
Oracle® Spatial
User’s Guide and Reference

10g Release 2 (10.2)

B14255-03

March 2006

Provides usage and reference information for indexing and
storing spatial data and for developing spatial applications
using Oracle Spatial and Oracle Locator.

Oracle Spatial User’s Guide and Reference, 10g Release 2 (10.2)

B14255-03

Copyright © 1999, 2006, Oracle. All rights reserved.

Primary Author: Chuck Murray

Contributors: Dan Abugov, Nicole Alexander, Bruce Blackwell, Janet Blowney, Dan Geringer, Albert
Godfrind, Mike Horhammer, Ravi Kothuri, Richard Pitts, Vishal Rao, Siva Ravada, Jack Wang, Ji Yang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xix

Audience... xix
Documentation Accessibility ... xix
Related Documents ... xx
Conventions ... xxi

What’s New in Oracle Spatial?.. xxiii

Coordinate System Support Based on EPSG Model .. xxiii
New SDO_GEOMETRY Methods and Constructors ... xxiv
New min_resolution and max_resolution Keywords.. xxiv
New sdo_dml_batch_size Parameter ... xxv
New Geocoding Subprograms .. xxv
New Utility Subprograms.. xxv
U.S. National Grid Support.. xxvi
Unknown and NaC Coordinate Reference Systems .. xxvi
Spatial Routing Engine ... xxvi
LRS_INTERSECTION Function .. xxvi

Part I Conceptual and Usage Information

1 Spatial Concepts

1.1 What Is Oracle Spatial? .. 1-2
1.2 Object-Relational Model .. 1-2
1.3 Introduction to Spatial Data .. 1-3
1.4 Geometry Types .. 1-3
1.5 Data Model... 1-4
1.5.1 Element.. 1-4
1.5.2 Geometry... 1-5
1.5.3 Layer .. 1-5
1.5.4 Coordinate System... 1-5
1.5.5 Tolerance ... 1-6
1.5.5.1 Tolerance in the Geometry Metadata for a Layer .. 1-6
1.5.5.2 Tolerance as an Input Parameter.. 1-7
1.6 Query Model.. 1-8
1.7 Indexing of Spatial Data... 1-9

iv

1.7.1 R-Tree Indexing.. 1-9
1.7.2 R-Tree Quality ... 1-10
1.8 Spatial Relationships and Filtering ... 1-11
1.9 Spatial Operators, Procedures, and Functions .. 1-13
1.10 Spatial Aggregate Functions .. 1-14
1.10.1 SDOAGGRTYPE Object Type... 1-14
1.11 Geocoding ... 1-15
1.12 Spatial Java Application Programming Interface ... 1-15
1.13 MDDATA Schema ... 1-16
1.14 Performance and Tuning Information .. 1-16
1.15 Open Geospatial Consortium (OGC) Conformance... 1-16
1.16 Spatial Release (Version) Number... 1-16
1.17 Spatial Application Hardware Requirement Considerations ... 1-17
1.18 Spatial Error Messages .. 1-17
1.19 Spatial Examples .. 1-17
1.20 README File for Spatial and Related Features .. 1-18

2 Spatial Data Types and Metadata

2.1 Simple Example: Inserting, Indexing, and Querying Spatial Data...................................... 2-1
2.2 SDO_GEOMETRY Object Type .. 2-5
2.2.1 SDO_GTYPE... 2-5
2.2.2 SDO_SRID... 2-7
2.2.3 SDO_POINT ... 2-7
2.2.4 SDO_ELEM_INFO... 2-7
2.2.5 SDO_ORDINATES ... 2-10
2.2.6 Usage Considerations .. 2-11
2.3 SDO_GEOMETRY Methods... 2-11
2.4 SDO_GEOMETRY Constructors.. 2-13
2.5 Geometry Examples... 2-14
2.5.1 Rectangle .. 2-14
2.5.2 Polygon with a Hole... 2-15
2.5.3 Compound Line String .. 2-17
2.5.4 Compound Polygon ... 2-19
2.5.5 Point.. 2-20
2.5.6 Oriented Point ... 2-21
2.5.7 Type 0 (Zero) Element.. 2-23
2.5.8 Several Geometry Types .. 2-25
2.6 Geometry Metadata Views ... 2-29
2.6.1 TABLE_NAME.. 2-30
2.6.2 COLUMN_NAME.. 2-30
2.6.3 DIMINFO ... 2-30
2.6.4 SRID .. 2-31
2.7 Spatial Index-Related Structures ... 2-31
2.7.1 Spatial Index Views .. 2-31
2.7.1.1 xxx_SDO_INDEX_INFO Views... 2-31
2.7.1.2 xxx_SDO_INDEX_METADATA Views ... 2-32
2.7.2 Spatial Index Table Definition .. 2-34

v

2.7.3 R-Tree Index Sequence Object .. 2-35
2.8 Unit of Measurement Support ... 2-35

3 Loading Spatial Data

3.1 Bulk Loading .. 3-1
3.1.1 Bulk Loading SDO_GEOMETRY Objects .. 3-1
3.1.2 Bulk Loading Point-Only Data in SDO_GEOMETRY Objects...................................... 3-3
3.2 Transactional Insert Operations Using SQL ... 3-3

4 Indexing and Querying Spatial Data

4.1 Creating a Spatial Index... 4-1
4.1.1 Indexing Geodetic Data .. 4-2
4.1.2 Constraining Data to a Geometry Type.. 4-2
4.1.3 Creating a Cross-Schema Index... 4-3
4.1.4 Using Partitioned Spatial Indexes ... 4-3
4.1.5 Exchanging Partitions Including Indexes .. 4-5
4.1.6 Export and Import Considerations with Spatial Indexes and Data 4-5
4.1.7 Distributed Transactions and Spatial Index Consistency .. 4-6
4.2 Querying Spatial Data .. 4-6
4.2.1 Spatial Query.. 4-7
4.2.1.1 Primary Filter Operator ... 4-8
4.2.1.2 Primary and Secondary Filter Operator.. 4-9
4.2.1.3 Within-Distance Operator ... 4-9
4.2.1.4 Nearest Neighbor Operator ... 4-11
4.2.1.5 Spatial Functions.. 4-11
4.2.2 Spatial Join ... 4-11
4.2.3 Cross-Schema Operator Invocation ... 4-12

5 Geocoding Address Data

5.1 Concepts for Geocoding... 5-1
5.1.1 Address Representation.. 5-1
5.1.2 Match Modes .. 5-2
5.1.3 Match Codes ... 5-3
5.1.4 Error Messages for Output Geocoded Addresses .. 5-4
5.2 Data Types for Geocoding ... 5-4
5.2.1 SDO_GEO_ADDR Type ... 5-4
5.2.2 SDO_ADDR_ARRAY Type.. 5-7
5.2.3 SDO_KEYWORDARRAY Type... 5-7
5.3 Using the Geocoding Capabilities .. 5-7
5.4 Geocoding from a Place Name.. 5-8
5.5 Data Structures for Geocoding.. 5-9
5.5.1 GC_AREA_<suffix> Table .. 5-10
5.5.2 GC_COUNTRY_PROFILE Table.. 5-11
5.5.3 GC_INTERSECTION_<suffix> Table .. 5-13
5.5.4 GC_POI_<suffix> Table... 5-14
5.5.5 GC_POSTAL_CODE_<suffix> Table... 5-15

vi

5.5.6 GC_ROAD_<suffix> Table.. 5-16
5.5.7 GC_ROAD_SEGMENT_<suffix> Table .. 5-18

6 Coordinate Systems (Spatial Reference Systems)

6.1 Terms and Concepts ... 6-1
6.1.1 Coordinate System (Spatial Reference System) .. 6-1
6.1.2 Cartesian Coordinates... 6-2
6.1.3 Geodetic Coordinates (Geographic Coordinates) ... 6-2
6.1.4 Projected Coordinates ... 6-2
6.1.5 Local Coordinates .. 6-2
6.1.6 Geodetic Datum ... 6-2
6.1.7 Transformation... 6-2
6.2 Geodetic Coordinate Support ... 6-2
6.2.1 Geodesy and Two-Dimensional Geometry ... 6-3
6.2.2 Choosing a Geodetic or Projected Coordinate System... 6-3
6.2.3 Geodetic MBRs... 6-3
6.2.4 Other Considerations and Requirements with Geodetic Data 6-5
6.3 Local Coordinate Support.. 6-6
6.4 EPSG Model and Spatial .. 6-6
6.5 TFM_PLAN Object Type ... 6-7
6.6 Coordinate Systems Data Structures.. 6-8
6.6.1 SDO_COORD_AXES Table .. 6-8
6.6.2 SDO_COORD_AXIS_NAMES Table .. 6-9
6.6.3 SDO_COORD_OP_METHODS Table .. 6-9
6.6.4 SDO_COORD_OP_PARAM_USE Table ... 6-10
6.6.5 SDO_COORD_OP_PARAM_VALS Table .. 6-10
6.6.6 SDO_COORD_OP_PARAMS Table... 6-11
6.6.7 SDO_COORD_OP_PATHS Table .. 6-11
6.6.8 SDO_COORD_OPS Table.. 6-12
6.6.9 SDO_COORD_REF_SYS Table ... 6-13
6.6.10 SDO_COORD_REF_SYSTEM View... 6-15
6.6.11 SDO_COORD_SYS Table .. 6-15
6.6.12 SDO_CRS_COMPOUND View .. 6-15
6.6.13 SDO_CRS_ENGINEERING View .. 6-16
6.6.14 SDO_CRS_GEOCENTRIC View .. 6-16
6.6.15 SDO_CRS_GEOGRAPHIC2D View... 6-17
6.6.16 SDO_CRS_GEOGRAPHIC3D View... 6-17
6.6.17 SDO_CRS_PROJECTED View .. 6-18
6.6.18 SDO_CRS_VERTICAL View... 6-18
6.6.19 SDO_DATUM_ENGINEERING View .. 6-19
6.6.20 SDO_DATUM_GEODETIC View .. 6-20
6.6.21 SDO_DATUM_VERTICAL View... 6-20
6.6.22 SDO_DATUMS Table... 6-21
6.6.23 SDO_ELLIPSOIDS Table ... 6-22
6.6.24 SDO_PREFERRED_OPS_SYSTEM Table.. 6-23
6.6.25 SDO_PREFERRED_OPS_USER Table ... 6-23
6.6.26 SDO_PRIME_MERIDIANS Table .. 6-24

vii

6.6.27 SDO_UNITS_OF_MEASURE Table... 6-24
6.7 Legacy Tables and Views.. 6-25
6.7.1 MDSYS.CS_SRS Table .. 6-26
6.7.1.1 Well-Known Text (WKT).. 6-26
6.7.1.2 Procedures for Updating the Well-Known Text ... 6-28
6.7.2 MDSYS.SDO_ANGLE_UNITS View ... 6-29
6.7.3 MDSYS.SDO_AREA_UNITS View .. 6-29
6.7.4 MDSYS.SDO_DATUMS_OLD_FORMAT and SDO_DATUMS_OLD_SNAPSHOT

Tables 6-30
6.7.5 MDSYS.SDO_DIST_UNITS View... 6-32
6.7.6 MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and SDO_ELLIPSOIDS_OLD_

SNAPSHOT Tables 6-32
6.7.7 MDSYS.SDO_PROJECTIONS_OLD_FORMAT and SDO_PROJECTIONS_OLD_

SNAPSHOT Tables 6-33
6.8 Creating a User-Defined Coordinate Reference System .. 6-34
6.8.1 Creating a Geodetic CRS.. 6-35
6.8.2 Creating a Projected CRS... 6-36
6.9 Notes and Restrictions with Coordinate Systems Support.. 6-40
6.9.1 Different Coordinate Systems for Geometries with Operators and Functions 6-40
6.9.2 3D LRS Functions Not Supported with Geodetic Data... 6-40
6.9.3 Functions Supported by Approximations with Geodetic Data 6-40
6.9.4 Unknown CRS and NaC Coordinate Reference Systems ... 6-40
6.10 U.S. National Grid Support .. 6-41
6.11 Example of Coordinate System Transformation ... 6-41

7 Linear Referencing System

7.1 Terms and Concepts ... 7-1
7.1.1 Geometric Segments (LRS Segments) .. 7-2
7.1.2 Shape Points ... 7-2
7.1.3 Direction of a Geometric Segment .. 7-3
7.1.4 Measure (Linear Measure).. 7-3
7.1.5 Offset.. 7-3
7.1.6 Measure Populating .. 7-3
7.1.7 Measure Range of a Geometric Segment.. 7-5
7.1.8 Projection .. 7-5
7.1.9 LRS Point... 7-5
7.1.10 Linear Features... 7-5
7.1.11 Measures with Multiline Strings and Polygons with Holes.. 7-5
7.2 LRS Data Model .. 7-6
7.3 Indexing of LRS Data.. 7-7
7.4 3D Formats of LRS Functions.. 7-7
7.5 LRS Operations.. 7-8
7.5.1 Defining a Geometric Segment ... 7-8
7.5.2 Redefining a Geometric Segment .. 7-9
7.5.3 Clipping a Geometric Segment.. 7-9
7.5.4 Splitting a Geometric Segment ... 7-10
7.5.5 Concatenating Geometric Segments .. 7-10

viii

7.5.6 Scaling a Geometric Segment ... 7-11
7.5.7 Offsetting a Geometric Segment... 7-12
7.5.8 Locating a Point on a Geometric Segment .. 7-12
7.5.9 Projecting a Point onto a Geometric Segment .. 7-13
7.5.10 Converting LRS Geometries.. 7-14
7.6 Tolerance Values with LRS Functions .. 7-15
7.7 Example of LRS Functions.. 7-15

8 Spatial Analysis and Mining

8.1 Spatial Information and Data Mining Applications .. 8-1
8.2 Spatial Binning for Detection of Regional Patterns.. 8-3
8.3 Materializing Spatial Correlation ... 8-3
8.4 Colocation Mining .. 8-4
8.5 Spatial Clustering.. 8-4
8.6 Location Prospecting .. 8-5

9 Extending Spatial Indexing Capabilities

9.1 SDO_GEOMETRY Objects in User-Defined Type Definitions .. 9-1
9.2 SDO_GEOMETRY Objects in Function-Based Indexes... 9-3
9.2.1 Example: Function with Standard Types ... 9-3
9.2.2 Example: Function with a User-Defined Object Type.. 9-4

Part II Reference Information

10 SQL Statements for Indexing Spatial Data

ALTER INDEX ... 10-2

ALTER INDEX REBUILD... 10-4

ALTER INDEX RENAME TO .. 10-7

CREATE INDEX... 10-8

DROP INDEX ... 10-12

11 Spatial Operators

SDO_ANYINTERACT .. 11-3

SDO_CONTAINS .. 11-5

SDO_COVEREDBY ... 11-6

SDO_COVERS .. 11-7

SDO_EQUAL.. 11-8

SDO_FILTER... 11-9

SDO_INSIDE .. 11-12

SDO_JOIN ... 11-13

SDO_NN ... 11-16

SDO_NN_DISTANCE... 11-20

SDO_ON.. 11-22

ix

SDO_OVERLAPBDYDISJOINT... 11-23

SDO_OVERLAPBDYINTERSECT... 11-25

SDO_OVERLAPS... 11-27

SDO_RELATE... 11-29

SDO_TOUCH ... 11-33

SDO_WITHIN_DISTANCE.. 11-35

12 Spatial Aggregate Functions

SDO_AGGR_CENTROID... 12-2

SDO_AGGR_CONCAT_LINES... 12-3

SDO_AGGR_CONVEXHULL.. 12-5

SDO_AGGR_LRS_CONCAT ... 12-6

SDO_AGGR_MBR ... 12-8

SDO_AGGR_UNION .. 12-9

13 SDO_CS Package (Coordinate System Transformation)

SDO_CS.ADD_PREFERENCE_FOR_OP ... 13-4

SDO_CS.CONVERT_NADCON_TO_XML ... 13-6

SDO_CS.CONVERT_NTV2_TO_XML ... 13-8

SDO_CS.CONVERT_XML_TO_NADCON ... 13-10

SDO_CS.CONVERT_XML_TO_NTV2 ... 13-12

SDO_CS.CREATE_CONCATENATED_OP .. 13-14

SDO_CS.CREATE_OBVIOUS_EPSG_RULES ... 13-15

SDO_CS.CREATE_PREF_CONCATENATED_OP .. 13-16

SDO_CS.DELETE_ALL_EPSG_RULES .. 13-18

SDO_CS.DELETE_OP ... 13-19

SDO_CS.DETERMINE_CHAIN .. 13-20

SDO_CS.DETERMINE_DEFAULT_CHAIN ... 13-22

SDO_CS.FIND_GEOG_CRS... 13-23

SDO_CS.FIND_PROJ_CRS ... 13-25

SDO_CS.FROM_OGC_SIMPLEFEATURE_SRS ... 13-27

SDO_CS.FROM_USNG... 13-28

SDO_CS.MAP_EPSG_SRID_TO_ORACLE ... 13-29

SDO_CS.MAP_ORACLE_SRID_TO_EPSG ... 13-30

SDO_CS.REVOKE_PREFERENCE_FOR_OP .. 13-31

SDO_CS.TO_OGC_SIMPLEFEATURE_SRS.. 13-32

SDO_CS.TO_USNG ... 13-33

SDO_CS.TRANSFORM... 13-35

SDO_CS.TRANSFORM_LAYER ... 13-38

SDO_CS.UPDATE_WKTS_FOR_ALL_EPSG_CRS .. 13-40

SDO_CS.UPDATE_WKTS_FOR_EPSG_CRS .. 13-41

x

SDO_CS.UPDATE_WKTS_FOR_EPSG_DATUM... 13-42

SDO_CS.UPDATE_WKTS_FOR_EPSG_ELLIPS... 13-43

SDO_CS.UPDATE_WKTS_FOR_EPSG_OP .. 13-44

SDO_CS.UPDATE_WKTS_FOR_EPSG_PARAM... 13-45

SDO_CS.UPDATE_WKTS_FOR_EPSG_PM.. 13-46

SDO_CS.VALIDATE_WKT.. 13-47

SDO_CS.VIEWPORT_TRANSFORM ... 13-48

14 SDO_GCDR Package (Geocoding)

SDO_GCDR.GEOCODE ... 14-2

SDO_GCDR.GEOCODE_ADDR ... 14-3

SDO_GCDR.GEOCODE_ADDR_ALL ... 14-5

SDO_GCDR.GEOCODE_ALL ... 14-7

SDO_GCDR.GEOCODE_AS_GEOMETRY ... 14-9

SDO_GCDR.REVERSE_GEOCODE.. 14-10

15 SDO_GEOM Package (Geometry)

SDO_GEOM.RELATE ... 15-3

SDO_GEOM.SDO_ARC_DENSIFY... 15-6

SDO_GEOM.SDO_AREA ... 15-8

SDO_GEOM.SDO_BUFFER ... 15-10

SDO_GEOM.SDO_CENTROID ... 15-13

SDO_GEOM.SDO_CONVEXHULL.. 15-15

SDO_GEOM.SDO_DIFFERENCE ... 15-17

SDO_GEOM.SDO_DISTANCE.. 15-19

SDO_GEOM.SDO_INTERSECTION .. 15-21

SDO_GEOM.SDO_LENGTH ... 15-23

SDO_GEOM.SDO_MAX_MBR_ORDINATE .. 15-25

SDO_GEOM.SDO_MBR ... 15-27

SDO_GEOM.SDO_MIN_MBR_ORDINATE ... 15-29

SDO_GEOM.SDO_POINTONSURFACE... 15-31

SDO_GEOM.SDO_UNION .. 15-33

SDO_GEOM.SDO_XOR.. 15-35

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT... 15-37

SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT .. 15-41

SDO_GEOM.WITHIN_DISTANCE .. 15-43

16 SDO_LRS Package (Linear Referencing System)

SDO_LRS.CLIP_GEOM_SEGMENT... 16-5

SDO_LRS.CONCATENATE_GEOM_SEGMENTS .. 16-7

SDO_LRS.CONNECTED_GEOM_SEGMENTS.. 16-10

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY... 16-12

xi

SDO_LRS.CONVERT_TO_LRS_GEOM... 16-14

SDO_LRS.CONVERT_TO_LRS_LAYER .. 16-16

SDO_LRS.CONVERT_TO_STD_DIM_ARRAY .. 16-18

SDO_LRS.CONVERT_TO_STD_GEOM .. 16-19

SDO_LRS.CONVERT_TO_STD_LAYER.. 16-20

SDO_LRS.DEFINE_GEOM_SEGMENT ... 16-22

SDO_LRS.DYNAMIC_SEGMENT .. 16-25

SDO_LRS.FIND_LRS_DIM_POS... 16-27

SDO_LRS.FIND_MEASURE .. 16-28

SDO_LRS.FIND_OFFSET ... 16-30

SDO_LRS.GEOM_SEGMENT_END_MEASURE ... 16-32

SDO_LRS.GEOM_SEGMENT_END_PT .. 16-33

SDO_LRS.GEOM_SEGMENT_LENGTH... 16-34

SDO_LRS.GEOM_SEGMENT_START_MEASURE ... 16-35

SDO_LRS.GEOM_SEGMENT_START_PT .. 16-36

SDO_LRS.GET_MEASURE .. 16-37

SDO_LRS.GET_NEXT_SHAPE_PT... 16-38

SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE ... 16-40

SDO_LRS.GET_PREV_SHAPE_PT ... 16-42

SDO_LRS.GET_PREV_SHAPE_PT_MEASURE.. 16-44

SDO_LRS.IS_GEOM_SEGMENT_DEFINED .. 16-46

SDO_LRS.IS_MEASURE_DECREASING .. 16-47

SDO_LRS.IS_MEASURE_INCREASING ... 16-48

SDO_LRS.IS_SHAPE_PT_MEASURE... 16-49

SDO_LRS.LOCATE_PT... 16-51

SDO_LRS.LRS_INTERSECTION... 16-53

SDO_LRS.MEASURE_RANGE.. 16-55

SDO_LRS.MEASURE_TO_PERCENTAGE ... 16-56

SDO_LRS.OFFSET_GEOM_SEGMENT ... 16-58

SDO_LRS.PERCENTAGE_TO_MEASURE ... 16-61

SDO_LRS.PROJECT_PT.. 16-63

SDO_LRS.REDEFINE_GEOM_SEGMENT.. 16-65

SDO_LRS.RESET_MEASURE .. 16-67

SDO_LRS.REVERSE_GEOMETRY.. 16-69

SDO_LRS.REVERSE_MEASURE... 16-71

SDO_LRS.SET_PT_MEASURE .. 16-73

SDO_LRS.SPLIT_GEOM_SEGMENT ... 16-76

SDO_LRS.TRANSLATE_MEASURE .. 16-78

SDO_LRS.VALID_GEOM_SEGMENT ... 16-80

SDO_LRS.VALID_LRS_PT... 16-81

SDO_LRS.VALID_MEASURE ... 16-82

xii

SDO_LRS.VALIDATE_LRS_GEOMETRY ... 16-84

17 SDO_MIGRATE Package (Upgrading)

SDO_MIGRATE.TO_CURRENT ... 17-2

18 SDO_SAM Package (Spatial Analysis and Mining)

SDO_SAM.AGGREGATES_FOR_GEOMETRY.. 18-2

SDO_SAM.AGGREGATES_FOR_LAYER ... 18-4

SDO_SAM.BIN_GEOMETRY .. 18-6

SDO_SAM.BIN_LAYER.. 18-8

SDO_SAM.COLOCATED_REFERENCE_FEATURES... 18-10

SDO_SAM.SIMPLIFY_GEOMETRY ... 18-12

SDO_SAM.SIMPLIFY_LAYER .. 18-14

SDO_SAM.SPATIAL_CLUSTERS ... 18-16

SDO_SAM.TILED_AGGREGATES... 18-17

SDO_SAM.TILED_BINS ... 18-20

19 SDO_TUNE Package (Tuning)

SDO_TUNE.AVERAGE_MBR ... 19-2

SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE.. 19-4

SDO_TUNE.EXTENT_OF... 19-7

SDO_TUNE.MIX_INFO.. 19-8

SDO_TUNE.QUALITY_DEGRADATION... 19-10

20 SDO_UTIL Package (Utility)

SDO_UTIL.APPEND... 20-3

SDO_UTIL.CIRCLE_POLYGON ... 20-4

SDO_UTIL.CONCAT_LINES .. 20-6

SDO_UTIL.CONVERT_UNIT.. 20-8

SDO_UTIL.ELLIPSE_POLYGON.. 20-9

SDO_UTIL.EXTRACT ... 20-11

SDO_UTIL.FROM_WKBGEOMETRY.. 20-13

SDO_UTIL.FROM_WKTGEOMETRY.. 20-15

SDO_UTIL.GETNUMELEM .. 20-17

SDO_UTIL.GETNUMVERTICES .. 20-18

SDO_UTIL.GETVERTICES... 20-19

SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS ... 20-21

SDO_UTIL.POINT_AT_BEARING ... 20-22

SDO_UTIL.POLYGONTOLINE .. 20-24

SDO_UTIL.PREPARE_FOR_TTS... 20-25

SDO_UTIL.RECTIFY_GEOMETRY .. 20-26

SDO_UTIL.REMOVE_DUPLICATE_VERTICES.. 20-27

xiii

SDO_UTIL.REVERSE_LINESTRING.. 20-29

SDO_UTIL.SIMPLIFY ... 20-30

SDO_UTIL.TO_GMLGEOMETRY .. 20-33

SDO_UTIL.TO_WKBGEOMETRY .. 20-39

SDO_UTIL.TO_WKTGEOMETRY .. 20-41

SDO_UTIL.VALIDATE_WKBGEOMETRY... 20-43

SDO_UTIL.VALIDATE_WKTGEOMETRY... 20-45

Part III Supplementary Information

A Installation, Compatibility, and Upgrade

A.1 Upgrading LRS Data ... A-1
A.2 Ensuring That GeoRaster Works Properly After an Upgrade .. A-1

B Oracle Locator

C Routing Engine

C.1 Deploying and Configuring the Routing Engine .. C-2
C.2 Routing Engine XML API ... C-3
C.2.1 Route Request and Response Examples.. C-5
C.2.2 Route Request DTD.. C-9
C.2.2.1 route_request Element .. C-10
C.2.2.2 route_request Attributes... C-10
C.2.2.3 input_location Element... C-12
C.2.2.4 pre_geocoded_location Element ... C-12
C.2.2.5 longitude_latitude_location Element.. C-12
C.2.3 Route Response DTD ... C-12
C.2.4 Batch Route Request and Response Examples ... C-13
C.2.5 Batch Route Request DTD ... C-16
C.2.5.1 batch_route_request Element .. C-16
C.2.5.2 batch_route_request Attributes ... C-17
C.2.6 Batch Route Response DTD .. C-17
C.2.7 Geocoding Request and Response DTDs.. C-18
C.2.7.1 Geocoding Request DTD .. C-18
C.2.7.2 Geocoding Response DTD ... C-19
C.3 Data Structures Used by the Routing Engine .. C-20
C.3.1 EDGE Table ... C-20
C.3.2 NODE Table... C-21
C.3.3 PARTITION Table .. C-21
C.3.4 SIGN_POST Table... C-21

D Complex Spatial Queries: Examples

D.1 Tables Used in the Examples.. D-1
D.2 SDO_WITHIN_DISTANCE Examples ... D-2
D.3 SDO_NN Examples ... D-3

xiv

D.4 SDO_AGGR_UNION Example ... D-5

Glossary

Index

xv

List of Examples

2–1 Simple Example: Inserting, Indexing, and Querying Spatial Data...................................... 2-2
2–2 SDO_GEOMETRY Methods... 2-12
2–3 SDO_GEOMETRY Constructors to Create Geometries ... 2-13
2–4 SQL Statement to Insert a Rectangle ... 2-15
2–5 SQL Statement to Insert a Polygon with a Hole .. 2-16
2–6 SQL Statement to Insert a Compound Line String.. 2-18
2–7 SQL Statement to Insert a Compound Polygon .. 2-20
2–8 SQL Statement to Insert a Point-Only Geometry .. 2-21
2–9 Query for Point-Only Geometry Based on a Coordinate Value 2-21
2–10 SQL Statement to Insert an Oriented Point Geometry ... 2-22
2–11 SQL Statement to Insert an Oriented Multipoint Geometry ... 2-23
2–12 SQL Statement to Insert a Geometry with a Type 0 Element .. 2-25
2–13 SQL Statements to Insert Various Geometries... 2-25
3–1 Control File for a Bulk Load of Cola Market Geometries ... 3-1
3–2 Control File for a Bulk Load of Polygons .. 3-2
3–3 Control File for a Bulk Load of Point-Only Data.. 3-3
3–4 Procedure to Perform a Transactional Insert Operation ... 3-4
3–5 PL/SQL Block Invoking a Procedure to Insert a Geometry ... 3-4
4–1 Primary Filter with a Temporary Query Window... 4-8
4–2 Primary Filter with a Transient Instance of the Query Window ... 4-8
4–3 Primary Filter with a Stored Query Window ... 4-8
4–4 Secondary Filter Using a Temporary Query Window .. 4-9
4–5 Secondary Filter Using a Stored Query Window... 4-9
5–1 Geocoding, Returning Address Object and Specific Attributes... 5-6
5–2 Geocoding from a Place Name and Country.. 5-8
5–3 Geocoding from a Place Name, Country, and Other Fields ... 5-8
6–1 Using a Geodetic MBR ... 6-4
6–2 Creating a User-Defined Geodetic Coordinate Reference System 6-35
6–3 Inserting a Row into the SDO_COORD_SYS Table .. 6-36
6–4 Creating a User-Defined Projected Coordinate Reference System................................... 6-37
6–5 Inserting a Row into the SDO_COORD_OPS Table ... 6-38
6–6 Inserting a Row into the SDO_COORD_OP_PARAM_VALS Table................................ 6-38
6–7 Simplified Example of Coordinate System Transformation.. 6-42
6–8 Output of SELECT Statements in Coordinate System Transformation Example 6-44
7–1 Including LRS Measure Dimension in Spatial Metadata .. 7-6
7–2 Simplified Example: Highway... 7-17
7–3 Simplified Example: Output of SELECT Statements .. 7-20
C–1 Route Request with Specified Addresses ... C-5
C–2 Route Response with Specified Addresses .. C-5
C–3 Route Request with Specified Longitude/Latitude Points.. C-7
C–4 Route Response with Specified Longitude/Latitude Points ... C-7
C–5 Route Request with Previously Geocoded Locations... C-8
C–6 Route Response with Previously Geocoded Locations .. C-9
C–7 Batch Route Request with Specified Addresses .. C-13
C–8 Batch Route Response with Specified Addresses ... C-14
C–9 Batch Route Request with Previously Geocoded Locations.. C-14
C–10 Batch Route Response with Previously Geocoded Locations ... C-15
D–1 Finding All Cities Within a Distance of a Highway ... D-2
D–2 Finding All Highways Within a Distance of a City .. D-2
D–3 Finding the Cities Nearest to a Highway ... D-3
D–4 Finding the Cities Above a Specified Population Nearest to a Highway.......................... D-4
D–5 Performing Aggregate Union of All Counties in Texas ... D-5

xvi

List of Figures

1–1 Geometric Types ... 1-4
1–2 Query Model.. 1-8
1–3 MBR Enclosing a Geometry... 1-9
1–4 R-Tree Hierarchical Index on MBRs.. 1-10
1–5 The Nine-Intersection Model ... 1-11
1–6 Topological Relationships... 1-12
1–7 Distance Buffers for Points, Lines, and Polygons.. 1-13
1–8 Tolerance in an Aggregate Union Operation... 1-15
2–1 Areas of Interest for the Simple Example.. 2-2
2–2 Rectangle ... 2-15
2–3 Polygon with a Hole .. 2-16
2–4 Compound Line String.. 2-18
2–5 Compound Polygon .. 2-19
2–6 Point-Only Geometry .. 2-20
2–7 Oriented Point Geometry.. 2-22
2–8 Geometry with Type 0 (Zero) Element ... 2-24
4–1 Geometries with MBRs .. 4-7
4–2 Layer with a Query Window .. 4-7
7–1 Geometric Segment... 7-2
7–2 Describing a Point Along a Segment with a Measure and an Offset 7-3
7–3 Measures, Distances, and Their Mapping Relationship.. 7-4
7–4 Measure Populating of a Geometric Segment .. 7-4
7–5 Measure Populating with Disproportional Assigned Measures ... 7-4
7–6 Linear Feature, Geometric Segments, and LRS Points .. 7-5
7–7 Creating a Geometric Segment ... 7-6
7–8 Defining a Geometric Segment ... 7-8
7–9 Redefining a Geometric Segment ... 7-9
7–10 Clipping, Splitting, and Concatenating Geometric Segments.. 7-9
7–11 Measure Assignment in Geometric Segment Operations.. 7-10
7–12 Segment Direction with Concatenation.. 7-11
7–13 Scaling a Geometric Segment ... 7-11
7–14 Offsetting a Geometric Segment .. 7-12
7–15 Locating a Point Along a Segment with a Measure and an Offset 7-12
7–16 Ambiguity in Location Referencing with Offsets.. 7-13
7–17 Multiple Projection Points .. 7-13
7–18 Conversion from Standard to LRS Line String.. 7-14
7–19 Segment for Clip Operation Affected by Tolerance.. 7-15
7–20 Simplified LRS Example: Highway... 7-16
8–1 Spatial Mining and Oracle Data Mining.. 8-2
15–1 Arc Tolerance.. 15-7
15–2 SDO_GEOM.SDO_DIFFERENCE ... 15-18
15–3 SDO_GEOM.SDO_INTERSECTION .. 15-22
15–4 SDO_GEOM.SDO_UNION .. 15-34
15–5 SDO_GEOM.SDO_XOR.. 15-36
16–1 Translating a Geometric Segment ... 16-78
20–1 Simplification of a Geometry ... 20-32
C–1 Basic Flow of Action with the Spatial Routing Engine... C-1

xvii

List of Tables

2–1 Valid SDO_GTYPE Values ... 2-6
2–2 Values and Semantics in SDO_ELEM_INFO... 2-9
2–3 SDO_GEOMETRY Methods.. 2-11
2–4 Columns in the xxx_SDO_INDEX_INFO Views.. 2-32
2–5 Columns in the xxx_SDO_INDEX_METADATA Views .. 2-32
2–6 Columns in an R-Tree Spatial Index Data Table .. 2-34
5–1 Attributes for Formal Address Representation ... 5-1
5–2 Match Modes for Geocoding Operations ... 5-2
5–3 Match Codes for Geocoding Operations .. 5-3
5–4 Geocoded Address Error Message Interpretation .. 5-4
5–5 SDO_GEO_ADDR Type Attributes... 5-5
5–6 GC_AREA_<suffix> Table... 5-10
5–7 GC_COUNTRY_PROFILE Table .. 5-11
5–8 GC_INTERSECTION_<suffix> Table .. 5-13
5–9 GC_POI_<suffix> Table ... 5-14
5–10 GC_POSTAL_CODE_<suffix> Table... 5-15
5–11 GC_ROAD_<suffix> Table .. 5-16
5–12 GC_ROAD_SEGMENT_<suffix> Table .. 5-18
6–1 SDO_COORD_AXES Table .. 6-9
6–2 SDO_COORD_AXIS_NAMES Table .. 6-9
6–3 SDO_COORD_OP_METHODS Table... 6-9
6–4 SDO_COORD_OP_PARAM_USE Table ... 6-10
6–5 SDO_COORD_OP_PARAM_VALS Table .. 6-10
6–6 SDO_COORD_OP_PARAMS Table... 6-11
6–7 SDO_COORD_OP_PATHS Table... 6-11
6–8 SDO_COORD_OPS Table.. 6-12
6–9 SDO_COORD_REF_SYS Table ... 6-13
6–10 SDO_COORD_SYS Table... 6-15
6–11 SDO_CRS_COMPOUND View .. 6-15
6–12 SDO_CRS_ENGINEERING View .. 6-16
6–13 SDO_CRS_GEOCENTRIC View... 6-16
6–14 SDO_CRS_GEOGRAPHIC2D View... 6-17
6–15 SDO_CRS_GEOGRAPHIC3D View... 6-17
6–16 SDO_CRS_PROJECTED View .. 6-18
6–17 SDO_CRS_VERTICAL View ... 6-19
6–18 SDO_DATUM_ENGINEERING View .. 6-19
6–19 SDO_DATUM_GEODETIC View .. 6-20
6–20 SDO_DATUM_VERTICAL View ... 6-20
6–21 SDO_DATUMS Table... 6-21
6–22 SDO_ELLIPSOIDS Table ... 6-22
6–23 SDO_PREFERRED_OPS_SYSTEM Table .. 6-23
6–24 SDO_PREFERRED_OPS_USER Table ... 6-24
6–25 SDO_PRIME_MERIDIANS Table .. 6-24
6–26 SDO_UNITS_OF_MEASURE Table ... 6-24
6–27 MDSYS.CS_SRS Table .. 6-26
6–28 MDSYS.SDO_ANGLE_UNITS View ... 6-29
6–29 SDO_AREA_UNITS View ... 6-30
6–30 MDSYS.SDO_DATUMS_OLD_FORMAT and SDO_DATUMS_OLD_SNAPSHOT Tables..

6-30
6–31 MDSYS.SDO_DIST_UNITS View... 6-32
6–32 MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and SDO_ELLIPSOIDS_OLD_SNAPSHOT

Tables 6-33
6–33 MDSYS.SDO_PROJECTIONS_OLD_FORMAT and SDO_PROJECTIONS_OLD_

xviii

SNAPSHOT Tables 6-34
7–1 Highway Features and LRS Counterparts .. 7-16
10–1 Spatial Index Creation and Usage Statements.. 10-1
11–1 Main Spatial Operators .. 11-1
11–2 Convenience Operators for SDO_RELATE Operations .. 11-1
11–3 params Keywords for the SDO_JOIN Operator... 11-14
11–4 Keywords for the SDO_NN Param Parameter... 11-16
12–1 Spatial Aggregate Functions ... 12-1
13–1 Subprograms for Coordinate System Transformation .. 13-1
13–2 Table to Hold Transformed Layer.. 13-39
14–1 Subprograms for Geocoding Address Data.. 14-1
15–1 Geometry Subprograms... 15-1
16–1 Subprograms for Creating and Editing Geometric Segments.. 16-1
16–2 Subprograms for Querying and Validating Geometric Segments................................... 16-2
16–3 Subprograms for Converting Geometric Segments... 16-3
18–1 Subprograms for Spatial Analysis and Mining .. 18-1
19–1 Tuning Subprograms.. 19-1
20–1 Spatial Utility Subprograms.. 20-1
B–1 Spatial Features Supported for Locator ... B-2
B–2 Spatial Features Not Supported for Locator ... B-2
B–3 Feature Availability with Standard and Enterprise Editions ... B-3
C–1 EDGE Table.. C-20
C–2 NODE Table... C-21
C–3 PARTITION Table .. C-21
C–4 SIGN_POST Table... C-22

Preface

Oracle Spatial User’s Guide and Reference provides usage and reference information for
indexing and storing spatial data and for developing spatial applications using Oracle
Spatial and Oracle Locator.

Oracle Spatial requires the Enterprise Edition of Oracle Database 10g. It is a foundation
for the deployment of enterprise-wide spatial information systems, and Web-based
and wireless location-based applications requiring complex spatial data management.
Oracle Locator is a feature of the Standard and Enterprise Editions of Oracle Database
10g. It offers a subset of Oracle Spatial capabilities (see Appendix B for a list of Locator
features) typically required to support Internet and wireless service applications and
partner-based geographic information system (GIS) solutions.

The Standard and Enterprise Editions of Oracle Database 10g have the same basic
features. However, several advanced features, such as extended data types, are
available only with the Enterprise Edition, and some of these features are optional. For
example, to use Oracle Database 10g table partitioning, you must have the Enterprise
Edition and the Partitioning Option.

For information about the differences between Oracle Database 10g Standard Edition
and Oracle Database 10g Enterprise Edition and the features and options that are
available to you, see Oracle Database New Features.

Audience
This guide is intended for anyone who needs to store spatial data in an Oracle
database.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be

Note: The relational geometry model of Oracle Spatial is no longer
supported, effective with Oracle release 9.2. Only the
object-relational model is supported.
xix

accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following documents:

■ Oracle Spatial GeoRaster

■ Oracle Spatial Topology and Network Data Models

■ Oracle Database SQL Reference

■ Oracle Database Administrator's Guide

■ Oracle Database Application Developer's Guide - Fundamentals

■ Oracle Database Error Messages - Spatial messages are in the range of 13000 to 13499.

■ Oracle Database Performance Tuning Guide

■ Oracle Database Utilities

■ Oracle Database Advanced Replication

■ Oracle Data Cartridge Developer's Guide

Oracle error message documentation is only available in HTML. If you only have
access to the Oracle Documentation CD, you can browse the error messages by range.
Once you find the specific range, use your browser's "find in page" feature to locate the
specific message. When connected to the Internet, you can search for a specific error
message using the error message search feature of the Oracle online documentation.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, go to the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership
xx

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
xxi

xxii

xxiii

What’s New in Oracle Spatial?

This section describes major new and changed Oracle Spatial features for the current
release.

Coordinate System Support Based on EPSG Model
Coordinate system support in Spatial is now based on, but is not identical to, the data
model and data provided by the European Petroleum Survey Group (EPSG), as
explained in Section 6.4. Applications that depend on the data model from previous
releases (the "legacy" model) continue to be fully supported; however, the EPSG model
bases Spatial on a widely accepted standard and enables greater flexibility for users
who want to perform customized datum transformations.

Chapter 6 describes coordinate system concepts, Section 6.5 explains the new TFM_
PLAN object type used for transformation plans, and Section 6.6 describes the new
EPSG-based tables and views.

The SDO_CS package (described in Chapter 13) contains the following new
subprograms to support the EPSG model:

Subprogram Description

SDO_CS.ADD_
PREFERENCE_FOR_OP

Adds a preference for an operation between a source coordinate
system and a target coordinate system.

SDO_CS.CONVERT_
NADCON_TO_XML

Converts a NADCON (North American Datum Conversion)
grid in ASCII format to an Oracle Spatial XML representation.

SDO_CS.CONVERT_NTV2_
TO_XML

Converts an NTv2 (National Transformation Version 2) grid in
ASCII format to an Oracle Spatial XML representation.

SDO_CS.CONVERT_XML_
TO_NADCON

Converts an Oracle Spatial XML representation of a NADCON
(North American Datum Conversion) grid to NADCON ASCII
format.

SDO_CS.CONVERT_XML_
TO_NTV2

Converts an Oracle Spatial XML representation of an NTv2
(National Transformation Version 2) grid to NTv2 ASCII format.

SDO_CS.CREATE_
CONCATENATED_OP

Creates a concatenated operation.

SDO_CS.CREATE_
OBVIOUS_EPSG_RULES

Creates a basic set of EPSG rules to be applied in certain
transformations.

SDO_CS.CREATE_PREF_
CONCATENATED_OP

Creates a concatenated operation, associating it with a
transformation plan and making it preferred either systemwide
or for a specified use case.

xxiv

New SDO_GEOMETRY Methods and Constructors
The SDO_GEOMETRY object type has the following new methods (member
functions): Get_WKB, Get_WKT, ST_CoordDim, and ST_IsValid. The SDO_
GEOMETRY methods are described in Section 2.3. (The methods were described in a
separate chapter in the previous release of this guide.)

The SDO_GEOMETRY object type has new constructors for creating a geometry object
from a well-known text (WKT) string in CLOB or VARCHAR2 format, or from a
well-known binary (WKT) object in BLOB format. These constructors are described in
Section 2.4.

New min_resolution and max_resolution Keywords
The SDO_FILTER, SDO_RELATE, and SDO_WITHIN_DISTANCE operators accept
the following new optional keywords in their last parameter:

■ min_resolution includes only geometries for which at least one side of the
geometry's MBR is equal to or greater than the specified value. For example, min_
resolution=10 includes only geometries for which the width or the height (or
both) of the geometry's MBR is at least 10. (This keyword can be used to exclude
geometries that are too small to be of interest.)

SDO_CS.DELETE_ALL_
EPSG_RULES

Deletes the basic set of EPSG rules to be applied in certain
transformations.

SDO_CS.DELETE_OP Deletes a concatenated operation.

SDO_CS.DETERMINE_
CHAIN

Returns the query chain, based on the system rule set, to be used
in transformations from one coordinate reference system to
another coordinate reference system.

SDO_CS.DETERMINE_
DEFAULT_CHAIN

Returns the default chain of SRID values in transformations
from one coordinate reference system to another coordinate
reference system.

SDO_CS.FIND_GEOG_CRS Returns the SRID values of geodetic (geographic) coordinate
reference systems that have the same well-known text (WKT)
numeric values as the coordinate reference system with the
specified reference SRID value.

SDO_CS.FIND_PROJ_CRS Returns the SRID values of geodetic (geographic) coordinate
reference systems that have the same well-known text (WKT)
numeric values as the coordinate reference system with the
specified reference SRID value.

SDO_CS.FROM_OGC_
SIMPLEFEATURE_SRS

Returns the SRID values of projected coordinate reference
systems that have the same well-known text (WKT) numeric
values as the coordinate reference system with the specified
reference SRID value.

SDO_CS.MAP_EPSG_
SRID_TO_ORACLE

Returns the EPSG SRID value corresponding to the specified
Oracle Spatial SRID value.

SDO_CS.REVOKE_
PREFERENCE_FOR_OP

Revokes a preference for an operation between a source
coordinate system and a target coordinate system.

SDO_CS.TO_OGC_
SIMPLEFEATURE_SRS

Converts a well-known text string from the Open Geospatial
Consortium simple feature format that includes the TOWGS84
keyword to the format without the TOWGS84 keyword.

Subprogram Description

xxv

■ max_resolution includes only geometries for which at least one side of the
geometry's MBR is less than or equal to the specified value. For example, max_
resolution=10 includes only geometries for which the width or the height (or
both) of the geometry's MBR is less than or equal to 10. (This keyword can be used
to exclude geometries that are too large to be of interest.)

The Spatial operators are described in Chapter 11.

New sdo_dml_batch_size Parameter
The new sdo_dml_batch_size parameter for the CREATE INDEX statement can
affect the performance of applications that insert or update spatial data. This
parameter specifies the number of index updates to be processed in each batch of
updates after a commit operation. The default value is 1000. See the CREATE INDEX
statement reference information and Usage Note in Chapter 10 for details.

This parameter is part of a change for this release in how Spatial updates the spatial
index when rows are inserted, updated, or deleted in the spatial table. In previous
releases, Spatial updated the index after each DML (insert, update, or delete) operation
on the table. In the current release, Spatial does not update the index until after the
commit operation completes the transaction, and it updates the index in batches of
operations determined by the sdo_dml_batch_size value. The result is faster
processing of each DML operation and some extra time required after the commit
operation, but a substantial overall performance improvement.

As a result of this change in spatial index update behavior, as well as other internal
improvements, you are no longer encouraged to perform commit operations after each
spatial table insert or update operation. Instead, for better performance (especially
with large numbers of operations), perform the commit operation after a number of
insert or update operations that is greater than the sdo_dml_batch_size value.
There is no longer a risk of deadlocks or other locking problems if you delay
performing the commit operation, even if multiple users in the same session are
updating the spatial table.

New Geocoding Subprograms
The SDO_GCDR package (described in Chapter 14) contains the following new
subprograms:

New Utility Subprograms
The SDO_UTIL package (described in Chapter 20) contains the following new
subprograms:

Subprogram Description

SDO_GCDR.GEOCODE_
ADDR

Geocodes an input address using attributes in an SDO_GEO_
ADDR object, and returns the first matched address as an SDO_
GEO_ADDR object.

SDO_GCDR.GEOCODE_
ADDR_ALL

Geocodes an input address using attributes in an SDO_GEO_
ADDR object, and returns matching addresses as an SDO_ADDR_
ARRAY object.

SDO_GCDR.REVERSE_
GEOCODE

Reverse geocodes a location, specified by its spatial geometry
object and country, and returns an SDO_GEO_ADDR object.

xxvi

U.S. National Grid Support
Spatial now supports the conversion of point locations between the U.S. National Grid
format and the SDO_GEOMETRY point format. Support for the U.S. National Grid
point representation format is described in Section 6.10.

Unknown and NaC Coordinate Reference Systems
The unknown CRS (SRID 999999) and NaC (SRID 999998) coordinate reference
systems have been added for Oracle internal use and other possible special uses. These
coordinate reference systems are described in Section 6.9.4.

Spatial Routing Engine
Spatial now includes a routing engine, which enables you to host an XML-based Web
service that provides information about a single driving route or multiple routes. The
Spatial routing engine is described in Appendix C.

LRS_INTERSECTION Function
Effective with release 10.2.0.3, the new SDO_LRS.LRS_INTERSECTION function
(described in Chapter 16) enables you to return an LRS geometry object that is the
topological intersection (AND operation) of an LRS geometric segment and another
geometry object.

Subprogram Description

SDO_UTIL.FROM_
WKBGEOMETRY

Converts a geometry in the well-known binary (WKB) format
to a Spatial geometry object.

SDO_UTIL.FROM_
WKTGEOMETRY

Converts a geometry in the well-known text (WKT) format to
a Spatial geometry object.

SDO_UTIL.RECTIFY_
GEOMETRY

Fixes certain problems with the input geometry, and returns a
valid geometry.

SDO_UTIL.TO_
WKBGEOMETRY

Converts a Spatial geometry object to the well-known binary
(WKB) format.

SDO_UTIL.TO_
WKTGEOMETRY

Converts a Spatial geometry object to the well-known text
(WKT) format.

SDO_UTIL.VALIDATE_
WKBGEOMETRY

Validates the input geometry, which is in the standard
well-known binary (WKB) format; returns the string TRUE if
the geometry is valid or FALSE if the geometry is not valid.

SDO_UTIL.VALIDATE_
WKTGEOMETRY

Validates the input geometry, which is of type CLOB or
VARCHAR2 and in the standard well-known text (WKT)
format; returns the string TRUE if the geometry is valid or
FALSE if the geometry is not valid.

Part I
Conceptual and Usage Information

This document has three parts:

■ Part I provides conceptual and usage information about Oracle Spatial.

■ Part II provides reference information about Oracle Spatial operators, functions,
and procedures.

■ Part III provides supplementary information (appendixes and a glossary).

Part I is organized for efficient learning about Oracle Spatial. It covers basic concepts
and techniques first, and proceeds to more advanced material (such as coordinate
systems, the linear referencing system, geocoding, and extending spatial indexing).
Part I contains the following chapters:

■ Chapter 1, "Spatial Concepts"

■ Chapter 2, "Spatial Data Types and Metadata"

■ Chapter 3, "Loading Spatial Data"

■ Chapter 4, "Indexing and Querying Spatial Data"

■ Chapter 5, "Geocoding Address Data"

■ Chapter 6, "Coordinate Systems (Spatial Reference Systems)"

■ Chapter 7, "Linear Referencing System"

■ Chapter 8, "Spatial Analysis and Mining"

■ Chapter 9, "Extending Spatial Indexing Capabilities"

Spatial Concepts 1-1

1
Spatial Concepts

Oracle Spatial is an integrated set of functions and procedures that enables spatial data
to be stored, accessed, and analyzed quickly and efficiently in an Oracle database.

Spatial data represents the essential location characteristics of real or conceptual
objects as those objects relate to the real or conceptual space in which they exist.

This chapter contains the following major sections:

■ Section 1.1, "What Is Oracle Spatial?"

■ Section 1.2, "Object-Relational Model"

■ Section 1.3, "Introduction to Spatial Data"

■ Section 1.4, "Geometry Types"

■ Section 1.5, "Data Model"

■ Section 1.6, "Query Model"

■ Section 1.7, "Indexing of Spatial Data"

■ Section 1.8, "Spatial Relationships and Filtering"

■ Section 1.9, "Spatial Operators, Procedures, and Functions"

■ Section 1.10, "Spatial Aggregate Functions"

■ Section 1.11, "Geocoding"

■ Section 1.12, "Spatial Java Application Programming Interface"

■ Section 1.13, "MDDATA Schema"

■ Section 1.14, "Performance and Tuning Information"

■ Section 1.15, "Open Geospatial Consortium (OGC) Conformance"

■ Section 1.16, "Spatial Release (Version) Number"

■ Section 1.17, "Spatial Application Hardware Requirement Considerations"

■ Section 1.18, "Spatial Error Messages"

■ Section 1.19, "Spatial Examples"

■ Section 1.20, "README File for Spatial and Related Features"

What Is Oracle Spatial?

1-2 Oracle Spatial User’s Guide and Reference

1.1 What Is Oracle Spatial?
Oracle Spatial, often referred to as Spatial, provides a SQL schema and functions that
facilitate the storage, retrieval, update, and query of collections of spatial features in an
Oracle database. Spatial consists of the following:

■ A schema (MDSYS) that prescribes the storage, syntax, and semantics of
supported geometric data types

■ A spatial indexing mechanism

■ Operators, functions, and procedures for performing area-of-interest queries,
spatial join queries, and other spatial analysis operations

■ Functions and procedures for utility and tuning operations

■ Topology data model for working with data about nodes, edges, and faces in a
topology (described in Oracle Spatial Topology and Network Data Models).

■ Network data model for representing capabilities or objects that are modeled as
nodes and links in a network (described in Oracle Spatial Topology and Network Data
Models).

■ GeoRaster, a feature that lets you store, index, query, analyze, and deliver
GeoRaster data, that is, raster image and gridded data and its associated metadata
(described in Oracle Spatial GeoRaster).

The spatial component of a spatial feature is the geometric representation of its shape
in some coordinate space. This is referred to as its geometry.

1.2 Object-Relational Model
Spatial supports the object-relational model for representing geometries. This model
stores an entire geometry in the Oracle native spatial data type for vector data, SDO_
GEOMETRY. An Oracle table can contain one or more SDO_GEOMETRY columns.
The object-relational model corresponds to a "SQL with Geometry Types"
implementation of spatial feature tables in the Open GIS ODBC/SQL specification for
geospatial features.

The benefits provided by the object-relational model include:

■ Support for many geometry types, including arcs, circles, compound polygons,
compound line strings, and optimized rectangles

■ Ease of use in creating and maintaining indexes and in performing spatial queries

■ Index maintenance by the Oracle database

■ Geometries modeled in a single column

■ Optimal performance

Caution: Do not modify any packages, tables, or other objects
under the MDSYS schema. (The only exception is if you need to
create a user-defined coordinate reference system, as explained in
Section 6.8.)

Note: The relational geometry model of Oracle Spatial is no longer
supported, effective with Oracle release 9.2. Only the
object-relational model is supported.

Geometry Types

Spatial Concepts 1-3

1.3 Introduction to Spatial Data
Oracle Spatial is designed to make spatial data management easier and more natural
to users of location-enabled applications and geographic information system (GIS)
applications. Once spatial data is stored in an Oracle database, it can be easily
manipulated, retrieved, and related to all other data stored in the database.

A common example of spatial data can be seen in a road map. A road map is a
two-dimensional object that contains points, lines, and polygons that can represent
cities, roads, and political boundaries such as states or provinces. A road map is a
visualization of geographic information. The location of cities, roads, and political
boundaries that exist on the surface of the Earth are projected onto a two-dimensional
display or piece of paper, preserving the relative positions and relative distances of the
rendered objects.

The data that indicates the Earth location (such as longitude and latitude) of these
rendered objects is the spatial data. When the map is rendered, this spatial data is used
to project the locations of the objects on a two-dimensional piece of paper. A GIS is
often used to store, retrieve, and render this Earth-relative spatial data.

Types of spatial data (other than GIS data) that can be stored using Spatial include data
from computer-aided design (CAD) and computer-aided manufacturing (CAM)
systems. Instead of operating on objects on a geographic scale, CAD/CAM systems
work on a smaller scale, such as for an automobile engine or printed circuit boards.

The differences among these systems are in the size and precision of the data, not the
data’s complexity. The systems might all involve the same number of data points. On a
geographic scale, the location of a bridge can vary by a few tenths of an inch without
causing any noticeable problems to the road builders, whereas if the diameter of an
engine’s pistons is off by a few tenths of an inch, the engine will not run.

In addition, the complexity of data is independent of the absolute scale of the area
being represented. For example, a printed circuit board is likely to have many
thousands of objects etched on its surface, containing in its small area information that
may be more complex than the details shown on a road builder’s blueprints.

These applications all store, retrieve, update, or query some collection of features that
have both nonspatial and spatial attributes. Examples of nonspatial attributes are
name, soil_type, landuse_classification, and part_number. The spatial attribute is a
coordinate geometry, or vector-based representation of the shape of the feature.

1.4 Geometry Types
A geometry is an ordered sequence of vertices that are connected by straight line
segments or circular arcs. The semantics of the geometry are determined by its type.
Spatial supports several primitive types, and geometries composed of collections of
these types, including two-dimensional:

■ Points and point clusters

■ Line strings

■ n-point polygons

■ Arc line strings (All arcs are generated as circular arcs.)

■ Arc polygons

■ Compound polygons

■ Compound line strings

Data Model

1-4 Oracle Spatial User’s Guide and Reference

■ Circles

■ Optimized rectangles

Two-dimensional points are elements composed of two ordinates, X and Y, often
corresponding to longitude and latitude. Line strings are composed of one or more
pairs of points that define line segments. Polygons are composed of connected line
strings that form a closed ring, and the area of the polygon is implied. For example, a
point might represent a building location, a line string might represent a road or flight
path, and a polygon might represent a state, city, zoning district, or city block.

Self-crossing polygons are not supported, although self-crossing line strings are
supported. If a line string crosses itself, it does not become a polygon. A self-crossing
line string does not have any implied area.

Figure 1–1 illustrates the geometric types.

Figure 1–1 Geometric Types

Spatial also supports the storage and indexing of three-dimensional and
four-dimensional geometric types, where three or four coordinates are used to define
each vertex of the object being defined. However, spatial functions (except for LRS
functions and MBR-related functions) can work with only the first two dimensions,
and all spatial operators except SDO_FILTER are disabled if the spatial index has been
created on more than two dimensions.

1.5 Data Model
The Spatial data model is a hierarchical structure consisting of elements, geometries,
and layers. Layers are composed of geometries, which in turn are made up of
elements.

1.5.1 Element
An element is the basic building block of a geometry. The supported spatial element
types are points, line strings, and polygons. For example, elements might model star
constellations (point clusters), roads (line strings), and county boundaries (polygons).
Each coordinate in an element is stored as an X,Y pair. The exterior ring and zero or
more interior rings (holes) of a complex polygon are considered a single element.

Point Line String Polygon

Arc Line String
Arc Polygon Compound Polygon

Compound Line String Circle
Rectangle

Data Model

Spatial Concepts 1-5

Point data consists of one coordinate. Line data consists of two coordinates
representing a line segment of the element. Polygon data consists of coordinate pair
values, one vertex pair for each line segment of the polygon. Coordinates are defined
in order around the polygon (counterclockwise for an exterior polygon ring, clockwise
for an interior polygon ring).

1.5.2 Geometry
A geometry (or geometry object) is the representation of a spatial feature, modeled as
an ordered set of primitive elements. A geometry can consist of a single element,
which is an instance of one of the supported primitive types, or a homogeneous or
heterogeneous collection of elements. A multipolygon, such as one used to represent a
set of islands, is a homogeneous collection. A heterogeneous collection is one in which
the elements are of different types, for example, a point and a polygon.

An example of a geometry might describe the buildable land in a town. This could be
represented as a polygon with holes where water or zoning prevents construction.

1.5.3 Layer
A layer is a collection of geometries having the same attribute set. For example, one
layer in a GIS might include topographical features, while another describes
population density, and a third describes the network of roads and bridges in the area
(lines and points). The geometries and associated spatial index for each layer are
stored in the database in standard tables.

1.5.4 Coordinate System
A coordinate system (also called a spatial reference system) is a means of assigning
coordinates to a location and establishing relationships between sets of such
coordinates. It enables the interpretation of a set of coordinates as a representation of a
position in a real world space.

Any spatial data has a coordinate system associated with it. The coordinate system can
be georeferenced (related to a specific representation of the Earth) or not georeferenced
(that is, Cartesian, and not related to a specific representation of the Earth). If the
coordinate system is georeferenced, it has a default unit of measurement (such as
meters) associated with it, but you can have Spatial automatically return results in
another specified unit (such as miles). (For more information about unit of
measurement support, see Section 2.8.)

Before Oracle Spatial release 8.1.6, geometries (objects of type SDO_GEOMETRY) were
stored as strings of coordinates without reference to any specific coordinate system.
Spatial functions and operators always assumed a coordinate system that had the
properties of an orthogonal Cartesian system, and sometimes did not provide correct
results if Earth-based geometries were stored in longitude and latitude coordinates.
With release 8.1.6, Spatial provided support for many different coordinate systems,
and for converting data freely between different coordinate systems.

Spatial data can be associated with a Cartesian, geodetic (geographical), projected, or
local coordinate system:

■ Cartesian coordinates are coordinates that measure the position of a point from a
defined origin along axes that are perpendicular in the represented
two-dimensional or three-dimensional space.

If a coordinate system is not explicitly associated with a geometry, a Cartesian
coordinate system is assumed.

Data Model

1-6 Oracle Spatial User’s Guide and Reference

■ Geodetic coordinates (sometimes called geographic coordinates) are angular
coordinates (longitude and latitude), closely related to spherical polar coordinates,
and are defined relative to a particular Earth geodetic datum. (A geodetic datum is
a means of representing the figure of the Earth and is the reference for the system
of geodetic coordinates.)

■ Projected coordinates are planar Cartesian coordinates that result from
performing a mathematical mapping from a point on the Earth’s surface to a
plane. There are many such mathematical mappings, each used for a particular
purpose.

■ Local coordinates are Cartesian coordinates in a non-Earth (non-georeferenced)
coordinate system. Local coordinate systems are often used for CAD applications
and local surveys.

When performing operations on geometries, Spatial uses either a Cartesian or
curvilinear computational model, as appropriate for the coordinate system associated
with the spatial data.

For more information about coordinate system support in Spatial, including geodetic,
projected, and local coordinates and coordinate system transformation, see Chapter 6.

1.5.5 Tolerance
Tolerance is used to associate a level of precision with spatial data. Tolerance reflects
the distance that two points can be apart and still be considered the same (for example, to
accommodate rounding errors). The tolerance value must be a positive number greater
than zero. The significance of the value depends on whether or not the spatial data is
associated with a geodetic coordinate system. (Geodetic and other types of coordinate
systems are described in Section 1.5.4.)

■ For geodetic data (such as data identified by longitude and latitude coordinates),
the tolerance value is a number of meters. For example, a tolerance value of 100
indicates a tolerance of 100 meters. The tolerance value for geodetic data should
not be smaller than 0.05 (5 centimeters), and in most cases it should be larger.
Spatial uses 0.05 as the tolerance value for geodetic data if you specify a smaller
value.

■ For non-geodetic data, the tolerance value is a number of the units that are
associated with the coordinate system associated with the data. For example, if the
unit of measurement is miles, a tolerance value of 0.005 indicates a tolerance of
0.005 (that is, 1/200) mile (approximately 26 feet), and a tolerance value of 2
indicates a tolerance of 2 miles.

In both cases, the smaller the tolerance value, the more precision is to be associated
with the data.

A tolerance value is specified in two cases:

■ In the geometry metadata definition for a layer (see Section 1.5.5.1)

■ As an input parameter to certain functions (see Section 1.5.5.2)

For additional information about tolerance with linear referencing system (LRS) data,
see Section 7.6.

1.5.5.1 Tolerance in the Geometry Metadata for a Layer
The dimensional information for a layer includes a tolerance value. Specifically, the
DIMINFO column (described in Section 2.6.3) of the xxx_SDO_GEOM_METADATA

Data Model

Spatial Concepts 1-7

views includes an SDO_TOLERANCE value for each dimension, and the value should
be the same for each dimension.

If a function accepts an optional tolerance parameter and this parameter is null or
not specified, the SDO_TOLERANCE value of the layer is used. Using the
non-geodetic data from the example in Section 2.1, the actual distance between
geometries cola_b and cola_d is 0.846049894. If a query uses the SDO_GEOM.SDO_
DISTANCE function to return the distance between cola_b and cola_d and does not
specify a tolerance parameter value, the result depends on the SDO_TOLERANCE
value of the layer. For example:

■ If the SDO_TOLERANCE value of the layer is 0.005, this query returns .846049894.

■ If the SDO_TOLERANCE value of the layer is 0.5, this query returns 0.

The zero result occurs because Spatial first constructs an imaginary buffer of the
tolerance value (0.5) around each geometry to be considered, and the buffers
around cola_b and cola_d overlap in this case.

You can therefore take either of two approaches in selecting an SDO_TOLERANCE
value for a layer:

■ The value can reflect the desired level of precision in queries for distances between
objects. For example, if two non-geodetic geometries 0.8 units apart should be
considered as separated, specify a small SDO_TOLERANCE value such as 0.05 or
smaller.

■ The value can reflect the precision of the values associated with geometries in the
layer. For example, if all geometries in a non-geodetic layer are defined using
integers and if two objects 0.8 units apart should not be considered as separated,
an SDO_TOLERANCE value of 0.5 is appropriate. To have greater precision in any
query, you must override the default by specifying the tolerance parameter.

With non-geodetic data, the guideline to follow for most instances of the second case
(precision of the values of the geometries in the layer) is: take the highest level of
precision in the geometry definitions, and use .5 at the next level as the SDO_
TOLERANCE value. For example, if geometries are defined using integers (as in the
simplified example in Section 2.1), the appropriate value is 0.5; however, if geometries
are defined using numbers up to four decimal positions (for example, 31.2587), the
appropriate value is 0.00005.

1.5.5.2 Tolerance as an Input Parameter
Many Spatial functions accept a tolerance parameter, which (if specified) overrides
the default tolerance value for the layer (explained in Section 1.5.5.1). If the distance
between two points is less than or equal to the tolerance value, Spatial considers the
two points to be a single point. Thus, tolerance is usually a reflection of how accurate
or precise users perceive their spatial data to be.

Note: This guideline should not be used if the geometries include
any polygons that are so narrow at any point that the distance
between facing sides is less than the proposed tolerance value. Be
sure that the tolerance value is less than the shortest distance
between any two sides in any polygon.

Moreover, if you encounter "invalid geometry" errors with inserted
or updated geometries, and if the geometries are in fact valid,
consider increasing the precision of the tolerance value (for
example, changing 0.00005 to 0.000005).

Query Model

1-8 Oracle Spatial User’s Guide and Reference

For example, assume that you want to know which restaurants are within 5 kilometers
of your house. Assume also that Maria’s Pizzeria is 5.1 kilometers from your house. If
the spatial data has a geodetic coordinate system and if you ask, Find all restaurants
within 5 kilometers and use a tolerance of 100 (or greater, such as 500), Maria’s Pizzeria
will be included, because 5.1 kilometers (5100 meters) is within 100 meters of 5
kilometers (5000 meters). However, if you specify a tolerance less than 100 (such as 50),
Maria’s Pizzeria will not be included.

Tolerance values for Spatial functions are typically very small, although the best value
in each case depends on the kinds of applications that use or will use the data.

1.6 Query Model
Spatial uses a two-tier query model to resolve spatial queries and spatial joins. The
term is used to indicate that two distinct operations are performed to resolve queries.
The output of the two combined operations yields the exact result set.

The two operations are referred to as primary and secondary filter operations.

■ The primary filter permits fast selection of candidate records to pass along to the
secondary filter. The primary filter compares geometry approximations to reduce
computation complexity and is considered a lower-cost filter. Because the primary
filter compares geometric approximations, it returns a superset of the exact result
set.

■ The secondary filter applies exact computations to geometries that result from the
primary filter. The secondary filter yields an accurate answer to a spatial query.
The secondary filter operation is computationally expensive, but it is only applied
to the primary filter results, not the entire data set.

Figure 1–2 illustrates the relationship between the primary and secondary filters.

Figure 1–2 Query Model

As shown in Figure 1–2, the primary filter operation on a large input data set produces
a smaller candidate set, which contains at least the exact result set and may contain
more records. The secondary filter operation on the smaller candidate set produces the
exact result set.

Spatial uses a spatial index to implement the primary filter. Spatial does not require
the use of both the primary and secondary filters. In some cases, just using the primary
filter is sufficient. For example, a zoom feature in a mapping application queries for
data that has any interaction with a rectangle representing visible boundaries. The
primary filter very quickly returns a superset of the query. The mapping application
can then apply clipping routines to display the target area.

The purpose of the primary filter is to quickly create a subset of the data and reduce
the processing burden on the secondary filter. The primary filter, therefore, should be

Large Input Data Set

Primary
Filter

Secondary
Filter

Smaller
Candidate

 Set

Exact
Result

Set

Indexing of Spatial Data

Spatial Concepts 1-9

as efficient (that is, selective yet fast) as possible. This is determined by the
characteristics of the spatial index on the data.

For more information about querying spatial data, see Section 4.2.

1.7 Indexing of Spatial Data
The introduction of spatial indexing capabilities into the Oracle database engine is a
key feature of the Spatial product. A spatial index, like any other index, provides a
mechanism to limit searches, but in this case the mechanism is based on spatial criteria
such as intersection and containment. A spatial index is needed to:

■ Find objects within an indexed data space that interact with a given point or area
of interest (window query)

■ Find pairs of objects from within two indexed data spaces that interact spatially
with each other (spatial join)

A spatial index is considered a logical index. The entries in the spatial index are
dependent on the location of the geometries in a coordinate space, but the index values
are in a different domain. Index entries may be ordered using a linearly ordered
domain, and the coordinates for a geometry may be pairs of integer, floating-point, or
double-precision numbers.

Oracle Spatial lets you use R-tree indexing (the default) or quadtree indexing, or both.
However, the use of quadtree indexes is discouraged, and you are strongly
encouraged to use R-tree indexing. Significant performance improvements have been
made to spatial R-tree indexing for this release. Quadtree indexing is a deprecated
feature of Spatial. Almost all information about quadtree indexing has been removed
from this guide and placed in a separate guide, Oracle Spatial Quadtree Indexing, which
is available only through the Oracle Technology Network.

Testing of spatial indexes with many workloads and operators is ongoing, and results
and recommendations will be documented as they become available.

The following sections explain the concepts and options associated with R-tree
indexing.

1.7.1 R-Tree Indexing
A spatial R-tree index can index spatial data of up to four dimensions. An R-tree index
approximates each geometry by a single rectangle that minimally encloses the
geometry (called the minimum bounding rectangle, or MBR), as shown in Figure 1–3.

Figure 1–3 MBR Enclosing a Geometry

For a layer of geometries, an R-tree index consists of a hierarchical index on the MBRs
of the geometries in the layer, as shown in Figure 1–4.

MBR
Geometry

Indexing of Spatial Data

1-10 Oracle Spatial User’s Guide and Reference

Figure 1–4 R-Tree Hierarchical Index on MBRs

In Figure 1–4:

■ 1 through 9 are geometries in a layer.

■ a, b, c, and d are the leaf nodes of the R-tree index, and contain minimum bounding
rectangles of geometries, along with pointers to the geometries. For example, a
contains the MBR of geometries 1 and 2, b contains the MBR of geometries 3 and 4,
and so on.

■ A contains the MBR of a and b, and B contains the MBR of c and d.

■ The root contains the MBR of A and B (that is, the entire area shown).

An R-tree index is stored in the spatial index table (SDO_INDEX_TABLE in the USER_
SDO_INDEX_METADATA view, described in Section 2.7). The R-tree index also
maintains a sequence object (SDO_RTREE_SEQ_NAME in the USER_SDO_INDEX_
METADATA view) to ensure that simultaneous updates by concurrent users can be
made to the index.

1.7.2 R-Tree Quality
A substantial number of insert and delete operations affecting an R-tree index may
degrade the quality of the R-tree structure, which may adversely affect query
performance.

The R-tree is a hierarchical tree structure with nodes at different heights of the tree.
The performance of an R-tree index structure for queries is roughly proportional to the
area and perimeter of the index nodes of the R-tree. The area covered at level 0
represents the area occupied by the minimum bounding rectangles of the data
geometries, the area at level 1 indicates the area covered by leaf-level R-tree nodes, and
so on. The original ratio of the area at the root (topmost level) to the area at level 0 can
change over time based on updates to the table; and if there is a degradation in that
ratio (that is, if it increases significantly), rebuilding the index may help the
performance of queries.

If the performance of SDO_FILTER operations has degraded, and if there have been a
large number of insert, update, or delete operations affecting geometries, the
performance degradation may be due to a degradation in the quality of the associated
R-tree index. You can check for degradation of index quality by using the SDO_
TUNE.QUALITY_DEGRADATION function (described in Chapter 19): if the function
returns a number greater than 2, consider rebuilding the index. Note, however, that the
R-tree index quality degradation number may not be significant in terms of overall
query performance due to Oracle caching strategies and other significant Oracle
capabilities, such as table pinning, which can essentially remove I/O overhead from
R-tree index queries.

To rebuild an R-tree index, use the ALTER INDEX REBUILD statement, which is
described in Chapter 10.

1

2
3

4

5 6

7

8

9

a

b

c

d

A

B

R-tree

root

A B

a b c d

root

Spatial Relationships and Filtering

Spatial Concepts 1-11

1.8 Spatial Relationships and Filtering
Spatial uses secondary filters to determine the spatial relationship between entities in
the database. The spatial relationship is based on geometry locations. The most
common spatial relationships are based on topology and distance. For example, the
boundary of an area consists of a set of curves that separates the area from the rest of
the coordinate space. The interior of an area consists of all points in the area that are
not on its boundary. Given this, two areas are said to be adjacent if they share part of a
boundary but do not share any points in their interior.

The distance between two spatial objects is the minimum distance between any points
in them. Two objects are said to be within a given distance of one another if their
distance is less than the given distance.

To determine spatial relationships, Spatial has several secondary filter methods:

■ The SDO_RELATE operator evaluates topological criteria.

■ The SDO_WITHIN_DISTANCE operator determines if two spatial objects are
within a specified distance of each other.

■ The SDO_NN operator identifies the nearest neighbors for a spatial object.

The syntax of these operators is given in Chapter 11.

The SDO_RELATE operator implements a nine-intersection model for categorizing
binary topological relationships between points, lines, and polygons. Each spatial
object has an interior, a boundary, and an exterior. The boundary consists of points or
lines that separate the interior from the exterior. The boundary of a line string consists
of its end points; however, if the end points overlap (that is, if they are the same point),
the line string has no boundary. The boundaries of a multiline string are the end points
of each of the component line strings; however, if the end points overlap, only the end
points that overlap an odd number of times are boundaries. The boundary of a
polygon is the line that describes its perimeter. The interior consists of points that are
in the object but not on its boundary, and the exterior consists of those points that are
not in the object.

Given that an object A has three components (a boundary Ab, an interior Ai, and an
exterior Ae), any pair of objects has nine possible interactions between their
components. Pairs of components have an empty (0) or not empty (1) set intersection.
The set of interactions between two geometries is represented by a nine-intersection
matrix that specifies which pairs of components intersect and which do not. Figure 1–5
shows the nine-intersection matrix for two polygons that are adjacent to one another.
This matrix yields the following bit mask, generated in row-major form: "101001111".

Figure 1–5 The Nine-Intersection Model

A B

B

b i e

A

01b

i

e

0 0

1

1

111

A TOUCH B 9-Intersection Matrix

Spatial Relationships and Filtering

1-12 Oracle Spatial User’s Guide and Reference

Some of the topological relationships identified in the seminal work by Professor Max
Egenhofer (University of Maine, Orono) and colleagues have names associated with
them. Spatial uses the following names:

■ DISJOINT -- The boundaries and interiors do not intersect.

■ TOUCH -- The boundaries intersect but the interiors do not intersect.

■ OVERLAPBDYDISJOINT -- The interior of one object intersects the boundary and
interior of the other object, but the two boundaries do not intersect. This
relationship occurs, for example, when a line originates outside a polygon and
ends inside that polygon.

■ OVERLAPBDYINTERSECT -- The boundaries and interiors of the two objects
intersect.

■ EQUAL -- The two objects have the same boundary and interior.

■ CONTAINS -- The interior and boundary of one object is completely contained in
the interior of the other object.

■ COVERS -- The interior of one object is completely contained in the interior or the
boundary of the other object and their boundaries intersect.

■ INSIDE -- The opposite of CONTAINS. A INSIDE B implies B CONTAINS A.

■ COVEREDBY -- The opposite of COVERS. A COVEREDBY B implies B COVERS
A.

■ ON -- The interior and boundary of one object is on the boundary of the other
object (and the second object covers the first object). This relationship occurs, for
example, when a line is on the boundary of a polygon.

■ ANYINTERACT -- The objects are non-disjoint.

Figure 1–6 illustrates these topological relationships.

Figure 1–6 Topological Relationships

The SDO_WITHIN_DISTANCE operator determines if two spatial objects, A and B,
are within a specified distance of one another. This operator first constructs a distance
buffer, Db, around the reference object B. It then checks that A and Db are non-disjoint.

A B A

AA

A

A A

B

B
B

B
B

B

A CONTAINS B

A EQUAL B

B INSIDE A B COVEREDBY A
A COVERS B

(2 polygons with
identical coordinates)

A TOUCH B

A OVERLAPBDYINTERSECT B

A DISJOINT B

B TOUCH A

A OVERLAPBDYDISJOINT B
B OVERLAPBDYINTERSECT A B OVERLAPBDYDISJOINT A

B DISJOINT AB EQUAL A

A
B

B ON A
A COVERS B

Spatial Operators, Procedures, and Functions

Spatial Concepts 1-13

The distance buffer of an object consists of all points within the given distance from
that object. Figure 1–7 shows the distance buffers for a point, a line, and a polygon.

Figure 1–7 Distance Buffers for Points, Lines, and Polygons

In the point, line, and polygon geometries shown in Figure 1–7:

■ The dashed lines represent distance buffers. Notice how the buffer is rounded near
the corners of the objects.

■ The geometry on the right is a polygon with a hole: the large rectangle is the
exterior polygon ring and the small rectangle is the interior polygon ring (the
hole). The dashed line outside the large rectangle is the buffer for the exterior ring,
and the dashed line inside the small rectangle is the buffer for the interior ring.

The SDO_NN operator returns a specified number of objects from a geometry column
that are closest to a specified geometry (for example, the five closest restaurants to a
city park). In determining how close two geometry objects are, the shortest possible
distance between any two points on the surface of each object is used.

1.9 Spatial Operators, Procedures, and Functions
The Spatial PL/SQL application programming interface (API) includes several
operators and many procedures and functions.

Spatial operators, such as SDO_FILTER and SDO_RELATE, provide optimum
performance because they use the spatial index. (Spatial operators require that the
geometry column in the first parameter have a spatial index defined on it.) Spatial
operators must be used in the WHERE clause of a query. The first parameter of any
operator specifies the geometry column to be searched, and the second parameter
specifies a query window. If the query window does not have the same coordinate
system as the geometry column, Spatial performs an implicit coordinate system
transformation. For detailed information about the spatial operators, see Chapter 11.

Spatial procedures and functions are provided as subprograms in PL/SQL packages,
such as SDO_GEOM, SDO_CS, and SDO_LRS. These subprograms do not require that
a spatial index be defined, and they do not use a spatial index if it is defined. These
subprograms can be used in the WHERE clause or in a subquery. If two geometries are
input parameters to a Spatial procedure or function, both must have the same
coordinate system.

The following performance-related guidelines apply to the use of spatial operators,
procedures, and functions:

■ If an operator and a procedure or function perform comparable operations, and if
the operator satisfies your requirements, use the operator. For example, unless you
need to do otherwise, use SDO_RELATE instead of SDO_GEOM.RELATE, and use
SDO_WITHIN_DISTANCE instead of SDO_GEOM.WITHIN_DISTANCE.

Spatial Aggregate Functions

1-14 Oracle Spatial User’s Guide and Reference

■ With operators, always specify TRUE in uppercase. That is, specify = 'TRUE', and
do not specify <> 'FALSE' or = 'true'.

■ With operators, use the /*+ ORDERED */ optimizer hint if the query window
comes from a table. (You must use this hint if multiple windows come from a
table.) See the Usage Notes and Examples for specific operators for more
information.

For information about using operators with topologies, see Oracle Spatial Topology and
Network Data Models.

1.10 Spatial Aggregate Functions
SQL has long had aggregate functions, which are used to aggregate the results of a
SQL query. The following example uses the SUM aggregate function to aggregate
employee salaries by department:

SELECT SUM(salary), dept
 FROM employees
 GROUP BY dept;

Oracle Spatial aggregate functions aggregate the results of SQL queries involving
geometry objects. Spatial aggregate functions return a geometry object of type SDO_
GEOMETRY. For example, the following statement returns the minimum bounding
rectangle of all geometries in a table (using the definitions and data from Section 2.1):

SELECT SDO_AGGR_MBR(shape) FROM cola_markets;

The following example returns the union of all geometries except cola_d:

SELECT SDO_AGGR_UNION(SDOAGGRTYPE(c.shape, 0.005))
 FROM cola_markets c WHERE c.name < 'cola_d';

All geometries used with spatial aggregate functions must be defined using 4-digit
SDO_GTYPE values (that is, must be in the format used by Oracle Spatial release 8.1.6
or later). For information about SDO_GTYPE values, see Section 2.2.1.

For reference information about the spatial aggregate functions and examples of their
use, see Chapter 12.

1.10.1 SDOAGGRTYPE Object Type
Many spatial aggregate functions accept an input parameter of type SDOAGGRTYPE.
Oracle Spatial defines the object type SDOAGGRTYPE as:

CREATE TYPE sdoaggrtype AS OBJECT (
 geometry SDO_GEOMETRY,
 tolerance NUMBER);

The tolerance value in the SDOAGGRTYPE definition should be the same as the
SDO_TOLERANCE value specified in the DIMINFO column in the xxx_SDO_GEOM_
METADATA views for the geometries, unless you have a specific reason for wanting a
different value. For more information about tolerance, see Section 1.5.5; for
information about the xxx_SDO_GEOM_METADATA views, see Section 2.6.

Note: Do not use SDOAGGRTYPE as the data type for a column
in a table. Use this type only in calls to spatial aggregate functions.

Spatial Java Application Programming Interface

Spatial Concepts 1-15

The tolerance value in the SDOAGGRTYPE definition can affect the result of a
spatial aggregate function. Figure 1–8 shows a spatial aggregate union (SDO_AGGR_
UNION) operation of two geometries using two different tolerance values: one smaller
and one larger than the distance between the geometries.

Figure 1–8 Tolerance in an Aggregate Union Operation

In the first aggregate union operation in Figure 1–8, where the tolerance is less than the
distance between the rectangles, the result is a compound geometry consisting of two
rectangles. In the second aggregate union operation, where the tolerance is greater
than the distance between the rectangles, the result is a single geometry.

1.11 Geocoding
Geocoding is the process of converting tables of address data into standardized
address, location, and possibly other data. The result of a geocoding operation
includes the pair of longitude and latitude coordinates that correspond with the input
address or location. For example, if the input address is 22 Monument Square, Concord,
MA 01742, the longitude and latitude coordinates in the result of the geocoding
operation may be (depending on the geocoding data provider) -71.34937 and 42.46101,
respectively.

Given a geocoded address, you can perform proximity or location queries using a
spatial engine, such as Oracle Spatial, or demographic analysis using tools and data
from Oracle’s business partners. In addition, you can use geocoded data with other
spatial data such as block group, postal code, and county code for association with
demographic information. Results of analyses or queries can be presented as maps, in
addition to tabular formats, using third-party software integrated with Oracle Spatial.

For conceptual and usage information about the geocoding capabilities of Oracle
Spatial, see Chapter 5. For reference information about the MDSYS.SDO_GCDR
PL/SQL package, see Chapter 14.

1.12 Spatial Java Application Programming Interface
Oracle Spatial provides a Java application programming interface (API) that includes
the following packages:

■ oracle.spatial.geometry provides support for the Spatial SQL SDO_
GEOMETRY data type, which is documented in this guide.

■ oracle.spatial.network provides support for the Oracle Spatial network
data model, which is documented in Oracle Spatial Topology and Network Data
Models.

geom1

tolerance

geom2

tolerance

geom1 geom2

SDO_AGGR_
UNION

SDO_AGGR_
UNION

MDDATA Schema

1-16 Oracle Spatial User’s Guide and Reference

■ oracle.spatial.topo provides support for the Oracle Spatial topology data
model, which is documented in Oracle Spatial Topology and Network Data Models.

