,
 ’diskc:stock2.dat’,
 ’diskc:stock3.dat’;
SQL Statements: DROP SEQUENCE to UPDATE 11-29

filespec
The filespecs for the datafiles specifies files named ’diskc:stock1.dat ’,

’diskc:stock2.dat ’, and ’diskc:stock3.dat ’. Since each filespec omits

the SIZE parameter, each file must already exist.

Adding a Datafile Example The following statement alters the stocks tablespace

and adds a new datafile:

ALTER TABLESPACE stocks
 ADD DATAFILE ’diskc:stock4.dat’ REUSE;

The filespec specifies a datafile named ’diskc:stock4.dat ’. Since the

filespec omits the SIZE parameter, the file must already exist and the REUSE
clause is not significant.
11-30 SQL Reference

GRANT
GRANT

Purpose
Use the GRANT statement to grant:

■ System privileges to users and roles

■ Roles to users and roles. Both privileges and roles are either local, global, or

external. Table 11–1 lists the system privileges (organized by the database object

operated upon). Table 11–2 lists Oracle predefined roles.

■ Object privileges for a particular object to users, roles, and PUBLIC. Table 11–3

summarizes the object privileges that you can grant on each type of object.

Table 11–4 lists object privileges and the operations that they authorize. You can

grant any of these system privileges with the GRANT statement.

Note: You can authorize database users to use roles through

means other than the database and the GRANT statement. For

example, some operating systems have facilities that let you grant

roles to Oracle users with the initialization parameter OS_ROLES. If

you choose to grant roles to users through operating system

facilities, you cannot also grant roles to users with the GRANT
statement, although you can use the GRANT statement to grant

system privileges to users and system privileges and roles to other

roles.

See Also:

■ CREATE USER on page 10-99 and CREATE ROLE on

page 9-146 for definitions of local, global, and external

privileges

■ Oracle8i Administrator’s Guide for information about other

authorization methods

■ REVOKE on page 11-73 for information on revoking grants
SQL Statements: DROP SEQUENCE to UPDATE 11-31

GRANT
Prerequisites
To grant a system privilege, you must either have been granted the system

privilege with the ADMIN OPTIONor have been granted the GRANT ANY PRIVILEGE
system privilege.

To grant a role, you must either have been granted the role with the ADMIN OPTION
or have been granted the GRANT ANY ROLE system privilege, or you must have

created the role.

To grant an object privilege, you must own the object or the owner of the object

must have granted you the object privileges with the GRANT OPTION. This rule

applies to users with the DBA role.

Syntax

grant_system_privileges_and_roles_clause ::=

grant_object_privileges_clause ::=

GRANT
grant_system_privileges_and_roles_clause

grant_object_privileges_clause
 ;

system_privilege

role

ALL PRIVILEGES

,

TO grantee_clause
WITH ADMIN OPTION

object_privilege

ALL
PRIVILEGES

(column

,

)

,

ON object_clause TO grantee_clause
WITH GRANT OPTION
11-32 SQL Reference

GRANT
object_clause ::=

grantee_clause ::=

Keywords and Parameters

grant_system_privileges_and_roles_clause

system_
privileges

Specify the system privilege you want to grant. Table 11–1 lists the

system privileges (organized by the database object operated

upon).

■ If you grant a privilege to a user, Oracle adds the privilege to

the user’s privilege domain. The user can immediately

exercise the privilege.

■ If you grant a privilege to a role, Oracle adds the privilege to

the role’s privilege domain. Users who have been granted and

have enabled the role can immediately exercise the privilege.

Other users who have been granted the role can enable the

role and exercise the privilege.

■ If you grant a privilege to PUBLIC, Oracle adds the privilege

to the privilege domains of each user. All users can

immediately perform operations authorized by the privilege.

schema . object

DIRECTORY directory_name

JAVA
SOURCE

RESOURCE

schema .
object

user

role

PUBLIC

,

SQL Statements: DROP SEQUENCE to UPDATE 11-33

GRANT
Oracle provides a shortcut for specifying all system privileges at

once:

■ ALL PRIVILEGES: Specify ALL PRIVILEGES to grant all the

system privileges listed in Table 11–1, " System Privileges" on

page 11-37.

role Specify the role you want to grant. You can grant an Oracle

predefined role or a user-defined role. Table 11–2 lists the

predefined roles.

■ If you grant a role to a user, Oracle makes the role available to

the user. The user can immediately enable the role and

exercise the privileges in the role’s privilege domain.

■ If you grant a role to another role, Oracle adds the granted

role’s privilege domain to the grantee role’s privilege domain.

Users who have been granted the grantee role can enable it

and exercise the privileges in the granted role’s privilege

domain.

■ If you grant a role to PUBLIC, Oracle makes the role available

to all users. All users can immediately enable the role and

exercise the privileges in the roles privilege domain.

See Also: CREATE ROLE on page 9-146 for information on

creating a user-defined role

WITH ADMIN
OPTION

Specify WITH ADMIN OPTION to enable the grantee to:

■ Grant the role to another user or role, unless the role is a

GLOBAL role

■ Revoke the role from another user or role

■ Alter the role to change the authorization needed to access it

■ Drop the role

If you grant a system privilege or role to a user without specifying

WITH ADMIN OPTION, and then subsequently grant the privilege

or role to the user WITH ADMIN OPTION, the user has the ADMIN
OPTION on the privilege or role.

To revoke the admin option on a system privilege or role from a

user, you must revoke the privilege or role from the user

altogether and then grant the privilege or role to the user without

the admin option.
11-34 SQL Reference

GRANT
grant_object_privileges_clause

grantee_
clause

TOgrantee_clause identifies users or roles to which the

system privilege, role, or object privilege is granted.

Restriction: A user, role, or PUBLIC cannot appear more than

once in TOgrantee_clause .

PUBLIC Specify PUBLIC to grant the privileges to all

users.

Restrictions on granting system privileges and roles:

■ A privilege or role cannot appear more than once in the list of privileges and

roles to be granted.

■ You cannot grant a role to itself.

■ You cannot grant a role IDENTIFIED GLOBALLY to anything.

■ You cannot grant a role IDENTIFIED EXTERNALLY to a global user or global

role.

■ You cannot grant roles circularly. For example, if you grant the role banker to

the role teller , you cannot subsequently grant teller to banker .

object_
privileges

Specify the object privilege you want to grant. You can substitute

any of the values shown in Table 11–3. See also Table 11–4.

Restriction: A privilege cannot appear more than once in the list

of privileges to be granted.

ALL
[PRIVILEGES]

Specify ALL to grant all the privileges for the object that you have

been granted with the GRANT OPTION. The user who owns the

schema containing an object automatically has all privileges on

the object with the GRANT OPTION. (The keyword PRIVILEGES is

optional.)
SQL Statements: DROP SEQUENCE to UPDATE 11-35

GRANT
column Specify the table or view column on which privileges are to be

granted. You can specify columns only when granting the

INSERT, REFERENCES, or UPDATE privilege. If you do not list

columns, the grantee has the specified privilege on all columns in

the table or view.

For information on existing column object grants, query the

USER_,ALL_, and DBA_COL_PRIVS data dictionary view.

See Also: Oracle8i Reference for information on the data

dictionary views

WITH GRANT
OPTION

Specify WITH GRANT OPTION to enable the grantee to grant the

object privileges to other users and roles.

Restriction: You can specify WITH GRANT OPTION only when

granting to a user or to PUBLIC, not when granting to a role.

object_
clause

ONobject_clause identifies the object on which the privileges

are granted. Directory schema objects and Java source and

resource schema objects are identified separately because they

reside in separate namespaces.

object Specify the schema object on which the

privileges are to be granted. If you do not

qualify object with schema , Oracle assumes

the object is in your own schema. The object can

be one of the following types:

■ Table, view, or materialized view / snapshot

■ Sequence

■ Procedure, function, or package

■ User-defined type

■ Synonym for any of the above items

■ Directory, library, operator, or indextype

■ Java source, class, or resource

Note: You cannot grant privileges directly to a single partition

of a partitioned table. For information on how to grant

privileges to a single partition indirectly, refer to Oracle8i
Concepts.
11-36 SQL Reference

GRANT
DIRECTORY
directory_
name

Specify a directory schema object on which

privileges are to be granted. You cannot qualify

directory_name with a schema name.

See Also: CREATE DIRECTORY on

page 9-40

JAVA SOURCE|
RESOURCE

The JAVA clause lets you specify a Java source

or resource schema object on which privileges

are to be granted.

See Also: CREATE JAVA on page 9-79

Table 11–1 System Privileges

System Privilege Name Operations Authorized

CLUSTERS

CREATE CLUSTER Create clusters in grantee’s schema

CREATE ANY CLUSTER Create a cluster in any schema. Behaves similarly to CREATE ANY TABLE.

ALTER ANY CLUSTER Alter clusters in any schema

DROP ANY CLUSTER Drop clusters in any schema

CONTEXTS

CREATE ANY CONTEXT Create any context namespace

DROP ANY CONTEXT Drop any context namespace

DATABASE

ALTER DATABASE Alter the database

ALTER SYSTEM Issue ALTER SYSTEM statements

AUDIT SYSTEM Issue AUDIT sql_statements statements

DATABASE LINKS

CREATE DATABASE LINK Create private database links in grantee’s schema

CREATE PUBLIC DATABASE
LINK

Create public database links

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.
SQL Statements: DROP SEQUENCE to UPDATE 11-37

GRANT
DROP PUBLIC DATABASE
LINK

Drop public database links

DIMENSIONS

CREATE DIMENSION Create dimensions in the grantee’s schema

CREATE ANY DIMENSION Create dimensions in any schema

ALTER ANY DIMENSION Alter dimensions in any schema

DROP ANY DIMENSION Drop dimensions in any schema

DIRECTORIES

CREATE ANY DIRECTORY Create directory database objects

DROP ANY DIRECTORY Drop directory database objects

INDEXTYPES

CREATE INDEXTYPE Create an indextype in the grantee’s schema

CREATE ANY INDEXTYPE Create an indextype in any schema

ALTER ANY INDEXTYPE Modify indextypes in any schema

DROP ANY INDEXTYPE Drop an indextype in any schema

EXECUTE ANY INDEXTYPE Reference an indextype in any schema

INDEXES

CREATE ANY INDEX Create in any schema a domain index or an index on any table in any
schema

ALTER ANY INDEX Alter indexes in any schema

DROP ANY INDEX Drop indexes in any schema

QUERY REWRITE Enable rewrite using a materialized view, or create a function-based index,
when that materialized view or index references tables and views that are
in the grantee’s own schema.

GLOBAL QUERY REWRITE Enable rewrite using a materialized view, or create a function-based index,
when that materialized view or index references tables or views in any
schema.

Table 11–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.
11-38 SQL Reference

GRANT
LIBRARIES

CREATE LIBRARY Create external procedure/function libraries in grantee’s schema

CREATE ANY LIBRARY Create external procedure/function libraries in any schema

DROP LIBRARY Drop external procedure/function libraries in the grantee’s schema

DROP ANY LIBRARY Drop external procedure/function libraries in any schema

MATERIALIZED VIEWS (which are identical to SNAPSHOTS)

CREATE MATERIALIZED
VIEW

Create a materialized view in the grantee’s schema

CREATE ANY
MATERIALIZED VIEW

Create materialized views in any schema

ALTER ANY MATERIALIZED
VIEW

Alter materialized views in any schema

DROP ANY MATERIALIZED
VIEW

Drop materialized views in any schema

QUERY REWRITE Enable rewrite using a materialized view, or create a function-based index,
when that materialized view or index references tables and views that are
in the grantee’s own schema.

GLOBAL QUERY REWRITE Enable rewrite using a materialized view, or create a function-based index,
when that materialized view or index references tables or views in any
schema.

OPERATORS

CREATE OPERATOR Create an operator and its bindings in the grantee’s schema

CREATE ANY OPERATOR Create an operator and its bindings in any schema

DROP ANY OPERATOR Drop an operator in any schema

EXECUTE ANY OPERATOR Reference an operator in any schema

OUTLINES

CREATE ANY OUTLINE Create outlines that can be used in any schema that uses outlines

ALTER ANY OUTLINE Modify outlines.

Table 11–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.
SQL Statements: DROP SEQUENCE to UPDATE 11-39

GRANT
DROP ANY OUTLINE Drop outlines

PROCEDURES

CREATE PROCEDURE Create stored procedures, functions, and packages in grantee’s schema

CREATE ANY PROCEDURE Create stored procedures, functions, and packages in any schema

ALTER ANY PROCEDURE Alter stored procedures, functions, or packages in any schema

DROP ANY PROCEDURE Drop stored procedures, functions, or packages in any schema

EXECUTE ANY PROCEDURE Execute procedures or functions (standalone or packaged)

Reference public package variables in any schema

PROFILES

CREATE PROFILE Create profiles

ALTER PROFILE Alter profiles

DROP PROFILE Drop profiles

ROLES

CREATE ROLE Create roles

ALTER ANY ROLE Alter any role in the database

DROP ANY ROLE Drop roles

GRANT ANY ROLE Grant any role in the database

ROLLBACK SEGMENTS

CREATE ROLLBACK
SEGMENT

Create rollback segments

ALTER ROLLBACK SEGMENTAlter rollback segments

DROP ROLLBACK SEGMENT Drop rollback segments

SEQUENCES

CREATE SEQUENCE Create sequences in grantee’s schema

CREATE ANY SEQUENCE Create sequences in any schema

Table 11–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.
11-40 SQL Reference

GRANT
ALTER ANY SEQUENCE Alter any sequence in the database

DROP ANY SEQUENCE Drop sequences in any schema

SELECT ANY SEQUENCE Reference sequences in any schema

SESSIONS

CREATE SESSION Connect to the database

ALTER RESOURCE COST Set costs for session resources

ALTER SESSION Issue ALTER SESSION statements

RESTRICTED SESSION Logon after the instance is started using the SQL*Plus STARTUPRESTRICT
statement

SNAPSHOTS (which are identical to MATERIALIZED VIEWS)

CREATE SNAPSHOT Create snapshots in grantee’s schema

CREATE ANY SNAPSHOT Create snapshots in any schema

ALTER ANY SNAPSHOT Alter any snapshot in the database

DROP ANY SNAPSHOT Drop snapshots in any schema

GLOBAL QUERY REWRITE Enable rewrite using a snapshot, or create a function-based index, when
that snapshot or index references tables or views in any schema.

QUERY REWRITE Enable rewrite using a snapshot, or create a function-based index, when
that snapshot or index references tables and views that are in the grantee’s
own schema.

SYNONYMS

CREATE SYNONYM Create synonyms in grantee’s schema

CREATE ANY SYNONYM Create private synonyms in any schema

CREATE PUBLIC SYNONYM Create public synonyms

DROP ANY SYNONYM Drop private synonyms in any schema

DROP PUBLIC SYNONYM Drop public synonyms

Table 11–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.
SQL Statements: DROP SEQUENCE to UPDATE 11-41

GRANT
TABLES

CREATE ANY TABLE Create tables in any schema. The owner of the schema containing the table
must have space quota on the tablespace to contain the table.

ALTER ANY TABLE Alter any table or view in the schema

BACKUP ANY TABLE Use the Export utility to incrementally export objects from the schema of
other users

DELETE ANY TABLE Delete rows from tables, table partitions, or views in any schema

DROP ANY TABLE Drop or truncate tables or table partitions in any schema

INSERT ANY TABLE Insert rows into tables and views in any schema

LOCK ANY TABLE Lock tables and views in any schema

UPDATE ANY TABLE Update rows in tables and views in any schema

SELECT ANY TABLE Query tables, views, or snapshots in any schema

TABLESPACES

CREATE TABLESPACE Create tablespaces

ALTER TABLESPACE Alter tablespaces

DROP TABLESPACE Drop tablespaces

MANAGE TABLESPACE Take tablespaces offline and online and begin and end tablespace backups

UNLIMITED TABLESPACE Use an unlimited amount of any tablespace. This privilege overrides any
specific quotas assigned. If you revoke this privilege from a user, the user’s
schema objects remain but further tablespace allocation is denied unless
authorized by specific tablespace quotas. You cannot grant this system
privilege to roles.

TRIGGERS

CREATE TRIGGER Create a database trigger in grantee’s schema

CREATE ANY TRIGGER Create database triggers in any schema

ALTER ANY TRIGGER Enable, disable, or compile database triggers in any schema

DROP ANY TRIGGER Drop database triggers in any schema

Table 11–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.
11-42 SQL Reference

GRANT
ADMINISTER DATABASE
TRIGGER

Create a trigger on DATABASE. (You must also have the CREATE TRIGGER
or CREATE ANY TRIGGER privilege.)

TYPES

CREATE TYPE Create object types and object type bodies in grantee’s schema

CREATE ANY TYPE Create object types and object type bodies in any schema

ALTER ANY TYPE Alter object types in any schema

DROP ANY TYPE Drop object types and object type bodies in any schema

EXECUTE ANY TYPE Use and reference object types and collection types in any schema, and
invoke methods of an object type in any schema if you make the grant to a
specific user. If you grant EXECUTE ANY TYPE to a role, users holding the
enabled role will not be able to invoke methods of an object type in any
schema.

USERS

CREATE USER Create users. This privilege also allows the creator to

Assign quotas on any tablespace,

Set default and temporary tablespaces, and

Assign a profile as part of a CREATE USER statement.

ALTER USER Alter any user. This privilege authorizes the grantee to

Change another user’s password or authentication method,

Assign quotas on any tablespace,

Set default and temporary tablespaces, and

Assign a profile and default roles

BECOME USER Become another user. (Required by any user performing a full database
import.)

DROP USER Drop users

VIEWS

CREATE VIEW Create views in grantee’s schema

CREATE ANY VIEW Create views in any schema

Table 11–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.
SQL Statements: DROP SEQUENCE to UPDATE 11-43

GRANT
DROP ANY VIEW Drop views in any schema

MISCELLANEOUS

ANALYZE ANY Analyze any table, cluster, or index in any schema

AUDIT ANY Audit any object in any schema using AUDIT schema_objects
statements

COMMENT ANY TABLE Comment on any table, view, or column in any schema

FORCE ANY TRANSACTION Force the commit or rollback of any in-doubt distributed transaction in the
local database

Induce the failure of a distributed transaction

FORCE TRANSACTION Force the commit or rollback of grantee’s in-doubt distributed transactions
in the local database

GRANT ANY PRIVILEGE Grant any system privilege.

SYSDBA Perform STARTUP and SHUTDOWN operations

ALTER DATABASE: open, mount, back up, or change character set

CREATE DATABASE

ARCHIVELOG and RECOVERY

Includes the RESTRICTED SESSION privilege

SYSOPER Perform STARTUP and SHUTDOWN operations

ALTER DATABASE OPEN/MOUNT/BACKUP

ARCHIVELOG and RECOVERY

Includes the RESTRICTED SESSION privilege

Table 11–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.
11-44 SQL Reference

GRANT
Table 11–2 Oracle Predefined Roles

Predefined Role Purpose

CONNECT, RESOURCE, and
DBA

These roles are provided for compatibility with previous versions of
Oracle. You can determine the privileges encompassed by these roles by
querying the DBA_SYS_PRIVILEGES data dictionary view.

See Also: Oracle8i Reference for a description of this view

Note: Oracle Corporation recommends that you design your own roles for
database security rather than relying on these roles. These roles may not be
created automatically by future versions of Oracle.

DELETE_CATALOG_ROLE
EXECUTE_CATALOG_ROLE
SELECT_CATALOG_ROLE

These roles are provided for accessing data dictionary views and packages.

See Also: Oracle8i Administrator’s Guide for more information on these
roles

EXP_FULL_DATABASE IMP_
FULL_DATABASE

These roles are provided for convenience in using the Import and Export
utilities.

See Also: Oracle8i Utilities for more information on these roles

AQ_USER_ROLE

AQ_ADMINISTRATOR_ROLE

You need these roles to use Oracle’s Advanced Queuing functionality.

See Also: Oracle8i Application Developer’s Guide - Advanced Queuing for
more information on these roles

SNMPAGENT This role is used by Enterprise Manager/Intelligent Agent.

See Also: Oracle Enterprise Manager Administrator’s Guide

RECOVERY_CATALOG_OWNER You need this role to create a user who owns a recovery catalog.

See Also: Oracle8i Backup and Recovery Guide for more information on
recovery catalogs

HS_ADMIN_ROLE A DBA using Oracle’s heterogeneous services feature needs this role to
access appropriate tables in the data dictionary and to manipulate them
with the DBMS_HS package.

See Also: Oracle8i Distributed Database Systems and Oracle8i Supplied
PL/SQL Packages Reference for more information

Oracle also creates other roles that authorize you to administer the database. On many operating systems, these
roles are called OSOPER and OSDBA. Their names may be different on your operating system.
SQL Statements: DROP SEQUENCE to UPDATE 11-45

GRANT
Table 11–3 Object Privileges Available for Particular Objects

Object Privi-
lege Table View

Se-
quence

Proce-
dures,
Func-
tions,
Pack-
agesa

Materi-
alized
View

Direc-
tory Library

User-
defined

Type
Opera-

tor
Index-
type

ALTER X X

DELETE X X Xb

EXECUTE X X X X X

INDEX X

INSERT X X Xb

READ X

REFERENCES X

SELECT X X X X

UPDATE X X Xb

aOracle treats a Java class, source, or resource as if it were a procedure for purposes of granting object privileges.
bThe DELETE, INSERT, and UPDATE privileges can be granted only to updatable materialized views.

Table 11–4 Object Privileges and the Operations They Authorize

Object Privilege Operations Authorized

The following table privileges authorize operations on a table. Any one of following object privileges allows
the grantee to lock the table in any lock mode with the LOCK TABLE statement.

ALTER Change the table definition with the ALTER TABLE statement.

DELETE Remove rows from the table with the DELETE statement.

Note: You must grant the SELECTprivilege on the table along with the
DELETE privilege.

INDEX Create an index on the table with the CREATE INDEX statement.

INSERT Add new rows to the table with the INSERT statement.

REFERENCES Create a constraint that refers to the table. You cannot grant this privilege
to a role.
11-46 SQL Reference

GRANT
SELECT Query the table with the SELECT statement.

UPDATE Change data in the table with the UPDATE statement.

Note: You must grant the SELECTprivilege on the table along with the
UPDATE privilege.

The following view privileges authorize operations on a view. Any one of the following object privileges
allows the grantee to lock the view in any lock mode with the LOCK TABLE statement.

To grant a privilege on a view, you must have that privilege with the GRANT OPTION on all of the view’s base
tables.

DELETE Remove rows from the view with the DELETE statement.

INSERT Add new rows to the view with the INSERT statement.

SELECT Query the view with the SELECT statement.

UPDATE Change data in the view with the UPDATE statement.

The following sequence privileges authorize operations on a sequence.

ALTER Change the sequence definition with the ALTER SEQUENCE statement.

SELECT Examine and increment values of the sequence with the CURRVAL and
NEXTVAL pseudocolumns.

The following procedure, function, and package privilege authorizes operations on procedures, functions, or
packages. This privilege also applies to Java sources, classes, and resources, which Oracle treats as though they
were procedures for purposes of granting object privileges.

EXECUTE Compile the procedure or function or execute it directly, or access any
program object declared in the specification of a package.

Note: Users do not need this privilege to execute a procedure,
function, or package indirectly.

See Also: Oracle8i Concepts and Oracle8i Application Developer’s Guide -
Fundamentals

The following snapshot privilege authorizes operations on a snapshot.

SELECT Query the snapshot with the SELECT statement.

Table 11–4 (Cont.) Object Privileges and the Operations They Authorize

Object Privilege Operations Authorized
SQL Statements: DROP SEQUENCE to UPDATE 11-47

GRANT
Examples

Granting a System Privilege to a User Example To grant the CREATE SESSION
system privilege to richard , allowing richard to log on to Oracle, issue the

following statement:

GRANT CREATE SESSION
TO richard;

Granting a System Privilege to a Role Example To grant the CREATE TABLE
system privilege to the role travel_agent , issue the following statement:

GRANT CREATE TABLE
TO travel_agent;

travel_agent ’s privilege domain now contains the CREATE TABLE system

privilege.

Synonym privileges are the same as the privileges for the base object. Granting a privilege on a synonym is
equivalent to granting the privilege on the base object. Similarly, granting a privilege on a base object is
equivalent to granting the privilege on all synonyms for the object. If you grant a user a privilege on a
synonym, the user can use either the synonym name or the base object name in the SQL statement that
exercises the privilege.

The following directory privilege provides secured access to the files stored in the operating system directory
to which the directory object serves as a pointer. The directory object contains the full pathname of the
operating system directory where the files reside. Because the files are actually stored outside the database,
Oracle server processes also need to have appropriate file permissions on the file system server. Granting object
privileges on the directory database object to individual database users, rather than on the operating system,

allows Oracle to enforce security during file operations.

READ Read files in the directory.

The following object type privilege authorizes operations on an object type

EXECUTE Use and reference the specified object and to invoke its methods.

The following indextype privilege authorizes operations on indextypes.

EXECUTE Reference an indextype.

The following operator privilege authorizes operations on user-defined operators.

EXECUTE Reference an operator.

Table 11–4 (Cont.) Object Privileges and the Operations They Authorize

Object Privilege Operations Authorized
11-48 SQL Reference

GRANT
Granting a Role to a Role Example The following statement grants the travel_
agent role to the EXECUTIVE role:

GRANT travel_agent
TO executive;

travel_agent is now granted to executive . executive ’s privilege domain

contains the CREATE TABLE system privilege.

Granting a Role with the Admin Option Example To grant the executive role

with the ADMIN OPTION to THOMAS, issue the following statement:

GRANT executive
TO thomas
WITH ADMIN OPTION;

thomas can now perform the following operations with the executive role:

■ Enable the role and exercise any privileges in the role’s privilege domain,

including the CREATE TABLE system privilege

■ Grant and revoke the role to and from other users

■ Drop the role

Granting an Object Privilege on a Directory Example To grant READ on directory

bfile_dir1 to user scott , with the GRANT OPTION, issue the following

statement:

GRANT READ ON DIRECTORY bfile_dir1 TO scott
WITH GRANT OPTION;

Granting Object Privileges on a Table to a User Example To grant all privileges

on the table bonus to the user jones with the GRANT OPTION, issue the following

statement:

GRANT ALL ON bonus TO jones
WITH GRANT OPTION;

jones can subsequently perform the following operations:

■ Exercise any privilege on the bonus table

■ Grant any privilege on the bonus table to another user or role

Granting Object Privileges on a View Example To grant SELECT and UPDATE
privileges on the view golf_handicap to all users, issue the following statement:
SQL Statements: DROP SEQUENCE to UPDATE 11-49

GRANT
GRANT SELECT, UPDATE
ON golf_handicap TO PUBLIC;

All users can subsequently query and update the view of golf handicaps.

Granting Object Privileges to a Sequence in Another Schema Example To grant

SELECT privilege on the eseq sequence in the schema elly to the user blake ,

issue the following statement:

GRANT SELECT
ON elly.eseq TO blake;

blake can subsequently generate the next value of the sequence with the following

statement:

SELECT elly.eseq.NEXTVAL
FROM DUAL;

Granting Multiple Object Privileges on Individual Columns Example To grant

blake the REFERENCES privilege on the empno column and the UPDATE privilege

on the empno, sal , and comm columns of the emp table in the schema scott , issue

the following statement:

GRANT REFERENCES (empno), UPDATE (empno, sal, comm)
ON scott.emp
TO blake;

blake can subsequently update values of the empno, sal , and comm columns.

blake can also define referential integrity constraints that refer to the empno
column. However, because the GRANT statement lists only these columns, blake
cannot perform operations on any of the other columns of the emp table.

For example, blake can create a table with a constraint:

CREATE TABLE dependent
(dependno NUMBER,
 dependname VARCHAR2(10),
 employee NUMBER
CONSTRAINT in_emp REFERENCES scott.emp(empno));

The constraint in_emp ensures that all dependents in the dependent table

correspond to an employee in the emp table in the schema scott .
11-50 SQL Reference

INSERT
INSERT

Purpose
Use the INSERT statement to add rows to a table, a view’s base table, a partition of

a partitioned table or a subpartition of a composite-partitioned table, or an object

table or an object view’s base table.

Prerequisites
For you to insert rows into a table, the table must be in your own schema or you

must have INSERT privilege on the table.

For you to insert rows into the base table of a view, the owner of the schema

containing the view must have INSERT privilege on the base table. Also, if the view

is in a schema other than your own, you must have INSERT privilege on the view.

If you have the INSERT ANY TABLE system privilege, you can also insert rows into

any table or any view’s base table.

Syntax

INSERT
hint

INTO DML_table_expression_clause
(column

,

) values_clause

subquery
;

SQL Statements: DROP SEQUENCE to UPDATE 11-51

INSERT
DML_table_expression_clause ::=

subquery : see SELECT and subquery on page 11-88.

with_clause ::=

table_collection_expression ::=

values_clause ::=

schema .
table

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

view

snapshot

@ dblink

(subquery
with_clause

)

table_collection_expression

t_alias

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

TABLE (collection_expression)
(+)

VALUES (
expr

subquery

,

)
returning_clause
11-52 SQL Reference

INSERT
returning_clause ::=

Keywords and Parameters

hint
Specify a comment that passes instructions to the optimizer on choosing an

execution plan for the statement.

DML_table_expression_clause

See Also: "Hints" on page 2-67 and Oracle8i Performance Guide and
Reference for the syntax and description of hints

schema Specify the schema containing the table or view. If you omit

schema , Oracle assumes the table or view is in your own schema.

table | view
| subquery

Specify the name of the table or object table, or view or object

view, or the column or columns returned by a subquery, into

which rows are to be inserted. If you specify a view or object view,

Oracle inserts rows into the view’s base table.

If any value to be inserted is a REF to an object table, and if the

object table has a primary key object identifier, then the column

into which you insert the REF must be a REF column with a

referential integrity or SCOPE constraint to the object table.

If table (or the base table of view) contains one or more domain

index columns, this statement executes the appropriate indextype

insert routine.

Issuing an INSERT statement against a table fires any INSERT
triggers defined on the table.

See Also: Oracle8i Data Cartridge Developer’s Guide for more

information on these routines

RETURNING expr

,

INTO data_item

,

SQL Statements: DROP SEQUENCE to UPDATE 11-53

INSERT
Restrictions on the DML_table_expression_clause :

■ You cannot execute this statement if table (or the base table of view) contains

any domain indexes marked LOADING or FAILED .

■ With regard to the ORDER BY clause of the subquery in the DML_query_
expression_clause , ordering is guaranteed only for the rows being inserted,

and only within each extent of the table. Ordering of new rows with respect to

existing rows is not guaranteed.

■ If a view was created using the WITH CHECK OPTION, then you can insert into

the view only rows that satisfy the view’s defining query.

■ If a view was created using a single base table, then you can insert rows into the

view and then retrieve those values using the returning_clause .

■ You cannot insert rows into a view except with INSTEAD OF triggers if the

view’s defining query contains one of the following constructs:

■ A set operator

■ A DISTINCT operator

■ An aggregate or analytic function

■ A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

■ A collection expression in a SELECT list

PARTITION
(partition_
name) |
SUBPARTITION
(subpartition
_name)

Specify the name of the partition or subpartition within table (or

the base table of view) targeted for inserts.

If a row to be inserted does not map into a specified partition or

subpartition, Oracle returns an error.

Restriction: This clause is not valid for object tables or object

views.

dblink Specify a complete or partial name of a database link to a remote

database where the table or view is located. You can insert rows

into a remote table or view only if you are using Oracle’s

distributed functionality.

If you omit dblink , Oracle assumes that the table or view is on

the local database.

See Also: "Syntax for Schema Objects and Parts in SQL

Statements" on page 2-88for information on referring to

database links
11-54 SQL Reference

INSERT
■ A subquery in a SELECT list

■ Joins (with some exceptions). See Oracle8i Administrator’s Guide for details.

■ If you specify an index, index partition, or index subpartition that has been

marked UNUSABLE, the INSERT statement will fail unless the SKIP_
UNUSABLE_INDEXES parameter has been set to TRUE.

with_clause
Use the with_clause to restrict the subquery in one of the following ways:

■ WITH READ ONLY specifies that the subquery cannot be updated.

■ WITH CHECK OPTION specifies that Oracle prohibits any changes to that table

that would produce rows that are not included in the subquery.

table_collection_expression
Use the table_collection_expression to inform Oracle that the collection

value expression should be treated as a table.

t_alias
Specify a correlation name (alias) for the table, view, or subquery to be referenced

elsewhere in the statement.

column
Specify a column of the table or view. In the inserted row, each column in this list is

assigned a value from the values_clause or the subquery.

See Also: ALTER SESSION on page 7-105

See Also: "WITH CHECK OPTION Example" on page 11-108

See Also: "Table Collection Examples" on page 11-115

collection_
expression

Specify a subquery that selects a nested table column from table or

view.

Note: In earlier releases of Oracle, table_collection_
expression was expressed as "THEsubquery ". That usage

is now deprecated.
SQL Statements: DROP SEQUENCE to UPDATE 11-55

INSERT
If you omit one of the table’s columns from this list, the column’s value for the

inserted row is the column’s default value as specified when the table was created.

If any of these columns has a NOT NULL constraint, then Oracle returns an error

indicating that the constraint has been violated and rolls back the INSERT
statement.

If you omit the column list altogether, the values_clause or query must specify

values for all columns in the table.

values_clause
Specify a row of values to be inserted into the table or view. You must specify a

value in the values_clause for each column in the column list. If you omit the

column list, then the values_clause must provide values for every column in the

table.

Restrictions:

■ You cannot initialize an internal LOB attribute in an object with a value other

than empty or null. That is, you cannot use a literal.

■ You cannot insert a BFILE value until you have initialized the BFILE locator to

null or to a directory alias and filename.

See Also: CREATE TABLE on page 10-7 for more information on

default column values

See Also:

■ "Inserting into a BFILE Example" on page 11-61

■ Oracle Call Interface Programmer’s Guide and Oracle8i Application
Developer’s Guide - Fundamentals for information on initializing

BFILEs

■ "Expressions" on page 5-2 and SELECT and subquery on

page 11-88 for syntax of valid expressions

Note: If you insert string literals into a RAW column, during

subsequent queries, Oracle will perform a full table scan rather

than using any index that might exist on the RAW column.
11-56 SQL Reference

INSERT
returning_clause

The returning clause retrieves the rows affected by a DML (INSERT, UPDATE, or

DELETE) statement. You can specify this clause for tables and snapshots, and for

views with a single base table.

■ When operating on a single row, a DML statement with a returning_clause
can retrieve column expressions using the affected row, rowid, and REFs to the

affected row and store them in host variables or PL/SQL variables.

■ When operating on multiple rows, a DML statement with the returning_
clause stores values from expressions, rowids, and REFs involving the

affected rows in bind arrays.

For each expression in the RETURNING list, you must specify a corresponding type-

compatible PL/SQL variable or host variable in the INTO list.

Restrictions:

■ You cannot use this clause with parallel DML or with remote objects.

■ You cannot retrieve LONG types with this clause.

■ You cannot specify this clause for a view on which an INSTEAD OF trigger has

been defined.

subquery
Specify a subquery that returns rows that are inserted into the table. If the subquery

selects no rows, Oracle inserts no rows into the table.

■ When specified without VALUES, the subquery can return zero or more rows,

which are then inserted.

■ When specified with VALUES, the subquery must be a scalar subquery. That is,

it must return exactly one row with one value.

expr Each item in the expr list must be a valid expression syntax.

INTO The INTO clause indicates that the values of the changed rows are

to be stored in the variable(s) specified in data_item list.

data_item Each data_item is a host variable or PL/SQL variable that

stores the retrieved expr value.

See Also: PL/SQL User’s Guide and Reference for information on

using the BULK COLLECT clause to return multiple values to

collection variables
SQL Statements: DROP SEQUENCE to UPDATE 11-57

INSERT
The subquery can refer to any table, view, or snapshot, including the target table of

the INSERT statement. The select list of this subquery must have the same number

of columns as the column list of the INSERT statement. If you omit the column list,

then the subquery must provide values for every column in the table.

You can use subquery in combination with the TO_LOB function to convert the

values in a LONG column to LOB values in another column in the same or another

table. To migrate LONGs to LOBs in a view, you must perform the migration on the

base table, and then add the LOB to the view.

See Also:

■ "Conversion Functions" on page 4-5

■ Oracle8i Migration for a discussion of why and when to copy a

LONG to a LOB

■ Inserting with TO_LOB Example on page 11-60 for a

description of how to use the TO_LOB function

■ SELECT and subquery on page 11-88

Notes:

■ If subquery returns (in part or totally) the equivalent of an

existing materialized view, Oracle may use the materialized

view (for query rewrite) in place of one or more tables specified

in subquery .

See Also: Oracle8i Data Warehousing Guide for more information

on materialized views and query rewrite.

■ If this subquery refers to remote objects, the INSERT operation

can run in parallel as long as the reference does not loop back

to an object on the local database. However, if the subquery in

the DML_query_expression_clause refers to any remote

objects, the INSERT operation will run serially without

notification.

See Also: parallel_clause in CREATE TABLE on

page 10-40
11-58 SQL Reference

INSERT
Examples

Inserting Values Examples The following statement inserts a row into the dept
table:

INSERT INTO dept
 VALUES (50, ’PRODUCTION’, ’SAN FRANCISCO’);

The following statement inserts a row with six columns into the emp table. One of

these columns is assigned NULL and another is assigned a number in scientific

notation:

INSERT INTO emp (empno, ename, job, sal, comm, deptno)
 VALUES (7890, ’JINKS’, ’CLERK’, 1.2E3, NULL, 40);

The following statement has the same effect as the preceding example, but uses a

subquery in the DML_query_expression_clause :

INSERT INTO (SELECT empno, ename, job, sal, comm, deptno FROM emp)
 VALUES (7890, ’JINKS’, ’CLERK’, 1.2E3, NULL, 40);

Inserting Values with a Subquery Example The following statement copies

managers and presidents or employees whose commission exceeds 25% of their

salary into the bonus table:

INSERT INTO bonus
 SELECT ename, job, sal, comm
 FROM emp
 WHERE comm > 0.25 * sal
 OR job IN (’PRESIDENT’, ’MANAGER’);

Inserting into a Remote Database Example The following statement inserts a row

into the accounts table owned by the user scott on the database accessible by

the database link sales :

INSERT INTO scott.accounts@sales (acc_no, acc_name)
 VALUES (5001, ’BOWER’);

Assuming that the accounts table has a balance column, the newly inserted row

is assigned the default value for this column (if one has been defined), because this

INSERT statement does not specify a balance value.