■ oracle.spatial.util provides classes that perform miscellaneous operations.

For detailed reference information about the classes and interfaces in these packages,
see Oracle Spatial Java API Reference (Javadoc).

1.13 MDDATA Schema
Effective with Oracle Database 10g, Spatial creates a user and schema named
MDDATA, using the following internal SQL statements:

CREATE USER mddata IDENTIFIED BY mddata;
GRANT connect, resource TO mddata;
ALTER USER mddata ACCOUNT LOCK;

You should use the MDDATA schema for storing data used by geocoding and routing
applications. This is the default schema for Oracle software that accesses geocoding
and routing data.

1.14 Performance and Tuning Information
Many factors can affect the performance of Oracle Spatial applications, such as the use
of optimizer hints to influence the plan for query execution. This guide contains some
information about performance and tuning where it is relevant to a particular topic.
For example, Section 1.7.2 discusses R-tree quality and its possible effect on query
performance, and Section 1.9 explains why spatial operators provide better
performance than procedures and functions.

In addition, more Spatial performance and tuning information is available in one or
more white papers through the Oracle Technology Network (OTN). That information
is often more detailed than what is in this guide, and it is periodically updated as a
result of internal testing and consultations with Spatial users. To find that information
on the OTN, go to

http://www.oracle.com/technology/products/spatial/

Look for material relevant to Spatial performance and tuning.

1.15 Open Geospatial Consortium (OGC) Conformance
Oracle Spatial is conformant with Open Geospatial Consortium (OGC) Simple
Features Specification 1.1.1 (Document 99-049), starting with Oracle Database release
10g (version 10.1.0.4). Conformance with the SQL92 with Geometry Types
Implementation means that Oracle Spatial supports all the types, functions, and
language constructs detailed in Section 3.2 of the specification.

1.16 Spatial Release (Version) Number
To check which release of Spatial you are running, use the SDO_VERSION function.
For example:

SELECT SDO_VERSION FROM DUAL;

SDO_VERSION
--
10.2.0.0.0

Spatial Examples

Spatial Concepts 1-17

1.17 Spatial Application Hardware Requirement Considerations
This section discusses some general guidelines that affect the amount of disk storage
space and CPU power needed for applications that use Oracle Spatial. These
guidelines are intended to supplement, not replace, any other guidelines you use for
general application sizing.

The following characteristics of spatial applications can affect the need for storage
space and CPU power:

■ Data volumes: The amount of storage space needed for spatial objects depends on
their complexity (precision of representation and number of points for each
object). For example, storing one million point objects takes less space than storing
one million road segments or land parcels. Complex natural features such as
coastlines, seismic fault lines, rivers, and land types can require significant storage
space if they are stored at a high precision.

■ Query complexity: The CPU requirements for simple mapping queries, such as
Select all features in this rectangle, are lower than for more complex queries, such as
Find all seismic fault lines that cross this coastline.

1.18 Spatial Error Messages
Spatial error message numbers are in the range of 13000 to 13499. The messages are
documented in Oracle Database Error Messages.

Oracle error message documentation is only available in HTML. If you only have
access to the Oracle Documentation CD, you can browse the error messages by range.
Once you find the specific range, use your browser's "find in page" feature to locate the
specific message. When connected to the Internet, you can search for a specific error
message using the error message search feature of the Oracle online documentation.

1.19 Spatial Examples
Oracle Spatial provides examples that you can use to reinforce your learning and to
create models for coding certain operations. If you installed the demo files from the
Companion CD, several examples are provided in the following directory:

$ORACLE_HOME/md/demos/examples

The following files in that directory are helpful for applications that use the Oracle Call
Interface (OCI):

■ readgeom.c and readgeom.h

■ writegeom.c and writegeom.h

This guide also includes many examples in SQL and PL/SQL. One or more examples
are usually provided with the reference information for each function or procedure,
and several simplified examples are provided that illustrate table and index creation,
combinations of functions and procedures, and advanced features:

■ Inserting, indexing, and querying spatial data (Section 2.1)

■ Coordinate systems (spatial reference systems) (Section 6.11)

■ Linear referencing system (LRS) (Section 7.7)

■ SDO_GEOMETRY objects in function-based indexes (Section 9.2)

■ Complex queries (Appendix D)

README File for Spatial and Related Features

1-18 Oracle Spatial User’s Guide and Reference

1.20 README File for Spatial and Related Features
A README.txt file supplements the information in the following manuals: Oracle
Spatial User's Guide and Reference (this manual), Oracle Spatial GeoRaster, and Oracle
Spatial Topology and Network Data Models. This file is located at:

$ORACLE_HOME/md/doc/README.txt

Spatial Data Types and Metadata 2-1

2
Spatial Data Types and Metadata

Oracle Spatial consists of a set of object data types, type methods, and operators,
functions, and procedures that use these types. A geometry is stored as an object, in a
single row, in a column of type SDO_GEOMETRY. Spatial index creation and
maintenance is done using basic DDL (CREATE, ALTER, DROP) and DML (INSERT,
UPDATE, DELETE) statements.

This chapter starts with a simple example that inserts, indexes, and queries spatial
data. You may find it helpful to read this example quickly before you examine the
detailed data type and metadata information later in the chapter.

This chapter contains the following major sections:

■ Section 2.1, "Simple Example: Inserting, Indexing, and Querying Spatial Data"

■ Section 2.2, "SDO_GEOMETRY Object Type"

■ Section 2.3, "SDO_GEOMETRY Methods"

■ Section 2.4, "SDO_GEOMETRY Constructors"

■ Section 2.5, "Geometry Examples"

■ Section 2.6, "Geometry Metadata Views"

■ Section 2.7, "Spatial Index-Related Structures"

■ Section 2.8, "Unit of Measurement Support"

2.1 Simple Example: Inserting, Indexing, and Querying Spatial Data
This section presents a simple example of creating a spatial table, inserting data,
creating the spatial index, and performing spatial queries. It refers to concepts that
were explained in Chapter 1 and that will be explained in other sections of this
chapter.

The scenario is a soft drink manufacturer that has identified geographical areas of
marketing interest for several products (colas). The colas could be those produced by
the company or by its competitors, or some combination. Each area of interest could
represent any user-defined criterion: for example, an area where that cola has the
majority market share, or where the cola is under competitive pressure, or where the
cola is believed to have significant growth potential. Each area could be a
neighborhood in a city, or a part of a state, province, or country.

Figure 2–1 shows the areas of interest for four colas.

Simple Example: Inserting, Indexing, and Querying Spatial Data

2-2 Oracle Spatial User’s Guide and Reference

Figure 2–1 Areas of Interest for the Simple Example

Example 2–1 performs the following operations:

■ Creates a table (COLA_MARKETS) to hold the spatial data

■ Inserts rows for four areas of interest (cola_a, cola_b, cola_c, cola_d)

■ Updates the USER_SDO_GEOM_METADATA view to reflect the dimensional
information for the areas

■ Creates a spatial index (COLA_SPATIAL_IDX)

■ Performs some spatial queries

Many concepts and techniques in Example 2–1 are explained in detail in other sections
of this chapter.

Example 2–1 Simple Example: Inserting, Indexing, and Querying Spatial Data

-- Create a table for cola (soft drink) markets in a
-- given geography (such as city or state).
-- Each row will be an area of interest for a specific
-- cola (for example, where the cola is most preferred
-- by residents, where the manufacturer believes the
-- cola has growth potential, and so on).
-- (For restrictions on spatial table and column names, see
-- Section 2.6.1 and Section 2.6.2.)

CREATE TABLE cola_markets (
 mkt_id NUMBER PRIMARY KEY,
 name VARCHAR2(32),
 shape SDO_GEOMETRY);

-- The next INSERT statement creates an area of interest for
-- Cola A. This area happens to be a rectangle.
-- The area could represent any user-defined criterion: for
-- example, where Cola A is the preferred drink, where
-- Cola A is under competitive pressure, where Cola A
-- has strong growth potential, and so on.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

cola_a cola_b

cola_c

cola_d

Simple Example: Inserting, Indexing, and Querying Spatial Data

Spatial Data Types and Metadata 2-3

INSERT INTO cola_markets VALUES(
 1,
 'cola_a',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
 SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
 -- define rectangle (lower left and upper right) with
 -- Cartesian-coordinate data
)
);

-- The next two INSERT statements create areas of interest for
-- Cola B and Cola C. These areas are simple polygons (but not
-- rectangles).

INSERT INTO cola_markets VALUES(
 2,
 'cola_b',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
 SDO_ORDINATE_ARRAY(5,1, 8,1, 8,6, 5,7, 5,1)
)
);

INSERT INTO cola_markets VALUES(
 3,
 'cola_c',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
 SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)
)
);

-- Now insert an area of interest for Cola D. This is a
-- circle with a radius of 2. It is completely outside the
-- first three areas of interest.

INSERT INTO cola_markets VALUES(
 4,
 'cola_d',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,4), -- one circle
 SDO_ORDINATE_ARRAY(8,7, 10,9, 8,11)
)
);

-- UPDATE METADATA VIEW --

Simple Example: Inserting, Indexing, and Querying Spatial Data

2-4 Oracle Spatial User’s Guide and Reference

-- Update the USER_SDO_GEOM_METADATA view. This is required
-- before the Spatial index can be created. Do this only once for each
-- layer (that is, table-column combination; here: COLA_MARKETS and SHAPE).

INSERT INTO user_sdo_geom_metadata
 (TABLE_NAME,
 COLUMN_NAME,
 DIMINFO,
 SRID)
 VALUES (
 'cola_markets',
 'shape',
 SDO_DIM_ARRAY(-- 20X20 grid
 SDO_DIM_ELEMENT('X', 0, 20, 0.005),
 SDO_DIM_ELEMENT('Y', 0, 20, 0.005)
),
 NULL -- SRID
);

-- CREATE THE SPATIAL INDEX --

CREATE INDEX cola_spatial_idx
 ON cola_markets(shape)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;
-- Preceding statement created an R-tree index.

-- PERFORM SOME SPATIAL QUERIES --

-- Return the topological intersection of two geometries.
SELECT SDO_GEOM.SDO_INTERSECTION(c_a.shape, c_c.shape, 0.005)
 FROM cola_markets c_a, cola_markets c_c
 WHERE c_a.name = 'cola_a' AND c_c.name = 'cola_c';

-- Do two geometries have any spatial relationship?
SELECT SDO_GEOM.RELATE(c_b.shape, 'anyinteract', c_d.shape, 0.005)
 FROM cola_markets c_b, cola_markets c_d
 WHERE c_b.name = 'cola_b' AND c_d.name = 'cola_d';

-- Return the areas of all cola markets.
SELECT name, SDO_GEOM.SDO_AREA(shape, 0.005) FROM cola_markets;

-- Return the area of just cola_a.
SELECT c.name, SDO_GEOM.SDO_AREA(c.shape, 0.005) FROM cola_markets c
 WHERE c.name = 'cola_a';

-- Return the distance between two geometries.
SELECT SDO_GEOM.SDO_DISTANCE(c_b.shape, c_d.shape, 0.005)
 FROM cola_markets c_b, cola_markets c_d
 WHERE c_b.name = 'cola_b' AND c_d.name = 'cola_d';

-- Is a geometry valid?
SELECT c.name, SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(c.shape, 0.005)
 FROM cola_markets c WHERE c.name = 'cola_c';

-- Is a layer valid? (First, create the results table.)
CREATE TABLE val_results (sdo_rowid ROWID, result VARCHAR2(2000));
CALL SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT('COLA_MARKETS', 'SHAPE',

SDO_GEOMETRY Object Type

Spatial Data Types and Metadata 2-5

 'VAL_RESULTS', 2);
SELECT * from val_results;

2.2 SDO_GEOMETRY Object Type
With Spatial, the geometric description of a spatial object is stored in a single row, in a
single column of object type SDO_GEOMETRY in a user-defined table. Any table that
has a column of type SDO_GEOMETRY must have another column, or set of columns,
that defines a unique primary key for that table. Tables of this sort are sometimes
referred to as spatial tables or spatial geometry tables.

Oracle Spatial defines the object type SDO_GEOMETRY as:

CREATE TYPE sdo_geometry AS OBJECT (
 SDO_GTYPE NUMBER,
 SDO_SRID NUMBER,
 SDO_POINT SDO_POINT_TYPE,
 SDO_ELEM_INFO SDO_ELEM_INFO_ARRAY,
 SDO_ORDINATES SDO_ORDINATE_ARRAY);

Oracle Spatial also defines the SDO_POINT_TYPE, SDO_ELEM_INFO_ARRAY, and
SDO_ORDINATE_ARRAY types, which are used in the SDO_GEOMETRY type
definition, as follows:

CREATE TYPE sdo_point_type AS OBJECT (
 X NUMBER,
 Y NUMBER,
 Z NUMBER);
CREATE TYPE sdo_elem_info_array AS VARRAY (1048576) of NUMBER;
CREATE TYPE sdo_ordinate_array AS VARRAY (1048576) of NUMBER;

Because the maximum SDO_ORDINATE_ARRAY size is 1,048,576 numbers, the
maximum number of vertices in an SDO_GEOMETRY object depends on the number
of dimensions per vertex: 524,288 for two dimensions, 349,525 for three dimensions,
and 262,144 for four dimensions.

The sections that follow describe the semantics of each SDO_GEOMETRY attribute,
and then describe some usage considerations (Section 2.2.6).

The SDO_GEOMETRY object type has methods that provide convenient access to
some of the attributes. These methods are described in Section 2.3.

Some Spatial data types are described in locations other than this section:

■ Section 5.2 describes data types for geocoding.

■ Oracle Spatial GeoRaster describes data types for Oracle Spatial GeoRaster.

■ Oracle Spatial Topology and Network Data Models describes data types for the Oracle
Spatial topology data model.

2.2.1 SDO_GTYPE
The SDO_GTYPE attribute indicates the type of the geometry. Valid geometry types
correspond to those specified in the Geometry Object Model for the OGIS Simple Features
for SQL specification (with the exception of Surfaces). The numeric values differ from
those given in the OGIS specification, but there is a direct correspondence between the
names and semantics where applicable.

The SDO_GTYPE value is 4 digits in the format dltt, where:

■ d identifies the number of dimensions (2, 3, or 4)

SDO_GEOMETRY Object Type

2-6 Oracle Spatial User’s Guide and Reference

■ l identifies the linear referencing measure dimension for a three-dimensional linear
referencing system (LRS) geometry, that is, which dimension (3 or 4) contains the
measure value. For a non-LRS geometry, or to accept the Spatial default of the last
dimension as the measure for an LRS geometry, specify 0. For information about
the linear referencing system (LRS), see Chapter 7.

■ tt identifies the geometry type (00 through 07, with 08 through 99 reserved for
future use).

Table 2–1 shows the valid SDO_GTYPE values. The Geometry Type and Description
values reflect the OGIS specification.

The d in the Value column of Table 2–1 is the number of dimensions: 2, 3, or 4. For
example, an SDO_GTYPE value of 2003 indicates a two-dimensional polygon.

The number of dimensions reflects the number of ordinates used to represent each
vertex (for example, X,Y for two-dimensional objects). Points and lines are considered
two-dimensional objects. (However, see Section 7.2 for dimension information about
LRS points.)

Table 2–1 Valid SDO_GTYPE Values

Value Geometry Type Description

dl00 UNKNOWN_
GEOMETRY

Spatial ignores this geometry.

dl01 POINT Geometry contains one point.

dl02 LINE or CURVE Geometry contains one line string that can contain
straight or circular arc segments, or both. (LINE and
CURVE are synonymous in this context.)

dl03 POLYGON Geometry contains one polygon with or without holes.1

1 For a polygon with holes, enter the exterior boundary first, followed by any interior boundaries.

dl04 COLLECTION Geometry is a heterogeneous collection of elements.
COLLECTION is a superset that includes all other
types.

dl05 MULTIPOINT Geometry has one or more points. (MULTIPOINT is a
superset of POINT.)

dl06 MULTILINE or
MULTICURVE

Geometry has one or more line strings. (MULTILINE
and MULTICURVE are synonymous in this context,
and each is a superset of both LINE and CURVE.)

dl07 MULTIPOLYGON Geometry can have multiple, disjoint polygons (more
than one exterior boundary). (MULTIPOLYGON is a
superset of POLYGON.)

Note: The 1-digit SDO_GTYPE values from before release 8.1.6
value are still supported. If a 1-digit value is used, however, Oracle
Spatial determines the number of dimensions from the DIMINFO
column of the metadata views, described in Section 2.6.3.

Also, if 1-digit SDO_GTYPE values are converted to 4-digit values,
any SDO_ETYPE values that end in 3 or 5 in the SDO_ELEM_INFO
array (described in Section 2.2.4) must also be converted.

SDO_GEOMETRY Object Type

Spatial Data Types and Metadata 2-7

In any given layer (column), all geometries must have the same number of
dimensions. For example, you cannot mix two-dimensional and three-dimensional
data in the same layer.

The following methods are available for returning the individual dltt components of
the SDO_GTYPE for a geometry object: Get_Dims, Get_LRS_Dim, and Get_Gtype.
These methods are described in Section 2.3.

2.2.2 SDO_SRID
The SDO_SRID attribute can be used to identify a coordinate system (spatial reference
system) to be associated with the geometry. If SDO_SRID is null, no coordinate system
is associated with the geometry. If SDO_SRID is not null, it must contain a value from
the SRID column of the SDO_COORD_REF_SYS table (described in Section 6.6.9), and
this value must be inserted into the SRID column of the USER_SDO_GEOM_
METADATA view (described in Section 2.6).

All geometries in a geometry column must have the same SDO_SRID value.

For information about coordinate systems, see Chapter 6.

2.2.3 SDO_POINT
The SDO_POINT attribute is defined using the SDO_POINT_TYPE object type, which
has the attributes X, Y, and Z, all of type NUMBER. (The SDO_POINT_TYPE definition
is shown in Section 2.2.) If the SDO_ELEM_INFO and SDO_ORDINATES arrays are
both null, and the SDO_POINT attribute is non-null, then the X and Y values are
considered to be the coordinates for a point geometry. Otherwise, the SDO_POINT
attribute is ignored by Spatial. You should store point geometries in the SDO_POINT
attribute for optimal storage; and if you have only point geometries in a layer, it is
strongly recommended that you store the point geometries in the SDO_POINT
attribute.

Section 2.5.5 illustrates a point geometry and provides examples of inserting and
querying point geometries.

2.2.4 SDO_ELEM_INFO
The SDO_ELEM_INFO attribute is defined using a varying length array of numbers.
This attribute lets you know how to interpret the ordinates stored in the SDO_
ORDINATES attribute (described in Section 2.2.5).

Each triplet set of numbers is interpreted as follows:

■ SDO_STARTING_OFFSET -- Indicates the offset within the SDO_ORDINATES
array where the first ordinate for this element is stored. Offset values start at 1 and
not at 0. Thus, the first ordinate for the first element will be at SDO_
GEOMETRY.SDO_ORDINATES(1). If there is a second element, its first ordinate
will be at SDO_GEOMETRY.SDO_ORDINATES(n), where n reflects the position
within the SDO_ORDINATE_ARRAY definition (for example, 19 for the 19th
number, as in Figure 2–3 in Section 2.5.2).

Note: Do not use the SDO_POINT attribute in defining a linear
referencing system (LRS) point or an oriented point. For
information about LRS, see Chapter 7. For information about
oriented points, see Section 2.5.6.

SDO_GEOMETRY Object Type

2-8 Oracle Spatial User’s Guide and Reference

■ SDO_ETYPE -- Indicates the type of the element. Valid values are shown in
Table 2–2.

SDO_ETYPE values 1, 2, 1003, and 2003 are considered simple elements. They are
defined by a single triplet entry in the SDO_ELEM_INFO array. For SDO_ETYPE
values 1003 and 2003, the first digit indicates exterior (1) or interior (2):

1003: exterior polygon ring (must be specified in counterclockwise order)

2003: interior polygon ring (must be specified in clockwise order)

SDO_ETYPE values 4, 1005, and 2005 are considered compound elements. They
contain at least one header triplet with a series of triplet values that belong to the
compound element. For SDO_ETYPE values 1005 and 2005, the first digit indicates
exterior (1) or interior (2):

1005: exterior polygon ring (must be specified in counterclockwise order)

2005: interior polygon ring (must be specified in clockwise order)

The elements of a compound element are contiguous. The last point of a
subelement in a compound element is the first point of the next subelement. The
point is not repeated.

■ SDO_INTERPRETATION -- Means one of two things, depending on whether or
not SDO_ETYPE is a compound element.

If SDO_ETYPE is a compound element (4, 1005, or 2005), this field specifies how
many subsequent triplet values are part of the element.

If the SDO_ETYPE is not a compound element (1, 2, 1003, or 2003), the
interpretation attribute determines how the sequence of ordinates for this element
is interpreted. For example, a line string or polygon boundary may be made up of
a sequence of connected straight line segments or circular arcs.

Note: The use of 3 as an SDO_ETYPE value for polygon ring
elements in a single geometry is discouraged. You should specify 3
only if you do not know if the simple polygon is exterior or interior,
and you should then upgrade the table or layer to the current
format using the SDO_MIGRATE.TO_CURRENT procedure,
described in Chapter 17.

You cannot mix 1-digit and 4-digit SDO_ETYPE values in a single
geometry. If you use 4-digit SDO_ETYPE values, you must use
4-digit SDO_GTYPE values.

Note: The use of 5 as an SDO_ETYPE value for polygon ring
elements in a single geometry is discouraged. You should specify 5
only if you do not know if the compound polygon is exterior or
interior, and you should then upgrade the table or layer to the
current format using the SDO_MIGRATE.TO_CURRENT
procedure, described in Chapter 17.

You cannot mix 1-digit and 4-digit SDO_ETYPE values in a single
geometry. If you use 4-digit SDO_ETYPE values, you must use
4-digit SDO_GTYPE values.

SDO_GEOMETRY Object Type

Spatial Data Types and Metadata 2-9

Descriptions of valid SDO_ETYPE and SDO_INTERPRETATION value pairs are
given in Table 2–2.

If a geometry consists of more than one element, then the last ordinate for an element
is always one less than the starting offset for the next element. The last element in the
geometry is described by the ordinates from its starting offset to the end of the SDO_
ORDINATES varying length array.

For compound elements (SDO_ETYPE values 4, 1005, or 2005), a set of n triplets (one
for each subelement) is used to describe the element. It is important to remember that
subelements of a compound element are contiguous. The last point of a subelement is
the first point of the next subelement. For subelements 1 through n-1, the end point of
one subelement is the same as the starting point of the next subelement. The starting
point for subelements 2...n-2 is the same as the end point of subelement 1...n-1. The last
ordinate of subelement n is either the starting offset minus 1 of the next element in the
geometry, or the last ordinate in the SDO_ORDINATES varying length array.

The current size of a varying length array can be determined by using the function
varray_variable.Count in PL/SQL or OCICollSize in the Oracle Call Interface (OCI).

The semantics of each SDO_ETYPE element and the relationship between the SDO_
ELEM_INFO and SDO_ORDINATES varying length arrays for each of these SDO_
ETYPE elements are given in Table 2–2.

Table 2–2 Values and Semantics in SDO_ELEM_INFO

SDO_
ETYPE

SDO_
INTERPRETATION Meaning

0 (any numeric
value)

Type 0 (zero) element. Used to model geometry types not
supported by Oracle Spatial. For more information, see
Section 2.5.7.

1 1 Point type.

1 0 Orientation for an oriented point. For more information, see
Section 2.5.6.

1 n > 1 Point cluster with n points.

2 1 Line string whose vertices are connected by straight line
segments.

2 2 Line string made up of a connected sequence of circular arcs.

Each circular arc is described using three coordinates: the
start point of the arc, any point on the arc, and the end point
of the arc. The coordinates for a point designating the end of
one arc and the start of the next arc are not repeated. For
example, five coordinates are used to describe a line string
made up of two connected circular arcs. Points 1, 2, and 3
define the first arc, and points 3, 4, and 5 define the second
arc, where point 3 is only stored once.

1003 or
2003

1 Simple polygon whose vertices are connected by straight line
segments. You must specify a point for each vertex, and the
last point specified must be exactly the same point as the first
(to close the polygon), regardless of the tolerance value. For
example, for a 4-sided polygon, specify 5 points, with point 5
the same as point 1.

SDO_GEOMETRY Object Type

2-10 Oracle Spatial User’s Guide and Reference

2.2.5 SDO_ORDINATES
The SDO_ORDINATES attribute is defined using a varying length array (1048576) of
NUMBER type that stores the coordinate values that make up the boundary of a
spatial object. This array must always be used in conjunction with the SDO_ELEM_
INFO varying length array. The values in the array are ordered by dimension. For
example, a polygon whose boundary has four two-dimensional points is stored as {X1,
Y1, X2, Y2, X3, Y3, X4, Y4, X1, Y1}. If the points are three-dimensional, then they are
stored as {X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, X4, Y4, Z4, X1, Y1, Z1}. Spatial index

1003 or
2003

2 Polygon made up of a connected sequence of circular arcs
that closes on itself. The end point of the last arc is the same
as the start point of the first arc.

Each circular arc is described using three coordinates: the
start point of the arc, any point on the arc, and the end point
of the arc. The coordinates for a point designating the end of
one arc and the start of the next arc are not repeated. For
example, five coordinates are used to describe a polygon
made up of two connected circular arcs. Points 1, 2, and 3
define the first arc, and points 3, 4, and 5 define the second
arc. The coordinates for points 1 and 5 must be the same
(tolerance is not considered), and point 3 is not repeated.

1003 or
2003

3 Rectangle type (sometimes called optimized rectangle). A
bounding rectangle such that only two points, the lower-left
and the upper-right, are required to describe it. The rectangle
type can be used with geodetic or non-geodetic data.
However, with geodetic data, use this type only to create a
query window (not for storing objects in the database). For
detailed information about using this type with geodetic
data, including examples, see Section 6.2.3.

1003 or
2003

4 Circle type. Described by three distinct non-colinear points,
all on the circumference of the circle.

4 n > 1 Compound line string with some vertices connected by
straight line segments and some by circular arcs. The value n
in the Interpretation column specifies the number of
contiguous subelements that make up the line string.

The next n triplets in the SDO_ELEM_INFO array describe
each of these subelements. The subelements can only be of
SDO_ETYPE 2. The last point of a subelement is the first
point of the next subelement, and must not be repeated.

See Section 2.5.3 and Figure 2–4 for an example of a
compound line string geometry.

1005 or
2005

n > 1 Compound polygon with some vertices connected by straight
line segments and some by circular arcs. The value n in the
Interpretation column specifies the number of contiguous
subelements that make up the polygon.

The next n triplets in the SDO_ELEM_INFO array describe
each of these subelements. The subelements can only be of
SDO_ETYPE 2. The end point of a subelement is the start
point of the next subelement, and it must not be repeated.
The start and end points of the polygon must be exactly the
same point (tolerance is ignored).

See Section 2.5.4 and Figure 2–5 for an example of a
compound polygon geometry.

Table 2–2 (Cont.) Values and Semantics in SDO_ELEM_INFO

SDO_
ETYPE

SDO_
INTERPRETATION Meaning

SDO_GEOMETRY Methods

Spatial Data Types and Metadata 2-11

creation, operators, and functions ignore the Z values because this release of the
product supports only two-dimensional spatial objects. The number of dimensions
associated with each point is stored as metadata in the xxx_SDO_GEOM_METADATA
views, described in Section 2.6.

The values in the SDO_ORDINATES array must all be valid and non-null. There are
no special values used to delimit elements in a multielement geometry. The start and
end points for the sequence describing a specific element are determined by the
STARTING_OFFSET values for that element and the next element in the SDO_ELEM_
INFO array, as explained in Section 2.2.4. The offset values start at 1. SDO_
ORDINATES(1) is the first ordinate of the first point of the first element.

2.2.6 Usage Considerations
You should use the SDO_GTYPE values as shown in Table 2–1; however, Spatial does
not check or enforce all geometry consistency constraints. Spatial does check the
following:

■ For SDO_GTYPE values d001 and d005, any subelement not of SDO_ETYPE 1 is
ignored.

■ For SDO_GTYPE values d002 and d006, any subelement not of SDO_ETYPE 2 or 4
is ignored.

■ For SDO_GTYPE values d003 and d007, any subelement not of SDO_ETYPE 3 or 5
is ignored. (This includes SDO_ETYPE variants 1003, 2003, 1005, and 2005, which
are explained in Section 2.2.4).

The SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function can be used to
evaluate the consistency of a single geometry object or of all geometry objects in a
specified feature table.

2.3 SDO_GEOMETRY Methods
The SDO_GEOMETRY object type (described in Section 2.2) has methods (member
functions) that retrieve information about a geometry object. Table 2–3 lists these
methods.

Table 2–3 SDO_GEOMETRY Methods

Name Returns Description

Get_Dims NUMBER Returns the number of dimensions of a geometry object, as
specified in its SDO_GTYPE value. In Oracle Spatial, the Get_
Dims and ST_CoordDim methods return the same result.

Get_GType NUMBER Returns the geometry type of a geometry object, as specified in its
SDO_GTYPE value.

Get_LRS_Dim NUMBER Returns the measure dimension of an LRS geometry object, as
specified in its SDO_GTYPE value.

A return value of 0 indicates that the geometry is a standard
(non-LRS) geometry, or is an LRS geometry in the format before
release 9.0.1 and with measure as the default (last) dimension; 3
indicates that the third dimension contains the measure
information; 4 indicates that the fourth dimension contains the
measure information.

Get_WKB BLOB Returns the well-known binary (WKB) format of a geometry
object. (The returned object does not include any SRID
information.)

SDO_GEOMETRY Methods

2-12 Oracle Spatial User’s Guide and Reference

The geometry must have a 4-digit SDO_GTYPE value in the format dltt, as described
in Section 2.2.1.

Example 2–2 shows most of the SDO_GEOMETRY methods. (The Get_WKB method is
not included because its output cannot be displayed by SQL*Plus.)

Example 2–2 SDO_GEOMETRY Methods

SELECT c.shape.Get_Dims()
 FROM cola_markets c WHERE c.name = 'cola_b';

C.SHAPE.GET_DIMS()

 2

SELECT c.shape.Get_GType()
 FROM cola_markets c WHERE c.name = 'cola_b';

C.SHAPE.GET_GTYPE()

 3

SELECT a.route_geometry.Get_LRS_Dim()
 FROM lrs_routes a WHERE a.route_id = 1;

A.ROUTE_GEOMETRY.GET_LRS_DIM()

 3

SELECT c.shape.Get_WKT()
 FROM cola_markets c WHERE c.name = 'cola_b';

C.SHAPE.GET_WKT()
--
POLYGON ((5.0 1.0, 8.0 1.0, 8.0 6.0, 5.0 7.0, 5.0 1.0))

SELECT c.shape.ST_CoordDim()
 FROM cola_markets c WHERE c.name = 'cola_b';

C.SHAPE.ST_COORDDIM()

Get_WKT CLOB Returns the well-known text (WKT) format (explained in
Section 6.7.1.1) of a geometry object. (The returned object does not
include any SRID information.)

ST_CoordDim NUMBER Returns the coordinate dimension (as defined by the ISO/IEC
SQL Multimedia standard) of a geometry object. In Oracle Spatial,
the Get_Dims and ST_CoordDim methods return the same result.

ST_IsValid NUMBER Returns 0 if a geometry object is invalid or 1 if it is valid. (The
ISO/IEC SQL Multimedia standard uses the term well formed for
valid in this context.)

This method uses 0.001 as the tolerance value. (Tolerance is
explained in Section 1.5.5.) To specify a different tolerance value
or to learn more about why a geometry is invalid, use the SDO_
GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function,
which is documented in Chapter 15.

Table 2–3 (Cont.) SDO_GEOMETRY Methods

Name Returns Description

SDO_GEOMETRY Constructors

Spatial Data Types and Metadata 2-13

 2

SELECT c.shape.ST_IsValid()
 FROM cola_markets c WHERE c.name = 'cola_b';

C.SHAPE.ST_ISVALID()

 1

2.4 SDO_GEOMETRY Constructors
The SDO_GEOMETRY object type (described in Section 2.2) has constructors that
create a geometry object from a well-known text (WKT) string in CLOB or
VARCHAR2 format, or from a well-known binary (WKB) object in BLOB format. The
following constructor formats are available:

SDO_GEOMETRY(wkt CLOB, srid NUMBER DEFAULT NULL);
SDO_GEOMETRY(wkt VARCHAR2, srid NUMBER DEFAULT NULL);
SDO_GEOMETRY(wkb BLOB, srid NUMBER DEFAULT NULL);

If the created geometry is inserted into a table, the SRID value used with the
constructor must match the SDO_SRID value of the geometries in the table.

The following simple example constructs a point geometry using a well-known text
string. (In a WKT, spaces separate ordinates of a vertex, and commas separate
vertices.)

SELECT SDO_GEOMETRY('POINT(-79 37)') FROM DUAL;

SDO_GEOMETRY('POINT(-7937)')(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_I
--
SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(-79, 37, NULL), NULL, NULL)

Example 2–3 shows SDO_GEOMETRY constructors that create geometry objects, insert
the objects into a table, and display the objects that were added to the table.

Example 2–3 SDO_GEOMETRY Constructors to Create Geometries

DECLARE
 cola_b_wkb BLOB;
 cola_b_wkt_clob CLOB;
 cola_b_wkt_varchar VARCHAR2(255);
 cola_b_geom SDO_GEOMETRY;

BEGIN
-- Get cola_b geometry into CLOB, VARCHAR2, and BLOB objects,
-- for use by the constructor.
SELECT c.shape.Get_WKT() INTO cola_b_wkt_clob
 FROM cola_markets c WHERE c.name = 'cola_b';
cola_b_wkt_varchar := cola_b_wkt_clob;
SELECT c.shape.Get_WKB() INTO cola_b_wkb
 FROM cola_markets c WHERE c.name = 'cola_b';

-- Use some SDO_GEOMETRY constructors;
-- insert 3 geometries into the table; display the geometries later.
cola_b_geom := SDO_GEOMETRY(cola_b_wkt_clob);
INSERT INTO cola_markets VALUES (101, 'cola_b_from_clob', cola_b_geom);
cola_b_geom := SDO_GEOMETRY(cola_b_wkt_varchar);
INSERT INTO cola_markets VALUES (102, 'cola_b_from_varchar', cola_b_geom);
cola_b_geom := SDO_GEOMETRY(cola_b_wkb);

Geometry Examples

2-14 Oracle Spatial User’s Guide and Reference

INSERT INTO cola_markets VALUES (103, 'cola_b_from_wkb', cola_b_geom);
END;
/

PL/SQL procedure successfully completed.

-- Display the geometries created using SDO_GEOMETRY constructors.
-- All three geometries are identical.
SELECT name, shape FROM cola_markets WHERE mkt_id > 100;

NAME

SHAPE(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
cola_b_from_clob
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5, 1, 8, 1, 8, 6, 5, 7, 5, 1))

cola_b_from_varchar
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5, 1, 8, 1, 8, 6, 5, 7, 5, 1))

cola_b_from_wkb
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5, 1, 8, 1, 8, 6, 5, 7, 5, 1))

2.5 Geometry Examples
This section contains examples of many geometry types:

■ Section 2.5.1, "Rectangle"

■ Section 2.5.2, "Polygon with a Hole"

■ Section 2.5.3, "Compound Line String"

■ Section 2.5.4, "Compound Polygon"

■ Section 2.5.5, "Point"

■ Section 2.5.6, "Oriented Point"

■ Section 2.5.7, "Type 0 (Zero) Element"

■ Section 2.5.8, "Several Geometry Types"

2.5.1 Rectangle
Figure 2–2 illustrates the rectangle that represents cola_a in the example in
Section 2.1.

Geometry Examples

Spatial Data Types and Metadata 2-15

Figure 2–2 Rectangle

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2–2:

■ SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1, 1003, 3). The final 3 in 1,1003,3 indicates that this is a
rectangle. Because it is a rectangle, only two ordinates are specified in SDO_
ORDINATES (lower-left and upper-right).

■ SDO_ORDINATES = (1,1, 5,7). These identify the lower-left and upper-right
ordinates of the rectangle.

Example 2–4 shows a SQL statement that inserts the geometry illustrated in Figure 2–2
into the database.

Example 2–4 SQL Statement to Insert a Rectangle

INSERT INTO cola_markets VALUES(
 1,
 'cola_a',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
 SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
 -- define rectangle (lower left and upper right) with
 -- Cartesian-coordinate data
)
);

2.5.2 Polygon with a Hole
Figure 2–3 illustrates a polygon consisting of two elements: an exterior polygon ring
and an interior polygon ring. The inner element in this example is treated as a void (a
hole).

(1, 7) (5, 7)

(1, 1) (5, 1)

Geometry Examples

2-16 Oracle Spatial User’s Guide and Reference

Figure 2–3 Polygon with a Hole

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2–3:

■ SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1,1003,1, 19,2003,1). There are two triplet elements: 1,1003,1
and 19,2003,1.

1003 indicates that the element is an exterior polygon ring; 2003 indicates that the
element is an interior polygon ring.

19 indicates that the second element (the interior polygon ring) ordinate
specification starts at the 19th number in the SDO_ORDINATES array (that is, 7,
meaning that the first point is 7,5).

■ SDO_ORDINATES = (2,4, 4,3, 10,3, 13,5, 13,9, 11,13, 5,13, 2,11, 2,4,
7,5, 7,10, 10,10, 10,5, 7,5).

■ The area (SDO_GEOM.SDO_AREA function) of the polygon is the area of the
exterior polygon minus the area of the interior polygon. In this example, the area
is 84 (99 - 15).

■ The perimeter (SDO_GEOM.SDO_LENGTH function) of the polygon is the
perimeter of the exterior polygon plus the perimeter of the interior polygon. In
this example, the perimeter is 52.9193065 (36.9193065 + 16).

Example 2–5 shows a SQL statement that inserts the geometry illustrated in Figure 2–3
into the database.

Example 2–5 SQL Statement to Insert a Polygon with a Hole

INSERT INTO cola_markets VALUES(
 10,
 'polygon_with_hole',
 SDO_GEOMETRY(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(10,3)(4,3)

(13,5)

(13,9)

(11,13)(5,13)

(2,11)

(2,4)

(10,10)

(10,5)(7,5)

(7,10)

Geometry Examples

Spatial Data Types and Metadata 2-17

 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,1, 19,2003,1), -- polygon with hole
 SDO_ORDINATE_ARRAY(2,4, 4,3, 10,3, 13,5, 13,9, 11,13, 5,13, 2,11, 2,4,
 7,5, 7,10, 10,10, 10,5, 7,5)
)
);

An example of such a "polygon with a hole" might be a land mass (such as a country
or an island) with a lake inside it. Of course, an actual land mass might have many
such interior polygons: each one would require a triplet element in SDO_ELEM_INFO,
plus the necessary ordinate specification.

Exterior and interior rings cannot be nested. For example, if a country has a lake and
there is an island in the lake (and perhaps a lake on the island), a separate polygon
must be defined for the island; the island cannot be defined as an interior polygon ring
within the interior polygon ring of the lake.

In a multipolygon (polygon collection), rings must be grouped by polygon, and the
first ring of each polygon must be the exterior ring. For example, consider a polygon
collection that contains two polygons (A and B):

■ Polygon A (one interior "hole"): exterior ring A0, interior ring A1

■ Polygon B (two interior "holes"): exterior ring B0, interior ring B1, interior ring B2

The elements in SDO_ELEM_INFO and SDO_ORDINATES must be in one of the
following orders (depending on whether you specify Polygon A or Polygon B first):

■ A0, A1; B0, B1, B2

■ B0, B1, B2; A0, A1

2.5.3 Compound Line String
Figure 2–4 illustrates a crescent-shaped object represented as a compound line string
made up of one straight line segment and one circular arc. Four points are required to
represent this shape: points (10,10) and (10,14) describe the straight line segment, and
points (10,14), (6,10), and (14,10) describe the circular arc.

Geometry Examples

2-18 Oracle Spatial User’s Guide and Reference

Figure 2–4 Compound Line String

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2–4:

■ SDO_GTYPE = 2002. The first 2 indicates two-dimensional, and the second 2
indicates one or more line segments.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1,4,2, 1,2,1, 3,2,2). There are three triplet elements: 1,4,2,
1,2,1, and 3,2,2.

The first triplet indicates that this element is a compound line string made up of
two subelement line strings, which are described with the next two triplets.

The second triplet indicates that the line string is made up of straight line
segments and that the ordinates for this line string start at offset 1. The end point
of this line string is determined by the starting offset of the second line string, 3 in
this instance.

The third triplet indicates that the second line string is made up of circular arcs
with ordinates starting at offset 3. The end point of this line string is determined
by the starting offset of the next element or the current length of the SDO_
ORDINATES array, if this is the last element.

■ SDO_ORDINATES = (10,10, 10,14, 6,10, 14,10).

Example 2–6 shows a SQL statement that inserts the geometry illustrated in Figure 2–4
into the database.

Example 2–6 SQL Statement to Insert a Compound Line String

INSERT INTO cola_markets VALUES(
 11,
 'compound_line_string',
 SDO_GEOMETRY(
 2002,
 NULL,
 NULL,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(10,10)
(6,10)

(10,14)

(14,10)

Geometry Examples

Spatial Data Types and Metadata 2-19

 SDO_ELEM_INFO_ARRAY(1,4,2, 1,2,1, 3,2,2), -- compound line string
 SDO_ORDINATE_ARRAY(10,10, 10,14, 6,10, 14,10)
)
);

2.5.4 Compound Polygon
Figure 2–5 illustrates an ice cream cone-shaped object represented as a compound
polygon made up of one straight line segment and one circular arc. Five points are
required to represent this shape: points (6,10), (10,1), and (14,10) describe one acute
angle-shaped line string, and points (14,10), (10,14), and (6,10) describe the circular arc.
The starting point of the line string and the ending point of the circular arc are the
same point (6,10). The SDO_ELEM_INFO array contains three triplets for this
compound line string. These triplets are {(1,1005,2), (1,2,1), (5,2,2)}.

Figure 2–5 Compound Polygon

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2–5:

■ SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1,1005,2, 1,2,1, 5,2,2). There are three triplet elements:
1,1005,2, 1,2,1, and 5,2,2.

The first triplet indicates that this element is a compound polygon made up of two
subelement line strings, which are described using the next two triplets.

The second triplet indicates that the first subelement line string is made up of
straight line segments and that the ordinates for this line string start at offset 1.
The end point of this line string is determined by the starting offset of the second
line string, 5 in this instance. Because the vertices are two-dimensional, the
coordinates for the end point of the first line string are at ordinates 5 and 6.

(10,1)

(10,14)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(6,10) (14,10)

Geometry Examples

2-20 Oracle Spatial User’s Guide and Reference

The third triplet indicates that the second subelement line string is made up of a
circular arc with ordinates starting at offset 5. The end point of this line string is
determined by the starting offset of the next element or the current length of the
SDO_ORDINATES array, if this is the last element.

■ SDO_ORDINATES = (6,10, 10,1, 14,10, 10,14, 6,10).

Example 2–7 shows a SQL statement that inserts the geometry illustrated in Figure 2–5
into the database.

Example 2–7 SQL Statement to Insert a Compound Polygon

INSERT INTO cola_markets VALUES(
 12,
 'compound_polygon',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1005,2, 1,2,1, 5,2,2), -- compound polygon
 SDO_ORDINATE_ARRAY(6,10, 10,1, 14,10, 10,14, 6,10)
)
);

2.5.5 Point
Figure 2–6 illustrates a point-only geometry at coordinates (12,14).

Figure 2–6 Point-Only Geometry

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2–6:

■ SDO_GTYPE = 2001. The 2 indicates two-dimensional, and the 1 indicates a single
point.

■ SDO_SRID = NULL.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(12,14)

Geometry Examples

Spatial Data Types and Metadata 2-21

■ SDO_POINT = SDO_POINT_TYPE(12, 14, NULL). The SDO_POINT attribute is
defined using the SDO_POINT_TYPE object type, because this is a point-only
geometry.

For more information about the SDO_POINT attribute, see Section 2.2.3.

■ SDO_ELEM_INFO and SDO_ORDINATES are both NULL, as required if the
SDO_POINT attribute is specified.

Example 2–8 shows a SQL statement that inserts the geometry illustrated in Figure 2–6
into the database.

Example 2–8 SQL Statement to Insert a Point-Only Geometry

INSERT INTO cola_markets VALUES(
 90,
 'point_only',
 SDO_GEOMETRY(
 2001,
 NULL,
 SDO_POINT_TYPE(12, 14, NULL),
 NULL,
 NULL));

You can search for point-only geometries based on the X, Y, and Z values in the SDO_
POINT_TYPE specification. Example 2–9 is a query that asks for all points whose first
coordinate (the X value) is 12, and it finds the point that was inserted in Example 2–8.

Example 2–9 Query for Point-Only Geometry Based on a Coordinate Value

SELECT * from cola_markets c WHERE c.shape.SDO_POINT.X = 12;

 MKT_ID NAME
---------- --------------------------------
SHAPE(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
 90 point_only
SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(12, 14, NULL), NULL, NULL)

2.5.6 Oriented Point
An oriented point is a special type of point geometry that includes coordinates
representing the locations of the point and a virtual end point, to indicate an
orientation vector that can be used for rotating a symbol at the point or extending a
label from the point. The main use for an oriented point is in map visualization and
display applications that include symbols, such as a shield symbol to indicate a
highway.

To specify an oriented point:

■ Use an SDO_GTYPE value (explained in Section 2.2.1) for a point or multipoint
geometry.

■ Specify a null value for the SDO_POINT attribute.

■ In the SDO_ELEM_INFO array (explained in Section 2.2.4), specify an additional
triplet, with the second and third values (SDO_ETYPE and SDO_
INTERPRETATION) as 1 and 0. For example, a triplet of 3,1,0 indicates that the
point is an oriented point, with the third number in the SDO_ORDINATES array
being the first coordinate, or x-axis value, of the end point reflecting the
orientation vector for any symbol or label.

Geometry Examples

2-22 Oracle Spatial User’s Guide and Reference

■ In the SDO_ORDINATES array (explained in Section 2.2.5), specify the coordinates
of the end point for the orientation vector from the point, with values between -1
and 1. The orientation start point is assumed to be (0,0), and it is translated to the
location of the physical point to which it corresponds.

Figure 2–7 illustrates an oriented point geometry at coordinates (12,14), with an
orientation vector of approximately 34 degrees (counterclockwise from the x-axis),
reflecting the orientation coordinates 0.3,0.2. (To have an orientation that more
precisely matches a specific angle, refer to the cotangent or tangent values in the tables
in a trigonometry textbook.) The orientation vector in this example goes from (0,0) to
(0.3,0.2) and extends onward. Assuming i=0.3 and j=0.2, the angle in radians can be
calculated as follows: angle in radians = arctan (j/i). The angle is then applied to the
physical point associated with the orientation vector.

Figure 2–7 Oriented Point Geometry

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 2–7:

■ SDO_GTYPE = 2001. The 2 indicates two-dimensional, and the 1 indicates a single
point.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1,1,1, 3,1,0). The final 1,0 in 3,1,0 indicates that this is an
oriented point.

■ SDO_ORDINATES = (12,14, 0.3,0.2). The 12,14 identifies the physical coordinates
of the point; and the 0.3,0.2 identifies the x and y coordinates (assuming 12,14 as
the origin) of the end point of the orientation vector. The resulting orientation
vector slopes upward at about a 34-degree angle.

Example 2–10 shows a SQL statement that inserts the geometry illustrated in
Figure 2–7 into the database.

Example 2–10 SQL Statement to Insert an Oriented Point Geometry

INSERT INTO cola_markets VALUES(
 91,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(12,14, 0.3,0.2)

Geometry Examples

Spatial Data Types and Metadata 2-23

 'oriented_point',
 SDO_GEOMETRY(
 2001,
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1,1, 3,1,0),
 SDO_ORDINATE_ARRAY(12,14, 0.3,0.2)));

The following guidelines apply to the definition of an oriented point:

■ The numbers defining the orientation vector must be between -1 and 1. (In
Example 2–10, these numbers are 0.3 and 0.2.)

■ Multipoint oriented points are allowed (see Example 2–11), but the orientation
information must follow the point being oriented.

The following considerations apply to the dimensionality of the orientation vector for
an oriented point:

■ A two-dimensional point has a two-dimensional orientation vector.

■ A two-dimensional point with an LRS measure (SDO_GTYPE=3301) has a
two-dimensional orientation vector.

■ A three-dimensional point (SDO_GTYPE=3001) has a three-dimensional
orientation vector.

■ A three-dimensional point with an LRS measure (SDO_GTYPE=4401) has a
three-dimensional orientation vector.

■ A four-dimensional point (SDO_GTYPE=4001) has a three-dimensional orientation
vector.

Example 2–11 shows a SQL statement that inserts an oriented multipoint geometry
into the database. The multipoint geometry contains two points, at coordinates (12,14)
and (12, 10), with the two points having different orientation vectors. The statement is
similar to the one in Example 2–10, but in Example 2–11 the second point has an
orientation vector pointing down and to the left at 45 degrees (or, 135 degrees
clockwise from the x-axis), reflecting the orientation coordinates -1,-1.

Example 2–11 SQL Statement to Insert an Oriented Multipoint Geometry

-- Oriented multipoint: 2 points, different orientations
INSERT INTO cola_markets VALUES(
 92,
 'oriented_multipoint',
 SDO_GEOMETRY(
 2005, -- Multipoint
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1,1, 3,1,0, 5,1,1, 7,1,0),
 SDO_ORDINATE_ARRAY(12,14, 0.3,0.2, 12,10, -1,-1)));

2.5.7 Type 0 (Zero) Element
Type 0 (zero) elements are used to model geometry types that are not supported by
Oracle Spatial, such as curves and splines. A type 0 element has an SDO_ETYPE value
of 0. (See Section 2.2.4 for information about the SDO_ETYPE.) Type 0 elements are not
indexed by Oracle Spatial, and they are ignored by Spatial functions and procedures.

Geometry Examples

2-24 Oracle Spatial User’s Guide and Reference

Geometries with type 0 elements must contain at least one nonzero element, that is, an
element with an SDO_ETYPE value that is not 0. The nonzero element should be an
approximation of the unsupported geometry, and therefore it must have both:

■ An SDO_ETYPE value associated with a geometry type supported by Spatial

■ An SDO_INTERPRETATION value that is valid for the SDO_ETYPE value (see
Table 2–2)

(The SDO_INTERPRETATION value for the type 0 element can be any numeric
value, and applications are responsible for determining the validity and
significance of the value.)

The nonzero element is indexed by Spatial, and it will be returned by the spatial index.

The SDO_GTYPE value for a geometry containing a type 0 element must be set to the
value for the geometry type of the nonzero element.

Figure 2–8 shows a geometry with two elements: a curve (unsupported geometry) and
a rectangle (the nonzero element) that approximates the curve. The curve looks like the
letter S, and the rectangle is represented by the dashed line.

Figure 2–8 Geometry with Type 0 (Zero) Element

In the example shown in Figure 2–8:

■ The SDO_GTYPE value for the geometry is 2003 (for a two-dimensional polygon).

■ The SDO_ELEM_INFO array contains two triplets for this compound line string.
For example, the triplets might be {(1,0,57), (11,1003,3)}. That is:

In this example:

■ The type 0 element has an SDO_ETYPE value of 0.

■ The nonzero element (rectangle) has an SDO_ETYPE value of 1003, indicating an
exterior polygon ring.

■ The nonzero element has an SDO_STARTING_OFFSET value of 11 because
ordinate x6 is the eleventh ordinate in the geometry.

■ The type 0 element has an SDO_INTERPRETATION value whose significance is
application-specific. In this example, the SDO_INTERPRETATION value is 57.

Ordinate Starting Offset
(SDO_STARTING_OFFSET)

Element Type
(SDO_ETYPE)

Interpretation
(SDO_INTERPRETATION)

1 0 57

11 1003 3

x1,y1 x2,y2

x3,y3
x4,y4 x5,y5

x6,y6

x7,y7

Geometry Examples

Spatial Data Types and Metadata 2-25

■ The nonzero element has an SDO_INTERPRETATION value that is valid for the
SDO_ETYPE of 1003. In this example, the SDO_INTERPRETATION value is 3,
indicating a rectangle defined by two points (lower-left and upper-right).

Example 2–12 shows a SQL statement that inserts the geometry with a type 0 element
(similar to the geometry illustrated in Figure 2–8) into the database. In the SDO_
ORDINATE_ARRAY structure, the curve is defined by points (6,6), (12,6), (9,8), (6,10),
and (12,10), and the rectangle is defined by points (6,4) and (12,12).

Example 2–12 SQL Statement to Insert a Geometry with a Type 0 Element

INSERT INTO cola_markets VALUES(
 13,
 'type_zero_element_geom',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,0,57, 11,1003,3), -- 1st is type 0 element
 SDO_ORDINATE_ARRAY(6,6, 12,6, 9,8, 6,10, 12,10, 6,4, 12,12)
)
);

2.5.8 Several Geometry Types
Example 2–13 creates a table and inserts various geometries, including multipoints
(point clusters), multipolygons, and collections. At the end, it calls the SDO_
GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function to validate the inserted
geometries. Note that some geometries are deliberately invalid, and their descriptions
include the string INVALID.

Example 2–13 SQL Statements to Insert Various Geometries

CREATE TABLE t1 (
 i NUMBER,
 d VARCHAR2(50),
 g SDO_GEOMETRY
);
INSERT INTO t1 (i, d, g)
VALUES (
 1,
 'Point',
 sdo_geometry (2001, null, null, sdo_elem_info_array (1,1,1),
 sdo_ordinate_array (10,5))
);
INSERT INTO t1 (i, d, g)
VALUES (
 2,
 'Line segment',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,1),
 sdo_ordinate_array (10,10, 20,10))
);
INSERT INTO t1 (i, d, g)
VALUES (
 3,
 'Arc segment',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,2),
 sdo_ordinate_array (10,15, 15,20, 20,15))
);
INSERT INTO t1 (i, d, g)

Geometry Examples

2-26 Oracle Spatial User’s Guide and Reference

VALUES (
 4,
 'Line string',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,1),
 sdo_ordinate_array (10,25, 20,30, 25,25, 30,30))
);
INSERT INTO t1 (i, d, g)
VALUES (
 5,
 'Arc string',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,2),
 sdo_ordinate_array (10,35, 15,40, 20,35, 25,30, 30,35))
);
INSERT INTO t1 (i, d, g)
VALUES (
 6,
 'Compound line string',
 sdo_geometry (2002, null, null,
 sdo_elem_info_array (1,4,3, 1,2,1, 3,2,2, 7,2,1),
 sdo_ordinate_array (10,45, 20,45, 23,48, 20,51, 10,51))
);
INSERT INTO t1 (i, d, g)
VALUES (
 7,
 'Closed line string',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,1),
 sdo_ordinate_array (10,55, 15,55, 20,60, 10,60, 10,55))
);
INSERT INTO t1 (i, d, g)
VALUES (
 8,
 'Closed arc string',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,2),
 sdo_ordinate_array (15,65, 10,68, 15,70, 20,68, 15,65))
);
INSERT INTO t1 (i, d, g)
VALUES (
 9,
 'Closed mixed line',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,4,2, 1,2,1, 7,2,2),
 sdo_ordinate_array (10,78, 10,75, 20,75, 20,78, 15,80, 10,78))
);
INSERT INTO t1 (i, d, g)
VALUES (
 10,
 'Self-crossing line',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,1),
 sdo_ordinate_array (10,85, 20,90, 20,85, 10,90, 10,85))
);
INSERT INTO t1 (i, d, g)
VALUES (
 11,
 'Polygon',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,1),
 sdo_ordinate_array (10,105, 15,105, 20,110, 10,110, 10,105))
);
INSERT INTO t1 (i, d, g)
VALUES (
 12,
 'Arc polygon',

Geometry Examples

Spatial Data Types and Metadata 2-27

 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,2),
 sdo_ordinate_array (15,115, 20,118, 15,120, 10,118, 15,115))
);
INSERT INTO t1 (i, d, g)
VALUES (
 13,
 'Compound polygon',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1005,2, 1,2,1, 7,2,2),
 sdo_ordinate_array (10,128, 10,125, 20,125, 20,128, 15,130, 10,128))
);
INSERT INTO t1 (i, d, g)
VALUES (
 14,
 'Rectangle',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,3),
 sdo_ordinate_array (10,135, 20,140))
);
INSERT INTO t1 (i, d, g)
VALUES (
 15,
 'Circle',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,4),
 sdo_ordinate_array (15,145, 10,150, 20,150))
);
INSERT INTO t1 (i, d, g)
VALUES (
 16,
 'Point cluster',
 sdo_geometry (2005, null, null, sdo_elem_info_array (1,1,3),
 sdo_ordinate_array (50,5, 55,7, 60,5))
);
INSERT INTO t1 (i, d, g)
VALUES (
 17,
 'Multipoint',
 sdo_geometry (2005, null, null, sdo_elem_info_array (1,1,1, 3,1,1, 5,1,1),
 sdo_ordinate_array (65,5, 70,7, 75,5))
);
INSERT INTO t1 (i, d, g)
VALUES (
 18,
 'Multiline',
 sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,1, 5,2,1),
 sdo_ordinate_array (50,15, 55,15, 60,15, 65,15))
);
INSERT INTO t1 (i, d, g)
VALUES (
 19,
 'Multiline - crossing',
 sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,1, 5,2,1),
 sdo_ordinate_array (50,22, 60,22, 55,20, 55,25))
);
INSERT INTO t1 (i, d, g)
VALUES (
 20,
 'Multiarc',
 sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,2, 7,2,2),
 sdo_ordinate_array (50,35, 55,40, 60,35, 65,35, 70,30, 75,35))
);
INSERT INTO t1 (i, d, g)

Geometry Examples

2-28 Oracle Spatial User’s Guide and Reference

VALUES (
 21,
 'Multiline - closed',
 sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,1, 9,2,1),
 sdo_ordinate_array (50,55, 50,60, 55,58, 50,55, 56,58, 60,55, 60,60, 56,58))
);
INSERT INTO t1 (i, d, g)
VALUES (
 22,
 'Multiarc - touching',
 sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,2, 7,2,2),
 sdo_ordinate_array (50,65, 50,70, 55,68, 55,68, 60,65, 60,70))
);
INSERT INTO t1 (i, d, g)
VALUES (
 23,
 'Multipolygon - disjoint',
 sdo_geometry (2007, null, null, sdo_elem_info_array (1,1003,1, 11,1003,3),
 sdo_ordinate_array (50,105, 55,105, 60,110, 50,110, 50,105, 62,108, 65,112))
);
INSERT INTO t1 (i, d, g)
VALUES (
 24,
 'Multipolygon - touching',
 sdo_geometry (2007, null, null, sdo_elem_info_array (1,1003,3, 5,1003,3),
 sdo_ordinate_array (50,115, 55,120, 55,120, 58,122))
);
INSERT INTO t1 (i, d, g)
VALUES (
 25,
 'Multipolygon - tangent * INVALID 13351',
 sdo_geometry (2007, null, null, sdo_elem_info_array (1,1003,3, 5,1003,3),
 sdo_ordinate_array (50,125, 55,130, 55,128, 60,132))
);
INSERT INTO t1 (i, d, g)
VALUES (
 26,
 'Multipolygon - multi-touch',
 sdo_geometry (2007, null, null, sdo_elem_info_array (1,1003,1, 17,1003,1),
 sdo_ordinate_array (50,95, 55,95, 53,96, 55,97, 53,98, 55,99, 50,99, 50,95,
 55,100, 55,95, 60,95, 60,100, 55,100))
);
INSERT INTO t1 (i, d, g)
VALUES (
 27,
 'Polygon with void',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,3, 5,2003,3),
 sdo_ordinate_array (50,135, 60,140, 51,136, 59,139))
);
INSERT INTO t1 (i, d, g)
VALUES (
 28,
 'Polygon with void - reverse',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,2003,3, 5,1003,3),
 sdo_ordinate_array (51,146, 59,149, 50,145, 60,150))
);
INSERT INTO t1 (i, d, g)
VALUES (
 29,
 'Crescent (straight lines) * INVALID 13349',

Geometry Metadata Views

Spatial Data Types and Metadata 2-29

 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,1),
 sdo_ordinate_array (10,175, 10,165, 20,165, 15,170, 25,170, 20,165,
 30,165, 30,175, 10,175))
);
INSERT INTO t1 (i, d, g)
VALUES (
 30,
 'Crescent (arcs) * INVALID 13349',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,2),
 sdo_ordinate_array (14,180, 10,184, 14,188, 18,184, 14,180, 16,182,
 14,184, 12,182, 14,180))
);
INSERT INTO t1 (i, d, g)
VALUES (
 31,
 'Heterogeneous collection',
 sdo_geometry (2004, null, null, sdo_elem_info_array (1,1,1, 3,2,1, 7,1003,1),
 sdo_ordinate_array (10,5, 10,10, 20,10, 10,105, 15,105, 20,110, 10,110,
 10,105))
);
INSERT INTO t1 (i, d, g)
VALUES (
 32,
 'Polygon+void+island touch',
 sdo_geometry (2007, null, null,
 sdo_elem_info_array (1,1003,1, 11,2003,1, 31,1003,1),
 sdo_ordinate_array (50,168, 50,160, 55,160, 55,168, 50,168, 51,167,
 54,167, 54,161, 51,161, 51,162, 52,163, 51,164, 51,165, 51,166, 51,167,
 52,166, 52,162, 53,162, 53,166, 52,166))
);
COMMIT;
SELECT i, d, SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT (g, 0.5) FROM t1;

2.6 Geometry Metadata Views
The geometry metadata describing the dimensions, lower and upper bounds, and
tolerance in each dimension is stored in a global table owned by MDSYS (which users
should never directly update). Each Spatial user has the following views available in
the schema associated with that user:

■ USER_SDO_GEOM_METADATA contains metadata information for all spatial
tables owned by the user (schema). This is the only view that you can update, and
it is the one in which Spatial users must insert metadata related to spatial tables.

■ ALL_SDO_GEOM_METADATA contains metadata information for all spatial
tables on which the user has SELECT permission.

Spatial users are responsible for populating these views. For each spatial column, you
must insert an appropriate row into the USER_SDO_GEOM_METADATA view. Oracle
Spatial ensures that the ALL_SDO_GEOM_METADATA view is also updated to reflect
the rows that you insert into USER_SDO_GEOM_METADATA.

Each metadata view has the following definition:

Note: These views were new for release 8.1.6. If you are
upgrading from an earlier release of Spatial, see Appendix A and
the information about the SDO_MIGRATE.TO_CURRENT
procedure in Chapter 17.

Geometry Metadata Views

2-30 Oracle Spatial User’s Guide and Reference

(
 TABLE_NAME VARCHAR2(32),
 COLUMN_NAME VARCHAR2(32),
 DIMINFO SDO_DIM_ARRAY,
 SRID NUMBER
);

In addition, the ALL_SDO_GEOM_METADATA view has an OWNER column
identifying the schema that owns the table specified in TABLE_NAME.

The following considerations apply to schema, table, and column names that are
stored in any Oracle Spatial metadata views:

■ The name must contain only letters, numbers, and underscores. For example, the
name cannot contain a space (), an apostrophe ('), a quotation mark ("), or a
comma (,).

■ All letters in the names are converted to uppercase before the names are stored in
geometry metadata views or before the tables are accessed. This conversion also
applies to any schema name specified with the table name.

2.6.1 TABLE_NAME
The TABLE_NAME column contains the name of a feature table, such as COLA_
MARKETS, that has a column of type SDO_GEOMETRY.

The table name is stored in the spatial metadata views in all uppercase characters.

The table name cannot contain spaces or mixed-case letters in a quoted string when
inserted into the USER_SDO_GEOM_METADATA view, and it cannot be in a quoted
string when used in a query (unless it is in all uppercase characters).

The spatial feature table cannot be an index-organized table if you plan to create a
spatial index on the spatial column.

2.6.2 COLUMN_NAME
The COLUMN_NAME column contains the name of the column of type SDO_
GEOMETRY. For the COLA_MARKETS table, this column is called SHAPE.

The column name is stored in the spatial metadata views in all uppercase characters.

The column name cannot contain spaces or mixed-case letters in a quoted string when
inserted into the USER_SDO_GEOM_METADATA view, and it cannot be in a quoted
string when used in a query (unless it is in all uppercase characters).

2.6.3 DIMINFO
The DIMINFO column is a varying length array of an object type, ordered by
dimension, and has one entry for each dimension. The SDO_DIM_ARRAY type is
defined as follows:

Create Type SDO_DIM_ARRAY as VARRAY(4) of SDO_DIM_ELEMENT;

The SDO_DIM_ELEMENT type is defined as:

Create Type SDO_DIM_ELEMENT as OBJECT (
 SDO_DIMNAME VARCHAR2(64),
 SDO_LB NUMBER,
 SDO_UB NUMBER,
 SDO_TOLERANCE NUMBER);

Spatial Index-Related Structures

Spatial Data Types and Metadata 2-31

The SDO_DIM_ARRAY instance is of size n if there are n dimensions. That is,
DIMINFO contains 2 SDO_DIM_ELEMENT instances for two-dimensional
geometries, 3 instances for three-dimensional geometries, and 4 instances for
four-dimensional geometries. Each SDO_DIM_ELEMENT instance in the array must
have valid (not null) values for the SDO_LB, SDO_UB, and SDO_TOLERANCE
attributes.

For an explanation of tolerance and how to determine the appropriate SDO_
TOLERANCE value, see Section 1.5.5, especially Section 1.5.5.1.

Spatial assumes that the varying length array is ordered by dimension. The DIMINFO
varying length array must be ordered by dimension in the same way the ordinates for
the points in SDO_ORDINATES varying length array are ordered. For example, if the
SDO_ORDINATES varying length array contains {X1, Y1, ..., Xn, Yn}, then the first
DIMINFO entry must define the X dimension and the second DIMINFO entry must
define the Y dimension.

Example 2–1 in Section 2.1 shows the use of the SDO_GEOMETRY and SDO_DIM_
ARRAY types. This example demonstrates how geometry objects (hypothetical market
areas for colas) are represented, and how the COLA_MARKETS feature table and the
USER_SDO_GEOM_METADATA view are populated with the data for those objects.

2.6.4 SRID
The SRID column should contain either of the following: the SRID value for the
coordinate system for all geometries in the column, or NULL if no specific coordinate
system should be associated with the geometries. (For information about coordinate
systems, see Chapter 6.)

2.7 Spatial Index-Related Structures
This section describes the structure of the tables containing the spatial index data and
metadata. Concepts and usage notes for spatial indexing are explained in Section 1.7.
The spatial index data and metadata are stored in tables that are created and
maintained by the Spatial indexing routines. These tables are created in the schema of
the owner of the feature (underlying) table that has a spatial index created on a
column of type SDO_GEOMETRY.

2.7.1 Spatial Index Views
There are two sets of spatial index metadata views for each schema (user): xxx_SDO_
INDEX_INFO and xxx_SDO_INDEX_METADATA, where xxx can be USER or ALL.
These views are read-only to users; they are created and maintained by the Spatial
indexing routines.

2.7.1.1 xxx_SDO_INDEX_INFO Views
The following views contain basic information about spatial indexes:

■ USER_SDO_INDEX_INFO contains index information for all spatial tables owned
by the user.

Note: The number of dimensions reflected in the DIMINFO
information must match the number of dimensions of each
geometry object in the layer.

Spatial Index-Related Structures

2-32 Oracle Spatial User’s Guide and Reference

■ ALL_SDO_INDEX_INFO contains index information for all spatial tables on
which the user has SELECT permission.

The USER_SDO_INDEX_INFO and ALL_SDO_INDEX_INFO views contain the same
columns, as shown Table 2–4, except that the USER_SDO_INDEX_INFO view does not
contain the SDO_INDEX_OWNER column. (The columns are listed in their order in
the view definition.)

2.7.1.2 xxx_SDO_INDEX_METADATA Views
The following views contain detailed information about spatial index metadata:

■ USER_SDO_INDEX_METADATA contains index information for all spatial tables
owned by the user. (USER_SDO_INDEX_METADATA is the same as SDO_
INDEX_METADATA, which was the only metadata view for Oracle Spatial release
8.1.5.)

■ ALL_SDO_INDEX_METADATA contains index information for all spatial tables
on which the user has SELECT permission.

The USER_SDO_INDEX_METADATA and ALL_SDO_INDEX_METADATA views
contain the same columns, as shown Table 2–5. (The columns are listed in their order
in the view definition.)

Table 2–4 Columns in the xxx_SDO_INDEX_INFO Views

Column Name Data Type Purpose

SDO_INDEX_OWNER VARCHAR2 Owner of the index (ALL_SDO_INDEX_INFO
views only).

INDEX_NAME VARCHAR2 Name of the index.

TABLE_NAME VARCHAR2 Name of the table containing the column on which
this index is built.

COLUMN_NAME VARCHAR2 Name of the column on which this index is built.

SDO_INDEX_TYPE VARCHAR2 Contains QTREE (for a quadtree index) or RTREE
(for an R-tree index).

SDO_INDEX_TABLE VARCHAR2 Name of the spatial index table (described in
Section 2.7.2).

SDO_INDEX_STATUS VARCHAR2 (Deprecated; reserved for Oracle use.)

Note: These views were new for release 8.1.6. If you are
upgrading from an earlier release of Spatial, see Appendix A.

Table 2–5 Columns in the xxx_SDO_INDEX_METADATA Views

Column Name Data Type Purpose

SDO_INDEX_OWNER VARCHAR2 Owner of the index.

SDO_INDEX_TYPE VARCHAR2 Contains QTREE (for a quadtree index) or RTREE
(for an R-tree index).

SDO_LEVEL NUMBER The fixed tiling level at which to tile all objects in
the geometry column for a quadtree index.

SDO_NUMTILES NUMBER Suggested number of tiles per object that should
be used to approximate the shape for a quadtree
index.

Spatial Index-Related Structures

Spatial Data Types and Metadata 2-33

SDO_MAXLEVEL NUMBER Maximum level for any tile for any object for a
quadtree index. It will always be greater than the
SDO_LEVEL value.

SDO_COMMIT_INTERVAL NUMBER Number of geometries (rows) to process, during
index creation, before committing the insertion of
spatial index entries into the SDOINDEX table.
(Applies to quadtree indexes only.)

SDO_INDEX_TABLE VARCHAR2 Name of the spatial index table (described in
Section 2.7.2).

SDO_INDEX_NAME VARCHAR2 Name of the index.

SDO_INDEX_PRIMARY NUMBER Indicates if this is a primary or secondary index. 1
= primary, 2 = secondary.

SDO_TSNAME VARCHAR2 Schema name of the SDO_INDEX_TABLE.

SDO_COLUMN_NAME VARCHAR2 Name of the column on which this index is built.

SDO_RTREE_HEIGHT NUMBER Height of the R-tree.

SDO_RTREE_NUM_
NODES

NUMBER Number of nodes in the R-tree.

SDO_RTREE_
DIMENSIONALITY

NUMBER Number of dimensions used internally by Spatial.
This may be different from the number of
dimensions indexed, which is controlled by the
sdo_indx_dims keyword in the CREATE
INDEX or ALTER INDEX statement, and which is
stored in the SDO_INDEX_DIMS column in this
view. For example, for an index on geodetic data,
the SDO_RTREE_DIMENSIONALITY value is 3,
but the SDO_INDEX_DIMS value is 2.

SDO_RTREE_FANOUT NUMBER Maximum number of children in each R-tree
node.

SDO_RTREE_ROOT VARCHAR2 Rowid corresponding to the root node of the
R-tree in the index table.

SDO_RTREE_SEQ_NAME VARCHAR2 Sequence name associated with the R-tree.

SDO_FIXED_META RAW If applicable, this column contains the metadata
portion of the SDO_GROUPCODE or SDO_
CODE for a fixed-level index.

SDO_TABLESPACE VARCHAR2 Same as in the SQL CREATE TABLE statement.
Tablespace in which to create the SDOINDEX
table.

SDO_INITIAL_EXTENT VARCHAR2 Same as in the SQL CREATE TABLE statement.

SDO_NEXT_EXTENT VARCHAR2 Same as in the SQL CREATE TABLE statement.

SDO_PCTINCREASE NUMBER Same as in the SQL CREATE TABLE statement.

SDO_MIN_EXTENTS NUMBER Same as in the SQL CREATE TABLE statement.

SDO_MAX_EXTENTS NUMBER Same as in the SQL CREATE TABLE statement.

SDO_INDEX_DIMS NUMBER Number of dimensions of the geometry objects in
the column on which this index is built, as
determined by the value of the sdo_indx_dims
keyword in the CREATE INDEX or ALTER
INDEX statement.

Table 2–5 (Cont.) Columns in the xxx_SDO_INDEX_METADATA Views

Column Name Data Type Purpose

Spatial Index-Related Structures

2-34 Oracle Spatial User’s Guide and Reference

2.7.2 Spatial Index Table Definition
For an R-tree index, a spatial index table (each SDO_INDEX_TABLE entry as described
in Table 2–5 in Section 2.7.1.2) contains the columns shown in Table 2–6.

SDO_LAYER_GTYPE VARCHAR2 Contains DEFAULT if the layer can contain both
point and polygon data, or a value from the
Geometry Type column of Table 2–1 in
Section 2.2.1.

SDO_RTREE_PCTFREE NUMBER Minimum percentage of slots in each index tree
node to be left empty when an R-tree index is
created.

SDO_INDEX_PARTITION VARCHAR2 For a partitioned index, name of the index
partition.

SDO_PARTITIONED NUMBER Contains 0 if the index is not partitioned or 1 if
the index is partitioned.

SDO_RTREE_QUALITY NUMBER Quality score for an index. See the information
about R-tree quality in Section 1.7.2.

SDO_INDEX_VERSION NUMBER Internal version number of the index.

SDO_INDEX_GEODETIC VARCHAR2 Contains TRUE if the index is geodetic (see
Section 4.1.1) and FALSE if the index is not
geodetic.

SDO_INDEX_STATUS VARCHAR2 (Deprecated; reserved for Oracle use.)

SDO_NL_INDEX_TABLE VARCHAR2 Name of a separate index table (with a name in
the form MDNT_...$) for nonleaf nodes of the
index. For more information, see the description
of the sdo_non_leaf_tbl parameter for the
CREATE INDEX statement in Chapter 10.

SDO_DML_BATCH_SIZE NUMBER Number of index updates to be processed in each
batch of updates after a commit operation. For
more information, see the description of the sdo_
dml_batch_size parameter for the CREATE
INDEX statement in Chapter 10.

SDO_RTREE_EXT_XPND NUMBER (Reserved for future use.)

SDO_ROOT_MBR SDO_
GEOMETRY

Minimum bounding rectangle of the maximum
extent of the spatial layer. This is greater than or
equal to the MBR of the current extent, and is
reset to reflect the current extent when the index
is rebuilt.

Table 2–6 Columns in an R-Tree Spatial Index Data Table

Column Name Data Type Purpose

NODE_ID NUMBER Unique ID number for this node of the tree.

NODE_LEVEL NUMBER Level of the node in the tree. Leaf nodes (nodes whose
entries point to data items in the base table) are at level 1,
their parent nodes are at level 2, and so on.

INFO BLOB Other information in a node. Includes an array of <child_
mbr, child_rowid> pairs (maximum of fanout value, or
number of children for such pairs in each R-tree node),
where child_rowid is the rowid of a child node, or the
rowid of a data item from the base table.

Table 2–5 (Cont.) Columns in the xxx_SDO_INDEX_METADATA Views

Column Name Data Type Purpose

Unit of Measurement Support

Spatial Data Types and Metadata 2-35

2.7.3 R-Tree Index Sequence Object
Each R-tree spatial index table has an associated sequence object (SDO_RTREE_SEQ_
NAME in the USER_SDO_INDEX_METADATA view, described in Table 2–5 in
Section 2.7.1.2). The sequence is used to ensure that simultaneous updates can be
performed to the index by multiple concurrent users.

The sequence name is the index table name with the letter S replacing the letter T
before the underscore (for example, the sequence object MDRS_5C01$ is associated
with the index table MDRT_5C01$).

2.8 Unit of Measurement Support
Geometry functions that involve measurement allow an optional unit parameter to
specify the unit of measurement for a specified distance or area, if a georeferenced
coordinate system (SDO_SRID value) is associated with the input geometry or
geometries. The unit parameter is not valid for geometries with a null SDO_SRID
value (that is, an orthogonal Cartesian system). For information about support for
coordinate systems, see Chapter 6.

The default unit of measure is the one associated with the georeferenced coordinate
system. The unit of measure for most coordinate systems is the meter, and in these
cases the default unit for distances is meter and the default unit for areas is square
meter. By using the unit parameter, however, you can have Spatial automatically
convert and return results that are more meaningful to application users, for example,
displaying the distance to a restaurant in miles.

The unit parameter must be enclosed in single quotation marks and contain the
string unit= and a valid UNIT_OF_MEAS_NAME value from the SDO_UNITS_OF_
MEASURE table (described in Section 6.6.27). For example, 'unit=KM' in the following
example (using data and definitions from Example 6–7 in Section 6.11) specifies
kilometers as the unit of measurement:

SELECT c.name, SDO_GEOM.SDO_LENGTH(c.shape, m.diminfo, 'unit=KM')
 FROM cola_markets_cs c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS_CS' AND m.column_name = 'SHAPE';

Spatial uses the information in the SDO_UNITS_OF_MEASURE table (described in
Section 6.6.27) to determine which unit names are valid and what ratios to use in
comparing or converting between different units. For convenience, you can also use
the following legacy views to see the angle, area, and distance units of measure:

■ MDSYS.SDO_ANGLE_UNITS (described in Section 6.7.2)

■ MDSYS.SSDO_AREA_UNITS (described in Section 6.7.3)

■ MDSYS.SSDO_DIST_UNITS (described in Section 6.7.5)

Unit of Measurement Support

2-36 Oracle Spatial User’s Guide and Reference

Loading Spatial Data 3-1

3
Loading Spatial Data

This chapter describes how to load spatial data into a database, including storing the
data in a table with a column of type SDO_GEOMETRY. After you have loaded spatial
data, you can create a spatial index for it and perform queries on it, as described in
Chapter 4.

The process of loading data can be classified into two categories:

■ Bulk loading of data (see Section 3.1)

This process is used to load large volumes of data into the database and uses the
SQL*Loader utility to load the data.

■ Transactional insert operations (see Section 3.2)

This process is typically used to insert relatively small amounts of data into the
database using the INSERT statement in SQL.

3.1 Bulk Loading
Bulk loading can import large amounts of data into an Oracle database. Bulk loading is
accomplished with the SQL*Loader utility. (For information about SQL*Loader, see
Oracle Database Utilities.)

3.1.1 Bulk Loading SDO_GEOMETRY Objects
Example 3–1 is the SQL*Loader control file for loading four geometries. When this
control file is used with SQL*Loader, it loads the same cola market geometries that are
inserted using SQL statements in Example 2–1 in Section 2.1.

Example 3–1 Control File for a Bulk Load of Cola Market Geometries

LOAD DATA
INFILE *
TRUNCATE
CONTINUEIF NEXT(1:1) = '#'
INTO TABLE COLA_MARKETS
FIELDS TERMINATED BY '|'
TRAILING NULLCOLS (
mkt_id INTEGER EXTERNAL,
name CHAR,
shape COLUMN OBJECT
(
SDO_GTYPE INTEGER EXTERNAL,
SDO_ELEM_INFO VARRAY TERMINATED BY '|/'
(elements FLOAT EXTERNAL),

Bulk Loading

3-2 Oracle Spatial User’s Guide and Reference

SDO_ORDINATES VARRAY TERMINATED BY '|/'
(ordinates FLOAT EXTERNAL)
)
)
begindata
 1|cola_a|
#2003|1|1003|3|/
#1|1|5|7|/
 2|cola_b|
#2003|1|1003|1|/
#5|1|8|1|8|6|5|7|5|1|/
 3|cola_c|
#2003|1|1003|1|/
#3|3|6|3|6|5|4|5|3|3|/
 4|cola_d|
#2003|1|1003|4|/
#8|7|10|9|8|11|/

Notes on Example 3–1:

■ The EXTERNAL keyword in the definition mkt_id INTEGER EXTERNAL means
that each value to be inserted into the MKT_ID column (1, 2, 3, and 4 in this
example) is an integer in human-readable form, not binary format.

■ In the data after begindata, each MKT_ID value is preceded by one space,
because the CONTINUEIF NEXT(1:1) = '#' specification causes the first
position of each data line to be ignored unless it is the number sign (#)
continuation character.

Example 3–2 assumes that a table named POLY_4PT was created as follows:

CREATE TABLE POLY_4PT (GID VARCHAR2(32),
 GEOMETRY SDO_GEOMETRY);

Assume that the ASCII data consists of a file with delimited columns and separate
rows fixed by the limits of the table with the following format:

geometry rows: GID, GEOMETRY

The coordinates in the GEOMETRY column represent polygons. Example 3–2 shows
the control file for loading the data.

Example 3–2 Control File for a Bulk Load of Polygons

LOAD DATA
 INFILE *
 TRUNCATE
 CONTINUEIF NEXT(1:1) = '#'
 INTO TABLE POLY_4PT
 FIELDS TERMINATED BY '|'
 TRAILING NULLCOLS (
 GID INTEGER EXTERNAL,
 GEOMETRY COLUMN OBJECT
 (
 SDO_GTYPE INTEGER EXTERNAL,
 SDO_ELEM_INFO VARRAY TERMINATED BY '|/'
 (elements FLOAT EXTERNAL),
 SDO_ORDINATES VARRAY TERMINATED BY '|/'
 (ordinates FLOAT EXTERNAL)
)
)
begindata

Transactional Insert Operations Using SQL

Loading Spatial Data 3-3

 1|2003|1|1003|1|/
#-122.4215|37.7862|-122.422|37.7869|-122.421|37.789|-122.42|37.7866|
#-122.4215|37.7862|/
 2|2003|1|1003|1|/
#-122.4019|37.8052|-122.4027|37.8055|-122.4031|37.806|-122.4012|37.8052|
#-122.4019|37.8052|/
 3|2003|1|1003|1|/
#-122.426|37.803|-122.4242|37.8053|-122.42355|37.8044|-122.4235|37.8025|
#-122.426|37.803|/

3.1.2 Bulk Loading Point-Only Data in SDO_GEOMETRY Objects
Example 3–3 shows a control file for loading a table with point data.

Example 3–3 Control File for a Bulk Load of Point-Only Data

LOAD DATA
 INFILE *
 TRUNCATE
 CONTINUEIF NEXT(1:1) = '#'
 INTO TABLE POINT
 FIELDS TERMINATED BY '|'
 TRAILING NULLCOLS (
 GID INTEGER EXTERNAL,
 GEOMETRY COLUMN OBJECT
 (
 SDO_GTYPE INTEGER EXTERNAL,
 SDO_POINT COLUMN OBJECT
 (X FLOAT EXTERNAL,
 Y FLOAT EXTERNAL)
)
)

BEGINDATA
 1|
200
1| -122.4215| 37.7862|
 2|
200
1| -122.4019| 37.8052|
 3|
200
1| -122.426| 37.803|
 4|
200
1| -122.4171| 37.8034|
 5|
200
1| -122.416151| 37.8027228|

3.2 Transactional Insert Operations Using SQL
Oracle Spatial uses standard Oracle tables that can be accessed or loaded with
standard SQL syntax. This section contains examples of transactional insertions into
columns of type SDO_GEOMETRY. This process is typically used to add relatively
small amounts of data into the database.

The INSERT statement in Oracle SQL has a limit of 999 arguments. Therefore, you
cannot create a variable-length array of more than 999 elements using the SDO_

Transactional Insert Operations Using SQL

3-4 Oracle Spatial User’s Guide and Reference

GEOMETRY constructor inside a transactional INSERT statement; however, you can
insert a geometry using a host variable, and the host variable can be built using the
SDO_GEOMETRY constructor with more than 999 values in the SDO_ORDINATE_
ARRAY specification. (The host variable is an OCI, PL/SQL, or Java program
variable.)

To perform transactional insertions of geometries, you can create a procedure to insert
a geometry, and then invoke that procedure on each geometry to be inserted.
Example 3–4 creates a procedure to perform the insert operation.

Example 3–4 Procedure to Perform a Transactional Insert Operation

CREATE OR REPLACE PROCEDURE
 INSERT_GEOM(GEOM SDO_GEOMETRY)
IS

BEGIN
 INSERT INTO TEST_1 VALUES (GEOM);
 COMMIT;
END;
/

Using the procedure created in Example 3–4, you can insert data by using a PL/SQL
block, such as the one in Example 3–5, which loads a geometry into the variable
named geom and then invokes the INSERT_GEOM procedure to insert that geometry.

Example 3–5 PL/SQL Block Invoking a Procedure to Insert a Geometry

DECLARE
geom SDO_geometry :=
 SDO_geometry (2003, null, null,
 SDO_elem_info_array (1,1003,3),
 SDO_ordinate_array (-109,37,-102,40));
BEGIN
 INSERT_GEOM(geom);
 COMMIT;
END;
/

For additional examples with various geometry types, see the following:

■ Rectangle: Example 2–4 in Section 2.5.1

■ Polygon with a hole: Example 2–5 in Section 2.5.2

■ Compound line string: Example 2–6 in Section 2.5.3

■ Compound polygon: Example 2–7 in Section 2.5.4

■ Point: Example 2–8 and Example 2–9 in Section 2.5.5

■ Oriented point: Example 2–10 in Section 2.5.6

■ Type 0 (zero) element: Example 2–12 in Section 2.5.7

Indexing and Querying Spatial Data 4-1

4
Indexing and Querying Spatial Data

After you have loaded spatial data (discussed in Chapter 3), you should create a
spatial index on it to enable efficient query performance using the data. This chapter
describes how to:

■ Create a spatial index (see Section 4.1)

■ Query spatial data efficiently, based on an understanding of the Oracle Spatial
query model and primary and secondary filtering (see Section 4.2)

4.1 Creating a Spatial Index
Once data has been loaded into the spatial tables through either bulk or transactional
loading, a spatial index (that is, a spatial R-tree index) must be created on the tables for
efficient access to the data. For example, the following statement creates a spatial index
named territory_idx using default values for all parameters:

CREATE INDEX territory_idx ON territories (territory_geom)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

For detailed information about options for creating a spatial index, see the
documentation for the CREATE INDEX statement in Chapter 10.

If the index creation does not complete for any reason, the index is invalid and must be
deleted with the DROP INDEX <index_name> [FORCE] statement.

Spatial indexes can be built on two, three, or four dimensions of data. The default
number of dimensions is two, but if the data has more than two dimensions, you can
use the sdo_indx_dims parameter keyword to specify the number of dimensions on
which to build the index. However, if a spatial index has been built on more than two
dimensions of a layer, the only spatial operator that can be used against that layer is
SDO_FILTER (the primary filter or index-only query), which considers all dimensions.
The SDO_RELATE, SDO_NN, and SDO_WITHIN_DISTANCE operators are disabled
if the index has been built on more than two dimensions.

If the rollback segment is not large enough, an attempt to create a spatial index will
fail. The rollback segment should be 100*n bytes, where n is the number of rows of
data to be indexed. For example, if the table contains 1 million (1,000,000) rows, the
rollback segment size should be 100,000,000 (100 million) bytes.

To ensure an adequate rollback segment, or if you have tried to create a spatial index
and received an error that a rollback segment cannot be extended, review (or have a
DBA review) the size and structure of the rollback segments. Create a public rollback
segment of the appropriate size, and place that rollback segment online. In addition,
ensure that any small inappropriate rollback segments are placed offline during large

Creating a Spatial Index

4-2 Oracle Spatial User’s Guide and Reference

spatial index operations. For information about performing these operations on a
rollback segment, see Oracle Database Administrator's Guide.

The system parameter SORT_AREA_SIZE affects the amount of time required to create
the index. The SORT_AREA_SIZE value is the maximum amount, in bytes, of memory
to use for a sort operation. The optimal value depends on the database size, but a good
guideline is to make it at least 1 million bytes when you create a spatial index. To
change the SORT_AREA_SIZE value, use the ALTER SESSION statement. For
example, to change the value to 20 million bytes:

ALTER SESSION SET SORT_AREA_SIZE = 20000000;

The tablespace specified with the tablespace keyword in the CREATE INDEX
statement (or the default tablespace if the tablespace keyword is not specified) is
used to hold both the index data table and some transient tables that are created for
internal computations. If you specify WORK_TABLESPACE as the tablespace, the
transient tables are stored in the work tablespace.

For large tables (over 1 million rows), a temporary tablespace may be needed to
perform internal sorting operations. The recommended size for this temporary
tablespace is 100*n bytes, where n is the number of rows in the table, up to a maximum
requirement of 1 gigabyte of temporary tablespace.

To estimate the space that will be needed to create a spatial index, use the SDO_
TUNE.ESTIMATE_RTREE_INDEX_SIZE function, described in Chapter 19.

4.1.1 Indexing Geodetic Data
To take full advantage of Spatial features, you must index geodetic data using a
geodetic R-tree index. Geodetic data consists of geometries that have geodetic SDO_
SRID values, reflecting the fact that they are based on a geodetic coordinate system
(such as using longitude and latitude) as opposed to a flat or projected plane
coordinate system. (Chapter 6 explains coordinate systems and related concepts.) A
geodetic index is one that provides the full range of Spatial features with geodetic data.
Thus, it is highly recommended that you use a geodetic index with geodetic data.

Only R-tree indexes can be geodetic indexes. Quadtree indexes cannot be geodetic
indexes. If you create an R-tree or quadtree index and specify 'geodetic=false' in
the CREATE INDEX statement, the index is non-geodetic. The following notes and
restrictions apply to non-geodetic indexes:

■ If you create a non-geodetic index on geodetic data, you cannot use the unit
parameter with the SDO_WITHIN_DISTANCE operator or the SDO_NN_
DISTANCE ancillary operator with the SDO_NN operator.

■ If you create a non-geodetic index on projected data that has a projected SDO_
SRID value, you can use the full range of Spatial features.

■ If you create a non-geodetic index on projected data that has a null SDO_SRID
value, you cannot use the unit parameter with the SDO_WITHIN_DISTANCE
operator or the SDO_NN_DISTANCE ancillary operator with the SDO_NN
operator.

For additional information, see the Usage Notes about the geodetic parameter for
the CREATE INDEX statement in Chapter 10.

4.1.2 Constraining Data to a Geometry Type
When you create or rebuild a spatial index, you can ensure that all geometries that are
in the table or that are inserted later are of a specified geometry type. To constrain the

Creating a Spatial Index

Indexing and Querying Spatial Data 4-3

data to a geometry type in this way, use the layer_gtype keyword in the
PARAMETERS clause of the CREATE INDEX or ALTER INDEX REBUILD statement,
and specify a value from the Geometry Type column of Table 2–1 in Section 2.2.1. For
example, to constrain spatial data in a layer to polygons:

CREATE INDEX cola_spatial_idx
ON cola_markets(shape)
INDEXTYPE IS MDSYS.SPATIAL_INDEX
PARAMETERS ('layer_gtype=POLYGON');

The geometry types in Table 2–1 are considered as a hierarchy when data is checked:

■ The MULTI forms include the regular form also. For example, specifying 'layer_
gtype=MULTIPOINT' allows the layer to include both POINT and MULTIPOINT
geometries.

■ COLLECTION allows the layer to include all types of geometries.

4.1.3 Creating a Cross-Schema Index
You can create a spatial index on a table that is not in your schema. Assume that user B
wants to create a spatial index on column GEOMETRY in table T1 under user A's
schema. Follow these steps:

1. Connect to the database as a privileged user (for example, as SYSTEM), and
execute the following statement:

GRANT create table, create sequence to B;

2. Connect as a privileged user or as user A (or have user A connect), and execute the
following statement:

GRANT select, index on A.T1 to B;

3. Connect as user B and execute a statement such as the following:

CREATE INDEX t1_spatial_idx on A.T1(geometry)
 INDEXTYPE IS mdsys.spatial_index;

4.1.4 Using Partitioned Spatial Indexes
You can create a partitioned spatial index on a partitioned table. This section describes
usage considerations specific to Oracle Spatial. For a detailed explanation of
partitioned tables and partitioned indexes, see Oracle Database Administrator's Guide.

A partitioned spatial index can provide the following benefits:

■ Reduced response times for long-running queries, because partitioning reduces
disk I/O operations

■ Reduced response times for concurrent queries, because I/O operations run
concurrently on each partition

■ Easier index maintenance, because of partition-level create and rebuild operations

Indexes on partitions can be rebuilt without affecting the queries on other
partitions, and storage parameters for each local index can be changed
independent of other partitions.

■ Parallel query on multiple partition searching

The degree of parallelism is the value from the DEGREE column in the row for the
index in the USER_INDEXES view (that is, the value specified or defaulted for the

Creating a Spatial Index

4-4 Oracle Spatial User’s Guide and Reference

PARALLEL keyword with the CREATE INDEX, ALTER INDEX, or ALTER INDEX
REBUILD statement).

■ Improved query processing in multiprocessor system environments

In a multiprocessor system environment, if a spatial operator is invoked on a table
with partitioned spatial index and if multiple partitions are involved in the query,
multiple processors can be used to evaluate the query. The number of processors
used is determined by the degree of parallelism and the number of partitions used
in evaluating the query.

The following restrictions apply to spatial index partitioning:

■ The partition key for spatial tables must be a scalar value, and must not be a
spatial column.

■ Only range partitioning is supported on the underlying table. Hash and composite
partitioning are not currently supported for partitioned spatial indexes.

To create a partitioned spatial index, you must specify the LOCAL keyword. For
example:

CREATE INDEX counties_idx ON counties(geometry)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX LOCAL;

In this example, the default values are used for the number and placement of index
partitions, namely:

■ Index partitioning is based on the underlying table partitioning. For each table
partition, a corresponding index partition is created.

■ Each index partition is placed in the default tablespace.

If you do specify parameters for individual partitions, the following considerations
apply:

■ The storage characteristics for each partition can be the same or different for each
partition. If they are different, it may enable parallel I/O (if the tablespaces are on
different disks) and may improve performance.

■ The sdo_indx_dims value must be the same for all partitions.

■ The layer_gtype parameter value (see Section 4.1.2) used for each partition may
be different.

To override the default partitioning values, use a CREATE INDEX statement with the
following general format:

CREATE INDEX <indexname> ON <table>(<column>)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX
 [PARAMETERS ('<spatial-params>, <storage-params>')] LOCAL
 [(PARTITION <index_partition>
 PARAMETERS ('<spatial-params>, <storage-params>')
 [, PARTITION <index_partition>
 PARAMETERS ('<spatial-params>, <storage-params>')]
)]

Queries can operate on partitioned tables to perform the query on only one partition.
For example:

SELECT * FROM counties PARTITION(p1)
 WHERE ...<some-spatial-predicate>;

Creating a Spatial Index

Indexing and Querying Spatial Data 4-5

Querying on a selected partition may speed up the query and also improve overall
throughput when multiple queries operate on different partitions concurrently.

When queries use a partitioned spatial index, the semantics (meaning or behavior) of
spatial operators and functions is the same with partitioned and nonpartitioned
indexes, except in the case of SDO_NN (nearest neighbor). With SDO_NN, the
requested number of geometries is returned for each partition that is affected by the
query. For example, if you request the 5 closest restaurants to a point and the spatial
index has 4 partitions, SDO_NN returns up to 20 (5*4) geometries. In this case, you
must use the ROWNUM pseudocolumn (here, WHERE ROWNUM <=5) to return the 5
closest restaurants. See the description of the SDO_NN operator in Chapter 11 for
more information.

4.1.5 Exchanging Partitions Including Indexes
You can use the ALTER TABLE statement with the EXCHANGE PARTITION ...
INCLUDING INDEXES clause to exchange a spatial table partition and its index
partition with a corresponding table and its index. For information about exchanging
partitions, see the description of the ALTER TABLE statement in Oracle Database SQL
Reference.

This feature can help you to operate more efficiently in a number of situations, such as:

■ Bringing data into a partitioned table and avoiding the cost of index re-creation.

■ Managing and creating partitioned indexes. For example, the data could be
divided into multiple tables. The index for each table could be built one after the
other to minimize the memory and tablespace resources needed during index
creation. Alternately, the indexes could be created in parallel in multiple sessions.
The tables (along with the indexes) could then be exchanged with the partitions of
the original data table.

■ Managing offline insert operations. New data can be stored in a temporary table
and periodically exchanged with a new partition (for example, in a database with
historical data).

To exchange partitions including indexes with spatial data and indexes, the two spatial
indexes (one on the partition, the other on the table) must be of compatible types.
Specifically:

■ Both indexes must have the same dimensionality (sdo_indx_dims value).

■ Both indexes must be either geodetic or non-geodetic. (Geodetic and non-geodetic
indexes are explained in Section 4.1.1.)

If the indexes are not compatible, an error is raised. The table data is exchanged, but
the indexes are not exchanged and the indexes are marked as failed. To use the
indexes, you must rebuild them.

4.1.6 Export and Import Considerations with Spatial Indexes and Data
If you use the Export utility to export tables with spatial data, the behavior of the
operation depends on whether or not the spatial data has been spatially indexed:

■ If the spatial data has not been spatially indexed, the table data is exported.
However, you must update the USER_SDO_GEOM_METADATA view with the
appropriate information on the target system.

■ If the spatial data has been spatially indexed, the table data is exported, the
appropriate information is inserted into the USER_SDO_GEOM_METADATA
view on the target system, and the spatial index is built on the target system.

Querying Spatial Data

4-6 Oracle Spatial User’s Guide and Reference

However, if the insertion into the USER_SDO_GEOM_METADATA view fails (for
example, if there is already a USER_SDO_GEOM_METADATA entry for the
spatial layer), the spatial index is not built.

If you use the Import utility to import data that has been spatially indexed, the
following considerations apply:

■ If the index on the exported data was created with a TABLESPACE clause and if
the specified tablespace does not exist in the database at import time, the index is
not built. (This is different from the behavior with other Oracle indexes, where the
index is created in the user's default tablespace if the tablespace specified for the
original index does not exist at import time.)

■ If the import operation must be done by a privileged database user, and if the
FROMUSER and TOUSER format is used, the TOUSER user must be granted the
CREATE TABLE and CREATE SEQUENCE privileges before the import operation,
as shown in the following example:

sqlplus system/<password>
SQL> grant CREATE TABLE, CREATE SEQUENCE to CHRIS;
SQL> exit;
imp system/<password> file=spatl_data.dmp fromuser=SCOTT touser=CHRIS

For information about using the Export and Import utilities, see Oracle Database
Utilities.

4.1.7 Distributed Transactions and Spatial Index Consistency
In a distributed transaction, different branches of the transaction can execute in
different sessions. The branches can detach from their current session and migrate to
another within the transaction scope. To maintain the consistency of Spatial indexes in
distributed transactions, you must follow the usage guidelines in this section.

When the first insert, update, or delete operation on a spatial table (one with a spatial
index) is performed in a distributed transaction, all subsequent insert, update, or
delete operations on the table, as well as any prepare to commit operation (the first
branch to prepare a commit), in the transaction should happen in the same session as the
first operation. The branches performing these subsequent operations will first have to
connect to the session in which the first operation was performed.

For more information about distributed transactions, see Oracle Database
Administrator's Guide.

4.2 Querying Spatial Data
This section describes how the structures of a Spatial layer are used to resolve spatial
queries and spatial joins.

Spatial uses a two-tier query model with primary and secondary filter operations to
resolve spatial queries and spatial joins, as explained in Section 1.6. The term two-tier
indicates that two distinct operations are performed to resolve queries. If both
operations are performed, the exact result set is returned.

You cannot append a database link (dblink) name to the name of a spatial table in a
query if a spatial index is defined on that table.

If a spatial index is created in a database that was created using the UTF8 character set,
spatial queries that use the spatial index will fail if the system parameter NLS_
LENGTH_SEMANTICS is set to CHAR. For spatial queries to succeed in this case, the
NLS_LENGTH_SEMANTICS parameter must be set to BYTE (its default value).

Querying Spatial Data

Indexing and Querying Spatial Data 4-7

4.2.1 Spatial Query
In a spatial R-tree index, each geometry is represented by its minimum bounding
rectangle (MBR), as explained in Section 1.7.1. Consider the following layer containing
several objects in Figure 4–1. Each object is labeled with its geometry name (geom_1
for the line string, geom_2 for the four-sided polygon, geom_3 for the triangular
polygon, and geom_4 for the ellipse), and the MBR around each object is represented
by a dashed line.

Figure 4–1 Geometries with MBRs

A typical spatial query is to request all objects that lie within a query window, that is,
a defined fence or window. A dynamic query window refers to a rectangular area that
is not defined in the database, but that must be defined before it is used. Figure 4–2
shows the same geometries as in Figure 4–1, but adds a query window represented by
the heavy dotted-line box.

Figure 4–2 Layer with a Query Window

In Figure 4–2, the query window covers parts of geometries geom_1 and geom_2, as
well as part of the MBR for geom_3 but none of the actual geom_3 geometry. The
query window does not cover any part of the geom_4 geometry or its MBR.

geom_2

geom_3

geom_4

geom_1

geom_2

geom_3

geom_4

geom_1 Query
Window

Querying Spatial Data

4-8 Oracle Spatial User’s Guide and Reference

4.2.1.1 Primary Filter Operator
The SDO_FILTER operator, described in Chapter 11, implements the primary filter
portion of the two-step process involved in the Oracle Spatial query processing model.
The primary filter uses the index data to determine only if a set of candidate object
pairs may interact. Specifically, the primary filter checks to see if the MBRs of the
candidate objects interact, not whether the objects themselves interact. The SDO_
FILTER operator syntax is as follows:

SDO_FILTER(geometry1 SDO_GEOMETRY, geometry2 SDO_GEOMETRY, param VARCHAR2)

In the preceding syntax:

■ geometry1 is a column of type SDO_GEOMETRY in a table. This column must be
spatially indexed.

■ geometry2 is an object of type SDO_GEOMETRY. This object may or may not
come from a table. If it comes from a table, it may or may not be spatially indexed.

■ param is an optional string of type VARCHAR2. It can specify either or both of the
min_resolution and max_resolution keywords.

The following examples perform a primary filter operation only (with no secondary
filter operation). They will return all the geometries shown in Figure 4–2 that have an
MBR that interacts with the query window. The result of the following examples are
geometries geom_1, geom_2, and geom_3.

Example 4–1 performs a primary filter operation without inserting the query window
into a table. The window will be indexed in memory and performance will be very
good.

Example 4–1 Primary Filter with a Temporary Query Window

SELECT A.Feature_ID FROM TARGET A
 WHERE sdo_filter(A.shape, SDO_geometry(2003,NULL,NULL,
 SDO_elem_info_array(1,1003,3),
 SDO_ordinate_array(x1,y1, x2,y2))
) = 'TRUE';

In Example 4–1, (x1,y1) and (x2,y2) are the lower-left and upper-right corners of
the query window.

In Example 4–2, a transient instance of type SDO_GEOMETRY was constructed for the
query window instead of specifying the window parameters in the query itself.

Example 4–2 Primary Filter with a Transient Instance of the Query Window

SELECT A.Feature_ID FROM TARGET A
 WHERE sdo_filter(A.shape, :theWindow) = 'TRUE';

Example 4–3 assumes the query window was inserted into a table called WINDOWS,
with an ID of WINS_1.

Example 4–3 Primary Filter with a Stored Query Window

SELECT A.Feature_ID FROM TARGET A, WINDOWS B
 WHERE B.ID = 'WINS_1' AND
 sdo_filter(A.shape, B.shape) = 'TRUE';

If the B.SHAPE column is not spatially indexed, the SDO_FILTER operator indexes the
query window in memory and performance is very good.

Querying Spatial Data

Indexing and Querying Spatial Data 4-9

4.2.1.2 Primary and Secondary Filter Operator
The SDO_RELATE operator, described in Chapter 11, performs both the primary and
secondary filter stages when processing a query. The secondary filter ensures that only
candidate objects that actually interact are selected. This operator can be used only if a
spatial index has been created on two dimensions of data. The syntax of the SDO_
RELATE operator is as follows:

SDO_RELATE(geometry1 SDO_GEOMETRY,
 geometry2 SDO_GEOMETRY,
 param VARCHAR2)

In the preceding syntax:

■ geometry1 is a column of type SDO_GEOMETRY in a table. This column must be
spatially indexed.

■ geometry2 is an object of type SDO_GEOMETRY. This object may or may not
come from a table. If it comes from a table, it may or may not be spatially indexed.

■ param is a quoted string with the mask keyword and a valid mask value, and
optionally either or both of the min_resolution and max_resolution
keywords, as explained in the documentation for the SDO_RELATE operator in
Chapter 11.

The following examples perform both primary and secondary filter operations. They
return all the geometries in Figure 4–2 that lie within or overlap the query window.
The result of these examples is objects geom_1 and geom_2.

Example 4–4 performs both primary and secondary filter operations without inserting
the query window into a table. The window will be indexed in memory and
performance will be very good.

Example 4–4 Secondary Filter Using a Temporary Query Window

SELECT A.Feature_ID FROM TARGET A
 WHERE sdo_relate(A.shape, SDO_geometry(2003,NULL,NULL,
 SDO_elem_info_array(1,1003,3),
 SDO_ordinate_array(x1,y1, x2,y2)),
 'mask=anyinteract') = 'TRUE';

In Example 4–4, (x1,y1) and (x2,y2) are the lower-left and upper-right corners of
the query window.

Example 4–5 assumes the query window was inserted into a table called WINDOWS,
with an ID value of WINS_1.

Example 4–5 Secondary Filter Using a Stored Query Window

SELECT A.Feature_ID FROM TARGET A, WINDOWS B
 WHERE B.ID = 'WINS_1' AND
 sdo_relate(A.shape, B.shape,
 'mask=anyinteract') = 'TRUE';

If the B.SHAPE column is not spatially indexed, the SDO_RELATE operator indexes
the query window in memory and performance is very good.

4.2.1.3 Within-Distance Operator
The SDO_WITHIN_DISTANCE operator, described in Chapter 11, is used to
determine the set of objects in a table that are within n distance units from a reference
object. This operator can be used only if a spatial index has been created on two

Querying Spatial Data

4-10 Oracle Spatial User’s Guide and Reference

dimensions of data. The reference object may be a transient or persistent instance of
SDO_GEOMETRY (such as a temporary query window or a permanent geometry
stored in the database). The syntax of the operator is as follows:

SDO_WITHIN_DISTANCE(geometry1 SDO_GEOMETRY,
 aGeom SDO_GEOMETRY,
 params VARCHAR2);

In the preceding syntax:

■ geometry1 is a column of type SDO_GEOMETRY in a table. This column must be
spatially indexed.

■ aGeom is an instance of type SDO_GEOMETRY.

■ params is a quoted string of keyword value pairs that determines the behavior of
the operator. See the SDO_WITHIN_DISTANCE operator in Chapter 11 for a list of
parameters.

The following example selects any objects within 1.35 distance units from the query
window:

SELECT A.Feature_ID
 FROM TARGET A
 WHERE SDO_WITHIN_DISTANCE(A.shape, :theWindow, 'distance=1.35') = 'TRUE';

The distance units are based on the geometry coordinate system in use. If you are
using a geodetic coordinate system, the units are meters. If no coordinate system is
used, the units are the same as for the stored data.

The SDO_WITHIN_DISTANCE operator is not suitable for performing spatial joins.
That is, a query such as Find all parks that are within 10 distance units from coastlines will
not be processed as an index-based spatial join of the COASTLINES and PARKS tables.
Instead, it will be processed as a nested loop query in which each COASTLINES
instance is in turn a reference object that is buffered, indexed, and evaluated against
the PARKS table. Thus, the SDO_WITHIN_DISTANCE operation is performed n times
if there are n rows in the COASTLINES table.

For non-geodetic data, there is an efficient way to accomplish a spatial join that
involves buffering all geometries of a layer. This method does not use the SDO_
WITHIN_DISTANCE operator. First, create a new table COSINE_BUFS as follows:

CREATE TABLE cosine_bufs UNRECOVERABLE AS
 SELECT SDO_BUFFER (A.SHAPE, B.DIMINFO, 1.35)
 FROM COSINE A, USER_SDO_GEOM_METADATA B
 WHERE TABLE_NAME='COSINES' AND COLUMN_NAME='SHAPE';

Next, create a spatial index on the SHAPE column of COSINE_BUFS. Then you can
perform the following query:

SELECT /*+ ordered */ a.gid, b.gid
 FROM TABLE(SDO_JOIN('PARKS', 'SHAPE',
 'COSINE_BUFS', 'SHAPE',
 'mask=ANYINTERACT')) c,
 parks a,
 cosine_bufs b
 WHERE c.rowid1 = a.rowid AND c.rowid2 = b.rowid;

Querying Spatial Data

Indexing and Querying Spatial Data 4-11

4.2.1.4 Nearest Neighbor Operator
The SDO_NN operator, described in Chapter 11, is used to identify the nearest
neighbors for a geometry. This operator can be used only if a spatial index has been
created on two dimensions of data. The syntax of the operator is as follows:

SDO_NN(geometry1 SDO_GEOMETRY,
 geometry2 SDO_GEOMETRY,
 param VARCHAR2
 [, number NUMBER]);

In the preceding syntax:

■ geometry1 is a column of type SDO_GEOMETRY in a table. This column must be
spatially indexed.

■ geometry2 is an instance of type SDO_GEOMETRY.

■ param is a quoted string of keyword-value pairs that can determine the behavior
of the operator, such as how many nearest neighbor geometries are returned. See
the SDO_NN operator in Chapter 11 for information about this parameter.

■ number is the same number used in the call to SDO_NN_DISTANCE. Use this
only if the SDO_NN_DISTANCE ancillary operator is included in the call to SDO_
NN. See the SDO_NN operator in Chapter 11 for information about this
parameter.

The following example finds the two objects from the SHAPE column in the COLA_
MARKETS table that are closest to a specified point (10,7). (Note the use of the
optimizer hint in the SELECT statement, as explained in the Usage Notes for the SDO_
NN operator in Chapter 11.)

SELECT /*+ INDEX(cola_markets cola_spatial_idx) */
 c.mkt_id, c.name FROM cola_markets c WHERE SDO_NN(c.shape,
 SDO_geometry(2001, NULL, SDO_point_type(10,7,NULL), NULL,
 NULL), 'sdo_num_res=2') = 'TRUE';

4.2.1.5 Spatial Functions
Spatial also supplies functions for determining relationships between geometries,
finding information about single geometries, changing geometries, and combining
geometries. These functions all take into account two dimensions of source data. If the
output value of these functions is a geometry, the resulting geometry will have the
same dimensionality as the input geometry, but only the first two dimensions will
accurately reflect the result of the operation.

4.2.2 Spatial Join
A spatial join is the same as a regular join except that the predicate involves a spatial
operator. In Spatial, a spatial join takes place when you compare all geometries of one
layer to all geometries of another layer. This is unlike a query window, which
compares a single geometry to all geometries of a layer.

Spatial joins can be used to answer questions such as Which highways cross national
parks?

The following table structures illustrate how the join would be accomplished for this
example:

PARKS(GID VARCHAR2(32), SHAPE SDO_GEOMETRY)
HIGHWAYS(GID VARCHAR2(32), SHAPE SDO_GEOMETRY)

Querying Spatial Data

4-12 Oracle Spatial User’s Guide and Reference

To perform a spatial join, use the SDO_JOIN operator, which is described in
Chapter 11. The following spatial join query, to list the GID column values of
highways and parks where a highway interacts with a park, performs a primary filter
operation only ('mask=FILTER'), and thus it returns only approximate results:

SELECT /*+ ordered */ a.gid, b.gid
 FROM TABLE(SDO_JOIN('PARKS', 'SHAPE',
 'HIGHWAYS', 'SHAPE',
 'mask=FILTER')) c,
 parks a,
 highways b
 WHERE c.rowid1 = a.rowid AND c.rowid2 = b.rowid;

The following spatial join query requests the same information as in the preceding
example, but it performs both primary and secondary filter operations
('mask=ANYINTERACT'), and thus it returns exact results:

SELECT /*+ ordered */ a.gid, b.gid
 FROM TABLE(SDO_JOIN('PARKS', 'SHAPE',
 'HIGHWAYS', 'SHAPE',
 'mask=ANYINTERACT')) c,
 parks a,
 highways b
 WHERE c.rowid1 = a.rowid AND c.rowid2 = b.rowid;

4.2.3 Cross-Schema Operator Invocation
You can invoke spatial operators on an indexed table that is not in your schema.
Assume that user A has a spatial table T1 (with index table IDX_TAB1) with a spatial
index defined, that user B has a spatial table T2 (with index table IDX_TAB2) with a
spatial index defined, and that user C wants to invoke operators on tables in one or
both of the other schemas.

If user C wants to invoke an operator only on T1, user C must perform the following
steps:

1. Connect as user A and execute the following statements:

GRANT select on T1 to C;
GRANT select on idx_tab1 to C;

2. Connect as user C and execute a statement such as the following:

SELECT a.gid
 FROM T1 a
 WHERE sdo_filter(a.geometry, :theGeometry) = 'TRUE';

If user C wants to invoke an operator on both T1 and T2, user C must perform the
following steps:

1. Connect as user A and execute the following statements:

GRANT select on T1 to C;
GRANT select on idx_tab1 to C;

2. Connect as user B and execute the following statements:

GRANT select on T2 to C;
GRANT select on idx_tab2 to C;

3. Connect as user C and execute a statement such as the following:

SELECT a.gid

Querying Spatial Data

Indexing and Querying Spatial Data 4-13

 FROM T1 a, T2 b
 WHERE b.gid = 5 AND
 sdo_filter(a.geometry, b.geometry) = 'TRUE';

Querying Spatial Data

4-14 Oracle Spatial User’s Guide and Reference

Geocoding Address Data 5-1

5
Geocoding Address Data

Geocoding is the process of associating spatial locations (longitude and latitude
coordinates) with postal addresses. This chapter includes the following major sections:

■ Section 5.1, "Concepts for Geocoding"

■ Section 5.2, "Data Types for Geocoding"

■ Section 5.3, "Using the Geocoding Capabilities"

■ Section 5.4, "Geocoding from a Place Name"

■ Section 5.5, "Data Structures for Geocoding"

5.1 Concepts for Geocoding
This section describes concepts that you must understand before you use the Spatial
geocoding capabilities.

5.1.1 Address Representation
Addresses to be geocoded can be represented either as formatted addresses or
unformatted addresses.

A formatted address is described by a set of attributes for various parts of the address,
which can include some or all of those shown in Table 5–1.

Table 5–1 Attributes for Formal Address Representation

Address Attribute Description

Name Place name (optional).

Intersecting street Intersecting street name (optional).

Street Street address, including the house or building number, street name,
street type (Street, Road, Blvd, and so on), and possibly other
information.

In the current release, the first four characters of the street name must
match a street name in the geocoding data for there to be a potential
street name match.

Settlement The lowest-level administrative area to which the address belongs. In
most cases it is the city. In some European countries, the settlement
can be an area within a large city, in which case the large city is the
municipality.

Municipality The administrative area above settlement. Municipality is not used for
United States addresses. In European countries where cities contain
settlements, the municipality is the city.

Concepts for Geocoding

5-2 Oracle Spatial User’s Guide and Reference

Formatted addresses are specified using the SDO_GEO_ADDR data type, which is
described in Section 5.2.1.

An unformatted address is described using lines with information in the postal
address format for the relevant country. The address lines must contain information
essential for geocoding, and they might also contain information that is not needed for
geocoding (something that is common in unprocessed postal addresses). An
unformatted address is stored as an array of strings. For example, an address might
consist of the following strings: '22 Monument Square' and 'Concord, MA 01742'.

Unformatted addresses are specified using the SDO_KEYWORDARRAY data type,
which is described in Section 5.2.3.

5.1.2 Match Modes
The match mode for a geocoding operation determines how closely the attributes of an
input address must match the data being used for the geocoding. Input addresses can
include different ways of representing the same thing (such as Street and the
abbreviation St), and they can include minor errors (such as the wrong postal code,
even though the street address and city are correct and the street address is unique
within the city).

You can require an exact match between the input address and the data used for
geocoding, or you can relax the requirements for some attributes so that geocoding can
be performed despite certain discrepancies or errors in the input addresses. Table 5–2
lists the match modes and their meanings. Use a value from this table with the
MatchMode attribute of the SDO_GEO_ADDR data type (described in Section 5.2.1)
and for the match_mode parameter of a geocoding function or procedure.

Region The administrative area above municipality (if applicable), or above
settlement if municipality does not apply. In the United States, the
region is the state; in some other countries, the region is the province.

Postal code Postal code (optional if administrative area information is provided).
In the United States, the postal code is the 5-digit ZIP code.

Postal add-on code String appended to the postal code. In the United States, the postal
add-on code is typically the last four numbers of a 9-digit ZIP code
specified in "5-4" format.

Country The country name or ISO country code.

Table 5–2 Match Modes for Geocoding Operations

Match Mode Description

EXACT All attributes of the input address must match the data used for
geocoding. However, if the house or building number, base
name (street name), street type, street prefix, and street suffix do
not all match the geocoding data, a location in the first match
found in the following is returned: postal code, city or town
(settlement) within the state, and state. For example, if the street
name is incorrect but a valid postal code is specified, a location
in the postal code is returned.

Table 5–1 (Cont.) Attributes for Formal Address Representation

Address Attribute Description

Concepts for Geocoding

Geocoding Address Data 5-3

5.1.3 Match Codes
The match code is a number indicating which input address attributes matched the
data used for geocoding. The match code is stored in the MatchCode attribute of the
output SDO_GEO_ADDR object (described in Section 5.2.1).

Table 5–3 lists the possible match code values.

RELAX_STREET_TYPE The street type can be different from the data used for
geocoding. For example, if Main St is in the data used for
geocoding, Main Street would also match that, as would Main
Blvd if there was no Main Blvd and no other street type named
Main in the relevant area.

RELAX_POI_NAME The name of the point of interest does not have to match the
data used for geocoding. For example, if Jones State Park is in the
data used for geocoding, Jones State Pk and Jones Park would also
match as long as there were no ambiguities or other matches in
the data.

RELAX_HOUSE_
NUMBER

The house or building number and street type can be different
from the data used for geocoding. For example, if 123 Main St is
in the data used for geocoding, 123 Main Lane and 124 Main St
would also match as long as there were no ambiguities or other
matches in the data.

RELAX_BASE_NAME The base name of the street, the house or building number, and
the street type can be different from the data used for geocoding.
For example, if Pleasant Valley is the base name of a street in the
data used for geocoding, Pleasant Vale would also match as long
as there were no ambiguities or other matches in the data.

RELAX_POSTAL_CODE The postal code (if provided), base name, house or building
number, and street type can be different from the data used for
geocoding.

RELAX_BUILTUP_AREA The address can be outside the city specified as long as it is
within the same county. Also includes the characteristics of
RELAX_POSTAL_CODE.

RELAX_ALL Equivalent to RELAX_BUILTUP_AREA.

DEFAULT Equivalent to RELAX_BASE_NAME.

Table 5–3 Match Codes for Geocoding Operations

Match
Code Description

1 Exact match: the city name, postal code, street base name, street type (and suffix or
prefix or both, if applicable), and house or building number match the data used for
geocoding.

2 The city name, postal code, street base name, and house or building number match
the data used for geocoding, but the street type, suffix, or prefix does not match.

3 The city name, postal code, and street base name match the data used for
geocoding, but the house or building number does not match.

4 The city name and postal code match the data used for geocoding, but the street
address does not match.

10 The city name matches the data used for geocoding, but the postal code does not
match.

Table 5–2 (Cont.) Match Modes for Geocoding Operations

Match Mode Description

Data Types for Geocoding

5-4 Oracle Spatial User’s Guide and Reference

5.1.4 Error Messages for Output Geocoded Addresses
For an output geocoded address, the ErrorMessage attribute of the SDO_GEO_
ADDR object (described in Section 5.2.1) contains a string that indicates which address
attributes have been matched against the data used for geocoding. Before the
geocoding operation begins, the string is set to the value ???????????281C??; and
the value is modified to reflect which attributes have been matched.

Table 5–4 lists the character positions in the string and the address attribute
corresponding to each position. It also lists the character value that the position is set
to if the attribute is matched.

5.2 Data Types for Geocoding
This section describes the data types specific to geocoding functions and procedures.

5.2.1 SDO_GEO_ADDR Type
The SDO_GEO_ADDR object type is used to describe an address. When a geocoded
address is output by an SDO_GCDR function or procedure, it is stored as an object of
type SDO_GEO_ADDR.

Table 5–5 lists the attributes of the SDO_GEO_ADDR type. Not all attributes will be
relevant in any given case. The attributes used for a returned geocoded address
depend on the geographical context of the input address, especially the country.

11 The postal code matches the data used for geocoding, but the city name does not
match.

Table 5–4 Geocoded Address Error Message Interpretation

Position Attribute Value If Matched

1-4 (Reserved for future
use)

????

5 House or building
number

#

6 Street prefix E

7 Street base name N

8 Street suffix U

9 Street type T

10 Secondary unit S

11 Built-up area or city B

14 Region 1

15 Country C

16 Postal code P

17 Postal add-on code A

Table 5–3 (Cont.) Match Codes for Geocoding Operations

Match
Code Description

Data Types for Geocoding

Geocoding Address Data 5-5

Table 5–5 SDO_GEO_ADDR Type Attributes

Attribute Data Type Description

Id NUMBER (Not used.)

AddressLines SDO_
KEYWORDARRAY

Address lines. (The SDO_KEYWORDARRAY
type is described in Section 5.2.3.)

PlaceName VARCHAR2(200) Point of interest (POI) name. Example:
CALIFORNIA PACIFIC MEDICAL CTR

StreetName VARCHAR2(200) Street name, including street type. Example:
MAIN ST

IntersectStreet VARCHAR2(200) Intersecting street.

SecUnit VARCHAR2(200) Secondary unit, such as an apartment number
or building number.

Settlement VARCHAR2(200) Lowest-level administrative area to which the
address belongs. (See Table 5–1.)

Municipality VARCHAR2(200) Administrative area above settlement. (See
Table 5–1.)

Region VARCHAR2(200) Administrative area above municipality (if
applicable), or above settlement if municipality
does not apply. (See Table 5–1.)

Country VARCHAR2(100) Country name or ISO country code.

PostalCode VARCHAR2(20) Postal code (optional if administrative area
information is provided). In the United States,
the postal code is the 5-digit ZIP code.

PostalAddOnCode VARCHAR2(20) String appended to the postal code. In the
United States, the postal add-on code is
typically the last four numbers of a 9-digit ZIP
code specified in "5-4" format.

FullPostalCode VARCHAR2(20) Full postal code, including the postal code and
postal add-on code.

POBox VARCHAR2(100) Post Office box number.

HouseNumber VARCHAR2(100) House or building number. Example: 123 in 123
MAIN ST

BaseName VARCHAR2(200) Base name of the street. Example: MAIN in 123
MAIN ST

StreetType VARCHAR2(20) Type of the street. Example: ST in 123 MAIN ST

StreetTypeBefore VARCHAR2(1) (Not used.)

StreetTypeAttached VARCHAR2(1) (Not used.)

StreetPrefix VARCHAR2(20) Prefix for the street. Example: S in 123 S MAIN
ST

StreetSuffix VARCHAR2(20) Suffix for the street. Example: NE in 123 MAIN
ST NE

Side VARCHAR2(1) Side of the street (L for left or R for right) that
the house is on when you are traveling along
the road segment following its orientation (that
is, from its start node toward its end node). The
house numbers may be increasing or
decreasing.

Data Types for Geocoding

5-6 Oracle Spatial User’s Guide and Reference

You can return the entire SDO_GEO_ADDR object, or you can specify an attribute
using standard "dot" notation. Example 5–1 contains statements that geocode the
address of the San Francisco City Hall; the first statement returns the entire SDO_
GEO_ADDR object, and the remaining statements return some specific attributes.

Example 5–1 Geocoding, Returning Address Object and Specific Attributes

SELECT SDO_GCDR.GEOCODE('SCOTT',
 SDO_KEYWORDARRAY('1 Carlton B Goodlett Pl', 'San Francisco, CA 94102'),
 'US', 'RELAX_BASE_NAME') FROM DUAL;

SDO_GCDR.GEOCODE('CJMURRAY',SDO_KEYWORDARRAY('1CARLTONBGOODLETTPL','SANFRANCISCO
--
SDO_GEO_ADDR(0, SDO_KEYWORDARRAY(), NULL, 'CARLTON B GOODLETT PL', NULL, NULL, '
SAN FRANCISCO', NULL, 'CA', 'US', '94102', NULL, '94102', NULL, '1', 'CARLTON B
GOODLETT', 'PL', 'F', 'F', NULL, NULL, 'L', .01, 23614360, 'nul?#ENUT?B281CP?',
1, 'DEFAULT', -122.41815, 37.7784183)

SELECT SDO_GCDR.GEOCODE('SCOTT',
 SDO_KEYWORDARRAY('1 Carlton B Goodlett Pl', 'San Francisco, CA 94102'),
 'US', 'RELAX_BASE_NAME').StreetType FROM DUAL;

SDO_GCDR.GEOCODE('SCOTT',SDO_KEYWORDARRAY('1CARLTONBGOODLETTPL','SANFRANCISCO
--
PL

SELECT SDO_GCDR.GEOCODE('SCOTT',
 SDO_KEYWORDARRAY('1 Carlton B Goodlett Pl', 'San Francisco, CA 94102'),
 'US', 'RELAX_BASE_NAME').Side RROM DUAL;

S
-
L

SELECT SDO_GCDR.GEOCODE('SCOTT',
 SDO_KEYWORDARRAY('1 Carlton B Goodlett Pl', 'San Francisco, CA 94102'),
 'US', 'RELAX_BASE_NAME').Percent FROM DUAL;

SDO_GCDR.GEOCODE('SCOTT',SDO_KEYWORDARRAY('1CARLTONBGOODLETTPL','SANFRANCISCO
--
 .01

Percent NUMBER Number from 0 to 1 (multiply by 100 to get a
percentage value) indicating how far along the
street you are when traveling following the
road segment orientation.

EdgeID NUMBER Edge ID of the road segment.

ErrorMessage VARCHAR2(20) Error message (see Section 5.1.4).

MatchCode NUMBER Match code (see Section 5.1.3).

MatchMode VARCHAR2(30) Match mode (see Section 5.1.2).

Longitude NUMBER Longitude coordinate value.

Latitude NUMBER Latitude coordinate value.

Table 5–5 (Cont.) SDO_GEO_ADDR Type Attributes

Attribute Data Type Description

Using the Geocoding Capabilities

Geocoding Address Data 5-7

SELECT SDO_GCDR.GEOCODE('SCOTT',
 SDO_KEYWORDARRAY('1 Carlton B Goodlett Pl', 'San Francisco, CA 94102'),
 'US', 'RELAX_BASE_NAME').EdgeID FROM DUAL;

SDO_GCDR.GEOCODE('SCOTT',SDO_KEYWORDARRAY('1CARLTONBGOODLETTPL','SANFRANCISCO
--
 23614360

SELECT SDO_GCDR.GEOCODE('SCOTT',
 SDO_KEYWORDARRAY('1 Carlton B Goodlett Pl', 'San Francisco, CA 94102'),
 'US', 'RELAX_BASE_NAME').MatchCode FROM DUAL;

SDO_GCDR.GEOCODE('SCOTT',SDO_KEYWORDARRAY('1CARLTONBGOODLETTPL','SANFRANCISCO
--
 1

5.2.2 SDO_ADDR_ARRAY Type
The SDO_ADDR_ARRAY type is a VARRAY of SDO_GEO_ADDR objects (described
in Section 5.2.1) used to store geocoded address results. Multiple address objects can
be returned when multiple addresses are matched as a result of a geocoding operation.

The SDO_ADDR_ARRAY type is defined as follows:

CREATE TYPE sdo_addr_array AS VARRAY(1000) OF sdo_geo_addr;

5.2.3 SDO_KEYWORDARRAY Type
The SDO_KEYWORDARRAY type is a VARRAY of VARCHAR2 strings used to store
address lines for unformatted addresses. (Formatted and unformatted addresses are
described in Section 5.1.1.)

The SDO_KEYWORDARRAY type is defined as follows:

CREATE TYPE sdo_keywordarray AS VARRAY(10000) OF VARCHAR2(9000);

5.3 Using the Geocoding Capabilities
To use the Oracle Spatial geocoding capabilities, you must use data provided by a
geocoding vendor, and the data must be in the format supported by the Oracle Spatial
geocoding feature. For information about getting and loading this data, go to the
Spatial page of the Oracle Technology Network (OTN):

http://www.oracle.com/technology/products/spatial/

Find the link for geocoding, and follow the instructions.

To geocode an address using the geocoding data, use the SDO_GCDR PL/SQL
package subprograms, which are documented in Chapter 14:

■ The SDO_GCDR.GEOCODE function geocodes an unformatted address to return
an SDO_GEO_ADDR object.

■ The SDO_GCDR.GEOCODE_ADDR function geocodes an input address using
attributes in an SDO_GEO_ADDR object, and returns the first matched address as
an SDO_GEO_ADDR object.

■ The SDO_GCDR.GEOCODE_ADDR_ALL function geocodes an input address
using attributes in an SDO_GEO_ADDR object, and returns matching addresses as
an SDO_ADDR_ARRAY object.

Geocoding from a Place Name

5-8 Oracle Spatial User’s Guide and Reference

■ The SDO_GCDR.GEOCODE_AS_GEOMETRY function geocodes an unformatted
address to return an SDO_GEOMETRY object.

■ The SDO_GCDR.GEOCODE_ALL function geocodes all addresses associated with
an unformatted address and returns the result as an SDO_ADDR_ARRAY object
(an array of address objects).

■ The SDO_GCDR.REVERSE_GEOCODE function reverse geocodes a location,
specified by its spatial geometry object and country, and returns the result as an
SDO_GEO_ADDR object.

5.4 Geocoding from a Place Name
If you know a place name (point of interest) but not its locality details, you can create a
PL/SQL function to construct an SDO_GEO_ADDR object from placename and
country input parameters, as shown in Example 5–2, which creates a function named
create_addr_from_placename. The SELECT statement in this example uses the
SDO_GCDR.GEOCODE_ADDR function to geocode the address constructed using the
create_addr_from_placename function.

Example 5–2 Geocoding from a Place Name and Country

create or replace function create_addr_from_placename(
placename varchar2,
country varchar2)
return sdo_geo_addr
as
 addr sdo_geo_addr ;
 begin
 addr := sdo_geo_addr() ;
 addr.country := country ;
 addr.placename := placename ;
 addr.matchmode := 'default' ;
 return addr ;
 end;
 /

SELECT sdo_gcdr.geocode_addr('SCOTT',
 create_addr_from_placename('CALIFORNIA PACIFIC MEDICAL CTR', 'US'))
FROM DUAL;

If you know at least some of the locality information, such as settlement, region, and
postal code, you can get better performance if you can provide such information.
Example 5–3 provides an alternate version of the create_addr_from_placename
function that accepts additional parameters. To call this version of the function, specify
actual values for the placename and country parameters, and specify an actual value
or a null value for each of the other input parameters.

Example 5–3 Geocoding from a Place Name, Country, and Other Fields

create or replace function create_addr_from_placename(
placename varchar2,
city varchar2,
state varchar2,
postalcode varchar2,
country varchar2)
return sdo_geo_addr
as
 addr sdo_geo_addr ;

Data Structures for Geocoding

Geocoding Address Data 5-9

 begin
 addr := sdo_geo_addr() ;
 addr.settlement := city ;
 addr.region := state ;
 addr.postalcode := postalcode ;
 addr.country := country ;
 addr.placename := placename ;
 addr.matchmode := 'default' ;
 return addr ;
 end;
 /

SELECT sdo_gcdr.geocode_addr('SCOTT',
 create_addr_from_placename('CALIFORNIA PACIFIC MEDICAL CTR',
 'san francisco', 'ca', null, 'US')) FROM DUAL;

5.5 Data Structures for Geocoding
Oracle uses the following tables for geocoding:

■ GC_PARSER_PROFILES

■ GC_PARSER_PROFILEAFS

■ GC_COUNTRY_PROFILE

■ GC_AREA_<suffix>

■ GC_POSTAL_CODE_<suffix>

■ GC_ROAD_SEGMENT_<suffix>

■ GC_ROAD_<suffix>

■ GC_POI_<suffix>

■ GC_INTERSECTION_<suffix>

The GC_PARSER_PROFILES and GC_PARSER_PROFILEAFS tables store address
format definitions of all supported counties. These tables are used by the internal
address parser in parsing postal addresses into addressing fields. The data for these
two tables is provided by Oracle. The remaining tables store geocoding data provided
by data vendors.

Each user that owns the tables containing geocoding data (that is, each user that can be
specified with the username parameter in a call to an SDO_GCDR subprogram) must
have one GC_PARSER_PROFILES table, one GC_PARSER_PROFILEAFS table, and
one GC_COUNTRY_PROFILE table. Each such user can have multiple sets of the other
tables (GC_xxx_<suffix>). Each set of tables whose names end with the same suffix
stores geocoding data of a country. For example, the following set of tables can be used
to store geocoding data of the United States:

■ GC_AREA_US

■ GC_POSTAL_CODE_US

■ GC_ROAD_SEGMENT_US

■ GC_ROAD_US

■ GC_POI_US

■ GC_INTERSECTION_US

Data Structures for Geocoding

5-10 Oracle Spatial User’s Guide and Reference

Geocoding data of one country cannot be stored in more than one set of those tables.
The table suffix is defined by data venders and is specified in the GC_TABLE_SUFFIX
column in the GC_COUNTRY_PROFILE table (described in Section 5.5.2).

The following sections describe the vendor-supplied tables that store geocoding data,
in alphabetical order by table name.

5.5.1 GC_AREA_<suffix> Table
The GC_AREA_<suffix> table (for example, CG_AREA_US) stores administration area
information for the country associated with the table name suffix. This table contains
one row for each administration area, and it contains the columns shown in Table 5–6.

Table 5–6 GC_AREA_<suffix> Table

Column Name Data Type Description

AREA_ID NUMBER(10) Area ID number. (Required)

AREA_NAME VARCHAR2(64) Area name. (Required)

LANG_CODE VARCHAR2(3) 3-letter ISO national language code for the language
associated with the area. (Required)

ADMIN_LEVEL NUMBER(1) Administration hierarchy level for the area. (Required)

LEVEL1_AREA_
ID

NUMBER(10) ID of the level-1 area to which the area belongs. In the
administration hierarchy, the level-1 area is the country.
(Required)

LEVEL2_AREA_
ID

NUMBER(10) ID of the level-2 area to which the area belongs, if
applicable. You must specify an area ID for each level in
the administration hierarchy to which this area belongs.
(Optional)

LEVEL3_AREA_
ID

NUMBER(10) ID of the level-3 area to which the area belongs, if
applicable. You must specify an area ID for each level in
the administration hierarchy to which this area belongs.
(Optional)

LEVEL4_AREA_
ID

NUMBER(10) ID of the level-4 area to which the area belongs, if
applicable. You must specify an area ID for each level in
the administration hierarchy to which this area belongs.
(Optional)

LEVEL5_AREA_
ID

NUMBER(10) ID of the level-5 area to which the area belongs, if
applicable. You must specify an area ID for each level in
the administration hierarchy to which this area belongs.
(Optional)

LEVEL6_AREA_
ID

NUMBER(10) ID of the level-6 area to which the area belongs, if
applicable. You must specify an area ID for each level in
the administration hierarchy to which this area belongs.
(Optional)

LEVEL7_AREA_
ID

NUMBER(10) ID of the level-7 area to which the area belongs, if
applicable. You must specify an area ID for each level in
the administration hierarchy to which this area belongs.
(Optional)

CENTER_LONG NUMBER Longitude value of the center of the area. The center is
set to the closest road segment to the center longitude
and latitude values. Oracle recommends that these two
attributes be set properly. If these values are not set, the
longitude and latitude coordinates of the geocoded
result of an area will be (0,0). (Optional)

Data Structures for Geocoding

Geocoding Address Data 5-11

5.5.2 GC_COUNTRY_PROFILE Table
The GC_COUNTRY_PROFILE table stores country profile information used by the
geocoder. This table contains one row for each supported country, and it contains the
columns shown in Table 5–7.

CENTER_LAT NUMBER Latitude value of the center of the area. (See the
explanation for the CENTER_LONG column.)
(Optional)

ROAD_
SEGMENT_ID

NUMBER(10) ID of the road segment to which the area center is set.
This value must be set correctly if the geocoder is
intended to work with the Oracle Spatial routing
engine (described in Appendix C); otherwise, it can be
set to any nonzero value, but it cannot be null.
(Required)

POSTAL_CODE VARCHAR2(16) Postal code for the center of the area. Oracle
recommends that this attribute be set correctly. If this
value is null, the postal code attribute of the geocoded
result of an area will be null. (Optional)

COUNTRY_
CODE_2

VARCHAR2(2) 2- letter ISO country code of the country to which the
area belongs. (Required)

PARTITION_ID NUMBER Partition key used for partitioning geocoder data by
geographic boundaries. If the data is not partitioned,
set the value to 1. (Required)

REAL_NAME VARCHAR2(64) The real name of the area, as spelled using the local
language. This column is useful for area names that are
not in English. For example, the German name of city
MUNICH is MÜNCHEN. It is allowed to be spelled as
MUNCHEN, but its REAL_NAME value should be
MÜNCHEN. In the area table for Germany, areas with
name MÜNCHEN and MUNCHEN both refer to the same
area, and they both have the same real name MÜNCHEN.
If the area name does not have any non-English
characters, set REAL_NAME to be the same as AREA_
NAME. (Required)

IS_ALIAS VARCHAR2(1) Contains T if this area is an alias of another area that is
an officially recognized administrative area; contains F
if this area is not an alias of another area that is an
officially recognized administrative area. For example,
Manhattan is not an officially recognized
administrative area, but it is used by the public to refer
to a part of New York City. In this case, Manhattan is
an alias of New York City. (Required)

NUM_STREETS NUMBER The number of streets inside this area. (Optional)

Table 5–7 GC_COUNTRY_PROFILE Table

Column Name Data Type Description

COUNTRY_
NAME

VARCHAR2(60) Country name. (Required)

COUNTRY_
CODE_3

VARCHAR2(3) 3- letter ISO country code. (Required)

COUNTRY_
CODE_2

VARCHAR2(2) 2- letter ISO country code. (Required)

Table 5–6 (Cont.) GC_AREA_<suffix> Table

Column Name Data Type Description

Data Structures for Geocoding

5-12 Oracle Spatial User’s Guide and Reference

LANG_CODE_1 VARCHAR2(3) 3-letter ISO national language code. Some country
might have multiple national languages, in which case
LANG_CODE_2 and perhaps other columns should
contain values. (Required)

LANG_CODE_2 VARCHAR2(3) 3-letter ISO national language code. (Optional)

LANG_CODE_3 VARCHAR2(3) 3-letter ISO national language code. (Optional)

LANG_CODE_4 VARCHAR2(3) 3-letter ISO national language code. (Optional)

NUMBER_
ADMIN_LEVELS

NUMBER(1) Number of administration hierarchy levels. A country
can have up to 7 administration area levels, numbered
from 1 to 7. The top level area (country) is level 1. For
the United States, the administration hierarchy is as
follows: level 1 = country, level 2 = state, level 3 =
county, level 4 = city. (Required)

SETTLEMENT_
LEVEL

NUMBER(1) Administration hierarchy level for a settlement, which
is the lowest area level used in addressing. In the
United States, this is the city level. (Required)

MUNICIPALITY_
LEVEL

NUMBER(1) Administration hierarchy level for a municipality,
which is the second-lowest area level used in
addressing. In the United States, this is the county level.
(Optional)

REGION_LEVEL NUMBER(1) Administration hierarchy level for the region level used
in addressing. (Optional)

SETTLEMENT_IS_
OPTIONAL

VARCHAR2(1) Contains T if settlement information is required in the
address data; contains F if settlement information is not
required in the address data. (Required)

MUNICIPALITY_
IS_OPTIONAL

VARCHAR2(1) Contains T if municipality information is required in
the address data; contains F if municipality information
is not required in the address data. (Required)

REGION_IS_
OPTIONAL

VARCHAR2(1) Contains T if region information is required in the
address data; contains F if region information is not
required in the address data. (Required)

POSTCODE_IN_
SETTLEMENT

VARCHAR(1) Contains T if each postal code must be completely
within a settlement area; contains F if a postal code can
include area from multiple settlements. (Required)

SETTLEMENT_
AS_CITY

VARCHAR(1) Contains T if a city name can identify both a
municipality and a settlement; contains F if a city name
can identify only a settlement. For example, in the
United Kingdom, London can be both the name of a
municipality area and the name of a settlement area,
which is inside the municipality of London. This is
common in large cities in some European countries,
such as the UK and Belgium. (Required)

CACHED_
ADMIN_AREA_
LEVEL

NUMBER (Reserved for future use.)

GC_TABLE_
SUFFIX

VARCHAR2(5) Table name suffix identifying the country. For example,
if the value of GC_TABLE_SUFFIX is US, the names of
tables with geocoding data for this country end with _
US (for example, CG_AREA_US). (Required)

CENTER_LONG NUMBER Longitude value of the center of the area. (Optional)

CENTER_LAT NUMBER Latitude value of the center of the area. (Optional)

Table 5–7 (Cont.) GC_COUNTRY_PROFILE Table

Column Name Data Type Description

Data Structures for Geocoding

Geocoding Address Data 5-13

5.5.3 GC_INTERSECTION_<suffix> Table
The GC_INTERSECTION_<suffix> table (for example, GC_INTERSECTION_US)
stores road intersection information. An intersection is typically associated with
multiple roads. Each row represents an intersection and two different roads that
intersect with each other at this intersection. This table contains the columns shown in
Table 5–8.

SEPARATE_
PREFIX

VARCHAR2(1) Contains T if the street name prefix is a separate word
from the street name; contains F if the street name
prefix is in the same word with the street name. For
example, in an American street address of 123 N
Main St, the prefix is N, and it is separate from the
street name, which is Main. (Optional; not currently
used by Oracle)

SEPARATE_
SUFFIX

VARCHAR2(1) Contains T if the street name suffix is a separate word
from the street name; contains F if the street name
suffix is in the same word with the street name. For
example, in an American street address of 123 Main
St NW, the suffix is NW, and it is separate from the street
name, which is Main, and from the street type, which is
St. (Optional; not currently used by Oracle)

SEPARATE_
STYPE

VARCHAR2(1) Contains T if the street type is a separate word from the
street name; contains F if the street type is in the same
word with the street name. For example, in a German
street address of 123 Beethovenstrass, the type is
strass, and it is in the same word with the street
name, which is Beethoven. (Optional; not currently
used by Oracle)

AREA_ID NUMBER Not currently used by Oracle. (Optional)

VERSION VARCHAR2(10) Version of the data. The first version should be 1.0.
(Required)

Table 5–8 GC_INTERSECTION_<suffix> Table

Column Name Data Type Description

ROAD_ID_1 NUMBER ID number of the first road on which the intersection is
located. (Required)

ROAD_
SEGMENT_ID_1

NUMBER ID number of the road segment on the first road on
which the intersection is located. (Required)

ROAD_ID_2 NUMBER ID number of the second road on which the intersection
is located. (Required)

ROAD_
SEGMENT_ID_2

NUMBER ID number of the road segment on the second road on
which the intersection is located. (Required)

INTS_LONG NUMBER Longitude coordinate value of the intersection.
(Required)

INTS_LAT NUMBER Latitude coordinate value of the intersection.
(Required)

HOUSE_NUMBER NUMBER The leading numerical part of the house number at the
intersection. (See the explanation of house numbers
after Table 5–12 in Section 5.5.7.) (Required)

Table 5–7 (Cont.) GC_COUNTRY_PROFILE Table

Column Name Data Type Description

Data Structures for Geocoding

5-14 Oracle Spatial User’s Guide and Reference

5.5.4 GC_POI_<suffix> Table
The GC_POI_<suffix> table (for example, GC_POI_US) stores point of interest (POI)
information for the country associated with the table name suffix. This table contains
one or more rows for each point of interest. (For example, it can contain multiple rows
for a POI if the POI is associated with multiple settlements.) The GC_POI_<suffix>
table contains the columns shown in Table 5–9.

HOUSE_
NUMBER_2

VARCHAR2(10) The second part of the house number at the
intersection. (See the explanation of house numbers
after Table 5–12 in Section 5.5.7.) (Required)

SIDE VARCHAR2(1) Side of the street on which the house at the intersection
is located. Possible values: L (left) or R (right).
(Required)

COUNTRY_
CODE_2

VARCHAR2(2) 2- letter ISO country code of the country to which the
house at the intersection belongs. (Required)

PARTITION_ID NUMBER Partition key used for partitioning geocoder data by
geographic boundaries. If the data is not partitioned,
set the value to 1. (Required)

Table 5–9 GC_POI_<suffix> Table

Column Name Data Type Description

POI_ID NUMBER ID number of the POI. (Required)

POI_NAME VARCHAR2(64) Name of the POI. (Required)

LANG_CODE VARCHAR2(3) 3-letter ISO national language code for the language for
the POI name. (Required)

FEATURE_CODE NUMBER Feature code for the POI, if the data vendor classifies
POIs by category. (Optional)

HOUSE_NUMBER VARCHAR2(10) House number of the POI; may contain non-numeric
characters. (Required)

STREET_NAME VARCHAR2(80) Street name of the POI. (Required)

SETTLEMENT_ID NUMBER(10) ID number of the settlement to which the POI belongs.
(Required if the POI is associated with a settlement)

MUNICIPALITY_
ID

NUMBER(10) ID number of the municipality to which the POI
belongs. (Required if the POI is associated with a
municipality)

REGION_ID NUMBER(10) ID number of the region to which the POI belongs.
(Required if the POI is associated with a region)

SETTLEMENT_
NAME

VARCHAR2(64) Name of the settlement to which the POI belongs.
(Required if the POI is associated with a settlement)

MUNICIPALITY_
NAME

VARCHAR2(64) Name of the municipality to which the POI belongs.
(Required if the POI is associated with a municipality)

REGION_NAME VARCHAR2(64) Name of the region to which the postal code belongs.
(Required if the POI is associated with a region)

POSTAL_CODE VARCHAR2(16) Name of the postal code of the POI. (Required)

Table 5–8 (Cont.) GC_INTERSECTION_<suffix> Table

Column Name Data Type Description

Data Structures for Geocoding

Geocoding Address Data 5-15

5.5.5 GC_POSTAL_CODE_<suffix> Table
The GC_POSTAL_CODE_<suffix> table (for example, GC_POSTAL_CODE_US) stores
postal code information for the country associated with the table name suffix. This
table contains one or more rows for each postal code. (For example, it can contain
multiple rows for a postal code if the postal code is associated with multiple
settlements.) The GC_POSTAL_CODE_<suffix> table contains the columns shown in
Table 5–10.

VANITY_CITY VARCHAR2(35) Name of the city popularly associated with the POI, if it
is different from the actual city containing the POI. For
example, the London Heathrow Airport is actually
located in a town named Hayes, which is part of
greater London, but people tend to associate the airport
only with London. In this case, the VANITY_CITY
value is London. (Optional)

ROAD_
SEGMENT_ID

NUMBER ID of the road segment on which the POI is located.
(Required)

SIDE VARCHAR2(1) Side of the street on which the POI is located. Possible
values: L (left) or R (right). (Required)

PERCENT NUMBER Percentage value at which POI is located on the road. It
is computed by dividing the distance from the street
segment start point to the POI by the length of the
street segment. (Required)

TELEPONE_
NUMBER

VARCHAR2(20) Telephone number of the POI. (Optional)

LOC_LONG NUMBER Longitude coordinate value of the POI. (Required)

LOC_LAT NUMBER Latitude coordinate value of the POI. (Required)

COUNTRY_
CODE_2

VARCHAR2(2) 2- letter ISO country code of the country to which the
POI belongs. (Required)

PARTITION_ID NUMBER Partition key used for partitioning geocoder data by
geographic boundaries. If the data is not partitioned,
set the value to 1. (Required)

Table 5–10 GC_POSTAL_CODE_<suffix> Table

Column Name Data Type Description

POSTAL_CODE VARCHAR2(16) Postal code. (Required)

SETTLEMENT_
NAME

VARCHAR2(64) Name of the settlement to which the postal code
belongs. (Required if the postal code is associated with
a settlement)

MUNICIPALITY_
NAME

VARCHAR2(64) Name of the municipality to which the postal code
belongs. (Required if the postal code is associated with
a municipality)

REGION_NAME VARCHAR2(64) Name of the region to which the postal code belongs.
(Required if the postal code is associated with a region)

LANG_CODE VARCHAR2(3) 3-letter ISO national language code for the language
associated with the area. (Required)

SETTLEMENT_ID NUMBER(10) ID number of the settlement to which the postal code
belongs. (Required if the postal code is associated with
a settlement)

Table 5–9 (Cont.) GC_POI_<suffix> Table

Column Name Data Type Description

Data Structures for Geocoding

5-16 Oracle Spatial User’s Guide and Reference

5.5.6 GC_ROAD_<suffix> Table
The GC_ROAD_<suffix> table (for example, GC_ROAD_US) stores road information
for the country associated with the table name suffix. A road is a collection of road
segments with the same name in the same settlement area; a road segment (defined in
the GC_ROAD_SEGMENT_<suffix> table) is the segment of the road between two
continuous intersections. The GC_ROAD_<suffix> table contains one or more rows for
each road. (For example, it can contain multiple rows for a road if the road is
associated with multiple settlements.) The GC_ROAD_<suffix> table contains the
columns shown in Table 5–11.

MUNICIPALITY_
ID

NUMBER(10) ID number of the municipality to which the postal code
belongs. (Required if the postal code is associated with
a municipality)

REGION_ID NUMBER(10) ID number of the region to which the postal code
belongs. (Required if the postal code is associated with
a region)

CENTER_LONG NUMBER Longitude value of the center of the area. The center is
set to the closest road segment to the center longitude
and latitude values. Oracle recommends that these two
attributes be set properly. If these values are not set, the
longitude and latitude coordinates of the geocoded
result of an area will be (0,0). (Optional)

CENTER_LAT NUMBER Latitude value of the center of the area. (See the
explanation for the CENTER_LONG column.)
(Optional)

ROAD_
SEGMENT_ID

NUMBER(10) ID of the road segment to which the area center is set.
This value must be set correctly if the geocoder is
intended to work with the Oracle Spatial routing
engine (described in Appendix C); otherwise, it can be
set to any nonzero value, but it cannot be null.
(Required)

COUNTRY_
CODE_2

VARCHAR2(2) 2- letter ISO country code of the country to which the
area belongs. (Required)

PARTITION_ID NUMBER Partition key used for partitioning geocoder data by
geographic boundaries. If the data is not partitioned,
set the value to 1. (Required)

NUM_STREETS NUMBER The number of streets inside this area. (Optional)

Table 5–11 GC_ROAD_<suffix> Table

Column Name Data Type Description

ROAD_ID NUMBER ID number of the road. (Required)

SETTLEMENT_ID NUMBER(10) ID number of the settlement to which the road belongs.
(Required if the road is associated with a settlement)

MUNICIPALITY_
ID

NUMBER(10) ID number of the municipality to which the road
belongs. (Required if the road is associated with a
municipality)

PARENT_AREA_
ID

NUMBER(10) ID number of the parent area of the municipality to
which the road belongs. (Required if the road is
associated with a parent area)

Table 5–10 (Cont.) GC_POSTAL_CODE_<suffix> Table

Column Name Data Type Description

Data Structures for Geocoding

Geocoding Address Data 5-17

LANG_CODE VARCHAR2(3) 3-letter ISO national language code for the language for
the road name. (Required)

NAME VARCHAR2(64) Name of the road, including the type (if any), the prefix
(if any), and the suffix (if any). For example, N Main
St as NAME, with Main as BASE_NAME. (Required)

BASE_NAME VARCHAR2(64) Name of the road, excluding the type (if any), the prefix
(if any), and the suffix (if any). For example, N Main
St as NAME, with Main as BASE_NAME. (Required)

PREFIX VARCHAR2(32) Prefix of the road name. For example, N Main St as
NAME, with N as PREFIX. (Required if the road name
has a prefix)

SUFFIX VARCHAR2(32) Suffix of the road name. For example, Main St NW as
NAME, with NW as SUFFIX. (Required if the road name
has a suffix)

STYPE_BEFORE VARCHAR2(32) Street type that precedes the base name. For example,
Avenue Victor Hugo as NAME, with Avenue as
STYPE_BEFORE and Victor Hugo as BASE_NAME.
(Required if the road type precedes the base name)

STYPE_AFTER VARCHAR2(32) Street type that follows the base name. For example,
Main St as NAME, with St as STYPE_AFTER and
Main as BASE_NAME. (Required if the road type
follows the base name)

STYPE_
ATTACHED

VARCHAR2(1) Contains T if the street type is in the same word with
the street name; contains F if the street type is a
separate word from the street name. For example, in a
German street address of 123 Beethovenstrass, the
street type is strass, and it is in the same word with
the street name, which is Beethoven. (Required)

START_HN NUMBER(5) (Should be set to the same value as CENTER_HN; not
currently used by Oracle)

CENTER_HN NUMBER(5) Leading numerical part of the center house number.
The center house number is the left side house number
at the start point of the center road segment, which is
located in the center of the whole road. (See the
explanation of house numbers after Table 5–12 in
Section 5.5.7.) (Required)

END_HN NUMBER(5) (Should be set to the same value as CENTER_HN; not
currently used by Oracle)

START_HN_SIDE VARCHAR2(1) (Should be set to the same value as CENTER_HN_
SIDE; not currently used by Oracle)

CENTER_HN_
SIDE

VARCHAR2(1) Side of the road of the center house number: L for left
or R for right. The center house number is the left side
house number at the start point of the center road
segment, which is located in the center of the whole
road. (See the explanation of house numbers after
Table 5–12 in Section 5.5.7.) (Required)

END_HN_SIDE VARCHAR2(1) (Should be set to the same value as CENTER_HN_
SIDE; not currently used by Oracle)

START_LONG NUMBER (Should be set to the same value as CENTER_LONG;
not currently used by Oracle)

START_LAT NUMBER (Should be set to the same value as CENTER_LAT; not
currently used by Oracle)

Table 5–11 (Cont.) GC_ROAD_<suffix> Table

Column Name Data Type Description

Data Structures for Geocoding

5-18 Oracle Spatial User’s Guide and Reference

5.5.7 GC_ROAD_SEGMENT_<suffix> Table
The GC_ROAD_SEGMENT_<suffix> table (for example, GC_ROAD_SEGMENT_US)
stores road segment information for the country associated with the table name suffix.
A road segment is the segment of the road between two continuous intersections,
while a road (defined in the GC_ROAD_<suffix> table) is a collection of road segments
with the same name in the same settlement area. The GC_ROAD_SEGMENT_<suffix>
table contains one row for each road segment, and it contains the columns shown in
Table 5–12.

CENTER_LONG NUMBER Longitude value of the center house number. The center
house number is the left side house number at the start
point of the center road segment, which is located in
the center of the whole road. (See the explanation of
house numbers after Table 5–12 in Section 5.5.7.)
(Required)

CENTER_LAT NUMBER Latitude value of the center house number. (See also the
explanation of the CENTER_LONG column.)
(Required)

END_LONG NUMBER (Should be set to the same value as CENTER_LONG;
not currently used by Oracle)

END_LAT NUMBER (Should be set to the same value as CENTER_LAT; not
currently used by Oracle)

START_ROAD_
SEG_ID

NUMBER(5) (Should be set to the same value as CENTER_ROAD_
SEG_ID; not currently used by Oracle)

CENTER_ROAD_
SEG_ID

NUMBER(5) ID number of the road segment at the center point of
the road. (Required)

END_ROAD_
SEG_ID

NUMBER(5) (Should be set to the same value as CENTER_ROAD_
SEG_ID; not currently used by Oracle)

POSTAL_CODE VARCHAR2(16) Postal code for the road. (Required)

COUNTRY_
CODE_2

VARCHAR2(2) 2- letter ISO country code of the country to which the
road belongs. (Required)

PARTITION_ID NUMBER Partition key used for partitioning geocoder data by
geographic boundaries. If the data is not partitioned,
set the value to 1. (Required)

CENTER_HN2 VARCHAR2(10) The second part of the center house number. (See the
explanation of house numbers after Table 5–12 in
Section 5.5.7.) (Required)

Table 5–12 GC_ROAD_SEGMENT_<suffix> Table

Column Name Data Type Description

ROAD_
SEGMENT_ID

NUMBER ID number of the road segment. (Required)

ROAD_ID NUMBER ID number of the road containing this road segment.
(Required)

L_ADDR_
FORMAT

VARCHAR2(1) Left side address format. Specify N if there are one or
more house numbers on the left side of the road
segment; leave null if there is no house number on the
left side of the road segment. (Required)

Table 5–11 (Cont.) GC_ROAD_<suffix> Table

Column Name Data Type Description

Data Structures for Geocoding

Geocoding Address Data 5-19

R_ADDR_
FORMAT

VARCHAR2(1) Right side address format. Specify N if there are one or
more house numbers on the right side of the road
segment; leave null if there is no house number on the
right side of the road segment. (Required)

L_ADDR_
SCHEME

VARCHAR2(1) Numbering scheme for house numbers on the left side
of the road segment: O (all odd numbers), E (all even
numbers), or M (mixture of odd and even numbers).
(Required)

R_ADDR_
SCHEME

VARCHAR2(1) Numbering scheme for house numbers on the right
side of the road segment: O (all odd numbers), E (all
even numbers), or M (mixture of odd and even
numbers). (Required)

START_HN NUMBER(5) The lowest house number on this road segment.
(Required)

END_HN NUMBER(5) The highest house number on this road segment.
(Required)

L_START_HN NUMBER(5) The leading numerical part of the left side starting
house number. (See the explanation of house numbers
after this table.) (Required)

L_END_HN NUMBER(5) The leading numerical part of the left side ending
house number. (See the explanation of house numbers
after this table.) (Required)

R_START_HN NUMBER(5) The leading numerical part of the right side starting
house number. (See the explanation of house numbers
after this table.) (Required)

R_END_HN NUMBER(5) The leading numerical part of the right side ending
house number. (See the explanation of house numbers
after this table.) (Required)

POSTAL_CODE VARCHAR2(16) Postal code for the road segment. If the left side and
right side of the road segment belong to two different
postal codes, create two rows for the road segment with
identical values in all columns except for POSTAL_
CODE. (Required)

GEOMETRY SDO_
GEOMETRY

Spatial geometry object representing the road segment.
(Required)

COUNTRY_
CODE_2

VARCHAR2(2) 2- letter ISO country code of the country to which the
road segment belongs. (Required)

PARTITION_ID NUMBER Partition key used for partitioning geocoder data by
geographic boundaries. If the data is not partitioned,
set the value to 1. (Required)

L_START_HN2 VARCHAR2(10) The second part of the left side starting house number.
(See the explanation of house numbers after this table.)
(Required if the left side starting house number has a
second part)

L_END_HN2 VARCHAR2(10) The second part of the left side ending house number.
(See the explanation of house numbers after this table.)
(Required if the left side ending house number has a
second part)

R_START_HN2 VARCHAR2(10) The second part of the right side starting house
number. (See the explanation of house numbers after
this table.) (Required if the right side starting house
number has a second part)

Table 5–12 (Cont.) GC_ROAD_SEGMENT_<suffix> Table

Column Name Data Type Description

Data Structures for Geocoding

5-20 Oracle Spatial User’s Guide and Reference

The starting house number is the house number at the starting point of the street
segment, which is the first shape point of the road segment geometry (GEOMETRY
column). The ending house number is the house number at the ending point of the
street segment, which is the last shape point of the road segment geometry. The left
and right side starting house numbers do not have to be lower than the left and right
ending house numbers.

A house number is divided into two parts: the leading numerical part and the second
part, which is the rest of the house number. The leading numerical part is the
numerical part of the house number that starts from the beginning of the whole house
number string and ends just before the first non-numeric character (if any). If the
house number contains any non-numeric characters, the second part of the house
number is the part from the first non-numeric character through the last character. For
example, if the house number is 123, the leading numerical part is 123 and the second
part is null; however, if the house number is 123A23, the leading numerical part is
123 and the second part is A23.

R_END_HN2 VARCHAR2(10) The second part of the right side ending house number.
(See the explanation of house numbers after this table.)
(Required if the right side ending house number has a
second part)

Table 5–12 (Cont.) GC_ROAD_SEGMENT_<suffix> Table

Column Name Data Type Description

Coordinate Systems (Spatial Reference Systems) 6-1

6
Coordinate Systems (Spatial Reference

Systems)

This chapter describes in greater detail the Oracle Spatial coordinate system support,
which was introduced in Section 1.5.4. You can store and manipulate SDO_
GEOMETRY objects in a variety of coordinate systems.

For reference information about coordinate system transformation functions and
procedures in the MDSYS.SDO_CS package, see Chapter 13.

This chapter contains the following major sections:

■ Section 6.1, "Terms and Concepts"

■ Section 6.2, "Geodetic Coordinate Support"

■ Section 6.3, "Local Coordinate Support"

■ Section 6.4, "EPSG Model and Spatial"

■ Section 6.5, "TFM_PLAN Object Type"

■ Section 6.6, "Coordinate Systems Data Structures"

■ Section 6.7, "Legacy Tables and Views"

■ Section 6.8, "Creating a User-Defined Coordinate Reference System"

■ Section 6.9, "Notes and Restrictions with Coordinate Systems Support"

■ Section 6.10, "U.S. National Grid Support"

■ Section 6.11, "Example of Coordinate System Transformation"

6.1 Terms and Concepts
This section explains important terms and concepts related to coordinate system
support in Oracle Spatial.

6.1.1 Coordinate System (Spatial Reference System)
A coordinate system (also called a spatial reference system) is a means of assigning
coordinates to a location and establishing relationships between sets of such
coordinates. It enables the interpretation of a set of coordinates as a representation of a
position in a real world space.

The term coordinate reference system has the same meaning as coordinate system for
Spatial, and the terms are used interchangeably. European Petroleum Survey Group
(EPSG) specifications and documentation typically use the term coordinate reference

Geodetic Coordinate Support

6-2 Oracle Spatial User’s Guide and Reference

system. (EPSG has its own meaning for the term coordinate system, as noted in
Section 6.6.11.)

6.1.2 Cartesian Coordinates
Cartesian coordinates are coordinates that measure the position of a point from a
defined origin along axes that are perpendicular in the represented two-dimensional
or three-dimensional space.

6.1.3 Geodetic Coordinates (Geographic Coordinates)
Geodetic coordinates (sometimes called geographic coordinates) are angular coordinates
(longitude and latitude), closely related to spherical polar coordinates, and are defined
relative to a particular Earth geodetic datum (described in Section 6.1.6). For more
information about geodetic coordinate support, see Section 6.2.

6.1.4 Projected Coordinates
Projected coordinates are planar Cartesian coordinates that result from performing a
mathematical mapping from a point on the Earth’s surface to a plane. There are many
such mathematical mappings, each used for a particular purpose.

6.1.5 Local Coordinates
Local coordinates are Cartesian coordinates in a non-Earth (non-georeferenced)
coordinate system. Section 6.3 describes local coordinate support in Spatial.

6.1.6 Geodetic Datum
A geodetic datum (or datum) is a means of shifting and rotating an ellipsoid to
represent the figure of the Earth, usually as an oblate spheroid, that approximates the
surface of the Earth locally or globally, and is the reference for the system of geodetic
coordinates.

Each geodetic coordinate system is based on a datum.

6.1.7 Transformation
Transformation is the conversion of coordinates from one coordinate system to
another coordinate system.

If the coordinate system is georeferenced, transformation can involve datum
transformation: the conversion of geodetic coordinates from one geodetic datum to
another geodetic datum, usually involving changes in the shape, orientation, and
center position of the reference ellipsoid.

6.2 Geodetic Coordinate Support
Effective with Oracle9i, Spatial provides a rational and complete treatment of geodetic
coordinates. Before Oracle9i, Spatial computations were based solely on flat
(Cartesian) coordinates, regardless of the coordinate system specified for the layer of
geometries. Consequently, computations for data in geodetic coordinate systems were
inaccurate, because they always treated the coordinates as if they were on a flat
surface, and they did not consider the curvature of the surface.

Geodetic Coordinate Support

Coordinate Systems (Spatial Reference Systems) 6-3

Effective with release 9.2, ellipsoidal surface computations consider the curvatures of
the Earth in the specified geodetic coordinate system and return correct, accurate
results. In other words, Spatial queries return the right answers all the time.

6.2.1 Geodesy and Two-Dimensional Geometry
A two-dimensional geometry is a surface geometry, but the important question is:
What is the surface? A flat surface (plane) is accurately represented by Cartesian
coordinates. However, Cartesian coordinates are not adequate for representing the
surface of a solid. A commonly used surface for spatial geometry is the surface of the
Earth, and the laws of geometry there are different than they are in a plane. For
example, on the Earth’s surface there are no parallel lines: lines are geodesics, and all
geodesics intersect. Thus, closed curved surface problems cannot be done accurately
with Cartesian geometry.

Spatial provides accurate results regardless of the coordinate system or the size of the
area involved, without requiring that the data be projected to a flat surface. The results
are accurate regardless of where on the Earth’s surface the query is focused, even in
"special" areas such as the poles. Thus, you can store coordinates in any datum and
projections that you choose, and you can perform accurate queries regardless of the
coordinate system.

6.2.2 Choosing a Geodetic or Projected Coordinate System
For applications that deal with the Earth’s surface, the data can be represented using a
geodetic coordinate system or a projected plane coordinate system. In deciding which
approach to take with the data, consider any needs related to accuracy and
performance:

■ Accuracy

For many spatial applications, the area is sufficiently small to allow adequate
computations on Cartesian coordinates in a local projection. For example, the New
Hampshire State Plane local projection provides adequate accuracy for most
spatial applications that use data for that state.

However, Cartesian computations on a plane projection will never give accurate
results for a large area such as Canada or Scandinavia. For example, a query
asking if Stockholm, Sweden and Helsinki, Finland are within a specified distance
may return an incorrect result if the specified distance is close to the actual
measured distance. Computations involving large areas or requiring very precise
accuracy must account for the curvature of the Earth’s surface.

■ Performance

Spherical computations use more computing resources than Cartesian
computations. Some operations using geodetic coordinates may take longer to
complete than the same operations using Cartesian coordinates.

6.2.3 Geodetic MBRs
To create a query window for certain operations on geodetic data, use an MBR
(minimum bounding rectangle) by specifying an SDO_ETYPE value of 1003 or 2003
and an SDO_INTERPRETATION value of 3, as described in Table 2–2 in Section 2.2.4.
A geodetic MBR can be used with the following operators: SDO_FILTER, SDO_
RELATE with the ANYINTERACT mask, SDO_ANYINTERACT, and SDO_WITHIN_
DISTANCE.

Geodetic Coordinate Support

6-4 Oracle Spatial User’s Guide and Reference

Example 6–1 requests the names of all cola markets that are likely to interact spatially
with a geodetic MBR.

Example 6–1 Using a Geodetic MBR

SELECT c.name FROM cola_markets_cs c WHERE
 SDO_FILTER(c.shape,
 SDO_GEOMETRY(
 2003,
 8307, -- SRID for WGS 84 longitude/latitude
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(6,5, 10,10))
) = 'TRUE';

Example 6–1 produces the following output (assuming the data as defined in
Example 6–7 in Section 6.11):

NAME

cola_c
cola_b
cola_d

The following considerations apply to the use of geodetic MBRs:

■ Do not use a geodetic MBR with spatial objects stored in the database. Use it only
to construct a query window.

■ The lower-left Y coordinate (minY) must be less than the upper-right Y coordinate
(maxY). If the lower-left X coordinate (minX) is greater than the upper-right X
coordinate (maxX), the window is assumed to cross the date line meridian (that is,
the meridian "opposite" the prime meridian, or both 180 and -180 longitude). For
example, an MBR of (-10,10, -100, 20) with longitude/latitude data goes
three-fourths of the way around the Earth (crossing the date line meridian), and
goes from latitude lines 10 to 20.