Inserting Sequence Values Example The following statement inserts a new row

containing the next value of the employee sequence into the emp table:
SQL Statements: DROP SEQUENCE to UPDATE 11-59

INSERT
INSERT INTO emp
 VALUES (empseq.nextval, ’LEWIS’, ’CLERK’,
 7902, SYSDATE, 1200, NULL, 20);

Inserting into a Partition Example The following example adds rows from

latest_data into partition oct98 of the sales table:

INSERT INTO sales PARTITION (oct98)
 SELECT * FROM latest_data;

Inserting Using Bind Variables Example The following example returns the

values of the inserted rows into output bind variables :bnd1 and :bnd2 :

INSERT INTO emp VALUES (empseq.nextval, ’LEWIS’, ’CLARK’,
 7902, SYSDATE, 1200, NULL, 20)
 RETURNING sal*12, job INTO :bnd1, :bnd2;

Returning Values into a Bind Array Example The following example returns the

reference value for the inserted row into bind array :1:

INSERT INTO employee
 VALUES (’Kitty Mine’, ’Peaches Fuzz’, ’Meena Katz’)
 RETURNING REF(employee) INTO :1;

Inserting with TO_LOB Example The following example copies LONG data to a

LOB column in the following existing table:

CREATE TABLE long_tab (long_pics LONG RAW);

First you must create a table with a LOB.

CREATE TABLE lob_tab (lob_pics BLOB);

Next, use an INSERT ... SELECT statement to copy the data in all rows for the LONG
column into the newly created LOB column:

INSERT INTO lob_tab (lob_pics)
 SELECT TO_LOB(long_pics) FROM long_tab;

Once you are confident that the migration has been successful, you can drop the

long_pics table. Alternatively, if the table contains other columns, you can simply

drop the LONG column from the table as follows:

ALTER TABLE long_tab DROP COLUMN long_pics;
11-60 SQL Reference

INSERT
Inserting into a BFILE Example When you INSERT or UPDATEa BFILE , you must

initialize it to null or to a directory alias and filename, as shown in the next

example. Assume that the emp table has a number column followed by a BFILE
column:

INSERT INTO emp
 VALUES (1, BFILENAME (’a_dir_alias’, ’a_filename’));
SQL Statements: DROP SEQUENCE to UPDATE 11-61

LOCK TABLE
LOCK TABLE

Purpose
Use the LOCK TABLE statement to lock one or more tables (or table partitions or

subpartitions) in a specified mode. This lock manually overrides automatic locking

and permits or denies access to a table or view by other users for the duration of

your operation.

Some forms of locks can be placed on the same table at the same time. Other locks

allow only one lock per table.

A locked table remains locked until you either commit your transaction or roll it

back, either entirely or to a savepoint before you locked the table.

A lock never prevents other users from querying the table. A query never places a

lock on a table. Readers never block writers and writers never block readers.

Prerequisites
The table or view must be in your own schema or you must have the LOCK ANY
TABLE system privilege, or you must have any object privilege on the table or view.

See Also:

■ Oracle8i Concepts for a complete description of the interaction of

lock modes

■ COMMIT on page 8-133

■ ROLLBACK on page 11-83

■ SAVEPOINT on page 11-86
11-62 SQL Reference

LOCK TABLE
Syntax

Keywords and Parameters

schema
Specify the schema containing the table or view. If you omit schema , Oracle

assumes the table or view is in your own schema.

table / view
Specify the name of the table to be locked. If you specify view , Oracle locks the

view’s base tables.

If you specify PARTITION (partition) or SUBPARTITION (subpartition),

Oracle first acquires an implicit lock on the table. The table lock is the same as the

lock you specify for partition or subpartition , with two exceptions:

■ If you specify a SHARElock for the subpartition, Oracle acquires an implicit ROW
SHARE lock on the table.

■ If you specify an EXCLUSIVE lock for the subpartition, Oracle acquires an

implicit ROW EXCLUSIVE lock on the table.

If you specify PARTITION and table is composite-partitioned, then Oracle

acquires locks on all the subpartitions of partition .

dblink
Specify a database link to a remote Oracle database where the table or view is

located. You can lock tables and views on a remote database only if you are using

LOCK TABLE

schema . table

view

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

IN lockmode MODE
NOWAIT

;

SQL Statements: DROP SEQUENCE to UPDATE 11-63

LOCK TABLE
Oracle’s distributed functionality. All tables locked by a LOCK TABLE statement

must be on the same database.

If you omit dblink , Oracle assumes the table or view is on the local database.

lockmode
Specify one of the following modes:

■ ROW SHARE allows concurrent access to the locked table, but prohibits users

from locking the entire table for exclusive access. ROW SHARE is synonymous

with SHARE UPDATE, which is included for compatibility with earlier versions

of Oracle.

■ ROW EXCLUSIVEis the same as ROW SHARE, but also prohibits locking in SHARE
mode. Row Exclusive locks are automatically obtained when updating,

inserting, or deleting.

■ SHARE UPDATE—see ROW SHARE.

■ SHARE allows concurrent queries but prohibits updates to the locked table.

■ SHARE ROW EXCLUSIVE is used to look at a whole table and to allow others to

look at rows in the table but to prohibit others from locking the table in SHARE
mode or updating rows.

■ EXCLUSIVE allows queries on the locked table but prohibits any other activity

on it.

NOWAIT
Specify NOWAIT if you want Oracle to return control to you immediately if the

specified table (or specified partition or subpartition) is already locked by another

user. In this case, Oracle returns a message indicating that the table, partition, or

subpartition is already locked by another user.

If you omit this clause, Oracle waits until the table is available, locks it, and returns

control to you.

Examples

LOCK TABLE Example The following statement locks the emp table in exclusive

mode, but does not wait if another user already has locked the table:

See Also: "Referring to Objects in Remote Databases" on

page 2-90 for information on specifying database links
11-64 SQL Reference

LOCK TABLE
LOCK TABLE emp
IN EXCLUSIVE MODE
NOWAIT;

The following statement locks the remote accounts table that is accessible through

the database link boston :

LOCK TABLE accounts@boston
IN SHARE MODE;
SQL Statements: DROP SEQUENCE to UPDATE 11-65

NOAUDIT
NOAUDIT

Purpose
Use the NOAUDIT statement to stop auditing previously enabled by the AUDIT
statement.

The NOAUDIT statement must have the same syntax as the previous AUDIT
statement. Further, it reverses the effects only of that particular statement.For

example, suppose one AUDIT statement (statement A) enables auditing for a

specific user. A second (statement B) enables auditing for all users. A NOAUDIT
statement to disable auditing for all users (statement C) reverses statement B.

However, statement C leaves statement A in effect and continues to audit the user

that statement A specified.

Prerequisites
To stop auditing of SQL statements, you must have the AUDIT SYSTEM system

privilege.

To stop auditing of schema objects, you must be the owner of the object on which

you stop auditing or you must have the AUDIT ANY system privilege. In addition, if

the object you chose for auditing is a directory, even if you created it, you must have

the AUDIT ANY system privilege.

Syntax

See Also: AUDIT on page 8-114 for more information on auditing

NOAUDIT

sql_statement_clause

,

schema_object_clause

,
WHENEVER

NOT
SUCCESSFUL

;

11-66 SQL Reference

NOAUDIT
sql_statement_clause ::=

auditing_by_clause ::=

schema_object_clause ::=

auditing_on_clause ::=

statement_option

ALL

,

system_privilege

ALL PRIVILEGES

,
auditing_by_clause

BY

proxy

, ON BEHALF OF
user

,

ANY

user

,

object_option

,

ALL
auditing_on_clause

ON

schema .
object

DIRECTORY directory_name

DEFAULT
SQL Statements: DROP SEQUENCE to UPDATE 11-67

NOAUDIT
Keywords and Parameters

sql_statement_clause

schema_object_clause

statement_
option

Specify the statement option for which auditing is to be stopped.

See Also: Table 8–1 on page 8-120 Table 8–2 on page 8-122 and

for a list of the statement options and the SQL statements they

audit

ALL Specify ALL to stop auditing of all statement options currently

being audited.

system_
privilege

Specify the system privilege for which auditing is to be stopped.

See Also: Table 11–1 on page 11-37 for a list of the system

privileges and the statements they authorize

ALL
PRIVILEGES

Specify ALL PRIVILEGES to stop auditing of all system privileges

currently being audited.

auditing_by_
clause

Use the auditing_by_clause to stop auditing only those SQL

statements issued by particular users. If you omit this clause,

Oracle stops auditing all users’ statements.

BYuser Specify BYuser to stop auditing only for SQL

statements issued by the specified users in their

subsequent sessions. If you omit this clause,

Oracle stops auditing for all users’ statements,

except for the situation described for WHENEVER
SUCCESSFUL.

BYproxy ’ Specify BYproxy to stop auditing only for the

SQL statements issued by the specified proxy, on

behalf of a specific user or any user.

object_
option

Specify the type of operation for which auditing is to be stopped

on the object specified in the ON clause.

See Also: Table 8–3 on page 8-124 for a list of these options

ALL Specify ALL as a shortcut equivalent to specifying all object

options applicable for the type of object.
11-68 SQL Reference

NOAUDIT
Examples

Stop Auditing of SQL Statements Related to Roles Example If you have chosen

auditing for every SQL statement that creates or drops a role, you can stop auditing

of such statements by issuing the following statement:

NOAUDIT ROLE;

Stop Auditing of Updates or Queries on Objects Owned by a Particular User
Example If you have chosen auditing for any statement that queries or updates

any table issued by the users scott and blake , you can stop auditing for scott ’s

queries by issuing the following statement:

NOAUDIT SELECT TABLE BY scott;

auditing_on_
clause

The auditing_on_clause lets you specify the particular

schema object for which auditing is to be stopped.

object Specify the object name of a table, view,

sequence, stored procedure, function, or

package, snapshot, or library. If you do not

qualify object with schema , Oracle assumes

the object is in your own schema.

See Also: AUDIT on page 8-114 for

information on auditing specific schema

objects

DIRECTORY
directory_
name

The DIRECTORY clause lets you specify the

name of the directory on which auditing is to be

stopped.

DEFAULT Specify DEFAULT to remove the specified object

options as default object options for

subsequently created objects.

WHENEVER
[NOT]
SUCCESSFUL

Specify WHENEVER SUCCESSFUL to stop auditing only for SQL

statements and operations on schema objects that complete

successfully.

Specify NOT to stop auditing only for statements and operations

that result in Oracle errors.

If you omit this clause, Oracle stops auditing for all statements or

operations, regardless of success or failure.
SQL Statements: DROP SEQUENCE to UPDATE 11-69

NOAUDIT
The above statement stops auditing only scott ’s queries, so Oracle continues to

audit blake ’s queries and updates as well as scott ’s updates.

Stop Auditing of Statements Authorized by a Particular Object Privilege
Example To stop auditing on all statements that are authorized by DELETE ANY
TABLE system privilege, issue the following statement:

NOAUDIT DELETE ANY TABLE;

Stop Auditing of Queries on a Particular Object Example If you have chosen

auditing for every SQL statement that queries the emp table in the schema scott ,

you can stop auditing for such queries by issuing the following statement:

NOAUDIT SELECT
 ON scott.emp;

Stop Auditing of Queries that Complete Successfully Example You can stop

auditing for queries that complete successfully by issuing the following statement:

NOAUDIT SELECT
 ON scott.emp
 WHENEVER SUCCESSFUL;

This statement stops auditing only for successful queries. Oracle continues to audit

queries resulting in Oracle errors.
11-70 SQL Reference

RENAME
RENAME

Purpose
Use the RENAME statement to rename a table, view, sequence, or private synonym

for a table, view, or sequence.

■ Oracle automatically transfers integrity constraints, indexes, and grants on the

old object to the new object.

■ Oracle invalidates all objects that depend on the renamed object, such as views,

synonyms, and stored procedures and functions that refer to a renamed table.

Do not use this statement to rename public synonyms. Instead, drop the public

synonym and then create another public synonym with the new name.

Prerequisites
The object must be in your own schema.

Syntax

Keywords and Parameters

old
Specify the name of an existing table, view, sequence, or private synonym.

new
Specify the new name to be given to the existing object. The new name must not

already be used by another schema object in the same namespace and must follow

the rules for naming schema objects.

See Also: CREATE SYNONYM on page 10-3 and DROP

SYNONYM on page 11-5

RENAME old TO new ;
SQL Statements: DROP SEQUENCE to UPDATE 11-71

RENAME
Example

Rename a Database Object Example To change the name of table dept to emp_
dept , issue the following statement:

RENAME dept TO emp_dept;

You cannot use this statement directly to rename columns. However, you can

rename a column using this statement together with the CREATE TABLE statement

with ASsubquery . The following statements re-create the table static , renaming

a column from oldname to newname:

CREATE TABLE temporary (newname, col2, col3)
 AS SELECT oldname, col2, col3 FROM static;

DROP TABLE static;

RENAME temporary TO static;

See Also: "Schema Object Naming Rules" on page 2-83
11-72 SQL Reference

REVOKE
REVOKE

Purpose
Use the REVOKE statement to:

■ Revoke system privileges from users and roles

■ Revoke roles from users and roles

■ Revoke object privileges for a particular object from users and roles

Prerequisites
To revoke a system privilege or role, you must have been granted the privilege

with the ADMIN OPTION.

To revoke a role, you must have been granted the role with the ADMIN OPTION. You

can revoke any role if you have the GRANT ANY ROLE system privilege.

To revoke an object privilege, you must have previously granted the object

privileges to each user and role.

The REVOKE statement can revoke only privileges and roles that were previously

granted directly with a GRANT statement. You cannot use this statement to revoke:

■ Privileges or roles not granted to the revokee

■ Roles or object privileges granted through the operating system

■ Privileges or roles granted to the revokee through roles

See Also:

■ GRANT on page 11-31 for information on granting system

privileges and roles

■ Table 11–3 on page 11-46 for a summary of the object privileges

for each type of object
SQL Statements: DROP SEQUENCE to UPDATE 11-73

REVOKE
Syntax

revoke_system_privileges_and_roles_clause ::=

revoke_object_privileges_clause ::=

grantee_clause ::=

REVOKE
revoke_system_privileges_and_roles_clause

revoke_object_privileges_clause

,

;

system_privilege

role

ALL PRIVILEGES

,

FROM grantee_clause

object_privilege

ALL
PRIVILEGES

(column

,

)

,

ON object_clause FROM grantee_clause
CASCADE CONSTRAINTS FORCE

user

role

PUBLIC

,

11-74 SQL Reference

REVOKE
object_clause ::=

Keywords and Parameters

revoke_system_privileges_and_roles_clause

system_
privilege

Specify the system privilege to be revoked.

See Also: Table 11–1 on page 11-37 for a list of the system

privileges

■ If you revoke a privilege from a user, Oracle removes the

privilege from the user’s privilege domain. Effective

immediately, the user cannot exercise the privilege.

■ If you revoke a privilege from a role, Oracle removes the

privilege from the role’s privilege domain. Effective

immediately, users with the role enabled cannot exercise the

privilege. Also, other users who have been granted the role

and subsequently enable the role cannot exercise the privilege.

■ If you revoke a privilege from PUBLIC, Oracle removes the

privilege from the privilege domain of each user who has

been granted the privilege through PUBLIC. Effective

immediately, such users can no longer exercise the privilege.

However, the privilege is not revoked from users who have

been granted the privilege directly or through roles.

Restriction: A system privilege cannot appear more than once in

the list of privileges to be revoked.

Oracle provides a shortcut for specifying all system privileges at

once:

■ ALL PRIVILEGES: Specify ALL PRIVILEGES to revoke all the

system privileges listed in Table 11–1 on page 11-37.

schema . object

DIRECTORY directory_name

JAVA
SOURCE

RESOURCE

schema .
object
SQL Statements: DROP SEQUENCE to UPDATE 11-75

REVOKE
revoke_object_privileges_clause

role Specify the role to be revoked.

■ If you revoke a role from a user, Oracle makes the role

unavailable to the user. If the role is currently enabled for the

user, the user can continue to exercise the privileges in the

role’s privilege domain as long as it remains enabled.

However, the user cannot subsequently enable the role.

■ If you revoke a role from another role, Oracle removes the

revoked role’s privilege domain from the revokee role’s

privilege domain. Users who have been granted and have

enabled the revokee role can continue to exercise the

privileges in the revoked role’s privilege domain as long as

the revokee role remains enabled. However, other users who

have been granted the revokee role and subsequently enable it

cannot exercise the privileges in the privilege domain of the

revoked role.

■ If you revoke a role from PUBLIC, Oracle makes the role

unavailable to all users who have been granted the role

through PUBLIC. Any user who has enabled the role can

continue to exercise the privileges in its privilege domain as

long as it remains enabled. However, users cannot

subsequently enable the role. The role is not revoked from

users who have been granted the role directly or through

other roles.

Restriction: A system role cannot appear more than once in the

list of roles to be revoked.

See Also: Table 11–2 on page 11-45 for a list of the roles

predefined by Oracle

grantee_
clause

FROMgrantee_clause identifies users or roles from which the

system privilege, role, or object privilege is to be revoked.

PUBLIC Specify PUBLIC to revoke the privileges or roles

from all users.

object_
privilege

Specify the object privilege to be revoked. You can substitute any

of the following values: ALTER, DELETE, EXECUTE, INDEX,

INSERT, READ, REFERENCES, SELECT, UPDATE.
11-76 SQL Reference

REVOKE
Note: Each privilege authorizes some operation. By revoking

a privilege, you prevent the revokee from performing that

operation. However, multiple users may grant the same

privilege to the same user, role, or PUBLIC. To remove the

privilege from the grantee’s privilege domain, all grantors

must revoke the privilege. If even one grantor does not revoke

the privilege, the grantee can still exercise the privilege by

virtue of that grant.

■ If you revoke a privilege from a user, Oracle removes the

privilege from the user’s privilege domain. Effective

immediately, the user cannot exercise the privilege.

- If that user has granted that privilege to other users or roles,

Oracle also revokes the privilege from those other users or

roles.

- If that user’s schema contains a procedure, function, or

package that contains SQL statements that exercise the

privilege, the procedure, function, or package can no longer

be executed.

- If that user’s schema contains a view on that object, Oracle

invalidates the view.

- If you revoke the REFERENCES privilege from a user who

has exercised the privilege to define referential integrity

constraints, you must specify the CASCADE CONSTRAINTS
clause.

■ If you revoke a privilege from a role, Oracle removes the

privilege from the role’s privilege domain. Effective

immediately, users with the role enabled cannot exercise the

privilege. Other users who have been granted the role cannot

exercise the privilege after enabling the role.

■ If you revoke a privilege from PUBLIC, Oracle removes the

privilege from the privilege domain of each user who has

been granted the privilege through PUBLIC. Effective

immediately, all such users are restricted from exercising the

privilege. However, the privilege is not revoked from users

who have been granted the privilege directly or through roles.
SQL Statements: DROP SEQUENCE to UPDATE 11-77

REVOKE
Restriction: A privilege cannot appear more than once in the list

of privileges to be revoked. A user, a role, or PUBLIC cannot

appear more than once in the FROM clause.

ALL
[PRIVILEGES]

Specify ALL to revoke all object privileges that you have granted

to the revokee. (The keyword PRIVILEGES is optional.)

Note: If no privileges have been granted on the object, Oracle

takes no action and does not return an error.

CASCADE
CONSTRAINTS

This clause is relevant only if you revoke the REFERENCES
privilege or ALL [PRIVILEGES]. It drops any referential integrity

constraints that the revokee has defined using the REFERENCES
privilege (which might have been granted either explicitly or

implicitly through a grant of ALL [PRIVILEGES]).

FORCE Specify FORCE to revoke the EXECUTE object privilege on user-

defined type objects with table or type dependencies. You must

use FORCE to revoke the EXECUTE object privilege on user-

defined type objects with table dependencies.

If you specify FORCE, all privileges will be revoked, but all

dependent objects are marked INVALID , data in dependent tables

becomes inaccessible, and all dependent function-based indexes

are marked UNUSABLE. (Regranting the necessary type privilege

will revalidate the table.)

See Also: Oracle8i Concepts for detailed information about

type dependencies and user-defined object privileges

object_
clause

ONobject_clause identifies the objects on which privileges are

to be revoked.

object Specify the object on which the object privileges

are to be revoked. This object can be:
11-78 SQL Reference

REVOKE
Examples

Revoke a System Privilege from Users Example The following statement revokes

the DROP ANY TABLE system privilege from the users bill and mary :

REVOKE DROP ANY TABLE
 FROM bill, mary;

■ A table, view, sequence, procedure, stored

function, or package, materialized view/

snapshot

■ A synonym for a table, view, sequence,

procedure, stored function, package, or

materialized view/snapshot

■ A library, indextype, or user-defined

operator

If you do not qualify object with schema, Oracle

assumes the object is in your own schema.

If you revoke the SELECT object privilege (with

or without the GRANT OPTION) on the

containing table or snapshot of a materialized

view, the materialized view will be invalidated.

If you revoke the SELECT object privilege (with

or without the GRANT OPTION) on any of the

master tables of a materialized view, both the

view and its containing table or materialized

view will be invalidated.

DIRECTORY
directory_
name

Specify the directory object on which privileges

are to be revoked. You cannot qualify

directory_name with schema. The object must

be a directory.

See Also: CREATE DIRECTORY on

page 9-40

JAVA SOURCE|
RESOURCE

The JAVA clause lets you specify a Java source

or resource schema object on which privileges

are to be revoked.
SQL Statements: DROP SEQUENCE to UPDATE 11-79

REVOKE
bill and mary can no longer drop tables in schemas other than their own.

Revoke a Role from a User Example The following statement revokes the role

controller from the user hanson :

REVOKE controller
 FROM hanson;

hanson can no longer enable the controller role.

Revoke a System Privilege from a Role Example The following statement revokes

the CREATE TABLESPACE system privilege from the controller role:

REVOKE CREATE TABLESPACE
 FROM controller;

Enabling the controller role no longer allows users to create tablespaces.

Revoke a Role from a Role Example To revoke the role vp from the role ceo , issue

the following statement:

REVOKE vp
 FROM ceo;

VP is no longer granted to ceo .

Revoke an Object Privilege from a User Example You can grant DELETE, INSERT,

SELECT, and UPDATE privileges on the table bonus to the user pedro with the

following statement:

GRANT ALL
 ON bonus TO pedro;

To revoke the DELETE privilege on bonus from pedro , issue the following

statement:

REVOKE DELETE
 ON bonus FROM pedro;

Revoke All Object Privileges from a User Example To revoke the remaining

privileges on bonus that you granted to pedro , issue the following statement:

REVOKE ALL
 ON bonus FROM pedro;
11-80 SQL Reference

REVOKE
Revoke Object Privileges from PUBLIC Example You can grant SELECT and

UPDATE privileges on the view reports to all users by granting the privileges to

the role PUBLIC:

GRANT SELECT, UPDATE
 ON reports TO public;

The following statement revokes UPDATE privilege on reports from all users:

REVOKE UPDATE
 ON reports FROM public;

Users can no longer update the reports view, although users can still query it.

However, if you have also granted the UPDATE privilege on reports to any users,

either directly or through roles, these users retain the privilege.

Revoke an Object Privilege on a Sequence from a User Example You can grant

the user blake the SELECT privilege on the eseq sequence in the schema elly
with the following statement:

GRANT SELECT
 ON elly.eseq TO blake;

To revoke the SELECTprivilege on eseq from blake , issue the following statement:

REVOKE SELECT
 ON elly.eseq FROM blake;

However, if the user elly has also granted SELECT privilege on eseq to blake ,

blake can still use eseq by virtue of elly ’s grant.

Revoke an Object Privilege with CASCADE CONSTRAINTS Example You can

grant blake the privileges REFERENCES and UPDATE on the emp table in the

schema scott with the following statement:

GRANT REFERENCES, UPDATE
 ON scott.emp TO blake;

blake can exercise the REFERENCES privilege to define a constraint in his own

dependent table that refers to the emp table in the schema scott :

CREATE TABLE dependent
(dependno NUMBER,
 dependname VARCHAR2(10),
 employee NUMBER
 CONSTRAINT in_emp REFERENCES scott.emp(ename));
SQL Statements: DROP SEQUENCE to UPDATE 11-81

REVOKE
You can revoke the REFERENCES privilege on scott.emp from blake , by issuing

the following statement that contains the CASCADE CONSTRAINTS clause:

REVOKE REFERENCES
 ON scott.emp
 FROM blake
 CASCADE CONSTRAINTS;

Revoking blake ’s REFERENCESprivilege on scott.emp causes Oracle to drop the

in_emp constraint, because blake required the privilege to define the constraint.

However, if blake has also been granted the REFERENCES privilege on scott.emp
by a user other than you, Oracle does not drop the constraint. blake still has the

privilege necessary for the constraint by virtue of the other user’s grant.

Revoke an Object Privilege on a Directory from a User Example You can revoke

READ privilege on directory bfile_dir1 from sue , by issuing the following

statement:

REVOKE READ ON DIRECTORY bfile_dir1 FROM sue;
11-82 SQL Reference

ROLLBACK
ROLLBACK

Purpose
Use the ROLLBACK statement to undo work done in the current transaction, or to

manually undo the work done by an in-doubt distributed transaction.

Prerequisites
To roll back your current transaction, no privileges are necessary.

To manually roll back an in-doubt distributed transaction that you originally

committed, you must have the FORCE TRANSACTIONsystem privilege. To manually

roll back an in-doubt distributed transaction originally committed by another user,

you must have the FORCE ANY TRANSACTION system privilege.

Note: Oracle recommends that you explicitly end transactions in

application programs using either a COMMIT or ROLLBACK
statement. If you do not explicitly commit the transaction and the

program terminates abnormally, Oracle rolls back the last

uncommitted transaction.

See Also:

■ Oracle8i Concepts for information on transactions

■ Oracle8i Distributed Database Systems for information on

distributed transactions

■ SET TRANSACTION on page 11-125 for information on setting

characteristics of the current transaction

■ COMMIT on page 8-133

■ SAVEPOINT on page 11-86
SQL Statements: DROP SEQUENCE to UPDATE 11-83

ROLLBACK
Syntax

Keywords and Parameters

WORK
The keyword WORK is optional and is provided for ANSI compatibility.

TO SAVEPOINTsavepoint
Specify the savepoint to which you want to roll back the current transaction. If you

omit this clause, the ROLLBACK statement rolls back the entire transaction.

Using ROLLBACKwithout the TO SAVEPOINT clause performs the following

operations:

■ Ends the transaction

■ Undoes all changes in the current transaction

■ Erases all savepoints in the transaction

■ Releases the transaction’s locks

Using ROLLBACKwith the TO SAVEPOINT clause performs the following

operations:

■ Rolls back just the portion of the transaction after the savepoint.

■ Erases all savepoints created after that savepoint. The named savepoint is

retained, so you can roll back to the same savepoint multiple times. Prior

savepoints are also retained.

■ Releases all table and row locks acquired since the savepoint. Other transactions

that have requested access to rows locked after the savepoint must continue to

wait until the transaction is committed or rolled back. Other transactions that

have not already requested the rows can request and access the rows

immediately.

See Also: SAVEPOINT on page 11-86

ROLLBACK
WORK

TO
SAVEPOINT

savepoint

FORCE ’ text ’
;

11-84 SQL Reference

ROLLBACK
Restriction: You cannot manually roll back an in-doubt transaction to a savepoint.

FORCE
Specify FORCE to manually roll back an in-doubt distributed transaction. The

transaction is identified by the ’text ’ containing its local or global transaction ID.

To find the IDs of such transactions, query the data dictionary view DBA_2PC_
PENDING.

A ROLLBACK statement with a FORCE clause rolls back only the specified

transaction. Such a statement does not affect your current transaction.

Restriction: ROLLBACK statements with the FORCE clause are not supported in PL/

SQL.

Examples
The following statement rolls back your entire current transaction:

ROLLBACK;

The following statement rolls back your current transaction to savepoint sp5 :

ROLLBACK TO SAVEPOINT sp5;

The following statement manually rolls back an in-doubt distributed transaction:

ROLLBACK WORK
 FORCE ’25.32.87’;

See Also: Oracle8i Distributed Database Systems for more

information on distributed transactions and rolling back in-doubt

transactions
SQL Statements: DROP SEQUENCE to UPDATE 11-85

SAVEPOINT
SAVEPOINT

Purpose
Use the SAVEPOINT statement to identify a point in a transaction to which you can

later roll back.

Prerequisites
None.

Syntax

Keywords and Parameters

savepoint
Specify the name of the savepoint to be created.

Savepoint names must be distinct within a given transaction. If you create a second

savepoint with the same identifier as an earlier savepoint, the earlier savepoint is

erased. After a savepoint has been created, you can either continue processing,

commit your work, roll back the entire transaction, or roll back to the savepoint.

Example
To update blake ’s and clark ’s salary, check that the total company salary does

not exceed 27,000, then reenter clark’s salary, enter:

UPDATE emp
 SET sal = 2000

See Also:

■ Oracle8i Concepts for information on savepoints.

■ ROLLBACK on page 11-83 for information on rolling back

transactions

■ SET TRANSACTION on page 11-125 for information on setting

characteristics of the current transaction

SAVEPOINT savepoint ;
11-86 SQL Reference

SAVEPOINT
 WHERE ename = ’BLAKE’;
SAVEPOINT blake_sal;

UPDATE emp
 SET sal = 1500
 WHERE ename = ’CLARK’;
SAVEPOINT clark_sal;

SELECT SUM(sal) FROM emp;

ROLLBACK TO SAVEPOINT blake_sal;

UPDATE emp
 SET sal = 1200
 WHERE ename = ’CLARK’;

COMMIT;
SQL Statements: DROP SEQUENCE to UPDATE 11-87

SELECT and subquery
SELECT and subquery

Purpose
Use a SELECT statement or subquery to retrieve data from one or more tables,

object tables, views, object views, or materialized views.

Prerequisites
For you to select data from a table or materialized view, the table or materialized

view must be in your own schema or you must have the SELECT privilege on the

table or materialized view.

For you to select rows from the base tables of a view,

■ You must have the SELECT privilege on the view, and

■ Whoever owns the schema containing the view must have the SELECT
privilege on the base tables.

The SELECT ANY TABLE system privilege also allows you to select data from any

table or any materialized view or any view’s base table.

Note: If the result (or part of the result) of a SELECT statement is

equivalent to an existing materialized view, Oracle may use the

materialized view in place of one or more tables specified in the

SELECT statement. This substitution is called query rewrite, and

takes place only if cost optimization is enabled and the QUERY_
REWRITE_ENABLED parameter is set to TRUE. To determine

whether query write has occurred, use the EXPLAIN PLAN
statement.

See Also:

■ "Queries and Subqueries" on page 5-21 for general information

on queries and subqueries

■ Oracle8i Data Warehousing Guide for more information on

materialized views and query rewrite

■ EXPLAIN PLAN on page 11-23
11-88 SQL Reference

SELECT and subquery
Syntax

subquery ::=

subquery
for_update_clause

;

SELECT
hint

DISTINCT

UNIQUE

ALL

*

schema .
table

view

snapshot

.*

expr

AS
c_alias

,

FROM query_table_expression_clause

,
where_clause

hierarchical_query

group_by_clause

UNION
ALL

INTERSECT

MINUS

(subquery)

order_by_clause
SQL Statements: DROP SEQUENCE to UPDATE 11-89

SELECT and subquery
query_table_expression_clause ::=

sample_clause ::=

with_clause ::=

table_collection_expression ::=

schema .
table

PARTITION (partition)

SUBPARTITION (subpartition) sample_clause

@ dblink

view

snapshot

@ dblink

(subquery
with_clause

)

table_collection_expression

t_alias

SAMPLE
BLOCK

(sample_percent)

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

TABLE (collection_expression)
(+)
11-90 SQL Reference

SELECT and subquery
where_clause ::=

outer_join ::=

hierarchical_query_clause ::=

group_by_clause ::=

order_by_clause ::=

WHERE
condition

outer_join

table1 . column
= table2 . column (+)

(+) = table2 . column

START WITH condition
CONNECT BY condition

GROUP BY

expr

,

expr

,

CUBE

ROLLUP
(expr

,

)

HAVING condition

ORDER BY

expr

position

c_alias

ASC

DESC

NULLS FIRST

NULLS LAST

,

SQL Statements: DROP SEQUENCE to UPDATE 11-91

SELECT and subquery
for_update_clause ::=

Keywords and Parameters

hint
Specify a comment that passes instructions to the optimizer on choosing an

execution plan for the statement.

DISTINCT | UNIQUE
Specify DISTINCT or UNIQUE if you want Oracle to return only one copy of each

set of duplicate rows selected (these two keywords are synonymous). Duplicate

rows are those with matching values for each expression in the select list.

Restrictions:

■ When you specify DISTINCT or UNIQUE, the total number of bytes in all select

list expressions is limited to the size of a data block minus some overhead. This

size is specified by the initialization parameter DB_BLOCK_SIZE.

■ You cannot specify DISTINCT if the FROM clause contains LOB columns.

ALL
Specify ALL if you want Oracle to return all rows selected, including all copies of

duplicates. The default is ALL.

*
Specify the asterisk to select all columns from all tables, views, or materialized

views listed in the FROM clause.

See Also: "Hints" on page 2-67 and Oracle8i Performance Guide and
Reference for the syntax and description of hints

FOR UPDATE
OF

schema . table

view
.

column

,

NOWAIT
11-92 SQL Reference

SELECT and subquery
schema
Specify the schema containing the selected table, view, or materialized view. If you

omit schema , Oracle assumes the table, view, or materialized view is in your own

schema.

table .* |view .* | snapshot .*
Specify the object name followed by a period and the asterisk to select all columns

from the specified table, view, or materialized view. You can use the schema

qualifier to select from a table, view, or materialized view in a schema other than

your own. A query that selects rows from two or more tables, views, or materialized

views is a join.

expr
Specify an expression representing the information you want to select. A column

name in this list can be qualified with schema only if the table, view, or

materialized view containing the column is qualified with schema in the FROM
clause.

Restrictions:

■ If you also specify a group_by_clause in this statement, this select list can

contain only the following types of expressions:

■ Constants

■ Aggregate functions and the functions USER, UID , and SYSDATE

■ Expressions identical to those in the group_by_clause

Note: If you are selecting from a table (that is, you specify a table

in the FROM clause rather than a view or a materialized view),

columns that have been marked as UNUSED by the ALTER TABLE
SET UNUSED statement are not selected.

See Also: ALTER TABLE on page 8-2

See Also: "Joins" on page 5-24

See Also: "Expressions" on page 5-2 for the syntax of expr
SQL Statements: DROP SEQUENCE to UPDATE 11-93

SELECT and subquery
■ Expressions involving the above expressions that evaluate to the same

value for all rows in a group

■ You can select a rowid from a join view only if the join has one and only one

key-preserved table. The rowid of that table becomes the rowid of the view. For

information on key-preserved tables, see Oracle8i Administrator’s Guide.

■ If two or more tables have some column names in common, you must qualify

column names with names of tables.

FROM Clause

c_alias Specify a different name (alias) for the column expression. Oracle

will use this alias in the column heading. The AS keyword is

optional. The alias effectively renames the select list item for the

duration of the query. The alias can be used in the order_by_
clause , but not other clauses in the query.

query_table_
expression_
clause

The FROM clause lets you specify the table, view, materialized

view, or partition from which data is selected, or a subquery that

specifies the objects from which data is selected.

PARTITION
(partition)

SUBPARTITION
(subpartition)

Specify the partition or subpartition from which

you want to retrieve data. The partition
parameter may be the name of the partition

within table from which to retrieve data or a

more complicated predicate restricting retrieval

to just one partition of the table.

dblink Specify the complete or partial name for a

database link to a remote database where the

table, view, or materialized view is located. This

database need not be an Oracle database.

See Also:

- "Referring to Objects in Remote Databases"

on page 2-90 for more information on

referring to database links

- "Distributed Queries" on page 5-29for more

information about distributed queries
11-94 SQL Reference

SELECT and subquery
sample_clause

The sample_clause lets you instruct Oracle to select from a random sample of rows

from the table, rather than from the entire table.

Restrictions on the sample_clause:

■ You can specify SAMPLE only in a query that selects from a single table. Joins

are not supported. However, you can achieve the same results by using a

CREATE TABLE ... AS SELECT query to materialize a sample of an underlying

table and then rewrite the original query to refer to the newly created table

sample. If you wish, you can write additional queries to materialize samples for

other tables.

■ When you specify SAMPLE, Oracle automatically uses cost-based optimization.

Rule-based optimization is not supported with this clause.

If you omit dblink , Oracle assumes that the

table, view, or materialized view is on the local

database.

Restriction: You cannot query a user-defined

type or an object REF on a remote table.

table , view ,
snapshot

Specify the name of a table, view, or

materialized view from which data is selected.

"Materialized view" is synonymous with

"snapshot".

BLOCK BLOCK instructs Oracle to perform random block sampling

instead of random row sampling.

See Also: Oracle8i Concepts for a discussion of the difference

sample_
percent

sample_percent is a number specifying the percentage of the

total row or block count to be included in the sample. The value

must be in the range .000001 to (but not including) 100.

See Also: "SAMPLE Examples" on page 11-104
SQL Statements: DROP SEQUENCE to UPDATE 11-95

SELECT and subquery
with_clause
The with_clause lets you restrict the subquery in one of the following ways:

table_collection_expression

The table_collection_expression lets you inform Oracle that the collection

value expression should be treated as a table for purposes of query and DML

operations. The collection_expression can be a subquery, a column, a CAST
or DECODEexpression, a function, or a collection constructor. Regardless of its form,

it must return a collection value (that is, a value whose type is nested table or

varray). This process of extracting the elements of a collection is called collection
unnesting.

 The collection_expression can reference columns of tables defined to its left

in the FROM clause. This is called left correlation. Left correlation can occur only in

table_collection_expression . Other subqueries cannot contains references

to columns defined outside the subquery.

The optional "(+)" lets you specify that table_collection_expression should

return a row with all fields set to NULL if the collection is null or empty. The "(+)" is

valid only if collection_expression uses left correlation. The result is similar

to that of an outer join.

Caution: The use of statistically incorrect assumptions when

using this feature can lead to incorrect or undesirable results. Refer

to Oracle8i Concepts for more information on using the sample_
clause .

WITH READ
ONLY

Specify WITH READ ONLY to indicate that the subquery cannot be

updated.

WITH CHECK
OPTION

Specify WITH CHECK OPTION to indicate that, if the subquery is

used in place of a table in an INSERT, UPDATE, or DELETE
statement, Oracle prohibits any changes to that table that would

produce rows that are not included in the subquery.