■ When Spatial constructs the MBR internally for the query, lines along latitude lines
are densified by adding points at one-degree intervals. This might affect results for
objects within a few meters of the edge of the MBR (especially objects in the
middle latitudes in both hemispheres).

The following additional examples show special or unusual cases, to illustrate how a
geodetic MBR is interpreted with longitude/latitude data:

■ (10,0, -110,20) crosses the date line meridian and goes most of the way around the
world, and goes from the equator to latitude 20.

■ (10,-90, 40,90) is a band from the South Pole to the North Pole between longitudes
10 and 40.

■ (10,-90, 40,50) is a band from the South Pole to latitude 50 between longitudes 10
and 40.

■ (-180,-10, 180,5) is a band that wraps the equator from 10 degrees south to 5
degrees north.

■ (-180,-90, 180,90) is the whole Earth.

■ (-180,-90, 180,50) is the whole Earth below latitude 50.

■ (-180,50, 180,90) is the whole Earth above latitude 50.

Geodetic Coordinate Support

Coordinate Systems (Spatial Reference Systems) 6-5

6.2.4 Other Considerations and Requirements with Geodetic Data
The following geometries are not permitted if a geodetic coordinate system is used:

■ Circles

■ Circular arcs

Geodetic coordinate system support is provided only for geometries that consist of
points or geodesics (lines on the ellipsoid). If you have geometries containing circles or
circular arcs in a projected coordinate system, you can densify them using the SDO_
GEOM.SDO_ARC_DENSIFY function (documented in Chapter 15) before
transforming them to geodetic coordinates, and then perform Spatial operations on the
resulting geometries.

The following size limits apply with geodetic data:

■ No polygon element can have an area larger than one-half the surface of the Earth.

■ In a line, the distance between two adjacent coordinates cannot be greater than or
equal to one-half the perimeter (a great circle) of the Earth.

If you need to work with larger elements, first break these elements into multiple
smaller elements and work with them. For example, you cannot create a geometry
representing the entire ocean surface of the Earth; however, you can create multiple
geometries, each representing part of the overall ocean surface. To work with a line
string that is greater than or equal to one-half the perimeter of the Earth, you can add
one or more intermediate points on the line so that all adjacent coordinates are less
than one-half the perimeter of the Earth.

To take full advantage of Spatial features, you must index geodetic data layers using a
geodetic R-tree index. (You can create a non-geodetic R-tree or quadtree index on
geodetic data by specifying 'geodetic=FALSE' in the PARAMETERS clause of the
CREATE INDEX statement; however, this is not recommended. See the Usage Notes
for the CREATE INDEX statement in Chapter 10 for more information.) In addition,
for Spatial release 9.0.1 and later you must delete (DROP INDEX) and re-create all
spatial indexes on geodetic data from a release before 9.0.1.

Tolerance is specified as meters for geodetic layers. If you use tolerance values that are
typical for non-geodetic data, these values are interpreted as meters for geodetic data.
For example, if you specify a tolerance value of 0.05 for geodetic data, this is
interpreted as precise to 5 centimeters. If this value is more precise than your
applications need, performance may be affected because of the internal computational
steps taken to implement the specified precision. (For more information about
tolerance, see Section 1.5.5.)

For geodetic layers, you must specify the dimensional extents in the index metadata as
-180,180 for longitude and -90,90 for latitude. The following statement (from
Example 6–7 in Section 6.11) specifies these extents (with a 10-meter tolerance value in
each dimension) for a geodetic data layer:

INSERT INTO user_sdo_geom_metadata
 (TABLE_NAME,
 COLUMN_NAME,
 DIMINFO,
 SRID)
 VALUES (
 'cola_markets_cs',
 'shape',
 SDO_DIM_ARRAY(
 SDO_DIM_ELEMENT('Longitude', -180, 180, 10), -- 10 meters tolerance
 SDO_DIM_ELEMENT('Latitude', -90, 90, 10) -- 10 meters tolerance

Local Coordinate Support

6-6 Oracle Spatial User’s Guide and Reference

),
 8307 -- SRID for 'Longitude / Latitude (WGS 84)' coordinate system
);

See Section 6.9 for additional notes and restrictions relating to geodetic data.

6.3 Local Coordinate Support
Spatial provides a level of support for local coordinate systems. Local coordinate
systems are often used in CAD systems, and they can also be used in local surveys
where the relationship between the surveyed site and the rest of the world is not
important.

Several local coordinate systems are predefined and included with Spatial in the SDO_
COORD_REF_SYS table (described in Section 6.6.9). These supplied local coordinate
systems, whose names start with Non-Earth, define non-Earth Cartesian coordinate
systems based on different units of measurement (Meter, Millimeter, Inch, and so on).

In the current release, you cannot perform coordinate system transformation between
local and Earth-based coordinate systems; and when transforming a geometry or layer
of geometries between local coordinate systems, you can only to convert coordinates
in a local coordinate system from one unit of measurement to another (for example,
inches to millimeters). However, you can perform all other Spatial operations (for
example, using SDO_RELATE, SDO_WITHIN_DISTANCE, and other operators) with
local coordinate systems.

6.4 EPSG Model and Spatial
Effective with Oracle Database 10g release 2 (10.2), the Oracle Spatial coordinate
system support is based on, but is not always identical to, the European Petroleum
Survey Group (EPSG) data model and data set (described in detail at
http://www.epsg.org). This approach provides the benefits of standardization,
expanded support, and flexibility:

■ The EPSG model is a comprehensive and widely accepted standard for data
representation, so users familiar with it can more easily understand Spatial storage
and operations.

■ Support is provided for more coordinate systems and their associated datums,
ellipsoids, and projections. For example, some of the EPSG geographic and
projected coordinate systems had no counterpart among coordinate systems
supported for previous Spatial releases. Their addition results in an expanded set
of supported coordinate systems.

■ Data transformations are more flexible. Instead of there being only one possible
Oracle-defined transformation path between a given source and target coordinate
system, you can specify alternative paths to be used for a specific area of
applicability (that is, use case) or as the systemwide default.

The rest of this section describes this flexibility.

For data transformations (that is, transforming data from one coordinate system to
another), you can now control which transformation rules are to be applied. In
previous releases, and in the current release by default, Spatial performs
transformations based only on the specified source and target coordinate systems,
using predetermined intermediate transformation steps. The assumption behind that
default approach is that there is a single correct or preferable transformation chain.

TFM_PLAN Object Type

Coordinate Systems (Spatial Reference Systems) 6-7

By default, then, Spatial applies certain transformation methods for each supported
transformation between specific pairs of source and target coordinate systems. For
example, there are over 500 supported transformations from specific coordinate
systems to the WGS 84 (longitude/latitude) coordinate system, which has the EPSG
SRID value of 4326. As one example, for a transformation from SRID 4605 to SRID
4326, Spatial can use the transformation method with the COORD_OP_ID value 1445,
as indicated in the SDO_COORD_OPS table (described in Section 6.6.8), which
contains one row for each transformation operation between coordinate systems.

However, you can override the default transformation by specifying a different
method (from the set of Oracle-supplied methods) for the transformation for any given
source and target SRID combination. You can specify a transformation as the new
systemwide default, or you can associate the transformation with a named use case
that can be specified when transforming a layer of spatial geometries. (A use case is
simply a name given to a usage scenario or area of applicability, such as Project XYZ or
Mike's Favorite Transformations; there is no relationship between use cases and database
users or schemas.)

To specify a transformation as either the systemwide default or associated with a use
case, use the SDO_CS.ADD_PREFERENCE_FOR_OP procedure. To remove a
previously specified preference, use the SDO_CS.REVOKE_PREFERENCE_FOR_OP
procedure.

When it performs a coordinate system transformation, Spatial follows these general
steps to determine the specific transformation to use:

1. If a use case has been specified, the transformation associated with that use case is
applied.

2. If no use case has been specified and if a user-defined systemwide transformation
has been created for the specified source and target coordinate system pair, that
transformation is applied.

3. If no use case has been specified and if no user-defined transformation exists for
the specified source and target coordinate system pair, the behavior depends on
whether or not EPSG rules have been created, such as by the SDO_CS.CREATE_
OBVIOUS_EPSG_RULES procedure:

■ If the EPSG rules have been created and if an EPSG rule is defined for this
transformation, the EPSG transformation is applied.

■ If the EPSG rules have not been created, or if they have been created but no
EPSG rule is defined for this transformation, the Oracle Spatial default
transformation is applied.

6.5 TFM_PLAN Object Type
The object type TFM_PLAN is used is by several SDO_CS package subprograms to
specify a transformation plan. For example, to create a concatenated operation that
consists of two operations specified by a parameter of type TFM_PLAN, use the SDO_
CS.CREATE_CONCATENATED_OP procedure.

Oracle Spatial defines the object type TFM_PLAN as:

CREATE TYPE tfm_plan AS OBJECT (
 THE_PLAN SDO_TFM_CHAIN);

The SDO_TFM_CHAIN type is defined as VARRAY(1048576) OF NUMBER.

Within the SDO_TFM_CHAIN array:

Coordinate Systems Data Structures

6-8 Oracle Spatial User’s Guide and Reference

■ The first element specifies the SRID of the source coordinate system.

■ Each pair of elements after the first element specifies an operation ID and the SRID
of a target coordinate system.

6.6 Coordinate Systems Data Structures
The coordinate systems functions and procedures use information provided in the
tables and views supplied with Oracle Spatial. The tables and views are part of the
MDSYS schema; however, public synonyms are defined, so you do not need to specify
MDSYS. before the table or view name. The definitions and data in these tables and
views are based on the EPSG data model and data set, as explained in Section 6.4.

The coordinate system tables fit into several general categories:

■ Coordinate system general information: SDO_COORD_SYS, SDO_COORD_REF_
SYS

■ Elements or aspects of a coordinate system definition: SDO_DATUMS, SDO_
ELLIPSOIDS, SDO_PRIME_MERIDIANS

■ Datum transformation support: SDO_COORD_OPS, SDO_COORD_OP_
METHODS, SDO_COORD_OP_PARAM_USE, SDO_COORD_OP_PARAM_VALS,
SDO_COORD_OP_PARAMS, SDO_COORD_OP_PATHS, SDO_PREFERRED_
OPS_SYSTEM, SDO_PREFERRED_OPS_USER

■ Others related to coordinate system definition: SDO_COORD_AXES, SDO_
COORD_AXIS_NAMES, SDO_UNITS_OF_MEASURE

Several views are provided that are identical to or subsets of coordinate system tables:

■ SDO_COORD_REF_SYSTEM, which contains the same columns as the SDO_
COORD_REF_SYS table. Use the SDO_COORD_REF_SYSTEM view instead of the
COORD_REF_SYS table for any insert, update, or delete operations.

■ Subsets of SDO_DATUMS, selected according to the value in the DATUM_TYPE
column: SDO_DATUM_ENGINEERING, SDO_DATUM_GEODETIC, SDO_
DATUM_VERTICAL.

■ Subsets of SDO_COORD_REF_SYS, selected according to the value in the
COORD_REF_SYS_KIND column: SDO_CRS_COMPOUND, SDO_CRS_
ENGINEERING, SDO_CRS_GEOCENTRIC, SDO_CRS_GEOGRAPHIC2D, SDO_
CRS_GEOGRAPHIC3D, SDO_CRS_PROJECTED, SDO_CRS_VERTICAL.

The rest of this section explains these tables and views, in alphabetical order. (Many
column descriptions are adapted or taken from EPSG descriptions.)

In addition to the tables and views in this section, Spatial provides several legacy
tables whose definitions and data match those of certain Spatial system tables used in
previous releases. Section 6.7 describes the legacy tables.

6.6.1 SDO_COORD_AXES Table
The SDO_COORD_AXES table contains one row for each coordinate system axis
definition. This table contains the columns shown in Table 6–1.

Note: You should not modify or delete any Oracle-supplied
information in any of the tables or views that are used for coordinate
system support.

If you want to create a user-defined coordinate system, see Section 6.8.

Coordinate Systems Data Structures

Coordinate Systems (Spatial Reference Systems) 6-9

6.6.2 SDO_COORD_AXIS_NAMES Table
The SDO_COORD_AXIS_NAMES table contains one row for each axis that can be
used in a coordinate system definition. This table contains the columns shown in
Table 6–2.

6.6.3 SDO_COORD_OP_METHODS Table
The SDO_COORD_OP_METHODS table contains one row for each coordinate systems
transformation method. This table contains the columns shown in Table 6–3.

Table 6–1 SDO_COORD_AXES Table

Column Name Data Type Description

COORD_SYS_ID NUMBER(10) ID number of the coordinate system to which this axis
applies.

COORD_AXIS_
NAME_ID

NUMBER(10) ID number of a coordinate system axis name. Matches
a value in the COORD_AXIS_NAME_ID column of
the SDO_COORD_AXIS_NAMES table (described in
Section 6.6.2). Example: 9901 (for Geodetic
latitude)

COORD_AXIS_
ORIENTATION

VARCHAR2(24) The direction of orientation for the coordinate system
axis. Example: east

COORD_AXIS_
ABBREVIATION

VARCHAR2(24) The abbreviation for the coordinate system axis
orientation. Example: E

UOM_ID NUMBER(10) ID number of the unit of measurement associated with
the axis. Matches a value in the UOM_ID column of
the SDO_UNITS_OF_MEASURE table (described in
Section 6.6.27).

ORDER NUMBER(10) Position of this axis within the coordinate system (1, 2,
or 3).

Table 6–2 SDO_COORD_AXIS_NAMES Table

Column Name Data Type Description

COORD_AXIS_
NAME_ID

NUMBER(10) ID number of the coordinate axis name. Example:
9926

COORD_AXIS_
NAME

VARCHAR2(80) Name of the coordinate axis. Example: Spherical
latitude

Table 6–3 SDO_COORD_OP_METHODS Table

Column Name Data Type Description

COORD_OP_
METHOD_ID

NUMBER(10) ID number of the coordinate system transformation
method. Example: 9613

COORD_OP_
METHOD_NAME

VARCHAR2(50) Name of the method. Example: NADCON

REVERSE_OP NUMBER(1) Contains 1 if reversal of the transformation (from the
current target coordinate system to the source
coordinate system) can be achieved by reversing the
sign of each parameter value; contains 0 if a separate
operation must be defined for reversal of the
transformation.

Coordinate Systems Data Structures

6-10 Oracle Spatial User’s Guide and Reference

6.6.4 SDO_COORD_OP_PARAM_USE Table
The SDO_COORD_OP_PARAM_USE table contains one row for each combination of
transformation method and transformation operation parameter that is available for
use. This table contains the columns shown in Table 6–4.

6.6.5 SDO_COORD_OP_PARAM_VALS Table
The SDO_COORD_OP_PARAM_VALS table contains information about parameter
values for each coordinate system transformation method. This table contains the
columns shown in Table 6–5.

INFORMATION_
SOURCE

VARCHAR2(254) Origin of this information. Example: US Coast and
geodetic Survey -
http://www.ngs.noaa.gov

DATA_SOURCE VARCHAR2(40) Organization providing the data for this record.
Example: EPSG

Table 6–4 SDO_COORD_OP_PARAM_USE Table

Column Name Data Type Description

COORD_OP_
METHOD_ID

NUMBER(10) ID number of the coordinate system transformation
method. Matches a value in the COORD_OP_
METHOD_ID column of the COORD_OP_
METHODS table (described in Section 6.6.3).

PARAMETER_ID NUMBER(10) ID number of the parameter for transformation
operations. Matches a value in the PARAMETER_ID
column of the SDO_COORD_OP_PARAMS table
(described in Section 6.6.6).

SORT_ORDER NUMBER(5) A number indicating the position of this parameter in
the sequence of parameters for this method. Example:
2 for the second parameter

PARAM_SIGN_
REVERSAL

VARCHAR2(3) Yes if reversal of the transformation (from the
current target coordinate system to the source
coordinate system) can be achieved by reversing the
sign of each parameter value; No if a separate
operation must be defined for reversal of the
transformation.

Table 6–5 SDO_COORD_OP_PARAM_VALS Table

Column Name Data Type Description

COORD_OP_ID NUMBER(10) ID number of the coordinate transformation
operation. Matches a value in the COORD_OP_ID
column of the SDO_COORD_OPS table (described in
Section 6.6.8).

COORD_OP_
METHOD_ID

NUMBER(10) Coordinate operation method ID. Must match a
COORD_OP_METHOD_ID value in the SDO_
COORD_OP_METHODS table (see Section 6.6.3).

PARAMETER_ID NUMBER(10) ID number of the parameter for transformation
operations. Matches a value in the PARAMETER_ID
column of the SDO_COORD_OP_PARAMS table
(described in Section 6.6.6).

Table 6–3 (Cont.) SDO_COORD_OP_METHODS Table

Column Name Data Type Description

Coordinate Systems Data Structures

Coordinate Systems (Spatial Reference Systems) 6-11

6.6.6 SDO_COORD_OP_PARAMS Table
The SDO_COORD_OP_PARAMS table contains one row for each available parameter
for transformation operations. This table contains the columns shown in Table 6–6.

6.6.7 SDO_COORD_OP_PATHS Table
The SDO_COORD_OP_PATHS table contains one row for each atomic step in a
concatenated operation. This table contains the columns shown in Table 6–7.

PARAMETER_
VALUE

FLOAT(49) Value of the parameter for this operation.

PARAM_VALUE_
FILE_REF

VARCHAR2(254) Name of the file containing the value data, if a single
value for the parameter is not sufficient.

UOM_ID NUMBER(10) ID number of the unit of measurement associated
with the operation. Matches a value in the UOM_ID
column of the SDO_UNITS_OF_MEASURE table
(described in Section 6.6.27).

Table 6–6 SDO_COORD_OP_PARAMS Table

Column Name Data Type Description

PARAMETER_ID NUMBER(10) ID number of the parameter. Example: 8608

PARAMETER_
NAME

VARCHAR2(80) Name of the operation. Example: X-axis
rotation

INFORMATION_
SOURCE

VARCHAR2(254) Origin of this information. Example: EPSG
guidance note number 7.

DATA_SOURCE VARCHAR2(40) Organization providing the data for this record.
Example: EPSG

Table 6–7 SDO_COORD_OP_PATHS Table

Column Name Data Type Description

CONCAT_
OPERATION_ID

NUMBER(10) ID number of the concatenation operation. Must
match a COORD_OP_ID value in the SDO_COORD_
OPS table (described in Section 6.6.8) for which the
COORD_OP_TYPE value is CONCATENATION.

SINGLE_
OPERATION_ID

NUMBER(10) ID number of the single coordinate operation for this
step (atomic operation) in a concatenated operation.
Must match a COORD_OP_ID value in the SDO_
COORD_OPS table (described in Section 6.6.8).

SINGLE_OP_
SOURCE_ID

NUMBER(10) ID number of source coordinate reference system for
the single coordinate operation for this step. Must
match an SRID value in the SDO_COORD_REF_SYS
table (described in Section 6.6.9).

SINGLE_OP_
TARGET_ID

NUMBER(10) ID number of target coordinate reference system for
the single coordinate operation for this step. Must
match an SRID value in the SDO_COORD_REF_SYS
table (described in Section 6.6.9).

OP_PATH_STEP NUMBER(5) Sequence number of this step (atomic operation)
within this concatenated operation.

Table 6–5 (Cont.) SDO_COORD_OP_PARAM_VALS Table

Column Name Data Type Description

Coordinate Systems Data Structures

6-12 Oracle Spatial User’s Guide and Reference

6.6.8 SDO_COORD_OPS Table
The SDO_COORD_OPS table contains one row for each transformation operation
between coordinate systems. This table contains the columns shown in Table 6–8.

Table 6–8 SDO_COORD_OPS Table

Column Name Data Type Description

COORD_OP_ID NUMBER(10) ID number of the coordinate transformation
operation. Example: 101

COORD_OP_
NAME

VARCHAR2(80) Name of the operation. Example: ED50 to WGS 84
(14)

COORD_OP_TYPE VARCHAR2(24) Type of operation. One of the following:
CONCATENATED OPERATION, CONVERSION, or
TRANSFORMATION

SOURCE_SRID NUMBER(10) SRID of the coordinate system from which to perform
the transformation. Example: 4230

TARGET_SRID NUMBER(10) SRID of the coordinate system into which to perform
the transformation. Example: 4326

COORD_TFM_
VERSION

VARCHAR2(24) Name assigned by EPSG to the coordinate
transformation. Example: 5Nat-NSea90

COORD_OP_
VARIANT

NUMBER(5) A variant of the more generic method specified in
COORD_OP_METHOD_ID. Example: 14

COORD_OP_
METHOD_ID

NUMBER(10) Coordinate operation method ID. Must match a
COORD_OP_METHOD_ID value in the SDO_
COORD_OP_METHODS table (see Section 6.6.3).
Several operations can use a method. Example: 9617

UOM_ID_
SOURCE_OFFSETS

NUMBER(10) ID number of the unit of measurement for offsets in
the source coordinate system. Matches a value in the
UOM_ID column of the SDO_UNITS_OF_MEASURE
table (described in Section 6.6.27).

UOM_ID_
TARGET_OFFSETS

NUMBER(10) ID number of the unit of measurement for offsets in
the target coordinate system. Matches a value in the
UOM_ID column of the SDO_UNITS_OF_MEASURE
table (described in Section 6.6.27).

INFORMATION_
SOURCE

VARCHAR2(254) Origin of this information. Example: Institut de
Geomatica; Barcelona

DATA_SOURCE VARCHAR2(40) Organization providing the data for this record.
Example: EPSG

SHOW_
OPERATION

NUMBER(3) (Currently not used.)

IS_LEGACY VARCHAR2(5) TRUE if the operation was included in Oracle Spatial
before release 10.2; FALSE if the operation is new in
Oracle Spatial release 10.2.

LEGACY_CODE NUMBER(10) For any EPSG coordinate transformation operation
that has a semantically identical legacy (in Oracle
Spatial before release 10.2) counterpart, the COORD_
OP_ID value of the legacy coordinate transformation
operation.

Coordinate Systems Data Structures

Coordinate Systems (Spatial Reference Systems) 6-13

6.6.9 SDO_COORD_REF_SYS Table
The SDO_COORD_REF_SYS table contains one row for each coordinate reference
system. This table contains the columns shown in Table 6–9. (The SDO_COORD_REF_
SYS table is roughly patterned after the EPSG Coordinate Reference System table.)

REVERSE_OP NUMBER(1) Contains 1 if reversal of the transformation (from the
current target coordinate system to the source
coordinate system) is defined as achievable by
reversing the sign of each parameter value; contains
0 if a separate operation must be defined for reversal
of the transformation. If REVERSE_OP contains 1,
the operations that are actually implemented are
indicated by the values for IS_IMPLEMENTED_
FORWARD and IS_IMPLEMENTED_REVERSE.

IS_
IMPLEMENTED_
FORWARD

NUMBER(1) Contains 1 if the forward operation is implemented;
contains 0 if the forward operation is not
implemented.

IS_
IMPLEMENTED_
REVERSE

NUMBER(1) Contains 1 if the reverse operation is implemented;
contains 0 if the reverse operation is not
implemented.

Note: If you need to perform an insert, update, or delete operation,
you must perform it on the SDO_COORD_REF_SYSTEM view, which
contains the same columns as the SDO_COORD_REF_SYS table. The
SDO_COORD_REF_SYSTEM view is described in Section 6.6.10.

Table 6–9 SDO_COORD_REF_SYS Table

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.
Example: 8307

COORD_REF_SYS_
NAME

VARCHAR2(80) Name of the coordinate reference system. Example:
Longitude / Latitude (WGS 84)

COORD_REF_SYS_
KIND

VARCHAR2(24) Category for the coordinate system. Example:
GEOGRAPHIC2D

COORD_SYS_ID NUMBER(10) ID number of the coordinate system used for the
coordinate reference system. Must match a
COORD_SYS_ID value in the SDO_COORD_SYS
table (see Section 6.6.11).

DATUM_ID NUMBER(10) ID number of the datum used for the coordinate
reference system. Null for a projected coordinate
system. For a geodetic coordinate system, must
match a DATUM_ID value in the SDO_DATUMS
table (see Section 6.6.22). Example: 10115

GEOG_CRS_
DATUM_ID

NUMBER(10) ID number of the datum used for the coordinate
reference system. For a projected coordinate system,
must match the DATUM_ID value (in the SDO_
DATUMS table, described in Section 6.6.22) of the
geodetic coordinate system on which the projected
coordinate system is based. For a geodetic
coordinate system, must match the DATUM_ID
value. Example: 10115

Table 6–8 (Cont.) SDO_COORD_OPS Table

Column Name Data Type Description

Coordinate Systems Data Structures

6-14 Oracle Spatial User’s Guide and Reference

See also the information about the following views that are defined based on the value
of the COORD_REF_SYS_KIND column:

■ SDO_CRS_COMPOUND (Section 6.6.12)

■ SDO_CRS_ENGINEERING (Section 6.6.13)

■ SDO_CRS_GEOCENTRIC (Section 6.6.14)

SOURCE_GEOG_
SRID

NUMBER(10) For a projected coordinate reference system, the ID
number for the associated geodetic coordinate
system.

PROJECTION_
CONV_ID

NUMBER(10) For a projected coordinate reference system, the
COORD_OP_ID value of the conversion operation
used to convert the projected coordinated system to
and from the source geographic coordinate system.

CMPD_HORIZ_
SRID

NUMBER(10) (EPSG-assigned value; not used by Oracle Spatial.
The EPSG description is: "For compound CRS only,
the code of the horizontal component of the
Compound CRS.")

CMPD_VERT_
SRID

NUMBER(10) (EPSG-assigned value; not used by Oracle Spatial.
The EPSG description is: "For compound CRS only,
the code of the vertical component of the
Compound CRS.")

INFORMATION_
SOURCE

VARCHAR2(254) Provider of the definition for the coordinate system
(Oracle for all rows supplied by Oracle).

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

IS_LEGACY VARCHAR2(5) TRUE if the coordinate system definition was
included in Oracle Spatial before release 10.2;
FALSE if the coordinate system definition is new in
Oracle Spatial release 10.2.

LEGACY_CODE NUMBER(10) For any EPSG coordinate reference system that has
a semantically identical legacy (in Oracle Spatial
before release 10.2) counterpart, the SRID value of
the legacy coordinate system.

LEGACY_
WKTEXT

VARCHAR2(2046) If IS_LEGACY is TRUE, contains the well-known
text description of the coordinate system. Example:
GEOGCS ["Longitude / Latitude (WGS
84)", DATUM ["WGS 84", SPHEROID ["WGS
84", 6378137, 298.257223563]], PRIMEM
["Greenwich", 0.000000], UNIT
["Decimal Degree",
0.01745329251994330]]

LEGACY_CS_
BOUNDS

SDO_GEOMETRY For a legacy coordinate system, the dimensional
boundary (if any).

IS_VALID VARCHAR2(5) TRUE if the EPSG record for the coordinate
reference system is completely defined; FALSE if
the EPSG record for the coordinate reference system
is not completely defined.

SUPPORTS_SDO_
GEOMETRY

VARCHAR2(5) TRUE if the COORD_REF_SYS_KIND column
contains ENGINEERING, GEOGRAPHIC2D, or
PROJECTED CRS; FALSE if the COORD_REF_SYS_
KIND column contains any other value.

Table 6–9 (Cont.) SDO_COORD_REF_SYS Table

Column Name Data Type Description

Coordinate Systems Data Structures

Coordinate Systems (Spatial Reference Systems) 6-15

■ SDO_CRS_GEOGRAPHIC2D (Section 6.6.15)

■ SDO_CRS_GEOGRAPHIC3D (Section 6.6.16)

■ SDO_CRS_PROJECTED (Section 6.6.17)

■ SDO_CRS_VERTICAL (Section 6.6.18)

6.6.10 SDO_COORD_REF_SYSTEM View
The SDO_COORD_REF_SYSTEM view contains the same columns as the SDO_
COORD_REF_SYS table, which is described in Section 6.6.9. However, the SDO_
COORD_REF_SYSTEM view has a trigger defined on it, so that any insert, update, or
delete operations performed on the view cause all relevant Spatial system tables to
have the appropriate operations performed on them.

Therefore, if you need to perform an insert, update, or delete operation, you must
perform it on the SDO_COORD_REF_SYSTEM view, not the SDO_COORD_REF_SYS
table.

6.6.11 SDO_COORD_SYS Table
The SDO_COORD_SYS table contains rows with information about coordinate
systems. This table contains the columns shown in Table 6–10. (The SDO_COORD_SYS
table is roughly patterned after the EPSG Coordinate System table, where a coordinate
system is described as "a pair of reusable axes.")

6.6.12 SDO_CRS_COMPOUND View
The SDO_CRS_COMPOUND view contains selected information from the SDO_
COORD_REF_SYS table (described in Section 6.6.9) where the COORD_REF_SYS_
KIND column value is COMPOUND. This view contains the columns shown in
Table 6–11.

Table 6–10 SDO_COORD_SYS Table

Column Name Data Type Description

COORD_SYS_ID NUMBER(10) ID number of the coordinate system. Example: 6405

COORD_SYS_
NAME

VARCHAR2(254) Name of the coordinate system. Example:
Ellipsoidal 2D CS. Axes: latitude,
longitude. Orientations: north, east.
UoM: dec deg

COORD_SYS_
TYPE

VARCHAR2(24) Type of coordinate system. Example: ellipsoidal

DIMENSION NUMBER(5) Number of dimensions represented by the coordinate
system.

INFORMATION_
SOURCE

VARCHAR2(254) Origin of this information.

DATA_SOURCE VARCHAR2(40) Organization providing the data for this record.

Table 6–11 SDO_CRS_COMPOUND View

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.

COORD_REF_SYS_
NAME

VARCHAR2(80) Name of the coordinate reference system.

Coordinate Systems Data Structures

6-16 Oracle Spatial User’s Guide and Reference

6.6.13 SDO_CRS_ENGINEERING View
The SDO_CRS_ENGINEERING view contains selected information from the SDO_
COORD_REF_SYS table (described in Section 6.6.9) where the COORD_REF_SYS_
KIND column value is ENGINEERING. This view contains the columns shown in
Table 6–12.

6.6.14 SDO_CRS_GEOCENTRIC View
The SDO_CRS_GEOCENTRIC view contains selected information from the SDO_
COORD_REF_SYS table (described in Section 6.6.9) where the COORD_REF_SYS_
KIND column value is GEOCENTRIC. This view contains the columns shown in
Table 6–13.

CMPD_HORIZ_
SRID

NUMBER(10) (EPSG-assigned value; not used by Oracle Spatial.
The EPSG description is: "For compound CRS only,
the code of the horizontal component of the
Compound CRS.")

CMPD_VERT_
SRID

NUMBER(10) (EPSG-assigned value; not used by Oracle Spatial.
The EPSG description is: "For compound CRS only,
the code of the vertical component of the Compound
CRS.")

INFORMATION_
SOURCE

VARCHAR2(254) Provider of the definition for the coordinate system
(Oracle for all rows supplied by Oracle).

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

Table 6–12 SDO_CRS_ENGINEERING View

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.

COORD_REF_SYS_
NAME

VARCHAR2(80) Name of the coordinate reference system.

COORD_SYS_ID NUMBER(10) ID number of the coordinate system used for the
coordinate reference system. Must match a COORD_
SYS_ID value in the SDO_COORD_SYS table (see
Section 6.6.11).

DATUM_ID NUMBER(10) ID number of the datum used for the coordinate
reference system. Must match a DATUM_ID value in
the SDO_DATUMS table (see Section 6.6.22).
Example: 10115

INFORMATION_
SOURCE

VARCHAR2(254) Provider of the definition for the coordinate system
(Oracle for all rows supplied by Oracle).

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

Table 6–13 SDO_CRS_GEOCENTRIC View

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.

COORD_REF_SYS_
NAME

VARCHAR2(80) Name of the coordinate reference system.

Table 6–11 (Cont.) SDO_CRS_COMPOUND View

Column Name Data Type Description

Coordinate Systems Data Structures

Coordinate Systems (Spatial Reference Systems) 6-17

6.6.15 SDO_CRS_GEOGRAPHIC2D View
The SDO_CRS_GEOGRAPHIC2D view contains selected information from the SDO_
COORD_REF_SYS table (described in Section 6.6.9) where the COORD_REF_SYS_
KIND column value is GEOGRAPHIC2D. This view contains the columns shown in
Table 6–14.

6.6.16 SDO_CRS_GEOGRAPHIC3D View
The SDO_CRS_GEOGRAPHIC3D view contains selected information from the SDO_
COORD_REF_SYS table (described in Section 6.6.9) where the COORD_REF_SYS_
KIND column value is GEOGRAPHIC3D. This view contains the columns shown in
Table 6–15.

COORD_SYS_ID NUMBER(10) ID number of the coordinate system used for the
coordinate reference system. Must match a COORD_
SYS_ID value in the SDO_COORD_SYS table (see
Section 6.6.11).

DATUM_ID NUMBER(10) ID number of the datum used for the coordinate
reference system. Must match a DATUM_ID value in
the SDO_DATUMS table (see Section 6.6.22).
Example: 10115

INFORMATION_
SOURCE

VARCHAR2(254) Provider of the definition for the coordinate system
(Oracle for all rows supplied by Oracle).

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

Table 6–14 SDO_CRS_GEOGRAPHIC2D View

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.

COORD_REF_SYS_
NAME

VARCHAR2(80) Name of the coordinate reference system.

COORD_SYS_ID NUMBER(10) ID number of the coordinate system used for the
coordinate reference system. Must match a COORD_
SYS_ID value in the SDO_COORD_SYS table (see
Section 6.6.11).

DATUM_ID NUMBER(10) ID number of the datum used for the coordinate
reference system. Must match a DATUM_ID value in
the SDO_DATUMS table (see Section 6.6.22).
Example: 10115

INFORMATION_
SOURCE

VARCHAR2(254) Provider of the definition for the coordinate system
(Oracle for all rows supplied by Oracle).

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

Table 6–15 SDO_CRS_GEOGRAPHIC3D View

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.

COORD_REF_SYS_
NAME

VARCHAR2(80) Name of the coordinate reference system.

Table 6–13 (Cont.) SDO_CRS_GEOCENTRIC View

Column Name Data Type Description

Coordinate Systems Data Structures

6-18 Oracle Spatial User’s Guide and Reference

6.6.17 SDO_CRS_PROJECTED View
The SDO_CRS_PROJECTED view contains selected information from the SDO_
COORD_REF_SYS table (described in Section 6.6.9) where the COORD_REF_SYS_
KIND column value is PROJECTED. This view contains the columns shown in
Table 6–16.

6.6.18 SDO_CRS_VERTICAL View
The SDO_CRS_VERTICAL view contains selected information from the SDO_
COORD_REF_SYS table (described in Section 6.6.9) where the COORD_REF_SYS_
KIND column value is VERTICAL. This view contains the columns shown in
Table 6–17.

COORD_SYS_ID NUMBER(10) ID number of the coordinate system used for the
coordinate reference system. Must match a
COORD_SYS_ID value in the SDO_COORD_SYS
table (see Section 6.6.11).

DATUM_ID NUMBER(10) ID number of the datum used for the coordinate
reference system. Must match a DATUM_ID value
in the SDO_DATUMS table (see Section 6.6.22).
Example: 10115

INFORMATION_
SOURCE

VARCHAR2(254) Provider of the definition for the coordinate system
(Oracle for all rows supplied by Oracle).

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

Table 6–16 SDO_CRS_PROJECTED View

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.

COORD_REF_SYS_
NAME

VARCHAR2(80) Name of the coordinate reference system.

COORD_SYS_ID NUMBER(10) ID number of the coordinate system used for the
coordinate reference system. Must match a COORD_
SYS_ID value in the SDO_COORD_SYS table (see
Section 6.6.11).

SOURCE_GEOG_
SRID

NUMBER(10) ID number for the associated geodetic coordinate
system.

PROJECTION_
CONV_ID

NUMBER(10) COORD_OP_ID value of the conversion operation
used to convert the projected coordinated system to
and from the source geographic coordinate system.

INFORMATION_
SOURCE

VARCHAR2(254) Provider of the definition for the coordinate system
(Oracle for all rows supplied by Oracle).

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

Table 6–15 (Cont.) SDO_CRS_GEOGRAPHIC3D View

Column Name Data Type Description

Coordinate Systems Data Structures

Coordinate Systems (Spatial Reference Systems) 6-19

6.6.19 SDO_DATUM_ENGINEERING View
The SDO_DATUM_ENGINEERING view contains selected information from the
SDO_DATUMS table (described in Section 6.6.22) where the DATUM_TYPE column
value is ENGINEERING. This view contains the columns shown in Table 6–18.

Table 6–17 SDO_CRS_VERTICAL View

Column Name Data Type Description

SRID NUMBER(10) ID number of the coordinate reference system.

COORD_REF_SYS_
NAME

VARCHAR2(80) Name of the coordinate reference system.

COORD_SYS_ID NUMBER(10) ID number of the coordinate system used for the
coordinate reference system. Must match a COORD_
SYS_ID value in the SDO_COORD_SYS table (see
Section 6.6.11).

DATUM_ID NUMBER(10) ID number of the datum used for the coordinate
reference system. Must match a DATUM_ID value in
the SDO_DATUMS table (see Section 6.6.22).
Example: 10115

INFORMATION_
SOURCE

VARCHAR2(254) Provider of the definition for the coordinate system
(Oracle for all rows supplied by Oracle).

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle).

Table 6–18 SDO_DATUM_ENGINEERING View

Column Name Data Type Description

DATUM_ID NUMBER(10) ID number of the datum.

DATUM_NAME VARCHAR2(80) Name of the datum.

ELLIPSOID_ID NUMBER(10) ID number of the ellipsoid used in the datum
definition. Must match an ELLIPSOID_ID value in
the SDO_ELLIPSOIDS table (see Section 6.6.23).
Example: 8045

PRIME_
MERIDIAN_ID

NUMBER(10) ID number of the prime meridian used in the datum
definition. Must match a PRIME_MERIDIAN_ID
value in the SDO_PRIME_MERIDIANS table (see
Section 6.6.26). Example: 8950

INFORMATION_
SOURCE

VARCHAR2(254) Provider of the definition of the datum. Example:
Ordnance Survey of Great Britain.

SHIFT_X NUMBER Number of meters to shift the ellipsoid center relative
to the center of the WGS 84 ellipsoid on the x-axis.

SHIFT_Y NUMBER Number of meters to shift the ellipsoid center relative
to the center of the WGS 84 ellipsoid on the y-axis.

SHIFT_Z NUMBER Number of meters to shift the ellipsoid center relative
to the center of the WGS 84 ellipsoid on the z-axis.

ROTATE_X NUMBER Number of arc-seconds of rotation about the x-axis.

ROTATE_Y NUMBER Number of arc-seconds of rotation about the y-axis.

ROTATE_Z NUMBER Number of arc-seconds of rotation about the z-axis.

SCALE_ADJUST NUMBER A value to be used in adjusting the X, Y, and Z values
after any shifting and rotation, according to the
formula: 1.0 + (SCALE_ADJUST * 10-6)

Coordinate Systems Data Structures

6-20 Oracle Spatial User’s Guide and Reference

6.6.20 SDO_DATUM_GEODETIC View
The SDO_DATUM_GEODETIC view contains selected information from the SDO_
DATUMS table (described in Section 6.6.22) where the DATUM_TYPE column value is
GEODETIC. This view contains the columns shown in Table 6–19.

6.6.21 SDO_DATUM_VERTICAL View
The SDO_DATUM_VERTICAL view contains selected information from the SDO_
DATUMS table (described in Section 6.6.22) where the DATUM_TYPE column value is
VERTICAL. This view contains the columns shown in Table 6–20.

Table 6–19 SDO_DATUM_GEODETIC View

Column Name Data Type Description

DATUM_ID NUMBER(10) ID number of the datum.

DATUM_NAME VARCHAR2(80) Name of the datum.

ELLIPSOID_ID NUMBER(10) ID number of the ellipsoid used in the datum
definition. Must match an ELLIPSOID_ID value in
the SDO_ELLIPSOIDS table (see Section 6.6.23).
Example: 8045

PRIME_
MERIDIAN_ID

NUMBER(10) ID number of the prime meridian used in the datum
definition. Must match a PRIME_MERIDIAN_ID
value in the SDO_PRIME_MERIDIANS table (see
Section 6.6.26). Example: 8950

INFORMATION_
SOURCE

VARCHAR2(254) Provider of the definition of the datum. Example:
Ordnance Survey of Great Britain.

SHIFT_X NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
x-axis.

SHIFT_Y NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
y-axis.

SHIFT_Z NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
z-axis.

ROTATE_X NUMBER Number of arc-seconds of rotation about the x-axis.

ROTATE_Y NUMBER Number of arc-seconds of rotation about the y-axis.

ROTATE_Z NUMBER Number of arc-seconds of rotation about the z-axis.

SCALE_ADJUST NUMBER A value to be used in adjusting the X, Y, and Z
values after any shifting and rotation, according to
the formula: 1.0 + (SCALE_ADJUST * 10-6)

Table 6–20 SDO_DATUM_VERTICAL View

Column Name Data Type Description

DATUM_ID NUMBER(10) ID number of the datum.

DATUM_NAME VARCHAR2(80) Name of the datum.

ELLIPSOID_ID NUMBER(10) ID number of the ellipsoid used in the datum
definition. Must match an ELLIPSOID_ID value in
the SDO_ELLIPSOIDS table (see Section 6.6.23).
Example: 8045

Coordinate Systems Data Structures

Coordinate Systems (Spatial Reference Systems) 6-21

6.6.22 SDO_DATUMS Table
The SDO_DATUMS table contains one row for each datum. This table contains the
columns shown in Table 6–21.

PRIME_
MERIDIAN_ID

NUMBER(10) ID number of the prime meridian used in the datum
definition. Must match a PRIME_MERIDIAN_ID
value in the SDO_PRIME_MERIDIANS table (see
Section 6.6.26). Example: 8950

INFORMATION_
SOURCE

VARCHAR2(254) Provider of the definition of the datum. Example:
Ordnance Survey of Great Britain.

SHIFT_X NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
x-axis.

SHIFT_Y NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
y-axis.

SHIFT_Z NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
z-axis.

ROTATE_X NUMBER Number of arc-seconds of rotation about the x-axis.

ROTATE_Y NUMBER Number of arc-seconds of rotation about the y-axis.

ROTATE_Z NUMBER Number of arc-seconds of rotation about the z-axis.

SCALE_ADJUST NUMBER A value to be used in adjusting the X, Y, and Z
values after any shifting and rotation, according to
the formula: 1.0 + (SCALE_ADJUST * 10-6)

Table 6–21 SDO_DATUMS Table

Column Name Data Type Description

DATUM_ID NUMBER(10) ID number of the datum. Example: 10115

DATUM_NAME VARCHAR2(80) Name of the datum. Example: WGS 84

DATUM_TYPE VARCHAR2(24) Type of the datum. Example: GEODETIC

ELLIPSOID_ID NUMBER(10) ID number of the ellipsoid used in the datum
definition. Must match an ELLIPSOID_ID value in
the SDO_ELLIPSOIDS table (see Section 6.6.23).
Example: 8045

PRIME_
MERIDIAN_ID

NUMBER(10) ID number of the prime meridian used in the datum
definition. Must match a PRIME_MERIDIAN_ID
value in the SDO_PRIME_MERIDIANS table (see
Section 6.6.26). Example: 8950

INFORMATION_
SOURCE

VARCHAR2(254) Provider of the definition of the datum. Example:
Ordnance Survey of Great Britain.

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record (if
not Oracle). Example: EPSG

SHIFT_X NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
x-axis.

Table 6–20 (Cont.) SDO_DATUM_VERTICAL View

Column Name Data Type Description

Coordinate Systems Data Structures

6-22 Oracle Spatial User’s Guide and Reference

See also the information about the following views that are defined based on the value
of the DATUM_TYPE column: SDO_DATUM_ENGINEERING (Section 6.6.19), SDO_
DATUM_GEODETIC (Section 6.6.20), and SDO_DATUM_VERTICAL (Section 6.6.21).

6.6.23 SDO_ELLIPSOIDS Table
The SDO_ELLIPSOIDS table contains one row for each ellipsoid. This table contains
the columns shown in Table 6–22.

SHIFT_Y NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
y-axis.

SHIFT_Z NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
z-axis.

ROTATE_X NUMBER Number of arc-seconds of rotation about the x-axis.

ROTATE_Y NUMBER Number of arc-seconds of rotation about the y-axis.

ROTATE_Z NUMBER Number of arc-seconds of rotation about the z-axis.

SCALE_ADJUST NUMBER A value to be used in adjusting the X, Y, and Z
values after any shifting and rotation, according to
the formula: 1.0 + (SCALE_ADJUST * 10-6)

IS_LEGACY VARCHAR2(5) TRUE if the datum definition was included in Oracle
Spatial before release 10.2; FALSE if the datum
definition is new in Oracle Spatial release 10.2.

LEGACY_CODE NUMBER(10) For any EPSG datum that has a semantically
identical legacy (in Oracle Spatial before release 10.2)
counterpart, the DATUM_ID value of the legacy
datum.

Table 6–22 SDO_ELLIPSOIDS Table

Column Name Data Type Description

ELLIPSOID_ID NUMBER(10) ID number of the ellipsoid (spheroid). Example:
8045

ELLIPSOID_
NAME

VARCHAR2(80) Name of the ellipsoid. Example: WGS 84

SEMI_MAJOR_
AXIS

NUMBER Radius in meters along the semi-major axis (one-half
of the long axis of the ellipsoid).

UOM_ID NUMBER ID number of the unit of measurement for the
ellipsoid. Matches a value in the UOM_ID column of
the SDO_UNITS_OF_MEASURE table (described in
Section 6.6.27). Example: 9001

INV_
FLATTENING

NUMBER Inverse flattening of the ellipsoid. That is, 1/f,
where f = (a-b)/a, and a is the semi-major axis
and b is the semi-minor axis.

SEMI_MINOR_
AXIS

NUMBER Radius in meters along the semi-minor axis (one-half
of the short axis of the ellipsoid).

INFORMATION_
SOURCE

VARCHAR2(254) Origin of this information. Example: Kort og
Matrikelstyrelsen (KMS), Copenhagen.

Table 6–21 (Cont.) SDO_DATUMS Table

Column Name Data Type Description

Coordinate Systems Data Structures

Coordinate Systems (Spatial Reference Systems) 6-23

6.6.24 SDO_PREFERRED_OPS_SYSTEM Table
The SDO_PREFERRED_OPS_SYSTEM table contains one row for each specification of
the user-defined default preferred coordinate transformation operation for a source
and target SRID combination. If you insert a row into the SDO_PREFERRED_OPS_
SYSTEM table, you are overriding the Oracle default operation for transformations
between the specified source and target coordinate systems. The SDO_CS.CREATE_
OBVIOUS_EPSG_RULES procedure inserts many rows into this table. The SDO_
CS.DELETE_ALL_EPSG_RULES procedure deletes all rows from this table if the use_
case parameter is null. This table contains the columns shown in Table 6–23.

6.6.25 SDO_PREFERRED_OPS_USER Table
The SDO_PREFERRED_OPS_USER table contains one row for each specification of a
user-defined source and target SRID and coordinate transformation operation. If you
insert a row into the SDO_PREFERRED_OPS_USER table, you create a custom
transformation between the source and target coordinate systems, and you can specify
the name (the USE_CASE column value) of the transformation operation as the use_
case parameter value with several SDO_CS functions and procedures. If you specify a
use case with the SDO_CS.DELETE_ALL_EPSG_RULES procedure, rows associated
with that use case are deleted from this table. This table contains the columns shown in
Table 6–24.

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record (if
not Oracle). Example: EPSG

IS_LEGACY VARCHAR2(5) TRUE if the ellipsoid definition was included in
Oracle Spatial before release 10.2; FALSE if the
ellipsoid definition is new in Oracle Spatial release
10.2.

LEGACY_CODE NUMBER For any EPSG ellipsoid that has a semantically
identical legacy (in Oracle Spatial before release 10.2)
counterpart, the ELLIPSOID_ID value of the legacy
ellipsoid.

Table 6–23 SDO_PREFERRED_OPS_SYSTEM Table

Column Name Data Type Description

SOURCE_SRID NUMBER(10) ID number of the coordinate system (spatial reference
system) from which to perform coordinate
transformation, using the operation specified by
COORD_OP_ID as the default preferred method for
transforming to the specified target SRID.

COORD_OP_ID NUMBER(10) ID number of the coordinate transformation
operation. Matches a value in the COORD_OP_ID
column of the SDO_COORD_OPS table (described in
Section 6.6.8).

TARGET_SRID NUMBER(10) ID number of coordinate system (spatial reference
system) into which to perform coordinate
transformation using the operation specified by
COORD_OP_ID.

Table 6–22 (Cont.) SDO_ELLIPSOIDS Table

Column Name Data Type Description

Coordinate Systems Data Structures

6-24 Oracle Spatial User’s Guide and Reference

6.6.26 SDO_PRIME_MERIDIANS Table
The SDO_PRIME_MERIDIANS table contains one row for each prime meridian that
can be used in a datum specification. This table contains the columns shown in
Table 6–25.

6.6.27 SDO_UNITS_OF_MEASURE Table
The SDO_UNITS_OF_MEASURE table contains one row for each unit of
measurement. This table contains the columns shown in Table 6–26.

Table 6–24 SDO_PREFERRED_OPS_USER Table

Column Name Data Type Description

USE_CASE VARCHAR2(32) Name of this specification of a source and target
SRID and coordinate transformation operation.

SOURCE_SRID NUMBER(10) ID number of the coordinate system (spatial reference
system) from which to perform the transformation.

COORD_OP_ID NUMBER(10) ID number of the coordinate transformation
operation. Matches a value in the COORD_OP_ID
column of the SDO_COORD_OPS table (described in
Section 6.6.8).

TARGET_SRID NUMBER(10) ID number of the coordinate system (spatial reference
system) into which to perform the transformation.

Table 6–25 SDO_PRIME_MERIDIANS Table

Column Name Data Type Description

PRIME_MERIDIAN_
ID

NUMBER(10) ID number of the prime meridian. Example: 8907

PRIME_MERIDIAN_
NAME

VARCHAR2(80) Name of the prime meridian. Example: Bern

GREENWICH_
LONGITUDE

FLOAT(49) Longitude of the prime meridian as an offset from
the Greenwich meridian. Example: 7.26225

UOM_ID NUMBER(10) ID number of the unit of measurement for the
prime meridian. Matches a value in the UOM_ID
column of the SDO_UNITS_OF_MEASURE table
(described in Section 6.6.27). Example: 9110 for
sexagesimal degree

INFORMATION_
SOURCE

VARCHAR2(254) Origin of this information. Example: Bundesamt
fur Landestopographie

DATA_SOURCE VARCHAR2(40) Organization that supplied the data for this record
(if not Oracle). Example: EPSG

Table 6–26 SDO_UNITS_OF_MEASURE Table

Column Name Data Type Description

UOM_ID NUMBER(10) ID number of the unit of measurement. Example:
10032

UNIT_OF_MEAS_
NAME

VARCHAR2(80) Name of the unit of measurement. Example: METER

SHORT_NAME VARCHAR2(80) Short name (if any) of the unit of measurement.

Legacy Tables and Views

Coordinate Systems (Spatial Reference Systems) 6-25

6.7 Legacy Tables and Views
In previous releases of Spatial, the coordinate systems functions and procedures used
information provided in the following tables, some of which have new names or are
now views instead of tables:

■ MDSYS.CS_SRS (see Section 6.7.1) defined the valid coordinate systems. It
associates each coordinate system with its well-known text description, which is in
conformance with the standard published by the Open Geospatial Consortium
(http://www.opengeospatial.org).

■ MDSYS.SDO_ANGLE_UNITS (see Section 6.7.2) defines the valid angle units.

■ MDSYS.SDO_AREA_UNITS (see Section 6.7.3) defines the valid area units.

■ MDSYS.SDO_DIST_UNITS (see Section 6.7.5) defines the valid distance units.

■ MDSYS.SDO_DATUMS_OLD_FORMAT and MDSYS.SDO_DATUMS_OLD_
SNAPSHOT (see Section 6.7.4) are based on the MDSYS.SDO_DATUMS table
before release 10.2, which defined valid datums.

■ MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and MDSYS.SDO_ELLIPSOIDS_
OLD_SNAPSHOT (see Section 6.7.6) are based on the MDSYS.SDO_ELLIPSOIDS
table before release 10.2, which defined valid ellipsoids.

UNIT_OF_MEAS_
TYPE

VARCHAR2(80) Type of measure for which the unit is used: angle
for angle unit, area for area unit, or length for
distance unit.

TARGET_UOM_ID NUMBER(10) ID number of a target unit of measurement.
Corresponds to the TARGET_UOM_CODE column
in the EPSG Unit of Measure table, which has the
following description: "Other UOM of the same type
into which the current UOM can be converted using
the formula (POSC); POSC factors A and D always
equal zero for EPSG supplied units of measure."

FACTOR_B NUMBER Corresponds to the FACTOR_B column in the EPSG
Unit of Measure table, which has the following
description: "A quantity in the target UOM (y) is
obtained from a quantity in the current UOM (x)
through the conversion: y = (B/C).x"

FACTOR_C NUMBER Corresponds to the FACTOR_C column in the EPSG
Unit of Measure table.

INFORMATION_
SOURCE

VARCHAR2(254) Origin of this information. Example: ISO 1000.

DATA_SOURCE VARCHAR2(40) Organization providing the data for this record.
Example: EPSG

IS_LEGACY VARCHAR2(5) TRUE if the unit of measurement definition was
included in Oracle Spatial before release 10.2; FALSE
if the unit of measurement definition is new in
Oracle Spatial release 10.2.

LEGACY_CODE NUMBER(10) For any EPSG unit of measure that has a
semantically identical legacy (in Oracle Spatial
before release 10.2) counterpart, the UOM_ID value
of the legacy unit of measure.

Table 6–26 (Cont.) SDO_UNITS_OF_MEASURE Table

Column Name Data Type Description

Legacy Tables and Views

6-26 Oracle Spatial User’s Guide and Reference

■ MDSYS.SDO_PROJECTIONS_OLD_FORMAT and MDSYS.SDO_PROJECTIONS_
OLD_SNAPSHOT (see Section 6.7.7) are based on the MDSYS.SDO_
PROJECTIONS table before release 10.2, which defined the valid map projections.

6.7.1 MDSYS.CS_SRS Table
The MDSYS.CS_SRS reference table contains over 4000 rows, one for each valid
coordinate system. This table contains the columns shown in Table 6–27.

6.7.1.1 Well-Known Text (WKT)
The WKTEXT column of the MDSYS.CS_SRS table contains the well-known text
(WKT) description of the SRS, as defined by the Open Geospatial Consortium. The
following is the WKT EBNF syntax.

<coordinate system> ::=
 <horz cs> | <local cs>

<horz cs> ::=
 <geographic cs> | <projected cs>

<projected cs> ::=
 PROJCS ["<name>", <geographic cs>, <projection>,
 {<parameter>,}* <linear unit>]

Note: You should not modify or delete any Oracle-supplied
information in these legacy tables.

If you refer to a legacy table in a SQL statement, you must include
the MDSYS. before the table name.

Table 6–27 MDSYS.CS_SRS Table

Column
Name Data Type Description

CS_NAME VARCHAR2(68) A well-known name, often mnemonic, by which a
user can refer to the coordinate system.

SRID NUMBER(38) The unique ID number (Spatial Reference ID) for a
coordinate system. Currently, SRID values 1-999999
are reserved for use by Oracle Spatial, and values
1000000 (1 million) and higher are available for
user-defined coordinate systems.

AUTH_SRID NUMBER(38) An optional ID number that can be used to indicate
how the entry was derived; it might be a foreign key
into another coordinate table, for example.

AUTH_
NAME

VARCHAR2(256) An authority name for the coordinate system.
Contains Oracle in the supplied table. Users can
specify any value in any rows that they add.

WKTEXT VARCHAR2(2046) The well-known text (WKT) description of the SRS, as
defined by the Open Geospatial Consortium. For
more information, see Section 6.7.1.1.

CS_BOUNDS SDO_GEOMETRY An optional SDO_GEOMETRY object that is a
polygon with WGS 84 longitude and latitude vertices,
representing the spheroidal polygon description of
the zone of validity for a projected coordinate system.
Must be null for a geographic or non-Earth coordinate
system. Is null in all supplied rows.

Legacy Tables and Views

Coordinate Systems (Spatial Reference Systems) 6-27

<projection> ::=
 PROJECTION ["<name>"]

<parameter> ::=
 PARAMETER ["<name>", <number>]

<geographic cs> ::=
 GEOGCS ["<name>", <datum>, <prime meridian>, <angular unit>]

<datum> ::=
 DATUM ["<name>", <spheroid>
 {, <shift-x>, <shift-y>, <shift-z>
 , <rot-x>, <rot-y>, <rot-z>, <scale_adjust>}
]

<spheroid> ::=
 SPHEROID ["<name>", <semi major axis>, <inverse flattening>]

<prime meridian> ::=
 PRIMEM ["<name>", <longitude>]

<longitude> ::=
 <number>

<semi-major axis> ::=
 <number>

<inverse flattening> ::=
 <number>

<angular unit> ::= <unit>

<linear unit> ::= <unit>

<unit> ::=
 UNIT ["<name>", <conversion factor>]

<local cs> ::=
 LOCAL_CS ["<name>", <local datum>, <linear unit>,
 <axis> {, <axis>}*]

<local datum> ::=
 LOCAL_DATUM ["<name>", <datum type>
 {, <shift-x>, <shift-y>, <shift-z>
 , <rot-x>, <rot-y>, <rot-z>, <scale_adjust>}
]

<datum type> ::=
 <number>

<axis> ::=
 AXIS ["<name>", NORTH | SOUTH | EAST |
 WEST | UP | DOWN | OTHER]

Each <parameter> specification is one of the following:

■ Standard_Parallel_1 (in decimal degrees)

■ Standard_Parallel_2 (in decimal degrees)

Legacy Tables and Views

6-28 Oracle Spatial User’s Guide and Reference

■ Central_Meridian (in decimal degrees)

■ Latitude_of_Origin (in decimal degrees)

■ Azimuth (in decimal degrees)

■ False_Easting (in the unit of the coordinate system; for example, meters)

■ False_Northing (in the unit of the coordinate system; for example, meters)

■ Perspective_Point_Height (in the unit of the coordinate system; for
example, meters)

■ Landsat_Number (must be 1, 2, 3, 4, or 5)

■ Path_Number

■ Scale_Factor

The default value for each <parameter> specification is 0 (zero). That is, if a
specification is needed for a projection but no value is specified in the WKT, Spatial
uses a value of 0.

The prime meridian (PRIMEM) is specified in decimal degrees of longitude.

An example of the WKT for a geodetic (geographic) coordinate system is:

'GEOGCS ["Longitude / Latitude (Old Hawaiian)", DATUM ["Old Hawaiian", SPHEROID
["Clarke 1866", 6378206.400000, 294.978698]], PRIMEM ["Greenwich", 0.000000],
UNIT ["Decimal Degree", 0.01745329251994330]]'

The WKT definition of the coordinate system is hierarchically nested. The Old
Hawaiian geographic coordinate system (GEOGCS) is composed of a named datum
(DATUM), a prime meridian (PRIMEM), and a unit definition (UNIT). The datum is in
turn composed of a named spheroid and its parameters of semi-major axis and inverse
flattening.

An example of the WKT for a projected coordinate system (a Wyoming State Plane) is:

'PROJCS["Wyoming 4901, Eastern Zone (1983, meters)", GEOGCS ["GRS 80", DATUM
["GRS 80", SPHEROID ["GRS 80", 6378137.000000, 298.257222]], PRIMEM [
"Greenwich", 0.000000], UNIT ["Decimal Degree", 0.01745329251994330]],
PROJECTION ["Transverse Mercator"], PARAMETER ["Scale_Factor", 0.999938],
PARAMETER ["Central_Meridian", -105.166667], PARAMETER ["Latitude_Of_Origin",
40.500000], PARAMETER ["False_Easting", 200000.000000], UNIT ["Meter",
1.000000000000]]'

The projected coordinate system contains a nested geographic coordinate system as its
basis, as well as parameters that control the projection.

Oracle Spatial supports all common geodetic datums and map projections.

An example of the WKT for a local coordinate system is:

LOCAL_CS ["Non-Earth (Meter)", LOCAL_DATUM ["Local Datum", 0], UNIT ["Meter",
1.0], AXIS ["X", EAST], AXIS["Y", NORTH]]

For more information about local coordinate systems, see Section 6.3.

You can use the SDO_CS.VALIDATE_WKT function, described in Chapter 13, to
validate the WKT of any coordinate system defined in the MDSYS.CS_SRS table.

6.7.1.2 Procedures for Updating the Well-Known Text
If you insert or delete a row in the SDO_COORD_REF_SYSTEM view (described in
Section 6.6.10), Spatial automatically updates the WKTEXT column in the MDSYS.CS_

Legacy Tables and Views

Coordinate Systems (Spatial Reference Systems) 6-29

SRS table. (The format of the WKTEXT column is described in Section 6.7.1.1.)
However, if you update an existing row in the SDO_COORD_REF_SYSTEM view, the
well-known text (WKT) value is not automatically updated.

In addition, information relating to coordinate reference systems is also stored in
several other system tables, including SDO_DATUMS (described in Section 6.6.22),
SDO_ELLIPSOIDS (described in Section 6.6.23), and SDO_PRIME_MERIDIANS
(described in Section 6.6.26). If you add, delete, or modify information in these tables,
the WKTEXT values in the MDSYS.CS_SRS table are not automatically updated. For
example, if you update an ellipsoid flattening value in the SDO_ELLIPSOIDS table, the
well-known text string for the associated coordinate system is not updated.

However, you can manually update the WKTEXT values in the in the MDSYS.CS_SRS
table by using any of several procedures whose names start with UPDATE_WKTS_
FOR (for example, SDO_CS.UPDATE_WKTS_FOR_ALL_EPSG_CRS and SDO_
CS.UPDATE_WKTS_FOR_EPSG_DATUM). If the display of SERVEROUTPUT
information is enabled, these procedures display a message identifying the SRID value
for each row in the MDSYS.CS_SRS table whose WKTEXT value is being updated.
These procedures are described in Chapter 13.

6.7.2 MDSYS.SDO_ANGLE_UNITS View
The MDSYS.SDO_ANGLE_UNITS reference view contains one row for each valid
angle UNIT specification in the well-known text (WKT) description in the coordinate
system definition. The WKT is described in Section 6.7.1.1.

The MDSYS.SDO_ANGLE_UNITS view is based on the SDO_UNITS_OF MEASURE
table (described in Section 6.6.27), and it contains the columns shown in Table 6–28.

6.7.3 MDSYS.SDO_AREA_UNITS View
The MDSYS.SDO_AREA_UNITS reference view contains one row for each valid area
UNIT specification in the well-known text (WKT) description in the coordinate system
definition. The WKT is described in Section 6.7.1.1.

The MDSYS.SDO_AREA_UNITS view is based on the SDO_UNITS_OF MEASURE
table (described in Section 6.6.27), and it contains the columns shown in Table 6–29.

Table 6–28 MDSYS.SDO_ANGLE_UNITS View

Column Name Data Type Description

SDO_UNIT VARCHAR2(32) Name of the angle unit (often a shortened form of the
UNIT_NAME value). Use the SDO_UNIT value with
the from_unit and to_unit parameters of the SDO_
UTIL.CONVERT_UNIT function.

UNIT_NAME VARCHAR2(100) Name of the angle unit. Specify a value from this
column in the UNIT specification of the WKT for any
user-defined coordinate system. Examples: Decimal
Degree, Radian, Decimal Second, Decimal
Minute, Gon, Grad.

CONVERSION_
FACTOR

NUMBER The ratio of the specified unit to one radian. For
example, the ratio of Decimal Degree to Radian is
0.017453293.

Legacy Tables and Views

6-30 Oracle Spatial User’s Guide and Reference

6.7.4 MDSYS.SDO_DATUMS_OLD_FORMAT and SDO_DATUMS_OLD_SNAPSHOT
Tables

The MDSYS.SDO_DATUMS_OLD_FORMAT and MDSYS.SDO_DATUMS_OLD_
SNAPSHOT reference tables contain one row for each valid DATUM specification in
the well-known text (WKT) description in the coordinate system definition. (The WKT
is described in Section 6.7.1.1.)

■ MDSYS.SDO_DATUMS_OLD_FORMAT contains the new data in the old format
(that is, EPSG-based datum specifications in a table using the format from before
release 10.2).

■ MDSYS.SDO_DATUMS_OLD_SNAPSHOT contains the old data in the old format
(that is, datum specifications and table format from before release 10.2).

These tables contain the columns shown in Table 6–30.

Table 6–29 SDO_AREA_UNITS View

Column Name Data Type Purpose

SDO_UNIT VARCHAR2 Values are taken from the SHORT_NAME column of the
SDO_UNITS_OF MEASURE table.

UNIT_NAME VARCHAR2 Values are taken from the UNIT_OF_MEAS_NAME
column of the SDO_UNITS_OF MEASURE table.

CONVERSION_
FACTOR

NUMBER Ratio of the unit to 1 square meter. For example, the
conversion factor for a square meter is 1.0, and the
conversion factor for a square mile is 2589988.

Table 6–30 MDSYS.SDO_DATUMS_OLD_FORMAT and SDO_DATUMS_OLD_SNAPSHOT
Tables

Column Name Data Type Description

NAME VARCHAR2(80)
for OLD_FORMAT

VARCHAR2(64)
for OLD_
SNAPSHOT

Name of the datum. Specify a value
(Oracle-supplied or user-defined) from this column
in the DATUM specification of the WKT for any
user-defined coordinate system. Examples:
Adindan, Afgooye, Ain el Abd 1970,
Anna 1 Astro 1965, Arc 1950, Arc 1960,
Ascension Island 1958.

SHIFT_X NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
x-axis.

SHIFT_Y NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
y-axis.

SHIFT_Z NUMBER Number of meters to shift the ellipsoid center
relative to the center of the WGS 84 ellipsoid on the
z-axis.

ROTATE_X NUMBER Number of arc-seconds of rotation about the x-axis.

ROTATE_Y NUMBER Number of arc-seconds of rotation about the y-axis.

ROTATE_Z NUMBER Number of arc-seconds of rotation about the z-axis.

SCALE_
ADJUST

NUMBER A value to be used in adjusting the X, Y, and Z
values after any shifting and rotation, according to
the formula: 1.0 + (SCALE_ADJUST * 10-6)

Legacy Tables and Views

Coordinate Systems (Spatial Reference Systems) 6-31

The following are the names (in tabular format) of the datums in these tables:

Adindan Afgooye Ain el Abd 1970

Anna 1 Astro 1965 Arc 1950 Arc 1960

Ascension Island 1958 Astro B4 Sorol Atoll Astro Beacon E

Astro DOS 71/4 Astronomic Station 1952 Australian Geodetic 1966

Australian Geodetic 1984 Belgium Hayford Bellevue (IGN)

Bermuda 1957 Bogota Observatory CH 1903 (Switzerland)

Campo Inchauspe Canton Astro 1966 Cape

Cape Canaveral Carthage Chatham 1971

Chua Astro Corrego Alegre DHDN
(Potsdam/Rauenberg)

DOS 1968 Djakarta (Batavia) Easter Island 1967

European 1950 European 1979 European 1987

GRS 67 GRS 80 GUX 1 Astro

Gandajika Base Geodetic Datum 1949 Guam 1963

Hito XVIII 1963 Hjorsey 1955 Hong Kong 1963

Hu-Tzu-Shan ISTS 073 Astro 1969 Indian (Bangladesh, etc.)

Indian
(Thailand/Vietnam)

Ireland 1965 Johnston Island 1961

Kandawala Kerguelen Island Kertau 1948

L.C. 5 Astro Liberia 1964 Lisboa (DLx)

Luzon (Mindanao Island) Luzon (Philippines) Mahe 1971

Marco Astro Massawa Melrica 1973 (D73)

Merchich Midway Astro 1961 Minna

NAD 27 (Alaska) NAD 27 (Bahamas) NAD 27 (Canada)

NAD 27 (Canal Zone) NAD 27 (Caribbean) NAD 27 (Central
America)

NAD 27 (Continental US) NAD 27 (Cuba) NAD 27 (Greenland)

NAD 27 (Mexico) NAD 27 (Michigan) NAD 27 (San Salvador)

NAD 83 NTF (Greenwich
meridian)

NTF (Paris meridian)

NWGL 10 Nahrwan (Masirah Island) Nahrwan (Saudi Arabia)

Nahrwan (Un. Arab
Emirates)

Naparima, BWI Netherlands Bessel

Observatorio 1966 Old Egyptian Old Hawaiian

Oman Ordinance Survey Great
Brit

Pico de las Nieves

Pitcairn Astro 1967 Provisional South
American

Puerto Rico

Pulkovo 1942 Qatar National Qornoq

Legacy Tables and Views

6-32 Oracle Spatial User’s Guide and Reference

6.7.5 MDSYS.SDO_DIST_UNITS View
The MDSYS.SDO_DIST_UNITS reference view contains one row for each valid
distance UNIT specification in the well-known text (WKT) description in the
coordinate system definition. The WKT is described in Section 6.7.1.1.

The MDSYS.SDO_DIST_UNITS view is based on the SDO_UNITS_OF MEASURE
table (described in Section 6.6.27), and it contains the columns shown in Table 6–31.

6.7.6 MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and SDO_ELLIPSOIDS_OLD_
SNAPSHOT Tables

The MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and MDSYS.SDO_ELLIPSOIDS_
OLD_SNAPSHOT reference tables contain one row for each valid SPHEROID
specification in the well-known text (WKT) description in the coordinate system
definition. (The WKT is described in Section 6.7.1.1.)

■ MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT contains the new data in the old
format (that is, EPSG-based ellipsoid specifications in a table using the format
from before release 10.2).

■ MDSYS.SDO_ELLIPSOIDS_OLD_SNAPSHOT contains the old data in the old
format (that is, ellipsoid specifications and table format from before release 10.2).

These tables contain the columns shown in Table 6–32.

RT 90 (Sweden) Reunion Rome 1940

Santo (DOS) Sao Braz Sapper Hill 1943

Schwarzeck South American 1969 South Asia

Southeast Base Southwest Base Timbalai 1948

Tokyo Tristan Astro 1968 Viti Levu 1916

WGS 60 WGS 66 WGS 72

WGS 84 Wake-Eniwetok 1960 Yacare

Zanderij

Table 6–31 MDSYS.SDO_DIST_UNITS View

Column Name Data Type Description

SDO_UNIT VARCHAR2 Values are taken from the SHORT_NAME column of
the SDO_UNITS_OF MEASURE table.

UNIT_NAME VARCHAR2 Values are taken from the UNIT_OF_MEAS_NAME
column of the SDO_UNITS_OF MEASURE table.

CONVERSION_
FACTOR

NUMBER Ratio of the unit to 1 meter. For example, the
conversion factor for a meter is 1.0, and the
conversion factor for a mile is 1609.344.

Legacy Tables and Views

Coordinate Systems (Spatial Reference Systems) 6-33

The following are the names (in tabular format) of the ellipsoids in these tables:

6.7.7 MDSYS.SDO_PROJECTIONS_OLD_FORMAT and SDO_PROJECTIONS_OLD_
SNAPSHOT Tables

The MDSYS.SDO_PROJECTIONS_OLD_FORMAT and MDSYS.SDO_PROJECTIONS_
OLD_SNAPSHOT reference tables contain one row for each valid PROJECTION
specification in the well-known text (WKT) description in the coordinate system
definition. (The WKT is described in Section 6.7.1.1.)

■ MDSYS.SDO_PROJECTIONS_OLD_FORMAT contains the new data in the old
format (that is, EPSG-based projection specifications in a table using the format
from before release 10.2).

■ MDSYS.SDO_PROJECTIONS_OLD_SNAPSHOT contains the old data in the old
format (that is, projection specifications and table format from before release 10.2).

Table 6–32 MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and SDO_ELLIPSOIDS_OLD_
SNAPSHOT Tables

Column Name Data Type Description

NAME VARCHAR2(80)
for OLD_FORMAT

VARCHAR2(64)
for OLD_
SNAPSHOT

Name of the ellipsoid (spheroid). Specify a value
from this column in the SPHEROID specification of
the WKT for any user-defined coordinate system.
Examples: Clarke 1866, WGS 72,
Australian, Krassovsky, International
1924.

SEMI_MAJOR_
AXIS

NUMBER Radius in meters along the semi-major axis (one-half
of the long axis of the ellipsoid).

INVERSE_
FLATTENING

NUMBER Inverse flattening of the ellipsoid. That is, 1/f,
where f = (a-b)/a, and a is the semi-major axis
and b is the semi-minor axis.

Airy 1830 Airy 1830 (Ireland 1965) Australian

Bessel 1841 Bessel 1841 (NGO 1948) Bessel 1841 (Schwarzeck)

Clarke 1858 Clarke 1866 Clarke 1866 (Michigan)

Clarke 1880 Clarke 1880 (Arc 1950) Clarke 1880 (IGN)

Clarke 1880 (Jamaica) Clarke 1880 (Merchich) Clarke 1880 (Palestine)

Everest Everest (Kalianpur) Everest (Kertau)

Everest (Timbalai) Fischer 1960 (Mercury) Fischer 1960 (South Asia)

Fischer 1968 GRS 67 GRS 80

Hayford Helmert 1906 Hough

IAG 75 Indonesian International 1924

Krassovsky MERIT 83 NWL 10D

NWL 9D New International 1967 OSU86F

OSU91A Plessis 1817 South American 1969

Sphere (6370997m) Struve 1860 WGS 60

WGS 66 WGS 72 WGS 84

Walbeck War Office

Creating a User-Defined Coordinate Reference System

6-34 Oracle Spatial User’s Guide and Reference

These tables contains the column shown in Table 6–33.

The following are the names (in tabular format) of the projections in these tables:

6.8 Creating a User-Defined Coordinate Reference System
If the coordinate systems supplied by Oracle are not sufficient for your needs, you can
create user-defined coordinate reference systems.

Table 6–33 MDSYS.SDO_PROJECTIONS_OLD_FORMAT and SDO_PROJECTIONS_
OLD_SNAPSHOT Tables

Column Name Data Type Description

NAME VARCHAR2(80)
for OLD_FORMAT

VARCHAR2(64)
for OLD_
SNAPSHOT

Name of the map projection. Specify a value from
this column in the PROJECTION specification of the
WKT for any user-defined coordinate system.
Examples: Geographic (Lat/Long),
Universal Transverse Mercator, State
Plane Coordinates, Albers Conical
Equal Area.

Alaska Conformal Albers Conical Equal Area

Azimuthal Equidistant Bonne

Cassini Cylindrical Equal Area

Eckert IV Eckert VI

Equidistant Conic Equirectangular

Gall General Vertical Near-Side Perspective

Geographic (Lat/Long) Gnomonic

Hammer Hotine Oblique Mercator

Interrupted Goode Homolosine Interrupted Mollweide

Lambert Azimuthal Equal Area Lambert Conformal Conic

Lambert Conformal Conic (Belgium
1972)

Mercator

Miller Cylindrical Mollweide

New Zealand Map Grid Oblated Equal Area

Orthographic Polar Stereographic

Polyconic Robinson

Sinusoidal Space Oblique Mercator

State Plane Coordinates Stereographic

Swiss Oblique Mercator Transverse Mercator

Transverse Mercator Danish System 34
Jylland-Fyn

Transverse Mercator Danish System 45
Bornholm

Transverse Mercator Finnish KKJ Transverse Mercator Sjaelland

Universal Transverse Mercator Van der Grinten

Wagner IV Wagner VII

Creating a User-Defined Coordinate Reference System

Coordinate Systems (Spatial Reference Systems) 6-35

The exact steps for creating a user-defined CRS depend on whether it is geodetic or
projected. In both cases, supply information about the coordinate system (coordinate
axes, axis names, unit of measurement, and so on). For a geodetic CRS, supply
information about the datum (ellipsoid, prime meridian, and so on), as explained in
Section 6.8.1. For a projected CRS, supply information about the source (geodetic) CRS
and the projection (operation and parameters), as explained in Section 6.8.2.

For any user-defined coordinate system, the SRID value should be 1000000 (1 million)
or higher.

6.8.1 Creating a Geodetic CRS
If the necessary unit of measurement, coordinate axes, SDO_COORD_SYS table row,
ellipsoid, prime meridian, and datum are already defined, insert a row into the SDO_
COORD_REF_SYSTEM view (described in Section 6.6.10) to define the new geodetic
CRS.

Example 6–2 inserts the definition for a hypothetical geodetic CRS named My Own
NAD27 (which, except for its SRID and name, is the same as the NAD27 CRS supplied
by Oracle).

Example 6–2 Creating a User-Defined Geodetic Coordinate Reference System

INSERT INTO SDO_COORD_REF_SYSTEM (
 SRID,
 COORD_REF_SYS_NAME,
 COORD_REF_SYS_KIND,
 COORD_SYS_ID,
 DATUM_ID,
 GEOG_CRS_DATUM_ID,
 SOURCE_GEOG_SRID,
 PROJECTION_CONV_ID,
 CMPD_HORIZ_SRID,
 CMPD_VERT_SRID,
 INFORMATION_SOURCE,
 DATA_SOURCE,
 IS_LEGACY,
 LEGACY_CODE,
 LEGACY_WKTEXT,
 LEGACY_CS_BOUNDS,
 IS_VALID,
 SUPPORTS_SDO_GEOMETRY)
 VALUES (
 9994267,
 'My Own NAD27',
 'GEOGRAPHIC2D',
 6422,
 6267,
 6267,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,

Note: As mentioned in Section 6.1.1, the terms coordinate system and
coordinate reference system (CRS) are often used interchangeably,
although coordinate reference systems must be Earth-based.

Creating a User-Defined Coordinate Reference System

6-36 Oracle Spatial User’s Guide and Reference

 'EPSG',
 'FALSE',
 NULL,
 NULL,
 NULL,
 'TRUE',
 'TRUE');

If the necessary information for the definition does not already exist, follow these
steps, as needed, to define the information before you insert the row into the SDO_
COORD_REF_SYSTEM view:

1. If the unit of measurement is not already defined in the SDO_UNITS_OF_
MEASURE table (described in Section 6.6.27), insert a row into that table to define
the new unit of measurement.

2. If the coordinate axes are not already defined in the SDO_COORD_AXES table
(described in Section 6.6.1), insert one row into that table for each new coordinate
axis.

3. If an appropriate entry for the coordinate system does not already exist in the
SDO_COORD_SYS table (described in Section 6.6.11), insert a row into that table.
Example 6–3 inserts the definition for a fictitious coordinate system.

Example 6–3 Inserting a Row into the SDO_COORD_SYS Table

INSERT INTO SDO_COORD_SYS (
 COORD_SYS_ID,
 COORD_SYS_NAME,
 COORD_SYS_TYPE,
 DIMENSION,
 INFORMATION_SOURCE,
 DATA_SOURCE)
 VALUES (
 9876543,
 'My custom CS. Axes: lat, long. Orientations: north, east. UoM: deg',
 'ellipsoidal',
 2,
 'Myself',
 'Myself');

4. If the ellipsoid is not already defined in the SDO_ELLIPSOIDS table (described in
Section 6.6.23), insert a row into that table to define the new ellipsoid.

5. If the prime meridian is not already defined in the SDO_PRIME_MERIDIANS
table (described in Section 6.6.26), insert a row into that table to define the new
prime meridian.

6. If the datum is not already defined in the SDO_DATUMS table (described in
Section 6.6.22), insert a row into that table to define the new datum.

6.8.2 Creating a Projected CRS
If the necessary unit of measurement, coordinate axes, SDO_COORD_SYS table row,
source coordinate system, projection operation, and projection parameters are already
defined, insert a row into the SDO_COORD_REF_SYSTEM view (described in
Section 6.6.10) to define the new projected CRS.

Example 6–4 inserts the definition for a hypothetical projected CRS named My Own
NAD27 / Cuba Norte (which, except for its SRID and name, is the same as the
NAD27 / Cuba Norte CRS supplied by Oracle).

Creating a User-Defined Coordinate Reference System

Coordinate Systems (Spatial Reference Systems) 6-37

Example 6–4 Creating a User-Defined Projected Coordinate Reference System

INSERT INTO SDO_COORD_REF_SYSTEM (
 SRID,
 COORD_REF_SYS_NAME,
 COORD_REF_SYS_KIND,
 COORD_SYS_ID,
 DATUM_ID,
 GEOG_CRS_DATUM_ID,
 SOURCE_GEOG_SRID,
 PROJECTION_CONV_ID,
 CMPD_HORIZ_SRID,
 CMPD_VERT_SRID,
 INFORMATION_SOURCE,
 DATA_SOURCE,
 IS_LEGACY,
 LEGACY_CODE,
 LEGACY_WKTEXT,
 LEGACY_CS_BOUNDS,
 IS_VALID,
 SUPPORTS_SDO_GEOMETRY)
 VALUES (
 9992085,
 'My Own NAD27 / Cuba Norte',
 'PROJECTED',
 4532,
 NULL,
 6267,
 4267,
 18061,
 NULL,
 NULL,
 'Institut Cubano di Hidrografia (ICH)',
 'EPSG',
 'FALSE',
 NULL,
 NULL,
 NULL,
 'TRUE',
 'TRUE');

If the necessary information for the definition does not already exist, follow these
steps, as needed, to define the information before you insert the row into the SDO_
COORD_REF_SYSTEM view:

1. If the unit of measurement is not already defined in the SDO_UNITS_OF_
MEASURE table (described in Section 6.6.27), insert a row into that table to define
the new unit of measurement.

2. If the coordinate axes are not already defined in the SDO_COORD_AXES table
(described in Section 6.6.1), insert one row into that table for each new coordinate
axis.

3. If an appropriate entry for the coordinate system does not already exist in SDO_
COORD_SYS table (described in Section 6.6.11), insert a row into that table. (See
Example 6–3 in Section 6.8.1).

4. If the projection operation is not already defined in the SDO_COORD_OPS table
(described in Section 6.6.8), insert a row into that table to define the new projection
operation. Example 6–5 shows the statement used to insert information about
coordinate operation ID 18061, which is supplied by Oracle.

Creating a User-Defined Coordinate Reference System

6-38 Oracle Spatial User’s Guide and Reference

Example 6–5 Inserting a Row into the SDO_COORD_OPS Table

INSERT INTO SDO_COORD_OPS (
 COORD_OP_ID,
 COORD_OP_NAME,
 COORD_OP_TYPE,
 SOURCE_SRID,
 TARGET_SRID,
 COORD_TFM_VERSION,
 COORD_OP_VARIANT,
 COORD_OP_METHOD_ID,
 UOM_ID_SOURCE_OFFSETS,
 UOM_ID_TARGET_OFFSETS,
 INFORMATION_SOURCE,
 DATA_SOURCE,
 SHOW_OPERATION,
 IS_LEGACY,
 LEGACY_CODE,
 REVERSE_OP,
 IS_IMPLEMENTED_FORWARD,
 IS_IMPLEMENTED_REVERSE)
 VALUES (
 18061,
 'Cuba Norte',
 'CONVERSION',
 NULL,
 NULL,
 NULL,
 NULL,
 9801,
 NULL,
 NULL,
 NULL,
 'EPSG',
 1,
 'FALSE',
 NULL,
 1,
 1,
 1);

5. If the parameters for the projection operation are not already defined in the SDO_
COORD_OP_PARAM_VALS table (described in Section 6.6.5), insert one row into
that table for each new parameter. Example 6–6 shows the statement used to insert
information about parameters with ID values 8801, 8802, 8805, 8806, and 8807,
which are supplied by Oracle.