See Also: WITH CHECK OPTION Example on page 11-108

Note: In earlier releases of Oracle, when collection_
expression was a subquery, table_collection_expr was

expressed as "THEsubquery ". That usage is now deprecated.
11-96 SQL Reference

SELECT and subquery
t_alias
Specify a correlation name (alias) for the table, view, materialized view, or

subquery for evaluating the query. Correlation names are most often used in a

correlated query. Other references to the table, view, or materialized view

throughout the query must refer to this alias.

where_clause
The where_clause lets you restrict the rows selected to those that satisfy one or

more conditions.

■ condition can be any valid SQL condition.

■ outer_join applies only if the query_table_expression_clause
specifies more than one table. This special form of condition requires Oracle to

return all the rows that satisfy the condition, as well as all the rows from one of

the tables for which no rows of the other table satisfy the condition.

If one of the elements in the query_table_expression_clause is actually a

nested table or some other form of collection, you specify the outer-join syntax

in the table_collection_expression rather than in the where_clause.

If you omit this clause, Oracle returns all rows from the tables, views, or

materialized views in the FROM clause.

See Also:

■ "Outer Joins" on page 5-25

■ "Collection Unnesting Examples" on page 11-115

Note: This alias is required if the query_table_expression_
clause references any object type attributes or object type

methods.

See Also: the syntax description of condition in "Expressions" on

page 5-2

See Also: "Outer Joins" on page 5-25 for more information,

including rules and restrictions that apply to outer joins
SQL Statements: DROP SEQUENCE to UPDATE 11-97

SELECT and subquery
hierarchical_query_clause
The hierarchical_query_clause lets you select rows in a hierarchical order.

For a discussion of hierarchical queries, see "Hierarchical Queries" on page 5-22.

The preceding where_clause , if specified, restricts the rows returned by the query

without affecting other rows of the hierarchy.

SELECT statements that contain hierarchical queries can contain the LEVEL
pseudocolumn. LEVEL returns the value 1 for a root node, 2 for a child node of a

root node, 3 for a grandchild, etc. The number of levels returned by a hierarchical

query may be limited by available user memory.

Restrictions: If you specify a hierarchical query:

■ The same statement cannot also perform a join.

■ The same statement cannot also select data from a view whose query performs

a join.

■ If you also specify the order_by_clause , it takes precedence over any

ordering specified by the hierarchical query.

Note: If this clause refers to a DATE column of a partitioned table

or index, Oracle performs partition pruning only if (1) you created

the table or index partitions by fully specifying the year using the

TO_DATE function with a 4-digit format mask, and (2) you specify

the date in the query’s where_clause using the TO_DATE
function and either a 2- or 4-digit format mask.

See Also: the "PARTITION Example" on page 11-104

See Also:

■ "Pseudocolumns" on page 2-59 for more information on LEVEL

■ "Hierarchical Queries" on page 5-22 for general information on

hierarchical queries

START WITH
condition

Specify a condition that identifies the row(s) to be used as the

root(s) of a hierarchical query. Oracle uses as root(s) all rows that

satisfy this condition. If you omit this clause, Oracle uses all rows

in the table as root rows. The START WITHcondition can

contain a subquery.
11-98 SQL Reference

SELECT and subquery
group_by_clause
Use the group_by_clause to group the selected rows based on the value of

expr (s) for each row, and returns a single row of summary information for each

group. If this clause contains CUBE or ROLLUP extensions, then superaggregate

groupings are produced in addition to the regular groupings.

Expressions in the group_by_clause can contain any columns in the tables,

views, and materialized views in the FROM clause, regardless of whether the

columns appear in the select list.

Restrictions:

■ The group_by_clause can contain no more than 255 expressions.

■ You cannot specify LOB columns, nested tables, or varrays as part of expr.

■ The total number of bytes in all expressions in the group_by_clause is

limited to the size of a data block (specified by the initialization parameter DB_
BLOCK_SIZE) minus some overhead.

■ If the group_by_clause references any object columns, the query will not be

parallelized.

CONNECT BY
condition

Specify a condition that identifies the relationship between parent

rows and child rows of the hierarchy. condition can be any

condition as described in "Conditions" on page 5-15. However,

some part of the condition must use the PRIORoperator to refer to

the parent row. The part of the condition containing the PRIOR
operator must have one of the following forms:

■ PRIOR expr comparison_operator expr

■ expr comparison_operator PRIOR expr

Restriction: The CONNECT BY condition cannot contain a

subquery.

ROLLUP ROLLUPis an extension to the group_by_clause that groups the

selected rows based on the values of the first n, n-1, n-2, ... 0

expressions for each row, and returns a single row of summary for

each group. You can use the ROLLUP operation to produce

subtotal values.
SQL Statements: DROP SEQUENCE to UPDATE 11-99

SELECT and subquery
For example, given three expressions in the ROLLUP clause of the

group_by_clause , the operation results in n+1 = 3+1 = 4

groupings.

Rows based on the values of the first ’n’ expressions are called

regular rows, and the others are called superaggregate rows.

See Also:

- GROUPING on page 4-41 for an example

- Oracle8i Data Warehousing Guide

CUBE CUBE is an extension to the group_by_clause that groups the

selected rows based on the values of all possible combinations of

expressions for each row, and returns a single row of summary

information for each group. You can use the CUBE operation to

produce cross-tabulation values.

For example, given three expressions in the CUBE clause of the

group_by_clause , the operation results in 2n = 23 = 8

groupings. Rows based on the values of ’n’ expressions are called

regular rows, and the rest are called superaggregate rows.

See Also:

- GROUPING on page 4-41

- "CUBE Example" on page 11-105 for an example

- Oracle8i Data Warehousing Guide.

HAVING Use the HAVING clause to restrict the groups of rows returned to

those groups for which the specified condition is TRUE. If you

omit this clause, Oracle returns summary rows for all groups.

Specify GROUP BY and HAVING after the where_clause and

CONNECT BY clause. If you specify both GROUP BY and HAVING,

they can appear in either order.

See Also: the syntax description of expr in "Expressions" on page 5-2 and the

syntax description of condition in "Conditions" on page 5-15
11-100 SQL Reference

SELECT and subquery
Set Operators

Restrictions:

■ These set operators are not valid on columns of type BLOB, CLOB, BFILE ,

varray, or nested table.

■ The UNION, INTERSECT, and MINUS operators are not valid on LONG columns.

■ To reference a column, you must use an alias to name the column.

■ You cannot also specify the for_update_clause with these set operators.

■ You cannot specify the order_by_clause in the subquery of these

operators.

■ You cannot use these operators in SELECT statements containing TABLE
collection expressions.

■ The total number of bytes in all select list expressions of a component query is

limited to the size of a data block (specified by the initialization parameter DB_
BLOCK_SIZE) minus some overhead.

UNION |

UNION ALL |
INTERSECT |
MINUS

These set operators combine the rows returned by two SELECT
statements into a single result. The number and datatypes of the

columns selected by each component query must be the same, but

the column lengths can be different.

If you combine more than two queries with set operators, Oracle

evaluates adjacent queries from left to right. You can use

parentheses to specify a different order of evaluation.

See Also: "Set Operators: UNION [ALL], INTERSECT,

MINUS" on page 3-12 for information on these operators

Note: To comply with emerging SQL standards, a future release

of Oracle will give the INTERSECT operator greater precedence

than the other set operators. Therefore, you should use parentheses

to specify order of evaluation in queries that use the INTERSECT
operator with other set operators.
SQL Statements: DROP SEQUENCE to UPDATE 11-101

SELECT and subquery
order_by_clause
Use the order_by_clause to order rows returned by the statement. Without an

order_by_clause , no guarantee exists that the same query executed more than

once will retrieve rows in the same order.

■ expr orders rows based on their value for expr . The expression is based on

columns in the select list or columns in the tables, views, or materialized views

in the FROM clause.

■ position orders rows based on their value for the expression in this position

of the select list; position must be an integer.

You can specify multiple expressions in the order_by_clause . Oracle first sorts

rows based on their values for the first expression. Rows with the same value for

the first expression are then sorted based on their values for the second expression,

and so on. Oracle sorts nulls following all others in ascending order and preceding

all others in descending order.

Restrictions:

■ If you have specified the DISTINCT operator in this statement, this clause

cannot refer to columns unless they appear in the select list.

■ An order_by_clause can contain no more than 255 expressions.

■ You cannot order by a LOB column, nested table, or varray.

If you specify a group_by_clause in the same statement, this order_by_
clause is restricted to the following expressions:

■ Constants

■ Aggregate functions

■ Analytic functions

See Also: "Sorting Query Results" on page 5-23 for a discussion of

ordering query results

ASC | DESC Specify whether the ordering sequence is ascending or

descending. ASC is the default.

NULLS FIRST|

NULLS LAST
Specify whether returned rows containing null values should

appear first or last in the ordering sequence.

NULLS LASTis the default for ascending order, and NULLS FIRST
is the default for descending order.
11-102 SQL Reference

SELECT and subquery
■ The functions USER, UID , and SYSDATE

■ Expressions identical to those in the group_by_clause

■ Expressions involving the above expressions that evaluate to the same value for

all rows in a group.

for_update_clause
The for_update_clause lets you lock the selected rows so that other users

cannot lock or update the rows until you end your transaction. You can specify this

clause only in a top-level SELECT statement (not in subqueries).

■ Prior to updating a LOB value, you must lock the row containing the LOB. One

way to lock the row is with a SELECT ... FOR UPDATE statement.

■ Nested table rows are not locked as a result of locking the parent table rows. If

you want the nested table rows to be locked, you must lock them explicitly.

Restrictions:

■ You cannot specify this clause with the following other constructs: the

DISTINCT or CURSOR operator, set operators, group_by_clause , or

aggregate functions.

■ The tables locked by this clause must all be located on the same database, and

on the same database as any LONG columns and sequences referenced in the

same statement.

See Also: "LOB Locking Example" on page 11-108

OF Use the OFclause to lock the select rows only for a particular table

or view in a join. The columns in the OF clause only indicate

which table or view rows are locked. The specific columns that

you specify are not significant. However, you must specify an

actual column name, not a column alias. If you omit this clause,

Oracle locks the selected rows from all the tables in the query.

NOWAIT Specify NOWAIT to return control to you if the SELECT statement

attempts to lock a row that is locked by another user. If you omit

this clause, Oracle waits until the row is available and then

returns the results of the SELECT statement.
SQL Statements: DROP SEQUENCE to UPDATE 11-103

SELECT and subquery
Examples

Simple Query Examples The following statement selects rows from the emp table

with the department number of 30:

SELECT *
 FROM emp
 WHERE deptno = 30;

The following statement selects the name, job, salary and department number of all

employees except sales people from department number 30:

SELECT ename, job, sal, deptno
 FROM emp
 WHERE NOT (job = ’SALESMAN’ AND deptno = 30);

The following statement selects from subqueries in the FROM clause and gives

departments’ total employees and salaries as a decimal value of all the departments:

SELECT a.deptno "Department",
 a.num_emp/b.total_count "%Employees",
 a.sal_sum/b.total_sal "%Salary"
 FROM
 (SELECT deptno, COUNT(*) num_emp, SUM(SAL) sal_sum
 FROM scott.emp
 GROUP BY deptno) a,
 (SELECT COUNT(*) total_count, SUM(sal) total_sal
 FROM scott.emp) b ;

PARTITION Example You can select rows from a single partition of a partitioned

table by specifying the keyword PARTITION in the FROMclause. This SQL statement

assigns an alias for and retrieves rows from the nov98 partition of the sales table:

SELECT * FROM sales PARTITION (nov98) s
 WHERE s.amount_of_sale > 1000;

The following example selects rows from the sales table for sales earlier than a

specified date:

SELECT * FROM sales
 WHERE sale_date < TO_DATE(’1998-06-15’, ’YYYY-MM-DD’);

SAMPLE Examples The following query estimates the number of employees in

the emp table:

SELECT COUNT(*) * 100 FROM emp SAMPLE BLOCK (1);
11-104 SQL Reference

SELECT and subquery
The following example creates a sampled subset of the emp table and then joins the

resulting sampled table with dept . This operation circumvents the restriction that

you cannot specify the sample_clause in join queries:

CREATE TABLE sample_emp AS SELECT empno, deptno FROM emp SAMPLE(10);
SELECT e.empno FROM sample_emp e, dept d
 WHERE e.deptno = d.deptno AND d.name = ’DEV’;

GROUP BY Examples To return the minimum and maximum salaries for each

department in the employee table, issue the following statement:

SELECT deptno, MIN(sal), MAX (sal)
 FROM emp
 GROUP BY deptno;

DEPTNO MIN(SAL) MAX(SAL)
---------- ---------- ----------
 10 1300 5000
 20 800 3000
 30 950 2850

To return the minimum and maximum salaries for the clerks in each department,

issue the following statement:

SELECT deptno, MIN(sal), MAX (sal)
 FROM emp
 WHERE job = 'CLERK'
 GROUP BY deptno;

DEPTNO MIN(SAL) MAX(SAL)
---------- ---------- ----------
 10 1300 1300
 20 800 1100
 30 950 950

CUBE Example To return the number of employees and their average yearly

salary across all possible combinations of department and job category, issue the

following query:

SELECT DECODE(GROUPING(dname), 1, 'All Departments',
 dname) AS dname,
 DECODE(GROUPING(job), 1, 'All Jobs', job) AS job,
 COUNT(*) "Total Empl", AVG(sal) * 12 "Average Sal"
 FROM emp, dept
 WHERE dept.deptno = emp.deptno
SQL Statements: DROP SEQUENCE to UPDATE 11-105

SELECT and subquery
 GROUP BY CUBE (dname, job);

DNAME JOB Total Empl Average Sa
--------------- --------- ---------- ----------
ACCOUNTING CLERK 1 15600
ACCOUNTING MANAGER 1 29400
ACCOUNTING PRESIDENT 1 60000
ACCOUNTING All Jobs 3 35000
RESEARCH ANALYST 2 36000
RESEARCH CLERK 2 11400
RESEARCH MANAGER 1 35700
RESEARCH All Jobs 5 26100
SALES CLERK 1 11400
SALES MANAGER 1 34200
SALES SALESMAN 4 16800
SALES All Jobs 6 18800
All Departments ANALYST 2 36000
All Departments CLERK 4 12450
All Departments MANAGER 3 33100
All Departments PRESIDENT 1 60000
All Departments SALESMAN 4 16800
All Departments All Jobs 14 24878.5714

Hierarchical Query Examples The following CONNECT BY clause defines a

hierarchical relationship in which the empno value of the parent row is equal to the

mgr value of the child row:

CONNECT BY PRIOR empno = mgr;

In the following CONNECT BY clause, the PRIOR operator applies only to the empno
value. To evaluate this condition, Oracle evaluates empno values for the parent row

and mgr, sal , and comm values for the child row:

CONNECT BY PRIOR empno = mgr AND sal > comm;

To qualify as a child row, a row must have a mgr value equal to the empno value of

the parent row and it must have a sal value greater than its comm value.

HAVING Example To return the minimum and maximum salaries for the clerks in

each department whose lowest salary is below $1,000, issue the next statement:

SELECT deptno, MIN(sal), MAX (sal)
 FROM emp
 WHERE job = 'CLERK'
11-106 SQL Reference

SELECT and subquery
 GROUP BY deptno
 HAVING MIN(sal) < 1000;

DEPTNO MIN(SAL) MAX(SAL)
---------- ---------- ----------
 20 800 1100
 30 950 950

ORDER BY Examples To select all salesmen’s records from emp, and order the

results by commission in descending order, issue the following statement:

SELECT *
 FROM emp
 WHERE job = ’SALESMAN’
 ORDER BY comm DESC;

To select the employees from emp ordered first by ascending department number

and then by descending salary, issue the following statement:

SELECT ename, deptno, sal
 FROM emp
 ORDER BY deptno ASC, sal DESC;

To select the same information as the previous SELECT and use the positional

ORDER BY notation, issue the following statement:

SELECT ename, deptno, sal
 FROM emp
 ORDER BY 2 ASC, 3 DESC;

FOR UPDATE Examples The following statement locks rows in the emp table with

clerks located in New York and locks rows in the dept table with departments in

New York that have clerks:

SELECT empno, sal, comm
 FROM emp, dept
 WHERE job = ’CLERK’
 AND emp.deptno = dept.deptno
 AND loc = ’NEW YORK’
 FOR UPDATE;

The following statement locks only those rows in the emp table with clerks located

in New York. No rows are locked in the dept table:

SELECT empno, sal, comm
 FROM emp, dept
SQL Statements: DROP SEQUENCE to UPDATE 11-107

SELECT and subquery
 WHERE job = ’CLERK’
 AND emp.deptno = dept.deptno
 AND loc = ’NEW YORK’
 FOR UPDATE OF emp.sal;

LOB Locking Example The following example uses a SELECT ... FOR UPDATE
statement to lock a row containing a LOB prior to updating the LOB value.

INSERT INTO t_table VALUES (1, 'abcd');

COMMIT;
 DECLARE
 num_var NUMBER;
 clob_var CLOB;
 clob_locked CLOB;
 write_amount NUMBER;
 write_offset NUMBER;
 buffer VARCHAR2(20) := 'efg';

 BEGIN
 SELECT clob_col INTO clob_locked FROM t_table
 WHERE num_col = 1 FOR UPDATE;

 write_amount := 3;
 dbms_lob.write(clob_locked, write_amount, write_offset, buffer);
END;

WITH CHECK OPTION Example The following statement is legal even though the

second value violates the condition of the subquery where_clause :

INSERT INTO
 (SELECT ename, deptno FROM emp WHERE deptno < 10)
 VALUES (’Taylor’, 20);

However, the following statement is illegal because of the WITH CHECK OPTION
clause:

INSERT INTO
 (SELECT ename, deptno FROM emp
 WHERE deptno < 10
 WITH CHECK OPTION)
 VALUES (’Taylor’, 20);

Equijoin Examples This equijoin returns the name and job of each employee and

the number and name of the department in which the employee works:
11-108 SQL Reference

SELECT and subquery
SELECT ename, job, dept.deptno, dname
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

ENAME JOB DEPTNO DNAME
---------- --------- ---------- --------------
CLARK MANAGER 10 ACCOUNTING
KING PRESIDENT 10 ACCOUNTING
MILLER CLERK 10 ACCOUNTING
SMITH CLERK 20 RESEARCH
ADAMS CLERK 20 RESEARCH
FORD ANALYST 20 RESEARCH
SCOTT ANALYST 20 RESEARCH
JONES MANAGER 20 RESEARCH
ALLEN SALESMAN 30 SALES
BLAKE MANAGER 30 SALES
MARTIN SALESMAN 30 SALES
JAMES CLERK 30 SALES
TURNER SALESMAN 30 SALES
WARD SALESMAN 30 SALES

You must use a join to return this data because employee names and jobs are stored

in a different table than department names. Oracle combines rows of the two tables

according to this join condition:

emp.deptno = dept.deptno

The following equijoin returns the name, job, department number, and department

name of all clerks:

SELECT ename, job, dept.deptno, dname
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND job = 'CLERK';

ENAME JOB DEPTNO DNAME
---------- --------- ---------- --------------
MILLER CLERK 10 ACCOUNTING
SMITH CLERK 20 RESEARCH
ADAMS CLERK 20 RESEARCH
JAMES CLERK 30 SALES

This query is identical to the preceding example, except that it uses an additional

where_clause condition to return only rows with a job value of ’CLERK’.
SQL Statements: DROP SEQUENCE to UPDATE 11-109

SELECT and subquery
Subquery Examples To determine who works in Taylor’s department, issue the

following statement:

SELECT ename, deptno
 FROM emp
 WHERE deptno =
 (SELECT deptno
 FROM emp
 WHERE ename = ’TAYLOR’);

To give all employees in the emp table a 10% raise if they have not already been

issued a bonus (if they do not appear in the bonus table), issue the following

statement:

UPDATE emp
 SET sal = sal * 1.1
 WHERE empno NOT IN (SELECT empno FROM bonus);

To create a duplicate of the dept table named newdept , issue the following

statement:

CREATE TABLE newdept (deptno, dname, loc)
 AS SELECT deptno, dname, loc FROM dept;

Self Join Example The following query uses a self join to return the name of each

employee along with the name of the employee’s manager:

SELECT e1.ename||’ works for ’||e2.ename
"Employees and their Managers"
 FROM emp e1, emp e2 WHERE e1.mgr = e2.empno;

Employees and their Managers

BLAKE works for KING
CLARK works for KING
JONES works for KING
FORD works for JONES
SMITH works for FORD
ALLEN works for BLAKE
WARD works for BLAKE
MARTIN works for BLAKE
SCOTT works for JONES
TURNER works for BLAKE
ADAMS works for SCOTT
JAMES works for BLAKE
MILLER works for CLARK
11-110 SQL Reference

SELECT and subquery
The join condition for this query uses the aliases e1 and e2 for the emp table:

e1.mgr = e2.empno

Outer Join Examples This query uses an outer join to extend the results of the

Equijoin example above:

SELECT ename, job, dept.deptno, dname
 FROM emp, dept
 WHERE emp.deptno (+) = dept.deptno;

ENAME JOB DEPTNO DNAME
---------- --------- ---------- --------------
CLARK MANAGER 10 ACCOUNTING
KING PRESIDENT 10 ACCOUNTING
MILLER CLERK 10 ACCOUNTING
SMITH CLERK 20 RESEARCH
ADAMS CLERK 20 RESEARCH
FORD ANALYST 20 RESEARCH
SCOTT ANALYST 20 RESEARCH
JONES MANAGER 20 RESEARCH
ALLEN SALESMAN 30 SALES
BLAKE MANAGER 30 SALES
MARTIN SALESMAN 30 SALES
JAMES CLERK 30 SALES
TURNER SALESMAN 30 SALES
WARD SALESMAN 30 SALES
 40 OPERATIONS

In this outer join, Oracle returns a row containing the operations department

even though no employees work in this department. Oracle returns NULL in the

ename and job columns for this row. The join query in this example selects only

departments that have employees.

The following query uses an outer join to extend the results of the preceding

example:

SELECT ename, job, dept.deptno, dname
 FROM emp, dept
 WHERE emp.deptno (+) = dept.deptno
 AND job (+) = ’CLERK’;

ENAME JOB DEPTNO DNAME
---------- --------- ---------- --------------
MILLER CLERK 10 ACCOUNTING
SQL Statements: DROP SEQUENCE to UPDATE 11-111

SELECT and subquery
SMITH CLERK 20 RESEARCH
ADAMS CLERK 20 RESEARCH
JAMES CLERK 30 SALES
 40 OPERATIONS

In this outer join, Oracle returns a row containing the operations department

even though no clerks work in this department. The (+) operator on the job column

ensures that rows for which the job column is NULL are also returned. If this (+)

were omitted, the row containing the operations department would not be

returned because its job value is not ’CLERK’.

This example shows four outer join queries on the customers, orders , lineitems ,

and parts tables. These tables are shown here:

SELECT custno, custname
 FROM customers;

CUSTNO CUSTNAME
---------- --------------------
 1 Angelic Co.
 2 Believable Co.
 3 Cables R Us

SELECT orderno, custno,
 TO_CHAR(orderdate, ’MON-DD-YYYY’) "ORDERDATE"
 FROM orders;

ORDERNO CUSTNO ORDERDATE
---------- ---------- -----------
 9001 1 OCT-13-1998
 9002 2 OCT-13-1998
 9003 1 OCT-20-1998
 9004 1 OCT-27-1998
 9005 2 OCT-31-1998

SELECT orderno, lineno, partno, quantity
 FROM lineitems;

ORDERNO LINENO PARTNO QUANTITY
---------- ---------- ---------- ----------
 9001 1 101 15
 9001 2 102 10
 9002 1 101 25
 9002 2 103 50
 9003 1 101 15
11-112 SQL Reference

SELECT and subquery
 9004 1 102 10
 9004 2 103 20

SELECT partno, partname
 FROM parts;

PARTNO PARTNAME
------ --------
 101 X-Ray Screen
 102 Yellow Bag
 103 Zoot Suit

The customer Cables R Us has placed no orders, and order number 9005 has no line

items.

The following outer join returns all customers and the dates they placed orders. The

(+) operator ensures that customers who placed no orders are also returned:

SELECT custname, TO_CHAR(orderdate, ’MON-DD-YYYY’) "ORDERDATE"
 FROM customers, orders
 WHERE customers.custno = orders.custno (+);

CUSTNAME ORDERDATE
-------------------- --------------
Angelic Co. OCT-13-1993
Angelic Co. OCT-20-1993
Angelic Co. OCT-27-1993
Believable Co. OCT-13-1993
Believable Co. OCT-31-1993
Cables R Us

The following outer join builds on the result of the previous one by adding the

lineitems table to the FROM clause, columns from this table to the select list, and a

join condition joining this table to the orders table to the where_clause . This

query joins the results of the previous query to the lineitems table and returns all

customers, the dates they placed orders, and the part number and quantity of each

part they ordered. The first (+) operator serves the same purpose as in the previous

query. The second (+) operator ensures that orders with no line items are also

returned:

SELECT custname,
 TO_CHAR(orderdate, ’MON-DD-YYYY’) "ORDERDATE",
 partno,
 quantity
 FROM customers, orders, lineitems
SQL Statements: DROP SEQUENCE to UPDATE 11-113

SELECT and subquery
 WHERE customers.custno = orders.custno (+)
 AND orders.orderno = lineitems.orderno (+);

CUSTNAME ORDERDATE PARTNO QUANTITY
-------------------- -------------- ---------- ----------
Angelic Co. OCT-13-1993 101 15
Angelic Co. OCT-13-1993 102 10
Angelic Co. OCT-20-1993 101 15
Angelic Co. OCT-27-1993 102 10
Angelic Co. OCT-27-1993 103 20
Believable Co. OCT-13-1993 101 25
Believable Co. OCT-13-1993 103 50
Believable Co. OCT-31-1993
Cables R Us

The following outer join builds on the result of the previous one by adding the

parts table to the FROM clause, the partname column from this table to the select

list, and a join condition joining this table to the lineitems table to the where_
clause . This query joins the results of the previous query to the parts table to

return all customers, the dates they placed orders, and the quantity and name of

each part they ordered. The first two (+) operators serve the same purposes as in the

previous query. The third (+) operator ensures that rows with NULL part numbers

are also returned:

SELECT custname, TO_CHAR(orderdate, ’MON-DD-YYYY’) "ORDERDATE",
 quantity, partname
 FROM customers, orders, lineitems, parts
 WHERE customers.custno = orders.custno (+)
 AND orders.orderno = lineitems.orderno (+)
 AND lineitems.partno = parts.partno (+);

CUSTNAME ORDERDATE QUANTITY PARTNAME
-------------------- -------------- ---------- ------------
Angelic Co. OCT-13-1993 15 X-Ray Screen
Angelic Co. OCT-13-1993 10 Yellow Bag
Angelic Co. OCT-20-1993 15 X-Ray Screen
Angelic Co. OCT-27-1993 10 Yellow Bag
Angelic Co. OCT-27-1993 20 Zoot Suit
Believable Co. OCT-13-1993 25 X-Ray Screen
Believable Co. OCT-13-1993 50 Zoot Suit
Believable Co. OCT-31-1993
Cables R Us
11-114 SQL Reference

SELECT and subquery
Table Collection Examples You can perform DML operations on nested tables

only if they are defined as columns of a table. Therefore, when the query_table_
expression_clause of an INSERT, DELETE, or UPDATE statement is a table_
collection_expression , the collection expression must be a subquery that

selects the table's nested table column. The examples that follow are based on this

scenario:

CREATE TYPE ProjectType AS OBJECT(
 pno NUMBER,
 pname CHAR(31),
 budget NUMBER);
CREATE TYPE ProjectSet AS TABLE OF ProjectType;

CREATE TABLE Dept (dno NUMBER, dname CHAR(31), projs ProjectSet)
 NESTED TABLE projs STORE AS
 ProjectSetTable ((Primary Key(Nested_Table_Id, pno))
ORGANIZATION
INDEX COMPRESS 1);

INSERT INTO Dept VALUES (1, 'Engineering', ProjectSet());

This example inserts into the 'Engineering' department's 'projs ' nested table:

INSERT INTO TABLE(SELECT d.projs
 FROM Dept d
 WHERE d.dno = 1)
 VALUES (1, 'Collection Enhancements', 10000);

This example updates the 'Engineering' department's 'projs ' nested table:

UPDATE TABLE(SELECT d.projs
 FROM Dept d
 WHERE d.dno = 1) p
 SET p.budget = p.budget + 1000;

 This example deletes from the 'Engineering' department's 'projs ' nested table

DELETE TABLE(SELECT d.projs
 FROM Dept d
 WHERE d.dno = 1) p
 WHERE p.budget > 100000;

Collection Unnesting Examples Suppose the database contains a table hr_info
with columns dept , location , and mgr, and a column of nested table type
SQL Statements: DROP SEQUENCE to UPDATE 11-115

SELECT and subquery
people which has name, dept , and sal columns. You could get all the rows from

hr_info and all the rows from people using the following statement:

SELECT t1.dept, t2.* FROM hr_info t1, TABLE(t1.people) t2
 WHERE t2.dept = t1.dept;

Now suppose that people is not a nested table column of hr_info , but is instead

a separate table with columns name, dept , address , hiredate , and sal. You can

extract the same rows as in the preceding example with this statement:

SELECT t1.department, t2.*
 FROM hr_info t1, TABLE(CAST(MULTISET(
 SELECT t3.name, t3.dept, t3.sal FROM people t3
 WHERE t3.dept = t1.dept)
 AS NESTED_PEOPLE)) t2;

Finally, suppose that people is neither a nested table column of table hr_info nor

a table itself. Instead, you have created a function people_func that extracts from

various sources the name, department, and salary of all employees. You can get the

same information as in the preceding examples with the following query:

SELECT t1.dept, t2.* FROM HY_INFO t1, TABLE(CAST
 (people_func(...) AS NESTED_PEOPLE)) t2;

LEVEL Examples The following statement returns all employees in hierarchical

order. The root row is defined to be the employee whose job is ’PRESIDENT’. The

child rows of a parent row are defined to be those who have the employee number

of the parent row as their manager number.

SELECT LPAD(’ ’,2*(LEVEL-1)) || ename org_chart,
 empno, mgr, job
 FROM emp
 START WITH job = ’PRESIDENT’
 CONNECT BY PRIOR empno = mgr;

ORG_CHART EMPNO MGR JOB
------------ ---------- ---------- ---------
KING 7839 PRESIDENT
 JONES 7566 7839 MANAGER
 SCOTT 7788 7566 ANALYST
 ADAMS 7876 7788 CLERK
 FORD 7902 7566 ANALYST

See Also: Oracle8i Application Developer’s Guide - Fundamentals for

more examples of collection unnesting.
11-116 SQL Reference

SELECT and subquery
 SMITH 7369 7902 CLERK
 BLAKE 7698 7839 MANAGER
 ALLEN 7499 7698 SALESMAN
 WARD 7521 7698 SALESMAN
 MARTIN 7654 7698 SALESMAN
 TURNER 7844 7698 SALESMAN
 JAMES 7900 7698 CLERK
 CLARK 7782 7839 MANAGER
 MILLER 7934 7782 CLERK

The following statement is similar to the previous one, except that it does not select

employees with the job ’ANALYST’.

SELECT LPAD(' ', 2*(LEVEL-1)) || ename org_chart,
 empno, mgr, job
 FROM emp
 WHERE job != 'ANALYST'
 START WITH job = 'PRESIDENT'
 CONNECT BY PRIOR empno = mgr;

ORG_CHART EMPNO MGR JOB
-------------------- ---------- ---------- ---------
KING 7839 PRESIDENT
 JONES 7566 7839 MANAGER
 ADAMS 7876 7788 CLERK
 SMITH 7369 7902 CLERK
 BLAKE 7698 7839 MANAGER
 ALLEN 7499 7698 SALESMAN
 WARD 7521 7698 SALESMAN
 MARTIN 7654 7698 SALESMAN
 TURNER 7844 7698 SALESMAN
 JAMES 7900 7698 CLERK
 CLARK 7782 7839 MANAGER
 MILLER 7934 7782 CLERK

Oracle does not return the analysts scott and ford , although it does return

employees who are managed by scott and ford .

The following statement is similar to the first one, except that it uses the LEVEL
pseudocolumn to select only the first two levels of the management hierarchy:

SELECT LPAD(’ ’,2*(LEVEL-1)) || ename org_chart,
empno, mgr, job
 FROM emp
 START WITH job = ’PRESIDENT’
 CONNECT BY PRIOR empno = mgr AND LEVEL <= 2;
SQL Statements: DROP SEQUENCE to UPDATE 11-117

SELECT and subquery
ORG_CHART EMPNO MGR JOB
------------ ---------- ---------- ---------
KING 7839 PRESIDENT
 JONES 7566 7839 MANAGER
 BLAKE 7698 7839 MANAGER
 CLARK 7782 7839 MANAGER

Distributed Query Example This example shows a query that joins the dept table

on the local database with the emp table on the houston database:

SELECT ename, dname
 FROM emp@houston, dept
 WHERE emp.deptno = dept.deptno;

Correlated Subquery Examples The following examples show the general syntax

of a correlated subquery:

SELECT select_list
 FROM table1 t_alias1
 WHERE expr operator
 (SELECT column_list
 FROM table2 t_alias2
 WHERE t_alias1.column
 operator t_alias2.column);
UPDATE table1 t_alias1
 SET column =
 (SELECT expr
 FROM table2 t_alias2
 WHERE t_alias1.column = t_alias2.column);
DELETE FROM table1 t_alias1
 WHERE column operator
 (SELECT expr
 FROM table2 t_alias2
 WHERE t_alias1.column = t_alias2.column);

The following statement returns data about employees whose salaries exceed their

department average. The following statement assigns an alias to emp, the table

containing the salary information, and then uses the alias in a correlated subquery:

SELECT deptno, ename, sal
 FROM emp x
 WHERE sal > (SELECT AVG(sal)
 FROM emp
 WHERE x.deptno = deptno)
 ORDER BY deptno;
11-118 SQL Reference

SELECT and subquery
For each row of the emp table, the parent query uses the correlated subquery to

compute the average salary for members of the same department. The correlated

subquery performs the following steps for each row of the emp table:

1. The deptno of the row is determined.

2. The deptno is then used to evaluate the parent query.

3. If that row’s salary is greater than the average salary for that row’s department,

then the row is returned.

The subquery is evaluated once for each row of the emp table.

DUAL Table Example The following statement returns the current date:

SELECT SYSDATE FROM DUAL;

You could select SYSDATE from the emp table, but Oracle would return 14 rows of

the same SYSDATE, one for every row of the emp table. Selecting from DUALis more

convenient.

Sequence Examples The following statement increments the zseq sequence and

returns the new value:

SELECT zseq.nextval
 FROM dual;

The following statement selects the current value of zseq :

SELECT zseq.currval
 FROM dual;
SQL Statements: DROP SEQUENCE to UPDATE 11-119

SET CONSTRAINT[S]
SET CONSTRAINT[S]

Purpose
Use the SET CONSTRAINTS statement to specify, for a particular transaction,

whether a deferrable constraint is checked following each DML statement or when

the transaction is committed.

Prerequisites
To specify when a deferrable constraint is checked, you must have SELECT
privilege on the table to which the constraint is applied unless the table is in your

schema.

Syntax

Keywords and Parameters

constraint
Specify the name of one or more integrity constraints.

ALL
Specify ALL to set all deferrable constraints for this transaction.

IMMEDIATE
Specify IMMEDIATE to indicate that the conditions specified by the deferrable

constraint are checked immediately after each DML statement.

DEFERRED
Specify DEFERRED to indicate that the conditions specified by the deferrable

constraint are checked when the transaction is committed.

SET
CONSTRAINT

CONSTRAINTS

constraint

,

ALL

IMMEDIATE

DEFERRED
;

11-120 SQL Reference

SET CONSTRAINT[S]
Examples

Setting Constraints Examples The following statement sets all deferrable

constraints in this transaction to be checked immediately following each DML

statement:

SET CONSTRAINTS ALL IMMEDIATE;

The following statement checks three deferred constraints when the transaction is

committed:

SET CONSTRAINTS unq_name, scott.nn_sal,
 adams.pk_dept@dblink DEFERRED;

Note: You can verify the success of deferrable constraints prior to

committing them by issuing a SET CONSTRAINTS ALL IMMEDIATE
statement.
SQL Statements: DROP SEQUENCE to UPDATE 11-121

SET ROLE
SET ROLE

Purpose
Use the SET ROLE statement to enable and disable roles for your current session.

When a user logs on, Oracle enables all privileges granted explicitly to the user and

all privileges in the user’s default roles. During the session, the user or an

application can use the SET ROLE statement any number of times to change the

roles currently enabled for the session. The number of roles that can be concurrently

enabled is limited by the initialization parameter MAX_ENABLED_ROLES.

You can see which roles are currently enabled by examining the SESSION_ROLES
data dictionary view.

Prerequisites
You must already have been granted the roles that you name in the SET ROLE
statement.

Syntax

See Also:

■ CREATE ROLE on page 9-146 for information on creating roles

■ ALTER USER on page 8-88 for information on changing a

user’s default roles

SET ROLE

role
IDENTIFIED BY password

,

ALL
EXCEPT role

,

NONE

;

11-122 SQL Reference

SET ROLE
Keywords and Parameters

role
Specify a role to be enabled for the current session. Any roles not listed are disabled

for the current session.

Restriction: You cannot specify a role unless it was granted to you either directly or

through other roles.

ALL
Specify ALL to enable all roles granted to you for the current session except those

optionally listed in the EXCEPT clause.

Restriction: You cannot use this clause to enable roles with passwords that have

been granted directly to you.

NONE
Specify NONEto disable all roles for the current session, including the DEFAULTrole.

Examples

Setting Roles Examples To enable the role gardener identified by the password

marigolds for your current session, issue the following statement:

SET ROLE gardener IDENTIFIED BY marigolds;

To enable all roles granted to you for the current session, issue the following

statement:

SET ROLE ALL;

To enable all roles granted to you except banker , issue the following statement:

IDENTIFIED
BYpassword

Specify the password for a role. If the role has a password, you

must specify the password to enable the role.

EXCEPT Roles listed in the EXCEPTclause must be roles granted directly to

you. They cannot be roles granted to you through other roles.

If you list a role in the EXCEPTclause that has been granted to you

both directly and through another role, the role remains enabled

by virtue of the role to which it has been granted.
SQL Statements: DROP SEQUENCE to UPDATE 11-123

SET ROLE
SET ROLE ALL EXCEPT banker;

To disable all roles granted to you for the current session, issue the following

statement:

SET ROLE NONE;
11-124 SQL Reference

SET TRANSACTION
SET TRANSACTION

Purpose
Use the SET TRANSACTION statement to establish the current transaction as read

only or read write, establish its isolation level, or assign it to a specified rollback

segment.