Example 6–6 Inserting a Row into the SDO_COORD_OP_PARAM_VALS Table

INSERT INTO SDO_COORD_OP_PARAM_VALS (
 COORD_OP_ID,
 COORD_OP_METHOD_ID,
 PARAMETER_ID,
 PARAMETER_VALUE,
 PARAM_VALUE_FILE_REF,
 UOM_ID)
 VALUES (
 18061,
 9801,
 8801,
 22.21,

Creating a User-Defined Coordinate Reference System

Coordinate Systems (Spatial Reference Systems) 6-39

 NULL,
 9110);

 INSERT INTO SDO_COORD_OP_PARAM_VALS (
 COORD_OP_ID,
 COORD_OP_METHOD_ID,
 PARAMETER_ID,
 PARAMETER_VALUE,
 PARAM_VALUE_FILE_REF,
 UOM_ID)
 VALUES (
 18061,
 9801,
 8802,
 -81,
 NULL,
 9110);

 INSERT INTO SDO_COORD_OP_PARAM_VALS (
 COORD_OP_ID,
 COORD_OP_METHOD_ID,
 PARAMETER_ID,
 PARAMETER_VALUE,
 PARAM_VALUE_FILE_REF,
 UOM_ID)
 VALUES (
 18061,
 9801,
 8805,
 .99993602,
 NULL,
 9201);

INSERT INTO SDO_COORD_OP_PARAM_VALS (
 COORD_OP_ID,
 COORD_OP_METHOD_ID,
 PARAMETER_ID,
 PARAMETER_VALUE,
 PARAM_VALUE_FILE_REF,
 UOM_ID)
 VALUES (
 18061,
 9801,
 8806,
 500000,
 NULL,
 9001);

INSERT INTO SDO_COORD_OP_PARAM_VALS (
 COORD_OP_ID,
 COORD_OP_METHOD_ID,
 PARAMETER_ID,
 PARAMETER_VALUE,
 PARAM_VALUE_FILE_REF,
 UOM_ID)
 VALUES (
 18061,
 9801,
 8807,
 280296.016,

Notes and Restrictions with Coordinate Systems Support

6-40 Oracle Spatial User’s Guide and Reference

 NULL,
 9001);

6.9 Notes and Restrictions with Coordinate Systems Support
The following notes and restrictions apply to coordinate systems support in the
current release of Oracle Spatial.

If you have geodetic data, see Section 6.2 for additional considerations, guidelines, and
restrictions.

6.9.1 Different Coordinate Systems for Geometries with Operators and Functions
For Spatial operators (described in Chapter 11) that take two geometries as input
parameters, if the geometries are based on different coordinate systems, the query
window (the second geometry) is transformed to the coordinate system of the first
geometry before the operation is performed. This transformation is a temporary
internal operation performed by Spatial; it does not affect any stored query-window
geometry.

For SDO_GEOM package geometry functions (described in Chapter 15) that take two
geometries as input parameters, both geometries must be based on the same
coordinate system.

6.9.2 3D LRS Functions Not Supported with Geodetic Data
In the current release, the 3D formats of LRS functions (explained in Section 7.4) are
not supported with geodetic data.

6.9.3 Functions Supported by Approximations with Geodetic Data
In the current release, the following functions are supported by approximations with
geodetic data:

■ SDO_GEOM.SDO_BUFFER

■ SDO_GEOM.SDO_CENTROID

■ SDO_GEOM.SDO_CONVEXHULL

When these functions are used on data with geodetic coordinates, they internally
perform the operations in an implicitly generated local-tangent-plane Cartesian
coordinate system and then transform the results to the geodetic coordinate system.
For SDO_GEOM.SDO_BUFFER, generated arcs are approximated by line segments
before the back-transform.

6.9.4 Unknown CRS and NaC Coordinate Reference Systems
The following coordinate reference systems are provided for Oracle internal use and
for other possible special uses:

■ unknown CRS (SRID 999999) means that the coordinate system is unknown, and
its space could be geodetic or Cartesian. Contrast this with specifying a null
coordinate reference system, which indicates an unknown coordinate system with
a Cartesian space.

■ NaC (SRID 999998) means Not-a-CRS. Its name is patterned after the NaN
(Not-a-Number) value in Java. It is intended for potential use with nonspatial
geometries.

Example of Coordinate System Transformation

Coordinate Systems (Spatial Reference Systems) 6-41

The following restrictions apply to geometries based on the unknown CRS and NaC
coordinate reference systems:

■ You cannot perform coordinate system transformations on these geometries.

■ Operations that require a coordinate system will return a null value when
performed on these geometries. These operations include finding the area or
perimeter of a geometry, creating a buffer, densifying an arc, and computing the
aggregate centroid.

6.10 U.S. National Grid Support
The U.S. National Grid is a point coordinate representation using a single
alphanumeric coordinate (for example, 18SUJ2348316806479498). This approach
contrasts with the use of numeric coordinates to represent the location of a point, as is
done with Oracle Spatial and EPSG. A good description of the U.S. National Grid is
available at http://www.ngs.noaa.gov/TOOLS/usng.html.

To support the U.S. National Grid in Spatial, the SDO_GEOMETRY type cannot be
used because it is based on numeric coordinates. Instead, a point in U.S. National Grid
format is represented as a single string of type VARCHAR2. To allow conversion
between the SDO_GEOMETRY format and the U.S. National grid format, the SDO_CS
package (documented in Chapter 13) contains the following functions:

■ SDO_CS.FROM_USNG

■ SDO_CS.TO_USNG

6.11 Example of Coordinate System Transformation
This section presents a simplified example that uses coordinate system transformation
functions and procedures. It refers to concepts that are explained in this chapter and
uses functions documented in Chapter 13.

Example 6–7 uses mostly the same geometry data (cola markets) as in Section 2.1,
except that instead of null SDO_SRID values, the SDO_SRID value 8307 is used. That
is, the geometries are defined as using the coordinate system whose SRID is 8307 and
whose well-known name is "Longitude / Latitude (WGS 84)". This is probably the
most widely used coordinate system, and it is the one used for global positioning
system (GPS) devices. The geometries are then transformed using the coordinate
system whose SRID is 8199 and whose well-known name is "Longitude / Latitude
(Arc 1950)".

Example 6–7 uses the geometries illustrated in Figure 2–1 in Section 2.1, except that
cola_d is a rectangle (here, a square) instead of a circle, because arcs are not
supported with geodetic coordinate systems.

Example 6–7 does the following:

■ Creates a table (COLA_MARKETS_CS) to hold the spatial data

■ Inserts rows for four areas of interest (cola_a, cola_b, cola_c, cola_d), using
the SDO_SRID value 8307

■ Updates the USER_SDO_GEOM_METADATA view to reflect the dimension of the
areas, using the SDO_SRID value 8307

■ Creates a spatial index (COLA_SPATIAL_IDX_CS)

■ Performs some transformation operations (single geometry and entire layer)

Example 6–8 includes the output of the SELECT statements in Example 6–7.

Example of Coordinate System Transformation

6-42 Oracle Spatial User’s Guide and Reference

Example 6–7 Simplified Example of Coordinate System Transformation

-- Create a table for cola (soft drink) markets in a
-- given geography (such as city or state).

CREATE TABLE cola_markets_cs (
 mkt_id NUMBER PRIMARY KEY,
 name VARCHAR2(32),
 shape SDO_GEOMETRY);

-- The next INSERT statement creates an area of interest for
-- Cola A. This area happens to be a rectangle.
-- The area could represent any user-defined criterion: for
-- example, where Cola A is the preferred drink, where
-- Cola A is under competitive pressure, where Cola A
-- has strong growth potential, and so on.

INSERT INTO cola_markets_cs VALUES(
 1,
 'cola_a',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 8307, -- SRID for 'Longitude / Latitude (WGS 84)' coordinate system
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,1), -- polygon
 SDO_ORDINATE_ARRAY(1,1, 5,1, 5,7, 1,7, 1,1) -- All vertices must
 -- be defined for rectangle with geodetic data.
)
);

-- The next two INSERT statements create areas of interest for
-- Cola B and Cola C. These areas are simple polygons (but not
-- rectangles).

INSERT INTO cola_markets_cs VALUES(
 2,
 'cola_b',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 8307,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
 SDO_ORDINATE_ARRAY(5,1, 8,1, 8,6, 5,7, 5,1)
)
);

INSERT INTO cola_markets_cs VALUES(
 3,
 'cola_c',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 8307,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,1), --one polygon (exterior polygon ring)
 SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)
)
);

-- Insert a rectangle (here, square) instead of a circle as in the original,
-- because arcs are not supported with geodetic coordinate systems.
INSERT INTO cola_markets_cs VALUES(

Example of Coordinate System Transformation

Coordinate Systems (Spatial Reference Systems) 6-43

 4,
 'cola_d',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 8307, -- SRID for 'Longitude / Latitude (WGS 84)' coordinate system
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,1), -- polygon
 SDO_ORDINATE_ARRAY(10,9, 11,9, 11,10, 10,10, 10,9) -- All vertices must
 -- be defined for rectangle with geodetic data.
)
);

-- UPDATE METADATA VIEW --

-- Update the USER_SDO_GEOM_METADATA view. This is required
-- before the Spatial index can be created. Do this only once for each
-- layer (table-column combination; here: cola_markets_cs and shape).

INSERT INTO user_sdo_geom_metadata
 (TABLE_NAME,
 COLUMN_NAME,
 DIMINFO,
 SRID)
 VALUES (
 'cola_markets_cs',
 'shape',
 SDO_DIM_ARRAY(
 SDO_DIM_ELEMENT('Longitude', -180, 180, 10), -- 10 meters tolerance
 SDO_DIM_ELEMENT('Latitude', -90, 90, 10) -- 10 meters tolerance
),
 8307 -- SRID for 'Longitude / Latitude (WGS 84)' coordinate system
);

-- CREATE THE SPATIAL INDEX --

CREATE INDEX cola_spatial_idx_cs
ON cola_markets_cs(shape)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

-- TEST COORDINATE SYSTEM TRANSFORMATION --

-- Return the transformation of cola_c using to_srid 8199
-- ('Longitude / Latitude (Arc 1950)')
SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, 8199)
 FROM cola_markets_cs c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS_CS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_c';

-- Same as preceding, but using to_srname parameter.
SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, 'Longitude / Latitude (Arc
1950)')
 FROM cola_markets_cs c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS_CS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_c';

-- Transform the entire SHAPE layer and put results in the table

Example of Coordinate System Transformation

6-44 Oracle Spatial User’s Guide and Reference

-- named cola_markets_cs_8199, which the procedure will create.
CALL SDO_CS.TRANSFORM_LAYER('COLA_MARKETS_CS','SHAPE','COLA_MARKETS_CS_
8199',8199);

-- Select all from the old (existing) table.
SELECT * from cola_markets_cs;

-- Select all from the new (layer transformed) table.
SELECT * from cola_markets_cs_8199;

-- Show metadata for the new (layer transformed) table.
DESCRIBE cola_markets_cs_8199;

-- Use a geodetic MBR with SDO_FILTER.
SELECT c.name FROM cola_markets_cs c WHERE
 SDO_FILTER(c.shape,
 SDO_GEOMETRY(
 2003,
 8307, -- SRID for WGS 84 longitude/latitude
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(6,5, 10,10))
) = 'TRUE';

Example 6–8 shows the output of the SELECT statements in Example 6–7. Notice the
slight differences between the coordinates in the original geometries (SRID 8307) and
the transformed coordinates (SRID 8199) -- for example, (1, 1, 5, 1, 5, 7, 1, 7, 1, 1) and
(1.00078604, 1.00274579, 5.00069354, 1.00274488, 5.0006986, 7.00323528, 1.00079179,
7.00324162, 1.00078604, 1.00274579) for cola_a.

Example 6–8 Output of SELECT Statements in Coordinate System Transformation
Example

SQL> -- Return the transformation of cola_c using to_srid 8199
SQL> -- ('Longitude / Latitude (Arc 1950)')
SQL> SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, 8199)
 2 FROM cola_markets_cs c, user_sdo_geom_metadata m
 3 WHERE m.table_name = 'COLA_MARKETS_CS' AND m.column_name = 'SHAPE'
 4 AND c.name = 'cola_c';

NAME

SDO_CS.TRANSFORM(C.SHAPE,M.DIMINFO,8199)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z)
--
cola_c
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074114, 3.00291482, 6.00067068, 3.00291287, 6.0006723, 5.00307625, 4.0007
1961, 5.00307838, 3.00074114, 3.00291482))

SQL>
SQL> -- Same as preceding, but using to_srname parameter.
SQL> SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, 'Longitude / Latitude
(Arc 1950)')
 2 FROM cola_markets_cs c, user_sdo_geom_metadata m
 3 WHERE m.table_name = 'COLA_MARKETS_CS' AND m.column_name = 'SHAPE'
 4 AND c.name = 'cola_c';

NAME

Example of Coordinate System Transformation

Coordinate Systems (Spatial Reference Systems) 6-45

SDO_CS.TRANSFORM(C.SHAPE,M.DIMINFO,'LONGITUDE/LATITUDE(ARC1950)')(SDO_GTYPE, SDO
--
cola_c
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074114, 3.00291482, 6.00067068, 3.00291287, 6.0006723, 5.00307625, 4.0007
1961, 5.00307838, 3.00074114, 3.00291482))

SQL>
SQL> -- Transform the entire SHAPE layer and put results in the table
SQL> -- named cola_markets_cs_8199, which the procedure will create.
SQL> CALL SDO_CS.TRANSFORM_LAYER('COLA_MARKETS_CS','SHAPE','COLA_MARKETS_CS_
8199',8199);

Call completed.

SQL>
SQL> -- Select all from the old (existing) table.
SQL> SELECT * from cola_markets_cs;

 MKT_ID NAME
---------- --------------------------------
SHAPE(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
 1 cola_a
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(1, 1, 5, 1, 5, 7, 1, 7, 1, 1))

 2 cola_b
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5, 1, 8, 1, 8, 6, 5, 7, 5, 1))

 3 cola_c

 MKT_ID NAME
---------- --------------------------------
SHAPE(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3, 3, 6, 3, 6, 5, 4, 5, 3, 3))

 4 cola_d
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(10, 9, 11, 9, 11, 10, 10, 10, 10, 9))

SQL>
SQL> -- Select all from the new (layer transformed) table.
SQL> SELECT * from cola_markets_cs_8199;

SDO_ROWID

GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
AAABZzAABAAAOa6AAA
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(1.00078604, 1.00274579, 5.00069354, 1.00274488, 5.0006986, 7.00323528, 1.0007
9179, 7.00324162, 1.00078604, 1.00274579))

AAABZzAABAAAOa6AAB

Example of Coordinate System Transformation

6-46 Oracle Spatial User’s Guide and Reference

SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5.00069354, 1.00274488, 8.00062191, 1.00274427, 8.00062522, 6.00315345, 5.000
6986, 7.00323528, 5.00069354, 1.00274488))

SDO_ROWID

GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--

AAABZzAABAAAOa6AAC
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074114, 3.00291482, 6.00067068, 3.00291287, 6.0006723, 5.00307625, 4.0007
1961, 5.00307838, 3.00074114, 3.00291482))

AAABZzAABAAAOa6AAD
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(10.0005802, 9.00337775, 11.0005553, 9.00337621, 11.0005569, 10.0034478, 10.00

SDO_ROWID

GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
05819, 10.0034495, 10.0005802, 9.00337775))

SQL>
SQL> -- Show metadata for the new (layer transformed) table.
SQL> DESCRIBE cola_markets_cs_8199;
 Name Null? Type
 --- -------- ----------------------------
 SDO_ROWID ROWID
 GEOMETRY SDO_GEOMETRY

SQL>
SQL> -- Use a geodetic MBR with SDO_FILTER
SQL> SELECT c.name FROM cola_markets_cs c WHERE
 2 SDO_FILTER(c.shape,
 3 SDO_GEOMETRY(
 4 2003,
 5 8307, -- SRID for WGS 84 longitude/latitude
 6 NULL,
 7 SDO_ELEM_INFO_ARRAY(1,1003,3),
 8 SDO_ORDINATE_ARRAY(6,5, 10,10))
 9) = 'TRUE';

NAME

cola_c
cola_b
cola_d

Linear Referencing System 7-1

7
Linear Referencing System

Linear referencing is a natural and convenient means to associate attributes or events
to locations or portions of a linear feature. It has been widely used in transportation
applications (such as for highways, railroads, and transit routes) and utilities
applications (such as for gas and oil pipelines). The major advantage of linear
referencing is its capability of locating attributes and events along a linear feature with
only one parameter (usually known as measure) instead of two (such as
longitude/latitude or x/y in Cartesian space). Sections of a linear feature can be
referenced and created dynamically by indicating the start and end locations along the
feature without explicitly storing them.

The linear referencing system (LRS) application programming interface (API) in Oracle
Spatial provides server-side LRS capabilities at the cartographic level. The linear
measure information is directly integrated into the Oracle Spatial geometry structure.
The Oracle Spatial LRS API provides support for dynamic segmentation, and it serves
as a groundwork for third-party or middle-tier application development for virtually
any linear referencing methods and models in any coordinate system.

For an example of LRS, see Section 7.7. However, you may want to read the rest of this
chapter first, to understand the concepts that the example illustrates.

For reference information about LRS functions and procedures, see Chapter 16.

If you have LRS data from a previous release of Spatial, see Section A.1 for information
about upgrading LRS data.

This chapter contains the following major sections:

■ Section 7.1, "Terms and Concepts"

■ Section 7.2, "LRS Data Model"

■ Section 7.3, "Indexing of LRS Data"

■ Section 7.4, "3D Formats of LRS Functions"

■ Section 7.5, "LRS Operations"

■ Section 7.6, "Tolerance Values with LRS Functions"

■ Section 7.7, "Example of LRS Functions"

7.1 Terms and Concepts
This section explains important terms and concepts related to linear referencing
support in Oracle Spatial.

Terms and Concepts

7-2 Oracle Spatial User’s Guide and Reference

7.1.1 Geometric Segments (LRS Segments)
Geometric segments are basic LRS elements in Oracle Spatial. A geometric segment
can be any of the following:

■ Line string: an ordered, nonbranching, and continuous geometry (for example, a
simple road)

■ Multiline string: nonconnected line strings (for example, a highway with a gap
caused by a lake or a bypass road)

■ Polygon (for example, a racetrack or a scenic tour route that starts and ends at the
same point)

A geometric segment must contain at least start and end measures for its start and end
points. Measures of points of interest (such as highway exits) on the geometric
segments can also be assigned. These measures are either assigned by users or derived
from existing geometric segments. Figure 7–1 shows a geometric segment with four
line segments and one arc. Points on the geometric segment are represented by triplets
(x, y, m), where x and y describe the location and m denotes the measure (with each
measure value underlined in Figure 7–1).

Figure 7–1 Geometric Segment

7.1.2 Shape Points
Shape points are points that are specified when an LRS segment is constructed, and
that are assigned measure information. In Oracle Spatial, a line segment is represented
by its start and end points, and an arc is represented by three points: start, middle, and
end points of the arc. You must specify these points as shape points, but you can also
specify other points as shape points if you need measure information stored for these
points (for example, an exit in the middle of a straight part of the highway).

Thus, shape points can serve one or both of the following purposes: to indicate the
direction of the segment (for example, a turn or curve), and to identify a point of
interest for which measure information is to be stored.

Shape points might not directly relate to mileposts or reference posts in LRS; they are
used as internal reference points. The measure information of shape points is
automatically populated when you define the LRS segment using the SDO_
LRS.DEFINE_GEOM_SEGMENT procedure, which is described in Chapter 16.

Segment Direction

Line Segments

(15, 5, 11.180)

(30, 10, 26.991)

Arc

(40, 5, 38.171)

(50, 15, 53.879)

Start Point
(5, 10, 0)

End Point
(55, 20, 60.950)

Terms and Concepts

Linear Referencing System 7-3

7.1.3 Direction of a Geometric Segment
The direction of a geometric segment is indicated from the start point of the geometric
segment to the end point. The direction is determined by the order of the vertices
(from start point to end point) in the geometry definition. Measures of points on a
geometric segment always either increase or decrease along the direction of the
geometric segment.

7.1.4 Measure (Linear Measure)
The measure of a point along a geometric segment is the linear distance (in the
measure dimension) to the point measured from the start point (for increasing values)
or end point (for decreasing values) of the geometric segment. The measure
information does not necessarily have to be of the same scale as the distance. However,
the linear mapping relationship between measure and distance is always preserved.

Some LRS functions use offset instead of measure to represent measured distance along
linear features. Although some other linear referencing systems might use offset to
mean what the Oracle Spatial LRS refers to as measure, offset has a different meaning
in Oracle Spatial from measure, as explained in Section 7.1.5.

7.1.5 Offset
The offset of a point along a geometric segment is the perpendicular distance between
the point and the geometric segment. Offsets are positive if the points are on the left
side along the segment direction and are negative if they are on the right side. Points
are on a geometric segment if their offsets to the segment are zero.

The unit of measurement for an offset is the same as for the coordinate system
associated with the geometric segment. For geodetic data, the default unit of
measurement is meters.

Figure 7–2 shows how a point can be located along a geometric segment with measure
and offset information. By assigning an offset together with a measure, it is possible to
locate not only points that are on the geometric segment, but also points that are
perpendicular to the geometric segment.

Figure 7–2 Describing a Point Along a Segment with a Measure and an Offset

7.1.6 Measure Populating
Any unassigned measures of a geometric segment are automatically populated based
upon their distance distribution. This is done before any LRS operations for geometric
segments with unknown measures (NULL in Oracle Spatial). The resulting geometric
segments from any LRS operations return the measure information associated with

Segment Direction

Start Point

End Point

Ms

Me

Mp Positive Offset

Negative Offset

Offset Value
Point to Be Located

Measure

Terms and Concepts

7-4 Oracle Spatial User’s Guide and Reference

geometric segments. The measure of a point on the geometric segment can be obtained
based upon a linear mapping relationship between its previous and next known
measures or locations. See the algorithm representation in Figure 7–3 and the example
in Figure 7–4.

Figure 7–3 Measures, Distances, and Their Mapping Relationship

Figure 7–4 Measure Populating of a Geometric Segment

Measures are evenly spaced between assigned measures. However, the assigned
measures for points of interest on a geometric segment do not need to be evenly
spaced. This could eliminate the problem of error accumulation and account for
inaccuracy of data source.

Moreover, the assigned measures do not even need to reflect actual distances (for
example, they can reflect estimated driving time); they can be any valid values within
the measure range. Figure 7–5 shows the measure population that results when
assigned measure values are not proportional and reflect widely varying gaps.

Figure 7–5 Measure Populating with Disproportional Assigned Measures

Mprev = 20 Mp = 60 Mnext = 20
Measure

Pprev(0, 0) Pnext(100, 0)

Distance

P(50, 0)

PprevP = 50

PprevPnext = 100

(Mnext - Mprev) + Mprev
Mp = PprevP

PprevPnext

0 60 90 120

12090600
Assigned
Measures

Populated
Measures

Before Measure Populating

After Measure Populating

15 30 45 70 80 100 110

0 88 97 100

10097880
Assigned
Measures

Populated
Measures

Before Measure Populating

After Measure Populating

22 44 66 91 94 98 99

Terms and Concepts

Linear Referencing System 7-5

In all cases, measure populating is done in an incremental fashion along the segment
direction. This improves the performance of current and subsequent LRS operations.

7.1.7 Measure Range of a Geometric Segment
The start and end measures of a geometric segment define the linear measure range of
the geometric segment. Any valid LRS measures of a geometric segment must fall
within its linear measure range.

7.1.8 Projection
The projection of a point along a geometric segment is the point on the geometric
segment with the minimum distance to the specified point. The measure information
of the resulting point is also returned in the point geometry.

7.1.9 LRS Point
LRS points are points with linear measure information along a geometric segment. A
valid LRS point is a point geometry with measure information.

All LRS point data must be stored in the SDO_ELEM_INFO_ARRAY and SDO_
ORDINATE_ARRAY, and cannot be stored in the SDO_POINT field in the SDO_
GEOMETRY definition of the point.

7.1.10 Linear Features
Linear features are any spatial objects that can be treated as a logical set of linear
segments. Examples of linear features are highways in transportation applications and
pipelines in utility industry applications. The relationship of linear features, geometric
segments, and LRS points is shown in Figure 7–6, where a single linear feature consists
of three geometric segments, and three LRS points are shown on the first segment.

Figure 7–6 Linear Feature, Geometric Segments, and LRS Points

7.1.11 Measures with Multiline Strings and Polygons with Holes
With a multiline string or polygon with hole LRS geometry, the SDO_LRS.DEFINE_
GEOM_SEGMENT procedure and SDO_LRS.CONVERT_TO_LRS_GEOM function by
default assign the same measure value to the end point of one segment and the start
point (separated by a gap) of the next segment, although you can later assign different
measure values to points. Thus, by default there will duplicate measure values in
different segments for such geometries. In such cases, LRS subprograms use the first
point with a specified measure, except when doing so would result in an invalid
geometry.

Geometric Segment 1 Geometric Segment 2 Geometric Segment 3

LRS Points

Direction

Direction Direction

M1
s

M1
eM2

s M2
e

M3
eM3

s

Linear Feature

LRS Data Model

7-6 Oracle Spatial User’s Guide and Reference

For example, assume that in a multiline string LRS geometry, the first segment is from
measures 0 through 100 and the second segment is from measures 100 through 150. If
you use the SDO_LRS.LOCATE_PT function to find the point at measure 100, the
returned point will be at measure 100 in the first segment. If you use the SDO_
LRS.CLIP_GEOM_SEGMENT, SDO_LRS.DYNAMIC_SEGMENT, or SDO_
LRS.OFFSET_GEOM_SEGMENT function to return the geometry object between
measures 75 and 125, the result is a multiline string geometry consisting of two
segments. If you use the same function to return the geometry object between
measures 100 and 125, the point at measure 100 in the first segment is ignored, and the
result is a line string along the second segment from measures 100 through 125.

7.2 LRS Data Model
The Oracle Spatial LRS data model incorporates measure information into its
geometry representation at the point level. The measure information is directly
integrated into the Oracle Spatial model. To accomplish this, an additional measure
dimension must be added to the Oracle Spatial metadata.

Oracle Spatial LRS support affects the Spatial metadata and data (the geometries).
Example 7–1 shows how a measure dimension can be added to two-dimensional
geometries in the Spatial metadata. The measure dimension must be the last element
of the SDO_DIM_ARRAY in a spatial object definition (shown in bold in Example 7–1).

Example 7–1 Including LRS Measure Dimension in Spatial Metadata

INSERT INTO user_sdo_geom_metadata
 (TABLE_NAME,
 COLUMN_NAME,
 DIMINFO,
 SRID)
 VALUES(
 'LRS_ROUTES',
 'GEOMETRY',
 SDO_DIM_ARRAY (
 SDO_DIM_ELEMENT('X', 0, 20, 0.005),
 SDO_DIM_ELEMENT('Y', 0, 20, 0.005),
 SDO_DIM_ELEMENT('M', 0, 100, 0.005)),
 NULL);

After adding the new measure dimension, geometries with measure information such
as geometric segments and LRS points can be represented. An example of creating a
geometric segment with three line segments is shown in Figure 7–7.

Figure 7–7 Creating a Geometric Segment

In Figure 7–7, the geometric segment has the following definition (with measure
values underlined):

SDO_GEOMETRY(3302, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,2,1),
 SDO_ORDINATE_ARRAY(5,10,0, 20,5,NULL, 35,10,NULL, 55,10,100))

Start Measure End Measure

Start Point End Point

(55, 10, 100)(5, 10, 0) (35, 10, NULL)

(20, 5, NULL)

3D Formats of LRS Functions

Linear Referencing System 7-7

Whenever a geometric segment is defined, its start and end measures must be defined
or derived from some existing geometric segment. The unsigned measures of all shape
points on a geometric segment will be automatically populated.

The LRS API works with geometries in formats of Oracle Spatial before release 8.1.6,
but the resulting geometries will be converted to the Oracle Spatial release 8.1.6 or
later format, specifically with 4-digit SDO_GTYPE and SDO_ETYPE values. For
example, in Oracle Spatial release 8.1.6 and later, the geometry type (SDO_GTYPE) of a
spatial object includes the number of dimensions of the object as the first digit of the
SDO_GTYPE value. Thus, the SDO_GTYPE value of a point is 1 in the format before
release 8.1.6 but 2001 in the release 8.1.6 format (the number of dimensions of the point
is 2). However, an LRS point (which includes measure information) has three
dimensions, and thus the SDO_GTYPE of any point geometry used with an LRS
function must be 3301.

7.3 Indexing of LRS Data
If LRS data has four dimensions (three plus the M dimension) and if you need to index
all three non-measure dimensions, you must use a spatial R-tree index to index the
data, and you must specify PARAMETERS('sdo_indx_dims=3') in the CREATE INDEX
statement to ensure that the first three dimensions are indexed. Note, however, that if
you specify an sdo_indx_dims value of 3 or higher, the only Spatial operator that
can be used on the indexed geometries is SDO_FILTER; the other operators described
in Chapter 11 cannot be used. (The default value for the sdo_indx_dims keyword is
2, which would cause only the first two dimensions to be indexed.) For example, if the
dimensions are X, Y, Z, and M, specify sdo_indx_dims=3 to index the X, Y, and Z
dimensions, but not the measure (M) dimension. Do not include the measure
dimension in a spatial index, because this causes additional processing overhead and
produces no benefit.

Information about the CREATE INDEX statement and its parameters and keywords is
in Chapter 10.

7.4 3D Formats of LRS Functions
Most LRS functions have formats that end in _3D: for example, DEFINE_GEOM_
SEGMENT_3D, CLIP_GEOM_SEGMENT_3D, FIND_MEASURE_3D, and LOCATE_
PT_3D. If a function has a 3D format, it is identified in the Usage Notes for the
function in Chapter 16.

The 3D formats are supported only for line string and multiline string geometries. The
3D formats should be used only when the geometry object has four dimensions and
the fourth dimension is the measure (for example, X, Y, Z, and M), and only when you
want the function to consider the first three dimensions (for example, X, Y, and Z). If
the standard format of a function (that is, without the _3D) is used on a geometry with
four dimensions, the function considers only the first two dimensions (for example, X
and Y).

For example, the following format considers the X, Y, and Z dimensions of the
specified GEOM object in performing the clip operation:

SELECT SDO_LRS.CLIP_GEOM_SEGMENT_3D(a.geom, m.diminfo, 5, 10)
 FROM routes r, user_sdo_geom_metadata m
 WHERE m.table_name = 'ROUTES' AND m.column_name = 'GEOM'
 AND r.route_id = 1;

LRS Operations

7-8 Oracle Spatial User’s Guide and Reference

However, the following format considers only the X and Y dimensions, and ignores
the Z dimension, of the specified GEOM object in performing the clip operation:

SELECT SDO_LRS.CLIP_GEOM_SEGMENT(a.geom, m.diminfo, 5, 10)
 FROM routes r, user_sdo_geom_metadata m
 WHERE m.table_name = 'ROUTES' AND m.column_name = 'GEOM'
 AND r.route_id = 1;

The parameters for the standard and 3D formats of any function are the same, and the
Usage Notes apply to both formats.

The 3D formats are not supported with the following:

■ Geodetic data

■ Polygons, arcs, or circles

7.5 LRS Operations
This section describes several linear referencing operations supported by the Oracle
Spatial LRS API.

7.5.1 Defining a Geometric Segment
There are two ways to create a geometric segment with measure information:

■ Construct a geometric segment and assign measures explicitly.

■ Define a geometric segment with specified start and end, and any other measures,
in an ascending or descending order. Measures of shape points with unknown
(unassigned) measures (null values) in the geometric segment will be
automatically populated according to their locations and distance distribution.

Figure 7–8 shows different ways of defining a geometric segment:

Figure 7–8 Defining a Geometric Segment

Start Point End Point

(55, 10, NULL)(5, 10, NULL) (35, 10, NULL)

(20, 5, NULL)

a. Geometric Segment with No Measures Assigned

Start Point End Point

(55, 10, 100)(5, 10, 0) (35, 10, NULL)

(20, 5, NULL)

Start Measure End Measure

b. Geometric Segment with Start and End Measures

Start Point End Point

(55, 10, 100)(5, 10, 0) (35, 10, 61.257)

(20, 5, 30.628)

c. Populating Measures of Shape Points in a Geometric Segment

LRS Operations

Linear Referencing System 7-9

An LRS segment must be defined (or must already exist) before any LRS operations
can proceed. That is, the start, end, and any other assigned measures must be present
to derive the location from a specified measure. The measure information of
intermediate shape points will automatically be populated if measure values are not
assigned.

7.5.2 Redefining a Geometric Segment
You can redefine a geometric segment to replace the existing measures of all shape
points between the start and end point with automatically calculated measures.
Redefining a segment can be useful if errors have been made in one or more explicit
measure assignments, and you want to start over with proportionally assigned
measures.

Figure 7–9 shows the redefinition of a segment where the existing (before) assigned
measure values are not proportional and reflect widely varying gaps.

Figure 7–9 Redefining a Geometric Segment

After the segment redefinition in Figure 7–9, the populated measures reflect
proportional distances along the segment.

7.5.3 Clipping a Geometric Segment
You can clip a geometric segment to create a new geometric segment out of an existing
geometric segment, as shown in Figure 7–10, part a.

Figure 7–10 Clipping, Splitting, and Concatenating Geometric Segments

Assigned
Measures

Populated
Measures

Before Segment Redefinition

After Segment Redefinition

10097880

22 44 66 91 94 98 99

100

7040

0

10 20 30 50 60 80 90

Assigned
Measures

Populated
Measures

Start Point End Point Start Point
End Point

Segment Direction Segment Direction

Segment 1

Segment 1
Segment 2

Segment 2

Ms
Me

Ms
Me

a. Segment Clipping

b. Segment Splitting

c. Segment Concatenation

LRS Operations

7-10 Oracle Spatial User’s Guide and Reference

In Figure 7–10, part a, a segment is created from part of a larger segment. The new
segment has its own start and end points, and the direction is the same as in the
original larger segment.

7.5.4 Splitting a Geometric Segment
You can create two new geometric segments by splitting a geometric segment, as
shown in Figure 7–10, part b. The direction of each new segment is the same as in the
original segment.

7.5.5 Concatenating Geometric Segments
You can create a new geometric segment by concatenating two geometric segments, as
shown in Figure 7–10, part c. The geometric segments do not need to be spatially
connected, although they are connected in the illustration in Figure 7–10, part c. (If the
segments are not spatially connected, the concatenated result is a multiline string.) The
measures of the second geometric segment are shifted so that the end measure of the
first segment is the same as the start measure of the second segment. The direction of
the segment resulting from the concatenation is the same as in the two original
segments.

Measure assignments for the clipping, splitting, and concatenating operations in
Figure 7–10 are shown in Figure 7–11. Measure information and segment direction are
preserved in a consistent manner. The assignment is done automatically when the
operations have completed.

Figure 7–11 Measure Assignment in Geometric Segment Operations

Note: In Figure 7–10 and several figures that follow, small gaps
between segments are used in illustrations of segment splitting and
concatenation. Each gap simply reinforces the fact that two
different segments are involved. However, the two segments (such
as segment 1 and segment 2 in Figure 7–10, parts b and c) are
actually connected. The tolerance (see Section 1.5.5) is considered in
determining whether or not segments are connected.

M=0

M=100

M=25

M=70

M=25 M=70
M=0

M=100

M=100

M=0
M=50

M=50Segment 1

Segment 2

M=0
M=50

M=30
M=80

Segment 1

Segment 2

a. Segment Splitting b. Segment Clipping

M=0

M=100

M=50

Second Segment Measure
Shifted By 20

Continuous Measures for Segment Concatenation
c. Segment Concatenation

LRS Operations

Linear Referencing System 7-11

The direction of the geometric segment resulting from concatenation is always the
direction of the first segment (geom_segment1 in the call to the SDO_
LRS.CONCATENATE_GEOM_SEGMENTS function), as shown in Figure 7–12.

Figure 7–12 Segment Direction with Concatenation

In addition to explicitly concatenating two connected segments using the SDO_
LRS.CONCATENATE_GEOM_SEGMENTS function, you can perform aggregate
concatenation: that is, you can concatenate all connected geometric segments in a
column (layer) using the SDO_AGGR_LRS_CONCAT spatial aggregate function. (See
the description and example of the SDO_AGGR_LRS_CONCAT spatial aggregate
function in Chapter 12.)

7.5.6 Scaling a Geometric Segment
You can create a new geometric segment by performing a linear scaling operation on a
geometric segment. Figure 7–13 shows the mapping relationship for geometric
segment scaling.

Figure 7–13 Scaling a Geometric Segment

In general, scaling a geometric segment only involves rearranging measures of the
newly created geometric segment. However, if the scaling factor is negative, the order
of the shape points needs to be reversed so that measures will increase along the
geometric segment’s direction (which is defined by the order of the shape points).

A scale operation can perform any combination of the following operations:

■ Translating (shifting) measure information. (For example, add the same value to
Ms and Me to get M’s and M’e.)

Directions of Segments Concatenate Direction of Resulting Segment
(Always Same as First Segment)

geom_segment1 geom_segment2

Mshift Shift Measure

M's M'
M'e

Ms
M

Me

Segment Direction

Start Point

End Point

(New Start Measure)
(New End Measure)

Linear Mapping Relationship

M' = (M - Ms) x
(M'e - M's)

(Me - Ms) + M's + Mshift

Scaling Factor

LRS Operations

7-12 Oracle Spatial User’s Guide and Reference

■ Reversing measure information. (Let M’s = Me, M’e = Ms, and Mshift = 0.)

■ Performing simple scaling of measure information. (Let Mshift = 0.)

For examples of these operations, see the Usage Notes and Examples for the SDO_
LRS.TRANSLATE_MEASURE, SDO_LRS.REVERSE_GEOMETRY, and SDO_
LRS.REDEFINE_GEOM_SEGMENT subprograms in Chapter 16.

7.5.7 Offsetting a Geometric Segment
You can create a new geometric segment by performing an offsetting operation on a
geometric segment. Figure 7–14 shows the mapping relationship for geometric
segment offsetting.

Figure 7–14 Offsetting a Geometric Segment

In the offsetting operation shown in Figure 7–14, the resulting geometric segment is
offset by 5 units from the specified start and end measures of the original segment.

For more information, see the Usage Notes and Examples for the SDO_LRS.OFFSET_
GEOM_SEGMENT function in Chapter 16.

7.5.8 Locating a Point on a Geometric Segment
You can find the position of a point described by a measure and an offset on a
geometric segment (see Figure 7–15).

Figure 7–15 Locating a Point Along a Segment with a Measure and an Offset

There is always a unique location with a specific measure on a geometric segment.
Ambiguity arises when offsets are given and the points described by the measures fall
on shape points of the geometric segment (see Figure 7–16).

Direction of the Segments

Resulting Segment

Positive Offset
(for example, 5)

Negative Offset
(for example, -5)

Start Measure End Measure

Segment Direction

Start Point

End Point

Positive Offset

Negative Offset

Offset (Positive if to left along segment direction;
negative if to right along segment direction.)Point to Be Located

Measure

Projection Point

LRS Operations

Linear Referencing System 7-13

Figure 7–16 Ambiguity in Location Referencing with Offsets

As shown in Figure 7–16, an offset arc of a shape point on a geometric segment is an
arc on which all points have the same minimum distance to the shape point. As a
result, all points on the offset arc are represented by the same (measure, offset) pair. To
resolve this one-to-many mapping problem, the middle point on the offset arc is
returned.

7.5.9 Projecting a Point onto a Geometric Segment
You can find the projection point of a point with respect to a geometric segment. The
point to be projected can be on or off the segment. If the point is on the segment, the
point and its projection point are the same.

Projection is a reverse operation of the point-locating operation shown in Figure 7–15.
Similar to a point-locating operation, all points on the offset arc of a shape point will
have the same projection point (that is, the shape point itself), measure, and offset (see
Figure 7–16). If there are multiple projection points for a point, the first one from the
start point is returned (Projection Point 1 in both illustrations in Figure 7–17).

Figure 7–17 Multiple Projection Points

(5, 10, 0)

(35, 10, 61.257) (55, 10, 100)

o

oo

Shape Point on the Geometric Segment

Many-to-One Mapping

Offset ArcMiddle Point

m

(5, 10, 0)

(35, 10, 61.257) (55, 10, 100)

P
(m, o)

One-to-One Mapping

o
m

(20, 5, 30.628)

(20, 5, 30.628)

Segment Direction

P

Segment
Direction

Projection Point 2

Point to Be Projected

Projection Point 1

Arc

Segment
Direction

Point to Be Projected
P

Projection Point 1

LRS Operations

7-14 Oracle Spatial User’s Guide and Reference

7.5.10 Converting LRS Geometries
You can convert geometries from standard line string format to LRS format, and the
reverse. The main use of conversion functions will probably occur if you have a large
amount of existing line string data, in which case conversion is a convenient
alternative to creating all of the LRS segments manually. However, if you need to
convert LRS segments to standard line strings for certain applications, that capability
is provided also.

Functions are provided to convert:

■ Individual line strings or points

For conversion from standard format to LRS format, a measure dimension (named
M by default) is added, and measure information is provided for each point. For
conversion from LRS format to standard format, the measure dimension and
information are removed. In both cases, the dimensional information (DIMINFO)
metadata in the USER_SDO_GEOM_METADATA view is not affected.

■ Layers (all geometries in a column)

For conversion from standard format to LRS format, a measure dimension (named
M by default) is added, but no measure information is provided for each point. For
conversion from LRS format to standard format, the measure dimension and
information are removed. In both cases, the dimensional information (DIMINFO)
metadata in the USER_SDO_GEOM_METADATA view is modified as needed.

■ Dimensional information (DIMINFO)

The dimensional information (DIMINFO) metadata in the USER_SDO_GEOM_
METADATA view is modified as needed. For example, converting a standard
dimensional array with X and Y dimensions (SDO_DIM_ELEMENT) to an LRS
dimensional array causes an M dimension (SDO_DIM_ELEMENT) to be added.

Figure 7–18 shows the addition of measure information when a standard line string is
converted to an LRS line string (using the SDO_LRS.CONVERT_TO_LRS_GEOM
function). The measure dimension values are underlined in Figure 7–18.

Figure 7–18 Conversion from Standard to LRS Line String

For conversions of point geometries, the SDO_POINT attribute (described in
Section 2.2.3) in the returned geometry is affected as follows:

■ If a standard point is converted to an LRS point, the SDO_POINT attribute
information in the input geometry is used to set the SDO_ELEM_INFO and SDO_
ORDINATES attributes (described in Section 2.2.4 and Section 2.2.5) in the
resulting geometry, and the SDO_POINT attribute in the resulting geometry is set
to null.

■ If an LRS point is converted to a standard point, the information in the SDO_
ELEM_INFO and SDO_ORDINATES attributes (described in Section 2.2.4 and
Section 2.2.5) in the input geometry is used to set the SDO_POINT attribute

(0, 0) (10, 0) (20, 0)

(0, 0, 0) (10, 0, 10) (20, 0, 20)

Standard Line String

LRS Line String (After Conversion)

Example of LRS Functions

Linear Referencing System 7-15

information in the resulting geometry, and the SDO_ELEM_INFO and SDO_
ORDINATES attributes in the resulting geometry are set to null.

The conversion functions are listed in Table 16–3 in Chapter 16. See also the reference
information in Chapter 16 about each conversion function.

7.6 Tolerance Values with LRS Functions
Many LRS functions require that you specify a tolerance value or one or more
dimensional arrays. Thus, you can control whether to specify a single tolerance value
for all non-measure dimensions or to use the tolerance associated with each
non-measure dimension in the dimensional array or arrays. The tolerance is applied
only to the geometry portion of the data, not to the measure dimension. The tolerance
value for geodetic data is in meters, and for non-geodetic data it is in the unit of
measurement associated with the data. (For a detailed discussion of tolerance, see
Section 1.5.5.)

Be sure that the tolerance value used is appropriate to the data and your purpose. If
the results of LRS functions seem imprecise or incorrect, you may need to specify a
smaller tolerance value.

For clip operations (see Section 7.5.3) and offset operations (see Section 7.5.7), if the
returned segment has any shape points within the tolerance value of the input
geometric segment from what would otherwise be the start point or end point of the
returned segment, the shape point is used as the start point or end point of the
returned segment. This is done to ensure that the resulting geometry does not contain
any redundant vertices, which would cause the geometry to be invalid. For example,
assume that the tolerance associated with the geometric segment (non-geodetic data)
in Figure 7–19 is 0.5.

Figure 7–19 Segment for Clip Operation Affected by Tolerance

If you request a clip operation to return the segment between measure values 0 (the
start point) and 61.5 in Figure 7–19, and if the distance between the points associated
with measure values 61.5 and 61.257 is less than the 0.5 tolerance value, the end point
of the returned segment is (35, 10, 61.257).

7.7 Example of LRS Functions
This section presents a simplified example that uses LRS functions. It refers to concepts
that are explained in this chapter and uses functions documented in Chapter 16.

This example uses the road that is illustrated in Figure 7–20.

Start Point End Point

(55, 10, 100)(5, 10, 0) (35, 10, 61.257)

(20, 5, 30.628)

Example of LRS Functions

7-16 Oracle Spatial User’s Guide and Reference

Figure 7–20 Simplified LRS Example: Highway

In Figure 7–20, the highway (Route 1) starts at point 2,2 and ends at point 5,14, follows
the path shown, and has six entrance-exit points (Exit 1 through Exit 6). For simplicity,
each unit on the graph represents one unit of measure, and thus the measure from start
to end is 27 (the segment from Exit 5 to Exit 6 being the hypotenuse of a 3-4-5 right
triangle).

Each row in Table 7–1 lists an actual highway-related feature and the LRS feature that
corresponds to it or that can be used to represent it.

Example 7–2 does the following:

■ Creates a table to hold the segment depicted in Figure 7–20

■ Inserts the definition of the highway depicted in Figure 7–20 into the table

Table 7–1 Highway Features and LRS Counterparts

Highway Feature LRS Feature

Named route, road, or street LRS segment, or linear feature (logical set
of segments)

Mile or kilometer marker Measure

Accident reporting and location tracking SDO_LRS.LOCATE_PT function

Construction zone (portion of a road) SDO_LRS.CLIP_GEOM_SEGMENT
function

Road extension (adding at the beginning or
end) or combination (designating or renaming
two roads that meet as one road)

SDO_LRS.CONCATENATE_GEOM_
SEGMENTS function

Road reconstruction or splitting (resulting in
two named roads from one named road)

SDO_LRS.SPLIT_GEOM_SEGMENT
procedure

Finding the closest point on the road to a point
off the road (such as a building)

SDO_LRS.PROJECT_PT function

Guard rail or fence alongside a road SDO_LRS.OFFSET_GEOM_SEGMENT
function

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Route1 (start)

Route1 (end)

Exit 1

Exit 2 Exit 3 Exit 4

Exit 5

Exit 6

Segment
Direction

Example of LRS Functions

Linear Referencing System 7-17

■ Inserts the necessary metadata into the USER_SDO_GEOM_METADATA view

■ Uses PL/SQL and SQL statements to define the segment and perform operations
on it

Example 7–3 includes the output of the SELECT statements in Example 7–2.

Example 7–2 Simplified Example: Highway

-- Create a table for routes (highways).
CREATE TABLE lrs_routes (
 route_id NUMBER PRIMARY KEY,
 route_name VARCHAR2(32),
 route_geometry SDO_GEOMETRY);

-- Populate table with just one route for this example.
INSERT INTO lrs_routes VALUES(
 1,
 'Route1',
 SDO_GEOMETRY(
 3302, -- line string, 3 dimensions: X,Y,M
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,2,1), -- one line string, straight segments
 SDO_ORDINATE_ARRAY(
 2,2,0, -- Start point - Exit1; 0 is measure from start.
 2,4,2, -- Exit2; 2 is measure from start.
 8,4,8, -- Exit3; 8 is measure from start.
 12,4,12, -- Exit4; 12 is measure from start.
 12,10,NULL, -- Not an exit; measure automatically calculated and filled.
 8,10,22, -- Exit5; 22 is measure from start.
 5,14,27) -- End point (Exit6); 27 is measure from start.
)
);

-- Update the Spatial metadata.
INSERT INTO user_sdo_geom_metadata
 (TABLE_NAME,
 COLUMN_NAME,
 DIMINFO,
 SRID)
 VALUES (
 'lrs_routes',
 'route_geometry',
 SDO_DIM_ARRAY(-- 20X20 grid
 SDO_DIM_ELEMENT('X', 0, 20, 0.005),
 SDO_DIM_ELEMENT('Y', 0, 20, 0.005),
 SDO_DIM_ELEMENT('M', 0, 20, 0.005) -- Measure dimension
),
 NULL -- SRID
);

-- Create the spatial index.
CREATE INDEX lrs_routes_idx ON lrs_routes(route_geometry)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

-- Test the LRS procedures.
DECLARE
geom_segment SDO_GEOMETRY;
line_string SDO_GEOMETRY;
dim_array SDO_DIM_ARRAY;

Example of LRS Functions

7-18 Oracle Spatial User’s Guide and Reference

result_geom_1 SDO_GEOMETRY;
result_geom_2 SDO_GEOMETRY;
result_geom_3 SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = 'Route1';
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY';

-- Define the LRS segment for Route1. This will populate any null measures.
-- No need to specify start and end measures, because they are already defined
-- in the geometry.
SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment, dim_array);

SELECT a.route_geometry INTO line_string FROM lrs_routes a
 WHERE a.route_name = 'Route1';

-- Split Route1 into two segments.
SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom_2);

-- Concatenate the segments that were just split.
result_geom_3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array,
result_geom_2, dim_array);

-- Update and insert geometries into table, to display later.
UPDATE lrs_routes a SET a.route_geometry = geom_segment
 WHERE a.route_id = 1;

INSERT INTO lrs_routes VALUES(
 11,
 'result_geom_1',
 result_geom_1
);
INSERT INTO lrs_routes VALUES(
 12,
 'result_geom_2',
 result_geom_2
);
INSERT INTO lrs_routes VALUES(
 13,
 'result_geom_3',
 result_geom_3
);

END;
/

-- First, display the data in the LRS table.
SELECT route_id, route_name, route_geometry FROM lrs_routes;

-- Are result_geom_1 and result_geom2 connected?
SELECT SDO_LRS.CONNECTED_GEOM_SEGMENTS(a.route_geometry,
 b.route_geometry, 0.005)
 FROM lrs_routes a, lrs_routes b
 WHERE a.route_id = 11 AND b.route_id = 12;

-- Is the Route1 segment valid?

Example of LRS Functions

Linear Referencing System 7-19

SELECT SDO_LRS.VALID_GEOM_SEGMENT(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- Is 50 a valid measure on Route1? (Should return FALSE; highest Route1 measure
is 27.)
SELECT SDO_LRS.VALID_MEASURE(route_geometry, 50)
 FROM lrs_routes WHERE route_id = 1;

-- Is the Route1 segment defined?
SELECT SDO_LRS.IS_GEOM_SEGMENT_DEFINED(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- How long is Route1?
SELECT SDO_LRS.GEOM_SEGMENT_LENGTH(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- What is the start measure of Route1?
SELECT SDO_LRS.GEOM_SEGMENT_START_MEASURE(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- What is the end measure of Route1?
SELECT SDO_LRS.GEOM_SEGMENT_END_MEASURE(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- What is the start point of Route1?
SELECT SDO_LRS.GEOM_SEGMENT_START_PT(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- What is the end point of Route1?
SELECT SDO_LRS.GEOM_SEGMENT_END_PT(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

-- Translate (shift measure values) (+10).
-- First, display the original segment; then, translate.
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;
SELECT SDO_LRS.TRANSLATE_MEASURE(a.route_geometry, m.diminfo, 10)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

-- Redefine geometric segment to "convert" miles to kilometers
DECLARE
geom_segment SDO_GEOMETRY;
dim_array SDO_DIM_ARRAY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = 'Route1';
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY';

-- "Convert" mile measures to kilometers (27 * 1.609 = 43.443).
SDO_LRS.REDEFINE_GEOM_SEGMENT (geom_segment,
 dim_array,
 0, -- Zero starting measure: LRS segment starts at start of route.
 43.443); -- End of LRS segment. 27 miles = 43.443 kilometers.

-- Update and insert geometries into table, to display later.

Example of LRS Functions

7-20 Oracle Spatial User’s Guide and Reference

UPDATE lrs_routes a SET a.route_geometry = geom_segment
 WHERE a.route_id = 1;

END;
/
-- Display the redefined segment, with all measures "converted."
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

-- Clip a piece of Route1.
SELECT SDO_LRS.CLIP_GEOM_SEGMENT(route_geometry, 5, 10)
 FROM lrs_routes WHERE route_id = 1;

-- Point (9,3,NULL) is off the road; should return (9,4,9).
SELECT SDO_LRS.PROJECT_PT(route_geometry,
 SDO_GEOMETRY(3301, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1, 1),
 SDO_ORDINATE_ARRAY(9, 3, NULL)))
 FROM lrs_routes WHERE route_id = 1;

-- Return the measure of the projected point.
SELECT SDO_LRS.GET_MEASURE(
 SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
 SDO_GEOMETRY(3301, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1, 1),
 SDO_ORDINATE_ARRAY(9, 3, NULL))),
 m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

-- Is point (9,3,NULL) a valid LRS point? (Should return TRUE.)
SELECT SDO_LRS.VALID_LRS_PT(
 SDO_GEOMETRY(3301, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1, 1),
 SDO_ORDINATE_ARRAY(9, 3, NULL)),
 m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

-- Locate the point on Route1 at measure 9, offset 0.
SELECT SDO_LRS.LOCATE_PT(route_geometry, 9, 0)
 FROM lrs_routes WHERE route_id = 1;

Example 7–3 shows the output of the SELECT statements in Example 7–2.

Example 7–3 Simplified Example: Output of SELECT Statements

SQL> -- First, display the data in the LRS table.
SQL> SELECT route_id, route_name, route_geometry FROM lrs_routes;

 ROUTE_ID ROUTE_NAME
---------- --------------------------------
ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
 1 Route1
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

 11 result_geom_1

Example of LRS Functions

Linear Referencing System 7-21

SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 5, 4, 5))

 12 result_geom_2

 ROUTE_ID ROUTE_NAME
---------- --------------------------------
ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 4, 5, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

 13 result_geom_3
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 5, 4, 5, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27)
)

SQL> -- Are result_geom_1 and result_geom2 connected?
SQL> SELECT SDO_LRS.CONNECTED_GEOM_SEGMENTS(a.route_geometry,
 2 b.route_geometry, 0.005)
 3 FROM lrs_routes a, lrs_routes b
 4 WHERE a.route_id = 11 AND b.route_id = 12;

SDO_LRS.CONNECTED_GEOM_SEGMENTS(A.ROUTE_GEOMETRY,B.ROUTE_GEOMETRY,0.005)
--
TRUE

SQL> -- Is the Route1 segment valid?
SQL> SELECT SDO_LRS.VALID_GEOM_SEGMENT(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.VALID_GEOM_SEGMENT(ROUTE_GEOMETRY)
--
TRUE

SQL> -- Is 50 a valid measure on Route1? (Should return FALSE; highest Route1
measure is 27.)
SQL> SELECT SDO_LRS.VALID_MEASURE(route_geometry, 50)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.VALID_MEASURE(ROUTE_GEOMETRY,50)
--
FALSE

SQL> -- Is the Route1 segment defined?
SQL> SELECT SDO_LRS.IS_GEOM_SEGMENT_DEFINED(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.IS_GEOM_SEGMENT_DEFINED(ROUTE_GEOMETRY)
--
TRUE

SQL> -- How long is Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_LENGTH(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_LENGTH(ROUTE_GEOMETRY)

 27

Example of LRS Functions

7-22 Oracle Spatial User’s Guide and Reference

SQL> -- What is the start measure of Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_START_MEASURE(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_START_MEASURE(ROUTE_GEOMETRY)
--
 0

SQL> -- What is the end measure of Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_END_MEASURE(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_END_MEASURE(ROUTE_GEOMETRY)
--
 27

SQL> -- What is the start point of Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_START_PT(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_START_PT(ROUTE_GEOMETRY)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
2, 2, 0))

SQL> -- What is the end point of Route1?
SQL> SELECT SDO_LRS.GEOM_SEGMENT_END_PT(route_geometry)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_END_PT(ROUTE_GEOMETRY)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y,
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
5, 14, 27))

SQL> -- Translate (shift measure values) (+10).
SQL> -- First, display the original segment; then, translate.
SQL> SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

SQL> SELECT SDO_LRS.TRANSLATE_MEASURE(a.route_geometry, m.diminfo, 10)
 2 FROM lrs_routes a, user_sdo_geom_metadata m
 3 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 4 AND a.route_id = 1;

SDO_LRS.TRANSLATE_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO,10)(SDO_GTYPE, SDO_SRID, SD
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 10, 2, 4, 12, 8, 4, 18, 12, 4, 22, 12, 10, 28, 8, 10, 32, 5, 14, 37))

SQL> -- Redefine geometric segment to "convert" miles to kilometers
SQL> DECLARE
 2 geom_segment SDO_GEOMETRY;
 3 dim_array SDO_DIM_ARRAY;
 4
 5 BEGIN

Example of LRS Functions

Linear Referencing System 7-23

 6
 7 SELECT a.route_geometry into geom_segment FROM lrs_routes a
 8 WHERE a.route_name = 'Route1';
 9 SELECT m.diminfo into dim_array from
 10 user_sdo_geom_metadata m
 11 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY';
 12
 13 -- "Convert" mile measures to kilometers (27 * 1.609 = 43.443).
 14 SDO_LRS.REDEFINE_GEOM_SEGMENT (geom_segment,
 15 dim_array,
 16 0, -- Zero starting measure: LRS segment starts at start of route.
 17 43.443); -- End of LRS segment. 27 miles = 43.443 kilometers.
 18
 19 -- Update and insert geometries into table, to display later.
 20 UPDATE lrs_routes a SET a.route_geometry = geom_segment
 21 WHERE a.route_id = 1;
 22
 23 END;
 24 /

PL/SQL procedure successfully completed.

SQL> -- Display the redefined segment, with all measures "converted."
SQL> SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 3.218, 8, 4, 12.872, 12, 4, 19.308, 12, 10, 28.962, 8, 10, 35.398
, 5, 14, 43.443))

SQL> -- Clip a piece of Route1.
SQL> SELECT SDO_LRS.CLIP_GEOM_SEGMENT(route_geometry, 5, 10)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.CLIP_GEOM_SEGMENT(ROUTE_GEOMETRY,5,10)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 4, 5, 8, 4, 8, 10, 4, 10))

SQL> -- Point (9,3,NULL) is off the road; should return (9,4,9).
SQL> SELECT SDO_LRS.PROJECT_PT(route_geometry,
 2 SDO_GEOMETRY(3301, NULL, NULL,
 3 SDO_ELEM_INFO_ARRAY(1, 1, 1),
 4 SDO_ORDINATE_ARRAY(9, 3, NULL)))
 5 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.PROJECT_PT(ROUTE_GEOMETRY,SDO_GEOMETRY(3301,NULL,NULL,SDO_EL
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))

SQL> -- Return the measure of the projected point.
SQL> SELECT SDO_LRS.GET_MEASURE(
 2 SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
 3 SDO_GEOMETRY(3301, NULL, NULL,
 4 SDO_ELEM_INFO_ARRAY(1, 1, 1),
 5 SDO_ORDINATE_ARRAY(9, 3, NULL))),
 6 m.diminfo)
 7 FROM lrs_routes a, user_sdo_geom_metadata m

Example of LRS Functions

7-24 Oracle Spatial User’s Guide and Reference

 8 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 9 AND a.route_id = 1;

SDO_LRS.GET_MEASURE(SDO_LRS.PROJECT_PT(A.ROUTE_GEOMETRY,M.DIMINFO,SDO_GEOM
--
 9

SQL> -- Is point (9,3,NULL) a valid LRS point? (Should return TRUE.)
SQL> SELECT SDO_LRS.VALID_LRS_PT(
 2 SDO_GEOMETRY(3301, NULL, NULL,
 3 SDO_ELEM_INFO_ARRAY(1, 1, 1),
 4 SDO_ORDINATE_ARRAY(9, 3, NULL)),
 5 m.diminfo)
 6 FROM lrs_routes a, user_sdo_geom_metadata m
 7 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 8 AND a.route_id = 1;

SDO_LRS.VALID_LRS_PT(SDO_GEOMETRY(3301,NULL,NULL,SDO_ELEM_INFO_ARRAY
--
TRUE

SQL> -- Locate the point on Route1 at measure 9, offset 0.
SQL> SELECT SDO_LRS.LOCATE_PT(route_geometry, 9, 0)
 2 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.LOCATE_PT(ROUTE_GEOMETRY,9,0)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), S
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))

Spatial Analysis and Mining 8-1

8
Spatial Analysis and Mining

This chapter describes the Oracle Spatial support for spatial analysis and mining in
Oracle Data Mining (ODM) applications.

For reference information about spatial analysis and mining functions and procedures,
see Chapter 18.

This chapter contains the following major sections:

■ Section 8.1, "Spatial Information and Data Mining Applications"

■ Section 8.2, "Spatial Binning for Detection of Regional Patterns"

■ Section 8.3, "Materializing Spatial Correlation"

■ Section 8.4, "Colocation Mining"

■ Section 8.5, "Spatial Clustering"

■ Section 8.6, "Location Prospecting"

8.1 Spatial Information and Data Mining Applications
ODM allows automatic discovery of knowledge from a database. Its techniques
include discovering hidden associations between different data attributes,
classification of data based on some samples, and clustering to identify intrinsic
patterns. Effective with Oracle Database 10g, spatial data can be materialized for
inclusion in data mining applications. Thus, ODM might enable you to discover that
sales prospects with addresses located in specific areas (neighborhoods, cities, or
regions) are more likely to watch a particular television program or to respond
favorably to a particular advertising solicitation. (The addresses are geocoded into
longitude/latitude points and stored in an Oracle Spatial geometry object.)

In many applications, data at a specific location is influenced by data in the
neighborhood. For example, the value of a house is largely determined by the value of
other houses in the neighborhood. This phenomenon is called spatial correlation (or,
neighborhood influence), and is discussed further in Section 8.3. The spatial analysis
and mining features in Oracle Spatial let you exploit spatial correlation by using the
location attributes of data items in several ways: for binning (discretizing) data into
regions (such as categorizing data into northern, southern, eastern, and western
regions), for materializing the influence of neighborhood (such as number of

Note: To use the features described in this chapter, you must
understand the main concepts and techniques explained in the
Oracle Data Mining documentation.

Spatial Information and Data Mining Applications

8-2 Oracle Spatial User’s Guide and Reference

customers within a two-mile radius of each store), and for identifying colocated data
items (such as video rental stores and pizza restaurants).

To perform spatial data mining, you materialize spatial predicates and relationships
for a set of spatial data using thematic layers. Each layer contains data about a specific
kind of spatial data (that is, having a specific "theme"), for example, parks and
recreation areas, or demographic income data. The spatial materialization could be
performed as a preprocessing step before the application of data mining techniques, or
it could be performed as an intermediate step in spatial mining, as shown in
Figure 8–1.

Figure 8–1 Spatial Mining and Oracle Data Mining

Notes on Figure 8–1:

■ The original data, which included spatial and nonspatial data, is processed to
produce materialized data.

■ Spatial data in the original data is processed by spatial mining functions to
produce materialized data. The processing includes such operations as spatial
binning, proximity, and colocation materialization.

■ The ODM engine processes materialized data (spatial and nonspatial) to generate
mining results.

The following are examples of the kinds of data mining applications that could benefit
from including spatial information in their processing:

Original data

Spatial Mining
Functions

Materialized data
(spatial binning,
proximity, colocation
materialization)

ODM engine

Spatial thematic
data layers

Mining results

Spatial Mining
(ODM + Spatial engine)

Materializing Spatial Correlation

Spatial Analysis and Mining 8-3

■ Business prospecting: Determine if colocation of a business with another franchise
(such as colocation of a Pizza Hut restaurant with a Blockbuster video store) might
improve its sales.

■ Store prospecting: Find a good store location that is within 50 miles of a major city
and inside a state with no sales tax. (Although 50 miles is probably too far to drive
to avoid a sales tax, many customers may live near the edge of the 50-mile radius
and thus be near the state with no sales tax.)

■ Hospital prospecting: Identify the best locations for opening new hospitals based
on the population of patients who live in each neighborhood.

■ Spatial region-based classification or personalization: Determine if southeastern
United States customers in a certain age or income category are more likely to
prefer "soft" or "hard" rock music.

■ Automobile insurance: Given a customer’s home or work location, determine if it
is in an area with high or low rates of accident claims or auto thefts.

■ Property analysis: Use colocation rules to find hidden associations between
proximity to a highway and either the price of a house or the sales volume of a
store.

■ Property assessment: In assessing the value of a house, examine the values of
similar houses in a neighborhood, and derive an estimate based on variations and
spatial correlation.

8.2 Spatial Binning for Detection of Regional Patterns
Spatial binning (spatial discretization) discretizes the location values into a small
number of groups associated with geographical areas. The assignment of a location to
a group can be done by any of the following methods:

■ Reverse geocoding the longitude/latitude coordinates to obtain an address that
specifies (for United States locations) the ZIP code, city, state, and country

■ Checking a spatial bin table to determine which bin this specific location belongs
in

You can then apply ODM techniques to the discretized locations to identify interesting
regional patterns or association rules. For example, you might discover that customers
in area A prefer regular soda, while customers in area B prefer diet soda.

The following functions and procedures, documented in Chapter 18, perform
operations related to spatial binning:

■ SDO_SAM.BIN_GEOMETRY

■ SDO_SAM.BIN_LAYER

8.3 Materializing Spatial Correlation
Spatial correlation (or, neighborhood influence) refers to the phenomenon of the location
of a specific object in an area affecting some nonspatial attribute of the object. For
example, the value (nonspatial attribute) of a house at a given address (geocoded to
give a spatial attribute) is largely determined by the value of other houses in the
neighborhood.

To use spatial correlation in a data mining application, you materialize the spatial
correlation by adding attributes (columns) in a data mining table. You use associated

Colocation Mining

8-4 Oracle Spatial User’s Guide and Reference

thematic tables to add the appropriate attributes. You then perform mining tasks on
the data mining table using ODM functions.

The following functions and procedures, documented in Chapter 18, perform
operations related to materializing spatial correlation:

■ SDO_SAM.SIMPLIFY_GEOMETRY

■ SDO_SAM.SIMPLIFY_LAYER

■ SDO_SAM.AGGREGATES_FOR_GEOMETRY

■ SDO_SAM.AGGREGATES_FOR_LAYER

8.4 Colocation Mining
Colocation is the presence of two or more spatial objects at the same location or at
significantly close distances from each other. Colocation patterns can indicate
interesting associations among spatial data objects with respect to their nonspatial
attributes. For example, a data mining application could discover that sales at
franchises of a specific pizza restaurant chain were higher at restaurants colocated
with video stores than at restaurants not colocated with video stores.

Two types of colocation mining are supported:

■ Colocation of items in a data mining table. Given a data layer, this approach
identifies the colocation of multiple features. For example, predator and prey
species could be colocated in animal habitats, and high-sales pizza restaurants
could be colocated with high-sales video stores. You can use a reference-feature
approach (using one feature as a reference and the other features as thematic
attributes, and materializing all neighbors for the reference feature) or a
buffer-based approach (materializing all items that are within all windows of a
specified size).

■ Colocation with thematic layers. Given several data layers, this approach identifies
colocation across the layers. For example, given a lakes layer and a vegetation
layer, lakes could be colocated with areas of high vegetation. You materialize the
data, add categorical and numerical spatial relationships to the data mining table,
and apply the ODM Association-Rule mechanisms.

The following functions and procedures, documented in Chapter 18, perform
operations related to colocation mining:

■ SDO_SAM.COLOCATED_REFERENCE_FEATURES

■ SDO_SAM.BIN_GEOMETRY

8.5 Spatial Clustering
Spatial clustering returns cluster geometries for a layer of data. An example of spatial
clustering is the clustering of crime location data.

The SDO_SAM.SPATIAL_CLUSTERS function, documented in Chapter 18, performs
spatial clustering. This function requires a spatial R-tree index on the geometry
column of the layer, and it returns a set of SDO_REGION objects where the geometry
column specifies the boundary of each cluster and the geometry_key value is set to
null.

You can use the SDO_SAM.BIN_GEOMETRY function, with the returned spatial
clusters in the bin table, to identify the cluster to which a geometry belongs.

Location Prospecting

Spatial Analysis and Mining 8-5

8.6 Location Prospecting
Location prospecting can be performed by using thematic layers to compute
aggregates for a layer, and choosing the locations that have the maximum values for
computed aggregates.

The following functions, documented in Chapter 18, perform operations related to
location prospecting:

■ SDO_SAM.AGGREGATES_FOR_GEOMETRY

■ SDO_SAM.AGGREGATES_FOR_LAYER

■ SDO_SAM.TILED_AGGREGATES

Location Prospecting

8-6 Oracle Spatial User’s Guide and Reference

Extending Spatial Indexing Capabilities 9-1

9
Extending Spatial Indexing Capabilities

This chapter shows how to create and use spatial indexes on objects other than a
geometry column. In other chapters, the focus is on indexing and querying spatial data
that is stored in a single column of type SDO_GEOMETRY. This chapter shows how to:

■ Embed an SDO_GEOMETRY object in a user-defined object type, and index the
geometry attribute of that type (see Section 9.1)

■ Create and use a function-based index where the function returns an SDO_
GEOMETRY object (see Section 9.2)

The techniques in this chapter are intended for experienced and knowledgeable
application developers. You should be familiar with the Spatial concepts and
techniques described in other chapters. You should also be familiar with, or able to
learn about, relevant Oracle database features, such as user-defined data types and
function-based indexing.

9.1 SDO_GEOMETRY Objects in User-Defined Type Definitions
The SDO_GEOMETRY type can be embedded in a user-defined data type definition.
The procedure is very similar to that for using the SDO_GEOMETRY type for a spatial
data column:

1. Create the user-defined data type.

2. Create a table with a column based on that data type.

3. Insert data into the table.

4. Update the USER_SDO_GEOM_METADATA view.

5. Create the spatial index on the geometry attribute.

6. Perform queries on the data.

For example, assume that you want to follow the cola markets scenario in the
simplified example in Section 2.1, but want to incorporate the market name attribute
and the geometry attribute in a single type. First, create the user-defined data type, as
in the following example that creates an object type named MARKET_TYPE:

CREATE OR REPLACE TYPE market_type AS OBJECT
 (name VARCHAR2(32), shape SDO_GEOMETRY);
/

Create a table that includes a column based on the user-defined type. The following
example creates a table named COLA_MARKETS_2 that will contain the same
information as the COLA_MARKETS table used in the example in Section 2.1.

CREATE TABLE cola_markets_2 (

SDO_GEOMETRY Objects in User-Defined Type Definitions

9-2 Oracle Spatial User’s Guide and Reference

 mkt_id NUMBER PRIMARY KEY,
 market MARKET_TYPE);

Insert data into the table, using the object type name as a constructor. For example:

INSERT INTO cola_markets_2 VALUES(
 1,
 MARKET_TYPE('cola_a',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
 SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
 -- define rectangle (lower left and upper right)
)
)
);

Update the USER_SDO_GEOM_METADATA view, using dot-notation to specify the
column name and spatial attribute. The following example specifies MARKET.SHAPE
as the COLUMN_NAME (explained in Section 2.6.2) in the metadata view.

INSERT INTO user_sdo_geom_metadata
 (TABLE_NAME,
 COLUMN_NAME,
 DIMINFO,
 SRID)
 VALUES (
 'cola_markets_2',
 'market.shape',
 SDO_DIM_ARRAY(-- 20X20 grid
 SDO_DIM_ELEMENT('X', 0, 20, 0.005),
 SDO_DIM_ELEMENT('Y', 0, 20, 0.005)
),
 NULL -- SRID
);

Create the spatial index, specifying the column name and spatial attribute using
dot-notation. For example.

CREATE INDEX cola_spatial_idx_2
ON cola_markets_2(market.shape)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

Perform queries on the data, using dot-notation to refer to attributes of the
user-defined type. The following simple query returns information associated with the
cola market named cola_a.

SELECT c.mkt_id, c.market.name, c.market.shape
 FROM cola_markets_2 c
 WHERE c.market.name = 'cola_a';

The following query returns information associated with all geometries that have any
spatial interaction with a specified query window, namely, the rectangle with
lower-left coordinates (4,6) and upper-right coordinates (8,8).

SELECT c.mkt_id, c.market.name, c.market.shape
 FROM cola_markets_2 c
 WHERE SDO_RELATE(c.market.shape,
 SDO_GEOMETRY(2003, NULL, NULL,

SDO_GEOMETRY Objects in Function-Based Indexes

Extending Spatial Indexing Capabilities 9-3

 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(4,6, 8,8)),
 'mask=anyinteract' = 'TRUE';

9.2 SDO_GEOMETRY Objects in Function-Based Indexes
A function-based spatial index facilitates queries that use locational information (of
type SDO_GEOMETRY) returned by a function or expression. In this case, the spatial
index is created based on the precomputed values returned by the function or
expression.

If you are not already familiar with function-based indexes, see the following for
detailed explanations of their benefits, options, and requirements, as well as usage
examples:

■ Oracle Database Application Developer's Guide - Fundamentals

■ Oracle Database Administrator's Guide

The procedure for using an SDO_GEOMETRY object in a function-based index is as
follows:

1. Create the function that returns an SDO_GEOMETRY object.

The function must be declared as DETERMINISTIC.

2. If the spatial data table does not already exist, create it, and insert data into the
table.

3. Update the USER_SDO_GEOM_METADATA view.

4. Create the spatial index.

For a function-based spatial index, the number of parameters must not exceed 32.

5. Perform queries on the data.

The rest of this section describes two examples of using function-based indexes. In
both examples, a function is created that returns an SDO_GEOMETRY object, and a
spatial index is created on that function. In the first example, the input parameters to
the function are a standard Oracle data type (NUMBER). In the second example, the
input to the function is a user-defined object type.

9.2.1 Example: Function with Standard Types
In the following example, the input parameters to the function used for the
function-based index are standard numeric values (longitude and latitude).

Assume that you want to create a function that returns the longitude and latitude of a
point and to use that function in a spatial index. First, create the function, as in the
following example that creates a function named GET_LONG_LAT_PT:

-- Create a function to return a point geometry (SDO_GTYPE = 2001) with
-- input of 2 numbers: longitude and latitude (SDO_SRID = 8307, for
-- "Longitude / Latitude (WGS 84)", probably the most widely used
-- coordinate system, and the one used for GPS devices.
-- Specify DETERMINISTIC for the function.

create or replace function get_long_lat_pt(longitude in number,
 latitude in number)
return SDO_GEOMETRY deterministic is
begin
 return sdo_geometry(2001, 8307,

SDO_GEOMETRY Objects in Function-Based Indexes

9-4 Oracle Spatial User’s Guide and Reference

 sdo_point_type(longitude, latitude, NULL),NULL, NULL);
end;
/

If the spatial data table does not already exist, create the table and add data to it, as in
the following example that creates a table named LONG_LAT_TABLE:

create table LONG_LAT_TABLE
(longitude number, latitude number, name varchar2(32));

insert into LONG_LAT_TABLE values (10,10, 'Place1');
insert into LONG_LAT_TABLE values (20,20, 'Place2');
insert into LONG_LAT_TABLE values (30,30, 'Place3');

Update the USER_SDO_GEOM_METADATA view, using dot-notation to specify the
schema name and function name. The following example specifies SCOTT.GET_
LONG_LAT_PT(LONGITUDE,LATITUDE) as the COLUMN_NAME (explained in
Section 2.6.2) in the metadata view.

-- Set up the metadata entry for this table.
-- The column name sets up the function on top
-- of the two columns used in this function,
-- along with the owner of the function.
insert into user_sdo_geom_metadata values('LONG_LAT_TABLE',
 'scott.get_long_lat_pt(longitude,latitude)',
 sdo_dim_array(
 sdo_dim_element('Longitude', -180, 180, 0.005),
 sdo_dim_element('Latitude', -90, 90, 0.005)), 8307);

Create the spatial index, specifying the function name with parameters. For example:

create index LONG_LAT_TABLE_IDX on
 LONG_LAT_TABLE(get_long_lat_pt(longitude,latitude))
 indextype is mdsys.spatial_index;

Perform queries on the data. In the following example, the two queries accomplish the
same thing; however, the first query does not use a user-defined function (instead
using a constructor to specify the point), whereas the second query uses the function
to specify the point.

-- First query: call sdo_filter with an SDO_GEOMETRY constructor
select name from LONG_LAT_TABLE a
 where sdo_filter(get_long_lat_pt(a.longitude,a.latitude),
 sdo_geometry(2001, 8307,
 sdo_point_type(10,10,NULL), NULL, NULL)
)='TRUE';

-- Second query: call sdo_filter with the function that returns an sdo_geometry
select name from LONG_LAT_TABLE a
 where sdo_filter(get_long_lat_pt(a.longitude,a.latitude),
 get_long_lat_pt(10,10)
)='TRUE';

9.2.2 Example: Function with a User-Defined Object Type
In the following example, the input parameter to the function used for the
function-based index is an object of a user-defined type that includes the longitude
and latitude.

Assume that you want to create a function that returns the longitude and latitude of a
point and to create a spatial index on that function. First, create the user-defined data

SDO_GEOMETRY Objects in Function-Based Indexes

Extending Spatial Indexing Capabilities 9-5

type, as in the following example that creates an object type named LONG_LAT and
its member function GetGeometry:

create type long_lat as object (
 longitude number,
 latitude number,
member function GetGeometry(SELF in long_lat)
RETURN SDO_GEOMETRY DETERMINISTIC)
/

create or replace type body long_lat as
 member function GetGeometry(self in long_lat)
 return SDO_GEOMETRY is
 begin
 return sdo_geometry(2001, 8307,
 sdo_point_type(longitude, latitude, NULL), NULL,NULL);
 end;
end;
/

If the spatial data table does not already exist, create the table and add data to it, as in
the following example that creates a table named TEST_LONG_LAT:

create table test_long_lat
 (location long_lat, name varchar2(32));

insert into test_long_lat values (long_lat(10,10), 'Place1');
insert into test_long_lat values (long_lat(20,20), 'Place2');
insert into test_long_lat values (long_lat(30,30), 'Place3');

Update the USER_SDO_GEOM_METADATA view, using dot-notation to specify the
schema name, table name, and function name and parameter value. The following
example specifies SCOTT.LONG_LAT.GetGeometry(LOCATION) as the COLUMN_
NAME (explained in Section 2.6.2) in the metadata view.

insert into user_sdo_geom_metadata values('test_long_lat',
 'scott.long_lat.GetGeometry(location)',
 sdo_dim_array(
 sdo_dim_element('Longitude', -180, 180, 0.005),
 sdo_dim_element('Latitude', -90, 90, 0.005)), 8307);

Create the spatial index, specifying the column name and function name using
dot-notation. For example:

create index test_long_lat_idx on test_long_lat(location.GetGeometry())
 indextype is mdsys.spatial_index;

Perform queries on the data. The following query performs a primary filter operation,
asking for the names of geometries that are likely to interact spatially with point
(10,10).

SELECT a.name FROM test_long_lat a
 WHERE SDO_FILTER(a.location.GetGeometry(),
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE(10,10,NULL), NULL, NULL)
) = 'TRUE';

SDO_GEOMETRY Objects in Function-Based Indexes

9-6 Oracle Spatial User’s Guide and Reference

Part II
Reference Information

This document has three parts:

■ Part I provides conceptual and usage information about Oracle Spatial.

■ Part II provides reference information about Oracle Spatial operators, functions,
and procedures.

■ Part III provides supplementary information (appendixes and a glossary).

Part II contains the following chapters with reference information:

■ Chapter 10, "SQL Statements for Indexing Spatial Data"

■ Chapter 11, "Spatial Operators"

■ Chapter 12, "Spatial Aggregate Functions"

■ Chapter 13, "SDO_CS Package (Coordinate System Transformation)"

■ Chapter 14, "SDO_GCDR Package (Geocoding)"

■ Chapter 15, "SDO_GEOM Package (Geometry)"

■ Chapter 16, "SDO_LRS Package (Linear Referencing System)"

■ Chapter 17, "SDO_MIGRATE Package (Upgrading)"

■ Chapter 18, "SDO_SAM Package (Spatial Analysis and Mining)"

■ Chapter 19, "SDO_TUNE Package (Tuning)"

■ Chapter 20, "SDO_UTIL Package (Utility)"

To understand the examples in the reference chapters, you must understand the
conceptual and data type information in Chapter 2, "Spatial Data Types and
Metadata", especially Section 2.2, "SDO_GEOMETRY Object Type".

SQL Statements for Indexing Spatial Data 10-1

10
SQL Statements for Indexing Spatial Data

This chapter describes the SQL statements used when working with the spatial object
data type. The statements are listed in Table 10–1.

This chapter focuses on using these SQL statements with spatial indexes. For complete
reference information about any statement, see Oracle Database SQL Reference.

Bold italic text is often used in the Keywords and Parameters sections in this chapter
to identify a grouping of keywords, followed by specific keywords in the group. For
example, INDEX_PARAMS identifies the start of a group of index-related keywords.

Table 10–1 Spatial Index Creation and Usage Statements

Statement Description

ALTER INDEX Alters specific parameters for a spatial index.

ALTER INDEX REBUILD Rebuilds a spatial index or a specified partition of a partitioned
index.

ALTER INDEX RENAME TO Changes the name of a spatial index or a partition of a spatial
index.

CREATE INDEX Creates a spatial index on a column of type SDO_GEOMETRY.

DROP INDEX Deletes a spatial index.

ALTER INDEX

10-2 Oracle Spatial User’s Guide and Reference

ALTER INDEX

Purpose
Alters specific parameters for a spatial index.

Syntax
ALTER INDEX [schema.]index PARAMETERS ('index_params [physical_storage_params]')

[{ NOPARALLEL | PARALLEL [integer] }] ;

Keywords and Parameters

Value Description

INDEX_PARAMS Changes the characteristics of the spatial index.

sdo_indx_dims Specifies the number of dimensions to be indexed. For example,
a value of 2 causes the first two dimensions to be indexed. Must
be less than or equal to the number of actual dimensions
(number of SDO_DIM_ELEMENT instances in the dimensional
array that describes the geometry objects in the column). If the
value is 3 or higher, the only Spatial operator that can be used on
the indexed geometries is SDO_FILTER; the other operators
described in Chapter 11 cannot be used.
Data type is NUMBER. Default = 2.

sdo_rtr_pctfree Specifies the minimum percentage of slots in each index tree
node to be left empty when the index is created. Slots that are
left empty can be filled later when new data is inserted into the
table. The value can range from 0 to 50. The default value is best
for most applications; however, a value of 0 is recommended if
no updates will be performed to the geometry column.
Data type is NUMBER. Default = 10.

PHYSICAL_STORAGE_
PARAMS

Determines the storage parameters used for altering the spatial
index data table. A spatial index data table is a standard Oracle
table with a prescribed format. Not all physical storage
parameters that are allowed in the STORAGE clause of a
CREATE TABLE statement are supported. The following is a list
of the supported subset.

tablespace Specifies the tablespace in which the index data table is created.
This parameter is the same as TABLESPACE in the STORAGE
clause of a CREATE TABLE statement.

initial Is the same as INITIAL in the STORAGE clause of a CREATE
TABLE statement.

next Is the same as NEXT in the STORAGE clause of a CREATE
TABLE statement.

minextents Is the same as MINEXTENTS in the STORAGE clause of a
CREATE TABLE statement.

maxextents Is the same as MAXEXTENTS in the STORAGE clause of a
CREATE TABLE statement.

pctincrease Is the same as PCTINCREASE in the STORAGE clause of a
CREATE TABLE statement.

ALTER INDEX

SQL Statements for Indexing Spatial Data 10-3

Prerequisites
■ You must have EXECUTE privileges on the index type and its implementation

type.

■ The spatial index to be altered is not marked in-progress.

Usage Notes
Use this statement to change the parameters of an existing index.

See the Usage Notes for the CREATE INDEX statement for usage information about
many of the other available parameters.

Examples
The following example modifies the tablespace for partition IP2 of the spatial index
named BGI.