The operations performed by a SET TRANSACTION statement affect only your

current transaction, not other users or other transactions. Your transaction ends

whenever you issue a COMMIT or ROLLBACK statement. Oracle implicitly commits

the current transaction before and after executing a data definition language (DDL)

statement.

Prerequisites
If you use a SET TRANSACTION statement, it must be the first statement in your

transaction. However, a transaction need not have a SET TRANSACTION statement.

Syntax

Keywords and Parameters

READ ONLY
The READ ONLYclause establishes the current transaction as a read-only transaction.

This clause established transaction-level read consistency.

See Also: COMMIT on page 8-133 and ROLLBACK on page 11-83

SET TRANSACTION

READ ONLY

READ WRITE

ISOLATION LEVEL
SERIALIZABLE

READ COMMITTED

USE ROLLBACK SEGMENT rollback_segment

;

SQL Statements: DROP SEQUENCE to UPDATE 11-125

SET TRANSACTION
All subsequent queries in that transaction only see changes committed before the

transaction began. Read-only transactions are useful for reports that run multiple

queries against one or more tables while other users update these same tables.

Restriction: Only the following statements are permitted in a read-only transaction:

■ Subqueries (that is, SELECT statements without the for_update_clause)

■ LOCK TABLE

■ SET ROLE

■ ALTER SESSION

■ ALTER SYSTEM

READ WRITE
Specify READ WRITE to establish the current transaction as a read-write transaction.

This clause establishes statement-level read consistency, which is the default.

Restriction: You cannot toggle between transaction-level and statement-level read

consistency in the same transaction.

ISOLATION LEVEL
Use the ISOLATION LEVEL clause to specify how transactions containing database

modifications are handled.

Note: This clause is not supported for the user SYS. That is,

queries by SYS will return changes made during the transaction

even if SYS has set the transaction to be READ ONLY.

See Also: Oracle8i Concepts

SERIALIZABLE The SERIALIAZBLE setting specifies serializable transaction

isolation mode as defined in SQL92. If a serializable transaction

contains data manipulation language (DML) that attempts to

update any resource that may have been updated in a transaction

uncommitted at the start of the serializable transaction, then the

DML statement fails.
11-126 SQL Reference

SET TRANSACTION
USE ROLLBACK SEGMENT
Specify USE ROLLBACK SEGMENT to assign the current transaction to the specified

rollback segment. This clause also implicitly establishes the transaction as a read-

write transaction.

This clause lets you to assign transactions of different types to rollback segments of

different sizes. For example:

■ If no long-running queries are concurrently reading the same tables, you can

assign small transactions to small rollback segments, which are more likely to

remain in memory.

■ You can assign transactions that modify tables that are concurrently being read

by long-running queries to large rollback segments, so that the rollback

information needed for the read-consistent queries is not overwritten.

■ You can assign transactions that insert, update, or delete large amounts of data

to rollback segments large enough to hold the rollback information for the

transaction.

You cannot use the READ ONLY clause and the USE ROLLBACK SEGMENT clause in a

single SET TRANSACTION statement or in different statements in the same

transaction. Read-only transactions do not generate rollback information and

therefore are not assigned rollback segments.

Examples
The following statements could be run at midnight of the last day of every month to

count how many ships and containers the company owns. This report would not be

affected by any other user who might be adding or removing ships and/or

containers.

COMMIT;
SET TRANSACTION READ ONLY;
SELECT COUNT(*) FROM ship;

Note: The COMPATIBLE initialization parameter must be set

to 7.3.0 or higher for SERIALIZABLE mode to work.

READ
COMMITTED

The READ COMMITTED setting is the default Oracle transaction

behavior. If the transaction contains DML that requires row locks

held by another transaction, then the DML statement waits until

the row locks are released.
SQL Statements: DROP SEQUENCE to UPDATE 11-127

SET TRANSACTION
SELECT COUNT(*) FROM container;
COMMIT;

The first COMMIT statement ensures that SET TRANSACTION is the first statement in

the transaction. The last COMMIT statement does not actually make permanent any

changes to the database. It simply ends the read-only transaction.

The following statement assigns your current transaction to the rollback segment

oltp_5 :

SET TRANSACTION USE ROLLBACK SEGMENT oltp_5;
11-128 SQL Reference

storage_clause
storage_clause

Purpose
Use the storage_clause to specify storage characteristics for any of the following

schema objects:

■ clusters

■ indexes

■ rollback segments

■ materialized views

■ materialized view logs

■ tables

■ tablespaces

■ partitions

Storage parameters affect both how long it takes to access data stored in the

database and how efficiently space in the database is used. For a discussion of the

effects of these parameters, see Oracle8i Performance Guide and Reference.

When you create a tablespace, you can specify values for the storage parameters.

These values serve as default values for segments allocated in the tablespace.

When you alter a tablespace, you can change the values of storage parameters. The

new values serve as default values only for subsequently allocated segments (or

subsequently created objects).

When you create a cluster, index, rollback segment, snapshot, snapshot log, table, or

partition, you can specify values for the storage parameters for the segments

allocated to these objects. If you omit any storage parameter, Oracle uses the value

of that parameter specified for the tablespace.

Note: The storage_clause is interpreted differently for locally

managed tablespaces. At creation, Oracle ignores MAXEXTENTSand

uses the remaining parameter values to calculate the initial size of

the segment. For more information, see CREATE TABLESPACE on

page 10-56.
SQL Statements: DROP SEQUENCE to UPDATE 11-129

storage_clause
When you alter a cluster, index, rollback segment, snapshot, snapshot log, table, or

partition, you can change the values of storage parameters. The new values affect

only future extent allocations.

Prerequisites
To change the value of a STORAGE parameter, you must have the privileges

necessary to use the appropriate CREATE or ALTER statement.

Syntax

STORAGE (

INITIAL integer

K

M

NEXT integer

K

M

MINEXTENTS integer

MAXEXTENTS
integer

UNLIMITED

PCTINCREASE integer

FREELISTS integer

FREELIST GROUPS integer

OPTIMAL

integer

K

M

NULL

BUFFER_POOL

KEEP

RECYCLE

DEFAULT

)

11-130 SQL Reference

storage_clause
Keywords and Parameters

INITIAL
Specify in bytes the size of the object’s first extent. Oracle allocates space for this

extent when you create the schema object. Use K or Mto specify this size in kilobytes

or megabytes.

The default value is the size of 5 data blocks. The minimum value is the size of 2

data blocks for nonbitmapped segments or 3 data blocks for bitmapped segments,

plus one data block for each free list group you specify. The maximum value

depends on your operating system. Oracle rounds values up to the next multiple of

the data block size for values less than 5 data blocks, and rounds up to the next

multiple of 5 data blocks for values greater than 5 data blocks.

Restriction: You cannot specify INITIAL in an ALTER statement.

NEXT
Specify in bytes the size of the next extent to be allocated to the object. Use K or M to

specify the size in kilobytes or megabytes. The default value is the size of 5 data

blocks. The minimum value is the size of 1 data block. The maximum value

depends on your operating system. Oracle rounds values up to the next multiple of

the data block size for values less than 5 data blocks. For values greater than 5 data

blocks, Oracle rounds up to a value that minimizes fragmentation, as described in .

If you change the value of the NEXT parameter (that is, if you specify it in an ALTER
statement), the next allocated extent will have the specified size, regardless of the

size of the most recently allocated extent and the value of the PCTINCREASE
parameter.

PCTINCREASE
Specify the percent by which the third and subsequent extents grow over the

preceding extent. The default value is 50, meaning that each subsequent extent is

50% larger than the preceding extent. The minimum value is 0, meaning all extents

after the first are the same size. The maximum value depends on your operating

system.

See Also: FREELIST GROUPS on page 11-133 for information on

freelist groups

See Also: Oracle8i Concepts for information on how Oracle

minimizes fragmentation
SQL Statements: DROP SEQUENCE to UPDATE 11-131

storage_clause
Oracle rounds the calculated size of each new extent to the nearest multiple of the

data block size.

If you change the value of the PCTINCREASE parameter (that is, if you specify it in

an ALTER statement), Oracle calculates the size of the next extent using this new

value and the size of the most recently allocated extent.

Restriction: You cannot specify PCTINCREASE for rollback segments. Rollback

segments always have a PCTINCREASE value of 0.

MINEXTENTS
Specify the total number of extents to allocate when the object is created. This

parameter enables you to allocate a large amount of space when you create an

object, even if the space available is not contiguous. The default and minimum

value is 1, meaning that Oracle allocates only the initial extent, except for rollback

segments, for which the default and minimum value is 2. The maximum value

depends on your operating system.

If the MINEXTENTS value is greater than 1, then Oracle calculates the size of

subsequent extents based on the values of the INITIAL , NEXT, and PCTINCREASE
parameters.

Restriction: You cannot specify MINEXTENTS in an ALTER statement.

MAXEXTENTS
Specify the total number of extents, including the first, that Oracle can allocate for

the object. The minimum value is 1 (except for rollback segments, which always

have a minimum value of 2). The default value depends on your data block size.

Suggestion: If you wish to keep all extents the same size, you can

prevent SMON from coalescing extents by setting the value of

PCTINCREASE to 0. In general, Oracle Corporation recommends a

setting of 0 as a way to minimize fragmentation and avoid the

possibility of very large temporary segments during processing.
11-132 SQL Reference

storage_clause
FREELIST GROUPS
Specify the number of groups of free lists for the database object you are creating.

The default and minimum value for this parameter is 1. Oracle uses the instance

number of Oracle Parallel Server instances to map each instance to one free list

group.

Each free list group uses one database block. Therefore:

■ If you do not specify a large enough value for INITIAL to cover the minimum

value plus one data block for each free list group, Oracle increases the value of

INITIAL the necessary amount.

■ If you are creating an object in a uniform locally managed tabledspace, and the

extent size is not large enough to acommodate the number of freelist groups,

the create operation will fail.

Restriction: You can specify the FREELIST GROUPS parameter only in CREATE
TABLE, CREATE CLUSTER, CREATE MATERIALIZED VIEW, CREATE
MATERIALIZED VIEW LOG, and CREATE INDEX statements.

FREELISTS
For objects other than tablespaces, specify the number of free lists for each of the

free list groups for the table, partition, cluster, or index. The default and minimum

value for this parameter is 1, meaning that each free list group contains one free list.

UNLIMITED Specify UNLIMITED if you want extents to be allocated

automatically as needed. Oracle Corporation recommends this

setting as a way to minimize fragmentation.

However, do not use this clause for rollback segments. Rogue

transactions containing inserts, updates, or deletes that continue

for a long time will continue to create new extents until a disk is

full.

Caution: A rollback segment that you create without

specifying the storage_clause has the same storage

parameters as the tablespace that the rollback segment is

created in. Thus, if you create the tablespace with

MAXEXTENTS UNLIMITED, then the rollback segment will also

have the same default.

See Also: Oracle8i Parallel Server Concepts
SQL Statements: DROP SEQUENCE to UPDATE 11-133

storage_clause
The maximum value of this parameter depends on the data block size. If you

specify a FREELISTS value that is too large, Oracle returns an error indicating the

maximum value.

Restriction: You can specify FREELISTS in the storage_clause of any statement

except when creating or altering a tablespace or rollback segment.

OPTIMAL
The OPTIMAL keyword is relevant only to rollback segments. It specifies an optimal

size in bytes for a rollback segment. Use K or M to specify this size in kilobytes or

megabytes. Oracle tries to maintain this size for the rollback segment by

dynamically deallocating extents when their data is no longer needed for active

transactions. Oracle deallocates as many extents as possible without reducing the

total size of the rollback segment below the OPTIMAL value.

The value of OPTIMAL cannot be less than the space initially allocated for the

rollback segment specified by the MINEXTENTS, INITIAL , NEXT, and

PCTINCREASE parameters. The maximum value depends on your operating

system. Oracle rounds values up to the next multiple of the data block size.

BUFFER_POOL
The BUFFER_POOLclause lets you specify a default buffer pool (cache) for a schema

object. All blocks for the object are stored in the specified cache. If a buffer pool is

defined for a partitioned table or index, then the partitions inherit the buffer pool

from the table or index definition, unless overridden by a partition-level definition.

NULL Specify NULL for no optimal size for the rollback segment,

meaning that Oracle never deallocates the rollback segment’s

extents. This is the default behavior.

Note: BUFFER_POOL is not a valid clause for creating or altering

tablespaces or rollback segments.

KEEP Specify KEEP to retain the schema object in memory to avoid I/O

operations. KEEP takes precedence over any NOCACHE clause you

specify for a table, cluster, materialized view, or materialized view

log.
11-134 SQL Reference

storage_clause
Examples

Creating a table with storage attributes The following statement creates a table

and provides storage parameter values:

CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13))
 STORAGE (INITIAL 100K NEXT 50K
 MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 5);

Oracle allocates space for the table based on the STORAGE parameter values as

follows:

■ The MINEXTENTS value is 1, so Oracle allocates 1 extent for the table upon

creation.

■ The INITIAL value is 100K, so the first extent’s size is 100 kilobytes.

■ If the table data grows to exceed the first extent, Oracle allocates a second

extent. The NEXTvalue is 50K, so the second extent’s size would be 50 kilobytes.

■ If the table data subsequently grows to exceed the first two extents, Oracle

allocates a third extent. The PCTINCREASE value is 5, so the calculated size of

the third extent is 5% larger than the second extent, or 52.5 kilobytes. If the data

block size is 2 kilobytes, Oracle rounds this value to 52 kilobytes.

If the table data continues to grow, Oracle allocates more extents, each 5% larger

than the previous one.

■ The MAXEXTENTS value is 50, so Oracle can allocate as many as 50 extents for

the table.

RECYCLE Specify RECYCLE to eliminate blocks from memory as soon as

they are no longer needed, thus preventing an object from taking

up unnecessary cache space.

DEFAULT Specify DEFAULT to indicate the default buffer pool. This is the

default for objects not assigned to KEEP or RECYCLE.

See Also: Oracle8i Performance Guide and Reference for more

information about using multiple buffer pools
SQL Statements: DROP SEQUENCE to UPDATE 11-135

storage_clause
Creating a rollback segment with storage attributes The following statement

creates a rollback segment and provides storage parameter values:

CREATE ROLLBACK SEGMENT rsone
 STORAGE (INITIAL 10K NEXT 10K
 MINEXTENTS 2 MAXEXTENTS 25
 OPTIMAL 50K);

Oracle allocates space for the rollback segment based on the STORAGE parameter

values as follows:

■ The MINEXTENTS value is 2, so Oracle allocates 2 extents for the rollback

segment upon creation.

■ The INITIAL value is 10K, so the first extent’s size is 10 kilobytes.

■ The NEXT value is 10K, so the second extent’s size is 10 kilobytes.

■ If the rollback data exceeds the first two extents, Oracle allocates a third extent.

The PCTINCREASE value for rollback segments is always 0, so the third and

subsequent extents are the same size as the second extent, 10 kilobytes.

■ The MAXEXTENTS value is 25, so Oracle can allocate as many as 25 extents for

the rollback segment.

■ The OPTIMALvalue is 50K, so Oracle deallocates extents if the rollback segment

exceeds 50 kilobytes. Oracle deallocates only extents that contain data for

transactions that are no longer active.
11-136 SQL Reference

TRUNCATE
TRUNCATE

Purpose
Use the TRUNCATE statement to remove all rows from a table or cluster and reset

the STORAGE parameters to the values when the table or cluster was created.

Deleting rows with the TRUNCATE statement can be more efficient than dropping

and re-creating a table. Dropping and re-creating a table invalidates the table’s

dependent objects, requires you to regrant object privileges on the table, and

requires you to re-create the table’s indexes, integrity constraint, and triggers and

respecify its storage parameters. Truncating has none of these effects.

Prerequisites
To truncate a table or cluster, the table or cluster must be in your schema or you

must have DROP ANY TABLE system privilege.

Syntax

Caution: You cannot roll back a TRUNCATE statement.

See Also: DELETE on page 10-115, DROP CLUSTER on

page 10-126, and DROP TABLE on page 11-7

TRUNCATE

TABLE
schema .

table

PRESERVE

PURGE
SNAPSHOT LOG

CLUSTER
schema .

cluster

DROP

REUSE
STORAGE

;

SQL Statements: DROP SEQUENCE to UPDATE 11-137

TRUNCATE
Keywords and Parameters

TABLE
Specify the schema and name of the table to be truncated. This table cannot be part

of a cluster. If you omit schema , Oracle assumes the table is in your own cluster.

■ You can truncate index-organized tables and temporary tables. When you

truncate a temporary table, only the rows created during the current session are

truncated.

■ The table’s storage parameter NEXT is changed to be the size of the last extent

deleted from the segment in the process of truncation.

■ Oracle also automatically truncates and resets any existing UNUSABLE
indicators for the following indexes on table : range and hash partitions of

local indexes and subpartitions of local indexes.

■ If table is not empty, Oracle marks UNUSABLE all nonpartitioned indexes and

all partitions of global partitioned indexes on the table.

■ For a domain index, this statement invokes the appropriate truncate routine to

truncate the domain index data.

■ If table (whether it is a regular or index-organized table) contains LOB

columns, all LOB data and LOB index segments will be truncated.

■ If table is partitioned, all partitions or subpartitions, as well as the LOB data

and LOB index segments for each partition or subpartition, will be truncated.

Restrictions:

■ You cannot individually truncate a table that is part of a cluster. You must either

truncate the cluster, delete all rows from the table, or drop and re-create the

table.

See Also: Oracle8i Data Cartridge Developer’s Guide

Note: When you truncate a table, Oracle automatically deletes all

data in the table’s indexes and any materialized view direct-load

INSERT information held in association with the table. (This

information is independent of any materialized view/snapshot

log.) If this direct-load INSERT information is deleted, an

incremental refresh of the materialized view may lose data.
11-138 SQL Reference

TRUNCATE
■ You cannot truncate the parent table of an enabled referential integrity

constraint. You must disable the constraint before truncating the table. (An

exception is that you may truncate the table if the integrity constraint is self-

referential.)

■ You cannot truncate a table if any domain indexes defined on any of its columns

are marked LOADING or FAILED .

SNAPSHOT LOG
The SNAPSHOT LOG clause lets you specify whether a snapshot log defined on the

table is to be preserved or purged when the table is truncated. This clause allows

snapshot master tables to be reorganized through export/import without affecting

the ability of primary-key snapshots defined on the master to be fast refreshed. To

support continued fast refresh of primary-key snapshots, the snapshot log must

record primary-key information.

CLUSTER
Specify the schema and name of the cluster to be truncated. You can truncate only

an indexed cluster, not a hash cluster. If you omit schema , Oracle assumes the table

is in your own cluster.

When you truncate a cluster, Oracle also automatically deletes all data in the

cluster’s tables’ indexes.

STORAGE Clauses

PRESERVE Specify PRESERVE if any snapshot log should be preserved when

the master table is truncated. This is the default.

PURGE Specify PURGE if any snapshot log should be purged when the

master table is truncated.

See Also: Oracle8i Replication for more information about

snapshot logs and the TRUNCATE statement

DROP STORAGESpecify DROP STORAGE to deallocate all space from the deleted

rows from the table or cluster except the space allocated by the

table’s or cluster’s MINEXTENTS parameter. This space can

subsequently be used by other objects in the tablespace. This is the

default.
SQL Statements: DROP SEQUENCE to UPDATE 11-139

TRUNCATE
The DROP STORAGEclause and REUSE STORAGEclause also apply to the space freed

by the data deleted from associated indexes.

Examples

Simple TRUNCATE Example The following statement deletes all rows from the

emp table and returns the freed space to the tablespace containing emp:

TRUNCATE TABLE emp;

The above statement also deletes all data from all indexes on emp and returns the

freed space to the tablespaces containing them.

Retaining free space after truncating The following statement deletes all rows

from all tables in the cust cluster, but leaves the freed space allocated to the tables:

TRUNCATE CLUSTER cust REUSE STORAGE

The above statement also deletes all data from all indexes on the tables in cust .

Preserving materialized view logs after truncating The following statements are

examples of truncate statements that preserve snapshot logs:

TRUNCATE TABLE emp PRESERVE SNAPSHOT LOG;
TRUNCATE TABLE stock;

REUSE
STORAGE

Specify REUSE STORAGEto retain the space from the deleted rows

allocated to the table or cluster. Storage values are not reset to the

values when the table or cluster was created. This space can

subsequently be used only by new data in the table or cluster

resulting from inserts or updates.

Note: If you have specified more than one free list for the

object you are truncating, the REUSE STORAGE clause also

removes any mapping of free lists to instances, and resets the

high-water mark to the beginning of the first extent.
11-140 SQL Reference

UPDATE
UPDATE

Purpose
Use the UPDATE statement to change existing values in a table or in a view’s base

table.

Prerequisites
For you to update values in a table, the table must be in your own schema or you

must have UPDATE privilege on the table.

For you to update values in the base table of a view,

■ You must have UPDATE privilege on the view, and

■ Whoever owns the schema containing the view must have UPDATEprivilege on

the base table.

If the SQL92_SECURITYinitialization parameter is set to TRUE, then you must have

SELECT privilege on the table whose column values you are referencing (such as

the columns in a where_clause) to perform an UPDATE.

The UPDATE ANY TABLE system privilege also allows you to update values in any

table or any view’s base table.

Syntax

UPDATE
hint

DML_table_expression_clause set_clause
where_clause returning_clause

;

SQL Statements: DROP SEQUENCE to UPDATE 11-141

UPDATE
DML_table_expression_clause ::=

subquery : see SELECT and subquery on page 11-88.

with_clause ::=

table_collection_expression ::=

schema .
table

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

view

snapshot

@ dblink

(subquery
with_clause

)

table_collection_expression

t_alias

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

TABLE (collection_expression)
(+)
11-142 SQL Reference

UPDATE
set_clause ::=

where_clause ::=

returning_clause ::=

Keywords and Parameters

hint
Specify a comment that passes instructions to the optimizer on choosing an

execution plan for the statement.

You can place a parallel hint immediately after the UPDATE keyword to parallelize

both the underlying scan and UPDATE operations.

See Also:

■ Oracle8i Performance Guide and Reference and "Hints" on

page 2-67 for the syntax and description of hints

■ Oracle8i Performance Guide and Reference, Oracle8i Parallel Server
Concepts, and Oracle8i Concepts for detailed information about

parallel DML

SET

(column

,

) = (subquery)

column =
expr

(subquery)

,

VALUE (t_alias) =
expr

(subquery)

WHERE condition

RETURNING expr

,

INTO data_item

,

SQL Statements: DROP SEQUENCE to UPDATE 11-143

UPDATE
DML_table_expression_clause

schema Specify the schema containing the table or view. If you omit

schema , Oracle assumes the table or view is in your own schema.

table | view
| subquery

Specify the name of the table or view, or the columns returned by a

subquery, to be updated. Issuing an UPDATE statement against a

table fires any UPDATE triggers associated with the table. If you

specify view , Oracle updates the view’s base table.

If table (or the base table of view) contains one or more domain

index columns, this statement executes the appropriate indextype

update routine.

See Also: Oracle8i Data Cartridge Developer’s Guide for more

information on these routines

PARTITION
(partition) |
SUBPARTITION
(subpartition)

Specify the name of the partition or subpartition within table
targeted for updates. You need not specify the partition name when

updating values in a partitioned table. However in some cases

specifying the partition name can be more efficient than a

complicated where_clause .

dblink Specify a complete or partial name of a database link to a remote

database where the table or view is located. You can use a database

link to update a remote table or view only if you are using Oracle’s

distributed functionality.

If you omit dblink , Oracle assumes the table or view is on the

local database.

See Also: "Referring to Objects in Remote Databases" on

page 2-90 for information on referring to database links

with_clause Use the with_clause to restrict the subquery in one of the

following ways:

■ WITH READ ONLY specifies that the subquery cannot be

updated.

■ WITH CHECK OPTION specifies that Oracle prohibits any

changes to that table that would produce rows that are not

included in the subquery.

See Also: "WITH CHECK OPTION Example" on page 11-108
11-144 SQL Reference

UPDATE
Restrictions on the DML_table_expression_clause :

■ You cannot execute this statement if table (or the base table of view) contains

any domain indexes marked LOADING or FAILED .

■ You cannot specify the order_by_clause in the subquery of the DML_
query_expression_clause .

■ You cannot update a view except with INSTEAD OF triggers if the view’s

defining query contains one of the following constructs:

■ A set operator

■ A DISTINCT operator

■ An aggregate or analytic function

■ A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

■ A collection expression in a SELECT list

■ A subquery in a SELECT list

■ Joins (with some exceptions). See Oracle8i Administrator’s Guide for details.

■ If a view was created with the WITH CHECK OPTION, you can update the view

only if the resulting data satisfies the view’s defining query.

■ If you specify an index, index partition, or index subpartition that has been

marked UNUSABLE, the UPDATE statement will fail unless the SKIP_
UNUSABLE_INDEXES parameter has been set to TRUE.

table_collection_expression

Use the table_collection_expression to inform Oracle that the collection

value expression should be treated as a table. You can use a table_collection_
expression to update rows in one table based on rows from another table. For

example, you could roll up four quarterly sales tables into a yearly sales table.

See Also: ALTER SESSION on page 7-105

collection_
expression

Specify a subquery that selects a nested table column from table or

view .

Note: In earlier releases of Oracle, table_collection_expr
was expressed as "THEsubquery ". That usage is now deprecated.
SQL Statements: DROP SEQUENCE to UPDATE 11-145

UPDATE
t_alias

Specify a correlation name (alias) for the table, view, or subquery to be referenced

elsewhere in the statement.

set_clause
The set_clause lets you set column values.

Note: This alias is required if the DML_query_expression_
clause references any object type attributes or object type

methods.

column Specify the name of a column of the table or view that is to be

updated. If you omit a column of the table from the set_clause ,

that column’s value remains unchanged.

Restrictions:

■ If column refers to a LOB object attribute, you must first

initialize it with a value of empty or null. You cannot update it

with a literal. Also, if you are updating a LOB value using some

method other than a direct UPDATE SQL statement, you must

first lock the row containing the LOB.

See Also: "LOB Locking Example" on page 11-108

■ If column is part of the partitioning key of a partitioned table,

UPDATE will fail if you change a value in the column that

would move the row to a different partition or subpartition,

unless you enable row movement.

See Also: The row_movement_clause of CREATE TABLE on

page 10-7 or ALTER TABLE on page 8-2
11-146 SQL Reference

UPDATE
subquery Specify a subquery that returns exactly one row for each row

updated.

■ If you specify only one column in the set_clause , the

subquery can return only one value.

■ If you specify multiple columns in the set_clause , the

subquery must return as many values as you have specified

columns.

If the subquery returns no rows, then the column is assigned a null.

See Also: SELECT and subquery on page 11-88 and "Using

Subqueries" on page 5-26

Note: If this subquery refers to remote objects, the UPDATE
operation can run in parallel as long as the reference does not

loop back to an object on the local database. However, if the

subquery in the DML_query_expression_clause refers to

any remote objects, the UPDATE operation will run serially

without notification.

See Also: parallel_clause in CREATE TABLE on

page 10-40

expr Specify an expression that resolves to the new value assigned to the

corresponding column. This expression can contain host variables

and optional indicator variables.

See Also: The syntax description in "Expressions" on page 5-2

VALUE The VALUE clause lets you specify the entire row of an object table.

Restriction: You can specify this clause only for an object table.

See Also: "SET VALUE Example" on page 11-150

Note: If you insert string literals into a RAW column, during subsequent queries,

Oracle will perform a full table scan rather than using any index that might exist

on the RAW column.
SQL Statements: DROP SEQUENCE to UPDATE 11-147

UPDATE
where_clause
The where_clause lets you restrict the rows updated to those for which the

specified condition is true . If you omit this clause, Oracle updates all rows in the

table or view.

The where_clause determines the rows in which values are updated. If you do

not specify the where_clause , all rows are updated. For each row that satisfies the

where_clause , the columns to the left of the equals (=) operator in the set_
clause are set to the values of the corresponding expressions on the right. The

expressions are evaluated as the row is updated.

returning_clause

The returning clause retrieves the rows affected by a DML (INSERT, UPDATE, or

DELETE) statement. You can specify this clause for tables and snapshots, and for

views with a single base table.

■ When operating on a single row, a DML statement with a returning_clause
can retrieve column expressions using the affected row, rowid, and REFs to the

affected row and store them in host variables or PL/SQL variables.

■ When operating on multiple rows, a DML statement with the returning_
clause stores values from expressions, rowids, and REFs involving the

affected rows in bind arrays.

For each expression in the RETURNING list, you must specify a corresponding type-

compatible PL/SQL variable or host variable in the INTO list.

Restrictions:

■ You cannot use this clause with parallel DML or with remote objects.

■ You cannot retrieve LONG types with this clause.

■ You cannot specify this clause for a view on which an INSTEAD OF trigger has

been defined.

See Also: The syntax description of "Conditions" on page 5-15

expr Each item in the expr list must be a valid expression syntax.

INTO The INTO clause indicates that the values of the changed rows are

to be stored in the variable(s) specified in data_item list.

data_item Each data_item is a host variable or PL/SQL variable that

stores the retrieved expr value.
11-148 SQL Reference

UPDATE
Examples

Simple Examples The following statement gives null commissions to all

employees with the job trainee :

UPDATE emp
 SET comm = NULL
 WHERE job = ’TRAINEE’;

The following statement promotes jones to manager of Department 20 with a

$1,000 raise (assuming there is only one jones):

UPDATE emp
 SET job = ’MANAGER’, sal = sal + 1000, deptno = 20
 WHERE ename = ’JONES’;

The following statement increases the balance of bank account number 5001 in the

accounts table on a remote database accessible through the database link boston :

UPDATE accounts@boston
 SET balance = balance + 500
 WHERE acc_no = 5001;

PARTITION Example The following example updates values in a single partition

of the sales table:

UPDATE sales PARTITION (feb96) s
 SET s.account_name = UPPER(s.account_name);

Complex Example This example shows the following syntactic constructs of the

UPDATE statement:

■ Both forms of the set_clause together in a single statement

■ A correlated subquery

■ A where_clause to limit the updated rows

UPDATE emp a
 SET deptno =
 (SELECT deptno
 FROM dept

See Also: PL/SQL User’s Guide and Reference for information on

using the BULK COLLECT clause to return multiple values to

collection variables
SQL Statements: DROP SEQUENCE to UPDATE 11-149

UPDATE
 WHERE loc = ’BOSTON’),
 (sal, comm) =
 (SELECT 1.1*AVG(sal), 1.5*AVG(comm)
 FROM emp b
 WHERE a.deptno = b.deptno)
 WHERE deptno IN
 (SELECT deptno
 FROM dept
 WHERE loc = ’DALLAS’
 OR loc = ’DETROIT’);

The above UPDATE statement performs the following operations:

■ Updates only those employees who work in Dallas or Detroit

■ Sets deptno for these employees to the deptno of Boston

■ Sets each employee’s salary to 1.1 times the average salary of their department

■ Sets each employee’s commission to 1.5 times the average commission of their

department

SET VALUE Example The following statement updates a row of object table

table1 by selecting a row from another object table table2 :

UPDATE table1 p SET VALUE(p) =
 (SELECT VALUE(q) FROM table2 q WHERE p.id = q.id)
 WHERE p.id = 10;

The subquery uses the value object reference function in its expression.

Correlated Update Example The following example updates particular rows of the

projs nested table corresponding to the department whose department equals 123:

UPDATE TABLE(SELECT projs
 FROM dept d WHERE d.dno = 123) p
 SET p.budgets = p.budgets + 1
 WHERE p.pno IN (123, 456);

RETURNING Clause Example The following example returns values from the

updated row and stores the result in PL/SQL variables bnd1 , bnd2 , bnd3 :

UPDATE emp
 SET job =’MANAGER’, sal = sal + 1000, deptno = 20
 WHERE ename = ’JONES’
 RETURNING sal*0.25, ename, deptno INTO bnd1, bnd2, bnd3;
11-150 SQL Reference

Syntax Diag
A

Syntax Diagrams

Syntax diagrams are drawings that illustrate valid SQL syntax. To read a diagram,

trace it from left to right, in the direction shown by the arrows.

Commands and other keywords appear in UPPERCASE inside rectangles. Type

them exactly as shown in the rectangles. Parameters appear in lowercase inside

ovals. Variables are used for the parameters. Punctuation, operators, delimiters, and

terminators appear inside circles.

If the syntax diagram has more than one path, you can choose any path to travel.

For example, in the following syntax you can specify either NOPARALLEL or

PARALLEL:

If you have the choice of more than one keyword, operator, or parameter, your

options appear in a vertical list. For example, in the following syntax, you can

specify one or more of the four parameters in the stack:

NOPARALLEL

PARALLEL
integer

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause
rams A-1

The following table shows parameters that appear in the syntax diagrams and

provides examples of the values you might substitute for them in your statements:

Parameter Description Examples

table The substitution value must be the name of an
object of the type specified by the parameter.
For a list of all types of objects, see the section,
"Schema Objects" on page 2-79.

emp

c The substitution value must be a single
character from your database character set.

T
s

’text’ The substitution value must be a text string in
single quotes. See the syntax description of ’text’
in "Text" on page 2-33.

’Employee records’

char The substitution value must be an expression of
datatype CHAR or VARCHAR2 or a character
literal in single quotes.

ename

’Smith’

condition The substitution value must be a condition that
evaluates to TRUE or FALSE. See the syntax
description of condition in "Conditions" on
page 5-15.

ename >’A’

date

d

The substitution value must be a date constant
or an expression of DATE datatype.

TO_DATE(

’01-Jan-1994’,

’DD-MON-YYYY’)

expr The substitution value can be an expression of
any datatype as defined in the syntax
description of expr in "Expressions" on page 5-2.

sal + 1000

integer The substitution value must be an integer as
defined by the syntax description of integer in
"Integer" on page 2-34.

72

number

m

n

The substitution value must be an expression of
NUMBER datatype or a number constant as
defined in the syntax description of number in
"Number" on page 2-35.

AVG(sal)

15 * 7

raw The substitution value must be an expression of
datatype RAW.

HEXTORAW(’7D’)

subquery The substitution value must be a SELECT
statement that will be used in another SQL
statement. See SELECT and subquery on
page 11-88.

SELECT ename

FROM emp
A-2 SQL Reference

Required Keywords and Parameters
Required keywords and parameters can appear singly or in a vertical list of

alternatives. Single required keywords and parameters appear on the main path, that

is, on the horizontal line you are currently traveling. In the following example,

library_name is a required parameter:

If there is a library named HQ_LIB, then, according to the diagram, the following

statement is valid:

DROP LIBRARY hq_lib;

If multiple keywords or parameters appear in a vertical list that intersects the main

path, one of them is required. That is, you must choose one of the keywords or

db_name The substitution value must be the name of a
nondefault database in an embedded SQL
program.

sales_db

db_string The substitution value must be the database
identification string for a Net8 database
connection. For details, see the user’s guide for
your specific Net8 protocol.

Parameter Description Examples

DROP LIBRARY library_name ;
Syntax Diagrams A-3

parameters, but not necessarily the one that appears on the main path. In the

following example, you must choose one of the four settings:

Optional Keywords and Parameters
If keywords and parameters appear in a vertical list above the main path, they are

optional. In the following example, instead of traveling down a vertical line, you

can continue along the main path:

According to the diagram, all of the following statements are valid:

DEALLOCATE UNUSED;
DEALLOCATE UNUSED KEEP 1000;
DEALLOCATE UNUSED KEEP 10M;

Syntax Loops
Loops let you repeat the syntax within them as many times as you like. In the

following example, after choosing one expression, you can go back repeatedly to

choose another, separated by commas.

PCTFREE

PCTUSED

INITRANS

MAXTRANS

DEALLOCATE UNUSED
KEEP integer

K

M

(expr

,

)

A-4 SQL Reference

Multipart Diagrams
Read a multipart diagram as if all the main paths were joined end to end. The

following example is a two-part diagram:

According to the diagram, the following statement is valid:

CREATE OUTLINE ON UPDATE;

Database Objects
The names of Oracle identifiers, such as tables and columns, must not exceed 30

characters in length. The first character must be a letter, but the rest can be any

combination of letters, numerals, dollar signs ($), pound signs (#), and underscores

(_).

However, if an Oracle identifier is enclosed by double quotation marks ("), it can

contain any combination of legal characters, including spaces but excluding

quotation marks.

Oracle identifiers are not case-sensitive except when enclosed by double quotation

marks.

For more information, see "Schema Object Naming Rules" on page 2-83.

CREATE
OR REPLACE

OUTLINE
outline

FOR CATEGORY category
ON statement ;
Syntax Diagrams A-5

A-6 SQL Reference

Oracle and Standard
B

Oracle and Standard SQL

This appendix discusses Oracle’s conformance to the SQL-92 standards established

by industry standards governing bodies. We are assessing the changes that will be

required to this appendix in light of the new SQL-99 standards. The appendix also

described how to locate extensions to standard SQL with the FIPS Flagger.

Conformance with Standard SQL
This section declares Oracle’s conformance to the SQL standards established by

these organizations:

■ American National Standards Institute (ANSI)

■ International Standards Organization (ISO)

■ United States Federal Government

ANSI and ISO Compliance
Oracle8i complies at the Entry level as defined in the ANSI document, X3.135-1992,

“Database Language SQL.” You can obtain a copy of the ANSI standard from this

address:

American National Standards Institute

1430 Broadway

New York, NY 10018 USA

The ANSI and ISO SQL standards require conformance claims to state the type of

conformance and the implemented facilities. The Oracle server, Oracle Precompilers

for C/C++ Release 8.1, Oracle Precompiler for Cobol Release 8.1, and SQL*Module

for ADA Release 8.0.4 provide conformance with the ANSI X3.135-1992/ISO 9075-

1992 standard:
 SQL B-1

Conformance with Standard SQL
■ Compliance at Entry Level (including both SQL-DDL and SQL-DML)

■ Module Language for ADA

■ Embedded SQL C

■ Embedded SQL COBOL

In addition to full compliance at the Entry level, Oracle complies partially at the

Transitional, Intermediate, and Full levels as described in Table B–1 (including both

SQL-DDL and SQL-DML).

FIPS Compliance
Oracle complies completely with FIPS PUB 127-2 for Entry SQL. In addition, the

following information is provided for Section 16, “Special Procurement

Considerations.”

Table B–1 Oracle Compliance at Transitional, Intermediate, and Full Levels

Level SQL92 Feature (number and name)

Transitional 7. TRIM function

8. UNION in views

9. Implicit numeric casting

10. Implicit character casting

13. Grouped operations

14. Qualified * in SELECT list

15. Lowercase identifiers

16. PRIMARY KEY enhancement

18. Multiple module support

21. INSERT expressions

Intermediate 31. Schema definition statement

42. National character

48. Expanded null predicate

Full 60. Trailing underscore

62. Referential name order
B-2 SQL Reference

Conformance with Standard SQL
Section 16.2 Programming Language Interfaces
The Oracle precompilers support the use of embedded SQL in C and COBOL.

SQL*Module supports the use of Module Language in ADA.

Section 16.3 Style of Language Interface
Oracle with SQL*Module supports Module Language for Ada. Oracle with the

Oracle precompilers supports C and COBOL. The specific languages supported

depend on your operating system.

Section 16.5 Interactive Direct SQL
Oracle8i with SQL*Plus Version 3.1 (as well as other Oracle tools) supports "direct

invocation" of the following SQL statements, meeting the requirements of FIPS PUB

127-2:

■ CREATE TABLE statement

■ CREATE VIEW statement

■ GRANT statement

■ INSERT statement

■ SELECT statement, with ORDER BY clause but not INTO clause

■ UPDATE statement: searched

■ DELETE statement: searched

■ COMMIT WORK statement

■ ROLLBACK WORK statement

Most other SQL statements described in this reference are also supported

interactively.

Section 16.6 Sizing for Database Constructs
Table B–2 lists requirements identified in FIPS PUB 127-1 and how they are met by

Oracle8i.

Table B–2 Sizing for Database Constructs

Database Constructs FIPS Oracle8 i

Length of an identifier (in bytes) 18 30

Length of CHARACTER datatype (in bytes) 240 2000
Oracle and Standard SQL B-3

Conformance with Standard SQL
Decimal precision of NUMERIC datatype 15 38

Decimal precision of DECIMAL datatype 15 38

Decimal precision of INTEGER datatype 9 38

Decimal precision of SMALLINT datatype 4 38

Binary precision of FLOAT datatype 20 126

Binary precision of REAL datatype 20 63

Binary precision of DOUBLE PRECISION datatype 30 126

Columns in a table 100 1000

Values in an INSERT statement 100 1000

SET clauses in an UPDATE statement(a) 20 1000

Length of a row(b,c) 2,000 2,000,000

Columns in a UNIQUE constraint 6 32

Length of a UNIQUE constraint(b) 120 (d)

Length of foreign key column list(b) 120 (d)

Columns in a GROUP BY clause 6 255(e)

Length of GROUP BYcolumn list 120 (e)

Sort specifications in ORDER BY clause 6 255(e)

Length of ORDER BY column list 120 (e)

Columns in a referential integrity constraint 6 32

Tables referenced in a SQL statement 15 No limit

Cursors simultaneously open 10 (f)

Items in a SELECT list 100 1000

Table B–2 (Cont.) Sizing for Database Constructs
B-4 SQL Reference

Oracle Extensions to Standard SQL
Section 16.7 Character Set Support
Oracle supports the ASCII character set (FIPS PUB 1-2) on most computers and the

EBCDIC character set on IBM mainframe computers. Oracle supports both single-

byte and multibyte character sets.

Oracle Extensions to Standard SQL
Oracle supports numerous features that extend beyond standard SQL. In your

Oracle applications, you can use these extensions just as you can use Entry SQL92.

If you are concerned with the portability of your applications to other

implementations of SQL, use Oracle’s FIPS Flagger to locate Oracle extensions to

Entry SQL92 in your embedded SQL programs. The FIPS Flagger is part of the

Oracle precompilers and the SQL*Module compiler.

(a) The number of SET clauses in an UPDATE statement refers to the number items separated
by commas following the SET keyword.

(b) The FIPS PUB defines the length of a collection of columns to be the sum of: twice the
number of columns, the length of each character column in bytes, decimal precision plus 1
of each exact numeric column, binary precision divided by 4 plus 1 of each approximate
numeric column.

(c) The Oracle limit for the maximum row length is based on the maximum length of a row
containing a LONG value of length 2 gigabytes and 999 VARCHAR2 values, each of length
4000 bytes: 2(254) + 231 + (999(4000)).

(d) The Oracle limit for a UNIQUE key is half the size of an Oracle data block (specified by the
initialization parameter DB_BLOCK_SIZE) minus some overhead.

(e) Oracle places no limit on the number of columns in a GROUP BY clause or the number of
sort specifications in an ORDER BY clause. However, the sum of the sizes of all the
expressions in either a GROUP BY clause or an ORDER BY clause is limited to the size of an
Oracle data block (specified by the initialization parameter DB_BLOCK_SIZE) minus some
overhead.

(f) The Oracle limit for the number of cursors simultaneously opened is specified by the
initialization parameter OPEN_CURSORS. The maximum value of this parameter depends on
the memory available on your operating system and exceeds 100 in all cases.

See Also: Pro*COBOL Precompiler Programmer’s Guide and Pro*C/
C++ Precompiler Programmer’s Guide for information on how to use

the FIPS Flagger.

Table B–2 (Cont.) Sizing for Database Constructs
Oracle and Standard SQL B-5

Oracle Extensions to Standard SQL
B-6 SQL Reference

Oracle Reserved W
C

Oracle Reserved Words

This appendix lists Oracle reserved words. Words followed by an asterisk (*) are

also ANSI reserved words.

Note: In addition to the following reserved words, Oracle uses system-

generated names beginning with "SYS_" for implicitly generated schema

objects and subobjects. Oracle discourages you from using this prefix in the

names you explicitly provide to your schema objects and subobjects to

avoid possible conflict in name resolution.

Table C–1 Oracle Reserved Words

ACCESS CHAR * DEFAULT *

ADD * CHECK * DELETE *

ALL * CLUSTER DESC *

ALTER * COLUMN DISTINCT *

AND * COMMENT DROP *

ANY * COMPRESS ELSE *

AS * CONNECT * EXCLUSIVE

ASC * CREATE * EXISTS

AUDIT CURRENT * FILE

BETWEEN * DATE * FLOAT *

BY * DECIMAL * FOR *

FROM * NOT * SHARE

GRANT * NOWAIT SIZE *
ords C-1

GROUP * NULL * SMALLINT *

HAVING * NUMBER START

IDENTIFIED OF * SUCCESSFUL

IMMEDIATE * OFFLINE SYNONYM

IN * ON * SYSDATE

INCREMENT ONLINE TABLE *

INDEX OPTION * THEN *

INITIAL OR * TO *

INSERT * ORDER * TRIGGER

INTEGER * PCTFREE UID

INTERSECT * PRIOR * UNION *

INTO * PRIVILEGES * UNIQUE *

IS * PUBLIC * UPDATE *

LEVEL * RAW USER *

LIKE * RENAME VALIDATE

LOCK RESOURCE VALUES *

LONG REVOKE * VARCHAR *

MAXEXTENTS ROW VARCHAR2

MINUS ROWID VIEW *

MLSLABEL ROWNUM WHENEVER *

MODE ROWS * WHERE

MODIFY SELECT * WITH *

NOAUDIT SESSION *

NOCOMPRESS SET *

Table C–1 Oracle Reserved Words
C-2 SQL Reference

Index

Symbols
$ number format element, 2-44

% (percent) used with LIKE operator, 3-7

(+) operator, 3-16

, (comma)

date format element, 2-49

number format element, 2-44

: (colon) date format element, 2-49

- (dash) date format element, 2-49

; (semicolon) date format element, 2-49

⁄ (slash) date format element, 2-49

˙ (period)

date format element, 2-49

number format element, 2-44

Numerics
0 number format element, 2-44

20th century, 2-50, 2-52

specifying, 2-53

21st century, 2-50, 2-52

specifying, 2-53

8 number format element, 2-44

9 number format element, 2-44

A
ABS function, 4-14

ABSI

standards, B-1

ACCOUNT LOCK clause

of ALTER USER. See CREATE USER

of CREATE USER, 10-103

ACCOUNT UNLOCK clause

of ALTER USER. See CREATE USER

of ALTER USER. See CREATE USER.