ALTER INDEX bgi MODIFY PARTITION ip2
 PARAMETERS ('tablespace=TBS_3');

Related Topics
■ ALTER INDEX REBUILD

■ ALTER INDEX RENAME TO

■ CREATE INDEX

■ ALTER TABLE (clauses for partition maintenance) in Oracle Database SQL Reference

{ NOPARALLEL
| PARALLEL
[integer] }

Controls whether serial (NOPARALLEL) execution or parallel
(PARALLEL) execution is used for subsequent queries and DML
operations that use the index. For parallel execution you can
specify an integer value of degree of parallelism. See the Usage
Notes for the CREATE INDEX statement for guidelines and
restrictions that apply to the use of the PARALLEL keyword.
Default = NOPARALLEL. (If PARALLEL is specified without an
integer value, the Oracle database calculates the optimum
degree of parallelism.)

Value Description

ALTER INDEX REBUILD

10-4 Oracle Spatial User’s Guide and Reference

ALTER INDEX REBUILD

Syntax
ALTER INDEX [schema.]index REBUILD

[PARAMETERS ('rebuild_params [physical_storage_params]')]

[{ NOPARALLEL | PARALLEL [integer] }] ;

or

ALTER INDEX [schema.]index REBUILD ONLINE

[PARAMETERS ('rebuild_params [physical_storage_params]')]

[{ NOPARALLEL | PARALLEL [integer] }] ;

or

ALTER INDEX [schema.]index REBUILD PARTITION partition

[PARAMETERS ('rebuild_params [physical_storage_params]')];

Purpose
Rebuilds a spatial index or a specified partition of a partitioned index.

Keywords and Parameters

Value Description

REBUILD_PARAMS Specifies in a command string the index parameters to use in
rebuilding the spatial index.

index_status=cleanup For an online rebuild operation (ALTER INDEX REBUILD
ONLINE), performs cleanup operations on tables associated
with the older version of the index.

layer_gtype Checks to ensure that all geometries are of a specified geometry
type. The value must be from the Geometry Type column of
Table 2–1 in Section 2.2.1 (except that UNKNOWN_GEOMETRY
is not allowed). In addition, specifying POINT allows for
optimized processing of point data.
Data type is VARCHAR2.

sdo_dml_batch_size Specifies the number of index updates to be processed in each
batch of updates after a commit operation. The default value is
1000. For example, if you insert 3500 rows into the spatial table
and then perform a commit operation, the updates to the spatial
index table are performed in four batches of insert operations
(1000, 1000, 1000, and 500). See the Usage Notes for the CREATE
INDEX statement for more information.
Data type is NUMBER. Default = 1000.

sdo_indx_dims Specifies the number of dimensions to be indexed. For example,
a value of 2 causes the first two dimensions to be indexed. Must
be less than or equal to the number of actual dimensions
(number of SDO_DIM_ELEMENT instances in the dimensional
array that describes the geometry objects in the column). If the
value is 3 or higher, the only Spatial operator that can be used on
the indexed geometries is SDO_FILTER; the other operators
described in Chapter 11 cannot be used.
Data type is NUMBER. Default = 2.

ALTER INDEX REBUILD

SQL Statements for Indexing Spatial Data 10-5

Prerequisites
■ You must have EXECUTE privileges on the index type and its implementation

type.

■ The spatial index to be altered is not marked in-progress.

Usage Notes
An ALTER INDEX REBUILD 'rebuild_params' statement rebuilds the index using
supplied parameters. Spatial index creation involves creating and inserting index data,
for each row in the underlying table column being spatially indexed, into a table with
a prescribed format. All rows in the underlying table are processed before the insertion
of index data is committed, and this requires adequate rollback segment space.

The ONLINE keyword rebuilds the index without blocking the index; that is, queries
can use the spatial index while it is being rebuilt. However, after all queries issued
during the rebuild operation have completed, you must clean up the old index
information (in the MDRT tables) by entering a SQL statement in the following form:

ALTER INDEX [schema.]index REBUILD ONLINE PARAMETERS (’index_status=cleanup’);

sdo_rtr_pctfree Specifies the minimum percentage of slots in each index tree
node to be left empty when the index is created. Slots that are
left empty can be filled later when new data is inserted into the
table. The value can range from 0 to 50.
Data type is NUMBER. Default = 10.

PHYSICAL_STORAGE_
PARAMS

Determines the storage parameters used for rebuilding the
spatial index data table. A spatial index data table is a regular
Oracle table with a prescribed format. Not all physical storage
parameters that are allowed in the STORAGE clause of a
CREATE TABLE statement are supported. The following is a list
of the supported subset.

tablespace Specifies the tablespace in which the index data table is created.
Same as TABLESPACE in the STORAGE clause of a CREATE
TABLE statement.

initial Is the same as INITIAL in the STORAGE clause of a CREATE
TABLE statement.

next Is the same as NEXT in the STORAGE clause of a CREATE
TABLE statement.

minextents Is the same as MINEXTENTS in the STORAGE clause of a
CREATE TABLE statement.

maxextents Is the same as MAXEXTENTS in the STORAGE clause of a
CREATE TABLE statement.

pctincrease Is the same as PCTINCREASE in the STORAGE clause of a
CREATE TABLE statement.

{ NOPARALLEL
| PARALLEL
[integer] }

Controls whether serial (NOPARALLEL) execution or parallel
(PARALLEL) execution is used for the rebuilding of the index
and for subsequent queries and DML operations that use the
index. For parallel execution you can specify an integer value of
degree of parallelism. See the Usage Notes for the CREATE
INDEX statement for guidelines and restrictions that apply to
the use of the PARALLEL keyword.
Default = NOPARALLEL. (If PARALLEL is specified without an
integer value, the Oracle database calculates the optimum
degree of parallelism.)

Value Description

ALTER INDEX REBUILD

10-6 Oracle Spatial User’s Guide and Reference

The following limitations apply to the use of the ONLINE keyword:

■ Only query operations are permitted while the index is being rebuilt. Insert,
update, and delete operations that would affect the index are blocked while the
index is being rebuilt.

■ You cannot use the ONLINE keyword for a rebuild operation if the index was
created using the ’sdo_non_leaf_tbl=TRUE’ parameter.

■ You cannot use the ONLINE keyword for a partitioned spatial index.

The ALTER INDEX REBUILD statement does not use any previous parameters from
the index creation. All parameters should be specified for the index you want to
rebuild.

For more information about using the layer_gtype keyword to constrain data in a
layer to a geometry type, see Section 4.1.2.

With a partitioned spatial index, you must use a separate ALTER INDEX REBUILD
statement for each partition to be rebuilt.

See also the Usage Notes for the CREATE INDEX statement for usage information
about many of the available parameters and about the use of the PARALLEL keyword.

Examples
The following example rebuilds OLDINDEX and specifies the tablespace in which to
create the index data table.

ALTER INDEX oldindex REBUILD PARAMETERS('tablespace=TBS_3');

Related Topics
■ CREATE INDEX

■ DROP INDEX

■ ALTER TABLE and ALTER INDEX (clauses for partition maintenance) in Oracle
Database SQL Reference

ALTER INDEX RENAME TO

SQL Statements for Indexing Spatial Data 10-7

ALTER INDEX RENAME TO

Syntax
ALTER INDEX [schema.]index RENAME TO <new_index_name>;

ALTER INDEX [schema.]index PARTITION partition RENAME TO <new_partition_name>;

Purpose
Changes the name of a spatial index or a partition of a spatial index.

Keywords and Parameters

Prerequisites
■ You must have EXECUTE privileges on the index type and its implementation

type.

■ The spatial index to be altered is not marked in-progress.

Usage Notes
None.

Examples
The following example renames OLDINDEX to NEWINDEX.

ALTER INDEX oldindex RENAME TO newindex;

Related Topics
■ CREATE INDEX

■ DROP INDEX

Value Description

new_index_name Specifies the new name of the index.

new_partition_name Specifies the new name of the partition.

CREATE INDEX

10-8 Oracle Spatial User’s Guide and Reference

CREATE INDEX

Syntax
CREATE INDEX [schema.]index ON [schema.]table (column)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

[PARAMETERS ('index_params [physical_storage_params]')]

[{ NOPARALLEL | PARALLEL [integer] }];

Purpose
Creates a spatial index on a column of type SDO_GEOMETRY.

Keywords and Parameters

Value Description

INDEX_PARAMS Determines the characteristics of the spatial index.

geodetic 'geodetic=FALSE' allows a non-geodetic index to be built on
geodetic data, but with restrictions. (FALSE is the only
acceptable value for this keyword.) See the Usage Notes for
more information.
Data type is VARCHAR2.

layer_gtype Checks to ensure that all geometries are of a specified geometry
type. The value must be from the Geometry Type column of
Table 2–1 in Section 2.2.1 (except that UNKNOWN_GEOMETRY
is not allowed). In addition, specifying POINT allows for
optimized processing of point data.
Data type is VARCHAR2.

sdo_dml_batch_size Specifies the number of index updates to be processed in each
batch of updates after a commit operation. The default value is
1000. For example, if you insert 3500 rows into the spatial table
and then perform a commit operation, the updates to the spatial
index table are performed in four batches of insert operations
(1000, 1000, 1000, and 500). See the Usage Notes for more
information.
Data type is NUMBER. Default = 1000.

sdo_indx_dims Specifies the number of dimensions to be indexed. For example,
a value of 2 causes the first two dimensions to be indexed. Must
be less than or equal to the number of actual dimensions
(number of SDO_DIM_ELEMENT instances in the dimensional
array that describes the geometry objects in the column). If the
value is 3 or higher, the only Spatial operator that can be used on
the indexed geometries is SDO_FILTER; the other operators
described in Chapter 11 cannot be used.
Data type is NUMBER. Default = 2.

sdo_non_leaf_tbl 'sdo_non_leaf_tbl=TRUE' creates a separate index table
(with a name in the form MDNT_...$) for nonleaf nodes of the
index, in addition to creating an index table (with a name in the
form MDRT_...$) for leaf nodes. 'sdo_non_leaf_tbl=FALSE'
creates a single table (with a name in the form MDRT_...$) for
both leaf nodes and nonleaf nodes of the index. See the Usage
Notes for more information.
Data type is VARCHAR2. Default = FALSE

CREATE INDEX

SQL Statements for Indexing Spatial Data 10-9

Prerequisites
■ All current SQL CREATE INDEX prerequisites apply.

■ You must have EXECUTE privilege on the index type and its implementation type.

■ The USER_SDO_GEOM_METADATA view must contain an entry with the
dimensions and coordinate boundary information for the table column to be
spatially indexed.

Usage Notes
For information about spatial indexes, see Section 1.7.

Before you create a spatial index, be sure that the rollback segment size and the SORT_
AREA_SIZE parameter value are adequate, as described in Section 4.1.

If an R-tree index is used on linear referencing system (LRS) data and if the LRS data
has four dimensions (three plus the M dimension), the sdo_indx_dims parameter

sdo_rtr_pctfree Specifies the minimum percentage of slots in each index tree
node to be left empty when the index is created. Slots that are
left empty can be filled later when new data is inserted into the
table. The value can range from 0 to 50.
Data type is NUMBER. Default = 10.

PHYSICAL_STORAGE_
PARAMS

Determines the storage parameters used for creating the spatial
index data table. A spatial index data table is a regular Oracle
table with a prescribed format. Not all physical storage
parameters that are allowed in the STORAGE clause of a
CREATE TABLE statement are supported. The following is a list
of the supported subset.

tablespace Specifies the tablespace in which the index data table is created.
Same as TABLESPACE in the STORAGE clause of a CREATE
TABLE statement.

initial Is the same as INITIAL in the STORAGE clause of a CREATE
TABLE statement.

next Is the same as NEXT in the STORAGE clause of a CREATE
TABLE statement.

minextents Is the same as MINEXTENTS in the STORAGE clause of a
CREATE TABLE statement.

maxextents Is the same as MAXEXTENTS in the STORAGE clause of a
CREATE TABLE statement.

pctincrease Is the same as PCTINCREASE in the STORAGE clause of a
CREATE TABLE statement.

work_tablespace Specifies the tablespace for temporary tables used in creating the
index. (Applies only to creating spatial R-tree indexes, and not to
other types of indexes.)

{ NOPARALLEL
| PARALLEL
[integer] }

Controls whether serial (NOPARALLEL) execution or parallel
(PARALLEL) execution is used for the creation of the index and
for subsequent queries and DML operations that use the index.
For parallel execution you can specify an integer value of degree
of parallelism. See the Usage Notes for more information about
parallel index creation.
Default = NOPARALLEL. (If PARALLEL is specified without an
integer value, the Oracle database calculates the optimum
degree of parallelism.)

Value Description

CREATE INDEX

10-10 Oracle Spatial User’s Guide and Reference

must be used and must specify 3 (the number of dimensions minus one), to avoid the
default sdo_indx_dims value of 2, which would index only the X and Y dimensions.
For example, if the dimensions are X, Y, Z, and M, specify sdo_indx_dims=3 to
index the X, Y, and Z dimensions, but not the measure (M) dimension. (The LRS data
model, including the measure dimension, is explained in Section 7.2.)

A partitioned spatial index can be created on a partitioned table. See Section 4.1.4 for
more information about partitioned spatial indexes, including benefits and restrictions.

A spatial index cannot be created on an index-organized table.

You can specify the PARALLEL keyword to cause the index creation to be parallelized.
For example:

CREATE INDEX cola_spatial_idx ON cola_markets(shape)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX PARALLEL;

For information about using the PARALLEL keyword, see the description of the
parallel_clause in the section on the CREATE INDEX statement in Oracle Database
SQL Reference. In addition, the following notes apply to the use of the PARALLEL
keyword for creating or rebuilding (using the ALTER INDEX REBUILD statement)
spatial indexes:

■ The performance cost and benefits from parallel execution for creating or
rebuilding an index depend on system resources and load. If the CPUs or disk
controllers are already heavily loaded, you should not specify the PARALLEL
keyword.

■ Specifying PARALLEL for creating or rebuilding an index on tables with simple
geometries, such as point data, usually results in less performance improvement
than on tables with complex geometries.

Other options available for regular indexes (such as ASC and DESC) are not applicable
for spatial indexes.

Spatial index creation involves creating and inserting index data, for each row in the
underlying table column being spatially indexed, into a table with a prescribed format.
All rows in the underlying table are processed before the insertion of index data is
committed, and this requires adequate rollback segment space.

If a tablespace name is provided in the parameters clause, the user (underlying table
owner) must have appropriate privileges for that tablespace.

For more information about using the layer_gtype keyword to constrain data in a
layer to a geometry type, see Section 4.1.2.

The 'geodetic=FALSE' parameter is not recommended, because much of the Oracle
Spatial geodetic support will be disabled. This parameter should only be used if you
cannot yet reindex the data. (For more information about geodetic and non-geodetic
indexes, see Section 4.1.1.)

Moreover, if you specify 'geodetic=FALSE', ensure that the tolerance value stored
in the USER_SDO_GEOM_METADATA view is what would be used for Cartesian
data. That is, do not use meters for the units of the tolerance value, but instead use the
number of decimal places in the data followed by a 5 (for example, 0.00005). This
tolerance value will be used for spatial operators. When you use spatial functions that
require a tolerance value with this data, use the function format that lets you specify a
tolerance value, and specify the tolerance value in meters.

The sdo_dml_batch_size parameter can improve application performance, because
Spatial can preallocate system resources to perform multiple index updates more
efficiently than successive single index updates; however, to gain the performance

CREATE INDEX

SQL Statements for Indexing Spatial Data 10-11

benefit, you must not perform commit operations after each insert operation or at
intervals less than or equal to the sdo_dml_batch_size value. You should not
specify a value greater than 10000 (ten thousand), because the cost of the additional
memory and other resources required will probably outweigh any marginal
performance increase resulting from such a value.

Specifying 'sdo_non_leaf_tbl=TRUE' can help query performance with large data
sets if the entire R-tree table may not fit in the KEEP buffer pool. In this case, you must
also cause Oracle to buffer the MDNT_...$ table in the KEEP buffer pool, for example,
by using ALTER TABLE and specifying STORAGE (BUFFER_POOL KEEP). For
partitioned indexes, the same sdo_non_leaf_tbl value must be used for all
partitions. Any physical storage parameters, except for tablespace, are applied only
to the MDRT_...$ table. The MDNT_...$ table uses only the tablespace parameter, if
specified, and default values for all other physical storage parameters.

If you are creating a function-based spatial index, the number of parameters must not
exceed 32. For information about using function-based spatial indexes, see Section 9.2.

To determine if a CREATE INDEX statement for a spatial index has failed, check to see
if the DOMIDX_OPSTATUS column in the USER_INDEXES view is set to FAILED.
This is different from the case of regular indexes, where you check to see if the STATUS
column in the USER_INDEXES view is set to FAILED.

If the CREATE INDEX statement fails because of an invalid geometry, the ROWID of
the failed geometry is returned in an error message along with the reason for the
failure.

If the CREATE INDEX statement fails for any reason, then the DROP INDEX statement
must be used to clean up the partially built index and associated metadata. If DROP
INDEX does not work, add the FORCE parameter and try again.

Examples
The following example creates a spatial R-tree index named COLA_SPATIAL_IDX.

CREATE INDEX cola_spatial_idx ON cola_markets(shape)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

Related Topics
■ ALTER INDEX

■ DROP INDEX

DROP INDEX

10-12 Oracle Spatial User’s Guide and Reference

DROP INDEX

Syntax
DROP INDEX [schema.]index [FORCE];

Purpose
Deletes a spatial index.

Keywords and Parameters

Prerequisites
You must have EXECUTE privileges on the index type and its implementation type.

Usage Notes
Use DROP INDEX indexname FORCE to clean up after a failure in the CREATE
INDEX statement.

Examples
The following example deletes a spatial index named OLDINDEX and forces the
deletion to be performed even if the index is marked in-process or an error occurs.

DROP INDEX oldindex FORCE;

Related Topics
■ CREATE INDEX

Value Description

FORCE Causes the spatial index to be deleted from the system tables
even if the index is marked in-progress or some other error
condition occurs.

Spatial Operators 11-1

11
Spatial Operators

This chapter describes the operators that you can use when working with the spatial
object data type. For an overview of spatial operators, including how they differ from
spatial procedures and functions, see Section 1.9. Table 11–1 lists the main operators.

Table 11–2 lists operators, provided for convenience, that perform an SDO_RELATE
operation of a specific mask type.

Table 11–1 Main Spatial Operators

Operator Description

SDO_FILTER Specifies which geometries may interact with a given
geometry.

SDO_JOIN Performs a spatial join based on one or more topological
relationships.

SDO_NN Determines the nearest neighbor geometries to a geometry.

SDO_NN_DISTANCE Returns the distance of an object returned by the SDO_NN
operator.

SDO_RELATE Determines whether or not two geometries interact in a
specified way. (See also Table 11–2 for convenient alternative
operators for performing specific mask value operations.)

SDO_WITHIN_DISTANCE Determines if two geometries are within a specified distance
from one another.

Table 11–2 Convenience Operators for SDO_RELATE Operations

Operator Description

SDO_ANYINTERACT Checks if any geometries in a table have the ANYINTERACT
topological relationship with a specified geometry.

SDO_CONTAINS Checks if any geometries in a table have the CONTAINS
topological relationship with a specified geometry.

SDO_COVEREDBY Checks if any geometries in a table have the COVEREDBY
topological relationship with a specified geometry.

SDO_COVERS Checks if any geometries in a table have the COVERS
topological relationship with a specified geometry.

SDO_EQUAL Checks if any geometries in a table have the EQUAL
topological relationship with a specified geometry.

SDO_INSIDE Checks if any geometries in a table have the INSIDE
topological relationship with a specified geometry.

11-2 Oracle Spatial User’s Guide and Reference

The rest of this chapter provides reference information on the operators, listed in
alphabetical order.

For information about using operators with topologies, see Oracle Spatial Topology and
Network Data Models.

SDO_ON Checks if any geometries in a table have the ON topological
relationship with a specified geometry.

SDO_
OVERLAPBDYDISJOINT

Checks if any geometries in a table have the
OVERLAPBDYDISJOINT topological relationship with a
specified geometry.

SDO_
OVERLAPBDYINTERSECT

Checks if any geometries in a table have the
OVERLAPBDYINTERSECT topological relationship with a
specified geometry.

SDO_OVERLAPS Checks if any geometries in a table overlap (that is, have the
OVERLAPBDYDISJOINT or OVERLAPBDYINTERSECT
topological relationship with) a specified geometry.

SDO_TOUCH Checks if any geometries in a table have the TOUCH
topological relationship with a specified geometry.

Table 11–2 (Cont.) Convenience Operators for SDO_RELATE Operations

Operator Description

SDO_ANYINTERACT

Spatial Operators 11-3

SDO_ANYINTERACT

Format
SDO_ANYINTERACT(geometry1, geometry2);

Description
Checks if any geometries in a table have the ANYINTERACT topological relationship
with a specified geometry. Equivalent to specifying the SDO_RELATE operator with
'mask=ANYINTERACT'.

See the section on the SDO_RELATE operator in this chapter for information about the
operations performed by this operator and for usage requirements.

Keywords and Parameters

Returns
The expression SDO_ANYINTERACT(geometry1,geometry2) = 'TRUE' evaluates to
TRUE for object pairs that have the ANYINTERACT topological relationship, and
FALSE otherwise.

Usage Notes
See the Usage Notes for the SDO_RELATE operator in this chapter.

For an explanation of the topological relationships and the nine-intersection model
used by Spatial, see Section 1.8.

Examples
The following example finds geometries that have the ANYINTERACT relationship
with a query window (here, a rectangle with lower-left, upper-right coordinates 4,6,
8,8). (The example uses the definitions and data described in Section 2.1 and illustrated
in Figure 2–1.)

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_ANYINTERACT(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(4,6, 8,8))
) = 'TRUE';

 MKT_ID NAME
---------- --------------------------------
 2 cola_b

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is SDO_GEOMETRY.

SDO_ANYINTERACT

11-4 Oracle Spatial User’s Guide and Reference

 1 cola_a
 4 cola_d

SDO_CONTAINS

Spatial Operators 11-5

SDO_CONTAINS

Format
SDO_CONTAINS(geometry1, geometry2);

Description
Checks if any geometries in a table have the CONTAINS topological relationship with
a specified geometry. Equivalent to specifying the SDO_RELATE operator with
'mask=CONTAINS'.

See the section on the SDO_RELATE operator in this chapter for information about the
operations performed by this operator and for usage requirements.

Keywords and Parameters

Returns
The expression SDO_CONTAINS(geometry1,geometry2) = 'TRUE' evaluates to TRUE
for object pairs that have the CONTAINS topological relationship, and FALSE
otherwise.

Usage Notes
See the Usage Notes for the SDO_RELATE operator in this chapter.

For an explanation of the topological relationships and the nine-intersection model
used by Spatial, see Section 1.8.

Examples
The following example finds geometries that have the CONTAINS relationship with a
query window (here, a rectangle with lower-left, upper-right coordinates 2,2, 4,6). (The
example uses the definitions and data described in Section 2.1 and illustrated in
Figure 2–1.) In this example, only cola_a contains the query window geometry.

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_CONTAINS(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(2,2, 4,6))
) = 'TRUE';

 MKT_ID NAME
---------- --------------------------------
 1 cola_a

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is SDO_GEOMETRY.

SDO_COVEREDBY

11-6 Oracle Spatial User’s Guide and Reference

SDO_COVEREDBY

Format
SDO_COVEREDBY(geometry1, geometry2);

Description
Checks if any geometries in a table have the COVEREDBY topological relationship
with a specified geometry. Equivalent to specifying the SDO_RELATE operator with
'mask=COVEREDBY'.

See the section on the SDO_RELATE operator in this chapter for information about the
operations performed by this operator and for usage requirements.

Keywords and Parameters

Returns
The expression SDO_COVEREDBY(geometry1,geometry2) = 'TRUE' evaluates to
TRUE for object pairs that have the COVEREDBY topological relationship, and FALSE
otherwise.

Usage Notes
See the Usage Notes for the SDO_RELATE operator in this chapter.

For an explanation of the topological relationships and the nine-intersection model
used by Spatial, see Section 1.8.

Examples
The following example finds geometries that have the COVEREDBY relationship with
a query window (here, a rectangle with lower-left, upper-right coordinates 1,1, 5,8).
(The example uses the definitions and data described in Section 2.1 and illustrated in
Figure 2–1.) In this example, only cola_a is covered by the query window geometry.

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_COVEREDBY(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(1,1, 5,8))
) = 'TRUE';

 MKT_ID NAME
---------- --------------------------------
 1 cola_a

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is SDO_GEOMETRY.

SDO_COVERS

Spatial Operators 11-7

SDO_COVERS

Format
SDO_COVERS(geometry1, geometry2);

Description
Checks if any geometries in a table have the COVERS topological relationship with a
specified geometry. Equivalent to specifying the SDO_RELATE operator with
'mask=COVERS'.

See the section on the SDO_RELATE operator in this chapter for information about the
operations performed by this operator and for usage requirements.

Keywords and Parameters

Returns
The expression SDO_COVERS(geometry1,geometry2) = 'TRUE' evaluates to TRUE for
object pairs that have the COVERS topological relationship, and FALSE otherwise.

Usage Notes
See the Usage Notes for the SDO_RELATE operator in this chapter.

For an explanation of the topological relationships and the nine-intersection model
used by Spatial, see Section 1.8.

Examples
The following example finds geometries that have the COVERS relationship with a
query window (here, a rectangle with lower-left, upper-right coordinates 1,1, 4,6). (The
example uses the definitions and data described in Section 2.1 and illustrated in
Figure 2–1.) In this example, only cola_a covers the query window geometry.

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_COVERS(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(1,1, 4,6))
) = 'TRUE';

 MKT_ID NAME
---------- --------------------------------
 1 cola_a

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is SDO_GEOMETRY.

SDO_EQUAL

11-8 Oracle Spatial User’s Guide and Reference

SDO_EQUAL

Format
SDO_EQUAL(geometry1, geometry2);

Description
Checks if any geometries in a table have the EQUAL topological relationship with a
specified geometry. Equivalent to specifying the SDO_RELATE operator with
'mask=EQUAL'.

See the section on the SDO_RELATE operator in this chapter for information about the
operations performed by this operator and for usage requirements.

Keywords and Parameters

Returns
The expression SDO_EQUAL(geometry1,geometry2) = 'TRUE' evaluates to TRUE for
object pairs that have the EQUAL topological relationship, and FALSE otherwise.

Usage Notes
See the Usage Notes for the SDO_RELATE operator in this chapter.

For an explanation of the topological relationships and the nine-intersection model
used by Spatial, see Section 1.8.

Examples
The following example finds geometries that have the EQUAL relationship with a
query window (here, a rectangle with lower-left, upper-right coordinates 1,1, 5,7). (The
example uses the definitions and data described in Section 2.1 and illustrated in
Figure 2–1.) In this example, cola_a (and only cola_a) has the same boundary and
interior as the query window geometry.

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_EQUAL(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(1,1, 5,7))
) = 'TRUE';

 MKT_ID NAME
---------- --------------------------------
 1 cola_a

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is SDO_GEOMETRY.

SDO_FILTER

Spatial Operators 11-9

SDO_FILTER

Format
SDO_FILTER(geometry1, geometry2, param);

Description
Uses the spatial index to identify either the set of spatial objects that are likely to
interact spatially with a given object (such as an area of interest), or pairs of spatial
objects that are likely to interact spatially. Objects interact spatially if they are not
disjoint.

This operator performs only a primary filter operation. The secondary filtering
operation, performed by the SDO_RELATE operator, can be used to determine with
certainty if objects interact spatially.

Keywords and Parameters

Returns
The expression SDO_FILTER(geometry1,geometry2) = 'TRUE' evaluates to TRUE for
object pairs that are non-disjoint, and FALSE otherwise.

Usage Notes
SDO_FILTER is the only operator that can be used with data that is indexed using
more than two dimensions. The operator considers all dimensions specified in the
spatial index.

The operator must always be used in a WHERE clause and the condition that includes
the operator should be an expression of the form SDO_FILTER(arg1, arg2) = 'TRUE'.

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a geometry.
(Specified using a bind variable or SDO_GEOMETRY constructor.)
Data type is SDO_GEOMETRY.

param Optionally specifies either or both of the min_resolution and max_
resolution keywords.
Data type is VARCHAR2.

The min_resolution keyword includes only geometries for which at least
one side of the geometry's MBR is equal to or greater than the specified
value. For example, min_resolution=10 includes only geometries for
which the width or the height (or both) of the geometry's MBR is at least 10.
(This keyword can be used to exclude geometries that are too small to be of
interest.)

The max_resolution keyword includes only geometries for which at least
one side of the geometry's MBR is less than or equal to the specified value.
For example, max_resolution=10 includes only geometries for which the
width or the height (or both) of the geometry's MBR is less than or equal to
10. (This keyword can be used to exclude geometries that are too large to be
of interest.)

SDO_FILTER

11-10 Oracle Spatial User’s Guide and Reference

geometry2 can come from a table or be a transient SDO_GEOMETRY object (such as
a bind variable or SDO_GEOMETRY constructor).

■ If the geometry2 column is not spatially indexed, the operator indexes the query
window in memory and performance is very good.

■ If two or more geometries from geometry2 are passed to the operator, the
ORDERED optimizer hint must be specified, and the table in geometry2 must be
specified first in the FROM clause.

If geometry1 and geometry2 are based on different coordinate systems, geometry2
is temporarily transformed to the coordinate system of geometry1 for the operation
to be performed, as described in Section 6.9.1.

In previous releases, the SDO_FILTER operator required a third parameter. Effective
with Oracle Spatial release 10.1, the operator has only two parameters. For backward
compatibility, any keywords for the third parameter that were supported in the
previous release will still work; however, the use of those keywords is discouraged
and is not supported for new uses of the operator.

Examples
The following example selects the geometries that are likely to interact with a query
window (here, a rectangle with lower-left, upper-right coordinates 4,6, 8,8). (The
example uses the definitions and data described in Section 2.1 and illustrated in
Figure 2–1.)

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_FILTER(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(4,6, 8,8))
) = 'TRUE';

 MKT_ID NAME
---------- --------------------------------
 2 cola_b
 1 cola_a
 4 cola_d

The following example is the same as the preceding example, except that it includes
only geometries where at least one side of the geometry's MBR is equal to or greater
than 4.1. In this case, only cola_a and cola_b are returned, because their MBRs have
at least one side with a length greater than or equal to 4.1. The circle cola_d is
excluded, because its MBR is a square whose sides have a length of 4.

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_FILTER(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(4,6, 8,8)),

RLS Restriction: If the DBMS_RLS.ADD_POLICY procedure has
been used to add a fine-grained access control policy to a table or
view, and if the specified policy function uses a spatial operator, the
operator must be SDO_FILTER. No other spatial operators are
supported in that context.

SDO_FILTER

Spatial Operators 11-11

 'min_resolution=4.1'
) = 'TRUE';

 MKT_ID NAME
---------- --------------------------------
 2 cola_b
 1 cola_a

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column objects are likely to interact spatially with the GEOMETRY
column object in the QUERY_POLYS table that has a GID value of 1.

SELECT A.gid
 FROM Polygons A, query_polys B
 WHERE B.gid = 1
 AND SDO_FILTER(A.Geometry, B.Geometry) = 'TRUE';

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with the geometry stored in
the aGeom variable.

Select A.Gid
 FROM Polygons A
 WHERE SDO_FILTER(A.Geometry, :aGeom) = 'TRUE';

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with the specified rectangle
having the lower-left coordinates (x1,y1) and the upper-right coordinates (x2, y2).

Select A.Gid
 FROM Polygons A
 WHERE SDO_FILTER(A.Geometry, sdo_geometry(2003,NULL,NULL,
 sdo_elem_info_array(1,1003,3),
 sdo_ordinate_array(x1,y1,x2,y2))
) = 'TRUE';

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is likely to interact spatially with any GEOMETRY column
object in the QUERY_POLYS table. In this example, the ORDERED optimizer hint is
used and the QUERY_POLYS (geometry2) table is specified first in the FROM clause,
because multiple geometries from geometry2 are involved (see the Usage Notes).

SELECT /*+ ORDERED */
 A.gid
 FROM query_polys B, polygons A
 WHERE SDO_FILTER(A.Geometry, B.Geometry) = 'TRUE';

Related Topics
■ SDO_RELATE

SDO_INSIDE

11-12 Oracle Spatial User’s Guide and Reference

SDO_INSIDE

Format
SDO_INSIDE(geometry1, geometry2);

Description
Checks if any geometries in a table have the INSIDE topological relationship with a
specified geometry. Equivalent to specifying the SDO_RELATE operator with
'mask=INSIDE'.

See the section on the SDO_RELATE operator in this chapter for information about the
operations performed by this operator and for usage requirements.

Keywords and Parameters

Returns
The expression SDO_INSIDE(geometry1,geometry2) = 'TRUE' evaluates to TRUE for
object pairs that have the INSIDE topological relationship, and FALSE otherwise.

Usage Notes
See the Usage Notes for the SDO_RELATE operator in this chapter.

For an explanation of the topological relationships and the nine-intersection model
used by Spatial, see Section 1.8.

Examples
The following example finds geometries that have the INSIDE relationship with a
query window (here, a rectangle with lower-left, upper-right coordinates 5,6, 12,12).
(The example uses the definitions and data described in Section 2.1 and illustrated in
Figure 2–1.) In this example, only cola_d (the circle) is inside the query window
geometry.

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_INSIDE(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(5,6, 12,12))
) = 'TRUE';

 MKT_ID NAME
---------- --------------------------------
 4 cola_d

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is SDO_GEOMETRY.

SDO_JOIN

Spatial Operators 11-13

SDO_JOIN

Format
SDO_JOIN(table_name1, column_name1, table_name2, column_name2, params,
 preserve_join_order) RETURN SDO_ROWIDSET;

Description
Performs a spatial join based on one or more topological relationships.

Keywords and Parameters

Returns
SDO_JOIN returns an object of SDO_ROWIDSET, which consists of a table of objects of
SDO_ROWIDPAIR. Oracle Spatial defines the type SDO_ROWIDSET as:

CREATE TYPE sdo_rowidset as TABLE OF sdo_rowidpair;

Oracle Spatial defines the object type SDO_ROWIDPAIR as:

CREATE TYPE sdo_rowidpair AS OBJECT
 (rowid1 VARCHAR2(24),
 rowid2 VARCHAR2(24));

In the SDO_ROWIDPAIR definition, rowid1 refers to a rowid from table_name1,
and rowid2 refers to a rowid from table_name2.

Value Description

table_name1 Name of the first table to be used in the spatial join operation. The table
must have a column of type SDO_GEOMETRY.
Data type is VARCHAR2.

column_name1 Name of the spatial column of type SDO_GEOMETRY in table_name1.
A spatial R-tree index must be defined on this column.
Data type is VARCHAR2.

table_name2 Name of the second table to be used in the spatial join operation. (It can
be the same as or different from table_name1.) The table must have a
column of type SDO_GEOMETRY.
Data type is VARCHAR2.

column_name2 Name of the spatial column of type SDO_GEOMETRY in table_name2.
A spatial R-tree index must be defined on this column.
Data type is VARCHAR2.

params Optional parameter string of keywords and values; available only if
mask=ANYINTERACT. Determines the behavior of the operator. See
Table 11–3 in the Usage Notes for information about the available
keywords.
Data type is VARCHAR2. Default is NULL.

preserve_join_
order

Optional parameter to specify if the join order is guaranteed to be
preserved during processing of the operator. If the value is 0 (the default),
the order of the tables might be changed; if the value is 1, the order of the
tables is not changed.
Data type is NUMBER. Default is 0.

SDO_JOIN

11-14 Oracle Spatial User’s Guide and Reference

Usage Notes
SDO_JOIN is technically not an operator, but a table function. (For an explanation of
table functions, see PL/SQL User's Guide and Reference.) However, it is presented in the
chapter with Spatial operators because its usage is similar to that of the operators, and
because it is not part of a package with other functions and procedures.

This table function is recommended when you need to perform full table joins.

The geometries in column_name1 and column_name2 must have the same SRID
(coordinate system) value and the same number of dimensions.

For best performance, use the /*+ ORDERED */ optimizer hint, and specify the SDO_
JOIN table function first in the FROM clause.

If a table is version-enabled (using the Workspace Manager feature), you must specify
the <table_name>_LT table created by Workspace Manager. For example, if the
COLA_MARKETS table is version-enabled and you want to perform a spatial join
operation on that table, specify COLA_MARKETS_LT (not COLA_MARKETS) with
the SDO_JOIN table function. (However, for all other Spatial functions, procedures,
and operators, do not use the <table_name>_LT name.)

The SDO_JOIN table function is not supported on partitioned tables.

Table 11–3 shows the keywords for the params parameter.

Table 11–3 params Keywords for the SDO_JOIN Operator

Keyword Description

mask The topological relationship of interest.Valid values are
'mask=<value>' where <value> is one or more of the mask
values valid for the SDO_RELATE operator (TOUCH,
OVERLAPBDYDISJOINT, OVERLAPBDYINTERSECT, EQUAL,
INSIDE, COVEREDBY, CONTAINS, COVERS, ANYINTERACT,
ON), or FILTER, which checks if the MBRs (the filter-level
approximations) intersect. Multiple masks are combined with
the logical Boolean operator OR (for example,
'mask=inside+touch'); however, FILTER cannot be
combined with any other mask.

If this parameter is null or contains an empty string,
mask=FILTER is assumed.

distance Specifies a numeric distance value that is added to the
tolerance value (explained in Section 1.5.5) before the
relationship checks are performed. For example, if the
tolerance is 10 meters and you specify 'distance=100
unit=meter', two objects are considered to have spatial
interaction if they are within 110 meters of each other.

If you specify distance but not unit, the unit of
measurement associated with the data is assumed.

unit Specifies a unit of measurement to be associated with the
distance value (for example, 'distance=100
unit=meter'). See Section 2.8 for more information about
unit of measurement specification. If you specify unit, you
must also specify distance.

Data type is VARCHAR2. Default = unit of measurement
associated with the data. For geodetic data, the default is
meters.

SDO_JOIN

Spatial Operators 11-15

Examples
The following example joins the COLA_MARKETS table with itself to find, for each
geometry, all other geometries that have any spatial interaction with it. (The example
uses the definitions and data from Section 2.1.) In this example, rowid1 and rowid2
correspond to the names of the attributes in the SDO_ROWIDPAIR type definition.
Note that in the output, cola_d (the circle in Figure 2–1) interacts only with itself, and
not with any of the other geometries.

SELECT /*+ ordered */ a.name, b.name
 FROM TABLE(SDO_JOIN('COLA_MARKETS', 'SHAPE',
 'COLA_MARKETS', 'SHAPE',
 'mask=ANYINTERACT')) c,
 cola_markets a,
 cola_markets b
 WHERE c.rowid1 = a.rowid AND c.rowid2 = b.rowid
 ORDER BY a.name;

NAME NAME
-------------------------------- --------------------------------
cola_a cola_c
cola_a cola_b
cola_a cola_a
cola_b cola_c
cola_b cola_b
cola_b cola_a
cola_c cola_c
cola_c cola_b
cola_c cola_a
cola_d cola_d

10 rows selected.

Related Topics
■ SDO_RELATE

SDO_NN

11-16 Oracle Spatial User’s Guide and Reference

SDO_NN

Format
SDO_NN(geometry1, geometry2, param [, number]);

Description
Uses the spatial index to identify the nearest neighbors for a geometry.

Keywords and Parameters

Table 11–4 lists the keywords for the param parameter.

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a geometry.
The nearest neighbor or neighbors to geometry2 will be returned from
geometry1. (geometry2 is specified using a bind variable or SDO_
GEOMETRY constructor.)
Data type is SDO_GEOMETRY.

param Determines the behavior of the operator. The available keywords are listed
in Table 11–4. If you do not specify this parameter, the operator returns all
rows in increasing distance order from geometry2.
Data type is VARCHAR2.

number If the SDO_NN_DISTANCE ancillary operator is included in the call to
SDO_NN, specifies the same number used in the call to SDO_NN_
DISTANCE.
Data type is NUMBER.

Table 11–4 Keywords for the SDO_NN Param Parameter

Keyword Description

sdo_batch_
size

Specifies the number of rows to be evaluated at a time when the SDO_NN
expression may need to be evaluated multiple times in order to return the
desired number of results that satisfy the WHERE clause. Available only
when an R-tree index is used. If you specify sdo_batch_size=0 (or if
you omit the param parameter completely), Spatial calculates a batch size
suited to the result set size. See the Usage Notes and Examples for more
information.
Data type is NUMBER.

For example: 'sdo_batch_size=10'

sdo_num_res If sdo_batch_size is not specified, specifies the number of results
(nearest neighbors) to be returned. If sdo_batch_size is specified, this
keyword is ignored; instead, use the ROWNUM pseudocolumn to limit the
number of results. See the Usage Notes and Examples for more
information.
Data type is NUMBER.

For example: 'sdo_num_res=5'

SDO_NN

Spatial Operators 11-17

Returns
This operator returns the sdo_num_res number of objects from geometry1 that are
nearest to geometry2 in the query. In determining how near two geometry objects
are, the shortest possible distance between any two points on the surface of each object
is used.

Usage Notes
The operator is disabled if the table does not have a spatial index or if the index has
been built on more than two dimensions.

The operator must always be used in a WHERE clause, and the condition that includes
the operator should be an expression of the form SDO_NN(arg1, arg2, '<some_
parameter>') = 'TRUE'.

The operator can be used in two ways:

■ If all geometries in the layer are candidates, use the sdo_num_res keyword to
specify the number of geometries returned.

■ If any geometries in the table might be nearer than the geometries specified in the
WHERE clause, use the sdo_batch_size keyword and use the WHERE clause
(including the ROWNUM pseudocolumn) to limit the number of geometries
returned.

As an example of the sdo_batch_size keyword, assume that a RESTAURANTS
table contains different types of restaurants, and you want to find the two nearest
Italian restaurants to your hotel. The query might look like the following:

SELECT r.name FROM restaurants r WHERE
 SDO_NN(r.geometry, :my_hotel, 'sdo_batch_size=10') = 'TRUE'
 AND r.cuisine = 'Italian' AND ROWNUM <=2;

In this example, the ROWNUM <=2 clause is necessary to limit the number of results
returned to no more than 2 where CUISINE is Italian. However, if the sdo_batch_
size keyword is not specified in this example, and if sdo_num_res=2 is specified
instead of ROWNUM <=2, only the two nearest restaurants are considered, regardless of
their CUISINE value; and if the CUISINE value of these two rows is not Italian, the
query may return no rows.

The sdo_batch_size value can affect the performance of nearest neighbor queries.
A good general guideline is to specify the number of candidate rows likely to satisfy
the WHERE clause. Using the preceding example of a query for Italian restaurants, if
approximately 20 percent of the restaurants nearest to the hotel are Italian and if you
want 2 restaurants, an sdo_batch_size value of 10 will probably result in the best
performance. On the other hand, if only approximately 5 percent of the restaurants
nearest to the hotel are Italian and if you want 2 restaurants, an sdo_batch_size
value of 40 would be better.

unit If the SDO_NN_DISTANCE ancillary operator is included in the call to
SDO_NN, specifies the unit of measurement: a quoted string with unit=
and an SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table. See
Section 2.8 for more information about unit of measurement specification.
Data type is VARCHAR2. Default = unit of measurement associated with
the data. For geodetic data, the default is meters.

For example: 'unit=KM'

Table 11–4 (Cont.) Keywords for the SDO_NN Param Parameter

Keyword Description

SDO_NN

11-18 Oracle Spatial User’s Guide and Reference

You can specify sdo_batch_size=0, which causes Spatial to calculate a batch size
that is suitable for the result set size. However, the calculated batch size may not be
optimal, and the calculation incurs some processing overhead; if you can determine a
good sdo_batch_size value for a query, the performance will probably be better
than if you specify sdo_batch_size=0.

If the sdo_batch_size keyword is specified, any sdo_num_res value is ignored.
Do not specify both keywords.

Specify the number parameter only if you are using the SDO_NN_DISTANCE
ancillary operator in the call to SDO_NN. See the information about the SDO_NN_
DISTANCE operator in this chapter.

If this operator is used with geodetic data, the data must be indexed with an R-tree
spatial index. If this operator is used with geodetic data and if the R-tree spatial index
is created with 'geodetic=false' specified, you cannot use the unit parameter.

If two or more objects from geometry1 are an equal distance from geometry2, any
of the objects can be returned on any call to the function. For example, if item_a,
item_b, and item_c are nearest to and equally distant from geometry2, and if
sdo_num_res=2, two of those three objects are returned, but they can be any two of
the three.

If the SDO_NN operator uses a partitioned spatial index (see Section 4.1.4), the
requested number of geometries is returned for each partition that contains candidate
rows based on the query criteria. For example, if you request the 5 nearest restaurants
to a point and the spatial index has 4 partitions, the operator returns up to 20 (5*4)
geometries. In this case, you must use the ROWNUM pseudocolumn (here, WHERE
ROWNUM <=5) to return the 5 nearest restaurants.

If geometry1 and geometry2 are based on different coordinate systems, geometry2
is temporarily transformed to the coordinate system of geometry1 for the operation
to be performed, as described in Section 6.9.1.

SDO_NN is not supported for spatial joins.

In some situations the SDO_NN operator will not use the spatial index unless an
optimizer hint forces the index to be used. This can occur when a query involves a join;
and if the optimizer hint is not used in such situations, an internal error occurs. To
prevent such errors, you should always specify an optimizer hint to use the spatial
index with the SDO_NN operator, regardless of how simple or complex the query is.
For example, the following excerpt from a query specifies to use the COLA_SPATIAL_
IDX index that is defined on the COLA_MARKETS table:

SELECT /*+ INDEX(c cola_spatial_idx) */
 c.mkt_id, c.name, ... FROM cola_markets c, ...;

However, if the column predicate in the WHERE clause specifies any nonspatial
column in the table for geometry1 that has an associated index, be sure that this
index is not used by specifying the NO_INDEX hint for that index. For example, if
there was an index named COLA_NAME_IDX defined on the NAME column, you
would need to specify the hints in the preceding example as follows:

SELECT /*+ INDEX(c cola_spatial_idx) NO_INDEX(c cola_name_idx) */
 c.mkt_id, c.name, ... FROM cola_markets c, ...;

(Note, however, that there is no index named COLA_NAME_IDX in the example in
Section 2.1.)

SDO_NN

Spatial Operators 11-19

If you join two or more tables with the SDO_NN operator, specify the LEADING hint
for the outer table and the INDEX hint for the inner table (the table with the spatial
index), and specify the inner table last. For example:

SELECT /*+ LEADING(b) INDEX(a cola_spatial_idx) */ a.gid
 FROM cola_qry b, cola_markets a
 WHERE b.gid =1 AND
 SDO_NN(a.shape, b.shape, 'querytype=window sdo_num_res=1')='TRUE';

For detailed information about using optimizer hints, see Oracle Database Performance
Tuning Guide.

Examples
The following example finds the two objects from the SHAPE column in the COLA_
MARKETS table that are nearest to a specified point (10,7). (The example uses the
definitions and data described in Section 2.1 and illustrated in Figure 2–1.)

SELECT /*+ INDEX(c cola_spatial_idx) */
 c.mkt_id, c.name FROM cola_markets c WHERE SDO_NN(c.shape,
 sdo_geometry(2001, NULL, sdo_point_type(10,7,NULL), NULL,
 NULL), 'sdo_num_res=2') = 'TRUE';

 MKT_ID NAME
---------- --------------------------------
 2 cola_b
 4 cola_d

The following example uses the sdo_batch_size keyword to find the two objects
(ROWNUM <=2), with a NAME value less than 'cola_d', from the SHAPE column in
the COLA_MARKETS table that are nearest to a specified point (10,7). The value of 3
for sdo_batch_size represents a best guess at the number of nearest geometries that
need to be evaluated before the WHERE clause condition is satisfied. (The example
uses the definitions and data from Section 2.1.)

SELECT /*+ INDEX(c cola_spatial_idx) */ c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_NN(c.shape, sdo_geometry(2001, NULL,
 sdo_point_type(10,7,NULL), NULL, NULL),
 'sdo_batch_size=3') = 'TRUE'
 AND c.name < 'cola_d' AND ROWNUM <= 2;

 MKT_ID NAME
---------- --------------------------------
 2 cola_b
 3 cola_c

See also the more complex SDO_NN examples in Section D.3.

Related Topics
■ SDO_NN_DISTANCE

SDO_NN_DISTANCE

11-20 Oracle Spatial User’s Guide and Reference

SDO_NN_DISTANCE

Format
SDO_NN_DISTANCE(number);

Description
Returns the distance of an object returned by the SDO_NN operator. Valid only within
a call to the SDO_NN operator.

Keywords and Parameters

Returns
This operator returns the distance of an object returned by the SDO_NN operator. In
determining how near two geometry objects are, the shortest possible distance
between any two points on the surface of each object is used.

Usage Notes
SDO_NN_DISTANCE is an ancillary operator to the SDO_NN operator. It returns the
distance between the specified geometry and a nearest neighbor object. This distance is
passed as ancillary data to the SDO_NN operator. (For an explanation of how
operators can use ancillary data, see the section on ancillary data in the chapter on
domain indexes in Oracle Data Cartridge Developer's Guide.)

You can choose any arbitrary number for the number parameter. The only requirement
is that it must match the last parameter in the call to the SDO_NN operator.

Use a bind variable to store and operate on the distance value.

Examples
The following example finds the two objects from the SHAPE column in the COLA_
MARKETS table that are nearest to a specified point (10,7), and it finds the distance
between each object and the point. (The example uses the definitions and data
described in Section 2.1 and illustrated in Figure 2–1.)

SELECT /*+ INDEX(c cola_spatial_idx) */
 c.mkt_id, c.name, SDO_NN_DISTANCE(1) dist
 FROM cola_markets c
 WHERE SDO_NN(c.shape, sdo_geometry(2001, NULL,
 sdo_point_type(10,7,NULL), NULL, NULL),
 'sdo_num_res=2', 1) = 'TRUE' ORDER BY dist;

 MKT_ID NAME DIST
---------- -------------------------------- ----------
 4 cola_d .828427125
 2 cola_b 2.23606798

Note the following about this example:

Value Description

number Specifies a number that must be the same as the last parameter passed to the
SDO_NN operator.
Data type is NUMBER.

SDO_NN_DISTANCE

Spatial Operators 11-21

■ 1 is used as the number parameter for SDO_NN_DISTANCE, and 1 is also
specified as the last parameter to SDO_NN (after 'sdo_num_res=2').

■ The column alias dist holds the distance between the object and the point. (For
geodetic data, the distance unit is meters; for non-geodetic data, the distance unit
is the unit associated with the data.)

Related Topics
■ SDO_NN

SDO_ON

11-22 Oracle Spatial User’s Guide and Reference

SDO_ON

Format
SDO_ON(geometry1, geometry2);

Description
Checks if any geometries in a table have the ON topological relationship with a
specified geometry. Equivalent to specifying the SDO_RELATE operator with
'mask=ON'.

See the section on the SDO_RELATE operator in this chapter for information about the
operations performed by this operator and for usage requirements.

Keywords and Parameters

Returns
The expression SDO_ON(geometry1,geometry2) = 'TRUE' evaluates to TRUE for
object pairs that have the ON topological relationship, and FALSE otherwise.

Usage Notes
See the Usage Notes for the SDO_RELATE operator in this chapter.

For an explanation of the topological relationships and the nine-intersection model
used by Spatial, see Section 1.8.

Examples
The following example finds geometries that have the ON relationship with a query
window (here, a rectangle with lower-left, upper-right coordinates 4,6, 8,8). (The
example uses the definitions and data described in Section 2.1 and illustrated in
Figure 2–1.) This example returns no rows because there are no line string geometries
in the SHAPE column.

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_ON(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(4,6, 8,8))
) = 'TRUE';

no rows selected

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is SDO_GEOMETRY.

SDO_OVERLAPBDYDISJOINT

Spatial Operators 11-23

SDO_OVERLAPBDYDISJOINT

Format
SDO_OVERLAPBDYDISJOINT(geometry1, geometry2);

Description
Checks if any geometries in a table have the OVERLAPBDYDISJOINT topological
relationship with a specified geometry. Equivalent to specifying the SDO_RELATE
operator with 'mask=OVERLAPBDYDISJOINT'.

See the section on the SDO_RELATE operator in this chapter for information about the
operations performed by this operator and for usage requirements.

Keywords and Parameters

Returns
The expression SDO_OVERLAPBDYDISJOINT(geometry1,geometry2) = 'TRUE'
evaluates to TRUE for object pairs that have the OVERLAPBDYDISJOINT topological
relationship, and FALSE otherwise.

Usage Notes
See the Usage Notes for the SDO_RELATE operator in this chapter.

For an explanation of the topological relationships and the nine-intersection model
used by Spatial, see Section 1.8.

Examples
The following example finds geometries that have the OVERLAPBDYDISJOINT
relationship with a line string geometry (here, a horizontal line from 0,6 to 2,6). (The
example uses the definitions and data described in Section 2.1 and illustrated in
Figure 2–1.) In this example, only cola_a has the OVERLAPBDYDISJOINT
relationship with the line string geometry.

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_OVERLAPBDYDISJOINT(c.shape,
 SDO_GEOMETRY(2002, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,2,1),
 SDO_ORDINATE_ARRAY(0,6, 2,6))
) = 'TRUE';

 MKT_ID NAME
---------- --------------------------------

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is SDO_GEOMETRY.

SDO_OVERLAPBDYDISJOINT

11-24 Oracle Spatial User’s Guide and Reference

 1 cola_a

SDO_OVERLAPBDYINTERSECT

Spatial Operators 11-25

SDO_OVERLAPBDYINTERSECT

Format
SDO_OVERLAPBDYINTERSECT(geometry1, geometry2);

Description
Checks if any geometries in a table have the OVERLAPBDYINTERSECT topological
relationship with a specified geometry. Equivalent to specifying the SDO_RELATE
operator with 'mask=OVERLAPBDYINTERSECT'.

See the section on the SDO_RELATE operator in this chapter for information about the
operations performed by this operator and for usage requirements.

Keywords and Parameters

Returns
The expression SDO_OVERLAPBDYINTERSECT(geometry1,geometry2) = 'TRUE'
evaluates to TRUE for object pairs that have the OVERLAPBDYINTERSECT
topological relationship, and FALSE otherwise.

Usage Notes
See the Usage Notes for the SDO_RELATE operator in this chapter.

For an explanation of the topological relationships and the nine-intersection model
used by Spatial, see Section 1.8.

Examples
The following example finds geometries that have the OVERLAPBDYINTERSECT
relationship with a query window (here, a rectangle with lower-left, upper-right
coordinates 4,6, 8,8). (The example uses the definitions and data described in
Section 2.1 and illustrated in Figure 2–1.) In this example, cola_a, cola_b, and
cola_d have the OVERLAPBDYINTERSECT relationship with the query window
geometry.

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_OVERLAPBDYINTERSECT(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(4,6, 8,8))
) = 'TRUE';

 MKT_ID NAME

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is SDO_GEOMETRY.

SDO_OVERLAPBDYINTERSECT

11-26 Oracle Spatial User’s Guide and Reference

---------- --------------------------------
 2 cola_b
 1 cola_a
 4 cola_d

SDO_OVERLAPS

Spatial Operators 11-27

SDO_OVERLAPS

Format
SDO_OVERLAPS(geometry1, geometry2);

Description
Checks if any geometries in a table overlap (that is, have the OVERLAPBDYDISJOINT
or OVERLAPBDYINTERSECT topological relationship with) a specified geometry.
Equivalent to specifying the SDO_RELATE operator with
'mask=OVERLAPBDYDISJOINT+OVERLAPBDYINTERSECT'.

See the section on the SDO_RELATE operator in this chapter for information about the
operations performed by this operator and for usage requirements.

Keywords and Parameters

Returns
The expression SDO_OVERLAPS(geometry1,geometry2) = 'TRUE' evaluates to TRUE
for object pairs that have the OVERLAPBDYDISJOINT or OVERLAPBDYINTERSECT
topological relationship, and FALSE otherwise.

Usage Notes
See the Usage Notes for the SDO_RELATE operator in this chapter.

For an explanation of the topological relationships and the nine-intersection model
used by Spatial, see Section 1.8.

Examples
The following example finds geometries that overlap a query window (here, a
rectangle with lower-left, upper-right coordinates 4,6, 8,8). (The example uses the
definitions and data described in Section 2.1 and illustrated in Figure 2–1.) In this
example, three of the geometries in the SHAPE column overlap the query window
geometry.

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_OVERLAPS(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(4,6, 8,8))
) = 'TRUE';

 MKT_ID NAME

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is SDO_GEOMETRY.

SDO_OVERLAPS

11-28 Oracle Spatial User’s Guide and Reference

---------- --------------------------------
 2 cola_b
 1 cola_a
 4 cola_d

SDO_RELATE

Spatial Operators 11-29

SDO_RELATE

Format
SDO_RELATE(geometry1, geometry2, param);

Description
Uses the spatial index to identify either the spatial objects that have a particular spatial
interaction with a given object such as an area of interest, or pairs of spatial objects that
have a particular spatial interaction.

This operator performs both primary and secondary filter operations.

Keywords and Parameters

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is SDO_GEOMETRY.

param Specifies the mask keyword, and optionally either or both of the min_
resolution and max_resolution keywords. The data type for this
parameter is VARCHAR2.

The mask keyword specifies the topological relationship of interest. This
is a required parameter. Valid mask keyword values are one or more of
the following in the nine-intersection pattern: TOUCH,
OVERLAPBDYDISJOINT, OVERLAPBDYINTERSECT, EQUAL, INSIDE,
COVEREDBY, CONTAINS, COVERS, ANYINTERACT, ON. Multiple masks are
combined with the logical Boolean operator OR, for example,
'mask=inside+touch'; however, see the Usage Notes for an alternative
syntax using UNION ALL that may result in better performance. See
Section 1.8 for an explanation of the nine-intersection relationship pattern.

The min_resolution keyword includes only geometries for which at
least one side of the geometry's MBR is equal to or greater than the
specified value. For example, min_resolution=10 includes only
geometries for which the width or the height (or both) of the geometry's
MBR is at least 10. (This keyword can be used to exclude geometries that
are too small to be of interest.)

The max_resolution keyword includes only geometries for which at
least one side of the geometry's MBR is less than or equal to the specified
value. For example, max_resolution=10 includes only geometries for
which the width or the height (or both) of the geometry's MBR is less than
or equal to 10. (This keyword can be used to exclude geometries that are
too large to be of interest.)

For backward compatibility, any additional keywords for the param
parameter that were supported before release 10.1 will still work;
however, the use of those keywords is discouraged and is not supported
for new uses of the operator.

SDO_RELATE

11-30 Oracle Spatial User’s Guide and Reference

Returns
The expression SDO_RELATE(geometry1,geometry2, 'mask = <some_mask_val>') =
'TRUE' evaluates to TRUE for object pairs that have the topological relationship
specified by <some_mask_val>, and FALSE otherwise.

Usage Notes
The operator is disabled if the table does not have a spatial index or if the index has
been built on more than two dimensions.

The operator must always be used in a WHERE clause, and the condition that includes
the operator should be an expression of the form SDO_RELATE(arg1, arg2, 'mask =
<some_mask_val>') = 'TRUE'.

geometry2 can come from a table or be a transient SDO_GEOMETRY object (such as
a bind variable or SDO_GEOMETRY constructor).

■ If the geometry2 column is not spatially indexed, the operator indexes the query
window in memory and performance is very good.

■ If two or more geometries from geometry2 are passed to the operator, the
ORDERED optimizer hint must be specified, and the table in geometry2 must be
specified first in the FROM clause.

If geometry1 and geometry2 are based on different coordinate systems, geometry2
is temporarily transformed to the coordinate system of geometry1 for the operation
to be performed, as described in Section 6.9.1.

Unlike with the SDO_GEOM.RELATE function, DISJOINT and DETERMINE masks
are not allowed in the relationship mask with the SDO_RELATE operator. This is
because SDO_RELATE uses the spatial index to find candidates that may interact, and
the information to satisfy DISJOINT or DETERMINE is not present in the index.

Although multiple masks can be combined using the logical Boolean operator OR, for
example, 'mask=touch+coveredby', better performance may result if the spatial
query specifies each mask individually and uses the UNION ALL syntax to combine
the results. This is due to internal optimizations that Spatial can apply under certain
conditions when masks are specified singly rather than grouped within the same
SDO_RELATE operator call. (There are two exceptions, inside+coveredby and
contains+covers, where the combination performs better than the UNION ALL
alternative.) For example, consider the following query using the logical Boolean
operator OR to group multiple masks:

SELECT a.gid
 FROM polygons a, query_polys B
 WHERE B.gid = 1
 AND SDO_RELATE(A.Geometry, B.Geometry,
 'mask=touch+coveredby') = 'TRUE';

The preceding query may result in better performance if it is expressed as follows,
using UNION ALL to combine results of multiple SDO_RELATE operator calls, each
with a single mask:

SELECT a.gid
 FROM polygons a, query_polys B
 WHERE B.gid = 1
 AND SDO_RELATE(A.Geometry, B.Geometry,
 'mask=touch') = 'TRUE'
UNION ALL
SELECT a.gid
 FROM polygons a, query_polys B

SDO_RELATE

Spatial Operators 11-31

 WHERE B.gid = 1
 AND SDO_RELATE(A.Geometry, B.Geometry,
 'mask=coveredby') = 'TRUE';

The following considerations apply to relationships between lines and a multipoint
geometry (points in a point cluster). Assume the example of a line and a multipoint
geometry (for example, SDO_GTYPE = 2005) consisting of three points.

■ If none of the points has any interaction with the line, the relationship between the
line and the point cluster is DISJOINT.

■ If one of the points is on the interior of the line and the other two points are
disjoint, the relationship between the line and the point cluster is
OVERLAPBDYDISJOINT.

■ If one of the points is on the boundary of the line (that is, if it is on the start point
or end point of the line) and the other two points are disjoint, the relationship
between the line and the point cluster is TOUCH.

■ If one of the points is on the boundary of the line (that is, if it is on the start point
or end point of the line), another point is on the interior of the line, and the third
point is disjoint, the relationship between the line and the point cluster is
OVERLAPBDYDISJOINT (not OVERLAPBDYINTERSECT).

Examples
The following examples are similar to those for the SDO_FILTER operator; however,
they identify a specific type of interaction (using the mask keyword), and they
determine with certainty (not mere likelihood) if the spatial interaction occurs.

The following example selects the geometries that have any interaction with a query
window (here, a rectangle with lower-left, upper-right coordinates 4,6, 8,8). (The
example uses the definitions and data described in Section 2.1 and illustrated in
Figure 2–1.)

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_RELATE(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(4,6, 8,8)),
 'mask=anyinteract') = 'TRUE';

 MKT_ID NAME
---------- --------------------------------
 2 cola_b
 1 cola_a
 4 cola_d

The following example is the same as the preceding example, except that it includes
only geometries where at least one side of the geometry's MBR is equal to or greater
than 4.1. In this case, only cola_a and cola_b are returned, because their MBRs have
at least one side with a length greater than or equal to 4.1. The circle cola_d is
excluded, because its MBR is a square whose sides have a length of 4.

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_RELATE(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(4,6, 8,8)),

SDO_RELATE

11-32 Oracle Spatial User’s Guide and Reference

 'mask=anyinteract min_resolution=4.1') = 'TRUE';

 MKT_ID NAME
---------- --------------------------------
 2 cola_b
 1 cola_a

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column objects have any spatial interaction with the GEOMETRY column
object in the QUERY_POLYS table that has a GID value of 1.

SELECT A.gid
 FROM Polygons A, query_polys B
 WHERE B.gid = 1
 AND SDO_RELATE(A.Geometry, B.Geometry,
 'mask=ANYINTERACT') = 'TRUE';

The following example selects the GID values from the POLYGONS table where a
GEOMETRY column object has any spatial interaction with the geometry stored in the
aGeom variable.

SELECT A.Gid
 FROM Polygons A
 WHERE SDO_RELATE(A.Geometry, :aGeom, 'mask=ANYINTERACT') = 'TRUE';

The following example selects the GID values from the POLYGONS table where a
GEOMETRY column object has any spatial interaction with the specified rectangle
having the lower-left coordinates (x1,y1) and the upper-right coordinates (x2, y2).

SELECT A.Gid
 FROM Polygons A
 WHERE SDO_RELATE(A.Geometry, sdo_geometry(2003,NULL,NULL,
 sdo_elem_info_array(1,1003,3),
 sdo_ordinate_array(x1,y1,x2,y2)),
 'mask=ANYINTERACT') = 'TRUE';

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object has any spatial interaction with any GEOMETRY column
object in the QUERY_POLYS table. In this example, the ORDERED optimizer hint is
used and QUERY_POLYS (geometry2) table is specified first in the FROM clause,
because multiple geometries from geometry2 are involved (see the Usage Notes).

SELECT /*+ ORDERED */
 A.gid
 FROM query_polys B, polygons A
 WHERE SDO_RELATE(A.Geometry, B.Geometry, 'mask=ANYINTERACT') = 'TRUE';

Related Topics
■ SDO_FILTER

■ SDO_JOIN

■ SDO_WITHIN_DISTANCE

■ SDO_GEOM.RELATE function

SDO_TOUCH

Spatial Operators 11-33

SDO_TOUCH

Format
SDO_TOUCH(geometry1, geometry2);

Description
Checks if any geometries in a table have the TOUCH topological relationship with a
specified geometry. Equivalent to specifying the SDO_RELATE operator with
'mask=TOUCH'.

See the section on the SDO_RELATE operator in this chapter for information about the
operations performed by this operator and for usage requirements.

Keywords and Parameters

Returns
The expression SDO_TOUCH(geometry1,geometry2) = 'TRUE' evaluates to TRUE for
object pairs that have the TOUCH topological relationship, and FALSE otherwise.

Usage Notes
See the Usage Notes for the SDO_RELATE operator in this chapter.

For an explanation of the topological relationships and the nine-intersection model
used by Spatial, see Section 1.8.

Examples
The following example finds geometries that have the TOUCH relationship with a
query window (here, a rectangle with lower-left, upper-right coordinates 1,1, 5,7). (The
example uses the definitions and data in Section 2.1 and illustrated in Figure 2–1.) In
this example, only cola_b has the TOUCH relationship with the query window
geometry.

SELECT c.mkt_id, c.name
 FROM cola_markets c
 WHERE SDO_TOUCH(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(1,1, 5,7))
) = 'TRUE';
 FROM cola_markets c

 MKT_ID NAME
---------- --------------------------------

Value Description

geometry1 Specifies a geometry column in a table. The column must be spatially
indexed.
Data type is SDO_GEOMETRY.

geometry2 Specifies either a geometry from a table or a transient instance of a
geometry. (Specified using a bind variable or SDO_GEOMETRY
constructor.)
Data type is SDO_GEOMETRY.

SDO_TOUCH

11-34 Oracle Spatial User’s Guide and Reference

 2 cola_b

SDO_WITHIN_DISTANCE

Spatial Operators 11-35

SDO_WITHIN_DISTANCE

Format
SDO_WITHIN_DISTANCE(geometry1, aGeom, params);

Description
Uses the spatial index to identify the set of spatial objects that are within some
specified distance of a given object (such as an area of interest or point of interest).

Keywords and Parameters

Value Description

geometry1 Specifies a geometry column in a table. The column has the set of
geometry objects that will be operated on to determine if they are within
the specified distance of the given object (aGeom). The column must be
spatially indexed.
Data type is SDO_GEOMETRY.

aGeom Specifies the object to be checked for distance against the geometry
objects in geometry1. Specify either a geometry from a table (using a
bind variable) or a transient instance of a geometry (using the SDO_
GEOMETRY constructor).
Data type is SDO_GEOMETRY.

params A quoted string containing one or more keywords (with values) that
determine the behavior of the operator. The remaining items (distance,
max_resolution, min_resolution, querytype, and unit) are
potential keywords for the params parameter.
Data type is VARCHAR2.

distance Specifies the distance value. If a coordinate system is associated with the
geometry, the distance unit is assumed to be the unit associated with the
coordinate system. This is a required keyword.
Data type is NUMBER.

max_resolution Includes only geometries for which at least one side of the geometry's
MBR is less than or equal to the specified value. For example, max_
resolution=10 includes only geometries for which the width or the
height (or both) of the geometry's MBR is less than or equal to 10. (This
keyword can be used to exclude geometries that are too large to be of
interest.)

min_resolution Includes only geometries for which at least one side of the geometry's
MBR is equal to or greater than the specified value. For example, min_
resolution=10 includes only geometries for which the width or the
height (or both) of the geometry's MBR is at least 10. (This keyword can
be used to exclude geometries that are too small to be of interest.)

querytype Set 'querytype=FILTER' to perform only a primary filter operation. If
querytype is not specified, both primary and secondary filter operations
are performed (default).
Data type is VARCHAR2.

unit Specifies the unit of measurement: a quoted string with unit= and an
SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table (for
example, 'unit=KM'). See Section 2.8 for more information about unit of
measurement specification.
Data type is NUMBER. Default = unit of measurement associated with
the data. For geodetic data, the default is meters.

SDO_WITHIN_DISTANCE

11-36 Oracle Spatial User’s Guide and Reference

Returns
The expression SDO_WITHIN_DISTANCE(arg1, arg2, arg3) = 'TRUE' evaluates to
TRUE for object pairs that are within the specified distance, and FALSE otherwise.

Usage Notes
The distance between two extended objects (nonpoint objects such as lines and
polygons) is defined as the minimum distance between these two objects. The distance
between two adjacent polygons is zero.

If this operator is used with geodetic data, the data must be indexed with an R-tree
spatial index. If this operator is used with geodetic data and if the R-tree spatial index
is created with 'geodetic=false' specified, you cannot use the unit parameter.

The operator is disabled if the table does not have a spatial index or if the index has
been built on more than two dimensions.

The operator must always be used in a WHERE clause and the condition that includes
the operator should be an expression of the form:

SDO_WITHIN_DISTANCE(arg1, arg2, 'distance = <some_dist_val>') = 'TRUE'

The geometry column must have a spatial index built on it. If the data is geodetic, the
spatial index must be an R-tree index.

SDO_WITHIN_DISTANCE is not supported for spatial joins. See Section 4.2.1.3 for a
discussion on how to perform a spatial join within-distance operation.

Examples
The following example selects the geometries that are within a distance of 10 from a
query window (here, a rectangle with lower-left, upper-right coordinates 4,6, 8,8). (The
example uses the definitions and data described in Section 2.1 and illustrated in
Figure 2–1. In this case, all geometries shown in that figure are returned.)

SELECT c.name FROM cola_markets c WHERE SDO_WITHIN_DISTANCE(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(4,6, 8,8)),
 'distance=10') = 'TRUE';

NAME

cola_b
cola_a
cola_c
cola_d

The following example is the same as the preceding example, except that it includes
only geometries where at least one side of the geometry's MBR is equal to or greater
than 4.1. In this case, only cola_a and cola_b are returned, because their MBRs have
at least one side with a length greater than or equal to 4.1. The trapezoid cola_c is
excluded, because its MBR has sides with lengths of 3 and 2; and the circle cola_d is
excluded, because its MBR is a square whose sides have a length of 4.

SELECT c.name FROM cola_markets c WHERE SDO_WITHIN_DISTANCE(c.shape,
 SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(4,6, 8,8)),
 'distance=10 min_resolution=4.1') = 'TRUE';

NAME

SDO_WITHIN_DISTANCE

Spatial Operators 11-37

cola_b
cola_a

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is within 10 distance units of the geometry stored in the
aGeom variable.

SELECT A.GID
 FROM POLYGONS A
 WHERE
 SDO_WITHIN_DISTANCE(A.Geometry, :aGeom, 'distance = 10') = 'TRUE';

The following example selects the GID values from the POLYGONS table where the
GEOMETRY column object is within 10 distance units of the specified rectangle having
the lower-left coordinates (x1,y1) and the upper-right coordinates (x2, y2).

SELECT A.GID
 FROM POLYGONS A
 WHERE
 SDO_WITHIN_DISTANCE(A.Geometry, sdo_geometry(2003,NULL,NULL,
 sdo_elem_info_array(1,1003,3),
 sdo_ordinate_array(x1,y1,x2,y2)),
 'distance = 10') = 'TRUE';

The following example selects the GID values from the POLYGONS table where the
GID value in the QUERY_POINTS table is 1 and a POLYGONS.GEOMETRY object is
within 10 distance units of the QUERY_POINTS.GEOMETRY object.

SELECT A.GID
 FROM POLYGONS A, Query_Points B
 WHERE B.GID = 1 AND
 SDO_WITHIN_DISTANCE(A.Geometry, B.Geometry, 'distance = 10') = 'TRUE';

See also the more complex SDO_WITHIN_DISTANCE examples in Section D.2.

Related Topics
■ SDO_FILTER

■ SDO_RELATE

SDO_WITHIN_DISTANCE

11-38 Oracle Spatial User’s Guide and Reference

Spatial Aggregate Functions 12-1

12
Spatial Aggregate Functions

This chapter contains reference and usage information for the spatial aggregate
functions, which are listed in Table 12–1.

See the usage information about spatial aggregate functions in Section 1.10.

Most of these aggregate functions accept a parameter of type SDOAGGRTYPE, which
is described in Section 1.10.1.

Table 12–1 Spatial Aggregate Functions

Method Description

SDO_AGGR_CENTROID Returns a geometry object that is the centroid ("center of
gravity") of the specified geometry objects.

SDO_AGGR_CONCAT_LINES Returns a geometry that concatenates the specified line or
multiline geometries.

SDO_AGGR_CONVEXHULL Returns a geometry object that is the convex hull of the
specified geometry objects.

SDO_AGGR_LRS_CONCAT Returns an LRS geometry object that concatenates
specified LRS geometry objects.

SDO_AGGR_MBR Returns the minimum bounding rectangle of the specified
geometries.

SDO_AGGR_UNION Returns a geometry object that is the topological union (OR
operation) of the specified geometry objects.

SDO_AGGR_CENTROID

12-2 Oracle Spatial User’s Guide and Reference

SDO_AGGR_CENTROID

Format
SDO_AGGR_CENTROID(

AggregateGeometry SDOAGGRTYPE

) RETURN SDO_GEOMETRY;

Description
Returns a geometry object that is the centroid ("center of gravity") of the specified
geometry objects.

Parameters

AggregateGeometry
An object of type SDOAGGRTYPE (see Section 1.10.1) that specifies the geometry
column and dimensional array.

Usage Notes
The behavior of the function depends on whether the geometry objects are all
polygons, all points, or a mixture of polygons and points:

■ If the geometry objects are all polygons, the centroid of all the objects is returned.

■ If the geometry objects are all points, the centroid of all the objects is returned.

■ If the geometry objects are a mixture of polygons and points (specifically, if they
include at least one polygon and at least one point), any points are ignored, and
the centroid of all the polygons is returned.

The result is weighted by the area of each polygon in the geometry objects. If the
geometry objects are a mixture of polygons and points, the points are not used in the
calculation of the centroid. If the geometry objects are all points, the points have equal
weight.

See also the information about the SDO_GEOM.SDO_CENTROID function in
Chapter 15.

Examples
The following example returns the centroid of the geometry objects in the COLA_
MARKETS table. (The example uses the definitions and data from Section 2.1.)

SELECT SDO_AGGR_CENTROID(SDOAGGRTYPE(shape, 0.005))
 FROM cola_markets;

SDO_AGGR_CENTROID(SDOAGGRTYPE(SHAPE,0.005))(SDO_GTYPE, SDO_SRID, SDO_POINT
--
SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(5.21295938, 5.00744233, NULL), NULL, NUL
L)

SDO_AGGR_CONCAT_LINES

Spatial Aggregate Functions 12-3

SDO_AGGR_CONCAT_LINES

Format
SDO_AGGR_CONCAT_LINES(

geom SDO_GEOMETRY

) RETURN SDO_GEOMETRY;

Description
Returns a geometry that concatenates the specified line or multiline geometries.

Parameters

geom
Geometry objects.

Usage Notes
Each input geometry must be a two-dimensional line or multiline geometry (that is,
the SDO_GTYPE value must be 2002 or 2006). This function is not supported for LRS
geometries. To perform an aggregate concatenation of LRS geometric segments, use
the SDO_AGGR_LRS_CONCAT spatial aggregate function.

The input geometries must be line strings whose vertices are connected by straight line
segments. Circular arcs and compound line strings are not supported.

If any input geometry is a multiline geometry, the elements of the geometry must be
disjoint. If they are not disjoint, this function may return incorrect results.

The topological relationship between the geometries in each pair of geometries to be
concatenated must be DISJOINT or TOUCH; and if the relationship is TOUCH, the
geometries must intersect only at two end points.

You can use the SDO_UTIL.CONCAT_LINES function (described in Chapter 20) to
concatenate two line or multiline geometries.

An exception is raised if any input geometries are not line or multiline geometries, or if
not all input geometries are based on the same coordinate system.

Examples
The following example inserts two line geometries in the COLA_MARKETS table, and
then returns the aggregate concatenation of these geometries. (The example uses the
data definitions from Section 2.1.)

-- First, insert two line geometries.
INSERT INTO cola_markets VALUES(1001, 'line_1', SDO_GEOMETRY(2002, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,2,1), SDO_ORDINATE_ARRAY(1,1, 5,1)));
INSERT INTO cola_markets VALUES(1002, 'line_2', SDO_GEOMETRY(2002, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,2,1), SDO_ORDINATE_ARRAY(5,1, 8,1)));
-- Perform aggregate concatenation of all line geometries in layer.
SELECT SDO_AGGR_CONCAT_LINES(c.shape) FROM cola_markets c
 WHERE c.mkt_id > 1000;

SDO_AGGR_CONCAT_LINES(C.SHAPE)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM
--
SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(

SDO_AGGR_CONCAT_LINES

12-4 Oracle Spatial User’s Guide and Reference

1, 1, 5, 1, 8, 1))

SDO_AGGR_CONVEXHULL

Spatial Aggregate Functions 12-5

SDO_AGGR_CONVEXHULL

Format
SDO_AGGR_CONVEXHULL(

AggregateGeometry SDOAGGRTYPE

) RETURN SDO_GEOMETRY;

Description
Returns a geometry object that is the convex hull of the specified geometry objects.

Parameters

AggregateGeometry
An object of type SDOAGGRTYPE (see Section 1.10.1) that specifies the geometry
column and dimensional array.

Usage Notes
See also the information about the SDO_GEOM.SDO_CONVEXHULL function in
Chapter 15.

Examples
The following example returns the convex hull of the geometry objects in the COLA_
MARKETS table. (The example uses the definitions and data from Section 2.1.)

SELECT SDO_AGGR_CONVEXHULL(SDOAGGRTYPE(shape, 0.005))
 FROM cola_markets;

SDO_AGGR_CONVEXHULL(SDOAGGRTYPE(SHAPE,0.005))(SDO_GTYPE, SDO_SRID, SDO_POI
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(8, 1, 10, 7, 10, 11, 8, 11, 6, 11, 1, 7, 1, 1, 8, 1))

SDO_AGGR_LRS_CONCAT

12-6 Oracle Spatial User’s Guide and Reference

SDO_AGGR_LRS_CONCAT

Format
SDO_AGGR_LRS_CONCAT(

AggregateGeometry SDOAGGRTYPE

) RETURN SDO_GEOMETRY;

Description
Returns an LRS geometry that concatenates specified LRS geometries.

Parameters

AggregateGeometry
An object of type SDOAGGRTYPE (see Section 1.10.1) that specifies the geometry
column and dimensional array.

Usage Notes
This function performs an aggregate concatenation of any number of LRS geometries.
If you want to control the order in which the geometries are concatenated, you must
use a subquery with the NO_MERGE optimizer hint and the ORDER BY clause. (See
the examples.)

The direction of the resulting segment is the same as the direction of the first geometry
in the concatenation.

A 3D format of this function (SDO_AGGR_LRS_CONCAT_3D) is available. For
information about 3D formats of LRS functions, see Section 7.4.)

For information about the Spatial linear referencing system, see Chapter 7.

Examples
The following example adds an LRS geometry to the LRS_ROUTES table, and then
performs two queries that concatenate the LRS geometries in the table. The first query
does not control the order of concatenation, and the second query controls the order of
concatenation. Notice the difference in direction of the two segments: the segment
resulting from the second query has decreasing measure values because the first
segment in the concatenation (Route0) has decreasing measure values. (This example
uses the definitions from the example in Section 7.7.)

-- Add a segment with route_id less than 1 (here, zero).
INSERT INTO lrs_routes VALUES(
 0,
 'Route0',
 SDO_GEOMETRY(
 3302, -- Line string; 3 dimensions (X,Y,M); 3rd is measure dimension.
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,2,1), -- One line string, straight segments
 SDO_ORDINATE_ARRAY(
 5,14,5, -- Starting point - 5 is measure from start.
 10,14,0) -- Ending point - 0 measure (decreasing measure)
)
);

SDO_AGGR_LRS_CONCAT

Spatial Aggregate Functions 12-7

1 row created.

-- Concatenate all routes (no ordering specified).
SELECT SDO_AGGR_LRS_CONCAT(SDOAGGRTYPE(route_geometry, 0.005))
 FROM lrs_routes;

SDO_AGGR_LRS_CONCAT(SDOAGGRTYPE(ROUTE_GEOMETRY,0.005))(SDO_GTYPE, SDO_SRID
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27, 10, 14,
32))

-- Aggregate concatenation using subquery for ordering.
SELECT
SDO_AGGR_LRS_CONCAT(SDOAGGRTYPE(route_geometry, 0.005))
FROM (
 SELECT /*+ NO_MERGE */ route_geometry
 FROM lrs_routes
 ORDER BY route_id);

SDO_AGGR_LRS_CONCAT(SDOAGGRTYPE(ROUTE_GEOMETRY,0.005))(SDO_GTYPE, SDO_SRID
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 32, 2, 4, 30, 8, 4, 24, 12, 4, 20, 12, 10, 14, 8, 10, 10, 5, 14, 5, 10, 14
, 0))

SDO_AGGR_MBR

12-8 Oracle Spatial User’s Guide and Reference

SDO_AGGR_MBR

Format
SDO_AGGR_MBR(

geom SDO_GEOMETRY

) RETURN SDO_GEOMETRY;

Description
Returns the minimum bounding rectangle (MBR) of the specified geometries, that is, a
single rectangle that minimally encloses the geometries.

Parameters

geom
Geometry objects.

Usage Notes
All input geometries must have 4-digit SDO_GTYPE values (explained in
Section 2.2.1).

This function does not return an MBR geometry if a proper MBR cannot be
constructed. Specifically:

■ If the input geometries are all null, the function returns a null geometry.

■ If all data in the input geometries is on a single point, the function returns the
point.

■ If all data in the input geometries consists of points on a straight line, the function
returns a two-point line.

The SDO_TUNE.EXTENT_OF function, documented in Chapter 19, also returns the
MBR of geometries. The SDO_TUNE.EXTENT_OF function has better performance
than the SDO_AGGR_MBR function if the data is non-geodetic and if a spatial index is
defined on the geometry column; however, the SDO_TUNE.EXTENT_OF function is
limited to two-dimensional geometries, whereas the SDO_AGGR_MBR function is not.
In addition, the SDO_TUNE.EXTENT_OF function computes the extent for all
geometries in a table; by contrast, the SDO_AGGR_MBR function can operate on
subsets of rows.

Examples
The following example returns the minimum bounding rectangle of the geometry
objects in the COLA_MARKETS table. (The example uses the definitions and data
from Section 2.1.)

SELECT SDO_AGGR_MBR(shape) FROM cola_markets;

SDO_AGGR_MBR(C.SHAPE)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SD
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(1, 1, 10, 11))

SDO_AGGR_UNION

Spatial Aggregate Functions 12-9

SDO_AGGR_UNION

Format
SDO_AGGR_UNION(

AggregateGeometry SDOAGGRTYPE

) RETURN SDO_GEOMETRY;

Description
Returns a geometry object that is the topological union (OR operation) of the specified
geometry objects.

Parameters

AggregateGeometry
An object of type SDOAGGRTYPE (see Section 1.10.1) that specifies the geometry
column and dimensional array.

Usage Notes
Do not use SDO_AGGR_UNION to merge line string or multiline string geometries;
instead, use the SDO_AGGR_CONCAT_LINES spatial aggregate function.

See also the information about the SDO_GEOM.SDO_UNION function in Chapter 15.