of CREATE USER, 10-103

ACOS function, 4-14

ACTIVATE STANDBY DATABASE clause

of ALTER DATABASE, 7-26

AD (A.D.) date format element, 2-49, 2-51

ADD clause

of ALTER DIMENSION, 7-36

of ALTER TABLE, 8-19

ADD DATAFILE clause

of ALTER TABLESPACE, 8-70

ADD LOGFILE clause

of ALTER DATABASE, 7-13

ADD LOGFILE GROUP clause

of ALTER DATABASE, 7-22

ADD LOGFILE MEMBER clause

of ALTER DATABASE, 7-13, 7-23

ADD LOGFILE THREAD clause

of ALTER DATABASE, 7-22

ADD OVERFLOW clause

of ALTER TABLE, 8-41

ADD PARTITION, 8-47

ADD PARTITION clause

of ALTER TABLE, 8-46, 8-47

ADD PRIMARY KEY clause

of ALTER MATERIALIZED VIEW LOG, 7-80

ADD ROWID clause

of ALTER MATERIALIZED VIEW, 7-80

of ALTER MATERIALIZED VIEW LOG, 7-80

ADD TEMPFILE clause

of ALTER TABLESPACE, 8-70

ADD_MONTHS function, 4-15
Index-1

ADMINISTER ANY TRIGGER system

privilege, 11-43

ADVISE clause

of ALTER SESSION, 7-106

AFTER clause

of CREATE TRIGGER, 10-69

AFTER triggers, 10-69

aggregate functions, 4-6

aliases

for columns, 5-21

for expressions in view query, 10-108

specifying in queries and subqueries, 11-97

ALL clause

of SELECT, 11-92

of SET CONSTRAINTS, 11-120

of SET ROLE, 11-123

ALL EXCEPT clause

of SET ROLE, 11-123

ALL operator, 3-6

ALL PRIVILEGES clause

of GRANT object_privileges, 11-35

of REVOKE schema_object_privileges, 11-78

ALL PRIVILEGES shortcut

of AUDIT sql_statements, 8-117

ALL shortcut

of AUDIT sql_statements, 8-117

ALL_COL_COMMENTS view, 8-131

ALL_ROWS hint, 2-68

ALL_TAB_COMMENTS view, 8-131

ALLOCATE EXTENT clause

of ALTER CLUSTER, 7-4, 7-5

of ALTER INDEX, 7-42, 7-46

of ALTER TABLE, 8-34

ALTER ANY CLUSTER system privilege, 11-37

ALTER ANY DIMENSION system privilege, 11-38

ALTER ANY INDEX system privilege, 11-38

ALTER ANY INDEXTYPE system privilege, 11-38

ALTER ANY MATERIALIZED VIEW system

privilege, 11-39

ALTER ANY OUTLINE system privilege, 11-39

ALTER ANY PROCEDURE system

privilege, 11-40

ALTER ANY ROLE system privilege, 11-40

ALTER ANY SEQUENCE system privilege, 11-41

ALTER ANY SNAPSHOT system privilege, 11-41

ALTER ANY TABLE system privilege, 11-42

ALTER ANY TRIGGER system privilege, 11-42

ALTER ANY TYPE system privilege, 11-43

ALTER CLUSTER statement, 7-3

ALTER DATABASE

statement, 7-9

system privilege, 11-37

ALTER DIMENSION statement, 7-34

ALTER FUNCTION statement, 7-38

ALTER INDEX statement, 7-40

ALTER JAVA CLASS statement, 7-58

ALTER JAVA SOURCE statement, 7-58

ALTER MATERIALIZED VIEW LOG

statement, 7-76

ALTER MATERIALIZED VIEW statement, 7-61

ALTER object privilege, 11-46

ALTER OUTLINE statement, 7-83

ALTER PACKAGE statement, 7-85

ALTER PROCEDURE statement, 7-88

ALTER PROFILE

statement, 7-91

system privilege, 11-40

ALTER RESOURCE COST

statement, 7-95

system privilege, 11-41

ALTER ROLE statement, 7-98

ALTER ROLLBACK SEGMENT

statement, 7-100

system privilege, 11-40

ALTER SEQUENCE statement, 7-103

ALTER SESSION

statement, 7-105

system privilege, 11-41

ALTER SNAPSHOT LOG. See ALTER

MATERIALIZED VIEW LOG

ALTER SNAPSHOT. See ALTER MATERIALIZED

VIEW

ALTER statement

triggers on, 10-71

ALTER SYSTEM

statement, 7-127

system privilege, 11-37

ALTER TABLE statement, 8-2

ALTER TABLESPACE

statement, 8-67
Index-2

system privilege, 11-42

ALTER TRIGGER statement, 8-76

ALTER TYPE statement, 8-79

ALTER USER

statement, 8-88

system privilege, 11-43

ALTER VIEW statement, 8-94

AM (A.M.) date format element, 2-49, 2-51

American National Standards Institute. See ANSI

analytic functions, 4-8

CUME_DIST, 4-33

FIRST_VALUE, 4-38

LAG, 4-45

LAST_VALUE, 4-47

LEAD, 4-49

NTILE, 4-67

PERCENT_RANK, 4-73

RANK, 4-74

RATIO_TO_REPORT, 4-75

ROW_NUMBER, 4-87

ANALYZE ANY system privilege, 11-44

ANALYZE CLUSTER statement, 8-96

ANALYZE INDEX statement, 8-96

ANALYZE TABLE statement, 8-96

ANCILLARY TO clause

of CREATE OPERATOR, 9-117

AND operator, 3-11, 3-12

AND_EQUAL hint, 2-69

ANSI, B-1

datatypes, 2-22

conversion to Oracle datatypes, 2-22

standards, xv, 1-2

supported datatypes, 2-5

ANY operator, 3-6

APPEND hint, 2-73

application servers

allowing to connect as a user, 8-91

applications

allowing to connect as a user, 8-91

securing, 9-13

validating, 9-13

AQ_ADMINISTRATOR_ROLE role, 11-45

AQ_TM_PROCESSES parameter

of ALTER SYSTEM, 7-136

AQ_USER_ROLE role, 11-45

ARCHIVE LOG clause

of ALTER SYSTEM, 7-128

archived redo logs

location of, 7-16

storage locations, 7-113, 7-142

ARCHIVELOG clause

of ALTER DATABASE, 7-13, 7-22

of CREATE CONTROLFILE, 9-19

OF CREATE DATABASE, 9-25

arguments of operators, 3-1

arithmetic operators, 3-3

AS ’filespec’ clause

of CREATE LIBRARY, 9-87

AS clause

of CREATE JAVA, 9-84

AS EXTERNAL clause

of CREATE FUNCTION, 9-50, 9-137

of CREATE TYPE BODY, 10-97

AS OBJECT clause

of CREATE TYPE, 10-84

AS subquery

of CREATE MATERIALIZED VIEW /

SNAPSHOT, 9-92, 9-101

of CREATE TABLE, 10-46

of CREATE VIEW, 10-110

AS TABLE clause

of CREATE TYPE, 10-90

AS VARRAY clause

of CREATE TYPE, 10-89

ASC clause

of CREATE INDEX, 9-63

ascending indexes, 9-63

ASCII

character set, 2-28

ASCII function, 4-16

ASIN function, 4-16

ASSOCIATE STATISTICS statement, 8-110

ATAN function, 4-17

ATAN2 function, 4-17

ATTRIBUTE clause

of ALTER DIMENSION, 7-35

of CREATE DIMENSION, 9-38

attributes

adding to a dimension, 7-36

dropping from a dimension, 7-36
Index-3

maximum number of in object type, 10-19

of dimensions, defining, 9-38

AUDIT ANY system privilege, 11-44

AUDIT SYSTEM system privilege, 11-37

auditing

options

for database objects, 8-120

for SQL statements, 8-122

SQL statements, 8-120

SQL statements, stopping, 11-66

AUTHENTICATED BY clause

of CREATE DATABASE LINK, 9-31

AUTHID CURRENT_USER clause

of ALTER JAVA, 7-59

of CREATE FUNCTION, 9-48

of CREATE JAVA, 9-82

of CREATE PACKAGE, 9-124

of CREATE PROCEDURE, 9-136

of CREATE TYPE, 8-84, 10-85

AUTHID DEFINER clause

of ALTER JAVA, 7-59

of CREATE FUNCTION, 9-48

of CREATE JAVA, 9-82

of CREATE PACKAGE, 9-124

of CREATE PROCEDURE, 9-136

of CREATE TYPE, 8-84, 10-85

AUTOEXTEND clause

for datafiles, 7-21

of ALTER DATABASE, 7-13

of ALTER TABLESPACE, 8-69, 8-70

of CREATE DATABASE, 9-22

of CREATE TABLESPACE, 10-57, 10-59

of CREATE TEMPORARY

TABLESPACE, 10-63, 10-64

AVG function, 4-18

AY date format element, 2-49

B
BACKGROUND_DUMP_DEST parameter

of ALTER SYSTEM, 7-136

BACKUP ANY TABLE system privilege, 11-42

BACKUP CONTROLFILE clause

of ALTER DATABASE, 7-14, 7-25

BACKUP_TAPE_IO_SLAVES parameter

of ALTER SYSTEM, 7-137

BC (B.C.) date format element, 2-49, 2-51

BECOME USER system privilege, 11-43

BEFORE clause

of CREATE TRIGGER, 10-68

BEFORE triggers, 10-68

BEGIN BACKUP clause

of ALTER TABLESPACE, 8-72

BFILE

datatype, 2-18

locators, 2-18

BFILENAME function, 4-19

binary large objects. See BLOBs

binary operators, 3-2

BINDING clause

of CREATE OPERATOR, 9-115, 9-117

BITAND function, 4-20

BITMAP clause

of CREATE INDEX, 9-59

bitmap indexes, 9-59

blank padding

specifying in format models, 2-54

suppressing, 2-54

blank-padded comparison semantics, 2-27

BLOB datatype, 2-19

transactional support of, 2-19

BODY clause

of ALTER PACKAGE, 7-86

BUFFER_POOL parameter

of STORAGE clause, 11-134

BUILD DEFERRED clause

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-94

BUILD IMMEDIATE clause

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-94

BY ACCESS clause

of AUDIT sql_statements, 8-119

BY proxy clause

of AUDIT (SQL statements), 8-117

of NOAUDIT sql_statements, 11-68

BY SESSION clause

of AUDIT sql_statements, 8-119

BY user clause

of AUDIT sql_statements, 8-117
Index-4

of NOAUDIT sql_statements, 11-68

C
C clause

of CREATE TYPE, 10-87

of CREATE TYPE BODY, 10-97

C method

mapping to an object type, 10-87

C number format element, 2-44

CACHE clause

of ALTER MATERIALIZED VIEW, 7-68

of ALTER MATERIALIZED VIEW LOG, 7-80

of ALTER SEQUENCE. See CREATE

SEQUENCE, 7-103

of ALTER TABLE, 8-36

of CREATE CLUSTER, 9-10

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG, 9-111

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-93

of CREATE SEQUENCE, 9-158

of CREATE TABLE, 10-39

CACHE hint, 2-77

CACHE READS clause

of ALTER TABLE, 8-37

of CREATE TABLE, 10-40

CALL clause

of CREATE TRIGGER, 10-76

CALL procedure statement

of CREATE TRIGGER, 10-76

call spec

in procedures, 9-132

of CREATE FUNCTION, 9-50

of CREATE PROCEDURE, 9-137

of CREATE TYPE, 10-87

of CREATE TYPE BODY, 10-97

call specifications. See call spec

CALL statement, 8-128

Cartesian products, 5-25

CASCADE clause

of CREATE TABLE, 10-45

of DROP PROFILE, 10-154

of DROP USER, 11-19

CASCADE CONSTRAINTS clause

of DROP CLUSTER, 10-127

of DROP TABLE, 11-9

of DROP TABLESPACE, 11-12

of REVOKE schema_object_privileges, 11-78

CASE expressions, 5-14

case sensitivity

schema object names, 2-86

CAST expressions, 5-8

CC date format element, 2-49

CEIL function, 4-21

century

specifying, 2-50

chained rows

listing, 8-106

CHANGE CATEGORY clause

of ALTER OUTLINE, 7-83

changes

making permanent, 8-133

changing default storage parameters, 8-71

CHAR datatype, 2-8

ANSI, 2-22

converting to VARCHAR2, 2-43

CHAR VARYING datatype, ANSI, 2-22

CHARACTER datatype

ANSI, 2-22

DB2, 2-23

SQL/DS, 2-23

character functions, 4-4, 4-5

character large objects. See CLOB datatype

character literal. See text

CHARACTER SET clause

of CREATE CONTROLFILE, 9-19

OF CREATE DATABASE, 9-26

CHARACTER SET parameter

of ALTER DATABASE, 7-29

character sets

common, 2-28

multibyte characters, 2-83

specifying for database, 9-26

character strings

comparison rules, 2-26

exact matching of, 2-55

fixed-length, 2-8

national character set, 2-8

variable length, 2-9
Index-5

variable-length, 2-12

zero-length, 2-8

CHARACTER VARYING datatype

ANSI, 2-22

characters

single, comparison rules, 2-28

CHARTOROWID function, 2-32, 4-21

CHECK clause

of constraint_clause, 8-144

of CREATE TABLE, 10-20

check constraints, 8-144

CHECK DATAFILES clause

of ALTER SYSTEM, 7-132

checkpoint

forcing, 7-131

CHECKPOINT clause

of ALTER SYSTEM, 7-131

CHR function, 4-22

CHUNK clause

of ALTER TABLE, 8-22

of CREATE TABLE, 10-31

CLEAR LOGFILE clause

of ALTER DATABASE, 7-13, 7-24

CLOB datatype, 2-19

transactional support of, 2-19

clone database

mounting, 7-26

CLOSE DATABASE LINK clause

of ALTER SESSION, 7-106

CLUSTER clause

of CREATE INDEX, 9-59

of CREATE TABLE, 10-29

of TRUNCATE, 11-139

CLUSTER hint, 2-69

clusters

allocating extents for, 7-4

assigning tables to, 10-29

caching retrieved blocks, 9-10

cluster indexes on, 9-59

collecting statistics on, 8-100

creating, 9-3

data blocks allocated to, 9-6

deallocating unused extents, 7-4

degree of parallelism

changing, 7-4

when creating, 9-9

dropping tables of, 10-127

granting

system privileges on, 11-37

hash, 9-7

single-table, 9-8

indexed, 9-7

migrated and chained rows in, 8-106

modifying, 7-3

physical attributes

changing, 7-4

specifying, 9-6

removing from the database, 10-126

space allocated for cluster key values, 9-7

SQL examples, 10-127

storage attributes

changing, 7-4

storage characteristics, 11-129

specifying, 9-6

tablespace in which created, 9-7

validating structure of, 8-104

COALESCE clause

for partitions, 8-48

for subpartitions, 8-43

of ALTER INDEX, 7-53

of ALTER TABLESPACE, 8-73

COALESCE SUBPARTITION clause

of ALTER TABLE, 8-43

code examples

description of, xxii

collections

inserting rows into, 11-55

modifying, 8-28

nested tables, 2-26

treating as a table, 10-118, 11-55, 11-144

unnesting, 11-96

examples, 11-115

varrays, 2-25

column constraints, 8-137, 8-140

of ALTER TABLE, 8-21

of CREATE TABLE, 10-20

column REF constraints, 8-137, 8-145

of ALTER TABLE, 8-20

of CREATE TABLE, 10-20

columns
Index-6

adding, 8-19

aliases for, 5-21

associating statistics with, 8-112

basing an index on, 9-60

collecting statistics on, 8-101

creating comments about, 8-131

defining, 10-7

LOB, storage characteristics of, 8-21

maximum number of, 10-19

modifying existing, 8-23

parent-child relationships between, 9-34

prohibiting nulls in, 8-142

qualifying names of, 5-21

REF

describing, 8-145

restricting values for, 8-136

specifying as foreign key, 8-144

specifying as primary key, 8-142

specifying constraints on, 10-20

specifying default values for, 10-20

unique values in, 8-141

COLUMNS clause

of ASSOCIATE STATISTICS, 8-110, 8-112

COMMENT ANY TABLE system privilege, 11-44

COMMENT clause

of COMMIT, 8-134

COMMENT statement, 8-131

comments, 2-66

adding to objects, 8-131

associating with a transaction, 8-134

dropping from objects, 8-131

how to specify, 2-66

in SQL statements, 2-66

on schema objects, 2-67

removing from the data dictionary, 8-131

viewing, 8-131

commit

automatic, 8-133

COMMIT IN PROCEDURE clause

of ALTER SESSION, 7-106

COMMIT statement, 8-133

comparison functions

MAP, 10-88, 10-96

ORDER, 10-89, 10-96

comparison operators, 3-5

comparison semantics

blank-padded, 2-27

nonpadded, 2-27

of character strings, 2-26

COMPILE clause

of ALTER DIMENSION, 7-36

of ALTER FUNCTION, 7-39

of ALTER JAVA SOURCE, 7-59

of ALTER MATERIALIZED VIEW, 7-72

of ALTER PACKAGE, 7-86

of ALTER PROCEDURE, 7-89

of ALTER TRIGGER, 8-77

of ALTER TYPE, 8-80

of ALTER VIEW, 8-95

of CREATE JAVA, 9-81

compiler directives, 10-87

composite foreign keys, 8-143

composite partitioning clause

of CREATE TABLE, 10-14, 10-36

composite primary keys, 8-142

composite unique constraints, 8-141

COMPOSITE_LIMIT parameter

of ALTER PROFILE, 7-92

of CREATE PROFILE, 9-143

compound conditions, 5-20

compound expressions, 5-4

COMPRESS clause

of ALTER INDEX, 7-43

of ALTER TABLE, 8-26

of CREATE INDEX, 9-64

of CREATE TABLE, 10-28

COMPUTE STATISTICS clause

of ANALYZE, 8-101

of CREATE INDEX, 9-66

CONCAT function, 4-23

concatenation operator, 3-4

conditions

compound, 5-20

EXISTS, 5-20

group comparison, 5-18

in SQL syntax, 5-15

LIKE, 5-20

membership, 5-19

NULL, 5-20

range, 5-20
Index-7

simple comparison, 5-17

CONNECT BY clause

of SELECT, 5-23, 11-98

CONNECT clause

of SELECT and subqueries, 11-91

CONNECT role, 11-45

CONNECT TO clause

of CREATE DATABASE LINK, 9-30

CONNECT_TIME parameter

of ALTER PROFILE, 7-92

of ALTER RESOURCE COST, 7-96

CONSIDER FRESH clause

of ALTER MATERIALIZED VIEW, 7-72

constant values. See literals

CONSTRAINT clause

of constraint_clause, 8-141

CONSTRAINT(S) parameter

of ALTER SESSION, 7-109

constraints

adding, 8-19

check, 8-144

checking at end of transaction, 8-147

checking at start of transaction, 8-147

checking at the end of each DML

statement, 8-147

column REF, 8-145

composite unique, 8-141

deferrable, 8-147, 11-120

enforcing, 7-109

defining, 8-136, 10-7

on a column, 10-20

on a table, 10-20

disabling, 8-55, 8-150, 10-41

cascading, 10-45

dropping, 8-29, 11-12

enabling, 8-55, 8-149, 10-41, 10-44

foreign key, 8-144

modifying existing, 8-25

not null, 8-142

on columns, 8-140

primary key, 8-142

attributes of index, 8-148

enabling, 10-44

referential integrity, 8-143, 8-144

restrictions, 8-141

scope, 8-146

setting state for a transaction, 11-120

storing rows in violation, 8-52

table REF, 8-145

unique, 8-141

attributes of index, 8-148

composite, 8-141

enabling, 10-44

validating, 8-149, 8-150

constructor methods

and object types, 10-80

context namespaces

removing from the database, 10-128

contexts

creating namespaces for, 9-13

granting

system privileges on, 11-37

namespace

associating with package, 9-13

control files

allow reuse of, 9-17

allowing reuse of, 9-23

backing up, 7-25

re-creating, 9-15

CONTROL_FILE_RECORD_KEEP_TIME parameter

of ALTER SYSTEM, 7-137

controlfile clauses

of ALTER DATABASE, 7-14

CONTROLFILE REUSE clause

of CREATE DATABASE, 9-23

conversion

rules, string to date, 2-57

conversion functions, 4-5

table of, 2-32

CONVERT clause

of ALTER DATABASE, 7-26

CONVERT function, 4-24

CORE_DUMP_DEST parameter

of ALTER SYSTEM, 7-137

CORR function, 4-25

correlated subqueries, 5-27

correlation names

for base tables of indexes, 9-60

in DELETE, 10-119

in SELECT, 11-97
Index-8

COS function, 4-26

COSH function, 4-27

COUNT function, 4-27

CPU_PER_CALL parameter

of ALTER PROFILE, 7-92

of CREATE PROFILE, 9-142

CPU_PER_SESSION parameter

of ALTER PROFILE, 7-92

of ALTER RESOURCE COST, 7-96

of CREATE PROFILE, 9-142

CREATE ANY CLUSTER system privilege, 11-37

CREATE ANY CONTEXT system privilege, 11-37

CREATE ANY DIMENSION system

privilege, 11-38

CREATE ANY DIRECTORY system

privilege, 11-38

CREATE ANY INDEX system privilege, 11-38

CREATE ANY INDEXTYPE system

privilege, 11-38

CREATE ANY LIBRARY system privilege, 11-39

CREATE ANY MATERIALIZED VIEW system

privilege, 11-39

CREATE ANY OPERATOR system

privilege, 11-39

CREATE ANY OUTLINE system privilege, 11-39

CREATE ANY PROCEDURE system

privilege, 11-40

CREATE ANY SEQUENCE system

privilege, 11-40

CREATE ANY SNAPSHOT system

privilege, 11-41

CREATE ANY SYNONYM system privilege, 11-41

CREATE ANY TABLE system privilege, 11-42

CREATE ANY TRIGGER system privilege, 11-42

CREATE ANY TYPE system privilege, 11-43

CREATE ANY VIEW system privilege, 11-43

CREATE CLUSTER

statement, 9-3

system privilege, 11-37

CREATE CONTEXT statement, 9-13

CREATE CONTROLFILE statement, 9-15

CREATE DATABASE LINK

statement, 9-28

system privilege, 11-37

CREATE DATABASE statement, 9-21

CREATE DATAFILE clause

of ALTER DATABASE, 7-12, 7-20

CREATE DIMENSION

statement, 9-34

system privilege, 11-38

CREATE DIRECTORY statement, 9-40

CREATE FUNCTION statement, 9-43

CREATE INDEX

statement, 9-52

CREATE INDEXTYPE

statement, 9-76

system privilege, 11-38

CREATE JAVA statement, 9-79

CREATE LIBRARY

statement, 9-86

system privilege, 11-39

CREATE MATERIALIZED VIEW / SNAPSHOT

statement, 9-88

CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG statement, 9-107

CREATE MATERIALIZED VIEW/SNAPSHOT

system privilege, 11-39

CREATE OPERATOR

statement, 9-115

system privilege, 11-39

CREATE OUTLINE statement, 9-119

CREATE PACKAGE BODY statement, 9-127

CREATE PACKAGE statement, 9-122

CREATE PROCEDURE

statement, 9-132

system privilege, 11-40

CREATE PROFILE

statement, 9-139

system privilege, 11-40

CREATE PUBLIC DATABASE LINK system

privilege, 11-37

CREATE PUBLIC SYNONYM system

privilege, 11-41

CREATE ROLE

statement, 9-146

system privilege, 11-40

CREATE ROLLBACK SEGMENT

statement, 9-149

system privilege, 11-40

CREATE SCHEMA statement, 9-152
Index-9

CREATE SEQUENCE

statement, 9-155

system privilege, 11-40

CREATE SESSION system privilege, 11-41

CREATE SNAPSHOT system privilege, 11-41

CREATE STANDBY CONTROLFILE clause

of ALTER DATABASE, 7-14, 7-25

CREATE statement

triggers on, 10-71

CREATE SYNONYM

statement, 10-3

system privilege, 11-41

CREATE TABLE statement, 10-7

CREATE TABLESPACE

statement, 10-56

system privilege, 11-42

CREATE TEMPORARY TABLESPACE

statement, 10-63

CREATE TRIGGER

statement, 10-66

system privilege, 11-42

CREATE TYPE

statement, 10-80

system privilege, 11-43

CREATE TYPE BODY statement, 10-93

CREATE USER

statement, 10-99

system privilege, 11-43

CREATE VIEW

statement, 10-105

system privilege, 11-43

CREATE_STORED_OUTLINES parameter

of ALTER SESSION, 7-110

of ALTER SYSTEM, 7-137

CUBE clause

of SELECT statements, 11-100

CUME_DIST function, 4-33

currency symbol

ISO, 2-44

local, 2-45

union, 2-46

CURRENT_SCHEMA parameter

of ALTER SESSION, 7-110

CURRENT_USER

and database links, 9-30

CURRVAL pseudocolumn, 2-59, 9-155

CURSOR expressions, 5-11

CURSOR_SHARING parameter

of ALTER SESSION, 7-111, 7-137

cursors

number cached per session, 7-120

CYCLE clause

of ALTER SEQUENCE. See CREATE

SEQUENCE, 7-103

of CREATE SEQUENCE, 9-158

D
D date format element, 2-49

D number format element, 2-44

data

integrity checking on input, 2-11

retrieving, 5-21

undo

storing, 9-149

data conversion, 2-30

implicit

disadvantages of, 2-32

implicit versus explicit, 2-32

when performed implicitly, 2-30

when specified explicitly, 2-31

data definition language

events and triggers, 10-71

statements, 6-2

and implicit commit, 6-2

causing recompilation, 6-2

PL/SQL support of, 6-2

data dictionary

adding comments to, 8-131

data manipulation language

operations

and triggers, 10-70

during index creation, 9-66

during index rebuild, 8-26

retrieving rows affected by, 10-120, 11-57,

11-148

statements, 6-4

PL/SQL support of, 6-4

data object number

in extended rowids, 2-20
Index-10

database

accounts

creating, 10-99

allowing generation of redo logs, 7-27

allowing reuse of control files, 9-23

allowing unlimited resources to users, 9-141

cancel-based recovery, 7-17

terminating, 7-18

change-based recovery, 7-17

changing characteristics of, 9-15

changing global name, 7-28

changing the name of, 9-15, 9-17

character set

specifying, 9-26

connect strings, 2-91

converting from Oracle7 data dictionary, 7-26

creating, 9-21

designing media recovery, 7-15

enabling automatic extension of, 9-26

erasing all data from, 9-21

granting system privileges on, 11-37

limiting resources for users, 9-139

managed recovery of, 7-12

modifying, 7-9

mounting, 7-26, 9-21

naming, 7-15

opening, 7-27, 9-21

after media recovery, 7-27

recovering, 7-16

with backup control file, 7-17

re-creating control file for, 9-15

redo log files

specifying, 9-17

remote

accessing, 5-29

authenticating users to, 9-31

connecting to, 9-30

inserting into, 11-54

service name of, 9-31

table locks on, 11-63

resetting

current log sequence, 7-27

to an earlier version, 7-28

restricting users to read-only transactions, 7-27

resuming activity, 7-135

specifying datafiles for, 9-18

suspending activity, 7-135

time-based recovery, 7-17

database events

and triggers, 10-72

database links, 5-29

closing, 7-106

creating, 2-90, 9-28

creating synonyms with, 10-5

current user, 9-30

granting system privileges on, 11-37

naming, 2-90

public, 9-29

dropping, 10-129

referring to, 2-91

removing from the database, 10-129

shared, 9-29

syntax of, 2-91

username and password, 2-91

database objects

dropping, 11-19

nonschema, 2-80

schema, 2-79

database triggers. See triggers

DATAFILE clause

of ALTER DATABASE, 7-12, 7-20

of CREATE CONTROLFILE, 9-18

of CREATE DATABASE, 9-26

DATAFILE clauses

of ALTER DATABASE, 7-12

DATAFILE END BACKUP clause

of ALTER DATABASE, 7-21

DATAFILE OFFLINE clause

of ALTER DATABASE, 7-20

DATAFILE ONLINE clause

of ALTER DATABASE, 7-20

DATAFILE RESIZE clause

of ALTER DATABASE, 7-20

datafiles

bringing online, 7-20

creating new, 7-20

designing media recovery, 7-15

disabling automatic extension, 7-21

enabling automatic extension, 7-21, 10-59

recovering, 7-17
Index-11

re-creating lost, 7-20

renaming, 7-28

resizing, 7-20

reusing, 11-28

size of, 11-28

specifying, 11-27

for a tablespace, 10-58

taking offline, 7-20

datatypes, 2-2

ANSI-supported, 2-5

associating statistics with, 8-112

BFILE, 2-7, 2-18

BLOB, 2-7, 2-19

built-in, 2-6

syntax, 2-4

CHAR, 2-6, 2-8

character, 2-7

CLOB, 2-7, 2-19

comparison rules, 2-26

conversion

table of, 2-32

DATE, 2-6, 2-14

LONG, 2-6, 2-12

LONG RAW, 2-6, 2-16

NCHAR, 2-7, 2-8

NCLOB, 2-7, 2-19

NUMBER, 2-10

NUMER, 2-6

NVARCHAR2, 2-6, 2-9

RAW, 2-6, 2-16

ROWID, 2-6, 2-20

UROWID, 2-6, 2-21

VARCHAR, 2-10

VARCHAR2, 2-6, 2-9

DATE datatype, 2-14

converting from character or numeric

value, 2-14

date format elements, 2-48

and NLS, 2-51

capitalization, 2-48

ISO standard, 2-52

RR, 2-52

suffixes, 2-54

date format models, 2-47

punctuation in, 2-48

text in, 2-48

date functions, 4-5

dates

arithmetic using, 2-15

comparison rules, 2-26

converting DATE values into strings, 2-14

converting from character or numeric

values, 2-14

Julian, 2-15

specifying nondefault formats for, 2-14

DAY date format element, 2-51

DB_BLOCK_CHECKING parameter

of ALTER SESSION, 7-111

of ALTER SYSTEM, 7-138

DB_BLOCK_CHECKSUM parameter

of ALTER SYSTEM, 7-138

DB_BLOCK_MAX_DIRTY_TARGET parameter

of ALTER SYSTEM, 7-138

DB_FILE_MULTIBLOCK_READ_COUNT

parameter

of ALTER SESSION, 7-111

of ALTER SYSTEM, 7-139

DB2 datatypes, 2-22

conversion to Oracle datatypes, 2-23

restrictions on, 2-24

DBA role, 11-45

DBA_2PC_PENDING view, 7-106

DBA_COL_COMMENTS view, 8-131

DBA_ROLLBACK_SEGS view, 10-157

DBA_TAB_COMMENTS view, 8-131

DBMS_OUTPUT package, 8-77

DBMS_ROWID package

and extended rowids, 2-21

DBMSSTDX.SQL script, 9-44, 9-122, 9-127, 9-132

and triggers, 10-66

DD date format element, 2-49

DDD date format element, 2-49

DDL. See data definition language

DDL statements

requiring exclusive access, 6-2

DEALLOCATE UNUSED clause

of ALTER CLUSTER, 7-4, 7-6

of ALTER INDEX, 7-41

of ALTER TABLE, 8-35

DEBUG clause
Index-12

of ALTER FUNCTION, 7-39

of ALTER PACKAGE, 7-87

of ALTER PROCEDURE, 7-89

of ALTER TRIGGER, 8-77

of ALTER TYPE, 8-80

decimal characters, 2-36

specifying, 2-45

DECIMAL datatype

ANSI, 2-22

DB2, 2-23

SQL/DS, 2-23

DECODE expressions, 5-13

DEFAULT clause

of CREATE TABLE, 10-20

DEFAULT COST clause

of ASSOCIATE STATISTICS, 8-111, 8-112

DEFAULT profile

assigning to users, 10-154

DEFAULT ROLE clause

of ALTER USER, 8-91

DEFAULT SELECTIVITY clause

of ASSOCIATE STATISTICS, 8-111, 8-112

DEFAULT storage clause

of ALTER TABLESPACE, 8-71

of CREATE TABLESPACE, 10-60

DEFAULT TABLESPACE clause

of ALTER USER. See CREATE USER

of CREATE USER, 10-102

DEFERRABLE clause

of constraint_clause, 8-147

deferrable constraints, 11-120

DEFERRED clause

of SET CONSTRAINTS, 11-120

DELETE

object privilege, 11-46

statement, 10-115

DELETE ANY TABLE system privilege, 11-42

DELETE statement

triggers on, 10-70

DELETE STATISTICS clause

of ANALYZE, 8-104

DELETE_CATALOG_ROLE role, 11-45

DENSE_RANK function, 4-34

DEREF function, 4-35

DESC clause

of CREATE INDEX, 9-63

descending indexes, 9-63

DETERMINISTIC clause

of CREATE FUNCTION, 9-48

dimensions

attributes

adding, 7-36

changing, 7-34

defining, 9-38

dropping, 7-36

changing hierarchical relationships, 7-34

compiling invalidated, 7-36

creating, 9-34

examples, 9-38

granting

system privileges on, 11-38

hierarchies

adding, 7-36

defining, 9-36

dropping, 7-36

levels

adding, 7-36

defining, 9-36

dropping, 7-36

removing from the database, 10-131

directories. See directory objects

directory objects

as aliases for OS directories, 9-40

auditing, 8-119

creating, 9-40

granting system privileges on, 11-38

redefining, 9-41

removing from the database, 10-133

DISABLE [constraint] clause

of CREATE TABLE, 10-43

DISABLE ALL TRIGGERS clause

of ALTER TABLE, 8-56

DISABLE clause

of ALTER INDEX, 7-53

of ALTER TRIGGER, 8-77

of constraint_clause, 8-150

of CREATE TABLE, 10-41

DISABLE DISTRIBUTED RECOVERY clause

of ALTER SYSTEM, 7-134

DISABLE NOVALIDATE constraint state, 10-44
Index-13

DISABLE PARALLEL DML clause

of ALTER SESSION, 7-107

DISABLE QUERY REWRITE clause

of ALTER MATERIALIZED VIEW, 7-71

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-100

DISABLE RESTRICTED SESSION clause

of ALTER SYSTEM, 7-134

DISABLE ROW MOVEMENT clause

of ALTER TABLE, 8-54

of CREATE TABLE, 10-11, 10-38

DISABLE STORAGE IN ROW clause

of ALTER TABLE, 8-21

of CREATE TABLE, 10-31

DISABLE TABLE LOCK clause

of ALTER TABLE, 8-56

DISABLE THREAD clause

of ALTER DATABASE, 7-29

DISABLE VALIDATE constraint state, 10-43

DISASSOCIATE STATISTICS statement, 10-123

DISCONNECT SESSION clause

of ALTER SYSTEM, 7-132

dispatcher processes

creating additional, 7-144

terminating, 7-144

DISTINCT clause

of SELECT, 11-92

distinct queries, 11-92

distributed queries, 5-29

restrictions on, 5-29

distribution

hints for, 2-75

DML. See data manipulation language

domain indexes, 9-52, 9-70, 9-76

associating statistics with, 8-112

determining user-defined CPU and I/O

costs, 11-23

invoking drop routines for, 11-7

removing from the database, 10-136

specifying alter string for, 7-52

DOUBLE PRECISION datatype

ANSI, 2-22

DROP ANY CLUSTER system privilege, 11-37

DROP ANY CONTEXT system privilege, 11-37

DROP ANY DIMENSION system privilege, 11-38

DROP ANY DIRECTORY system privilege, 11-38

DROP ANY INDEX system privilege, 11-38

DROP ANY INDEXTYPE system privilege, 11-38

DROP ANY LIBRARY system privilege, 11-39

DROP ANY MATERIALIZED VIEW system

privilege, 11-39

DROP ANY OPERATOR system privilege, 11-39

DROP ANY OUTLINE system privilege, 11-40

DROP ANY PROCEDURE system privilege, 11-40

DROP ANY ROLE system privilege, 11-40

DROP ANY SEQUENCE system privilege, 11-41

DROP ANY SNAPSHOT system privilege, 11-41

DROP ANY SYNONYM system privilege, 11-41

DROP ANY TABLE system privilege, 11-42

DROP ANY TRIGGER system privilege, 11-42

DROP ANY TYPE system privilege, 11-43

DROP ANY VIEW system privilege, 11-44

DROP clause

of ALTER DIMENSION, 7-36

DROP CLUSTER statement, 10-126

DROP COLUMN clause

of ALTER TABLE, 8-30

DROP CONSTRAINT clause

of ALTER TABLE, 8-29

DROP CONTEXT statement, 10-128

DROP DATABASE LINK statement, 10-129

DROP DIMENSION statement, 10-131

DROP DIRECTORY statement, 10-133

DROP FUNCTION statement, 10-134

DROP INDEX statement, 10-136

DROP INDEXTYPE statement, 10-138

DROP JAVA statement, 10-140

DROP LIBRARY

statement, 10-142

system privilege, 11-39

DROP LOGFILE clause

of ALTER DATABASE, 7-13, 7-23

DROP LOGFILE MEMBER clause

of ALTER DATABASE, 7-13, 7-24

DROP MATERIALIZED VIEW LOG

statement, 10-145

DROP MATERIALIZED VIEW statement, 10-143

DROP OPERATOR statement, 10-147

DROP OUTLINE statement, 10-149

DROP PACKAGE BODY statement, 10-150
Index-14

DROP PACKAGE statement, 10-150

DROP PARTITION clause

of ALTER INDEX, 7-55

of ALTER TABLE, 8-48

DROP PRIMARY constraint clause

of ALTER TABLE, 8-29

DROP PROCEDURE statement, 10-152

DROP PROFILE

statement, 10-154

system privilege, 11-40

DROP PUBLIC DATABASE LINK system

privilege, 11-38

DROP PUBLIC SYNONYM system

privilege, 11-41

DROP ROLE statement, 10-156

DROP ROLLBACK SEGMENT

statement, 10-157

system privilege, 11-40

DROP SEQUENCE statement, 11-3

DROP statement

triggers on, 10-71

DROP STORAGE clause

of TRUNCATE, 11-139

DROP SYNONYM statement, 11-5

DROP TABLE statement, 11-7

DROP TABLESPACE

statement, 11-10

system privilege, 11-42

DROP TRIGGER statement, 11-13

DROP TYPE BODY statement, 11-17

DROP TYPE statement, 11-15

DROP UNIQUE constraint clause

of ALTER TABLE, 8-29

DROP USER

statement, 11-19

system privilege, 11-43

DROP VIEW statement, 11-21

DUAL dummy table, 2-84, 5-28

DUMP function, 4-36

DY date format element, 2-49, 2-51

E
E date format element, 2-49

E number format element, 2-44

EBCDIC character set, 2-28

EE date format element, 2-49

embedded SQL, xv, 1-4, 6-5

precompiler support of, 6-5

EMPTY_BLOB function, 4-37

EMPTY_CLOB function, 4-37

ENABLE ALL TRIGGERS clause

of ALTER TABLE, 8-56

ENABLE clause

of ALTER INDEX, 7-52, 7-53

of constraint_clause, 8-149

of CREATE TABLE, 10-41

ENABLE DISTRIBUTED RECOVERY clause

of ALTER SYSTEM, 7-134

ENABLE NOVALIDATE constraint state, 10-42

ENABLE PARALLEL DML clause

of ALTER SESSION, 7-107

ENABLE QUERY REWRITE clause

of ALTER MATERIALIZED VIEW, 7-71

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-100

ENABLE RESTRICTED SESSION clause

of ALTER SYSTEM, 7-134

ENABLE ROW MOVEMENT clause

of ALTER TABLE, 8-54

of CREATE TABLE, 10-11, 10-38

ENABLE STORAGE IN ROW clause

of ALTER TABLE, 8-21

of CREATE TABLE, 10-31

ENABLE TABLE LOCK clause

of ALTER TABLE, 8-56

ENABLE THREAD clause

of ALTER DATABASE, 7-29

ENABLE VALIDATE constraint state, 10-42

enable_disable_clause

of ALTER TABLE, 8-55

ENABLE/DISABLE clause

of ALTER TABLE, 8-17

of CREATE TABLE, 10-16

END BACKUP clause

of ALTER TABLESPACE, 8-72

equality test, 3-5

equijoins, 5-24

defining for a dimension, 9-37

equivalency tests, 3-6
Index-15

ESTIMATE STATISTICS clause

of ANALYZE, 8-103

EXCEPTIONS INTO clause

of ALTER TABLE, 8-52

restrictions on, 8-53

EXCHANGE PARTITION clause

of ALTER TABLE, 8-51

EXCHANGE SUBPARTITION clause

of ALTER TABLE, 8-51

exchanging partitions

restrictions on, 8-53

EXCLUDING NEW VALUES clause

of ALTER MATERIALIZED VIEW LOG, 7-81

of CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG, 9-113

EXCLUSIVE lock mode, 11-64

EXECUTE ANY INDEXTYPE system

privilege, 11-38

EXECUTE ANY OPERATOR system

privilege, 11-39

EXECUTE ANY PROCEDURE system

privilege, 11-40

EXECUTE ANY TYPE system privilege, 11-43

EXECUTE object privilege, 11-46

EXECUTE_CATALOG_ROLE role, 11-45

execution plans

determining, 11-23

dropping outlines for, 10-149

saving, 9-119

EXISTS

conditions, 5-20

operator, 3-7

EXP function, 4-38

EXP_FULL_DATABASE role, 11-45

EXPLAIN PLAN statement, 11-23

explicit data conversion, 2-31, 2-32

expressions

CASE, 5-14

CAST, 5-8

compound, 5-4

computing with the DUAL table, 5-28

CURSOR, 5-11

DECODE, 5-13

function, 5-6

function, built-in, 5-6

in SQL syntax, 5-2

list of, 5-15

object access, 5-12

scalar subqueries as, 5-27

simple, 5-3

type constructor, 5-7

variable, 5-5

extended rowids, 2-20

base 64, 2-21

not directly available, 2-21

EXTENT MANAGEMENT clause

for temporary tablespaces, 10-65

of CREATE TABLESPACE, 10-58, 10-61

extents

allocating for partitions, 8-34

allocating for subpartitions, 8-34

allocating for tables, 8-34

restricting access by instances, 7-46

specifying maximum number for an

object, 11-132

specifying number allocated upon object

creation, 11-132

specifying the first for an object, 11-131

specifying the percentage of size

increase, 11-131

specifying the second for an object, 11-131

external functions, 9-43, 9-132

external LOBs, 2-16

external procedures, 9-132

external users, 9-147, 10-101

F
FAILED_LOGIN_ATTEMPTS parameter

of ALTER PROFILE, 7-92

of CREATE PROFILE, 9-143

FAST_START_IO_TARGET parameter

of ALTER SESSION, 7-111, 7-139

FAST_START_PARALLEL_ROLLBACK parameter

of ALTER SYSTEM, 7-139

features

new, xvi

files

specifying as a redo log file group, 11-27

specifying as datafiles, 11-27
Index-16

specifying as tempfiles, 11-27

filespec clause, 11-27

of CREATE CONTROLFILE, 9-16

of CREATE DATABASE, 9-23

of CREATE LIBRARY, 9-86

of CREATE TABLESPACE, 10-57

of CREATE TEMPORARY TABLESPACE, 10-63

FIPS compliance, B-2

FIPS flagging, 7-111

FIRST_ROWS hint, 2-69

FIRST_VALUE function, 4-38

FIXED_DATE parameter

of ALTER SYSTEM, 7-139

FLAGGER parameter

of ALTER SESSION, 7-111

FLOAT datatype, 2-12

ANSI, 2-22

DB2, 2-23

SQL/DS, 2-23

floating-point numbers, 2-12

FLOOR function, 4-40

FLUSH SHARED POOL clause

of ALTER SYSTEM, 7-134

FM format model modifier, 2-54

FM number format element, 2-44

FOR CATEGORY clause

of CREATE OUTLINE, 9-120

FOR clause

of ANALYZE ... COMPUTE STATISTICS, 8-101

of ANALYZE ... ESTIMATE STATISTICS, 8-101

of CREATE INDEXTYPE, 9-77

of CREATE SYNONYM, 10-5

of EXPLAIN PLAN, 11-25

FOR EACH ROW clause

of CREATE TRIGGER, 10-75

FOR UPDATE clause

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-100

of SELECT, 11-92, 11-103

FORCE ANY TRANSACTION system

privilege, 11-44

FORCE CLAUSE

of DROP OPERATOR, 10-147

FORCE clause

of COMMIT, 8-134

of CREATE VIEW, 10-108

of DISASSOCIATE STATISTICS, 10-125

of DROP INDEX, 10-137

of DROP INDEXTYPE, 10-139

of DROP TYPE, 11-16

of REVOKE schema_object_privileges, 11-78

of ROLLBACK, 11-85

FORCE PARALLEL DML clause

of ALTER SESSION, 7-107

FORCE TRANSACTION system privilege, 11-44

FOREIGN KEY clause

of constraint_clause, 8-140, 8-144

foreign key constraints, 8-144

foreign tables

rowids of, 2-21

format models, 2-41

changing the return format, 2-41

date, 2-47

date, changing, 2-48

date, format elements, 2-48

date, maximum length, 2-48

dates, default format, 2-48

modifiers, 2-54

number, 2-43

number, elements of, 2-44

specifying, 2-43

formats

for dates and numbers. See format models

of return values from the database, 2-41

of values stored in the database, 2-41

free lists

specifying for a table, partition, cluster, or

index, 11-133

FREELIST GROUPS parameter

of STORAGE clause, 11-133

FREELISTS parameter

of STORAGE clause, 11-133

FROM clause

of queries, 5-25

FROM COLUMNS clause

of DISASSOCIATE STATISTICS, 10-124

FROM FUNCTIONS clause

of DISASSOCIATE STATISTICS, 10-124

FROM INDEXES clause

of DISASSOCIATE STATISTICS, 10-124
Index-17

FROM INDEXTYPES clause

of DISASSOCIATE STATISTICS, 10-124

FROM PACKAGES clause

of DISASSOCIATE STATISTICS, 10-124

FROM TYPES clause

of DISASSOCIATE STATISTICS, 10-124

FULL hint, 2-69

function expressions

built-in, 5-6

function-based indexes, 9-52

and query rewrite, 7-119

creating, 9-61

disabling, 7-146

enabling, 7-49, 7-52, 7-53, 7-146

functions

3GL, calling, 9-86

See also SQL functions

access to tables and packages, 10-87

associating statistics with, 8-112

avoiding run-time compilation, 7-38

calling, 8-128

datatype of return value, 9-47

declaring

as a Java method, 9-50

as C functions, 9-50

defining an index on, 9-61

examples, 9-50

executing, 8-128

from parallel query process, 9-49

expressions, 5-6

external, 9-43, 9-132

issuing COMMIT or ROLLBACK

statements, 7-106

naming rules, 2-86

privileges executed with, 8-84, 10-85

recompiling invalid, 7-38

re-creating, 9-45, 9-80

removing from the database, 10-134

schema executed in, 8-84, 10-85

specifying schema and user privileges for, 9-48

stored, 9-43

storing return value of, 8-129

synonyms for, 10-3

user-defined, 4-128

using a saved copy of, 9-48

FUNCTIONS clause

of ASSOCIATE STATISTICS, 8-111, 8-112

FX format model modifier, 2-55

G
G number format element, 2-44

GC_DEFER_TIME parameter

of ALTER SYSTEM, 7-139

general recovery clause

of ALTER DATABASE, 7-11, 7-15

GLOBAL PARTITION BY RANGE clause

of CREATE INDEX, 9-67

GLOBAL QUERY REWRITE system

privilege, 11-38, 11-39, 11-41

GLOBAL TEMPORARY clause

of CREATE TABLE, 10-17

global users, 9-147, 10-101

GLOBAL_NAMES parameter

of ALTER SESSION, 7-112

of ALTER SYSTEM, 7-139

globally partitioned indexes, 9-67, 9-68

GRANT ANY PRIVILEGE system privilege, 11-44

GRANT ANY ROLE system privilege, 11-40

GRANT CONNECT THROUGH clause

of ALTER USER, 8-90, 8-91

GRAPHIC datatype (SQL/DS or DB2), 2-24

greater than or equal to tests, 3-6

greater than tests, 3-6

GREATEST function, 4-40

GROUP BY clause

CUBE extension of, 11-100

of SELECT, 11-99

of SELECT and subqueries, 11-91

ROLLUP extension of, 11-99

group comparison conditions, 5-18

GROUPING function, 4-41

H
hash clusters

creating, 9-7

single-table, creating, 9-8

specifying hash function for, 9-8

HASH hint, 2-70
Index-18

HASH IS clause

of CREATE CLUSTER, 9-8

hash partition

adding, 8-47

hash partitioning clause

of CREATE TABLE, 10-15, 10-35

HASH_AJ hint, 2-72

HASH_AREA_SIZE parameter

of ALTER SESSION, 7-112

HASH_JOIN_ENABLED parameter

of ALTER SESSION, 7-112

HASH_MULTIBLOCK_IO_COUNT parameter

of ALTER SESSION, 7-112

of ALTER SYSTEM, 7-140

HASHKEYS clause

of CREATE CLUSTER, 9-7

HAVING condition

of GROUP BY clause, 11-100

heap-organized tables

creating, 10-7

hexadecimal value

returning, 2-46

HEXTORAW function, 2-32, 4-42

HH date format element, 2-49

HH12 date format element, 2-49

HH24 date format element, 2-49

hierarchical queries, 2-62, 5-22, 11-98

child nodes of, 2-62

child rows of, 5-22

illustrated, 2-63

leaf nodes of, 2-62

parent nodes of, 2-62

parent rows of, 5-22

hierarchical query clause

of SELECT and subqueries, 11-91

hierarchies

adding to a dimension, 7-36

dropping from a dimension, 7-36

of dimensions, defining, 9-36

HIERARCHY clause

of ALTER DIMENSION, 7-35

of CREATE DIMENSION, 9-36

high water mark

of clusters, 7-6

of indexes, 7-46

of tables, 8-35, 8-99

hints, 5-22

ALL_ROWS hint, 2-68

AND_EQUAL hint, 2-69

CACHE hint, 2-77

CLUSTER hint, 2-69

FIRST_ROWS hint, 2-69

FULL hint, 2-69

HASH hint, 2-70

in SQL statements, 2-67

INDEX hint, 2-70

INDEX_ASC hint, 2-70

INDEX_DESC hint, 2-70

NO_EXPAND hint, 2-76

NO_MERGE hint, 2-76

NO_PUSH_PRED hint, 2-78

NOCACHE hint, 2-77

NOPARALLEL hint, 2-74

NOREWRITE hint, 2-76

ORDERED hint, 2-71

PARALLEL hint, 2-74

passing to the optimizer, 11-141

PQ_DISTRIBUTE hint, 2-75

PUSH_PRED hint, 2-78

PUSH_SUBQ hint, 2-78

REWRITE hint, 2-76

ROWID hint, 2-71

RULE hint, 2-69

syntax, 2-68

USE_CONCAT hint, 2-77

USE_MERGE hint, 2-73

USE_NL hint, 2-73

HS_ADMIN_ROLE role, 11-45

HS_AUTOREGISTER parameter

of ALTER SYSTEM, 7-140

I
I date format element, 2-49

IDENTIFIED BY clause

of ALTER ROLE. See CREATE ROLE

of ALTER ROLE. See CREATE ROLE.

of CREATE ROLE, 9-147

IDENTIFIED BY password clause

of CREATE DATABASE LINK, 9-31
Index-19

of SET ROLE, 11-123

IDENTIFIED EXTERNALLY clause

of ALTER ROLE. See CREATE ROLE

of ALTER USER. See CREATE USER

of CREATE ROLE, 9-147

of CREATE USER, 10-101

IDENTIFIED GLOBALLY clause

of ALTER ROLE. See CREATE ROLE

of ALTER ROLE. See CREATE ROLE.

of ALTER USER, 8-91

of CREATE ROLE, 9-147

of CREATE USER, 10-101

IDLE_TIME parameter

of ALTER PROFILE, 7-92

IMMEDIATE clause

of SET CONSTRAINTS, 11-120

IMP_FULL_DATABASE role, 11-45

implicit data conversion, 2-30, 2-32

IN OUT parameter

of CREATE FUNCTION, 9-47

of CREATE PROCEDURE, 9-135

IN parameter

of CREATE function, 9-46

of CREATE PROCEDURE, 9-135

INCLUDING CONTENTS clause

of DROP TABLESPACE, 11-11

INCLUDING NEW VALUES clause

of ALTER MATERIALIZED VIEW LOG, 7-81

of CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG, 9-113

INCLUDING TABLES clause

of DROP CLUSTER, 10-127

incomplete object types, 10-80

creating, 10-80, 10-81

INCREMENT BY clause

of ALTER SEQUENCE. See CREATE SEQUENCE

of CREATE SEQUENCE, 9-157

INDEX clause

of CREATE CLUSTER, 9-7

INDEX hint, 2-70

INDEX object privilege, 11-46

index partitions

changing physical attributes of, 7-48

deallocating unused space from, 7-46

dropping, 7-55

marking UNUSABLE, 8-43

modifying the real characteristics of, 7-54

rebuilding, 7-49

unusable, 8-43

renaming, 7-54

specifying tablespace for, 7-51

splitting, 7-55

index subpartitions

allocating extents for, 7-55

changing physical attributes of, 7-48

deallocating unused space from, 7-46, 7-55

marking UNUSABLE, 7-55

rebuilding, 7-49

renaming, 7-54

specifying tablespace for, 7-51

INDEX_ASC hint, 2-70

INDEX_DESC hint, 2-70

indexed clusters

creating, 9-7

indexes

allocating new extents for, 7-46

application-specific, 9-76

ascending, 9-63

based on indextypes, 9-70

bitmap, 9-59

changing attributes of, 7-48

collecting statistics on, 8-98

on composite-partitioned tables, 9-69

creating, 9-52

creating as cluster indexes, 9-59

deallocating unused space from, 7-46

descending, 9-63

and query rewrite, 9-63

as function-based indexes, 9-63

disassociating statistics types from, 10-136

domain, 9-52, 9-70, 9-76

dropping index partitions of, 10-136

examples, 9-71

function-based, 9-52

creating, 9-61

globally partitioned, 9-67, 9-68

granting

system privileges on, 11-38

on hash-partitioned tables, 9-69

key compression of, 7-51, 9-64
Index-20

locally partitioned, 9-68

logging attributes of, 9-65

logging rebuild operations on, 7-52

marking as UNUSABLE, 7-53

merging contents of index blocks, 7-53

online, 9-66

parallelizing creation of, 9-67

partitioned, 2-81, 9-52

user-defined, 9-67

partitions

adding new, 7-55

marking UNUSABLE, 7-55

physical attributes of, 9-64

on range-partitioned tables, 9-69

rebuilding, 7-49

rebuilding while online, 7-51

removing from the database, 10-136

renaming, 7-53

reverse, 7-50, 9-65

specifying tablespace for, 7-51

statistics on, 9-66

statistics on rebuild, 7-51

storage characteristics of, 9-64, 11-129

tablespace containing, 9-64

unique, 9-58

unsorted, 9-65

validating structure of, 8-104

INDEXES clause

of ASSOCIATE STATISTICS, 8-111, 8-112

index-organized table clause

of CREATE TABLE, 10-11, 10-26

index-organized tables

creating, 10-7

modifying, 8-39

rebuilding, 8-25

rowids of, 2-21

INDEXTYPE clause

of CREATE INDEX, 9-70

indextypes

associating statistics with, 8-112

creating, 9-76

disassociating from statistics types, 10-138

drop routines, invoking, 10-136

granting

system privileges on, 11-38

indexes based on, 9-70

instances of, 9-52

removing from the database, 10-138

INDEXTYPES clause

of ASSOCIATE STATISTICS, 8-111, 8-112

in-doubt transactions

forcing, 8-134

forcing commit of, 8-134

forcing rollback, 11-85

forcing rollback of, 11-85

rolling back, 11-83

inequality test, 3-5

INITCAP function, 4-43

INITIAL parameter

of STORAGE clause, 11-131

INITIALLY DEFERRED clause

of constraint_clause, 8-148

INITIALLY IMMEDIATE clause

of constraint_clause, 8-147

INITRANS parameter

of ALTER CLUSTER, 7-5

of ALTER INDEX, 7-42, 7-48

of ALTER MATERIALIZED VIEW, 7-65

of ALTER MATERIALIZED VIEW LOG, 7-77

of CREATE INDEX. See CREATE TABLE

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG. See CREATE TABLE

of CREATE MATERIALIZED VIEW/

SNAPSHOT. See CREATE TABLE

of CREATE TABLE, 10-23

inline views, 5-26

IN-lists, 2-77

INSERT ANY TABLE system privilege, 11-42

INSERT object privilege, 11-46

INSERT statement, 11-51

append, 2-73

triggers on, 10-70

INSTANCE parameter

of ALTER SESSION, 7-113

instances

global name resolution for, 7-139

setting parameters for, 7-136

INSTEAD OF clause

of CREATE TRIGGER, 10-69

INSTEAD OF triggers, 10-69
Index-21

INSTR function, 4-43

INSTRB function, 4-44

INT datatype (ANSI), 2-22

INTEGER datatype

ANSI, 2-22

DB2, 2-23

SQL/DS, 2-23

integers

generating unique, 9-155

in SQL syntax, 2-34

precision of, 2-35

specifying, 2-10

syntax of, 2-35

integrity constraints. See constraints

internal LOBs, 2-16

International Standards Organization. See ISO

INTERSECT operator, 3-12

INTERSECT set operator, 3-13, 11-101

INTO clause

of EXPLAIN PLAN, 11-24

of INSERT, 11-53

INTO host_variable clause

of CALL, 8-129

invoker rights clause

of ALTER JAVA, 7-59

of CREATE FUNCTION, 9-48

of CREATE JAVA, 9-82

of CREATE PACKAGE, 9-123

of CREATE PROCEDURE, 9-133

of CREATE TYPE, 8-84, 10-85

IS NOT NULL operator, 3-7

IS NULL operator, 3-7

ISO, B-1

standards, xv, 1-2, B-1

ISOLATION_LEVEL parameter

of ALTER SESSION, 7-113

IW date format element, 2-49

IY date format element, 2-49

IYY date format element, 2-49

IYYY date format element, 2-49

J
J date format element, 2-49

Java class schema object

creating, 9-79, 9-81

dropping, 10-140

resolving, 7-58, 9-81

JAVA clause

of CREATE TYPE, 10-87

of CREATE TYPE BODY, 10-97

Java method

mapping to an object type, 10-87

Java resource schema object

creating, 9-79, 9-81

dropping, 10-140

Java schema object

name resolution of, 9-83

Java source schema object

compiling, 7-58, 9-81

creating, 9-79, 9-81

dropping, 10-140

JOB_QUEUE_PROCESSES parameter

of ALTER SYSTEM, 7-140

JOIN KEY clause

of ALTER DIMENSION, 7-35

of CREATE DIMENSION, 9-37

join views

modifying, 10-118, 11-54, 11-145

joins, 5-24

conditions

defining, 5-24

equijoins, 5-24

outer, 5-25

restrictions, 5-25

parallel, and PQ_DISTRIBUTE hint, 2-75

self, 5-25

without join conditions, 5-25

Julian day, specifying, 2-50

K
key compression, 7-51, 9-64, 10-28

disabling, 7-51, 9-65

of index rebuild, 8-26

of indexes, 7-51, 9-64

disabling, 7-51

of index-organized tables, 10-28

keywords, 2-84

in syntax diagrams, xxii
Index-22

optional, A-4

required, A-3

KILL SESSION clause

of ALTER SYSTEM, 7-133

L
L number format element, 2-44

LAG function, 4-45

LANGUAGE clause

of CREATE FUNCTION, 9-50

of CREATE PROCEDURE, 9-137

of CREATE TYPE, 10-87

of CREATE TYPE BODY, 10-97

large objects. See LOBs

LAST_DAY function, 4-46

LAST_VALUE function, 4-47

LEAD function, 4-49

LEAST function, 4-50

LENGTH function, 4-51

LENGTHB function, 4-51

less than tests, 3-6

LEVEL clause

of ALTER DIMENSION, 7-35

of CREATE DIMENSION, 9-36

LEVEL pseudocolumn, 2-62, 11-98

and hierarchical queries, 2-62

levels

adding to a dimension, 7-36

dropping from a dimension, 7-36

of dimensions, defining, 9-36

libraries

creating, 9-86

granting

system privileges on, 11-39

re-creating, 9-86

removing from the database, 10-142

library units. See Java schema objects

LICENSE_MAX_SESSIONS parameter

of ALTER SYSTEM, 7-141

LICENSE_MAX_USERS parameter

of ALTER SYSTEM, 7-141

LICENSE_SESSIONS_WARNING parameter

of ALTER SYSTEM, 7-141

LIKE conditions, 5-20

LIKE operator, 3-8

linear regression functions, 4-78

LIST CHAINED ROWS clause

of ANALYZE, 8-106

literals

in SQL statements and functions, 2-33

in SQL syntax, 2-33

LN function, 4-52

LOB datatypes, 2-16

LOB index clause

of ALTER TABLE, 8-22

of CREATE TABLE, 10-32

LOB storage clause

for partitions, 8-23

of ALTER MATERIALIZED VIEW, 7-64, 7-65

of ALTER TABLE, 8-21

of CREATE MATERIALIZED VIEW /

SNAPSHOT, 9-92

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-93

of CREATE TABLE, 10-12, 10-29

LOBs

attributes

initializing, 2-17

columns

difference from LONG and LONG

RAW, 2-17

populating, 2-17

external, 2-16

indexes for, 10-32

internal, 2-16

locators, 2-17, 10-31

logging attribute of, 10-25

modifying physical attributes of, 8-29

number of bytes manipulated in, 10-31

saving values in a cache, 8-37, 10-40

specifying directories for, 9-40

storage

characteristics, 10-24, 10-29

in-line, 10-30

outside of row, 10-31

tablespace for

defining, 10-24

LOCAL clause

of CREATE INDEX, 9-68
Index-23

local users, 9-147, 10-101

locally managed tablespaces

storage characteristics, 11-129

locally partitioned indexes, 9-68

LOCK ANY TABLE system privilege, 11-42

LOCK TABLE statement, 11-62

locking

automatic

overriding, 11-62

locks. See table locks

LOG function, 4-52

LOG_ARCHIVE_DEST parameter

of ALTER SYSTEM, 7-142

LOG_ARCHIVE_DEST_n parameter

of ALTER SESSION, 7-113, 7-142

of ALTER SYSTEM, 7-142

LOG_ARCHIVE_DEST_STATE_n parameter

of ALTER SESSION, 7-114

of ALTER SYSTEM, 7-142

LOG_ARCHIVE_DUPLEX_DEST parameter

of ALTER SYSTEM, 7-143

LOG_ARCHIVE_MAX_PROCESSES parameter

of ALTER SYSTEM, 7-143

LOG_ARCHIVE_MIN_SUCCEED_DEST parameter

of ALTER SESSION, 7-114

of ALTER SYSTEM, 7-143

LOG_ARCHIVE_TRACE parameter

of ALTER SYSTEM, 7-143

LOG_CHECKPOINT_INTERVAL parameter

of ALTER SYSTEM, 7-143

LOG_CHECKPOINT_TIMEOUT parameter

of ALTER SYSTEM, 7-144

LOGFILE clause

of CREATE CONTROLFILE, 9-17

OF CREATE DATABASE, 9-24

logfile clauses

of ALTER DATABASE, 7-13

LOGFILE GROUP clause

of CREATE CONTROLFILE, 9-17

logging

and redo log size, 10-26

specifying minimal, 10-25

LOGGING clause

of ALTER INDEX, 7-48

of ALTER MATERIALIZED VIEW, 7-67

of ALTER MATERIALIZED VIEW LOG, 7-80

of ALTER TABLE, 8-37

of ALTER TABLESPACE, 8-73

of CREATE INDEX, 9-65

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG, 9-111

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-93

of CREATE TABLE, 10-25

of CREATE TABLESPACE, 10-59

logical operators, 3-11

LOGICAL_READS_PER_CALL parameter

of ALTER PROFILE, 7-92

LOGICAL_READS_PER_SESSION parameter

of ALTER PROFILE, 7-92

of ALTER RESOURCE COST, 7-96

LOGOFF

triggers on, 10-73

LOGOFF event

triggers on, 10-72

LOGON

triggers on, 10-73

LOGON event

triggers on, 10-72

LONG columns

restrictions on, 2-13

to store text strings, 2-12

to store view definitions, 2-12

where referenced from, 2-13

LONG datatype, 2-12

in triggers, 2-14

LONG RAW

data

converting from CHAR data, 2-16

datatype, 2-16

LONG VARCHAR datatype

DB2, 2-23

SQL/DS, 2-23

LONG VARGRAPHIC datatype (SQL/DS or

DB2), 2-24

LOWER function, 4-53

LPAD function, 4-53

LTRIM function, 4-54
Index-24

M
MAKE_REF function, 4-55

MANAGE TABLESPACE system privilege, 11-42

managed recovery

of database, 7-12

MANAGED STANDBY RECOVERY clause

of ALTER DATABASE, 7-18

MAP MEMBER clause

of ALTER TYPE, 8-82, 8-83

of CREATE TYPE, 10-88, 10-96

MAP methods

specifying, 8-82, 8-83

master databases, 9-88

master tables, 9-88

materialized join views, 9-107

materialized view logs, 9-107

creating, 9-107

excluding new values from, 7-81

logging changes to, 7-80

parallelizing creation of, 9-111

partition attributes

changing, 7-79

partitioned, 9-112

physical attributes

changing, 7-78

specifying, 9-110

removing from the database, 10-145

required for fast refresh, 9-107

saving new values in, 7-81

saving old values in, 9-113

storage characteristics

specifying, 9-110

materialized views

allowing update of, 9-100

complete refresh, 7-69, 9-97

constraints on, 8-148

creating, 9-88

creating comments about, 8-131

for data warehousing, 9-88

degree of parallelism, 7-67, 7-79

during creation, 9-94

detail table of, dropping, 10-144

enabling and disabling query rewrite, 9-100

examples, 9-102, 9-113

fast refresh, 7-68, 9-96, 9-97

forced refresh, 7-69

granting

system privileges on, 11-39

index characteristics

changing, 7-66

indexes that maintain, 9-96

join, 9-107

LOB storage characteristics of, 7-65

logging changes to, 7-67

partitions of, 7-66

physical and storage attributes

changing, 7-65

physical attributes of, 9-92

primary key, 9-98

recording values in master table, 7-80

query rewrite

eligibility for, 8-148

enabling and disabling, 7-71

re-creating during refresh, 7-69

refresh mode

changing, 7-68

refresh time

changing, 7-68

refreshing after DML on master table, 7-70, 9-98

refreshing on next COMMIT, 7-69, 9-97

removing from the database, 10-143

for replication, 9-88

retrieving data from, 11-88

revalidating, 7-72

rowid, 9-98

rowid values

recording in master table, 7-80

saving blocks in a cache, 7-68

storage characteristics of, 9-92

subquery, 9-101

synonyms for, 10-3

when to populate, 9-94

MAX function, 4-56

MAX_DUMP_FILE_SIZE parameter

of ALTER SESSION, 7-114

of ALTER SYSTEM, 7-144

MAXDATAFILES parameter

of CREATE CONTROLFILE, 9-19

OF CREATE DATABASE, 9-25
Index-25

MAXEXTENTS parameter

of STORAGE clause, 11-132

MAXINSTANCES parameter

of CREATE CONTROLFILE, 9-19

OF CREATE DATABASE, 9-25

MAXLOGFILES parameter

of CREATE CONTROLFILE, 9-18

OF CREATE DATABASE, 9-24

MAXLOGHISTORY parameter

of CREATE CONTROLFILE, 9-18

OF CREATE DATABASE, 9-25

MAXLOGMEMBERS parameter

of CREATE CONTROLFILE, 9-18

OF CREATE DATABASE, 9-24

MAXSIZE clause

of ALTER DATABASE, 7-14

of CREATE DATABASE, 9-23

of CREATE TABLESPACE, 10-58

of CREATE TEMPORARY TABLESPACE, 10-64

MAXTRANS parameter

of ALTER CLUSTER, 7-5

of ALTER INDEX, 7-42, 7-48

of ALTER MATERIALIZED VIEW, 7-65

of ALTER MATERIALIZED VIEW LOG, 7-77

of CREATE INDEX. See CREATE TABLE

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG. See CREATE TABLE

of CREATE MATERIALIZED VIEW/

SNAPSHOT. See CREATE TABLE

of CREATE TABLE, 10-23

MAXVALUE clause

of CREATE SEQUENCE, 9-157

MAXVALUE parameter

of ALTER SEQUENCE. See CREATE SEQUENCE

media recovery

disabling, 7-21

of database, 7-15

of datafiles, 7-15

of standby database, 7-15

of tablespaces, 7-15

parallelizing, 7-19

restrictions, 7-15

sustained standby recovery, 7-18

MEMBER clause

of ALTER TYPE, 8-81

of CREATE TYPE, 10-86

of CREATE TYPE BODY, 10-95

membership conditions, 5-19

MERGE hint, 2-75

MERGE PARTITIONS clause

of ALTER TABLE, 8-50

MERGE_AJ hint, 2-72

MI date format element, 2-49

MI number format element, 2-44

migrated rows

listing, 8-106

MIN function, 4-58

MINEXTENTS parameter

of STORAGE clause, 11-132

MINIMIZE RECORDS PER BLOCK clause

of ALTER TABLE, 8-39

MINIMUM EXTENT clause

of ALTER TABLESPACE, 8-71

of CREATE TABLESPACE, 10-59

MINUS operator, 3-12

MINUS set operator, 3-13, 11-101

MINVALUE

of ALTER SEQUENCE. See CREATE SEQUENCE

MINVALUE clause

of CREATE SEQUENCE, 9-158

MM date format element, 2-49

MOD function, 4-59

MODE clause

of LOCK TABLE, 11-64

MODIFY clause

of ALTER TABLE, 8-23

MODIFY CONSTRAINT clause

of ALTER TABLE, 8-25

MODIFY DEFAULT ATTRIBUTES clause

of ALTER INDEX, 7-44, 7-54

of ALTER TABLE, 8-41

MODIFY LOB clause

of ALTER TABLE, 8-29

MODIFY LOB storage clause

of ALTER MATERIALIZED VIEW, 7-64, 7-66

of ALTER TABLE, 8-29

MODIFY NESTED TABLE clause

of ALTER TABLE, 8-28

MODIFY PARTITION clause

of ALTER INDEX, 7-44, 7-54
Index-26

of ALTER MATERIALIZED VIEW, 7-66

of ALTER TABLE, 8-42

MODIFY SUBPARTITION clause

of ALTER INDEX, 7-45, 7-55

of ALTER TABLE, 8-43

MODIFY VARRAY clause

of ALTER TABLE, 8-29

modifying space for each cluster key, 7-5

MON date format element, 2-49, 2-51

MONITORING clause

of ALTER TABLE, 8-37

of CREATE TABLE, 10-40

MONTH date format element, 2-49, 2-51

MONTHS_BETWEEN function, 4-60

MOUNT clause

of ALTER DATABASE, 7-26

MOVE clause

of ALTER TABLE, 8-25

MOVE ONLINE clause

of ALTER TABLE, 8-26

MOVE PARTITION clause

of ALTER TABLE, 8-44

MOVE SUBPARTITION clause

of ALTER TABLE, 8-45

MTS_DISPATCHERS parameter

of ALTER SYSTEM, 7-144

MTS_SERVERS parameter

of ALTER SYSTEM, 7-145

multi-threaded server

system parameters, 7-144

N
NAMED clause

of CREATE JAVA, 9-82

names

schema objects, 2-83

namespaces

and object naming rules, 2-84

for nonschema objects, 2-85

for schema objects, 2-84

NATIONAL CHAR datatype (ANSI), 2-22

NATIONAL CHAR VARYING datatype

(ANSI), 2-22

NATIONAL CHARACTER datatype (ANSI), 2-22

national character set

fixed vs. variable width, 2-8, 2-9

multibyte character data, 2-19

multibyte character sets, 2-8, 2-9

variable-length strings, 2-9

NATIONAL CHARACTER SET clause

of CREATE DATABASE, 9-26

NATIONAL CHARACTER SET parameter

of ALTER DATABASE, 7-29

NATIONAL CHARACTER VARYING datatype

ANSI, 2-22

national language support. See NLS

NCHAR datatype, 2-8

ANSI, 2-22

NCHAR VARYING datatype (ANSI), 2-22

NCLOB datatype, 2-19

transactional support of, 2-19

negative scale, 2-11

nested subqueries, 5-26

NESTED TABLE clause

of ALTER TABLE, 8-23

of CREATE TABLE, 10-13, 10-33

nested table types, 2-26

compared with varrays, 2-30

comparison rules, 2-30

creating, 10-80, 10-84

dropping the body of, 11-17

dropping the specification of, 11-15

modifying, 8-28

nested tables

changing returned value, 8-28

creating, 10-90

defining as index-organized tables, 8-23

storage characteristics of, 8-23, 10-33

new features, xvi

NEW_TIME function, 4-61

NEXT clause

of ALTER MATERIALIZED

VIEW...REFRESH, 7-70

NEXT parameter

of STORAGE clause, 11-131

NEXT_DAY function, 4-62

NEXTVAL pseudocolumn, 2-59, 9-155

NLS parameters

NLS_CALENDAR parameter
Index-27

of ALTER SESSION, 7-114

NLS_CHARSET_DECL_LEN function, 4-62

NLS_CHARSET_ID function, 4-63

NLS_CHARSET_NAME function, 4-64

NLS_COMP parameter

of ALTER SESSION, 7-115

NLS_CURRENCY parameter

of ALTER SESSION, 7-115

NLS_DATE_FORMAT parameter

of ALTER SESSION, 7-115

NLS_DATE_LANGUAGE parameter, 2-52

of ALTER SESSION, 7-115

NLS_INITCAP function, 4-64

NLS_ISO_CURRENCY parameter

of ALTER SESSION, 7-115

NLS_LANGUAGE parameter, 2-52, 5-24

of ALTER SESSION, 7-115

NLS_LOWER function, 4-65

NLS_NUMERIC_CHARACTERS parameter

of ALTER SESSION, 7-116

NLS_SORT parameter, 5-24

of ALTER SESSION, 7-116

NLS_TERRITORY parameter, 2-52

of ALTER SESSION, 7-116

NLS_UNION_CURRENCY parameter

of ALTER SESSION, 7-115

NLS_UPPER function, 4-67

NLSSORT function, 4-66

NO_EXPAND hint, 2-76

NO_INDEX hint, 2-71

NO_MERGE hint, 2-76

NO_PUSH_PRED hint, 2-78

NOAPPEND hint, 2-74

NOARCHIVELOG clause

of ALTER DATABASE, 7-13, 7-22

of CREATE CONTROLFILE, 9-19

OF CREATE DATABASE, 9-25

NOAUDIT statement, 11-66

NOCACHE clause

of ALTER MATERIALIZED VIEW, 7-68

of ALTER MATERIALIZED VIEW LOG, 7-80

of ALTER SEQUENCE. See CREATE SEQUENCE

of ALTER TABLE, 8-36

of CREATE CLUSTER, 9-10

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG, 9-111

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-93

of CREATE SEQUENCE, 9-158

of CREATE TABLE, 10-39

NOCACHE hint, 2-77

NOCOMPRESS clause

of ALTER TABLE, 8-26

of CREATE INDEX, 9-65

of CREATE TABLE, 10-28

NOCOPY clause

of CREATE FUNCTION, 9-47

of CREATE PROCEDURE, 9-135

NOCYCLE clause

of ALTER SEQUENCE. See CREATE

SEQUENCE, 7-103

of CREATE SEQUENCE, 9-158

NOFORCE clause

of CREATE JAVA, 9-81

of CREATE VIEW, 10-108

NOLOGGING clause

of ALTER INDEX, 7-48

of ALTER MATERIALIZED VIEW, 7-67

of ALTER MATERIALIZED VIEW LOG, 7-80

of ALTER TABLE, 8-37

of ALTER TABLESPACE, 8-73

of CREATE INDEX, 9-65

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG, 9-111

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-93

of CREATE TABLE, 10-25

of CREATE TABLESPACE, 10-59

NOMAXVALUE clause

of CREATE SEQUENCE, 9-158

NOMAXVALUE parameter

of ALTER SEQUENCE. See CREATE SEQUENCE

NOMINIMIZE RECORDS PER BLOCK clause

of ALTER TABLE, 8-39

NOMINVALUE clause

of ALTER SEQUENCE. See CREATE

SEQUENCE, 7-103

of CREATE SEQUENCE, 9-158

NOMONITORING clause

of ALTER TABLE, 8-37
Index-28

of CREATE TABLE, 10-40

NONE clause

of SET ROLE, 11-123

nonequivilancy tests, 3-6

nonpadded comparison semantics, 2-27

nonschema objects

list of, 2-80

namespaces, 2-85

NOORDER clause

of ALTER SEQUENCE. See CREATE SEQUENCE

of CREATE SEQUENCE, 9-159

NOPARALLEL clause

of CREATE INDEX, 7-7, 7-19, 7-47, 7-67, 7-79,

8-55, 9-10, 9-67, 9-94, 9-112, 10-40

NOPARALLEL hint, 2-74

NOPARALLEL_INDEX hint, 2-75

NORELY clause

of constraint_clause, 8-148

NORESETLOGS clause

of CREATE CONTROLFILE, 9-18

NOREWRITE hint, 2-76

NOSORT clause

of ALTER INDEX, 9-65

of constraint_clause, 8-149

NOT DEFERRABLE clause

of constraint_clause, 8-147

NOT IDENTIFIED clause

of ALTER ROLE. See CREATE ROLE

of CREATE ROLE, 9-147

NOT IN operator, 3-7

NOT NULL clause

of constraint_clause, 8-142

of CREATE TABLE, 10-20

NOT NULL constraints, 8-142

not null constraints, 8-142

NOT operator, 3-11, 3-12

NOWAIT clause

of LOCK TABLE, 11-64

NTILE function, 4-67

null, 2-57

difference from zero, 2-57

in conditions, 2-58

table of, 2-59

in functions, 2-58

with comparison operators, 2-58

NULL clause

of constraint_clause, 8-142

NULL conditions, 5-20

NUMBER datatype, 2-10

converting to VARCHAR2, 2-43

precision, 2-10

scale, 2-10

number format models, 2-43

number functions, 4-4

numbers

comparison rules, 2-26

floating-point, 2-10, 2-12

in SQL syntax, 2-35

precision of, 2-36

rounding, 2-11

spelling out, 2-54

syntax of, 2-35

NUMERIC datatype (ANSI), 2-22

NUMTODSINTERVAL function, 4-69

NUMTOYMINTERVAL function, 4-70

NVARCHAR2 datatype, 2-9

NVL function, 4-71

NVL2 function, 4-72

O
object access expressions, 5-12

object cache, 7-117, 7-145

OBJECT IDENTIFIER clause

of CREATE TABLE, 10-21

object identifiers

contained in REFs, 2-25

of object views, 10-109

primary key, 10-21

specifying, 10-21

specifying an index on, 10-21

system-generated, 10-21

object privileges

granting, 9-146

multiple, 9-152

on specific columns, 11-36

on a database object

revoking, 11-78

revoking

from a role, 11-73, 11-77
Index-29

from a user, 11-73, 11-77

from PUBLIC, 11-77

object reference functions, 4-14

object tables

adding rows to, 11-51

creating, 10-8

object type bodies

creating, 10-93

re-creating, 10-95

SQL examples, 10-98

object type tables

creating, 10-18

object type values

comparing, 10-88, 10-96

object types, 2-24

adding new member subprograms, 8-81

associating functions or procedures, 8-81

attributes, 2-93

comparison rules, 2-29

MAP function, 2-29

ORDER function, 2-29

compiling the specification and body, 8-80

components of, 2-24

creating, 10-80, 10-82

defining member methods of, 10-93

disassociating statistics types from, 11-15

dropping the body of, 11-17

dropping the specification of, 11-15

function subprogram

declaring, 10-97

function subprograms of, 10-86, 10-95

granting system privileges on, 11-43

incomplete, 10-80, 10-81

methods, 2-93

nested table, 10-84

procedure subprogram

declaring, 10-97

procedure subprograms of, 10-86, 10-95

SQL examples, 10-90

statistics types, 8-110

user-defined

creating, 10-84

varrays, 10-83

object views

adding rows to the base table of, 11-51

defining, 10-105

OBJECT_CACHE_MAX_SIZE_PERCENT parameter

of ALTER SESSION, 7-117

of ALTER SYSTEM, 7-145

OBJECT_CACHE_OPTIMAL_SIZE parameter

of ALTER SESSION, 7-117

of ALTER SYSTEM, 7-145

objects. See object types or database objects

OF clause

of CREATE VIEW, 10-109

OF object_type clause

of CREATE TABLE, 10-18

OFFLINE clause

of ALTER ROLLBACK SEGMENT, 7-101

of ALTER TABLESPACE, 8-71

of CREATE TABLESPACE, 10-60

OIDINDEX clause

of CREATE TABLE, 10-21

OIDs. See object identifiers

ON clause

of CREATE OUTLINE, 9-120

ON COMMIT clause

of CREATE TABLE, 10-21

ON DATABASE clause

of CREATE TRIGGER, 10-73

ON DEFAULT clause

of AUDIT schema_objects, 8-118

of NOAUDIT schema_objects, 11-69

ON DELETE CASCADE clause

of constraint_clause, 8-144

ON DELETE SET NULL clause

of constraint_clause, 8-144

ON DIRECTORY clause

of AUDIT schema_objects, 8-119

of NOAUDIT schema_objects, 11-69

ON NESTED TABLE clause

of CREATE TRIGGER, 10-73

ON object clause

of NOAUDIT schema_objects, 11-69

of REVOKE schema_object_privileges, 11-78

ON PREBUILT TABLE clause

of CREATE MATERIALIZED VIEW, 9-95

ON SCHEMA clause

of CREATE TRIGGER, 10-73

ONLINE clause
Index-30

of ALTER ROLLBACK SEGMENT, 7-100

of ALTER TABLESPACE, 8-71

of CREATE INDEX, 9-66

of CREATE TABLESPACE, 10-60

online indexes, 9-66

rebuilding, 8-26

online redo logs

reinitializing, 7-24

OPEN NORESETLOGS clause

of ALTER DATABASE, 7-27

OPEN READ ONLY clause

of ALTER DATABASE, 7-27

OPEN READ WRITE clause

of ALTER DATABASE, 7-27

OPEN RESETLOGS clause

of ALTER DATABASE, 7-27

operands, 3-1

operators, 3-1

arithmetic, 3-3

binary, 3-2

comparison, 3-5

concatenation, 3-4

granting

system privileges on, 11-39

logical, 3-11

precedence, 3-2

set, 3-12, 11-101

unary, 3-2

user-defined, 3-16

binding to a function, 9-117

creating, 9-115

dropping, 10-147

function providing implementation, 9-117

how bindings are implemented, 9-117

implementation type, 9-117

return type of binding, 9-117

OPTIMAL parameter

of STORAGE clause, 11-134

optimization

setting session parameters, 7-117

OPTIMIZER_INDEX_CACHING parameter

of ALTER SESSION, 7-117

OPTIMIZER_INDEX_COST_ADJ parameter

of ALTER SESSION, 7-117

OPTIMIZER_MAX_PERMUTATIONS parameter

of ALTER SESSION, 7-117

OPTIMIZER_MODE parameter

of ALTER SESSION, 7-117

OPTIMIZER_PERCENT_PARALLEL parameter

of ALTER SESSION, 7-118

OR operator, 3-11, 3-12

OR REPLACE clause

of CREATE CONTEXT, 9-13

of CREATE DIRECTORY, 9-41

of CREATE FUNCTION, 9-45, 9-80

of CREATE LIBRARY, 9-86

of CREATE OUTLINE, 9-120

of CREATE PACKAGE, 9-123

of CREATE PACKAGE BODY, 9-128

of CREATE PROCEDURE, 9-134

of CREATE TRIGGER, 10-68

of CREATE TYPE, 10-84

of CREATE TYPE BODY, 10-95

of CREATE VIEW, 10-107

Oracle reserved words, C -1

Oracle Tools

support of SQL, 1-5

Oracle8i
Enterprise Edition

features and functionality, xv

features and functionality, xv

new features, xvi

ORDER BY clause

of CREATE TABLE, 10-47

of queries, 5-23

of SELECT, 5-23, 11-91, 11-102

with ROWNUM, 2-65

of subqueries in CREATE TABLE, 10-47

ORDER clause

of ALTER SEQUENCE. See CREATE SEQUENCE

of CREATE SEQUENCE, 9-159

ORDER MEMBER clause

of ALTER TYPE, 8-82, 8-83

of CREATE TYPE, 10-89

of CREATE TYPE BODY, 10-96

ORDER methods

specifying, 8-82, 8-83

ORDERED hint, 2-71

ORDERED_PREDICATES hint, 2-78

ordinal numbers
Index-31

specifying, 2-54

spelling out, 2-54

OUT parameter

of CREATE FUNCTION, 9-46

of CREATE PROCEDURE, 9-135

outer joins, 5-25, 11-97

restrictions, 5-25

outlines

assigning to a different category, 7-83, 7-85

automatically creating and storing, 7-137

creating, 9-119

dropping from the database, 10-149

enabling and disabling dynamically, 9-119

granting

system privileges on, 11-39

rebuilding, 7-83, 7-85

renaming, 7-83, 7-85

replacing, 9-120

storing during the session, 7-110

storing for the instance, 7-149

use by the optimizer, 7-122, 7-149

used to generate execution plans, 9-119

OVERFLOW clause

of ALTER INDEX, 7-45

of ALTER TABLE, 8-40

of CREATE TABLE, 10-28

P
package bodies

creating, 9-127

re-creating, 9-128

removing from the database, 10-150

PACKAGE clause

of ALTER PACKAGE, 7-86

packaged procedures

dropping, 10-152

packages

associating statistics with, 8-112

creating, 9-122

disassociating statistics types from, 10-151

invoker rights, 9-124

redefining, 9-123

removing from the database, 10-150

specifying schema and privileges of, 9-124

synonyms for, 10-3

PACKAGES clause

of ASSOCIATE STATISTICS, 8-111, 8-112

PARALLEL clause

of ALTER CLUSTER, 7-4, 7-6

of ALTER DATABASE, 7-19

of ALTER INDEX, 7-42

of ALTER MATERIALIZED VIEW, 7-64, 7-67

of ALTER MATERIALIZED VIEW LOG, 7-78,

7-79

of ALTER TABLE, 8-54

of CREATE CLUSTER, 9-9

of CREATE INDEX, 9-67

of CREATE MATERIALIZED VIEW /

SNAPSHOT, 9-91

of CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG, 9-110

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG, 9-111

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-94

of CREATE TABLE, 10-16, 10-40

parallel execution

hints, 2-74

of DDL statements, 7-107

of DML statements, 7-107

PARALLEL hint, 2-74

parallel joins

and PQ_DISTRIBUTE hint, 2-75

PARALLEL_ADAPTIVE_MULTI_USER parameter

of ALTER SYSTEM, 7-146

PARALLEL_BROADCAST_ENABLED parameter

of ALTER SESSION, 7-118

parallel_clause

of ALTER INDEX, 7-47

PARALLEL_ENABLE clause

of CREATE FUNCTION, 9-49

PARALLEL_INSTANCE_GROUP parameter

of ALTER SESSION, 7-118

of ALTER SYSTEM, 7-146

PARALLEL_MIN_PERCENT parameter

of ALTER SESSION parameter, 7-118

PARALLEL_THREADS_PER_CPU parameter

of ALTER SYSTEM, 7-146

parameters
Index-32

in syntax diagrams, xxii

optional, A-4

required, A-3

PARAMETERS clause

of CREATE INDEX, 9-71

PARTITION ... LOB storage clause

of ALTER TABLE, 8-23

PARTITION BY HASH clause

of CREATE TABLE, 10-35

PARTITION BY RANGE clause

of CREATE TABLE, 10-14, 10-34

PARTITION clause

of ANALYZE, 8-100

of CREATE INDEX, 9-68

of CREATE TABLE, 10-36

of DELETE, 10-117

of INSERT, 11-54

of LOCK TABLE, 11-63

of SELECT, 11-94

of UPDATE, 11-144

PARTITION_VIEW_ENABLED parameter

of ALTER SESSION, 7-118

partitioned indexes, 2-81, 9-52, 9-68

user-defined, 9-67

partitioned tables, 2-81

partition-extended table names, 2-81

in DML statements, 2-82

restrictions on, 2-82

syntax, 2-82

partitioning

by range, 10-14

clauses

of ALTER INDEX, 7-43

of ALTER MATERIALIZED VIEW, 7-64,

7-66

of ALTER MATERIALIZED VIEW

LOG, 7-78, 7-79

of ALTER TABLE, 8-41

of CREATE MATERIALIZED VIEW /

SNAPSHOT, 9-92

of CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG, 9-110

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG, 9-112

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-94

partitions

adding rows to, 11-51

allocating extents for, 8-34

composite, 2-81

specifying, 10-36

converting into nonpartitioned tables, 8-51

deallocating unused space from, 8-35

dropping, 8-48

extents

allocating new, 7-46

hash, 2-81

adding, 8-47

coalescing, 8-48

specifying, 10-35

inserting rows into, 11-54

LOB storage characteristics of, 8-23

locking, 11-62

logging attribute of, 10-25

logging insert operations, 8-37

merging, 8-50

modifying, 8-42

moving to a different segment, 8-44

physical attributes

changing, 8-27

range, 2-81

adding, 8-46

specifying, 10-34

removing rows from, 8-48, 10-117

renaming, 8-44

revising values in, 11-144

splitting, 8-49

storage characteristics, 10-24

tablespace for

defining, 10-24

PASSWORD EXPIRE clause

of ALTER USER. See CREATE USER

of CREATE USER, 10-103

PASSWORD_GRACE_TIME parameter

of ALTER PROFILE, 7-92

of CREATE PROFILE, 9-143

PASSWORD_LIFE_TIME parameter

of ALTER PROFILE, 7-92

of CREATE PROFILE, 9-143

PASSWORD_LOCK_TIME parameter
Index-33

of ALTER PROFILE, 7-92

of CREATE PROFILE, 9-143

PASSWORD_REUSE_MAX parameter

of ALTER PROFILE, 7-92

of CREATE PROFILE, 9-143

PASSWORD_REUSE_TIME parameter

of ALTER PROFILE, 7-92

of CREATE PROFILE, 9-143

PASSWORD_VERIFY_FUNCTION parameter

of ALTER PROFILE, 7-92

of CREATE PROFILE, 9-143

passwords

expiration of, 10-103

parameters

of ALTER PROFILE, 9-144

of CREATE PROFILE, 9-140

PCTFREE parameter

of ALTER CLUSTER, 7-5

of ALTER INDEX, 7-42, 7-48

of ALTER MATERIALIZED VIEW, 7-65

of ALTER MATERIALIZED VIEW LOG, 7-77

of CREATE INDEX, 9-64

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG. See CREATE TABLE.

of CREATE MATERIALIZED VIEW/

SNAPSHOT. See CREATE TABLE.

of CREATE TABLE, 10-22

PCTINCREASE parameter

of STORAGE clause, 11-131

PCTTHRESHOLD parameter

of CREATE TABLE, 8-40, 10-27

PCTUSED parameter

of ALTER CLUSTER, 7-5

of ALTER INDEX, 7-42, 7-48

of ALTER MATERIALIZED VIEW, 7-65

of ALTER MATERIALIZED VIEW LOG, 7-77

of CREATE INDEX. See CREATE TABLE

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG. See CREATE TABLE.

of CREATE MATERIALIZED VIEW/

SNAPSHOT. See CREATE TABLE.