Examples
The following example returns the union of the first three geometry objects in the
COLA_MARKETS table (that is, all except cola_d). (The example uses the definitions
and data from Section 2.1.)

SELECT SDO_AGGR_UNION(
 SDOAGGRTYPE(c.shape, 0.005))
 FROM cola_markets c
 WHERE c.name < 'cola_d';

SDO_AGGR_UNION(SDOAGGRTYPE(C.SHAPE,0.005))(SDO_GTYPE, SDO_SRID, SDO_POINT(
--
SDO_GEOMETRY(2007, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 2, 11, 1003, 1), SDO
_ORDINATE_ARRAY(8, 11, 6, 9, 8, 7, 10, 9, 8, 11, 1, 7, 1, 1, 5, 1, 8, 1, 8, 6, 5
, 7, 1, 7))

See also the more complex SDO_AGGR_UNION example in Section D.4.

SDO_AGGR_UNION

12-10 Oracle Spatial User’s Guide and Reference

SDO_CS Package (Coordinate System Transformation) 13-1

13
SDO_CS Package (Coordinate System

Transformation)

The MDSYS.SDO_CS package contains subprograms for working with coordinate
systems. You can perform explicit coordinate transformations on a single geometry or
an entire layer of geometries (that is, all geometries in a specified column in a table).

To use the subprograms in this chapter, you must understand the conceptual
information about coordinate systems in Section 1.5.4 and Chapter 6.

Table 13–1 lists the coordinate system transformation subprograms.

Table 13–1 Subprograms for Coordinate System Transformation

Subprogram Description

SDO_CS.ADD_PREFERENCE_FOR_
OP

Adds a preference for an operation between a source
coordinate system and a target coordinate system.

SDO_CS.CONVERT_NADCON_TO_
XML

Converts a NADCON (North American Datum
Conversion) grid in ASCII format to an Oracle
Spatial XML representation.

SDO_CS.CONVERT_NTV2_TO_
XML

Converts an NTv2 (National Transformation Version
2) grid in ASCII format to an Oracle Spatial XML
representation.

SDO_CS.CONVERT_XML_TO_
NADCON

Converts an Oracle Spatial XML representation of a
NADCON (North American Datum Conversion)
grid to NADCON ASCII format.

SDO_CS.CONVERT_XML_TO_
NTV2

Converts an Oracle Spatial XML representation of an
NTv2 (National Transformation Version 2) grid to
NTv2 ASCII format.

SDO_CS.CREATE_
CONCATENATED_OP

Creates a concatenated operation.

SDO_CS.CREATE_OBVIOUS_EPSG_
RULES

Creates a basic set of EPSG rules to be applied in
certain transformations.

SDO_CS.CREATE_PREF_
CONCATENATED_OP

Creates a concatenated operation, associating it with
a transformation plan and making it preferred either
systemwide or for a specified use case.

SDO_CS.DELETE_ALL_EPSG_
RULES

Deletes the basic set of EPSG rules to be applied in
certain transformations.

SDO_CS.DELETE_OP Deletes a concatenated operation.

13-2 Oracle Spatial User’s Guide and Reference

SDO_CS.DETERMINE_CHAIN Returns the query chain, based on the system rule
set, to be used in transformations from one
coordinate reference system to another coordinate
reference system.

SDO_CS.DETERMINE_DEFAULT_
CHAIN

Returns the default chain of SRID values in
transformations from one coordinate reference
system to another coordinate reference system.

SDO_CS.FIND_GEOG_CRS Returns the SRID values of geodetic (geographic)
coordinate reference systems that have the same
well-known text (WKT) numeric values as the
coordinate reference system with the specified
reference SRID value.

SDO_CS.FIND_PROJ_CRS Returns the SRID values of projected coordinate
reference systems that have the same well-known
text (WKT) numeric values as the coordinate
reference system with the specified reference SRID
value.

SDO_CS.FROM_OGC_
SIMPLEFEATURE_SRS

Converts a well-known text string from the Open
Geospatial Consortium simple feature format
without the TOWGS84 keyword to the format that
includes the TOWGS84 keyword.

SDO_CS.MAP_EPSG_SRID_TO_
ORACLE

Returns the ORacle Spatial SRID values
corresponding to the specified EPSG SRID value.

SDO_CS.MAP_ORACLE_SRID_TO_
EPSG

Returns the EPSG SRID value corresponding to the
specified Oracle Spatial SRID value.

SDO_CS.REVOKE_PREFERENCE_
FOR_OP

Revokes a preference for an operation between a
source coordinate system and a target coordinate
system.

SDO_CS.TO_OGC_
SIMPLEFEATURE_SRS

Converts a well-known text string from the Open
Geospatial Consortium simple feature format that
includes the TOWGS84 keyword to the format
without the TOWGS84 keyword.

SDO_CS.TRANSFORM Transforms a geometry representation using a
coordinate system (specified by SRID or name).

SDO_CS.TRANSFORM_LAYER Transforms an entire layer of geometries (that is, all
geometries in a specified column in a table).

SDO_CS.UPDATE_WKTS_FOR_
ALL_EPSG_CRS

Updates the well-known text (WKT) description for
all EPSG coordinate reference systems.

SDO_CS.UPDATE_WKTS_FOR_
EPSG_CRS

Updates the well-known text (WKT) description for
the EPSG coordinate reference system associated
with a specified SRID.

SDO_CS.UPDATE_WKTS_FOR_
EPSG_DATUM

Updates the well-known text (WKT) description for
all EPSG coordinate reference systems associated
with a specified datum.

SDO_CS.UPDATE_WKTS_FOR_
EPSG_ELLIPS

Updates the well-known text (WKT) description for
all EPSG coordinate reference systems associated
with a specified ellipsoid.

SDO_CS.UPDATE_WKTS_FOR_
EPSG_OP

Updates the well-known text (WKT) description for
all EPSG coordinate reference systems associated
with a specified coordinate transformation
operation.

Table 13–1 (Cont.) Subprograms for Coordinate System Transformation

Subprogram Description

SDO_CS Package (Coordinate System Transformation) 13-3

The rest of this chapter provides reference information on the subprograms, listed in
alphabetical order.

SDO_CS.UPDATE_WKTS_FOR_
EPSG_PARAM

Updates the well-known text (WKT) description for
all EPSG coordinate reference systems associated
with a specified coordinate transformation operation
and parameter for transformation operations.

SDO_CS.UPDATE_WKTS_FOR_
EPSG_PM

Updates the well-known text (WKT) description for
all EPSG coordinate reference systems associated
with a specified prime meridian.

SDO_CS.VALIDATE_WKT Validates the well-known text (WKT) description
associated with a specified SRID.

SDO_CS.VIEWPORT_TRANSFORM
(deprecated)

Transforms an optimized rectangle into a valid
polygon for use with Spatial operators and
functions.

Table 13–1 (Cont.) Subprograms for Coordinate System Transformation

Subprogram Description

SDO_CS.ADD_PREFERENCE_FOR_OP

13-4 Oracle Spatial User’s Guide and Reference

SDO_CS.ADD_PREFERENCE_FOR_OP

Format
SDO_CS.ADD_PREFERENCE_FOR_OP(

op_id IN NUMBER,

source_crs IN NUMBER DEFAULT NULL,

target_crs IN NUMBER DEFAULT NULL,

use_case IN VARCHAR2 DEFAULT NULL);

Description
Adds a preference for an operation between a source coordinate system and a target
coordinate system.

Parameters

op_id
ID number of the operation. Must be a value in the COORD_OP_ID column of the
SDO_COORD_OPS table (described in Section 6.6.8).

source_crs
The SRID of the source coordinate reference system. Must be null or a value in the
SRID column of the SDO_COORD_REF_SYS table (described in Section 6.6.9).

target_crs
The SRID of the target coordinate reference system. Must be null or a value in the
SRID column of the SDO_COORD_REF_SYS table (described in Section 6.6.9).

use_case
Name of the use case to be associated with this preference. Must be null or a value
from the USE_CASE column of the SDO_PREFERRED_OPS_USER table (described in
Section 6.6.25).

Usage Notes
If use_case is null, the transformation plan associated with the operation is a
systemwide preference, and a row is added (or two rows are added if a reverse
operation exists) to the SDO_PREFERRED_OPS_SYSTEM table (described in
Section 6.6.24). If use_case is not null, the transformation plan associated with the
operation is a preference associated with the specified use case, and a row is added (or
two rows are added if a reverse operation exists) to the SDO_PREFERRED_OPS_USER
table (described in Section 6.6.25).

To create a concatenated operation and make it preferred either systemwide or for a
specified use case, you can use the SDO_CS.CREATE_PREF_CONCATENATED_OP
convenience procedure.

To revoke a preference for an operation between a source coordinate system and a
target coordinate system, use the SDO_CS.REVOKE_PREFERENCE_FOR_OP
procedure.

SDO_CS.ADD_PREFERENCE_FOR_OP

SDO_CS Package (Coordinate System Transformation) 13-5

Examples
The following example adds a preference for operation 19977 to be used in
transformations from SRID 4301 to SRID 4326 when use case use_case_B is specified
for the transformation.

EXECUTE SDO_CS.ADD_PREFERENCE_FOR_OP(19977, 4301, 4326, 'use_case_B');

SDO_CS.CONVERT_NADCON_TO_XML

13-6 Oracle Spatial User’s Guide and Reference

SDO_CS.CONVERT_NADCON_TO_XML

Format
SDO_CS.CONVERT_NADCON_TO_XML(

laa_clob IN CLOB,

loa_clob IN CLOB,

xml_grid OUT XMLTYPE);

Description
Converts a NADCON (North American Datum Conversion) grid in ASCII format to
an Oracle Spatial XML representation.

Parameters

laa_clob
Latitude values of the NADCON grid in a CLOB object.

loa_clob
Longitude values of the NADCON grid in a CLOB object.

xml_grid
Output XML document containing the Oracle Spatial XML representation of the
NADCON grid.

Usage Notes
To convert an Oracle Spatial XML representation to a NADCON grid, use the SDO_
CS.CONVERT_XML_TO_NADCON procedure.

Examples
The following example converts a NADCON grid in ASCII format to an Oracle Spatial
XML representation, converts the resulting XML representation back to a NADCON
ASCII representation, and displays the resulting ASCII representation. (Only part of
the output is shown.)

set lines 32000
set long 2000000000

DECLARE
 laa CLOB;
 loa CLOB;
 xml XMLTYPE;
 laa_file BFILE;
 loa_file BFILE;
BEGIN
 laa_file := BFILENAME('MY_WORK_DIR', 'samplenadcon.laa');
 loa_file := BFILENAME('MY_WORK_DIR', 'samplenadcon.loa');
 DBMS_LOB.OPEN(laa_file, DBMS_LOB.LOB_READONLY);
 DBMS_LOB.OPEN(loa_file, DBMS_LOB.LOB_READONLY);

 DBMS_LOB.CREATETEMPORARY(laa, TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(loa, TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.OPEN(laa, DBMS_LOB.LOB_READWRITE);

SDO_CS.CONVERT_NADCON_TO_XML

SDO_CS Package (Coordinate System Transformation) 13-7

 DBMS_LOB.OPEN(loa, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(laa, laa_file, DBMS_LOB.LOBMAXSIZE);
 DBMS_LOB.LOADFROMFILE(loa, loa_file, DBMS_LOB.LOBMAXSIZE);
 DBMS_LOB.CLOSE(laa);
 DBMS_LOB.CLOSE(loa);
 DBMS_LOB.CLOSE(laa_file);
 DBMS_LOB.CLOSE(loa_file);

 SDO_CS.convert_NADCON_to_XML(laa, loa, xml);
 SDO_CS.convert_XML_to_NADCON(xml, laa, loa);
 DBMS_OUTPUT.PUT_LINE(SUBSTR(laa, 1, 32000));
 DBMS_OUTPUT.PUT_LINE(SUBSTR(loa, 1, 32000));
END;
/
NADCON EXTRACTED REGION NADGRD
 33 49 1 -107.00000 .25000 25.00000 .25000 .00000
 .006731 .006444 .006208 .006036 .005935 .005904
 .005932 .006002 .006092 .006174 .006218 .006198
 .006087 .005867 .005522 .005045 .004432 .003688
 .002818 .001836 .000759 -.000385 -.001559 -.002704
. . .
NADCON EXTRACTED REGION NADGRD
 33 49 1 -107.00000 .25000 25.00000 .25000 .00000
 .008509 .007147 .005756 .004331 .002879 .001410
 -.000060 -.001507 -.002904 -.004222 -.005431 -.006498
 -.007395 -.008095 -.008579 -.008832 -.008848 -.008632
 -.008200 -.007577 -.006800 -.005911 -.004957 -.003974
. . .

SDO_CS.CONVERT_NTV2_TO_XML

13-8 Oracle Spatial User’s Guide and Reference

SDO_CS.CONVERT_NTV2_TO_XML

Format
SDO_CS.CONVERT_NTV2_TO_XML(

ntv2_clob IN CLOB,

xml_grid OUT XMLTYPE);

Description
Converts an NTv2 (National Transformation Version 2) grid in ASCII format to an
Oracle Spatial XML representation.

Parameters

ntv2_clob
NTv2 grid values in a CLOB object.

xml_grid
Output XML document containing the Oracle Spatial XML representation of the NTv2
grid.

Usage Notes
To convert an Oracle Spatial XML representation to an NTv2 grid, use the SDO_
CS.CONVERT_XML_TO_NTV2 procedure.

Examples
The following example converts an NTv2 grid in ASCII format to an Oracle Spatial
XML representation, converts the resulting XML representation back to an NTv2
ASCII representation, and displays the resulting ASCII representation. (Only part of
the output is shown.)

set lines 32000
set long 2000000000

DECLARE
 ntv2 CLOB;
 xml XMLTYPE;
 ntv2_file BFILE;
BEGIN
 ntv2_file := BFILENAME('MY_WORK_DIR', 'samplentv2.gsa');
 DBMS_LOB.OPEN(ntv2_file, DBMS_LOB.LOB_READONLY);

 DBMS_LOB.CREATETEMPORARY(ntv2, TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.OPEN(ntv2, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(ntv2, ntv2_file, DBMS_LOB.LOBMAXSIZE);
 DBMS_LOB.CLOSE(ntv2);
 DBMS_LOB.CLOSE(ntv2_file);

 SDO_CS.convert_NTv2_to_XML(ntv2, xml);
 SDO_CS.convert_XML_to_NTv2(xml, ntv2);
 DBMS_OUTPUT.PUT_LINE(SUBSTR(ntv2, 1, 32000));
END;
/
NUM_OREC 11

SDO_CS.CONVERT_NTV2_TO_XML

SDO_CS Package (Coordinate System Transformation) 13-9

NUM_SREC 11
NUM_FILE 2
GS_TYPE SECONDS
VERSION NTv2.0
DATUM_F NAD27
DATUM_T NAD83
MAJOR_F 6378206.400
MINOR_F 6356583.800
MAJOR_T 6378137.000
MINOR_T 6356752.314
SUB_NAMEALbanff
PARENT NONE
CREATED 95-06-29
UPDATED 95-07-04
S_LAT 183900.000000
N_LAT 184500.000000
E_LONG 415800.000000
W_LONG 416100.000000
LAT_INC 30.000000
LONG_INC 30.000000
GS_COUNT 231
 0.084020 3.737300 0.005000 0.008000
 0.083029 3.738740 0.017000 0.011000
 0.082038 3.740180 0.029000 0.015000
. . .

SDO_CS.CONVERT_XML_TO_NADCON

13-10 Oracle Spatial User’s Guide and Reference

SDO_CS.CONVERT_XML_TO_NADCON

Format
SDO_CS.CONVERT_XML_TO_NADCON(

xml_grid IN XMLTYPE,

laa_clob OUT CLOB,

loa_clob OUT CLOB);

Description
Converts an Oracle Spatial XML representation of a NADCON (North American
Datum Conversion) grid to NADCON ASCII format.

Parameters

xml_grid
XML document containing the Oracle Spatial XML representation of the NADCON
grid.

laa_clob
Output CLOB object containing the latitude values of the NADCON grid.

loa_clob
Output CLOB object containing the longitude values of the NADCON grid.

Usage Notes
To convert a NADCON grid in ASCII format to an Oracle Spatial XML representation,
use the SDO_CS.CONVERT_NADCON_TO_XML procedure.

Examples
The following example converts a NADCON grid in ASCII format to an Oracle Spatial
XML representation, converts the resulting XML representation back to a NADCON
ASCII representation, and displays the resulting ASCII representation. (Only part of
the output is shown.)

set lines 32000
set long 2000000000

DECLARE
 laa CLOB;
 loa CLOB;
 xml XMLTYPE;
 laa_file BFILE;
 loa_file BFILE;
BEGIN
 laa_file := BFILENAME('MY_WORK_DIR', 'samplenadcon.laa');
 loa_file := BFILENAME('MY_WORK_DIR', 'samplenadcon.loa');
 DBMS_LOB.OPEN(laa_file, DBMS_LOB.LOB_READONLY);
 DBMS_LOB.OPEN(loa_file, DBMS_LOB.LOB_READONLY);

 DBMS_LOB.CREATETEMPORARY(laa, TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(loa, TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.OPEN(laa, DBMS_LOB.LOB_READWRITE);

SDO_CS.CONVERT_XML_TO_NADCON

SDO_CS Package (Coordinate System Transformation) 13-11

 DBMS_LOB.OPEN(loa, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(laa, laa_file, DBMS_LOB.LOBMAXSIZE);
 DBMS_LOB.LOADFROMFILE(loa, loa_file, DBMS_LOB.LOBMAXSIZE);
 DBMS_LOB.CLOSE(laa);
 DBMS_LOB.CLOSE(loa);
 DBMS_LOB.CLOSE(laa_file);
 DBMS_LOB.CLOSE(loa_file);

 SDO_CS.convert_NADCON_to_XML(laa, loa, xml);
 SDO_CS.convert_XML_to_NADCON(xml, laa, loa);
 DBMS_OUTPUT.PUT_LINE(SUBSTR(laa, 1, 32000));
 DBMS_OUTPUT.PUT_LINE(SUBSTR(loa, 1, 32000));
END;
/
NADCON EXTRACTED REGION NADGRD
 33 49 1 -107.00000 .25000 25.00000 .25000 .00000
 .006731 .006444 .006208 .006036 .005935 .005904
 .005932 .006002 .006092 .006174 .006218 .006198
 .006087 .005867 .005522 .005045 .004432 .003688
 .002818 .001836 .000759 -.000385 -.001559 -.002704
. . .
NADCON EXTRACTED REGION NADGRD
 33 49 1 -107.00000 .25000 25.00000 .25000 .00000
 .008509 .007147 .005756 .004331 .002879 .001410
 -.000060 -.001507 -.002904 -.004222 -.005431 -.006498
 -.007395 -.008095 -.008579 -.008832 -.008848 -.008632
 -.008200 -.007577 -.006800 -.005911 -.004957 -.003974
. . .

SDO_CS.CONVERT_XML_TO_NTV2

13-12 Oracle Spatial User’s Guide and Reference

SDO_CS.CONVERT_XML_TO_NTV2

Format
SDO_CS.CONVERT_XML_TO_NTV2(

xml_grid IN XMLTYPE,

ntv2_clob OUT CLOB);

Description
Converts an Oracle Spatial XML representation of an NTv2 (National Transformation
Version 2) grid to NTv2 ASCII format.

Parameters

xml_grid
XML document containing the Oracle Spatial XML representation of the NTv2 grid.

ntv2_clob
Output CLOB object containing the values for the NTv2 grid.

Usage Notes
To convert an NTv2 grid in ASCII format to an Oracle Spatial XML representation, use
the SDO_CS.CONVERT_NTV2_TO_XML procedure.

Examples
The following example converts an NTv2 grid in ASCII format to an Oracle Spatial
XML representation, converts the resulting XML representation back to an NTv2
ASCII representation, and displays the resulting ASCII representation. (Only part of
the output is shown.)

set lines 32000
set long 2000000000

DECLARE
 ntv2 CLOB;
 xml XMLTYPE;
 ntv2_file BFILE;
BEGIN
 ntv2_file := BFILENAME('MY_WORK_DIR', 'samplentv2.gsa');
 DBMS_LOB.OPEN(ntv2_file, DBMS_LOB.LOB_READONLY);

 DBMS_LOB.CREATETEMPORARY(ntv2, TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.OPEN(ntv2, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(ntv2, ntv2_file, DBMS_LOB.LOBMAXSIZE);
 DBMS_LOB.CLOSE(ntv2);
 DBMS_LOB.CLOSE(ntv2_file);

 SDO_CS.convert_NTv2_to_XML(ntv2, xml);
 SDO_CS.convert_XML_to_NTv2(xml, ntv2);
 DBMS_OUTPUT.PUT_LINE(SUBSTR(ntv2, 1, 32000));
END;
/
NUM_OREC 11
NUM_SREC 11

SDO_CS.CONVERT_XML_TO_NTV2

SDO_CS Package (Coordinate System Transformation) 13-13

NUM_FILE 2
GS_TYPE SECONDS
VERSION NTv2.0
DATUM_F NAD27
DATUM_T NAD83
MAJOR_F 6378206.400
MINOR_F 6356583.800
MAJOR_T 6378137.000
MINOR_T 6356752.314
SUB_NAMEALbanff
PARENT NONE
CREATED 95-06-29
UPDATED 95-07-04
S_LAT 183900.000000
N_LAT 184500.000000
E_LONG 415800.000000
W_LONG 416100.000000
LAT_INC 30.000000
LONG_INC 30.000000
GS_COUNT 231
 0.084020 3.737300 0.005000 0.008000
 0.083029 3.738740 0.017000 0.011000
 0.082038 3.740180 0.029000 0.015000
. . .

SDO_CS.CREATE_CONCATENATED_OP

13-14 Oracle Spatial User’s Guide and Reference

SDO_CS.CREATE_CONCATENATED_OP

Format
SDO_CS.CREATE_CONCATENATED_OP(

op_id IN NUMBER,

op_name IN VARCHAR2,

use_plan IN TFM_PLAN);

Description
Creates a concatenated operation.

Parameters

op_id
ID number of the concatenated operation.

op_name
Name to be associated with the concatenated operation.

use_plan
Transformation plan. The TFM_PLAN object type is explained in Section 6.5.

Usage Notes
A concatenated operation is the concatenation (chaining) of two or more atomic
operations.

To create a concatenated operation and make it preferred either systemwide or for a
specified use case, you can use the SDO_CS.CREATE_PREF_CONCATENATED_OP
convenience procedure.

Examples
The following example creates a concatenation operation with the operation ID 2999
and the name CONCATENATED_OPERATION_2999.

DECLARE
BEGIN
SDO_CS.CREATE_CONCATENATED_OP(
 2999,
 'CONCATENATED_OPERATION_2999',
 TFM_PLAN(SDO_TFM_CHAIN(4242, 19910, 24200, 1000000000, 24200)));
END;
/

SDO_CS.CREATE_OBVIOUS_EPSG_RULES

SDO_CS Package (Coordinate System Transformation) 13-15

SDO_CS.CREATE_OBVIOUS_EPSG_RULES

Format
SDO_CS.CREATE_OBVIOUS_EPSG_RULES(

use_case IN VARCHAR2 DEFAULT NULL);

Description
Creates a basic set of EPSG rules to be applied in certain transformations.

Parameters

use_case
Name of the use case to be associated with the application of the EPSG rules that are
created. Must be a value from the USE_CASE column of the SDO_PREFERRED_OPS_
USER table (described in Section 6.6.25).

Usage Notes
This procedure creates rules to implement the main EPSG-defined transformations
between specific coordinate reference systems. For transformations between some
coordinate reference systems, EPSG has specified rules that should be applied. For any
given transformation from one coordinate reference system to another, the EPSG rule
might be different from the default Oracle Spatial rule. If you execute this procedure,
the EPSG rules are applied in any such cases. If you do not execute this procedure, the
default Spatial rules are used in such cases.

This procedure inserts many rows into the SDO_PREFERRED_OPS_SYSTEM table
(see Section 6.6.24).

To delete the EPSG rules created by this procedure, and thus cause the default Spatial
rules to be used in all cases, use the SDO_CS.DELETE_ALL_EPSG_RULES procedure.

Examples
The following example creates a basic set of EPSG rules to be applied in certain
transformations.

EXECUTE SDO_CS.CREATE_OBVIOUS_EPSG_RULES;

SDO_CS.CREATE_PREF_CONCATENATED_OP

13-16 Oracle Spatial User’s Guide and Reference

SDO_CS.CREATE_PREF_CONCATENATED_OP

Format
SDO_CS.CREATE_PREF_CONCATENATED_OP(

op_id IN NUMBER,

op_name IN VARCHAR2,

use_plan IN TFM_PLAN,

use_case IN VARCHAR2 DEFAULT NULL);

Description
Creates a concatenated operation, associating it with a transformation plan and
making it preferred either systemwide or for a specified use case.

Parameters

op_id
ID number of the concatenated operation to be created.

op_name
Name to be associated with the concatenated operation.

use_plan
Transformation plan. The TFM_PLAN object type is explained in Section 6.5.

use_case
Use case to which this preferred concatenated operation applies. Must be a null or a
value from the USE_CASE column of the SDO_PREFERRED_OPS_USER table
(described in Section 6.6.25).

Usage Notes
This convenience procedure combines the operations of the SDO_CS.CREATE_
CONCATENATED_OP and SDO_CS.ADD_PREFERENCE_FOR_OP procedures.

A concatenated operation is the concatenation (chaining) of two or more atomic
operations.

If use_case is null, the transformation plan associated with the operation is a
systemwide preference, and a row is added (or two rows are added if a reverse
operation exists) to the SDO_PREFERRED_OPS_SYSTEM table (described in
Section 6.6.24). If use_case is not null, the transformation plan associated with the
operation is a preference associated with the specified use case, and a row is added (or
two rows are added if a reverse operation exists) to the SDO_PREFERRED_OPS_USER
table (described in Section 6.6.25).

To create a concatenation without making it preferred either systemwide or for a
specified use case, use the SDO_CS.CREATE_CONCATENATED_OP procedure

To delete a concatenated operation, use the SDO_CS.DELETE_OP procedure.

Examples
The following example creates a concatenation operation with the operation ID 300
and the name MY_CONCATENATION_OPERATION, and causes Spatial to use the

SDO_CS.CREATE_PREF_CONCATENATED_OP

SDO_CS Package (Coordinate System Transformation) 13-17

specified transformation plan in all cases (because use_case is null) when this
operation is used.

DECLARE
BEGIN
SDO_CS.CREATE_PREF_CONCATENATED_OP(
 300,
 'MY_CONCATENATED_OPERATION',
 TFM_PLAN(SDO_TFM_CHAIN(4242, 19910, 24200, 1000000000, 24200)),
 NULL);
END;
/

SDO_CS.DELETE_ALL_EPSG_RULES

13-18 Oracle Spatial User’s Guide and Reference

SDO_CS.DELETE_ALL_EPSG_RULES

Format
SDO_CS.DELETE_ALL_EPSG_RULES(

use_case IN VARCHAR2 DEFAULT NULL);

Description
Deletes the basic set of EPSG rules to be applied in certain transformations.

Parameters

use_case
Name of the use case to be associated with the application of the EPSG rules that are
created. Must match the value that was used for the use_case parameter value
(either null or a specified value) when the SDO_CS.CREATE_OBVIOUS_EPSG_RULES
procedure was called.

Usage Notes
This procedure deletes the EPSG rules that were previously created by the SDO_
CS.CREATE_OBVIOUS_EPSG_RULES procedure, and thus causes the default Spatial
rules to be used in all cases. (See the Usage Notes for the SDO_CS.CREATE_
OBVIOUS_EPSG_RULES procedure for more information.)

If use_case is null, this procedure deletes all rows from the SDO_PREFERRED_OPS_
SYSTEM table (see Section 6.6.24). If use_case is not null, this procedure deletes the
rows associated with the specified use case from the SDO_PREFERRED_OPS_USER
table (see Section 6.6.25).

Examples
The following example deletes the basic set of EPSG rules to be applied in certain
transformations.

EXECUTE SDO_CS.DELETE_ALL_EPSG_RULES;

SDO_CS.DELETE_OP

SDO_CS Package (Coordinate System Transformation) 13-19

SDO_CS.DELETE_OP

Format
SDO_CS.DELETE_OP(

op_id IN NUMBER);

Description
Deletes a concatenated operation.

Parameters

op_id
ID number of the operation to be deleted.

Usage Notes
To create a concatenated operation and make it preferred systemwide or only for a
specified use case, use the SDO_CS.CREATE_CONCATENATED_OP procedure.

Examples
The following example deletes the operation with the ID number 300.

EXECUTE SDO_CS.DELETE_OP(300);

SDO_CS.DETERMINE_CHAIN

13-20 Oracle Spatial User’s Guide and Reference

SDO_CS.DETERMINE_CHAIN

Format
SDO_CS.DETERMINE_CHAIN(

transient_rule_set IN SDO_TRANSIENT_RULE_SET,

use_case IN VARCHAR2,

source_srid IN NUMBER,

target_srid IN NUMBER) RETURN TFM_PLAN;

Description
Returns the query chain, based on the system rule set, to be used in transformations
from one coordinate reference system to another coordinate reference system.

Parameters

transient_rule_set
Rule set to be used for the transformation. If you specify a null value, the Oracle
system rule set is used.

use_case
Use case for which to determine the query chain. Must be a null value or a value from
the USE_CASE column of the SDO_PREFERRED_OPS_USER table (described in
Section 6.6.25).

source_srid
The SRID of the source coordinate reference system. Must be a value in the SRID
column of the SDO_COORD_REF_SYS table (described in Section 6.6.9).

target_srid
The SRID of the target coordinate reference system. Must be a value in the SRID
column of the SDO_COORD_REF_SYS table (described in Section 6.6.9).

Usage Notes
This function returns an object of type TFM_PLAN, which is explained in Section 6.5.

The transient_rule_set parameter is of type SDO_TRANSIENT_RULE_SET,
which has the following definition:

CREATE TYPE sdo_transient_rule_set AS OBJECT (
 source_srid NUMBER,
 target_srid NUMBER,
 tfm NUMBER);

Examples
The following example returns the query chain based on the system rule set.

SELECT MDSYS.SDO_CS.DETERMINE_CHAIN(NULL, NULL, 4804, 4257) FROM DUAL;

MDSYS.SDO_CS.DETERMINE_CHAIN(NULL,NULL,4804,4257)(THE_PLAN)
--
TFM_PLAN(SDO_TFM_CHAIN(4804, -2, 4257))

SDO_CS.DETERMINE_CHAIN

SDO_CS Package (Coordinate System Transformation) 13-21

The next example creates a preferred concatenated operation (with operation ID 300)
with a specified chain for transformations from SRID 4804 to SRID 4257, and then calls
the DETERMINE_CHAIN function, returning a different result. (The operation created
in this example is not meaningful or useful, and it was created only for illustration.)

CALL SDO_CS.CREATE_PREF_CONCATENATED_OP(
 300,
 'CONCATENATED OPERATION',
 TFM_PLAN(
 SDO_TFM_CHAIN(
 4804,
 1000000001, 4804,
 1000000002, 4804,
 1000000001, 4804,
 1000000001, 4804,
 1000000002, 4804,
 1000000002, 4804,
 1000000001, 4804,
 1000000001, 4804,
 1000000001, 4804,
 1000000002, 4804,
 1000000002, 4804,
 1000000002, 4257)),
 NULL);

SELECT MDSYS.SDO_CS.DETERMINE_CHAIN(NULL, NULL, 4804, 4257) FROM DUAL;

MDSYS.SDO_CS.DETERMINE_CHAIN(NULL,NULL,4804,4257)(THE_PLAN)
--
TFM_PLAN(SDO_TFM_CHAIN(4804, 300, 4257))

SDO_CS.DETERMINE_DEFAULT_CHAIN

13-22 Oracle Spatial User’s Guide and Reference

SDO_CS.DETERMINE_DEFAULT_CHAIN

Format
SDO_CS.DETERMINE_DEFAULT_CHAIN(

source_srid IN NUMBER,

target_srid IN NUMBER) RETURN SDO_SRID_CHAIN;

Description
Returns the default chain of SRID values in transformations from one coordinate
reference system to another coordinate reference system.

Parameters

source_srid
The SRID of the source coordinate reference system. Must be a value in the SRID
column of the SDO_COORD_REF_SYS table (described in Section 6.6.9).

target_srid
The SRID of the target coordinate reference system. Must be a value in the SRID
column of the SDO_COORD_REF_SYS table (described in Section 6.6.9).

Usage Notes
This function returns an object of type SDO_SRID_CHAIN, which is defined as
VARRAY(1048576) OF NUMBER.

Examples
The following example returns the default chain of SRID values in transformations
from SRID 4804 to SRID 4257.

SELECT MDSYS.SDO_CS.DETERMINE_DEFAULT_CHAIN(4804, 4257) FROM DUAL;

MDSYS.SDO_CS.DETERMINE_DEFAULT_CHAIN(4804,4257)
--
SDO_SRID_CHAIN(NULL, 4804, 4257, NULL)

SDO_CS.FIND_GEOG_CRS

SDO_CS Package (Coordinate System Transformation) 13-23

SDO_CS.FIND_GEOG_CRS

Format
SDO_CS.FIND_GEOG_CRS(

reference_srid IN NUMBER,

is_legacy IN VARCHAR2,

max_rel_num_difference IN NUMBER DEFAULT 0.000001) RETURN SDO_SRID_LIST;

Description
Returns the SRID values of geodetic (geographic) coordinate reference systems that
have the same well-known text (WKT) numeric values as the coordinate reference
system with the specified reference SRID value.

Parameters

reference_srid
The SRID of the coordinate reference system for which to find all other geodetic
coordinate reference systems that have the same WKT numeric values. Must be a
value in the SRID column of the SDO_COORD_REF_SYS table (described in
Section 6.6.9).

is_legacy
TRUE limits the results to geodetic coordinate reference systems for which the IS_
LEGACY column value is TRUE in the SDO_COORD_REF_SYS table (described in
Section 6.6.9); FALSE limits the results to geodetic coordinate reference systems for
which the IS_LEGACY column value is FALSE in the SDO_COORD_REF_SYS table. If
you specify a null value for this parameter, the IS_LEGACY column value in the SDO_
COORD_REF_SYS table is ignored in determining the results.

max_rel_num_difference
A numeric value indicating how closely WKT values must match in order for a
projected coordinate reference system to be considered a match. The default value is
0.000001. The value for each numeric WKT item is compared with its corresponding
value in the WKT for the reference SRID or in the specified list of parameters to this
function; and if the difference in all cases is less than or equal to the max_rel_num_
difference value, the SRID for that coordinate reference system is included in the
results.

Usage Notes
This function returns an object of type SDO_SRID_LIST, which is defined as
VARRAY(1048576) OF NUMBER.

The well-known text (WKT) format is described in Section 6.7.1.1.

Examples
The following examples show the effect of the is_legacy parameter value on the
results. The first example returns the SRID values of all geodetic legacy coordinate
reference systems that have the same WKT numeric values as the coordinate reference
system with the SRID value of 8307.

SELECT SDO_CS.FIND_GEOG_CRS(

SDO_CS.FIND_GEOG_CRS

13-24 Oracle Spatial User’s Guide and Reference

 8307,
 'TRUE') FROM DUAL;

SDO_CS.FIND_GEOG_CRS(8307,'TRUE')
--
SDO_SRID_LIST(8192, 8265, 8307, 8311, 8320, 524288, 2000002, 2000006, 2000012, 2
000015, 2000023, 2000028)

The next example returns the SRID values of all geodetic non-legacy coordinate
reference systems that have the same WKT numeric values as the coordinate reference
system with the SRID value of 8307.

SELECT SDO_CS.FIND_GEOG_CRS(
 8307,
 'FALSE') FROM DUAL;

SDO_CS.FIND_GEOG_CRS(8307,'FALSE')
--
SDO_SRID_LIST(4019, 4030, 4031, 4032, 4033, 4041, 4121, 4122, 4126, 4130, 4133,
4140, 4141, 4148, 4151, 4152, 4163, 4166, 4167, 4170, 4171, 4172, 4173, 4176, 41
80, 4189, 4190, 4258, 4269, 4283, 4318, 4319, 4326, 4610, 4612, 4617, 4619, 4624
, 4627, 4640, 4659, 4661, 4667, 4669, 4670)

The next example returns the SRID values of all geodetic coordinate reference systems
(legacy and non-legacy) that have the same WKT numeric values as the coordinate
reference system with the SRID value of 8307.

SELECT SDO_CS.FIND_GEOG_CRS(
 8307,
 NULL) FROM DUAL;

SDO_CS.FIND_GEOG_CRS(8307,NULL)
--
SDO_SRID_LIST(4019, 4030, 4031, 4032, 4033, 4041, 4121, 4122, 4126, 4130, 4133,
4140, 4141, 4148, 4151, 4152, 4163, 4166, 4167, 4170, 4171, 4172, 4173, 4176, 41
80, 4189, 4190, 4258, 4269, 4283, 4318, 4319, 4326, 4610, 4612, 4617, 4619, 4624
, 4627, 4640, 4659, 4661, 4667, 4669, 4670, 8192, 8265, 8307, 8311, 8320, 524288
, 2000002, 2000006, 2000012, 2000015, 2000023, 2000028)

SDO_CS.FIND_PROJ_CRS

SDO_CS Package (Coordinate System Transformation) 13-25

SDO_CS.FIND_PROJ_CRS

Format
SDO_CS.FIND_PROJ_CRS(

reference_srid IN NUMBER,

is_legacy IN VARCHAR2,

max_rel_num_difference IN NUMBER DEFAULT 0.000001) RETURN SDO_SRID_LIST;

Description
Returns the SRID values of projected coordinate reference systems that have the same
well-known text (WKT) numeric values as the coordinate reference system with the
specified reference SRID value.

Parameters

reference_srid
The SRID of the coordinate reference system for which to find all other projected
coordinate reference systems that have the same WKT numeric values. Must be a
value in the SRID column of the SDO_COORD_REF_SYS table (described in
Section 6.6.9).

is_legacy
TRUE limits the results to projected coordinate reference systems for which the IS_
LEGACY column value is TRUE in the SDO_COORD_REF_SYS table (described in
Section 6.6.9); FALSE limits the results to projected coordinate reference systems for
which the IS_LEGACY column value is FALSE in the SDO_COORD_REF_SYS table. If
you specify a null value for this parameter, the IS_LEGACY column value in the SDO_
COORD_REF_SYS table is ignored in determining the results.

max_rel_num_difference
A numeric value indicating how closely WKT values must match in order for a
coordinate reference system to be considered a match. The default value is 0.000001.
The value for each numeric WKT item is compared with its corresponding value in the
WKT for the reference SRID or in the specified list of parameters to this function; and
if the difference in all cases is less than or equal to the max_rel_num_difference
value, the SRID for that coordinate reference system is included in the results.

Usage Notes
This function returns an object of type SDO_SRID_LIST, which is defined as
VARRAY(1048576) OF NUMBER.

The well-known text (WKT) format is described in Section 6.7.1.1.

Examples
The following examples show the effect of the is_legacy parameter value on the
results. The first example returns the SRID values of all projected legacy coordinate
reference systems that have the same WKT numeric values as the coordinate reference
system with the SRID value of 2007. The returned result list is empty, because there are
no legacy projected legacy coordinate reference systems that meet the search criteria.

SELECT SDO_CS.FIND_PROJ_CRS(

SDO_CS.FIND_PROJ_CRS

13-26 Oracle Spatial User’s Guide and Reference

 2007,
 'TRUE') FROM DUAL;

SDO_CS.FIND_PROJ_CRS(2007,'TRUE')
--
SDO_SRID_LIST()

The next example returns the SRID values of all projected non-legacy coordinate
reference systems that have the same WKT numeric values as the coordinate reference
system with the SRID value of 2007.

SELECT SDO_CS.FIND_PROJ_CRS(
 2007,
 'FALSE') FROM DUAL;

SDO_CS.FIND_PROJ_CRS(2007,'FALSE')
--
SDO_SRID_LIST(2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 21291)

The next example returns the SRID values of all projected coordinate reference systems
(legacy and non-legacy) that have the same WKT numeric values as the coordinate
reference system with the SRID value of 2007. The returned result list is the same as for
the preceding example.

SELECT SDO_CS.FIND_PROJ_CRS(
 2007,
 NULL) FROM DUAL;

SDO_CS.FIND_PROJ_CRS(2007,NULL)
--
SDO_SRID_LIST(2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 21291)

SDO_CS.FROM_OGC_SIMPLEFEATURE_SRS

SDO_CS Package (Coordinate System Transformation) 13-27

SDO_CS.FROM_OGC_SIMPLEFEATURE_SRS

Format
SDO_CS.FROM_OGC_SIMPLEFEATURE_SRS(

wkt IN VARCHAR2) RETURN VARCHAR2;

Description
Converts a well-known text string from the Open Geospatial Consortium simple
feature format without the TOWGS84 keyword to the format that includes the
TOWGS84 keyword.

Parameters

wkt
Well-known text string.

Usage Notes
To convert a well-known text string from the Open Geospatial Consortium simple
feature format that includes the TOWGS84 keyword to the format without the
TOWGS84 keyword, use the SDO_CS.TO_OGC_SIMPLEFEATURE_SRS function.

Examples
The following example converts a well-known text string from the Open Geospatial
Consortium simple feature format without the TOWGS84 keyword to the format that
includes the TOWGS84 keyword.

SELECT sdo_cs.from_OGC_SimpleFeature_SRS('GEOGCS ["Longitude / Latitude (DHDN)",
 DATUM ["", SPHEROID ["Bessel 1841", 6377397.155, 299.1528128],
 582.000000, 105.000000, 414.000000, -1.040000, -0.350000, 3.080000, 8.300000],
 PRIMEM ["Greenwich", 0.000000], UNIT ["Decimal Degree",
0.01745329251994330]]')
FROM DUAL;

MDSYS.SDO_CS.FROM_OGC_SIMPLEFEATURE_SRS('GEOGCS["LONGITUDE/LATITUDE(DHDN)",DATUM
--
GEOGCS ["Longitude / Latitude (DHDN)", DATUM ["", SPHEROID ["Bessel 1841", 6377
397.155, 299.1528128], TOWGS84[582.000000, 105.000000, 414.000000, -1.040000, -
0.350000, 3.080000, 8.300000]], PRIMEM ["Greenwich", 0.000000], UNIT ["Decimal
 Degree", 0.01745329251994330]]

SDO_CS.FROM_USNG

13-28 Oracle Spatial User’s Guide and Reference

SDO_CS.FROM_USNG

Format
SDO_CS.FROM_USNG(

usng IN VARCHAR2,

srid IN NUMBER,

datum IN VARCHAR2 DEFAULT ’NAD83’) RETURN SDO_GEOMETRY;

Description
Converts a point represented in U.S. National Grid format to a spatial point geometry
object.

Parameters

usng
Well-known text string.

srid
The SRID of the coordinate system to be used for the conversion (that is, the SRID to
be used in the returned geometry). Must be a value in the SRID column of the SDO_
COORD_REF_SYS table (described in Section 6.6.9).

datum
The name of the datum on which the U.S. National Grid coordinate for the point is
based. Must be either a value in the DATUM_NAME column of the SDO_DATUMS
table (described in Section 6.6.22) or null. The default value is NAD83.

Usage Notes
For information about Oracle Spatial support for the U.S. National Grid, see
Section 6.10.

To convert a spatial point geometry to a point represented in U.S. National Grid
format, use the SDO_CS.TO_USNG function.

Examples
The following example converts a a point represented in U.S. National Grid format to
a spatial geometry point object with longitude/latitude coordinates.

-- Convert US National Grid point to SDO_GEMETRY point using SRID 4326
-- (WGS 84, longitude/latitude).
SELECT SDO_CS.FROM_USNG(
 '18SUJ2348316806479498',
 4326) FROM DUAL;

WGS84(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
SDO_GEOMETRY(2001, 4326, SDO_POINT_TYPE(-77.03524, 38.8894673, NULL), NULL, NULL)

SDO_CS.MAP_EPSG_SRID_TO_ORACLE

SDO_CS Package (Coordinate System Transformation) 13-29

SDO_CS.MAP_EPSG_SRID_TO_ORACLE

Format
SDO_CS.MAP_EPSG_SRID_TO_ORACLE(

epsg_srid IN NUMBER) RETURN NUMBER;

Description
Returns the Oracle Spatial SRID value corresponding to the specified EPSG SRID
value.

Parameters

epsg_srid
The SRID of the EPSG coordinate reference system, as indicated in the COORD_REF_
SYS_CODE field in the EPSG Coordinate Reference System table.

Usage Notes
This function returns a value that matches a value in the SRID column of the SDO_
COORD_REF_SYS table (see Section 6.6.9).

To return the EPSG SRID value corresponding to the specified Oracle Spatial SRID
value, use the SDO_CS.MAP_ORACLE_SRID_TO_EPSG function.

Examples
The following example returns the Oracle Spatial SRID value corresponding to EPSG
SRID 23038.

SELECT SDO_CS.MAP_EPSG_SRID_TO_ORACLE(23038) FROM DUAL;

SDO_CS.MAP_EPSG_SRID_TO_ORACLE(23038)

 82361

SDO_CS.MAP_ORACLE_SRID_TO_EPSG

13-30 Oracle Spatial User’s Guide and Reference

SDO_CS.MAP_ORACLE_SRID_TO_EPSG

Format
SDO_CS.MAP_ORACLE_SRID_TO_EPSG(

legacy_srid IN NUMBER) RETURN NUMBER;

Description
Returns the EPSG SRID value corresponding to the specified Oracle Spatial SRID
value.

Parameters

legacy_srid
Oracle Spatial SRID value. Must match a value in the LEGACY_CODE column of the
SDO_COORD_REF_SYS table (see Section 6.6.9).

Usage Notes
This function returns the SRID of an EPSG coordinate reference system. The EPSG
SRID value for a coordinate reference system is indicated in the COORD_REF_SYS_
CODE field in the EPSG Coordinate Reference System table.

To return the Oracle Spatial SRID value corresponding to a specified EPSG SRID value,
use the SDO_CS.MAP_EPSG_SRID_TO_ORACLE function.

Examples
The following example returns the EPSG SRID value corresponding to Oracle Spatial
SRID 82361.

SELECT SDO_CS.MAP_ORACLE_SRID_TO_EPSG(82361) FROM DUAL;

SDO_CS.MAP_ORACLE_SRID_TO_EPSG(82361)

 23038

SDO_CS.REVOKE_PREFERENCE_FOR_OP

SDO_CS Package (Coordinate System Transformation) 13-31

SDO_CS.REVOKE_PREFERENCE_FOR_OP

Format
SDO_CS.REVOKE_PREFERENCE_FOR_OP(

op_id IN NUMBER,

source_crs IN NUMBER DEFAULT NULL,

target_crs IN NUMBER DEFAULT NULL,

use_case IN VARCHAR2 DEFAULT NULL);

Description
Revokes a preference for an operation between a source coordinate system and a target
coordinate system.

Parameters

op_id
ID number of the operation. Must match an op_id value that was specified in a call to
the SDO_CS.ADD_PREFERENCE_FOR_OP procedure.

source_crs
The SRID of the source coordinate reference system. Must match the source_crs
value in a source_crs, target_crs, and use_case combination that was specified
in a call to the SDO_CS.ADD_PREFERENCE_FOR_OP procedure.

target_crs
The SRID of the target coordinate reference system. Must match the target_crs
value in a source_crs, target_crs, and use_case combination that was specified
in a call to the SDO_CS.ADD_PREFERENCE_FOR_OP procedure.

use_case
Name of the use case associated with the preference. Must match the use_case value
in a source_crs, target_crs, and use_case combination that was specified in a
call to the SDO_CS.ADD_PREFERENCE_FOR_OP procedure.

Usage Notes
This procedure reverses the effect of the SDO_CS.ADD_PREFERENCE_FOR_OP
procedure.

If use_case is null, this procedure deletes one or more rows from the SDO_
PREFERRED_OPS_SYSTEM table (described in Section 6.6.24). If use_case is not
null, this procedure deletes one or more rows from the SDO_PREFERRED_OPS_USER
table (described in Section 6.6.25).

Examples
The following example revokes a preference for operation ID 19777 to be used in
transformations from SRID 4301 to SRID 4326 when use case use_case_B is specified
for the transformation.

EXECUTE SDO_CS.REVOKE_PREFERENCE_FOR_OP(19977, 4301, 4326, 'use_case_B');

SDO_CS.TO_OGC_SIMPLEFEATURE_SRS

13-32 Oracle Spatial User’s Guide and Reference

SDO_CS.TO_OGC_SIMPLEFEATURE_SRS

Format
SDO_CS.TO_OGC_SIMPLEFEATURE_SRS(

wkt IN VARCHAR2) RETURN VARCHAR2;

Description
Converts a well-known text string from the Open Geospatial Consortium simple
feature format that includes the TOWGS84 keyword to the format without the
TOWGS84 keyword.

Parameters

wkt
Well-known text string.

Usage Notes
To convert a well-known text string from the Open Geospatial Consortium simple
feature format without the TOWGS84 keyword to the format that includes the
TOWGS84 keyword, use the SDO_CS.FROM_OGC_SIMPLEFEATURE_SRS procedure.

Examples
The following example converts a well-known text string from the Open Geospatial
Consortium simple feature format that includes the TOWGS84 keyword to the format
without the TOWGS84 keyword.

SELECT sdo_cs.to_OGC_SimpleFeature_SRS('GEOGCS ["Longitude / Latitude (DHDN)",
 DATUM ["", SPHEROID ["Bessel 1841", 6377397.155, 299.1528128],
 TOWGS84 [582.000000, 105.000000, 414.000000, -1.040000, -0.350000, 3.080000,
 8.300000]],
 PRIMEM ["Greenwich", 0.000000], UNIT ["Decimal Degree",
0.01745329251994330]]')
FROM DUAL;

MDSYS.SDO_CS.TO_OGC_SIMPLEFEATURE_SRS('GEOGCS["LONGITUDE/LATITUDE(DHDN)",DATUM["
--
GEOGCS ["Longitude / Latitude (DHDN)", DATUM ["", SPHEROID ["Bessel 1841", 6377
397.155, 299.1528128], 582.000000, 105.000000, 414.000000, -1.040000, -0.350000,
3.080000, 8.300000], PRIMEM ["Greenwich", 0.000000], UNIT ["Decimal Degree",
0.01745329251994330]]

SDO_CS.TO_USNG

SDO_CS Package (Coordinate System Transformation) 13-33

SDO_CS.TO_USNG

Format
SDO_CS.TO_USNG(

geom IN SDO_GEOMETRY,

accuracy_in_meters IN NUMBER,

datum IN VARCHAR2 DEFAULT ’NAD83’) RETURN VARCHAR2;

Description
Converts a spatial point geometry object to a point represented in U.S. National Grid
format.

Parameters

geom
Point geometry whose representation is to be converted to a point represented in U.S.
National Grid format. The input geometry must have a valid non-null SRID, that is, a
value in the SRID column of the SDO_COORD_REF_SYS table (described in
Section 6.6.9).

accuracy_in_meters
Accuracy of the point location in meters. Should be 1 raised to a negative or positive
power of 10 (for example, 0.001, 0.01, 0.1, 1, 10, 100, or 1000). Any other specified
values are adjusted internally by Spatial, and the result might not be what you expect.

datum
The name of the datum on which the U.S. National Grid coordinate for the point is to
be based. Must be either NAD83 or NAD27. The default value is NAD83.

Usage Notes
For information about Oracle Spatial support for the U.S. National Grid, see
Section 6.10.

The accuracy_in_meters value affects the number of digits used to represent the
accuracy in the returned U.S. National Grid string. For example, if you specify
0.000001, the string will contain many digits; however, depending on the source of the
data, the digits might not accurately reflect geographical reality. Consider the
following scenarios. If you create a U.S. National Grid string from a UTM geometry,
you can get perfect accuracy, because no inherently inaccurate transformation is
involved. However, transforming from a Lambert projection to the U.S. National Grid
format involves an inverse Lambert projection and a forward UTM projection, each of
which has some inherent inaccuracy. If you request the resulting U.S. National Grid
string with 1 millimeter (0.001) accuracy, the string will contain all the digits, but the
millimeter-level digit will probably be geographically inaccurate.

To convert a a point represented in U.S. National Grid format to a spatial point
geometry, use the SDO_CS.FROM_USNG function.

SDO_CS.TO_USNG

13-34 Oracle Spatial User’s Guide and Reference

Examples
The following example converts a spatial geometry point object with
longitude/latitude coordinates to a point represented in U.S. National Grid format
using an accuracy of 0.001 meter (1 millimeter).

-- Convert longitude/latitude (WGS 84) point to US National Grid.
SELECT SDO_CS.TO_USNG(
 SDO_GEOMETRY(2001, 4326,
 SDO_POINT_TYPE(-77.0352402158258, 38.8894673086544, NULL),
 NULL, NULL),
 0.001) FROM DUAL;

SDO_CS.TO_USNG(SDO_GEOMETRY(2001,4326,SDO_POINT_TYPE(-77.0352402158258,38.889467
--
18SUJ2348316806479498

SDO_CS.TRANSFORM

SDO_CS Package (Coordinate System Transformation) 13-35

SDO_CS.TRANSFORM

Format
SDO_CS.TRANSFORM(

geom IN SDO_GEOMETRY,

to_srid IN NUMBER

) RETURN SDO_GEOMETRY;

or

SDO_CS.TRANSFORM(

geom IN SDO_GEOMETRY,

tolerance IN NUMBER,

to_srid IN NUMBER

) RETURN SDO_GEOMETRY;

or

SDO_CS.TRANSFORM(

geom IN SDO_GEOMETRY,

dim IN SDO_DIM_ARRAY,

to_srid IN NUMBER

) RETURN SDO_GEOMETRY;

or

SDO_CS.TRANSFORM(

geom IN SDO_GEOMETRY,

to_srname IN VARCHAR2

) RETURN SDO_GEOMETRY;

or

SDO_CS.TRANSFORM(

geom IN SDO_GEOMETRY,

tolerance IN NUMBER,

to_srname IN VARCHAR2

) RETURN SDO_GEOMETRY;

or

SDO_CS.TRANSFORM(

geom IN SDO_GEOMETRY,

dim IN SDO_DIM_ARRAY,

to_srname IN VARCHAR2

) RETURN SDO_GEOMETRY;

SDO_CS.TRANSFORM

13-36 Oracle Spatial User’s Guide and Reference

Description
Transforms a geometry representation using a coordinate system (specified by SRID or
name).

Parameters

geom
Geometry whose representation is to be transformed using another coordinate system.
The input geometry must have a valid non-null SRID, that is, a value in the SRID
column of the SDO_COORD_REF_SYS table (described in Section 6.6.9).

tolerance
Tolerance value (see Section 1.5.5).

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

to_srid
The SRID of the coordinate system to be used for the transformation. It must be a
value in the SRID column of the SDO_COORD_REF_SYS table (described in
Section 6.6.9).

to_srname
The name of the coordinate system to be used for the transformation. It must be a
value (specified exactly) in the COORD_REF_SYS_NAME column of the SDO_
COORD_REF_SYS table (described in Section 6.6.9).

Usage Notes
Transformation can be done only between two different georeferenced coordinate
systems or between two different local coordinate systems.

An exception is raised if geom, to_srid, or to_srname is invalid. For geom to be
valid for this function, its definition must include an SRID value matching a value in
the SRID column of the SDO_COORD_REF_SYS table (described in Section 6.6.9).

Examples
The following example transforms the cola_c geometry to a representation that uses
SRID value 8199. (This example uses the definitions from the example in Section 6.11.)

-- Return the transformation of cola_c using to_srid 8199
-- ('Longitude / Latitude (Arc 1950)')
SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo, 8199)
 FROM cola_markets_cs c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS_CS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_c';

NAME

SDO_CS.TRANSFORM(C.SHAPE,M.DIMINFO,8199)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z)
--
cola_c
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074114, 3.00291482, 6.00067068, 3.00291287, 6.0006723, 5.00307625, 4.0007
1961, 5.00307838, 3.00074114, 3.00291482))

-- Same as preceding, but using to_srname parameter.

SDO_CS.TRANSFORM

SDO_CS Package (Coordinate System Transformation) 13-37

SELECT c.name, SDO_CS.TRANSFORM(c.shape, m.diminfo,
 'Longitude / Latitude (Arc 1950)')
 FROM cola_markets_cs c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS_CS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_c';

NAME

SDO_CS.TRANSFORM(C.SHAPE,M.DIMINFO,'LONGITUDE/LATITUDE(ARC1950)')(SDO_GTYPE, SDO
--
cola_c
SDO_GEOMETRY(2003, 8199, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3.00074114, 3.00291482, 6.00067068, 3.00291287, 6.0006723, 5.00307625, 4.0007
1961, 5.00307838, 3.00074114, 3.00291482))

SDO_CS.TRANSFORM_LAYER

13-38 Oracle Spatial User’s Guide and Reference

SDO_CS.TRANSFORM_LAYER

Format
SDO_CS.TRANSFORM_LAYER(

table_in IN VARCHAR2,

column_in IN VARCHAR2,

table_out IN VARCHAR2,

to_srid IN NUMBER);

or

SDO_CS.TRANSFORM_LAYER(

table_in IN VARCHAR2,

column_in IN VARCHAR2,

table_out IN VARCHAR2,

use_plan IN TFM_PLAN);

or

SDO_CS.TRANSFORM_LAYER(

table_in IN VARCHAR2,

column_in IN VARCHAR2,

table_out IN VARCHAR2,

use_case IN VARCHAR2,

to_srid IN NUMBER);

Description
Transforms an entire layer of geometries (that is, all geometries in a specified column
in a table).

Parameters

table_in
Table containing the layer (column_in) whose geometries are to be transformed.

column_in
Column in table_in that contains the geometries to be transformed.

table_out
Table that will be created and that will contain the results of the transformation. See
the Usage Notes for information about the format of this table.

to_srid
The SRID of the coordinate system to be used for the transformation. to_srid must
be a value in the SRID column of the SDO_COORD_REF_SYS table (described in
Section 6.6.9).

SDO_CS.TRANSFORM_LAYER

SDO_CS Package (Coordinate System Transformation) 13-39

use_plan
Transformation plan. The TFM_PLAN object type is explained in Section 6.5.

use_case
Name of the use case whose transformation rules are to be applied in performing the
transformation. Use cases are explained in Section 6.4.

Usage Notes
Transformation can be done only between two different georeferenced coordinate
systems or between two different local coordinate systems.

An exception is raised if any of the following occurs:

■ table_in does not exist, or column_in does not exist in the table.

■ The geometries in column_in have a null or invalid SDO_SRID value.

■ table_out already exists.

■ to_srid is invalid.

The table_out table is created by the procedure and is filled with one row for each
transformed geometry. This table has the columns shown in Table 13–2.

Examples
The following example transforms the geometries in the shape column in the COLA_
MARKETS_CS table to a representation that uses SRID value 8199. The transformed
geometries are stored in the newly created table named COLA_MARKETS_CS_8199.
(This example uses the definitions from the example in Section 6.11.)

-- Transform the entire SHAPE layer and put results in the table
-- named cola_markets_cs_8199, which the procedure will create.
CALL SDO_CS.TRANSFORM_LAYER('COLA_MARKETS_CS','SHAPE','COLA_MARKETS_CS_8199',8199);

Example 6–8 in Section 6.11 includes a display of the geometry object coordinates in
both tables (COLA_MARKETS_CS and COLA_MARKETS_CS_8199).

Table 13–2 Table to Hold Transformed Layer

Column
Name Data Type Description

SDO_ROWID ROWID Oracle ROWID (row address identifier). For more
information about the ROWID data type, see Oracle
Database SQL Reference.

GEOMETRY SDO_GEOMETRY Geometry object with coordinate values in the
specified (to_srid parameter) coordinate system.

SDO_CS.UPDATE_WKTS_FOR_ALL_EPSG_CRS

13-40 Oracle Spatial User’s Guide and Reference

SDO_CS.UPDATE_WKTS_FOR_ALL_EPSG_CRS

Format
SDO_CS.UPDATE_WKTS_FOR_ALL_EPSG_CRS();

Description
Updates the well-known text (WKT) description for all EPSG coordinate reference
systems.

Parameters
None.

Usage Notes
For information about using procedures to update well-known text (WKT) description,
see Section 6.7.1.2.

Examples
The following example updates the WKT description for all EPSG coordinate reference
systems.

EXECUTE SDO_CS.UPDATE_WKTS_FOR_ALL_EPSG_CRS;
Updating SRID 4001...
Updating SRID 4002...
Updating SRID 4003...
. . .
Updating SRID 69036405...
Updating SRID 69046405...

SDO_CS.UPDATE_WKTS_FOR_EPSG_CRS

SDO_CS Package (Coordinate System Transformation) 13-41

SDO_CS.UPDATE_WKTS_FOR_EPSG_CRS

Format
SDO_CS.UPDATE_WKTS_FOR_EPSG_CRS(

srid IN NUMBER);

Description
Updates the well-known text (WKT) description for the EPSG coordinate reference
system associated with a specified SRID.

Parameters

srid
The SRID of the coordinate system whose well-known text (WKT) description is to be
updated. An entry for the specified value must exist in the SDO_COORD_REF_SYS
table (described in Section 6.6.9).

Usage Notes
For information about using procedures to update well-known text (WKT) description,
see Section 6.7.1.2.

Examples
The following example updates the WKT description for the EPSG coordinate
reference system associated with SRID 8307.

EXECUTE SDO_CS.UPDATE_WKTS_FOR_EPSG_CRS(8307);

SDO_CS.UPDATE_WKTS_FOR_EPSG_DATUM

13-42 Oracle Spatial User’s Guide and Reference

SDO_CS.UPDATE_WKTS_FOR_EPSG_DATUM

Format
SDO_CS.UPDATE_WKTS_FOR_EPSG_DATUM(

datum_id IN NUMBER);

Description
Updates the well-known text (WKT) description for all EPSG coordinate reference
systems associated with a specified datum.

Parameters

datum_id
The ID of the datum. Must match a value in the DATUM_ID column of the SDO_
DATUMS table (described in Section 6.6.22).

Usage Notes
For information about using procedures to update well-known text (WKT) description,
see Section 6.7.1.2.

Examples
The following example updates the WKT description for all EPSG coordinate reference
systems associated with datum 5100.

EXECUTE SDO_CS.UPDATE_WKTS_FOR_EPSG_DATUM(5100);
Updating SRID 5714...
Updating SRID 5715...

SDO_CS.UPDATE_WKTS_FOR_EPSG_ELLIPS

SDO_CS Package (Coordinate System Transformation) 13-43

SDO_CS.UPDATE_WKTS_FOR_EPSG_ELLIPS

Format
SDO_CS.UPDATE_WKTS_FOR_EPSG_ELLIPS(

ellipsoid_id IN NUMBER);

Description
Updates the well-known text (WKT) description for all EPSG coordinate reference
systems associated with a specified ellipsoid.

Parameters

ellipsoid_id
The ID of the ellipsoid. Must match a value in the ELLIPSOID_ID column of the SDO_
ELLIPSOIDS table (described in Section 6.6.23).

Usage Notes
For information about using procedures to update well-known text (WKT) description,
see Section 6.7.1.2.

Examples
The following example updates the WKT description for all EPSG coordinate reference
systems associated with ellipsoid 7100.

EXECUTE SDO_CS.UPDATE_WKTS_FOR_EPSG_ELLIPS(7001);
Updating SRID 4001...
Updating SRID 4188...
Updating SRID 29901...
Updating SRID 61886405...
Updating SRID 4277...
Updating SRID 27700...
Updating SRID 62776405...
Updating SRID 4278...
Updating SRID 62786405...
Updating SRID 4279...
Updating SRID 62796405...

SDO_CS.UPDATE_WKTS_FOR_EPSG_OP

13-44 Oracle Spatial User’s Guide and Reference

SDO_CS.UPDATE_WKTS_FOR_EPSG_OP

Format
SDO_CS.UPDATE_WKTS_FOR_EPSG_OP(

coord_op_id IN NUMBER);

Description
Updates the well-known text (WKT) description for all EPSG coordinate reference
systems associated with a specified coordinate transformation operation.

Parameters

coord_op_id
The ID of the SRID of the coordinate transformation operation. Must match a value in
the COORD_OP_ID column of the SDO_COORD_OP_PARAM_VALS table (described
in Section 6.6.5).

Usage Notes
For information about using procedures to update well-known text (WKT) description,
see Section 6.7.1.2.

Examples
The following example updates the WKT description for all EPSG coordinate reference
systems associated with coordinate transformation operation 2000067.

EXECUTE SDO_CS.UPDATE_WKTS_FOR_EPSG_OP(2000067);
Updating SRID 20000671...

SDO_CS.UPDATE_WKTS_FOR_EPSG_PARAM

SDO_CS Package (Coordinate System Transformation) 13-45

SDO_CS.UPDATE_WKTS_FOR_EPSG_PARAM

Format
SDO_CS.UPDATE_WKTS_FOR_EPSG_PARAM(

coord_op_id IN NUMBER,

parameter_id IN NUMBER);

Description
Updates the well-known text (WKT) description for all EPSG coordinate reference
systems associated with a specified coordinate transformation operation and
parameter for transformation operations.

Parameters

coord_op_id
The ID of the SRID of the coordinate transformation operation. Must match a value in
the COORD_OP_ID column of the SDO_COORD_OP_PARAM_VALS table (described
in Section 6.6.5).

parameter_id
The ID of the SRID of the parameter for transformation operations. Must match a
value in the PARAMETER_ID column of the SDO_COORD_OP_PARAM_VALS table
(described in Section 6.6.5) where the COORD_OP_ID column value is equal to the
coord_op_id parameter value.

Usage Notes
For information about using procedures to update well-known text (WKT) description,
see Section 6.7.1.2.

Examples
The following example updates the WKT description for all EPSG coordinate reference
systems associated with coordinate transformation operation 9601 and parameter
8602.

EXECUTE SDO_CS.UPDATE_WKTS_FOR_EPSG_PARAM(9601, 8602);

SDO_CS.UPDATE_WKTS_FOR_EPSG_PM

13-46 Oracle Spatial User’s Guide and Reference

SDO_CS.UPDATE_WKTS_FOR_EPSG_PM

Format
SDO_CS.UPDATE_WKTS_FOR_EPSG_PM(

prime_meridian_id IN NUMBER);

Description
Updates the well-known text (WKT) description for all EPSG coordinate reference
systems associated with a specified prime meridian.

Parameters

prime_meridian_id
The ID of the prime meridian. Must match a value in the PRIME_MERIDIAN_ID
column in the SDO_PRIME_MERIDIANS table (described in Section 6.6.26).

Usage Notes
For information about using procedures to update well-known text (WKT) description,
see Section 6.7.1.2.

Examples
The following example updates the WKT description for all EPSG coordinate reference
systems associated with prime meridian 8902.

EXECUTE SDO_CS.UPDATE_WKTS_FOR_EPSG_PM(8902);
Updating SRID 4803...
Updating SRID 20790...
Updating SRID 20791...
Updating SRID 68036405...
Updating SRID 4904...
Updating SRID 2963...
Updating SRID 69046405...

SDO_CS.VALIDATE_WKT

SDO_CS Package (Coordinate System Transformation) 13-47

SDO_CS.VALIDATE_WKT

Format
SDO_CS.VALIDATE_WKT(

srid IN NUMBER

) RETURN VARCHAR2;

Description
Validates the well-known text (WKT) description associated with a specified SRID.

Parameters

srid
The SRID of the coordinate system whose well-known text (WKT) description is to be
validated. An entry for the specified value must exist in the SDO_COORD_REF_SYS
table (described in Section 6.6.9).

Usage Notes
This function returns the string 'TRUE' if the WKT description is valid. If the WKT
description is invalid, this function returns a string in the format 'FALSE
(<position-number>)', where <position-number> is the number of the character position
in the WKT description where the first error occurs.

The WKT description is checked to see if it satisfies the requirements described in
Section 6.7.1.1.

Examples
The following example validates the WKT description of the coordinate system
associated with SRID 81989000. The results show that the cause of the invalidity (or the
first cause of the invalidity) starts at character position 181 in the WKT description.
(SRID 81989000 is not associated with any established coordinate system. Rather, it is
for a deliberately invalid coordinate system that was inserted into a test version of the
MDSYS.CS_SRS table, and it is not included in the MDSYS.CS_SRS table that is
shipped with Oracle Spatial.)

SELECT SDO_CS.VALIDATE_WKT(81989000) FROM DUAL;

SDO_CS.VALIDATE_WKT(81989000)
--
FALSE (181)

SDO_CS.VIEWPORT_TRANSFORM

13-48 Oracle Spatial User’s Guide and Reference

SDO_CS.VIEWPORT_TRANSFORM

Format
SDO_CS.VIEWPORT_TRANSFORM(

geom IN SDO_GEOMETRY,

to_srid IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Transforms an optimized rectangle into a valid polygon for use with Spatial operators
and functions.

Parameters

geom
Geometry whose representation is to be transformed from an optimized rectangle to a
valid polygon. The input geometry must have an SRID value of 0 (zero), as explained
in the Usage Notes.

to_srid
The SRID of the coordinate system to be used for the transformation (that is, the SRID
to be used in the returned geometry). to_srid must be either a value in the SRID
column of the SDO_COORD_REF_SYS table (described in Section 6.6.9) or NULL.

Usage Notes
The geometry passed in must be an optimized rectangle.

If to_srid is a geodetic SRID, a geometry (not an optimized rectangle) is returned
that conforms to the Oracle Spatial requirements for a geodetic geometry (for example,
each polygon element’s area must be less than one-half the surface area of the Earth).

If to_srid is not a geodetic SRID, an optimized rectangle is returned in which the
SRID is set to to_srid.

Visualizer applications that work on geodetic data usually treat the longitude and
latitude space as a regular Cartesian coordinate system. Fetching the data
corresponding to a viewport is usually done with the help of an SDO_FILTER or SDO_
GEOM.RELATE operation where the viewport (with an optimized rectangle
representation) is sent as the window query. Before release 10.1, this optimized
rectangle type could not be used in geodetic space, and therefore this type of viewport
query could not be sent to the database. The VIEWPORT_TRANSFORM function was
created to provide a workaround to this previous restriction.

The viewport rectangles should be constructed with the SRID value as 0 and input to
the function to generate a corresponding valid geodetic polygon. This geodetic
polygon can then be used in the SDO_FILTER or SDO_GEOM.RELATE call as the
window object.

Note: This function is deprecated, and will not be supported in
future releases of Spatial. Instead, use a geodetic MBR to specify the
query window, as explained in Section 6.2.3.

SDO_CS.VIEWPORT_TRANSFORM

SDO_CS Package (Coordinate System Transformation) 13-49

An SRID value of 0 should only be specified when calling the VIEWPORT_
TRANSFORM function. It is not valid in any other context in Spatial.

This function should be used only when the display space is equirectangular (a
rectangle), and the data displayed is geodetic.

Examples
The following example specifies the viewport as the whole Earth represented by an
optimized rectangle. It returns the names of all four cola markets. (This example uses
the definitions from the example in Section 6.11.)

SELECT c.name FROM cola_markets_cs c WHERE
 SDO_FILTER(c.shape, SDO_CS.VIEWPORT_TRANSFORM(
 SDO_GEOMETRY(
 2003,
 0, -- SRID = 0 (special case)
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(-180,-90,180,90)),
 8307)) = 'TRUE';

NAME

cola_a
cola_c
cola_b
cola_d

If the optimizer does not generate an optimal plan and performance is not as you
expect, you can try the following alternative version of the query.

SELECT c.name FROM cola_markets_cs c,
 (SELECT
 SDO_CS.VIEWPORT_TRANSFORM(
 SDO_GEOMETRY(2003, 0, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(-180,-90,180,90)), 8307)
 window_geom FROM DUAL)
WHERE SDO_FILTER(c.shape, window_geom) = 'TRUE';

NAME

cola_a
cola_c
cola_b
cola_d

SDO_CS.VIEWPORT_TRANSFORM

13-50 Oracle Spatial User’s Guide and Reference

SDO_GCDR Package (Geocoding) 14-1

14
SDO_GCDR Package (Geocoding)

The MDSYS.SDO_GCDR package contains subprograms for geocoding address data.

To use the subprograms in this chapter, you must understand the conceptual and
usage information about geocoding in Chapter 5.

Table 14–1 lists the geocoding subprograms.

The rest of this chapter provides reference information on the subprograms, listed in
alphabetical order.

Table 14–1 Subprograms for Geocoding Address Data

Subprogram Description

SDO_GCDR.GEOCODE Geocodes an unformatted address and returns an
SDO_GEOR_ADDR object.

SDO_GCDR.GEOCODE_ADDR Geocodes an input address using attributes in an SDO_
GEO_ADDR object, and returns the first matched
address as an SDO_GEO_ADDR object.

SDO_GCDR.GEOCODE_ADDR_
ALL

Geocodes an input address using attributes in an SDO_
GEO_ADDR object, and returns matching addresses as
an SDO_ADDR_ARRAY object.

SDO_GCDR.GEOCODE_ALL Geocodes all addresses associated with an unformatted
address and returns the result as an SDO_ADDR_
ARRAY object.

SDO_GCDR.GEOCODE_AS_
GEOMETRY

Geocodes an unformatted address and returns an
SDO_GEOMETRY object.

SDO_GCDR.REVERSE_
GEOCODE

Reverse geocodes a location, specified by its spatial
geometry object and country, and returns an SDO_
GEO_ADDR object.

SDO_GCDR.GEOCODE

14-2 Oracle Spatial User’s Guide and Reference

SDO_GCDR.GEOCODE

Format
SDO_GCDR.GEOCODE(

username IN VARCHAR2,

addr_lines IN SDO_KEYWORDARRAY,

country IN VARCHAR2,

match_mode IN VARCHAR2

) RETURN SDO_GEO_ADDR;

Description
Geocodes an unformatted address and returns the result as an SDO_GEO_ADDR
object.

Parameters

username
Name of the user that owns the tables containing the geocoding data.

addr_lines
An array of quoted strings representing the unformatted address to be geocoded. The
SDO_KEYWORDARRAY type is described in Section 5.2.3.

country
Country name or ISO country code.

match_mode
Match mode for the geocoding operation. Match modes are explained in Section 5.1.2.

Usage Notes
This function returns an object of type SDO_GEOR_ADDR, which is described in
Section 5.2.1. It performs the same operation as the SDO_GCDR.GEOCODE_AS_
GEOMETRY function; however, that function returns an SDO_GEOMETRY object.

Examples
The following example geocodes the address of City Hall in San Francisco, California,
using the RELAX_BASE_NAME match mode. It returns the longitude and latitude
coordinates of this address as -122.41815 and 37.7784183, respectively.

SELECT SDO_GCDR.GEOCODE('SCOTT', SDO_KEYWORDARRAY('1 Carlton B Goodlett Pl',
 'San Francisco, CA 94102'), 'US', 'RELAX_BASE_NAME') FROM DUAL;

SDO_GCDR.GEOCODE('SCOTT',SDO_KEYWORDARRAY('1CARLTONBGOODLETTPL','SANFRANCISCO
--
SDO_GEO_ADDR(0, SDO_KEYWORDARRAY(), NULL, 'CARLTON B GOODLETT PL', NULL, NULL, '
SAN FRANCISCO', NULL, 'CA', 'US', '94102', NULL, '94102', NULL, '1', 'CARLTON B
GOODLETT', 'PL', 'F', 'F', NULL, NULL, 'L', .01, 23614360, 'nul?#ENUT?B281CP?',
1, 'DEFAULT', -122.41815, 37.7784183)

SDO_GCDR.GEOCODE_ADDR

SDO_GCDR Package (Geocoding) 14-3

SDO_GCDR.GEOCODE_ADDR

Format
SDO_GCDR.GEOCODE_ADDR(

gc_username IN VARCHAR2,

address IN SDO_GEO_ADDR

) RETURN SDO_GEO_ADDR;

Description
Geocodes an input address using attributes in an SDO_GEO_ADDR object, and
returns the first matched address as an SDO_GEO_ADDR object.

Parameters

gc_username
Name of the user that owns the tables containing the geocoding data.

address
An SDO_GEO_ADDR object with one or more attributes set. The SDO_GEO_ADDR
type is described in Section 5.2.1.

Usage Notes
This function enables you to specify as many attributes in the input SDO_GEO_ADDR
object as you can or want to set. It finds the first matching address, and returns an
SDO_GEO_ADDR object with all possible attributes set.

Unlike the SDO_GCDR.GEOCODE function, which geocodes input addresses
specified by unformatted address lines, the SDO_GCDR.GEOCODE_ADDR function
input addresses specified by individual addressing fields defined in SDO_GEO_
ADDR objects. When you use unformatted address lines, you rely on the geocoding
software to parse the input address and decompose it into individual address fields.
This process usually works well, but it can produce undesirable results if the input
addresses are not well formatted. By contrast, when you specify parts of the input
address as SDO_GEO_ADDR object attributes, you can reduce the chance of
geocoding errors and produce more desirable results.

For examples of the SDO_GCDR.GEOCODE_ADDR function, see Example 5–2 and
Example 5–3 in Section 5.4.

See also the SDO_GCDR.GEOCODE_ADDR_ALL function, which performs the same
operation as this function, but which can return more than one address.

Examples
The following example returns the geocoded result for a point of interest named
CALIFORNIA PACIFIC MEDICAL CTR. The example uses a user-defined function
named create_addr_from_placename (as defined in Example 5–2 in Section 5.4)
to construct the input SDO_GEO_ADDR object.

SELECT sdo_gcdr.geocode_addr('SCOTT',
 create_addr_from_placename('CALIFORNIA PACIFIC MEDICAL CTR', 'US'))
FROM DUAL;

SDO_GCDR.GEOCODE_ADDR

14-4 Oracle Spatial User’s Guide and Reference

SDO_GCDR.GEOCODE_ADDR('SCOTT',CREATE_ADDR_FROM_PLACENAME('CALIFORNIAPACIFICME
--
SDO_GEO_ADDR(0, SDO_KEYWORDARRAY(), NULL, 'BUCHANAN ST', NULL, NULL, 'SAN FRANCI
SCO', NULL, 'CA', 'US', '94115', NULL, '94115', NULL, '2333', NULL, NULL, 'F', '
F', NULL, NULL, 'L', 0, 23599031, '??????????B281CP?', 4, 'DEFAULT', -122.43097,
 37.79138)

SDO_GCDR.GEOCODE_ADDR_ALL

SDO_GCDR Package (Geocoding) 14-5

SDO_GCDR.GEOCODE_ADDR_ALL

Format
SDO_GCDR.GEOCODE_ADDR_ALL(

gc_username IN VARCHAR2,

address IN SDO_GEO_ADDR,

max_res_num IN NUMBER DEFAULT 4000

) RETURN SDO_ADDR_ARRAY;

Description
Geocodes an input address using attributes in an SDO_GEO_ADDR object, and
returns matching addresses as an SDO_ADDR_ARRAY object (described in
Section 5.2.2).

Parameters

gc_username
Name of the user that owns the tables containing the geocoding data.

address
An SDO_GEO_ADDR object with one or more attributes set. The SDO_GEO_ADDR
type is described in Section 5.2.1.

max_res_num
Maximum number of results to return in the SDO_ADDR_ARRAY object. The default
value is 4000.

Usage Notes
This function enables you to specify as many attributes in the input SDO_GEO_ADDR
object as you can or want to set. It finds matching addresses (up to 4000 or the limit
specified in the max_res_num parameter), and returns an SDO_ADDR_ARRAY object
in which each geocoded result has all possible attributes set.

This function performs the same operation as the SDO_GCDR.GEOCODE_ADDR
function, except that it can return more than one address. See the Usage Notes for the
SDO_GCDR.GEOCODE_ADDR function for more information.

Examples
The following example returns up to three geocoded results for a point of interest
named CALIFORNIA PACIFIC MEDICAL CTR. (In this case only one result is
returned, because the geocoding data contains only one address matching that point of
interest.) The example uses a user-defined function named create_addr_from_
placename (as defined in Example 5–2 in Section 5.4) to construct the input SDO_
GEO_ADDR object.

SELECT sdo_gcdr.geocode_addr_all('SCOTT',
 create_addr_from_placename('CALIFORNIA PACIFIC MEDICAL CTR', 'US'), 3)
FROM DUAL;

SDO_GCDR.GEOCODE_ADDR_ALL('SCOTT',CREATE_ADDR_FROM_PLACENAME('CALIFORNIAPACIF
--

SDO_GCDR.GEOCODE_ADDR_ALL

14-6 Oracle Spatial User’s Guide and Reference

SDO_ADDR_ARRAY(SDO_GEO_ADDR(0, SDO_KEYWORDARRAY(), 'CALIFORNIA PACIFIC MEDICAL C
TR-SF', 'BUCHANAN ST', NULL, NULL, 'SAN FRANCISCO', NULL, 'CA', 'US', '94115', N
ULL, '94115', NULL, '2333', NULL, NULL, 'F', 'F', NULL, NULL, 'L', 0, 23599031,
'??????????B281CP?', 4, 'DEFAULT', -122.43097, 37.79138))

SDO_GCDR.GEOCODE_ALL

SDO_GCDR Package (Geocoding) 14-7

SDO_GCDR.GEOCODE_ALL

Format
SDO_GCDR.GEOCODE_ALL(

gc_username IN VARCHAR2,

addr_lines IN SDO_KEYWORDARRAY,

country IN VARCHAR2,

match_mode IN VARCHAR2

) RETURN SDO_ADDR_ARRAY;

Description
Geocodes all addresses associated with an unformatted address and returns the result
as an SDO_ADDR_ARRAY object.

Parameters

gc_username
Name of the user that owns the tables containing the geocoding data.

addr_lines
An array of quoted strings representing the unformatted address to be geocoded. The
SDO_KEYWORDARRAY type is described in Section 5.2.3.

country
Country name or ISO country code.

match_mode
Match mode for the geocoding operation. Match modes are explained in Section 5.1.2.

Usage Notes
This function returns an object of type SDO_ADDR_ARRAY, which is described in
Section 5.2.2. It performs the same operation as the SDO_GCDR.GEOCODE function;
however, it can return results for multiple addresses, in which case the returned SDO_
ADDR_ARRAY object contains multiple SDO_GEO_ADDR objects. If your application
needs to select one of the addresses for some further operations, you can use the
information about each returned address to help you make that selection.

Each SDO_GEO_ADDR object in the returned SDO_ADDR_ARRAY array represents
the center point of each street segment that matches the criteria in the addr_lines
parameter. For example, if Main Street extends into two postal codes, or if there are
two separate streets named Main Street in two separate postal codes, and if you
specify Main Street and a city and state for this function, the returned SDO_ADDR_
ARRAY array contains two SDO_GEO_ADDR objects, each reflecting the center point
of Main Street in a particular postal code. The house or building number in each SDO_
GEO_ADDR object is the house or building number located at the center point of the
street segment, even if the input address contains no house or building number or a
nonexistent number.

SDO_GCDR.GEOCODE_ALL

14-8 Oracle Spatial User’s Guide and Reference

Examples
The following example returns an array of geocoded results, each result reflecting the
center point of Clay Street in all postal codes in San Francisco, California, in which the
street extends. The resulting array includes four SDO_GEOR_ADDR objects, each
reflecting the house at the center point of the Clay Street segment in each of the four
postal codes (94108, 94115, 94118, and 94109) into which Clay Street extends.