of CREATE TABLE, 10-22

PCTVERSION parameter

of CREATE TABLE, 10-32

of LOB storage clause, 8-22

PERCENT_RANK function, 4-73

PERMANENT clause

of ALTER TABLESPACE, 8-73

of CREATE TABLESPACE, 10-60

physical attributes clause

of a constraint, 8-140

of ALTER CLUSTER, 7-4

of ALTER INDEX, 7-42, 7-48

of ALTER MATERIALIZED VIEW, 7-65

of ALTER MATERIALIZED VIEW LOG, 7-77

of ALTER TABLE, 8-27

of CREATE CLUSTER, 9-4

of CREATE MATERIALIZED VIEW /

SNAPSHOT, 9-91

of CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG, 9-110

of CREATE TABLE, 10-11, 10-22

plan stability, 9-119

PLAN_TABLE sample table, 11-23

PL/SQL, xv

blocks

syntax of, xxiii

compatibility with earlier releases, 7-118, 7-146

program body

of CREATE FUNCTION, 9-49

PLSQL_V2_COMPATIBILITY parameter

of ALTER SESSION, 7-118

of ALTER SYSTEM, 7-146

PM (P.M.) date format element, 2-49, 2-51

POWER function, 4-74

PQ_DISTRIBUTE hint, 2-75

PR number format element, 2-44

PRAGMA clause

of ALTER TYPE, 8-81

of CREATE TYPE, 10-82, 10-87

PRAGMA RESTRICT_REFERENCES, 8-81, 10-87

precedence

of operators, 3-2

precision

number of digits of, 2-36

of NUMBER datatype, 2-10

precompilers

Oracle, 1-4

PRESERVE SNAPSHOT LOG clause

of TRUNCATE, 11-139
Index-34

PRIMARY KEY clause

of constraint_clause, 8-142

of CREATE TABLE, 10-20

primary key constraints, 8-142

enabling, 10-44

index on, 10-44

primary keys

generating values for, 9-155

PRIOR operator, 3-16

PRIVATE_SGA parameter

of ALTER PROFILE, 7-92

of ALTER RESOURCE COST, 7-96

privileges. See system privileges or object privileges

procedures

3GL, calling, 9-86

calling, 8-128

creating, 9-132

declaring

as a Java method, 9-137

as C functions, 9-137

executing, 8-128

external, 9-132

granting

system privileges on, 11-40

invalidating local objects dependent on, 10-152

issuing COMMIT or ROLLBACK

statements, 7-106

naming rules, 2-86

privileges executed with, 8-84, 10-85

recompiling, 7-88

re-creating, 9-134

removing from the database, 10-152

schema executed in, 8-84, 10-85

specifying schema and privileges for, 9-136

synonyms for, 10-3

PROFILE clause

of ALTER USER. See CREATE USER

of CREATE USER, 10-102

profiles

assigning to a user, 10-102

creating, 9-139

examples, 9-144

deassigning from users, 10-154

granting

system privileges on, 11-40

modifying, examples, 7-93

removing from the database, 10-154

proxy clause

of ALTER USER, 8-90, 8-91

pseudocolumns, 2-59

CURRVAL, 2-59

LEVEL, 2-62

NEXTVAL, 2-59

ROWID, 2-63

ROWNUM, 2-64

uses for, 2-65

PUBLIC clause

of CREATE ROLLBACK SEGMENT, 9-149

of CREATE SYNONYM, 10-4

of DROP DATABASE LINK, 10-129

public database links

dropping, 10-129

public rollback segments, 9-149

public synonyms, 10-4

dropping, 11-5

PURGE SNAPSHOT LOG clause

of TRUNCATE, 11-139

PUSH_PRED hint, 2-78

Q
Q date format element, 2-49

queries, 5-21, 11-88

comments in, 5-22

compound, 5-23

correlated

left correlation, 11-96

defined, 5-21

distributed, 5-29

grouping returned rows on a value, 11-99

hierarchical. See hierarchical queries

hints in, 5-22

join, 5-24

locking rows during, 11-103

ordering returned rows, 11-102

outer joins in, 11-96, 11-97

referencing multiple tables, 5-24

restricting results of, 11-97

select lists of, 5-21

selecting from a random sample of rows, 11-95
Index-35

selecting from specified partitions, 11-94

sorting results, 5-23

syntax, 5-21

top-level, 5-21

top-N, 2-65

query rewrite

and dimensions, 9-34

and function-based indexes, 7-119

and rule-based optimization, 7-119

consistency level, 7-119, 7-147

defined, 11-88

disabling, 7-119, 7-146

enabling, 7-119, 7-146

QUERY REWRITE system privilege, 11-38, 11-39,

11-41

QUERY_REWRITE_ENABLED parameter

of ALTER SESSION, 7-119

of ALTER SYSTEM, 7-146

QUERY_REWRITE_INTEGRITY parameter

of ALTER SESSION, 7-119

of ALTER SYSTEM, 7-147

QUOTA clause

of ALTER USER. See CREATE USER

of CREATE USER, 10-102

quotation marks

use with database object names, 2-86

R
range conditions, 5-20

range partition

adding, 8-46

creating, 10-34

RANK function, 4-74

RATIO_TO_REPORT function, 4-75

RAW data

converting from CHAR data, 2-16

RAW datatype, 2-16

RAWTOHEX function, 2-32, 4-76

READ object privilege, 11-46

READ ONLY clause

of ALTER TABLESPACE, 8-72

READ WRITE clause

of ALTER TABLESPACE, 8-72

REAL datatype

ANSI, 2-22

REBUILD clause

of ALTER INDEX, 7-43, 7-49

of ALTER OUTLINE, 7-83

REBUILD COMPRESS clause

of ALTER INDEX, 7-51

REBUILD COMPUTE STATISTICS clause

of ALTER INDEX, 7-51

REBUILD LOGGING clause

of ALTER INDEX, 7-52

REBUILD NOCOMPRESS clause

of ALTER INDEX, 7-51

REBUILD NOLOGGING clause

of ALTER INDEX, 7-52

REBUILD NOREVERSE clause

of ALTER INDEX, 7-50

REBUILD ONLINE clause

of ALTER INDEX, 7-51

REBUILD PARAMETERS clause

of ALTER INDEX, 7-52

REBUILD PARTITION clause

of ALTER INDEX, 7-50

REBUILD REVERSE clause

of ALTER INDEX, 7-50

REBUILD SUBPARTITION clause

of ALTER INDEX, 7-50

REBUILD TABLESPACE clause

of ALTER INDEX, 7-51

REBUILD UNUSABLE LOCAL INDEXES clause

of ALTER TABLE, 8-43

RECOVER AUTOMATIC clause

of ALTER DATABASE, 7-16

RECOVER CANCEL clause

of ALTER DATABASE, 7-11, 7-18

RECOVER clause

of ALTER DATABASE, 7-11, 7-15

RECOVER CONTINUE clause

of ALTER DATABASE, 7-11, 7-17

RECOVER DATABASE clause

of ALTER DATABASE, 7-11, 7-16

RECOVER DATAFILE clause

of ALTER DATABASE, 7-11, 7-17

RECOVER LOGFILE clause

of ALTER DATABASE, 7-11, 7-17

RECOVER MANAGED STANDBY DATABASE
Index-36

clause

of ALTER DATABASE, 7-12

RECOVER STANDBY DATAFILE clause

of ALTER DATABASE, 7-17

RECOVER STANDBY TABLESPACE clause

of ALTER DATABASE, 7-17

RECOVER TABLESPACE clause

of ALTER DATABASE, 7-11, 7-17

RECOVERABLE, 7-49, 10-26

See also LOGGING clause

recovery

distributed, enabling, 7-134

of database, 7-11

RECOVERY_CATALOG_OWNER role, 11-45

redo logs

adding, 7-22

automatic archiving of, 7-128

automatic name generation, 7-16

disabling specified threads in a parallel

server, 7-29

dropping, 7-23

enabling specified threads in a parallel

server, 7-29

members

adding to existing groups, 7-23

dropping, 7-24

renaming, 7-28

reusing, 11-28

size of, 11-28

specifying, 11-27

for media recovery, 7-17

switching groups, 7-135

REF columns

specifying, 10-20

specifying from table or column level, 10-20

REF function, 4-77

REFERENCES clause

of constraint_clause, 8-144

of CREATE TABLE, 10-20

REFERENCES object privilege, 11-46

references to objects. See REFs

REFERENCING clause

of CREATE TRIGGER, 10-68, 10-74

referential integrity constraints, 8-143, 8-144

REFRESH clause

of ALTER MATERIALIZED VIEW, 7-64, 7-68

of CREATE MATERIALIZED VIEW /

SNAPSHOT, 9-91

REFRESH COMPLETE clause

of ALTER MATERIALIZED VIEW, 7-69

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-96

REFRESH FAST clause

of ALTER MATERIALIZED VIEW, 7-68

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-96

REFRESH FORCE clause

of ALTER MATERIALIZED VIEW, 7-69

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-96

REFRESH ON COMMIT clause

of ALTER MATERIALIZED VIEW, 7-69

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-96

REFRESH ON DEMAND clause

of ALTER MATERIALIZED VIEW, 7-70

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-96

REFs, 2-25, 8-145

as containers for OIDs, 2-25

dangling, 8-104

validating, 8-104

REFTOHEX function, 4-78

REGR_AVGX function, 4-78

REGR_AVGY function, 4-78

REGR_COUNT function, 4-78

REGR_INTERCEPT function, 4-78

REGR_R2 function, 4-78

REGR_SLOPE function, 4-78

REGR_SXX function, 4-78

REGR_SXY function, 4-78

REGR_SYY function, 4-78

relational tables

creating, 10-8

RELY clause

of constraint_clause, 8-148

REMOTE_DEPENDENCIES_MODE parameter

of ALTER SESSION, 7-120

of ALTER SYSTEM, 7-148

REMOTE_LOGIN_PASSWORDFILE parameter
Index-37

and control files, 9-15

and databases, 9-21

RENAME clause

of ALTER INDEX, 7-53

of ALTER OUTLINE, 7-83

of ALTER TABLE, 8-38

RENAME DATAFILE clause

of ALTER TABLESPACE, 8-70

RENAME FILE clause

of ALTER DATABASE, 7-10, 7-28

RENAME GLOBAL_NAME clause

of ALTER DATABASE, 7-28

RENAME PARTITION clause

of ALTER INDEX, 7-44, 7-54

of ALTER TABLE, 8-44

RENAME statement, 11-71

RENAME SUBPARTITION clause

of ALTER INDEX, 7-44, 7-54

of ALTER TABLE, 8-44

REPLACE AS OBJECT clause

of ALTER TYPE, 8-81

REPLACE function, 4-85

reserved words, 2-84, C -1

RESET COMPATIBILITY clause

of ALTER DATABASE, 7-28

RESETLOGS parameter

of CREATE CONTROLFILE, 9-17

RESOLVE clause

of ALTER JAVA CLASS, 7-59

of CREATE JAVA, 9-81

RESOLVER clause

of ALTER JAVA CLASS, 7-59

of ALTER JAVA SOURCE, 7-59

of CREATE JAVA, 9-83

resource parameters

of CREATE PROFILE, 9-140

RESOURCE role, 11-45

RESOURCE_LIMIT parameter

of ALTER SYSTEM, 7-148

RESOURCE_MANAGER_PLAN parameter

of ALTER SYSTEM, 7-148

response time

optimizing, 2-69

RESTRICT_REFERENCES pragma

of ALTER TYPE, 8-81

restricted rowids, 2-20

compatibility and migration of, 2-21

RESTRICTED SESSION system privilege, 11-41

RESUME clause

of ALTER SYSTEM, 7-135

RETURN clause

of CREATE FUNCTION, 9-47

of CREATE OPERATOR, 9-117

of CREATE TYPE BODY, 10-97

RETURNING clause

of INSERT, 11-53, 11-57

of UPDATE, 11-143

REUSE clause

of CREATE CONTROLFILE, 9-17

of filespec clause, 11-28

REUSE STORAGE clause

of TRUNCATE, 11-140

REVERSE clause

of CREATE INDEX, 9-65

reverse indexes, 9-65

REVOKE CONNECT THROUGH clause

of ALTER USER, 8-90, 8-91

REVOKE statement, 11-73

REWRITE hint, 2-76

RM date format element, 2-49

RN number format element, 2-44

RNDS parameter

of PRAGMA RESTRICT_REFERENCES, 8-82

RNPS parameter

of PRAGMA RESTRICT_REFERENCES, 8-82

roles

authorization

by a password, 9-147

by an external service, 9-147

by the database, 9-147

by the enterprise directory service, 9-147

changing, 7-98

creating, 9-146

disabling

for the current session, 11-122, 11-123

enabling

for the current session, 11-122, 11-123

granting, 11-31

system privileges on, 11-40

to a user, 11-34
Index-38

to another role, 11-34

to PUBLIC, 11-34

removing from the database, 10-156

revoking, 11-73

from another role, 10-156, 11-76

from PUBLIC, 11-76

from users, 10-156, 11-76

rollback segments

bringing online, 7-100

changing storage characteristics, 7-100

creating, 9-149

granting

system privileges on, 11-40

public, 9-149

reducing size, 7-100

removing from the database, 10-157

specifying optimal size of, 11-134

specifying tablespaces for, 9-150

SQL examples, 9-151

storage characteristics, 9-150, 11-129

taking offline, 7-100

ROLLBACK statement, 11-83

ROLLUP clause

of SELECT statements, 11-99

ROLLUP operation

of queries and subqueries, 11-99

ROUND function

date function, 4-87

format models, 4-127

number function, 4-86

routines

calling, 8-128

executing, 8-128

ROW EXCLUSIVE lock mode, 11-64

ROW SHARE lock mode, 11-64

ROW_NUMBER function, 4-87

ROWID datatype, 2-20

ROWID hint, 2-71

ROWID pseudocolumn, 2-20, 2-21, 2-63

rowids

block portion of, 2-20

description of, 2-20

extended, 2-20

base 64, 2-21

not directly available, 2-21

file portion of, 2-20

nonphysical, 2-21

of foreign tables, 2-21

of index-organized tables, 2-21

restricted, 2-20

compatibility and migration of, 2-21

row portion of, 2-20

uses for, 2-64

ROWIDTOCHAR function, 2-32, 4-89

ROWNUM pseudocolumn, 2-64

uses for, 2-65

rows

adding to a table, 11-51

allowing movement of between

partitions, 10-11

inserting

into partitions, 11-54

into remote databases, 11-54

into subpartitions, 11-54

movement between partitions, 10-38

removing

from a cluster, 11-137

from a table, 11-137

from partitions and subpartitions, 10-117

from tables and views, 10-115

selecting in hierarchical order, 5-22

specifying constraints on, 8-144

stored in ascending order, 8-149

storing if in violation of constraints, 8-52

RPAD function, 4-89

RR date format element, 2-49, 2-52

interpreting, 2-53

RRRR date format element, 2-49

RTRIM function, 4-90

RULE hint, 2-69

run-time compilation

avoiding, 7-88, 8-94

S
S number format element, 2-44

SALES sample table, 4-3

SAMPLE clause

of SELECT, 11-95

of SELECT and subqueries, 11-90
Index-39

SAVEPOINT statement, 11-86

savepoints

erasing, 8-133

rolling back to, 11-84

specifying, 11-86

scalar subqueries, 5-27

scale

greater than precision, 2-11

negative, 2-11

of NUMBER datatype, 2-10

SCC date format element, 2-49

SCHEMA clause

of CREATE JAVA, 9-82

schema objects, 2-79

auditing

options, 8-124

defining default buffer pool for, 11-134

dropping, 11-19

in other schemas, 2-90

list of, 2-79

name resolution, 2-89

namespaces, 2-84

naming

examples, 2-87

guidelines, 2-87

rules, 2-83

object types, 2-24

on remote databases, 2-90

partitioned indexes, 2-81

partitioned tables, 2-81

parts of, 2-81

reauthorizing, 6-2

recompiling, 6-2

referring to, 2-88, 7-110

remote, accessing, 9-28

schemas

changing for a session, 7-110

creating, 9-152

definition of, 2-79

scientific notation, 2-45

SCOPE clause

of column ref constraints, 8-146

scope constraints, 8-146

segment attributes clause

of CREATE TABLE, 10-11

SELECT

object privilege, 11-46

statement, 11-88

SELECT ANY SEQUENCE system privilege, 11-41

SELECT ANY TABLE system privilege, 11-42

select lists, 5-21

ordering, 5-23

SELECT statement, 5-21

SELECT_CATALOG_ROLE role, 11-45

self joins, 5-25

sequences, 2-59, 9-155

accessing values of, 9-155

changing

the increment value, 7-103

the number of cached values, 7-103

creating, 9-155

creating without limit, 9-157

granting

system privileges on, 11-40

how to use, 2-61

incrementing, 9-155, 9-157

maximum value

setting or changing, 7-103

minimum value

setting or changing, 7-103

ordering values, 7-103

recycling values, 7-103

removing from the database, 11-3

renaming, 11-71

restarting, 11-3

at a different number, 7-104

at a predefined limit, 9-157

reusing, 9-155

stopping at a predefined limit, 9-157

synonyms for, 10-3

where to use, 2-60

SERVERERROR event

triggers on, 10-72, 10-73

service name

of remote database, 9-31

session control statements, 6-5

PL/SQL support of, 6-5

session locks

releasing, 7-133

SESSION_CACHED_CURSORS parameter
Index-40

of ALTER SESSION, 7-120

SESSION_ROLES view, 11-122

sessions

calculating resource cost limits, 7-95

changing resource cost limits, 7-95

disconnecting, 7-132

global name resolution for, 7-112

granting

system privileges on, 11-41

limiting resource costs, 7-95

modifying characteristics of, 7-109

number of concurrent, 7-141

object cache, 7-117

restricted, 7-134

terminating, 7-133

SESSIONS_PER_USER parameter

of ALTER PROFILE, 7-92

SET clause

of ALTER SESSION, 7-109

of ALTER SYSTEM, 7-136

of UPDATE, 11-146

SET CONSTRAINT(S) statement, 11-120

SET DATABASE clause

of CREATE CONTROLFILE, 9-17

set operators, 3-12, 11-101

INTERSECT, 3-12

MINUS, 3-12

UNION, 3-12

UNION ALL, 3-12

SET ROLE statement, 11-122

SET STATEMENT_ID clause

of EXPLAIN PLAN, 11-24

SET TRANSACTION statement, 11-125

SET UNUSED clause

of ALTER TABLE, 8-30

SGA. See system global area

SHARE ROW EXCLUSIVE lock mode, 11-64

SHARE UPDATE lock mode, 11-64

SHARED clause

of CREATE DATABASE LINK, 9-29

shared server processes

creating additional, 7-144

terminating, 7-144

SHRINK clause

of ALTER ROLLBACK SEGMENT, 7-101

SHUTDOWN clause

of ALTER SYSTEM, 7-135

SHUTDOWN event

triggers on, 10-72

SIGN function, 4-90

simple comparison conditions, 5-17

simple expressions, 5-3

SIN function, 4-91

SINGLE TABLE clause

of CREATE CLUSTER, 9-8

single-row functions, 4-4

miscellaneous, 4-6

SINH function, 4-91

SIZE clause

of ALTER CLUSTER, 7-5

of CREATE CLUSTER, 9-7

of filespec clause, 11-28

SKIP_UNUSABLE_INDEXES parameter

of ALTER SESSION, 7-121

SMALLINT datatype

ANSI, 2-22

DB2, 2-23

SQL/DS, 2-23

snapshot logs. See materialized view logs

snapshots. See materialized views

SNMPAGENT role, 11-45

SOME operator, 3-6

SORT_AREA_RETAINED_SIZE parameter

of ALTER SESSION, 7-121

of ALTER SYSTEM, 7-149

SORT_AREA_SIZE parameter

of ALTER SESSION, 7-121

of ALTER SYSTEM, 7-149

SORT_MULTIBLOCK_READ_COUNT parameter

of ALTER SESSION, 7-121

of ALTER SYSTEM, 7-149

SOUNDEX function, 4-92

SP date format element suffix, 2-54

SPECIFICATION clause

of ALTER PACKAGE, 7-86

spelled numbers

specifying, 2-54

SPLIT PARTITION clause

of ALTER INDEX, 7-45, 7-55

of ALTER TABLE, 8-49
Index-41

SPTH date format element suffix, 2-54

SQL

description of, 1-3

embedded, 1-4

functions, 4-2

keywords, A-3

Oracle Tools support of, 1-5

parameters, A-3

standards, 1-2, B-1

statements

auditing, 8-120

determining the cost of, 11-23

syntax, 7-1, A-1

SQL function

ACOS, 4-14

SQL functions

ABS, 4-14

ADD_MONTHS, 4-15

aggregate, 4-6

analytic, 4-8

ASCII, 4-16

ASIN, 4-16

ATAN, 4-17

ATAN2, 4-17

AVG, 4-18

BFILENAME, 4-19

BITAND, 4-20

CEIL, 4-21

character

returning character values, 4-4

returning number values, 4-5

CHARTOROWID, 4-21

CHR, 4-22

CONCAT, 4-23

conversion, 4-5

CONVERT, 4-24

CORR, 4-25

COS, 4-26

COSH, 4-27

COUNT, 4-27

CUME_DIST, 4-33

date, 4-5

DENSE_RANK, 4-34

DEREF, 4-35

DUMP, 4-36

EMPTY_BLOB, 4-37

EMPTY_CLOB, 4-37

EXP, 4-38

FIRST_VALUE, 4-38

FLOOR, 4-40

GREATEST, 4-40

GROUPING, 4-41

HEXTORAW, 4-42

INITCAP, 4-43

INSTR, 4-43

INSTRB, 4-44

LAG, 4-45

LAST_DAY, 4-46

LAST_VALUE, 4-47

LEAD, 4-49

LEAST, 4-50

LENGTH, 4-51

LENGTHB, 4-51

linear regression, 4-78

LN, 4-52

LOG, 4-52

LOWER, 4-53

LPAD, 4-53

LTRIM, 4-54

MAKE_REF, 4-55

MAX, 4-56

MIN, 4-58

MOD, 4-59

MONTHS_BETWEEN, 4-60

NEW_TIME, 4-61

NEXT_DAY, 4-62

NLS_CHARSET_DECL_LEN, 4-62

NLS_CHARSET_ID, 4-63

NLS_CHARSET_NAME, 4-64

NLS_INITCAP, 4-64

NLS_LOWER, 4-65

NLS_UPPER, 4-67

NLSSORT, 4-66

NLV2, 4-72

NTILE, 4-67

number, 4-4

NUMTODSINTERVAL, 4-69

NUMTOYMINTERVAL, 4-70

NVL, 4-71

object reference, 4-14
Index-42

PERCENT_RANK, 4-73

POWER, 4-74

RANK, 4-74

RATIO_TO_REPORT, 4-75

RAWTOHEX, 4-76

REF, 4-77

REFTOHEX, 4-78

REGR_AVGX, 4-78

REGR_AVGY, 4-78

REGR_COUNT, 4-78

REGR_INTERCEPT, 4-78

REGR_R2, 4-78

REGR_SLOPE, 4-78

REGR_SXX, 4-78

REGR_SXY, 4-78

REGR_SYY, 4-78

REPLACE, 4-85

ROUND (date), 4-87

ROUND (number), 4-86

ROW_NUMBER, 4-87

ROWIDTOCHAR, 4-89

RPAD, 4-89

RTRIM, 4-90

SIGN, 4-90

SIN, 4-91

single-row, 4-4

miscellaneous, 4-6

SINH, 4-91

SOUNDEX, 4-92

SQRT, 4-93

STDDEV, 4-93

STDDEVP, 4-95

STDDEVS, 4-96

SUBSTR, 4-98

SUBSTRB, 4-99

SUM, 4-99

SYS_CONTEXT, 4-101

SYS_GUID, 4-105

SYSDATE, 4-106

TAN, 4-107

TANH, 4-107

TO_CHAR (date), 4-108

TO_CHAR (number), 4-109

TO_DATE, 4-110

TO_LOB, 4-111

TO_MULTI_BYTE, 4-112

TO_NUMBER, 4-112

TO_SINGLE_BYTE, 4-113

TRANSLATE, 4-113

TRANSLATE...USING, 4-114

TRIM, 4-116

TRUNC (date), 4-117

TRUNC (number), 4-117

UID, 4-118

UPPER, 4-118

USER, 4-119

USERENV, 4-120

VALUE, 4-121

VARIANCE, 4-125

VARP, 4-122

VARS, 4-123

VSIZE, 4-126

SQL statements

auditing

by access, 8-119

by proxy, 8-117

by session, 8-119

by user, 8-117

stopping, 11-66

successful, 8-119

DDL, 6-2

determining the execution plan for, 11-23

DML, 6-4

rolling back, 11-83

session control, 6-5

system control, 6-5

tracking the occurrence in a session, 8-114

transaction control, 6-4

undoing, 11-83

SQL_TRACE parameter

of ALTER SESSION, 7-121

SQL92, 1-2

Oracle compliance with, B-2

SQL/DS datatypes, 2-22

conversion to Oracle datatypes, 2-23

restrictions on, 2-24

SQRT function, 4-93

SS date format element, 2-49

SSSSS date format element, 2-49

standalone procedures
Index-43

dropping, 10-152

standard SQL, B-1

Oracle extensions to, B-5

standby control file

creating, 7-25

standby database

activating, 7-26

designing media recovery, 7-15

mounting, 7-26

recovering, 7-17

STANDBY_ARCHIVE_DEST parameter

of ALTER SYSTEM, 7-149

star transformation, 2-76

STAR_TRANSFORMATION hint, 2-76

STAR_TRANSFORMATION_ENABLED parameter

of ALTER SESSION, 7-122

START WITH clause

of ALTER MATERIALIZED

VIEW...REFRESH, 7-70

of CREATE SEQUENCE, 9-157

of SELECT, 11-98

of SELECT and subqueries, 11-91

STARTUP event

triggers on, 10-72

STATIC clause

of ALTER TYPE, 8-81

of CREATE TYPE, 10-86

of CREATE TYPE BODY, 10-95

statistics

computing exactly, 8-101

deleting from the data dictionary, 8-104

estimating, 8-103

forcing disassociation, 10-125

on indexes, 9-66

user-defined

dropping, 10-136, 10-138, 10-151, 11-7, 11-15

statistics types

associating

with columns, 8-112

with datatypes, 8-112

with domain indexes, 8-112

with functions, 8-112

with indextypes, 8-112

with packages, 8-112

disassociating

from columns, 10-123

from domain indexes, 10-123

from functions, 10-123

from indextypes, 10-123

from packages, 10-123

from types, 10-123

STDDEV function, 4-93

STDDEVP function, 4-95

STDDEVS function, 4-96

storage characteristics

resetting, 11-137

STORAGE clause, 11-129

of ALTER CLUSTER, 7-5

of ALTER INDEX, 7-42, 7-43, 7-48

of ALTER MATERIALIZED VIEW, 7-65

of ALTER MATERIALIZED VIEW LOG, 7-77

of ALTER ROLLBACK SEGMENT, 7-100, 7-101

of CREATE CLUSTER, 9-6

of CREATE INDEX, 9-64

of CREATE MATERIALIZED VIEW LOG /

SNAPSHOT LOG, 9-110

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG. See CREATE TABLE

of CREATE MATERIALIZED VIEW/

SNAPSHOT. See CREATE TABLE.

of CREATE ROLLBACK SEGMENTS, 9-150

of CREATE TABLE, 10-11, 10-24

of CREATE TABLESPACE, 10-58

STORAGE IN ROW clause

of ALTER TABLE, 8-21

STORE IN DEFAULT clause

of CREATE INDEX, 9-70

STORE IN tablespace clause

of CREATE INDEX, 9-70

stored functions, 9-43

Structured Query Language. See SQL

SUBPARTITION BY HASH clause

of CREATE TABLE, 10-14, 10-36

SUBPARTITION clause

of ANALYZE, 8-100

of CREATE INDEX, 9-70

of CREATE TABLE, 10-38

of DELETE, 10-117

of INSERT, 11-54

of LOCK TABLE, 11-63
Index-44

of SELECT, 11-94

of UPDATE, 11-144

subpartition-extended table names, 2-81

in DML statements, 2-82

restrictions on, 2-82

syntax, 2-82

subpartitions

adding, 8-43

adding rows to, 11-51

allocating extents for, 8-34, 8-43

coalescing, 8-43

converting into nonpartitioned tables, 8-51

creating, 10-14, 10-38

deallocating unused space from, 8-35, 8-43

inserting rows into, 11-54

locking, 11-62

logging insert operations, 8-37

moving to a different segment, 8-45

physical attributes

changing, 8-27

removing rows from, 8-48, 10-117

renaming, 8-44

revising values in, 11-144

specifying, 10-36

SUBPARTITIONS clause

of CREATE TABLE, 10-36

subqueries, 5-21, 5-26, 11-88

containing subqueries, 5-26

correlated, 5-27

defined, 5-21

extended subquery unnesting, 5-28

inline views, 5-26

nested, 5-26

scalar, 5-27

to insert table data, 10-46

unnesting, 5-28

using in place of expressions, 5-27

SUBSTR function, 4-98

SUBSTRB function, 4-99

subtotal values

deriving, 11-99

SUM function, 4-99

SUSPEND clause

of ALTER SYSTEM, 7-135

sustained standby recovery mode, 7-18

terminating, 7-18

timeout period, 7-18

SWITCH LOGFILE clause

of ALTER SYSTEM, 7-135

SYEAR date format element, 2-49

synonyms

changing the definition of, 11-5

creating, 10-3

granting

system privileges on, 11-41

local, 10-5

private, dropping, 11-5

public, 10-4

dropping, 11-5

remote, 10-5

removing from the database, 11-5

renaming, 11-71

synonyms for, 10-3

syntax diagrams, A-1

explanation of, xxi

keywords, xxii

loops, A-4

multipart diagrams, A-5

parameters, xxii

SYS schema

database triggers stored in, 10-75

functions stored in, 10-75

SYS_CONTEXT function, 4-101

SYS_GUID function, 4-105

SYSDATE function, 4-106

SYSDBA system privilege, 11-44

SYSOPER system privilege, 11-44

system control statements, 6-5

PL/SQL support of, 6-5

system date

altering, 7-139

system events

attributes of, 10-75

triggers on, 10-72

system global area

flushing, 7-134

updating, 7-132

system privileges

granting, 9-146, 11-31

to a role, 11-33
Index-45

to a user, 11-33

to PUBLIC, 11-33

list of, 11-37

revoking, 11-73

from a role, 11-75

from a user, 11-75

from PUBLIC, 11-75

SYYYY date format element, 2-49

T
TABLE clause

of DELETE, 10-118

of INSERT, 11-55

of SELECT, 11-96

of TRUNCATE, 11-138

of UPDATE, 11-144, 11-145

table constraints

defined, 8-136

of ALTER TABLE, 8-21

of CREATE TABLE, 10-20

table locks

disabling, 8-56

duration of, 11-62

enabling, 8-56

EXCLUSIVE, 11-63, 11-64

modes of, 11-64

on partitions, 11-63

on remote database, 11-63

on subpartitions, 11-63

and queries, 11-62

ROW EXCLUSIVE, 11-63, 11-64

ROW SHARE, 11-63, 11-64

SHARE, 11-63

SHARE ROW EXCLUSIVE, 11-64

SHARE UPDATE, 11-64

table REF constraints, 8-137, 8-145

of ALTER TABLE, 8-20

of CREATE TABLE, 10-20

tables

adding rows to, 11-51

aliases, 2-93

in CREATE INDEX, 9-60

in DELETE, 10-119

allocating extents for, 8-34

assigning to a cluster, 10-29

changing degree of parallelism on, 8-54

changing existing values in, 11-141

collecting modification statistics on, 8-37

collecting statistics on, 8-99

creating, 10-7

multiple, 9-152

creating comments about, 8-131

deallocating unused space from, 8-35

default physical attributes

changing, 8-27

degree of parallelism

specifying, 10-7

disassociating statistics types from, 11-7

dropping

along with cluster, 10-127

along with owner, 11-19

indexes of, 11-7

partitions of, 11-7

granting

system privileges on, 11-42

index-organized

overflow segment for, 10-28

space in index block, 8-40, 10-27

inserting rows with a subquery, 10-46

LOB storage of, 10-24

locking, 11-62

logging

insert operations, 8-37

table creation, 10-25

migrated and chained rows in, 8-106

moving to a new segment, 8-25

nested

creating, 10-90

storage characteristics, 10-33

object

creating, 10-8

ordering rows from, 10-47

parallel creation of, 10-40

parallelism

setting default degree, 10-40

partition attributes of, 8-41

partitioned

allowing rows to move between

partitions, 8-54
Index-46

default attributes of, 8-41

partitioning of, 2-81, 10-7

physical attributes

changing, 8-27

relational

creating, 10-8

remote, accessing, 9-28

removing from the database, 11-7

removing rows from, 10-115

renaming, 8-38, 11-71

restricting

records per block, 8-39

references to, 8-146

retrieving data from, 11-88

saving blocks in a cache, 8-36, 10-39

SQL examples, 10-47

storage characteristics, 11-129

defining, 10-7, 10-24

subpartition attributes of, 8-41

synonyms for, 10-3

tablespace for

defining, 10-7, 10-24

temporary

duration of data, 10-21

session-specific, 10-17

transaction specific, 10-17

unclustering, 10-126

validating structure of, 8-104

with unusable indexes, 7-121

TABLESPACE clause

of CREATE CLUSTER, 9-7

of CREATE INDEX, 9-64

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG, 9-111

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-93

of CREATE ROLLBACK SEGMENTS, 9-150

of CREATE TABLE, 10-24

tablespaces, 8-71

allocating space for users, 10-102

allowing write operations on, 8-72

backing up datafiles of, 8-72

bringing online, 8-71, 10-60

coalescing free extents, 8-73

converting

from permanent to temporary, 8-73

from temporary to permanent, 8-73

creating, 10-56

datafile

adding, 8-70

renaming, 8-70

default storage characteristics, 11-129

defining as read only, 8-72

designing media recovery, 7-15

dropping the contents of, 11-11

enable autoextension of, 8-70

extent management of, 10-65

extent size of, 10-59

granting

system privileges on, 11-42

locally managed, 10-61, 11-129

temporary, 10-65

logging attribute of, 8-73, 10-59

managed using dictionary tables, 10-61

managing extents of, 10-61

of session duration, 10-63

permanent objects in, 10-60

recovering, 7-17

removing from the database, 11-10

size of free extents in, 8-71

specifying

datafiles for, 10-58

for a user, 10-102

for index rebuild, 8-26

taking offline, 8-71, 10-60

tempfile

adding, 8-70

temporary

creating, 10-63

specifying for a user, 10-102

temporary objects in, 10-61

TAN function, 4-107

TANH function, 4-107

TEMPFILE clause

of ALTER DATABASE, 7-12, 7-21

of CREATE TEMPORARY TABLESPACE, 10-64

tempfiles

automatic extension of, 10-64

bringing online, 7-21

disabling automatic extension, 7-21
Index-47

dropping, 7-21

enabling automatic extension, 7-21

resizing, 7-21

reusing, 11-28

size of, 11-28

specifying, 10-64, 11-27

taking offline, 7-21

TEMPORARY clause

of ALTER TABLESPACE, 8-73

of CREATE TABLESPACE, 10-61

temporary tables

creating, 10-7, 10-17

session-specific, 10-17

transaction-specific, 10-17

TEMPORARY TABLESPACE clause

of ALTER USER. See CREATE USER

of CREATE USER, 10-102

temporary tablespaces

creating, 10-63

specifying for a user, 10-102

SQL examples, 10-65

text

conventions, xxi

date and number formats, 2-41

in SQL syntax, 2-33

properties of CHAR and VARCHAR2

datatypes, 2-34

syntax of, 2-33

text date format element, 2-49

TH date format element suffix, 2-54

throughput

optimizing, 2-68

THSP date format element suffix, 2-54

TIME datatype (SQL/DS or DB2), 2-24

TIMED_OS_STATISTICS parameter

of ALTER SYSTEM, 7-149

TIMED_STATISTICS parameter

of ALTER SESSION, 7-122

of ALTER SYSTEM, 7-149

TIMESTAMP datatype (SQL/DS or DB2), 2-24

TM number format element, 2-44

TO SAVEPOINT clause

of ROLLBACK, 11-84

TO_CHAR

date conversion function, 4-108

number conversion function, 4-109

TO_CHAR function, 2-32, 2-43, 2-47, 2-54

TO_DATE function, 2-32, 2-47, 2-52, 2-55, 4-110

TO_LOB function, 2-32, 4-111

TO_MULTI_BYTE function, 4-112

TO_NUMBER function, 2-32, 2-43, 4-112

TO_SINGLE_BYTE function, 4-113

top-N queries, 2-65

transaction control statements, 6-4

PL/SQL support of, 6-4

TRANSACTION_AUDITING parameter

of ALTER SYSTEM, 7-149

transactions

allowing to complete, 7-132

assigning

rollback segment to, 11-125

automatically committing, 8-133

commenting on, 8-134

distributed, forcing, 7-106

ending, 8-133

implicit commit of, 6-2, 6-4, 6-5

in-doubt

committing, 8-133

forcing, 8-134

isolation level, 11-125

locks, releasing, 8-133

read-only, 11-125

read-write, 11-125

rolling back, 7-133, 9-149, 11-83

to a savepoint, 11-84

savepoints for, 11-86

TRANSLATE ... USING function, 4-114

TRANSLATE function, 4-113

triggers

AFTER, 10-69

BEFORE, 10-68

compiling, 8-76

creating, 10-66

creating multiple, 10-70

database

altering, 8-77

dropping, 11-13, 11-19

disabling, 8-56, 8-76

enabling, 8-56, 8-76, 10-66

executing
Index-48

with a PL/SQL block, 10-75

with an external procedure, 10-76

granting

system privileges on, 11-42

INSTEAD OF, 10-69

dropping, 10-107

on database events, 10-72

on DDL events, 10-71

on DML operations, 10-70

on views, 10-69

order of firing, 10-70

re-creating, 10-68

removing from the database, 11-13

restrictions on, 10-75

row values

old and new, 10-74

row, specifying, 10-75

SQL examples, 10-76

statement, 10-75

TRIM function, 4-116

TRUNC function

date function, 4-117

format models, 4-127

number function, 4-117

TRUNCATE PARTITION clause

of ALTER TABLE, 8-48

TRUNCATE statement, 11-137

TRUNCATE SUBPARTITION clause

of ALTER TABLE, 8-48

TRUST parameter

of PRAGMA RESTRICT_REFERENCES, 8-82

Trusted Oracle, 1-5

type constructor expressions, 5-7

TYPES clause

of ASSOCIATE STATISTICS, 8-111, 8-112

types. See object types or datatypes

U
U number format element, 2-44

UID function, 4-118

unary operators, 3-2

UNION ALL operator, 3-12

UNION ALL set operator, 3-13, 11-101

UNION operator, 3-12

UNION set operator, 3-13, 11-101

UNIQUE clause

of constraint_clause, 8-141

of CREATE INDEX, 9-58

of CREATE TABLE, 10-20

of SELECT, 11-92

unique constraints

enabling, 10-44

index on, 10-44

unique indexes, 9-58

unique queries, 11-92

universal rowids. See urowids

UNLIMITED TABLESPACE system

privilege, 11-42

UNNEST_SUBQUERY parameter, 2-79

unnesting collections, 11-96

examples, 11-115

unnesting subqueries, 5-28

UNRECOVERABLE, 7-49, 10-26

See also NOLOGGING clause

unsorted indexes, 9-65

UNUSABLE clause

of ALTER INDEX, 7-53

UNUSABLE LOCAL INDEXES clause

of ALTER MATERIALIZED VIEW, 7-66

of ALTER TABLE, 8-43

UPDATE ANY TABLE system privilege, 11-42

UPDATE object privilege, 11-46

UPDATE statement, 11-141

triggers on, 10-70

UPPER function, 4-118

UROWID datatype, 2-21

urowids

and foreign tables, 2-21

and index-organized tables, 2-21

description of, 2-21

USE_CONCAT hint, 2-77

USE_MERGE hint, 2-73

USE_NL hint, 2-73

USE_STORED_OUTLINES parameter

of ALTER SESSION, 7-122

of ALTER SYSTEM, 7-149

USER function, 4-119

USER_COL_COMMENTS view, 8-131

USER_DUMP_DEST parameter
Index-49

of ALTER SYSTEM, 7-150

USER_TAB_COMMENTS view, 8-131

user-defined functions, 4-128

name precedence of, 4-129

naming conventions, 4-130

restrictions on, 9-46

user-defined operators, 3-16

user-defined statistics

dropping, 10-136, 10-138, 10-151, 11-7, 11-15

user-defined types

categories of, 2-24

defining, 10-84

USERENV function, 4-120

users

allocating space for, 10-102

assigning

default roles, 8-91

profiles, 10-102

authenticating to a remote server, 9-31

changing global authentication, 8-91

creating, 10-99

default tablespaces of, 10-102

denying access to tables and views, 11-62

external, 9-147, 10-101

global, 9-147, 10-101

granting

system privileges on, 11-43

local, 9-147, 10-101

locking accounts of, 10-103

maximum concurrent, 7-141

password expiration of, 10-103

removing from the database, 11-19

SQL examples, 10-103

temporary tablespaces for, 10-102

USING BFILE clause

of CREATE JAVA, 9-83

USING BLOB clause

of CREATE JAVA, 9-83

USING clause

of ASSOCIATE STATISTICS, 8-111, 8-112

of CREATE DATABASE LINK, 9-31

of CREATE INDEXTYPE, 9-77

of CREATE OPERATOR, 9-116, 9-117

USING CLOB clause

of CREATE JAVA, 9-83

USING INDEX clause

of ALTER MATERIALIZED VIEW, 7-68

of constraint_clause, 8-148

of CREATE MATERIALIZED VIEW/

SNAPSHOT, 9-96

of CREATE TABLE, 10-16, 10-44

USING ROLLBACK SEGMENT clause

of ALTER MATERIALIZED

VIEW...REFRESH, 7-71

of CREATE MATERIALIZED VIEW/

SNAPSHOT...REFRESH, 9-99

UTLCHN.SQL script, 8-106

UTLEXPT1.SQL script, 8-52

UTLXPLAN.SQL script, 11-23

V
V number format element, 2-44

V$NLS_PARAMETERS view

VALIDATE REF UPDATE clause

of ANALYZE, 8-104

VALIDATE STRUCTURE clause

of ANALYZE, 8-104

VALUE function, 4-121

VALUES clause

of CREATE INDEX, 9-68

of INSERT, 11-56

VALUES LESS THAN clause

of CREATE TABLE, 10-37

VARCHAR datatype, 2-10

DB2, 2-23

SQL/DS, 2-23

VARCHAR2 datatype, 2-9

converting to NUMBER, 2-43

VARGRAPHIC datatype (SQL/DS or DB2), 2-24

variable expressions, 5-5

VARIANCE function, 4-125

VARP function, 4-122

VARRAY storage clause

of ALTER TABLE, 8-22

of CREATE TABLE, 10-13, 10-32

varrays, 2-25

changing returned value, 8-28

compared with nested tables, 2-30

comparison rules, 2-30
Index-50

creating, 10-80, 10-83, 10-89

dropping the body of, 11-17

dropping the specification of, 11-15

storage characteristics of, 8-22, 8-29, 10-32

storing out of line, 2-25

VARS function, 4-123

varying arrays. See varrays

views

adding rows to the base table of, 11-51

changing

definition, 11-21

values in base tables, 11-141

creating

before base tables, 10-108

comments about, 8-131

multiple, 9-152

defining, 10-105

granting

system privileges on, 11-43

recompiling, 8-94

re-creating, 10-107

remote, accessing, 9-28

removing

from the database, 11-21

rows from the base table of, 10-115

renaming, 11-71

retrieving data from, 11-88

subquery of, 10-110

restricting, 10-111

synonyms for, 10-3

VSIZE function, 4-126

W
W date format element, 2-49

WHEN clause

of CREATE TRIGGER, 10-75

WHENEVER NOT SUCCESSFUL clause

of NOAUDIT schema_objects, 11-69

WHENEVER SUCCESSFUL clause

of AUDIT sql_statements, 8-119

of NOAUDIT schema_objects, 11-69

WHERE clause

of DELETE, 10-119

of SELECT, 5-22, 11-97

of UPDATE, 11-148

WITH ADMIN OPTION clause

of GRANT system_privileges_and_roles, 11-34

WITH CHECK OPTION clause

of CREATE VIEW, 10-107, 10-111

of DELETE, 10-118

of INSERT, 11-55

of SELECT, 11-90, 11-96

of UPDATE, 11-144

WITH GRANT OPTION clause

of GRANT object_privileges, 11-36

WITH INDEX CONTEXT clause

of CREATE OPERATOR, 9-116, 9-117

WITH OBJECT IDENTIFIER clause

of CREATE VIEW, 10-109

WITH OBJECT OID. See WITH OBJECT

IDENTIFIER.

WITH PRIMARY KEY clause

of ALTER MATERIALIZED VIEW, 7-70

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG, 9-112

of CREATE MATERIALIZED VIEW/

SNAPSHOT...REFRESH, 9-96

WITH READ ONLY clause

of CREATE VIEW, 10-107, 10-111

of DELETE, 10-118

of INSERT, 11-55

of SELECT, 11-90, 11-96

of UPDATE, 11-144

WITH ROWID clause

of column ref constraints, 8-146

of CREATE MATERIALIZED VIEW LOG/

SNAPSHOT LOG, 9-112

of CREATE MATERIALIZED VIEW/

SNAPSHOT...REFRESH, 9-96

WNDS parameter

of PRAGMA RESTRICT_REFERENCES, 8-82

WNPS parameter

of PRAGMA RESTRICT_REFERENCES, 8-82

WW date format element, 2-49

X
X number format element, 2-44
Index-51

Y
Y date format element, 2-49

YEAR date format element, 2-49

YY date format element, 2-49

YYY date format element, 2-49

YYYY date format element, 2-49
Index-52

	PDF Directory
	Send Us Your Comments
	Preface
	1 Introduction
	History of SQL
	SQL Standards
	Embedded SQL
	Lexical Conventions
	Tools Support

	2 Basic Elements of Oracle SQL
	Datatypes
	Character Datatypes
	NUMBER Datatype
	LONG Datatype
	DATE Datatype
	RAW and LONG RAW Datatypes
	Large Object (LOB) Datatypes
	ROWID Datatype
	UROWID Datatype
	ANSI, DB2, and SQL/DS Datatypes
	User-Defined Type Categories
	Datatype Comparison Rules
	Data Conversion

	Literals
	Text
	Integer
	Number
	Interval

	Format Models
	Number Format Models
	Date Format Models
	Format Model Modifiers
	String-to-Date Conversion Rules

	Nulls
	Nulls in SQL Functions
	Nulls with Comparison Operators
	Nulls in Conditions

	Pseudocolumns
	CURRVAL and NEXTVAL
	LEVEL
	ROWID
	ROWNUM

	Comments
	Comments Within SQL Statements
	Comments on Schema Objects
	Hints

	Database Objects
	Schema Objects
	Nonschema Objects
	Parts of Schema Objects

	Schema Object Names and Qualifiers
	Schema Object Naming Rules
	Schema Object Naming Examples
	Schema Object Naming Guidelines

	Syntax for Schema Objects and Parts in SQL Statements
	How Oracle Resolves Schema Object References
	Referring to Objects in Other Schemas
	Referring to Objects in Remote Databases
	Referencing Object Type Attributes and Methods

	3 Operators
	Unary and Binary Operators
	Precedence
	Arithmetic Operators
	Concatenation Operator
	Comparison Operators
	NOT IN Operator
	LIKE Operator

	Logical Operators: NOT, AND, OR
	NOT Operator
	AND Operator
	OR Operator

	Set Operators: UNION [ALL], INTERSECT, MINUS
	Other Built-In Operators
	User-Defined Operators

	4 Functions
	SQL Functions
	Single-Row Functions
	Aggregate Functions
	Analytic Functions
	Object Reference Functions
	Alphabetical Listing of SQL Functions

	ABS
	ACOS
	ADD_MONTHS
	ASCII
	ASIN
	ATAN
	ATAN2
	AVG
	BFILENAME
	BITAND
	CEIL
	CHARTOROWID
	CHR
	CONCAT
	CONVERT
	CORR
	COS
	COSH
	COUNT
	COVAR_POP
	COVAR_SAMP
	CUME_DIST
	DENSE_RANK
	DEREF
	DUMP
	EMPTY_[B | C]LOB
	EXP
	FIRST_VALUE
	FLOOR
	GREATEST
	GROUPING
	HEXTORAW
	INITCAP
	INSTR
	INSTRB
	LAG
	LAST_DAY
	LAST_VALUE
	LEAD
	LEAST
	LENGTH
	LENGTHB
	LN
	LOG
	LOWER
	LPAD
	LTRIM
	MAKE_REF
	MAX
	MIN
	MOD
	MONTHS_BETWEEN
	NEW_TIME
	NEXT_DAY
	NLS_CHARSET_DECL_LEN
	NLS_CHARSET_ID
	NLS_CHARSET_NAME
	NLS_INITCAP
	NLS_LOWER
	NLSSORT
	NLS_UPPER
	NTILE
	NUMTODSINTERVAL
	NUMTOYMINTERVAL
	NVL
	NVL2
	PERCENT_RANK
	POWER
	RANK
	RATIO_TO_REPORT
	RAWTOHEX
	REF
	REFTOHEX
	REGR_ (linear regression) functions
	REPLACE
	ROUND (number function)
	ROUND (date function)
	ROW_NUMBER
	ROWIDTOCHAR
	RPAD
	RTRIM
	SIGN
	SIN
	SINH
	SOUNDEX
	SQRT
	STDDEV
	STDDEV_POP
	STDDEV_SAMP
	SUBSTR
	SUBSTRB
	SUM
	SYS_CONTEXT
	SYS_GUID
	SYSDATE
	TAN
	TANH
	TO_CHAR (date conversion)
	TO_CHAR (number conversion)
	TO_DATE
	TO_LOB
	TO_MULTI_BYTE
	TO_NUMBER
	TO_SINGLE_BYTE
	TRANSLATE
	TRANSLATE ... USING
	TRIM
	TRUNC (number function)
	TRUNC (date function)
	UID
	UPPER
	USER
	USERENV
	VALUE
	VAR_POP
	VAR_SAMP
	VARIANCE
	VSIZE
	ROUND and TRUNC Date Functions
	User-Defined Functions
	Prerequisites
	Name Precedence

	5 Expressions, Conditions, and Queries
	Expressions
	Simple Expressions
	Compound Expressions
	Variable Expressions
	Built-In Function Expressions
	Function Expressions
	Type Constructor Expressions
	CAST Expressions
	CURSOR Expressions
	Object Access Expressions
	DECODE Expressions
	CASE Expressions
	Expression List

	Conditions
	Simple Comparison Conditions
	Group Comparison Conditions
	Membership Conditions
	Range Conditions
	NULL Conditions
	EXISTS Conditions
	LIKE Conditions
	Compound Conditions

	Queries and Subqueries
	Creating Simple Queries
	Hierarchical Queries
	Sorting Query Results
	Joins
	Using Subqueries
	Unnesting of Nested Subqueries
	Selecting from the DUAL Table
	Distributed Queries

	6 About SQL Statements
	Summary of SQL Statements
	Finding the SQL Statement for a Database Task

	7 SQL Statements: ALTER CLUSTER to ALTER SYSTEM
	ALTER CLUSTER
	ALTER DATABASE
	ALTER DIMENSION
	ALTER FUNCTION
	ALTER INDEX
	ALTER JAVA
	ALTER MATERIALIZED VIEW
	ALTER MATERIALIZED VIEW LOG
	ALTER OUTLINE
	ALTER PACKAGE
	ALTER PROCEDURE
	ALTER PROFILE
	ALTER RESOURCE COST
	ALTER ROLE
	ALTER ROLLBACK SEGMENT
	ALTER SEQUENCE
	ALTER SESSION
	ALTER SYSTEM

	8 SQL Statements: ALTER TABLE to constraint_clause
	ALTER TABLE
	ALTER TABLESPACE
	ALTER TRIGGER
	ALTER TYPE
	ALTER USER
	ALTER VIEW
	ANALYZE
	ASSOCIATE STATISTICS
	AUDIT
	CALL
	COMMENT
	COMMIT
	constraint_clause

	9 SQL Statements: CREATE CLUSTER to CREATE SEQUENCE
	CREATE CLUSTER
	CREATE CONTEXT
	CREATE CONTROLFILE
	CREATE DATABASE
	CREATE DATABASE LINK
	CREATE DIMENSION
	CREATE DIRECTORY
	CREATE FUNCTION
	CREATE INDEX
	CREATE INDEXTYPE
	CREATE JAVA
	CREATE LIBRARY
	CREATE MATERIALIZED VIEW
	CREATE MATERIALIZED VIEW LOG
	CREATE OPERATOR
	CREATE OUTLINE
	CREATE PACKAGE
	CREATE PACKAGE BODY
	CREATE PROCEDURE
	CREATE PROFILE
	CREATE ROLE
	CREATE ROLLBACK SEGMENT
	CREATE SCHEMA
	CREATE SEQUENCE

	10 SQL Statements: CREATE SYNONYM to DROP ROLLBACK SEGMENT
	CREATE SYNONYM
	CREATE TABLE
	CREATE TABLESPACE
	CREATE TEMPORARY TABLESPACE
	CREATE TRIGGER
	CREATE TYPE
	CREATE TYPE BODY
	CREATE USER
	CREATE VIEW
	DELETE
	DISASSOCIATE STATISTICS
	DROP CLUSTER
	DROP CONTEXT
	DROP DATABASE LINK
	DROP DIMENSION
	DROP DIRECTORY
	DROP FUNCTION
	DROP INDEX
	DROP INDEXTYPE
	DROP JAVA
	DROP LIBRARY
	DROP MATERIALIZED VIEW
	DROP MATERIALIZED VIEW LOG
	DROP OPERATOR
	DROP OUTLINE
	DROP PACKAGE
	DROP PROCEDURE
	DROP PROFILE
	DROP ROLE
	DROP ROLLBACK SEGMENT

	11 SQL Statements: DROP SEQUENCE to UPDATE
	DROP SEQUENCE
	DROP SYNONYM
	DROP TABLE
	DROP TABLESPACE
	DROP TRIGGER
	DROP TYPE
	DROP TYPE BODY
	DROP USER
	DROP VIEW
	EXPLAIN PLAN
	filespec
	GRANT
	INSERT
	LOCK TABLE
	NOAUDIT
	RENAME
	REVOKE
	ROLLBACK
	SAVEPOINT
	SELECT and subquery
	SET CONSTRAINT[S]
	SET ROLE
	SET TRANSACTION
	storage_clause
	TRUNCATE
	UPDATE

	A Syntax Diagrams
	Required Keywords and Parameters
	Optional Keywords and Parameters
	Syntax Loops
	Multipart Diagrams
	Database Objects

	B Oracle and Standard SQL
	Conformance with Standard SQL
	ANSI and ISO Compliance
	FIPS Compliance

	Oracle Extensions to Standard SQL

	C Oracle Reserved Words
	Index