SELECT SDO_GCDR.GEOCODE_ALL('SCOTT',
 SDO_KEYWORDARRAY('Clay St', 'San Francisco, CA'),
 'US', 'DEFAULT') FROM DUAL;

SDO_GCDR.GEOCODE_ALL('SCOTT',SDO_KEYWORDARRAY('CLAYST','SANFRANCISCO,CA'),'US
--
SDO_ADDR_ARRAY(SDO_GEO_ADDR(1, SDO_KEYWORDARRAY(), NULL, 'CLAY ST', NULL, NULL,
'SAN FRANCISCO', NULL, 'CA', 'US', '94108', NULL, '94108', NULL, '978', 'CLAY',
'ST', 'F', 'F', NULL, NULL, 'L', 0, 23600689, 'nul?#ENUT?B281CP?', 1, 'DEFAULT',
-122.40904, 37.79385), SDO_GEO_ADDR(1, SDO_KEYWORDARRAY(), NULL, 'CLAY ST',
NULL, NULL, 'SAN FRANCISCO', NULL, 'CA', 'US', '94115', NULL, '94115', NULL, '27
98', 'CLAY', 'ST', 'F', 'F', NULL, NULL, 'L', 0, 23600709, 'nul?#ENUT?B281CP?',
1, 'DEFAULT', -122.43909, 37.79007), SDO_GEO_ADDR(1, SDO_KEYWORDARRAY(), NULL
, 'CLAY ST', NULL, NULL, 'SAN FRANCISCO', NULL, 'CA', 'US', '94118', NULL, '9411
8', NULL, '3698', 'CLAY', 'ST', 'F', 'F', NULL, NULL, 'L', 0, 23600718, 'nul?
#ENUT?B281CP?', 1, 'DEFAULT', -122.45372, 37.78822), SDO_GEO_ADDR(1, SDO_KEYWORD
ARRAY(), NULL, 'CLAY ST', NULL, NULL, 'SAN FRANCISCO', NULL, 'CA', 'US', '94109'
, NULL, '94109', NULL, '1698', 'CLAY', 'ST', 'F', 'F', NULL, NULL, 'L', 0, 23
600700, 'nul?#ENUT?B281CP?', 1, 'DEFAULT', -122.42093, 37.79236))

SDO_GCDR.GEOCODE_AS_GEOMETRY

SDO_GCDR Package (Geocoding) 14-9

SDO_GCDR.GEOCODE_AS_GEOMETRY

Format
SDO_GCDR.GEOCODE_AS_GEOMETRY(

username IN VARCHAR2,

addr_lines IN SDO_KEYWORDARRAY,

country IN VARCHAR2

) RETURN SDO_GEOMETRY;

Description
Geocodes an unformatted address and returns the result as an SDO_GEOMETRY
object.

Parameters

username
Name of the user that owns the tables containing the geocoding data.

addr_lines
An array of quoted strings representing the unformatted address to be geocoded. The
SDO_KEYWORDARRAY type is described in Section 5.2.3.

country
Country name or ISO country code.

Usage Notes
This function returns an object of type SDO_GEOMETRY. It performs the same
operation as the SDO_GCDR.GEOCODE function; however, that function returns an
SDO_GEOR_ADDR object.

This function uses a match mode of 'DEFAULT' for the geocoding operation. Match
modes are explained in Section 5.1.2.

Examples
The following example geocodes the address of City Hall in San Francisco, California.
It returns an SDO_GEOMETRY object in which the longitude and latitude coordinates
of this address are -122.41815 and 37.7784183, respectively.

SELECT SDO_GCDR.GEOCODE_AS_GEOMETRY('SCOTT',
 SDO_KEYWORDARRAY('1 Carlton B Goodlett Pl', 'San Francisco, CA 94102'),
 'US') FROM DUAL;

SDO_GCDR.GEOCODE_AS_GEOMETRY('SCOTT',SDO_KEYWORDARRAY('1CARLTONBGOODLETTPL','
--
SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.41815, 37.7784183, NULL), NULL, NUL
L)

SDO_GCDR.REVERSE_GEOCODE

14-10 Oracle Spatial User’s Guide and Reference

SDO_GCDR.REVERSE_GEOCODE

Format
SDO_GCDR.REVERSE_GEOCODE(

username IN VARCHAR2,

location IN SDO_GEOMETRY,

country IN VARCHAR2

) RETURN SDO_GEO_ADDR;

Description
Reverse geocodes a location, specified by its spatial geometry object and country, and
returns the result as an SDO_GEO_ADDR object.

Parameters

username
Name of the user that owns the tables containing the geocoding data.

location
An SDO_GEOMETRY object that specifies the point location to be reverse geocoded.

country
Country name or ISO country code.

Usage Notes
This function returns an object of type SDO_GEOR_ADDR, which is described in
Section 5.2.1.

A spatial index must be created on the table GC_ROAD_SEGMENT_<table-suffix>.

Examples
The following example reverse geocodes a point with the longitude and latitude
values (-122.41815, 37.7784183). For this example, a spatial index was created on the
GEOMETRY column in the GC_WORD_SEGMENT_US table.

SELECT SDO_GCDR.REVERSE_GEOCODE('SCOTT',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE(-122.41815, 37.7784183, NULL), NULL, NULL),
 'US') FROM DUAL;

SDO_GCDR.REVERSE_GEOCODE('SCOTT',SDO_GEOMETRY(2001,8307,SDO_POINT_TYPE(-122.418
--
SDO_GEO_ADDR(0, SDO_KEYWORDARRAY(), NULL, 'POLK ST', NULL, NULL, 'SAN FRANCISCO'
, NULL, 'CA', 'US', '94102', NULL, '94102', NULL, '200', NULL, NULL, 'F', 'F', N
ULL, NULL, 'R', .00966633, 23614360, '', 1, 'DEFAULT', -122.41815, 37.7784177)

SDO_GEOM Package (Geometry) 15-1

15
SDO_GEOM Package (Geometry)

This chapter contains descriptions of the geometry-related PL/SQL subprograms in
the SDO_GEOM package, which can be grouped into the following categories:

■ Relationship (True/False) between two objects: RELATE, WITHIN_DISTANCE

■ Validation: VALIDATE_GEOMETRY_WITH_CONTEXT, VALIDATE_LAYER_
WITH_CONTEXT

■ Single-object operations: SDO_ARC_DENSIFY, SDO_AREA, SDO_BUFFER, SDO_
CENTROID, SDO_CONVEXHULL, SDO_LENGTH, SDO_MAX_MBR_
ORDINATE, SDO_MIN_MBR_ORDINATE, SDO_MBR, SDO_
POINTONSURFACE

■ Two-object operations: SDO_DISTANCE, SDO_DIFFERENCE, SDO_
INTERSECTION, SDO_UNION, SDO_XOR

The geometry subprograms are listed Table 15–1, and some usage information follows
the table.

Table 15–1 Geometry Subprograms

Subprogram Description

SDO_GEOM.RELATE Determines how two objects interact.

SDO_GEOM.SDO_ARC_DENSIFY Changes each circular arc into an approximation
consisting of straight lines, and each circle into a
polygon consisting of a series of straight lines
that approximate the circle.

SDO_GEOM.SDO_AREA Computes the area of a two-dimensional
polygon.

SDO_GEOM.SDO_BUFFER Generates a buffer polygon around or inside a
geometry.

SDO_GEOM.SDO_CENTROID Returns the centroid of a polygon.

SDO_GEOM.SDO_CONVEXHULL Returns a polygon-type object that represents the
convex hull of a geometry object.

SDO_GEOM.SDO_DIFFERENCE Returns a geometry object that is the topological
difference (MINUS operation) of two geometry
objects.

SDO_GEOM.SDO_DISTANCE Computes the distance between two geometry
objects.

SDO_GEOM.SDO_INTERSECTION Returns a geometry object that is the topological
intersection (AND operation) of two geometry
objects.

15-2 Oracle Spatial User’s Guide and Reference

The following usage information applies to the geometry subprograms. (See also the
Usage Notes under the reference information for each subprogram.)

■ Certain combinations of input parameters and operations can return a null value,
that is, an empty geometry. For example, requesting the intersection of two disjoint
geometry objects returns a null value.

■ A null value (empty geometry) as an input parameter to a geometry function (for
example, SDO_GEOM.RELATE) produces an error.

■ Certain operations can return a geometry of a different type than one or both input
geometries. For example, the intersection of a line and an overlapping polygon
returns a line; the intersection of two lines returns a point; and the intersection of
two tangent polygons returns a line.

SDO_GEOM.SDO_LENGTH Computes the length or perimeter of a geometry.

SDO_GEOM.SDO_MAX_MBR_
ORDINATE

Returns the maximum value for the specified
ordinate (dimension) of the minimum bounding
rectangle of a geometry object.

SDO_GEOM.SDO_MBR Returns the minimum bounding rectangle of a
geometry.

SDO_GEOM.SDO_MIN_MBR_
ORDINATE

Returns the minimum value for the specified
ordinate (dimension) of the minimum bounding
rectangle of a geometry object.

SDO_GEOM.SDO_POINTONSURFACE Returns a point that is guaranteed to be on the
surface of a polygon.

SDO_GEOM.SDO_UNION Returns a geometry object that is the topological
union (OR operation) of two geometry objects.

SDO_GEOM.SDO_XOR Returns a geometry object that is the topological
symmetric difference (XOR operation) of two
geometry objects.

SDO_GEOM.VALIDATE_GEOMETRY_
WITH_CONTEXT

Determines if a geometry is valid, and returns
context information if the geometry is invalid.

SDO_GEOM.VALIDATE_LAYER_
WITH_CONTEXT

Determines if all geometries stored in a column
are valid, and returns context information about
any invalid geometries.

SDO_GEOM.WITHIN_DISTANCE Determines if two geometries are within a
specified distance from one another.

Table 15–1 (Cont.) Geometry Subprograms

Subprogram Description

SDO_GEOM.RELATE

SDO_GEOM Package (Geometry) 15-3

SDO_GEOM.RELATE

Format
SDO_GEOM.RELATE(

geom1 IN SDO_GEOMETRY,

dim1 IN SDO_DIM_ARRAY,

mask IN VARCHAR2,

geom2 IN SDO_GEOMETRY,

dim2 IN SDO_DIM_ARRAY

) RETURN VARCHAR2;

or

SDO_GEOM.RELATE(

geom1 IN SDO_GEOMETRY,

mask IN VARCHAR2,

geom2 IN SDO_GEOMETRY,

tol IN NUMBER

) RETURN VARCHAR2;

Description
Examines two geometry objects to determine their spatial relationship.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

mask
Specifies a list of relationships to check. See the list of keywords in the Usage Notes.

geom2
Geometry object.

dim2
Dimensional information array corresponding to geom2, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
For better performance, use the SDO_RELATE operator or one of its convenience
operator formats (all described in Chapter 11) instead of the SDO_GEOM.RELATE

SDO_GEOM.RELATE

15-4 Oracle Spatial User’s Guide and Reference

function, unless you need to use the function. For example, the DETERMINE mask
keyword does not apply with the SDO_RELATE operator. For more information about
performance considerations with operators and functions, see Section 1.9.

The SDO_GEOM.RELATE function can return the following types of answers:

■ If you pass a mask listing one or more relationships, the function returns the name
of the relationship if it is true for the pair of geometries. If all relationships are
false, the procedure returns FALSE.

■ If you pass the DETERMINE keyword in mask, the function returns the one
relationship keyword that best matches the geometries.

■ If you pass the ANYINTERACT keyword in mask, the function returns TRUE if
the two geometries are not disjoint.

The following mask relationships can be tested:

■ ANYINTERACT: Returns TRUE if the objects are not disjoint.

■ CONTAINS: Returns CONTAINS if the second object is entirely within the first
object and the object boundaries do not touch; otherwise, returns FALSE.

■ COVEREDBY: Returns COVEREDBY if the first object is entirely within the second
object and the object boundaries touch at one or more points; otherwise, returns
FALSE.

■ COVERS: Returns COVERS if the second object is entirely within the first object
and the boundaries touch in one or more places; otherwise, returns FALSE.

■ DISJOINT: Returns DISJOINT if the objects have no common boundary or interior
points; otherwise, returns FALSE.

■ EQUAL: Returns EQUAL if the objects share every point of their boundaries and
interior, including any holes in the objects; otherwise, returns FALSE.

■ INSIDE: Returns INSIDE if the first object is entirely within the second object and
the object boundaries do not touch; otherwise, returns FALSE.

■ ON: Returns ON if the boundary and interior of a line (the first object) is
completely on the boundary of a polygon (the second object); otherwise, returns
FALSE.

■ OVERLAPBDYDISJOINT: Returns OVERLAPBDYDISJOINT if the objects overlap,
but their boundaries do not interact; otherwise, returns FALSE.

■ OVERLAPBDYINTERSECT: Returns OVERLAPBDYINTERSECT if the objects
overlap, and their boundaries intersect in one or more places; otherwise, returns
FALSE.

■ TOUCH: Returns TOUCH if the two objects share a common boundary point, but
no interior points; otherwise, returns FALSE.

Values for mask can be combined using the logical Boolean operator OR. For example,
'INSIDE + TOUCH' returns 'INSIDE + TOUCH' or 'FALSE' depending on the outcome
of the test.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

SDO_GEOM.RELATE

SDO_GEOM Package (Geometry) 15-5

Examples
The following example finds the relationship between each geometry in the SHAPE
column and the cola_b geometry. (The example uses the definitions and data from
Section 2.1. The output is reformatted for readability.)

SELECT c.name,
 SDO_GEOM.RELATE(c.shape, 'determine', c_b.shape, 0.005) relationship
 FROM cola_markets c, cola_markets c_b WHERE c_b.name = 'cola_b';

NAME RELATIONSHIP

cola_a TOUCH
cola_b EQUAL
cola_c OVERLAPBDYINTERSECT
cola_d DISJOINT

Related Topics
■ SDO_RELATE operator

SDO_GEOM.SDO_ARC_DENSIFY

15-6 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_ARC_DENSIFY

Format
SDO_GEOM.SDO_ARC_DENSIFY(

geom IN SDO_GEOMETRY,

dim IN SDO_DIM_ARRAY

params IN VARCHAR2

) RETURN SDO_GEOMETRY;

or

SDO_GEOM.SDO_ARC_DENSIFY(

geom IN SDO_GEOMETRY,

tol IN NUMBER

params IN VARCHAR2

) RETURN SDO_GEOMETRY;

Description
Returns a geometry in which each circular arc in the input geometry is changed into an
approximation of the circular arc consisting of straight lines, and each circle is changed
into a polygon consisting of a series of straight lines that approximate the circle.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tol
Tolerance value (see Section 1.5.5).

params
A quoted string containing an arc tolerance value and optionally a unit value. See the
Usage Notes for an explanation of the format and meaning.

Usage Notes
If you have geometries in a projected coordinate system that contain circles or circular
arcs, you can use this function to densify them into regular polygons. You can then use
the resulting straight-line polygon geometries for any Spatial operations, or you can
transform them to any projected or geodetic coordinate system.

The params parameter is a quoted string that can contain the arc_tolerance
keyword, as well as the unit keyword to identify the unit of measurement associated
with the arc_tolerance value. For example:

'arc_tolerance=0.05 unit=km'

SDO_GEOM.SDO_ARC_DENSIFY

SDO_GEOM Package (Geometry) 15-7

The arc_tolerance keyword specifies, for each arc in the geometry, the maximum
length of the perpendicular line between the surface of the arc and the straight line
between the start and end points of the arc. Figure 15–1 shows a line whose length is
the arc_tolerance value for the arc between points A and B.

Figure 15–1 Arc Tolerance

The arc_tolerance keyword value must be greater than the tolerance value
associated with the geometry. (The default value for arc_tolerance is 20 times the
tolerance value.) As you increase the arc_tolerance keyword value, the resulting
polygon has fewer sides and a smaller area; as you decrease the arc_tolerance
keyword value, the resulting polygon has more sides and a larger area (but never
larger than the original geometry).

If the unit keyword is specified, the value must be an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, 'unit=KM'). If the unit keyword is not
specified, the unit of measurement associated with the geometry is used. See
Section 2.8 for more information about unit of measurement specification.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example returns the geometry that results from the arc densification of
cola_d, which is a circle. (The example uses the definitions and data from
Section 2.1.)

-- Arc densification of the circle cola_d
SELECT c.name, SDO_GEOM.SDO_ARC_DENSIFY(c.shape, m.diminfo,
 'arc_tolerance=0.05')
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_d';

NAME

SDO_GEOM.SDO_ARC_DENSIFY(C.SHAPE,M.DIMINFO,'ARC_TOLERANCE=0.05')(SDO_GTYPE, SDO_
--
cola_d
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(8, 7, 8.76536686, 7.15224093, 9.41421356, 7.58578644, 9.84775907, 8.23463314,
 10, 9, 9.84775907, 9.76536686, 9.41421356, 10.4142136, 8.76536686, 10.8477591,
8, 11, 7.23463314, 10.8477591, 6.58578644, 10.4142136, 6.15224093, 9.76536686, 6
, 9, 6.15224093, 8.23463314, 6.58578644, 7.58578644, 7.23463314, 7.15224093, 8,
7))

Related Topics
■ Section 6.2.4, "Other Considerations and Requirements with Geodetic Data"

SDO_GEOM.SDO_AREA

15-8 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_AREA

Format
SDO_GEOM.SDO_AREA(

geom IN SDO_GEOMETRY,

dim IN SDO_DIM_ARRAY

[, unit IN VARCHAR2]

) RETURN NUMBER;

or

SDO_GEOM.SDO_AREA(

geom IN SDO_GEOMETRY,

tol IN NUMBER

[, unit IN VARCHAR2]

) RETURN NUMBER;

Description
Returns the area of a two-dimensional polygon.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

unit
Unit of measurement: a quoted string with unit= and an SDO_UNIT value from the
MDSYS.SDO_AREA_UNITS table (for example, 'unit=SQ_KM'). See Section 2.8 for
more information about unit of measurement specification.

If this parameter is not specified, the unit of measurement associated with the data is
assumed. For geodetic data, the default unit of measurement is square meters.

tol
Tolerance value (see Section 1.5.5).

Usage Notes
This function works with any polygon, including polygons with holes.

Lines that close to form a ring have no area.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

SDO_GEOM.SDO_AREA

SDO_GEOM Package (Geometry) 15-9

Examples
The following example returns the areas of geometry objects stored in the COLA_
MARKETS table. The first statement returns the areas of all objects; the second returns
just the area of cola_a. (The example uses the definitions and data from Section 2.1.)

-- Return the areas of all cola markets.
SELECT name, SDO_GEOM.SDO_AREA(shape, 0.005) FROM cola_markets;

NAME SDO_GEOM.SDO_AREA(SHAPE,0.005)
-------------------------------- ------------------------------
cola_a 24
cola_b 16.5
cola_c 5
cola_d 12.5663706

-- Return the area of just cola_a.
SELECT c.name, SDO_GEOM.SDO_AREA(c.shape, 0.005) FROM cola_markets c
 WHERE c.name = 'cola_a';

NAME SDO_GEOM.SDO_AREA(C.SHAPE,0.005)
-------------------------------- --------------------------------
cola_a 24

Related Topics
None.

SDO_GEOM.SDO_BUFFER

15-10 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_BUFFER

Format
SDO_GEOM.SDO_BUFFER(

geom IN SDO_GEOMETRY,

dim IN SDO_DIM_ARRAY,

dist IN NUMBER

[, params IN VARCHAR2]

) RETURN SDO_GEOMETRY;

or

SDO_GEOM.SDO_BUFFER(

geom IN SDO_GEOMETRY,

dist IN NUMBER,

tol IN NUMBER

[, params IN VARCHAR2]

) RETURN SDO_GEOMETRY;

Description
Generates a buffer polygon around or inside a geometry object.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

dist
Distance value. If the value is positive, the buffer is generated around the geometry; if
the value is negative (valid only for polygons), the buffer is generated inside the
geometry. The absolute value of this parameter must be greater than the tolerance
value, as specified in the dimensional array (dim parameter) or in the tol parameter.

tol
Tolerance value (see Section 1.5.5).

params
A quoted string that can contain one or both of the following keywords:

■ unit and an SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table. It
identifies the unit of measurement associated with the dist parameter value, and
also with the arc tolerance value if the arc_tolerance keyword is specified. See
Section 2.8 for more information about unit of measurement specification.

SDO_GEOM.SDO_BUFFER

SDO_GEOM Package (Geometry) 15-11

■ arc_tolerance and an arc tolerance value. See the Usage Notes for the SDO_
GEOM.SDO_ARC_DENSIFY function in this chapter for more information about
the arc_tolerance keyword.

For example: 'unit=km arc_tolerance=0.05'

If the input geometry is geodetic data and if arc_tolerance is not specified, the
default value is the tolerance value multiplied by 20. Spatial uses the arc_tolerance
value to perform arc densification in computing the result. If the input geometry is
Cartesian or projected data, arc_tolerance has no effect and should not be
specified.

If this parameter is not specified for a Cartesian or projected geometry, or if the arc_
tolerance keyword is specified for a geodetic geometry but the unit keyword is not
specified, the unit of measurement associated with the data is assumed.

Usage Notes
This function returns a geometry object representing the buffer polygon.

This function creates a rounded buffer around a point, line, or polygon, or inside a
polygon. The buffer within a void is also rounded, and is the same distance from the
inner boundary as the outer buffer is from the outer boundary. See Figure 1–7 for an
illustration.

If the buffer polygon geometry is in a projected coordinate system, it will contain arcs;
and if you want to transform that geometry to a geodetic coordinate system, you must
first densify it using the SDO_GEOM.SDO_ARC_DENSIFY function, and then
transform the densified geometry.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

With geodetic data, this function is supported by approximations, as explained in
Section 6.9.3.

Examples
The following example returns a polygon representing a buffer of 1 around cola_a.
Note the rounded corners (for example, at .292893219,.292893219) in the returned
polygon. (The example uses the non-geodetic definitions and data from Section 2.1.)

-- Generate a buffer of 1 unit around a geometry.
SELECT c.name, SDO_GEOM.SDO_BUFFER(c.shape, m.diminfo, 1)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_a';

NAME

SDO_GEOM.SDO_BUFFER(C.SHAPE,M.DIMINFO,1)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z)
--
cola_a
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1005, 8, 1, 2, 2, 5, 2, 1,
 7, 2, 2, 11, 2, 1, 13, 2, 2, 17, 2, 1, 19, 2, 2, 23, 2, 1), SDO_ORDINATE_ARRAY(
0, 1, .292893219, .292893219, 1, 0, 5, 0, 5.70710678, .292893219, 6, 1, 6, 7, 5.
70710678, 7.70710678, 5, 8, 1, 8, .292893219, 7.70710678, 0, 7, 0, 1))

The following example returns a polygon representing a buffer of 1 around cola_a
using the geodetic definitions and data from Section 6.11.

-- Generate a buffer of 1 kilometer around a geometry.

SDO_GEOM.SDO_BUFFER

15-12 Oracle Spatial User’s Guide and Reference

SELECT c.name, SDO_GEOM.SDO_BUFFER(c.shape, m.diminfo, 1,
 'unit=km arc_tolerance=0.05')
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS'
 AND m.column_name = 'SHAPE' AND c.name = 'cola_a';

NAME

SDO_GEOM.SDO_BUFFER(C.SHAPE,M.DIMINFO,1,'UNIT=KMARC_TOLERANCE=0.05')(SDO_GTYPE,
--
cola_a
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(.991023822, 1.00002073, .992223711, .995486419, .99551726, .99217077, 1.00001
929, .990964898, 4.99998067, .990964929, 5.00448268, .9921708, 5.00777624, .9954
86449, 5.00897618, 1.00002076, 5.00904194, 6.99997941, 5.00784065, 7.00450033, 5
.00454112, 7.00781357, 5.00002479, 7.009034, .999975166, 7.00903403, .995458814,
 7.00781359, .992159303, 7.00450036, .990958058, 6.99997944, .991023822, 1.00002
073))

Related Topics
■ SDO_GEOM.SDO_UNION

■ SDO_GEOM.SDO_INTERSECTION

■ SDO_GEOM.SDO_XOR

SDO_GEOM.SDO_CENTROID

SDO_GEOM Package (Geometry) 15-13

SDO_GEOM.SDO_CENTROID

Format
SDO_GEOM.SDO_CENTROID(

geom1 IN SDO_GEOMETRY,

dim1 IN SDO_DIM_ARRAY

) RETURN SDO_GEOMETRY;

or

SDO_GEOM.SDO_CENTROID(

geom1 IN SDO_GEOMETRY,

tol IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns a point geometry that is the centroid of a polygon, multipolygon, point, or
point cluster. (The centroid is also known as the "center of gravity.")

For an input geometry consisting of multiple objects, the result is weighted by the area
of each polygon in the geometry objects. If the geometry objects are a mixture of
polygons and points, the points are not used in the calculation of the centroid. If the
geometry objects are all points, the points have equal weight.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
The function returns a null value if geom1 is not a polygon, multipolygon, point, or
point cluster, as identified by the SDO_GTYPE value in the SDO_GEOMETRY object.

If geom1 is a point, the function returns the point (the input geometry).

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

With geodetic data, this function is supported by approximations, as explained in
Section 6.9.3.

Depending on the shape and complexity of the input geometry, the returned point
might not be on the surface of the input geometry.

SDO_GEOM.SDO_CENTROID

15-14 Oracle Spatial User’s Guide and Reference

Examples
The following example returns a geometry object that is the centroid of cola_c. (The
example uses the definitions and data from Section 2.1.)

-- Return the centroid of a geometry.
SELECT c.name, SDO_GEOM.SDO_CENTROID(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_c';

NAME

SDO_GEOM.SDO_CENTROID(C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z)
--
cola_c
SDO_GEOMETRY(2001, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
4.73333333, 3.93333333))

Related Topics
None.

SDO_GEOM.SDO_CONVEXHULL

SDO_GEOM Package (Geometry) 15-15

SDO_GEOM.SDO_CONVEXHULL

Format
SDO_GEOM.SDO_CONVEXHULL(

geom1 IN SDO_GEOMETRY,

dim1 IN SDO_DIM_ARRAY

) RETURN SDO_GEOMETRY;

or

SDO_GEOM.SDO_CONVEXHULL(

geom1 IN SDO_GEOMETRY,

tol IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns a polygon-type object that represents the convex hull of a geometry object.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
The convex hull is a simple convex polygon that completely encloses the geometry
object. Spatial uses as few straight-line sides as possible to create the smallest polygon
that completely encloses the specified object. A convex hull is a convenient way to get
an approximation of a complex geometry object.

If the geometry (geom1) contains any arc elements, the function calculates the
minimum bounding rectangle (MBR) for each arc element and uses these MBRs in
calculating the convex hull of the geometry. If the geometry object (geom1) is a circle,
the function returns a square that minimally encloses the circle.

The function returns a null value if geom1 is of point type, has fewer than three points
or vertices, or consists of multiple points all in a straight line.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

With geodetic data, this function is supported by approximations, as explained in
Section 6.9.3.

SDO_GEOM.SDO_CONVEXHULL

15-16 Oracle Spatial User’s Guide and Reference

Examples
The following example returns a geometry object that is the convex hull of cola_c.
(The example uses the definitions and data from Section 2.1. This specific example,
however, does not produce useful output—the returned polygon has the same vertices
as the input polygon—because the input polygon is already a simple convex polygon.)

-- Return the convex hull of a polygon.
SELECT c.name, SDO_GEOM.SDO_CONVEXHULL(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_c';

NAME

SDO_GEOM.SDO_CONVEXHULL(C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y,
--
cola_c
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(6, 3, 6, 5, 4, 5, 3, 3, 6, 3))

Related Topics
None.

SDO_GEOM.SDO_DIFFERENCE

SDO_GEOM Package (Geometry) 15-17

SDO_GEOM.SDO_DIFFERENCE

Format
SDO_GEOM.SDO_DIFFERENCE(

geom1 IN SDO_GEOMETRY,

dim1 IN SDO_DIM_ARRAY,

geom2 IN SDO_GEOMETRY,

dim2 IN SDO_DIM_ARRAY

) RETURN SDO_GEOMETRY;

or

SDO_GEOM.SDO_DIFFERENCE(

geom1 IN SDO_GEOMETRY,

geom2 IN SDO_GEOMETRY,

tol IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns a geometry object that is the topological difference (MINUS operation) of two
geometry objects.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

geom2
Geometry object.

dim2
Dimensional information array corresponding to geom2, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
In Figure 15–2, the shaded area represents the polygon returned when SDO_
DIFFERENCE is used with a square (geom1) and another polygon (geom2).

SDO_GEOM.SDO_DIFFERENCE

15-18 Oracle Spatial User’s Guide and Reference

Figure 15–2 SDO_GEOM.SDO_DIFFERENCE

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

Examples
The following example returns a geometry object that is the topological difference
(MINUS operation) of cola_a and cola_c. (The example uses the definitions and
data from Section 2.1.)

-- Return the topological difference of two geometries.
SELECT SDO_GEOM.SDO_DIFFERENCE(c_a.shape, m.diminfo, c_c.shape, m.diminfo)
 FROM cola_markets c_a, cola_markets c_c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c_a.name = 'cola_a' AND c_c.name = 'cola_c';

SDO_GEOM.SDO_DIFFERENCE(C_A.SHAPE,M.DIMINFO,C_C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(1, 7, 1, 1, 5, 1, 5, 3, 3, 3, 4, 5, 5, 5, 5, 7, 1, 7)

Note that in the returned polygon, the SDO_ORDINATE_ARRAY starts and ends at
the same point (1, 7).

Related Topics
■ SDO_GEOM.SDO_INTERSECTION

■ SDO_GEOM.SDO_UNION

■ SDO_GEOM.SDO_XOR

geom1
geom2

SDO_GEOM.SDO_DISTANCE

SDO_GEOM Package (Geometry) 15-19

SDO_GEOM.SDO_DISTANCE

Format
SDO_GEOM.SDO_DISTANCE(

geom1 IN SDO_GEOMETRY,

dim1 IN SDO_DIM_ARRAY,

geom2 IN SDO_GEOMETRY,

dim2 IN SDO_DIM_ARRAY

[, unit IN VARCHAR2]

) RETURN NUMBER;

or

SDO_GEOM.SDO_DISTANCE(

geom1 IN SDO_GEOMETRY,

geom2 IN SDO_GEOMETRY,

tol IN NUMBER

[, unit IN VARCHAR2]

) RETURN NUMBER;

Description
Computes the distance between two geometry objects. The distance between two
geometry objects is the distance between the closest pair of points or segments of the
two objects.

Parameters

geom1
Geometry object whose distance from geom2 is to be computed.

dim1
Dimensional information array corresponding to geom1, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

geom2
Geometry object whose distance from geom1 is to be computed.

dim2
Dimensional information array corresponding to geom2, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

unit
Unit of measurement: a quoted string with unit= and an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, 'unit=KM'). See Section 2.8 for more
information about unit of measurement specification.

If this parameter is not specified, the unit of measurement associated with the data is
assumed.

SDO_GEOM.SDO_DISTANCE

15-20 Oracle Spatial User’s Guide and Reference

tol
Tolerance value (see Section 1.5.5).

Usage Notes
If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

Examples
The following example returns the shortest distance between cola_b and cola_d.
(The example uses the definitions and data from Section 2.1.)

-- Return the distance between two geometries.
SELECT SDO_GEOM.SDO_DISTANCE(c_b.shape, c_d.shape, 0.005)
 FROM cola_markets c_b, cola_markets c_d
 WHERE c_b.name = 'cola_b' AND c_d.name = 'cola_d';

SDO_GEOM.SDO_DISTANCE(C_B.SHAPE,C_D.SHAPE,0.005)
--
 .846049894

Related Topics
■ SDO_GEOM.WITHIN_DISTANCE

SDO_GEOM.SDO_INTERSECTION

SDO_GEOM Package (Geometry) 15-21

SDO_GEOM.SDO_INTERSECTION

Format
SDO_GEOM.SDO_INTERSECTION(

geom1 IN SDO_GEOMETRY,

dim1 IN SDO_DIM_ARRAY,

geom2 IN SDO_GEOMETRY,

dim2 IN SDO_DIM_ARRAY

) RETURN SDO_GEOMETRY;

or

SDO_GEOM.SDO_INTERSECTION(

geom1 IN SDO_GEOMETRY,

geom2 IN SDO_GEOMETRY,

tol IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns a geometry object that is the topological intersection (AND operation) of two
geometry objects.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

geom2
Geometry object.

dim2
Dimensional information array corresponding to geom2, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
In Figure 15–3, the shaded area represents the polygon returned when SDO_
INTERSECTION is used with a square (geom1) and another polygon (geom2).

SDO_GEOM.SDO_INTERSECTION

15-22 Oracle Spatial User’s Guide and Reference

Figure 15–3 SDO_GEOM.SDO_INTERSECTION

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

Examples
The following example returns a geometry object that is the topological intersection
(AND operation) of cola_a and cola_c. (The example uses the definitions and data
from Section 2.1.)

-- Return the topological intersection of two geometries.
SELECT SDO_GEOM.SDO_INTERSECTION(c_a.shape, c_c.shape, 0.005)
 FROM cola_markets c_a, cola_markets c_c
 WHERE c_a.name = 'cola_a' AND c_c.name = 'cola_c';

SDO_GEOM.SDO_INTERSECTION(C_A.SHAPE,C_C.SHAPE,0.005)(SDO_GTYPE, SDO_SRID, SDO_PO
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(4, 5, 3, 3, 5, 3, 5, 5, 4, 5))

Note that in the returned polygon, the SDO_ORDINATE_ARRAY starts and ends at
the same point (4, 5).

Related Topics
■ SDO_GEOM.SDO_DIFFERENCE

■ SDO_GEOM.SDO_UNION

■ SDO_GEOM.SDO_XOR

geom1
geom2

SDO_GEOM.SDO_LENGTH

SDO_GEOM Package (Geometry) 15-23

SDO_GEOM.SDO_LENGTH

Format
SDO_GEOM.SDO_LENGTH(

geom IN SDO_GEOMETRY,

dim IN SDO_DIM_ARRAY

[, unit IN VARCHAR2]

) RETURN NUMBER;

or

SDO_GEOM.SDO_LENGTH(

geom IN SDO_GEOMETRY,

tol IN NUMBER

[, unit IN VARCHAR2]

) RETURN NUMBER;

Description
Returns the length or perimeter of a geometry object.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

unit
Unit of measurement: a quoted string with unit= and an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, 'unit=KM'). See Section 2.8 for more
information about unit of measurement specification.

If this parameter is not specified, the unit of measurement associated with the data is
assumed. For geodetic data, the default unit of measurement is meters.

tol
Tolerance value (see Section 1.5.5).

Usage Notes
If the input polygon contains one or more holes, this function calculates the perimeters
of the exterior boundary and all holes. It returns the sum of all perimeters.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example returns the perimeters of geometry objects stored in the
COLA_MARKETS table. The first statement returns the perimeters of all objects; the

SDO_GEOM.SDO_LENGTH

15-24 Oracle Spatial User’s Guide and Reference

second returns just the perimeter of cola_a. (The example uses the definitions and
data from Section 2.1.)

-- Return the perimeters of all cola markets.
SELECT c.name, SDO_GEOM.SDO_LENGTH(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE';

NAME SDO_GEOM.SDO_LENGTH(C.SHAPE,M.DIMINFO)
-------------------------------- --------------------------------------
cola_a 20
cola_b 17.1622777
cola_c 9.23606798
cola_d 12.5663706

-- Return the perimeter of just cola_a.
SELECT c.name, SDO_GEOM.SDO_LENGTH(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_a';

NAME SDO_GEOM.SDO_LENGTH(C.SHAPE,M.DIMINFO)
-------------------------------- --------------------------------------
cola_a 20

Related Topics
None.

SDO_GEOM.SDO_MAX_MBR_ORDINATE

SDO_GEOM Package (Geometry) 15-25

SDO_GEOM.SDO_MAX_MBR_ORDINATE

Format
SDO_GEOM.SDO_MAX_MBR_ORDINATE(

geom IN SDO_GEOMETRY,

ordinate_pos IN NUMBER

) RETURN NUMBER;

or

SDO_GEOM.SDO_MAX_MBR_ORDINATE(

geom IN SDO_GEOMETRY,

dim IN SDO_DIM_ARRAY,

ordinate_pos IN NUMBER

) RETURN NUMBER;

Description
Returns the maximum value for the specified ordinate (dimension) of the minimum
bounding rectangle of a geometry object.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

ordinate_pos
Position of the ordinate (dimension) in the definition of the geometry object: 1 for the
first ordinate, 2 for the second ordinate, and so on. For example, if geom has X, Y
ordinates, 1 identifies the X ordinate and 2 identifies the Y ordinate.

Usage Notes
None.

Examples
The following example returns the maximum X (first) ordinate value of the minimum
bounding rectangle of the cola_d geometry in the COLA_MARKETS table. (The
example uses the definitions and data from Section 2.1. The minimum bounding
rectangle of cola_d is returned in the example for the SDO_GEOM.SDO_MBR
function.)

SELECT SDO_GEOM.SDO_MAX_MBR_ORDINATE(c.shape, m.diminfo, 1)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_d';

SDO_GEOM.SDO_MAX_MBR_ORDINATE(C.SHAPE,M.DIMINFO,1)

SDO_GEOM.SDO_MAX_MBR_ORDINATE

15-26 Oracle Spatial User’s Guide and Reference

--
 10

Related Topics
■ SDO_GEOM.SDO_MBR

■ SDO_GEOM.SDO_MIN_MBR_ORDINATE

SDO_GEOM.SDO_MBR

SDO_GEOM Package (Geometry) 15-27

SDO_GEOM.SDO_MBR

Format
SDO_GEOM.SDO_MBR(

geom IN SDO_GEOMETRY

[, dim IN SDO_DIM_ARRAY]

) RETURN SDO_GEOMETRY;

Description
Returns the minimum bounding rectangle of a geometry object, that is, a single
rectangle that minimally encloses the geometry.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function does not return an MBR geometry if a proper MBR cannot be
constructed. Specifically:

■ If the input geometry is null, the function returns a null geometry.

■ If the input geometry is a point, the function returns the point.

■ If the input geometry consists of points all on a straight line, the function returns a
two-point line.

■ If the input geometry has three dimensions but all Z dimension values are the
same, the function returns a three-dimensional line.

Examples
The following example returns the minimum bounding rectangle of the cola_d
geometry in the COLA_MARKETS table. (The example uses the definitions and data
from Section 2.1. Because cola_d is a circle, the minimum bounding rectangle in this
case is a square.)

-- Return the minimum bounding rectangle of cola_d (a circle).
SELECT SDO_GEOM.SDO_MBR(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_d';

SDO_GEOM.SDO_MBR(C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(6, 7, 10, 11))

SDO_GEOM.SDO_MBR

15-28 Oracle Spatial User’s Guide and Reference

Related Topics
■ SDO_GEOM.SDO_MAX_MBR_ORDINATE

■ SDO_GEOM.SDO_MIN_MBR_ORDINATE

SDO_GEOM.SDO_MIN_MBR_ORDINATE

SDO_GEOM Package (Geometry) 15-29

SDO_GEOM.SDO_MIN_MBR_ORDINATE

Format
SDO_GEOM.SDO_MIN_MBR_ORDINATE(

geom IN SDO_GEOMETRY,

ordinate_pos IN NUMBER

) RETURN NUMBER;

or

SDO_GEOM.SDO_MIN_MBR_ORDINATE(

geom IN SDO_GEOMETRY,

dim IN SDO_DIM_ARRAY,

ordinate_pos IN NUMBER

) RETURN NUMBER;

Description
Returns the minimum value for the specified ordinate (dimension) of the minimum
bounding rectangle of a geometry object.

Parameters

geom
Geometry object.

dim
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

ordinate_pos
Position of the ordinate (dimension) in the definition of the geometry object: 1 for the
first ordinate, 2 for the second ordinate, and so on. For example, if geom has X, Y
ordinates, 1 identifies the X ordinate and 2 identifies the Y ordinate.

Usage Notes
None.

Examples
The following example returns the minimum X (first) ordinate value of the minimum
bounding rectangle of the cola_d geometry in the COLA_MARKETS table. (The
example uses the definitions and data from Section 2.1. The minimum bounding
rectangle of cola_d is returned in the example for the SDO_GEOM.SDO_MBR
function.)

SELECT SDO_GEOM.SDO_MIN_MBR_ORDINATE(c.shape, m.diminfo, 1)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_d';

SDO_GEOM.SDO_MIN_MBR_ORDINATE(C.SHAPE,M.DIMINFO,1)

SDO_GEOM.SDO_MIN_MBR_ORDINATE

15-30 Oracle Spatial User’s Guide and Reference

--
 6

Related Topics
■ SDO_GEOM.SDO_MAX_MBR_ORDINATE

■ SDO_GEOM.SDO_MBR

SDO_GEOM.SDO_POINTONSURFACE

SDO_GEOM Package (Geometry) 15-31

SDO_GEOM.SDO_POINTONSURFACE

Format
SDO_GEOM.SDO_POINTONSURFACE(

geom1 IN SDO_GEOMETRY,

dim1 IN SDO_DIM_ARRAY

) RETURN SDO_GEOMETRY;

or

SDO_GEOM.SDO_POINTONSURFACE(

geom1 IN SDO_GEOMETRY,

tol IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns a point that is guaranteed to be on the surface of a polygon geometry object.

Parameters

geom1
Polygon geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
This function returns a point geometry object representing a point that is guaranteed
to be on the surface of geom1.

The returned point can be any point on the surface. You should not make any
assumptions about where on the surface the returned point is, or about whether the
point is the same or different when the function is called multiple times with the same
input parameter values.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

Examples
The following example returns a geometry object that is a point on the surface of
cola_a. (The example uses the definitions and data from Section 2.1.)

-- Return a point on the surface of a geometry.
SELECT SDO_GEOM.SDO_POINTONSURFACE(c.shape, m.diminfo)
 FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_a';

SDO_GEOM.SDO_POINTONSURFACE

15-32 Oracle Spatial User’s Guide and Reference

SDO_GEOM.SDO_POINTONSURFACE(C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
--
SDO_GEOMETRY(2001, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
1, 1))

Related Topics
None.

SDO_GEOM.SDO_UNION

SDO_GEOM Package (Geometry) 15-33

SDO_GEOM.SDO_UNION

Format
SDO_GEOM.SDO_UNION(

geom1 IN SDO_GEOMETRY,

dim1 IN SDO_DIM_ARRAY,

geom2 IN SDO_GEOMETRY,

dim2 IN SDO_DIM_ARRAY

) RETURN SDO_GEOMETRY;

or

SDO_GEOM.SDO_UNION(

geom1 IN SDO_GEOMETRY,

geom2 IN SDO_GEOMETRY,

tol IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns a geometry object that is the topological union (OR operation) of two
geometry objects.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

geom2
Geometry object.

dim2
Dimensional information array corresponding to geom2, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
In Figure 15–4, the shaded area represents the polygon returned when SDO_UNION is
used with a square (geom1) and another polygon (geom2).

SDO_GEOM.SDO_UNION

15-34 Oracle Spatial User’s Guide and Reference

Figure 15–4 SDO_GEOM.SDO_UNION

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

If it is sufficient to append one geometry to another geometry without performing a
topological union operation, and if both geometries are disjoint, using the SDO_
UTIL.APPEND function (described in Chapter 20) is faster than using the SDO_
UNION function.

An exception is raised if geom1 and geom2 are based on different coordinate systems.

Examples
The following example returns a geometry object that is the topological union (OR
operation) of cola_a and cola_c. (The example uses the definitions and data from
Section 2.1.)

-- Return the topological union of two geometries.
SELECT SDO_GEOM.SDO_UNION(c_a.shape, m.diminfo, c_c.shape, m.diminfo)
 FROM cola_markets c_a, cola_markets c_c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c_a.name = 'cola_a' AND c_c.name = 'cola_c';

SDO_GEOM.SDO_UNION(C_A.SHAPE,M.DIMINFO,C_C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID,
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5, 5, 5, 7, 1, 7, 1, 1, 5, 1, 5, 3, 6, 3, 6, 5, 5, 5))

Note that in the returned polygon, the SDO_ORDINATE_ARRAY starts and ends at
the same point (5, 5).

Related Topics
■ SDO_GEOM.SDO_DIFFERENCE

■ SDO_GEOM.SDO_INTERSECTION

■ SDO_GEOM.SDO_XOR

geom1
geom2

SDO_GEOM.SDO_XOR

SDO_GEOM Package (Geometry) 15-35

SDO_GEOM.SDO_XOR

Format
SDO_GEOM.SDO_XOR(

geom1 IN SDO_XOR,

dim1 IN SDO_DIM_ARRAY,

geom2 IN SDO_GEOMETRY,

dim2 IN SDO_DIM_ARRAY

) RETURN SDO_GEOMETRY;

or

SDO_GEOM.SDO_XOR(

geom1 IN SDO_GEOMETRY,

geom2 IN SDO_GEOMETRY,

tol IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns a geometry object that is the topological symmetric difference (XOR
operation) of two geometry objects.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

geom2
Geometry object.

dim2
Dimensional information array corresponding to geom2, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tol
Tolerance value (see Section 1.5.5).

Usage Notes
In Figure 15–5, the shaded area represents the polygon returned when SDO_XOR is
used with a square (geom1) and another polygon (geom2).

SDO_GEOM.SDO_XOR

15-36 Oracle Spatial User’s Guide and Reference

Figure 15–5 SDO_GEOM.SDO_XOR

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

Examples
The following example returns a geometry object that is the topological symmetric
difference (XOR operation) of cola_a and cola_c. (The example uses the definitions
and data from Section 2.1.)

-- Return the topological symmetric difference of two geometries.
SELECT SDO_GEOM.SDO_XOR(c_a.shape, m.diminfo, c_c.shape, m.diminfo)
 FROM cola_markets c_a, cola_markets c_c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c_a.name = 'cola_a' AND c_c.name = 'cola_c';

SDO_GEOM.SDO_XOR(C_A.SHAPE,M.DIMINFO,C_C.SHAPE,M.DIMINFO)(SDO_GTYPE, SDO_SRID, S
--
SDO_GEOMETRY(2007, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1, 19, 1003, 1), SDO
_ORDINATE_ARRAY(1, 7, 1, 1, 5, 1, 5, 3, 3, 3, 4, 5, 5, 5, 5, 7, 1, 7, 5, 5, 5, 3
, 6, 3, 6, 5, 5, 5))

Note that the returned polygon is a multipolygon (SDO_GTYPE = 2007), and the SDO_
ORDINATE_ARRAY describes two polygons: one starting and ending at (1, 7) and the
other starting and ending at (5, 5).

Related Topics
■ SDO_GEOM.SDO_DIFFERENCE

■ SDO_GEOM.SDO_INTERSECTION

■ SDO_GEOM.SDO_UNION

geom1
geom2

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

SDO_GEOM Package (Geometry) 15-37

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

Format
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(

theGeometry IN SDO_GEOMETRY,

theDimInfo IN SDO_DIM_ARRAY

) RETURN VARCHAR2;

or

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(

theGeometry IN SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN VARCHAR2;

Description
Performs a consistency check for valid geometry types and returns context
information if the geometry is invalid. The function checks the representation of the
geometry from the tables against the element definitions.

Parameters

theGeometry
Geometry object.

theDimInfo
Dimensional information array corresponding to theGeometry, usually selected from
one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tolerance
Tolerance value (see Section 1.5.5).

Usage Notes
If the geometry is valid, this function returns TRUE. (For a user-defined geometry, that
is, a geometry with an SDO_GTYPE value of 2000, this function returns the string
NULL.)

If the geometry is not valid, this function returns the following:

■ An Oracle error message number based on the specific reason the geometry is
invalid, or FALSE if the geometry fails for some other reason

■ The context of the error (the coordinate, edge, or ring that causes the geometry to
be invalid). (See "Context of Errors: Details" in this section.)

This function checks for type consistency and geometry consistency.

For type consistency, the function checks for the following:

■ The SDO_GTYPE is valid.

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

15-38 Oracle Spatial User’s Guide and Reference

■ The SDO_ETYPE values are consistent with the SDO_GTYPE value. For example,
if the SDO_GTYPE is 2003, there should be at least one element of type POLYGON
in the geometry.

■ The SDO_ELEM_INFO_ARRAY has valid triplet values.

For geometry consistency, the function checks for the following, as appropriate for the
specific geometry type:

■ Polygons have at least four points, which includes the point that closes the
polygon. (The last point is the same as the first.)

■ Polygons are not self-crossing.

■ No two vertices on a line or polygon are the same.

■ Polygons are oriented correctly. (Exterior ring boundaries must be oriented
counterclockwise, and interior ring boundaries must be oriented clockwise.)

■ An interior polygon ring touches the exterior polygon ring at no more than one
point.

■ If two or more interior polygon rings are in an exterior polygon ring, the interior
polygon rings touch at no more than one point.

■ Line strings have at least two points.

■ SDO_ETYPE 1-digit and 4-digit values are not mixed (that is, both used) in
defining polygon ring elements.

■ Points on an arc are not colinear (that is, are not on a straight line) and are not the
same point.

■ Geometries are within the specified bounds of the applicable DIMINFO column
value (from the USER_SDO_GEOM_METADATA view).

■ LRS geometries (see Chapter 7) have three or four dimensions and a valid measure
dimension position (3 or 4, depending on the number of dimensions).

In checking for geometry consistency, the function considers the geometry’s tolerance
value in determining if lines touch or if points are the same.

If the function format with tolerance is used, the following guidelines apply:

■ All geometry objects must be defined using 4-digit SDO_GTYPE values (explained
in Section 2.2.1).

■ No checking is done to validate that the geometry is within the coordinate system
bounds as stored in the DIMINFO field of the USER_SDO_GEOM_METADATA
view. If this check is required for your usage, use the function format with
theDimInfo.

You can use this function in a PL/SQL procedure as an alternative to using the SDO_
GEOM.VALIDATE_LAYER_WITH_CONTEXT procedure. See the Usage Notes for
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT for more information.

Context of Errors: Details
If a geometry is invalid, the result can include information about a combination of the
following: coordinates, elements, rings, and edges.

■ Coordinates: A coordinate refers to a vertex in a geometry. In a two-dimensional
geometry, a vertex is two numbers (X and Y, or Longitude and Latitude). In a
three-dimensional geometry, a vertex is defined using three numbers; and in a

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

SDO_GEOM Package (Geometry) 15-39

four-dimensional geometry, a vertex is defined using four numbers. (You can use
the SDO_UTIL.GETVERTICES function to return the coordinates in a geometry.)

If you receive a geometry validation error such as 13356 (adjacent points in a
geometry are redundant), you can call the SDO_UTIL.GETVERTICES function,
specifying a rownum stopping condition to include the coordinate one greater
than the coordinate indicated with the error. The last two coordinates shown in the
output are the redundant coordinates. These coordinates may be exactly the same,
or they may be within the user-specified tolerance and thus are considered the
same point. You can remove redundant coordinates by using the SDO_
UTIL.REMOVE_DUPLICATE_VERTICES function.

■ Elements: An element is a point, a line string, or an exterior polygon with zero or
more corresponding interior polygons. (That is, a polygon element includes the
exterior ring and all interior rings associated with that exterior ring.) If a geometry
is a multi-element geometry (for example, multiple points, lines, or polygons), the
first element is element 1, the second element is element 2, and so on.

■ Rings: A ring is only used with polygon elements. Exterior rings in a polygon are
considered polygon elements, and an exterior ring can include zero or more
interior rings (or holes). Each interior ring has its own ring designation, but Ring 1
is associated with the exterior polygon itself. For example, Element 1, Ring 1 refers
to the first exterior polygon in a geometry; Element 1, Ring 2 refers to the first
interior polygon of the first exterior polygon; and Element 1, Ring 3 refers to the
second interior polygon. If the geometry is a multipolygon, Element 2, Ring 1 is
used to refers to the second exterior polygon. If there are interior polygons
associated with it, Element 2, Ring 2 refers to the first interior polygon of the
second exterior polygon.

■ Edges: An edge refers to a line segment between two coordinates. Edge 1 refers to
the segment between coordinate 1 and coordinate 2, Edge 2 refers to the line
segment between coordinates 2 and 3, and so on. The most common place to see
edge errors when validating geometries is with self-intersecting polygons. (The
Open Geospatial Consortium simple features specification does not allow a
polygon to self-intersect.) In such cases, Oracle reports error 13349 (polygon
boundary crosses itself), including the Element, Ring, and Edge numbers where
self-intersection occurs.

Examples
The following example validates a geometry (deliberately created as invalid) named
cola_invalid_geom.

-- Validate; provide context if invalid
SELECT c.name, SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(c.shape, 0.005)
 FROM cola_markets c WHERE c.name = 'cola_invalid_geom';

NAME

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(C.SHAPE,0.005)
--
cola_invalid_geom
13349 [Element <1>] [Ring <1>][Edge <1>][Edge <3>]

In the output for this example, 13349 indicates the error ORA-13349: polygon
boundary crosses itself. The first ring of the first element has edges that
intersect. The edges that intersect are edge 1 (the first and second vertices) and edge 3
(the third and fourth vertices).

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

15-40 Oracle Spatial User’s Guide and Reference

Related Topics
■ SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT

SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT

SDO_GEOM Package (Geometry) 15-41

SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT

Format
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT(

geom_table IN VARCHAR2,

geom_column IN VARCHAR2,

result_table IN VARCHAR2

[, commit_interval IN NUMBER]);

Description
Examines a geometry column to determine if the stored geometries follow the defined
rules for geometry objects, and returns context information about any invalid
geometries.

Parameters

geom_table
Spatial geometry table.

geom_column
Geometry object column to be examined.

result_table
Result table to hold the validation results. A row is added to result_table for each
invalid geometry. If there are no invalid geometries, one or more (depending on the
commit_interval value) rows with a result of DONE are added.

commit_interval
Number of geometries to validate before Spatial performs an internal commit
operation and writes a row with a result of DONE to result_table (if no rows for
invalid geometries have been written since the last commit operation). If commit_
interval is not specified, no internal commit operations are performed during the
validation.

The commit_interval option is helpful if you want to look at the contents of
result_table while the validation is in progress.

Usage Notes
This procedure loads the result table with validation results.

An empty result table (result_table parameter) must be created before calling this
procedure. The format of the result table is: (sdo_rowid ROWID, result
VARCHAR2(2000)). If result_table is not empty, you should truncate the table
before calling the procedure; otherwise, the procedure appends rows to the existing
data in the table.

The result table contains one row for each invalid geometry. A row is not written if a
geometry is valid, except as follows:

■ If commit_interval is not specified (or if the commit_interval value is
greater than the number of geometries in the layer) and no invalid geometries are
found, a single row with a RESULT value of DONE is written.

SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT

15-42 Oracle Spatial User’s Guide and Reference

■ If commit_interval is specified and if no invalid geometries are found between
an internal commit and the previous internal commit (or start of validation for the
first internal commit), a single row with the primary key of the last geometry
validated and a RESULT value of DONE is written. (If there have been no invalid
geometries since the last internal commit operation, this row replaces the previous
row that had a result of DONE.)

In each row for an invalid geometry, the SDO_ROWID column contains the ROWID
value of the row containing the invalid geometry, and the RESULT column contains an
Oracle error message number and the context of the error (the coordinate, edge, or ring
that causes the geometry to be invalid). You can then look up the error message for
more information about the cause of the failure.

This procedure performs the following checks on each geometry in the layer (geom_
column):

■ All type consistency and geometry consistency checks that are performed by the
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function (see the Usage
Notes for that function).

■ If 4-digit SDO_GTYPE values are used, the geometry’s SDO_GTYPE specifies the
same dimensionality as specified in the applicable DIMINFO column value (from
the USER_SDO_GEOM_METADATA view, which is described in Section 2.6).

■ The geometry’s SRID value (coordinate system) is the same as the one specified in
the applicable DIMINFO column value (from the USER_SDO_GEOM_
METADATA view, which is described in Section 2.6).

Examples
The following example validates the geometry objects stored in the SHAPE column of
the COLA_MARKETS table. The example includes the creation of the result table. For
this example, a deliberately invalid geometry was inserted into the table before the
validation was performed.

-- Is a layer valid? (First, create the result table.)
CREATE TABLE val_results (sdo_rowid ROWID, result varchar2(1000));
-- (Next statement must be on one command line.)
CALL SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT('COLA_MARKETS','SHAPE','VAL_RESULTS');

Call completed.

SQL> SELECT * from val_results;

SDO_ROWID

RESULT
--

Rows Processed <12>

AAABXNAABAAAK+YAAC
13349 [Element <1>] [Ring <1>][Edge <1>][Edge <3>]

Related Topics
■ SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

SDO_GEOM.WITHIN_DISTANCE

SDO_GEOM Package (Geometry) 15-43

SDO_GEOM.WITHIN_DISTANCE

Format
SDO_GEOM.WITHIN_DISTANCE(

geom1 IN SDO_GEOMETRY,

dim1 IN SDO_DIM_ARRAY,

dist IN NUMBER,

geom2 IN SDO_GEOMETRY,

dim2 IN SDO_DIM_ARRAY

[, units IN VARCHAR2]

) RETURN VARCHAR2;

or

SDO_GEOM.WITHIN_DISTANCE(

geom1 IN SDO_GEOMETRY,

dist IN NUMBER,

geom2 IN SDO_GEOMETRY,

tol IN NUMBER

[, units IN VARCHAR2]

) RETURN VARCHAR2;

Description
Determines if two spatial objects are within some specified distance from each other.

Parameters

geom1
Geometry object.

dim1
Dimensional information array corresponding to geom1, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

dist
Distance value.

geom2
Geometry object.

dim2
Dimensional information array corresponding to geom2, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tol
Tolerance value (see Section 1.5.5).

SDO_GEOM.WITHIN_DISTANCE

15-44 Oracle Spatial User’s Guide and Reference

units
Unit of measurement: a quoted string with unit= and an SDO_UNIT value from the
MDSYS.SDO_AREA_UNITS table (for example, 'unit=KM'). See Section 2.8 for more
information about unit of measurement specification.

If this parameter is not specified, the unit of measurement associated with the data is
assumed. For geodetic data, the default unit of measurement is meters.

Usage Notes
For better performance, use the SDO_WITHIN_DISTANCE operator (described in
Chapter 11) instead of the SDO_GEOM.WITHIN_DISTANCE function. For more
information about performance considerations with operators and functions, see
Section 1.9.

This function returns TRUE for object pairs that are within the specified distance, and
FALSE otherwise.

The distance between two extended objects (for example, nonpoint objects such as
lines and polygons) is defined as the minimum distance between these two objects.
Thus the distance between two adjacent polygons is zero.

If the function format with tol is used, all geometry objects must be defined using
4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

Examples
The following example checks if cola_b and cola_d are within 1 unit apart at the
shortest distance between them. (The example uses the definitions and data from
Section 2.1.)

-- Are two geometries within 1 unit of distance apart?
SELECT SDO_GEOM.WITHIN_DISTANCE(c_b.shape, m.diminfo, 1,
 c_d.shape, m.diminfo)
 FROM cola_markets c_b, cola_markets c_d, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c_b.name = 'cola_b' AND c_d.name = 'cola_d';

SDO_GEOM.WITHIN_DISTANCE(C_B.SHAPE,M.DIMINFO,1,C_D.SHAPE,M.DIMINFO)
--
TRUE

Related Topics
■ SDO_GEOM.SDO_DISTANCE

SDO_LRS Package (Linear Referencing System) 16-1

16
SDO_LRS Package (Linear Referencing

System)

The MDSYS.SDO_LRS package contains subprograms that create, modify, query, and
convert linear referencing elements. These subprograms do not change the state of the
database. Most LRS subprograms are functions.

To use the subprograms in this chapter, you must understand the linear referencing
system (LRS) concepts and techniques described in Chapter 7.

Table 16–1 lists subprograms related to creating and editing geometric segments.

Table 16–1 Subprograms for Creating and Editing Geometric Segments

Subprogram Description

SDO_LRS.DEFINE_GEOM_SEGMENT Defines a geometric segment.

SDO_LRS.REDEFINE_GEOM_SEGMENT Populates the measures of all shape points of a
geometric segment based on the start and end
measures, overriding any previously assigned
measures between the start point and end point.

SDO_LRS.CLIP_GEOM_SEGMENT Clips a geometric segment (synonym of SDO_
LRS.DYNAMIC_SEGMENT).

SDO_LRS.DYNAMIC_SEGMENT Clips a geometric segment (synonym of SDO_
LRS.CLIP_GEOM_SEGMENT).

SDO_LRS.CONCATENATE_GEOM_
SEGMENTS

Concatenates two geometric segments into one
segment.

SDO_LRS.LRS_INTERSECTION Returns an LRS geometry object that is the
topological intersection (AND operation) of two
geometry objects where one or both are LRS
geometries.

SDO_LRS.OFFSET_GEOM_SEGMENT Returns the geometric segment at a specified
offset from a geometric segment.

SDO_LRS.SPLIT_GEOM_SEGMENT Splits a geometric segment into two segments.

SDO_LRS.RESET_MEASURE Sets all measures of a geometric segment,
including the start and end measures, to null
values, overriding any previously assigned
measures.

SDO_LRS.SET_PT_MEASURE Sets the measure value of a specified point.

SDO_LRS.REVERSE_MEASURE Returns a new geometric segment by reversing
the measure values, but not the direction, of the
original geometric segment.

16-2 Oracle Spatial User’s Guide and Reference

Table 16–2 lists subprograms related to querying geometric segments.

SDO_LRS.TRANSLATE_MEASURE Returns a new geometric segment by
translating the original geometric segment (that
is, shifting the start and end measures by a
specified value).

SDO_LRS.REVERSE_GEOMETRY Returns a new geometric segment by reversing
the measure values and the direction of the
original geometric segment.

Table 16–2 Subprograms for Querying and Validating Geometric Segments

Subprogram Description

SDO_LRS.VALID_GEOM_SEGMENT Checks if a geometric segment is valid.

SDO_LRS.VALID_LRS_PT Checks if an LRS point is valid.

SDO_LRS.VALID_MEASURE Checks if a measure falls within the measure
range of a geometric segment.

SDO_LRS.CONNECTED_GEOM_
SEGMENTS

Checks if two geometric segments are
spatially connected.

SDO_LRS.GEOM_SEGMENT_LENGTH Returns the length of a geometric segment.

SDO_LRS.GEOM_SEGMENT_START_PT Returns the start point of a geometric segment.

SDO_LRS.GEOM_SEGMENT_END_PT Returns the end point of a geometric segment.

SDO_LRS.GEOM_SEGMENT_START_
MEASURE

Returns the start measure of a geometric
segment.

SDO_LRS.GEOM_SEGMENT_END_
MEASURE

Returns the end measure of a geometric
segment.

SDO_LRS.GET_MEASURE Returns the measure of an LRS point.

SDO_LRS.GET_NEXT_SHAPE_PT Returns the next shape point on a geometric
segment after a specified measure value or
LRS point.

SDO_LRS.GET_NEXT_SHAPE_PT_
MEASURE

Returns the measure value of the next shape
point on a geometric segment after a specified
measure value or LRS point.

SDO_LRS.GET_PREV_SHAPE_PT Returns the previous shape point on a
geometric segment before a specified measure
value or LRS point.

SDO_LRS.GET_PREV_SHAPE_PT_
MEASURE

Returns the measure value of the previous
shape point on a geometric segment before a
specified measure value or LRS point.

SDO_LRS.IS_GEOM_SEGMENT_
DEFINED

Checks if an LRS segment is defined correctly.

SDO_LRS.IS_MEASURE_DECREASING Checks if the measure values along an LRS
segment are decreasing (that is, descending in
numerical value).

SDO_LRS.IS_MEASURE_INCREASING Checks if the measure values along an LRS
segment are increasing (that is, ascending in
numerical value).

Table 16–1 (Cont.) Subprograms for Creating and Editing Geometric Segments

Subprogram Description

SDO_LRS Package (Linear Referencing System) 16-3

Table 16–3 lists subprograms related to converting geometric segments.

SDO_LRS.IS_SHAPE_PT_MEASURE Checks if a specified measure value is
associated with a shape point on a geometric
segment.

SDO_LRS.MEASURE_RANGE Returns the measure range of a geometric
segment, that is, the difference between the
start measure and end measure.

SDO_LRS.MEASURE_TO_PERCENTAGE Returns the percentage (0 to 100) that a
specified measure is of the measure range of a
geometric segment.

SDO_LRS.PERCENTAGE_TO_MEASURE Returns the measure value of a specified
percentage (0 to 100) of the measure range of a
geometric segment.

SDO_LRS.LOCATE_PT Returns the point located at a specified
distance from the start of a geometric segment.

SDO_LRS.PROJECT_PT Returns the projection point of a specified
point. The projection point is on the geometric
segment.

SDO_LRS.FIND_LRS_DIM_POS Returns the position of the measure dimension
within the SDO_DIM_ARRAY structure for a
specified SDO_GEOMETRY column.

SDO_LRS.FIND_MEASURE Returns the measure of the closest point on a
segment to a specified projection point.

SDO_LRS.FIND_OFFSET Returns the signed offset (shortest distance)
from a point to a geometric segment.

SDO_LRS.VALIDATE_LRS_GEOMETRY Checks if an LRS geometry is valid.

Table 16–3 Subprograms for Converting Geometric Segments

Subprogram Description

SDO_LRS.CONVERT_TO_LRS_DIM_
ARRAY

Converts a standard dimensional array to an
LRS dimensional array by creating a measure
dimension.

SDO_LRS.CONVERT_TO_LRS_GEOM Converts a standard SDO_GEOMETRY line
string to an LRS geometric segment by adding
measure information.

SDO_LRS.CONVERT_TO_LRS_LAYER Converts all geometry objects in a column of
type SDO_GEOMETRY from standard line
string geometries without measure information
to LRS geometric segments with measure
information, and updates the metadata.

SDO_LRS.CONVERT_TO_STD_DIM_
ARRAY

Converts an LRS dimensional array to a
standard dimensional array by removing the
measure dimension.

SDO_LRS.CONVERT_TO_STD_GEOM Converts an LRS geometric segment to a
standard SDO_GEOMETRY line string by
removing measure information.

Table 16–2 (Cont.) Subprograms for Querying and Validating Geometric Segments

Subprogram Description

16-4 Oracle Spatial User’s Guide and Reference

For more information about conversion subprograms, see Section 7.5.10.

The rest of this chapter provides reference information on the subprograms, listed in
alphabetical order.

SDO_LRS.CONVERT_TO_STD_LAYER Converts all geometry objects in a column of
type SDO_GEOMETRY from LRS geometric
segments with measure information to standard
line string geometries without measure
information, and updates the metadata.

Table 16–3 (Cont.) Subprograms for Converting Geometric Segments

Subprogram Description

SDO_LRS.CLIP_GEOM_SEGMENT

SDO_LRS Package (Linear Referencing System) 16-5

SDO_LRS.CLIP_GEOM_SEGMENT

Format
SDO_LRS.CLIP_GEOM_SEGMENT(

geom_segment IN SDO_GEOMETRY,

start_measure IN NUMBER,

end_measure IN NUMBER,

tolerance IN NUMBER DEFAULT 1.0e-8

) RETURN SDO_GEOMETRY;

or

SDO_LRS.CLIP_GEOM_SEGMENT(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

start_measure IN NUMBER,

end_measure IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns the geometry object resulting from a clip operation on a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

start_measure
Start measure of the geometric segment.

end_measure
End measure of the geometric segment.

tolerance
Tolerance value (see Section 1.5.5 and Section 7.6). The default value is 0.00000001.

Usage Notes
An exception is raised if geom_segment, start_measure, or end_measure is
invalid.

Note: SDO_LRS.CLIP_GEOM_SEGMENT and SDO_
LRS.DYNAMIC_SEGMENT are synonyms: both functions have the
same parameters, behavior, and return value.

SDO_LRS.CLIP_GEOM_SEGMENT

16-6 Oracle Spatial User’s Guide and Reference

start_measure and end_measure can be any points on the geometric segment.
They do not have to be in any specific order. For example, start_measure and end_
measure can be 5 and 10, respectively, or 10 and 5, respectively.

The direction and measures of the resulting geometric segment are preserved (that is,
they reflect the original segment).

The _3D format of this function (SDO_LRS.CLIP_GEOM_SEGMENT_3D) is available.
For information about _3D formats of LRS functions, see Section 7.4.

For more information about clipping geometric segments, see Section 7.5.3.

Examples
The following example clips the geometric segment representing Route 1, returning
the segment from measures 5 through 10. This segment might represent a construction
zone. (This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.CLIP_GEOM_SEGMENT(route_geometry, 5, 10)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.CLIP_GEOM_SEGMENT(ROUTE_GEOMETRY,5,10)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 4, 5, 8, 4, 8, 10, 4, 10))

SDO_LRS.CONCATENATE_GEOM_SEGMENTS

SDO_LRS Package (Linear Referencing System) 16-7

SDO_LRS.CONCATENATE_GEOM_SEGMENTS

Format
SDO_LRS.CONCATENATE_GEOM_SEGMENTS(

geom_segment_1 IN SDO_GEOMETRY,

geom_segment_2 IN SDO_GEOMETRY,

tolerance IN NUMBER DEFAULT 1.0e-8

) RETURN SDO_GEOMETRY;

or

SDO_LRS.CONCATENATE_GEOM_SEGMENTS(

geom_segment_1 IN SDO_GEOMETRY,

dim_array_1 IN SDO_DIM_ARRAY,

geom_segment_2 IN SDO_GEOMETRY,

dim_array_2 IN SDO_DIM_ARRAY

) RETURN SDO_GEOMETRY;

Description
Returns the geometry object resulting from the concatenation of two geometric
segments.

Parameters

geom_segment_1
First geometric segment to be concatenated.

dim_array_1
Dimensional information array corresponding to geom_segment_1, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

geom_segment_2
Second geometric segment to be concatenated.

dim_array_2
Dimensional information array corresponding to geom_segment_2, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tolerance
Tolerance value (see Section 1.5.5 and Section 7.6). The default value is 0.00000001.

Usage Notes
An exception is raised if geom_segment_1 or geom_segment_2 has an invalid
geometry type or dimensionality, or if geom_segment_1 and geom_segment_2 are
based on different coordinate systems.

The direction of the first geometric segment is preserved, and all measures of the
second segment are shifted so that its start measure is the same as the end measure of
the first segment.

SDO_LRS.CONCATENATE_GEOM_SEGMENTS

16-8 Oracle Spatial User’s Guide and Reference

The geometry type of geom_segment_1 and geom_segment_2 must be line or
multiline. Neither can be a polygon.

The _3D format of this function (SDO_LRS.CONCATENATE_GEOM_SEGMENTS_
3D) is available. For information about _3D formats of LRS functions, see Section 7.4.

For more information about concatenating geometric segments, see Section 7.5.5.

Examples
The following example defines the geometric segment, splits it into two segments,
then concatenates those segments. (This example uses the definitions from the
example in Section 7.7. The definitions of result_geom_1, result_geom_2, and
result_geom_3 are displayed in Example 7–3.)

DECLARE
geom_segment SDO_GEOMETRY;
line_string SDO_GEOMETRY;
dim_array SDO_DIM_ARRAY;
result_geom_1 SDO_GEOMETRY;
result_geom_2 SDO_GEOMETRY;
result_geom_3 SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = 'Route1';
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY';

-- Define the LRS segment for Route1.
SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment,
 dim_array,
 0, -- Zero starting measure: LRS segment starts at start of route.
 27); -- End of LRS segment is at measure 27.

SELECT a.route_geometry INTO line_string FROM lrs_routes a
 WHERE a.route_name = 'Route1';

-- Split Route1 into two segments.
SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom_2);

-- Concatenate the segments that were just split.
result_geom_3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array,
result_geom_2, dim_array);

-- Insert geometries into table, to display later.
INSERT INTO lrs_routes VALUES(
 11,
 'result_geom_1',
 result_geom_1
);
INSERT INTO lrs_routes VALUES(
 12,
 'result_geom_2',
 result_geom_2
);
INSERT INTO lrs_routes VALUES(
 13,
 'result_geom_3',

SDO_LRS.CONCATENATE_GEOM_SEGMENTS

SDO_LRS Package (Linear Referencing System) 16-9

 result_geom_3
);

END;
/

SDO_LRS.CONNECTED_GEOM_SEGMENTS

16-10 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONNECTED_GEOM_SEGMENTS

Format
SDO_LRS.CONNECTED_GEOM_SEGMENTS(

geom_segment_1 IN SDO_GEOMETRY,

geom_segment_2 IN SDO_GEOMETRY,

tolerance IN NUMBER DEFAULT 1.0e-8

) RETURN VARCHAR2;

or

SDO_LRS.CONNECTED_GEOM_SEGMENTS(

geom_segment_1 IN SDO_GEOMETRY,

dim_array_1 IN SDO_DIM_ARRAY,

geom_segment_2 IN SDO_GEOMETRY,

dim_array_2 IN SDO_DIM_ARRAY

) RETURN VARCHAR2;

Description
Checks if two geometric segments are spatially connected.

Parameters

geom_segment_1
First of two geometric segments to be checked.

dim_array_1
Dimensional information array corresponding to geom_segment_1, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

geom_segment_2
Second of two geometric segments to be checked.

dim_array_2
Dimensional information array corresponding to geom_segment_2, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tolerance
Tolerance value (see Section 1.5.5 and Section 7.6). The default value is 0.00000001.

Usage Notes
This function returns TRUE if the geometric segments are spatially connected and
FALSE if the geometric segments are not spatially connected.

An exception is raised if geom_segment_1 or geom_segment_2 has an invalid
geometry type or dimensionality, or if geom_segment_1 and geom_segment_2 are
based on different coordinate systems.

The _3D format of this function (SDO_LRS.CONNECTED_GEOM_SEGMENTS_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

SDO_LRS.CONNECTED_GEOM_SEGMENTS

SDO_LRS Package (Linear Referencing System) 16-11

Examples
The following example checks if two geometric segments (results of a previous split
operation) are spatially connected.

-- Are result_geom_1 and result_geom2 connected?
SELECT SDO_LRS.CONNECTED_GEOM_SEGMENTS(a.route_geometry,
 b.route_geometry, 0.005)
 FROM lrs_routes a, lrs_routes b
 WHERE a.route_id = 11 AND b.route_id = 12;

SDO_LRS.CONNECTED_GEOM_SEGMENTS(A.ROUTE_GEOMETRY,B.ROUTE_GEOMETRY,0.005)
--
TRUE

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY

16-12 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY

Format
SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(

dim_array IN SDO_DIM_ARRAY

[, lower_bound IN NUMBER,

upper_bound IN NUMBER,

tolerance IN NUMBER]

) RETURN SDO_DIM_ARRAY;

or

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(

dim_array IN SDO_DIM_ARRAY,

dim_name IN VARCHAR2

[, lower_bound IN NUMBER,

upper_bound IN NUMBER,

tolerance IN NUMBER]

) RETURN SDO_DIM_ARRAY;

or

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(

dim_array IN SDO_DIM_ARRAY,

dim_name IN VARCHAR2,

dim_pos IN INTEGER

[, lower_bound IN NUMBER,

upper_bound IN NUMBER,

tolerance IN NUMBER]

) RETURN SDO_DIM_ARRAY;

Description
Converts a standard dimensional array to an LRS dimensional array by creating a
measure dimension.

Parameters

dim_array
Dimensional information array corresponding to the layer (column of geometries) to
be converted, usually selected from one of the xxx_SDO_GEOM_METADATA views
(described in Section 2.6).

dim_name
Name of the measure dimension (M, if not otherwise specified).

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY

SDO_LRS Package (Linear Referencing System) 16-13

dim_pos
Position of the measure dimension (the last SDO_DIM_ELEMENT object position in
the SDO_DIM_ARRAY, if not otherwise specified).

lower_bound
Lower bound (SDO_LB value in the SDO_DIM_ELEMENT definition) of the ordinate
in the measure dimension.

upper_bound
Upper bound (SDO_UB value in the SDO_DIM_ELEMENT definition) of the ordinate
in the measure dimension.

tolerance
Tolerance value (see Section 1.5.5 and Section 7.6). The default value is 0.00000001.

Usage Notes
This function converts a standard dimensional array to an LRS dimensional array by
creating a measure dimension. Specifically, it adds an SDO_DIM_ELEMENT object at
the end of the current SDO_DIM_ELEMENT objects in the SDO_DIM_ARRAY for the
dimensional array (unless another dim_pos is specified), and sets the SDO_
DIMNAME value in this added SDO_DIM_ELEMENT to M (unless another dim_
name is specified). It sets the other values in the added SDO_DIM_ELEMENT
according to the values of the upper_bound, lower_bound, and tolerance
parameter values.

If dim_array already contains dimensional information, the dim_array is returned.

The _3D format of this function (SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

For more information about conversion functions, see Section 7.5.10.

Examples
The following example converts the dimensional array for the LRS_ROUTES table to
LRS format. (This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(m.diminfo)
 FROM user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY';

SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY(M.DIMINFO)(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOL
--
SDO_DIM_ARRAY(SDO_DIM_ELEMENT('X', 0, 20, .005), SDO_DIM_ELEMENT('Y', 0, 20, .00
5), SDO_DIM_ELEMENT('M', 0, 20, .005))

SDO_LRS.CONVERT_TO_LRS_GEOM

16-14 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_LRS_GEOM

Format
SDO_LRS.CONVERT_TO_LRS_GEOM(

standard_geom IN SDO_GEOMETRY

[, start_measure IN NUMBER,

end_measure IN NUMBER]

) RETURN SDO_GEOMETRY;

or

SDO_LRS.CONVERT_TO_LRS_GEOM(

standard_geom IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY

[, start_measure IN NUMBER,

end_measure IN NUMBER]

) RETURN SDO_GEOMETRY;

or

SDO_LRS.CONVERT_TO_LRS_GEOM(

standard_geom IN SDO_GEOMETRY,

m_pos IN INTEGER

[, start_measure IN NUMBER,

end_measure IN NUMBER]

) RETURN SDO_GEOMETRY;

Description
Converts a standard SDO_GEOMETRY line string to an LRS geometric segment by
adding measure information.

Parameters

standard_geom
Line string geometry that does not contain measure information.

dim_array
Dimensional information array corresponding to standard_geom, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

m_pos
Position of the measure dimension. If specified, must be 3 or 4. By default, the measure
dimension is the last dimension in the SDO_DIM_ARRAY.

start_measure
Distance measured from the start point of a geometric segment to the start point of the
linear feature. The default is 0.

SDO_LRS.CONVERT_TO_LRS_GEOM

SDO_LRS Package (Linear Referencing System) 16-15

end_measure
Distance measured from the end point of a geometric segment to the start point of the
linear feature. The default is the cartographic length (for example, 75 if the
cartographic length is 75 and the unit of measure is miles).

Usage Notes
This function returns an LRS geometric segment with measure information, with
measure information provided for all shape points.

An exception is raised if standard_geom has an invalid geometry type or
dimensionality, if m_pos is less than 3 or greater than 4, or if start_measure or
end_measure is out of range.

The _3D format of this function (SDO_LRS.CONVERT_TO_LRS_GEOM_3D) is
available; however, the m_pos parameter is not available for SDO_LRS.CONVERT_
TO_LRS_GEOM_3D. For information about _3D formats of LRS functions, see
Section 7.4.

For more information about conversion functions, see Section 7.5.10.

Examples
The following example converts the geometric segment representing Route 1 to LRS
format. (This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.CONVERT_TO_LRS_GEOM(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.CONVERT_TO_LRS_GEOM(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, NULL, 8, 10, 22, 5, 14, 27))

SDO_LRS.CONVERT_TO_LRS_LAYER

16-16 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_LRS_LAYER

Format
SDO_LRS.CONVERT_TO_LRS_LAYER(

table_name IN VARCHAR2,

column_name IN VARCHAR2

[, lower_bound IN NUMBER,

upper_bound IN NUMBER,

tolerance IN NUMBER]

) RETURN VARCHAR2;

or

SDO_LRS.CONVERT_TO_LRS_LAYER(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

dim_name IN VARCHAR2,

dim_pos IN INTEGER

[, lower_bound IN NUMBER,

upper_bound IN NUMBER,

tolerance IN NUMBER]

) RETURN VARCHAR2;

Description
Converts all geometry objects in a column of type SDO_GEOMETRY (that is, converts
a layer) from standard line string geometries without measure information to LRS
geometric segments with measure information, and updates the metadata in the
USER_SDO_GEOM_METADATA view.

Parameters

table_name
Table containing the column with the SDO_GEOMETRY objects.

column_name
Column in table_name containing the SDO_GEOMETRY objects.

dim_name
Name of the measure dimension. If this parameter is null, M is assumed.

dim_pos
Position of the measure dimension within the SDO_DIM_ARRAY structure for the
specified SDO_GEOMETRY column. If this parameter is null, the number
corresponding to the last position is assumed.

SDO_LRS.CONVERT_TO_LRS_LAYER

SDO_LRS Package (Linear Referencing System) 16-17

lower_bound
Lower bound (SDO_LB value in the SDO_DIM_ELEMENT definition) of the ordinate
in the measure dimension.

upper_bound
Upper bound (SDO_UB value in the SDO_DIM_ELEMENT definition) of the ordinate
in the measure dimension.

tolerance
Tolerance value (see Section 1.5.5 and Section 7.6). The default value is 0.00000001.

Usage Notes
This function returns TRUE if the conversion was successful or if the layer already
contains measure information, and the function returns an exception if the conversion
was not successful.

An exception is raised if the existing dimensional information for the table is invalid.

The measure values are assigned based on a start measure of zero and an end measure
of the cartographic length.

If a spatial index already exists on column_name, you must delete (drop) the index
before converting the layer and create a new index after converting the layer. For
information about deleting and creating indexes, see the DROP INDEX and CREATE
INDEX statements in Chapter 10.

The _3D format of this function (SDO_LRS.CONVERT_TO_LRS_LAYER_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

For more information about conversion functions, see Section 7.5.10.

Examples
The following example converts the geometric segments in the ROUTE_GEOMETRY
column of the LRS_ROUTES table to LRS format. (This example uses the definitions
from the example in Section 7.7.) The SELECT statement shows that dimensional
information has been added (that is, SDO_DIM_ELEMENT('M', NULL, NULL,
NULL) is included in the definition).

BEGIN
 IF (SDO_LRS.CONVERT_TO_LRS_LAYER('LRS_ROUTES', 'ROUTE_GEOMETRY') = 'TRUE')
 THEN
 DBMS_OUTPUT.PUT_LINE('Conversion from STD_LAYER to LRS_LAYER succeeded.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Conversion from STD_LAYER to LRS_LAYER failed.');
 END IF;
END;
.
/
Conversion from STD_LAYER to LRS_LAYER succeeded.

PL/SQL procedure successfully completed.

SQL> SELECT diminfo FROM user_sdo_geom_metadata WHERE table_name = 'LRS_ROUTES'
AND column_name = 'ROUTE_GEOMETRY';

DIMINFO(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOLERANCE)
--
SDO_DIM_ARRAY(SDO_DIM_ELEMENT('X', 0, 20, .005), SDO_DIM_ELEMENT('Y', 0, 20, .00
5), SDO_DIM_ELEMENT('M', NULL, NULL, NULL))

SDO_LRS.CONVERT_TO_STD_DIM_ARRAY

16-18 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_STD_DIM_ARRAY

Format
SDO_LRS.CONVERT_TO_STD_DIM_ARRAY(

dim_array IN SDO_DIM_ARRAY

[, m_pos IN INTEGER]

) RETURN SDO_DIM_ARRAY;

Description
Converts an LRS dimensional array to a standard dimensional array by removing the
measure dimension.

Parameters

dim_array
Dimensional information array corresponding to the layer (column of geometries) to
be converted, usually selected from one of the xxx_SDO_GEOM_METADATA views
(described in Section 2.6).

m_pos
Position of the measure dimension. If specified, must be 3 or 4. By default, the measure
dimension is the last dimension in the SDO_DIM_ARRAY.

Usage Notes
This function converts an LRS dimensional array to a standard dimensional array by
removing the measure dimension. Specifically, it removes the SDO_DIM_ELEMENT
object at the end of the current SDO_DIM_ELEMENT objects in the SDO_DIM_
ARRAY for the dim_array.

An exception is raised if m_pos is invalid (less than 3 or greater than 4).

If dim_array is already a standard dimensional array (that is, does not contain
dimensional information), the dim_array is returned.

The _3D format of this function (SDO_LRS.CONVERT_TO_STD_DIM_ARRAY_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

For more information about conversion functions, see Section 7.5.10.

Examples
The following example converts the dimensional array for the LRS_ROUTES table to
standard format. (This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.CONVERT_TO_STD_DIM_ARRAY(m.diminfo)
 FROM user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY';

SDO_LRS.CONVERT_TO_STD_DIM_ARRAY(M.DIMINFO)(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOL
--
SDO_DIM_ARRAY(SDO_DIM_ELEMENT('X', 0, 20, .005), SDO_DIM_ELEMENT('Y', 0, 20, .00
5))

SDO_LRS.CONVERT_TO_STD_GEOM

SDO_LRS Package (Linear Referencing System) 16-19

SDO_LRS.CONVERT_TO_STD_GEOM

Format
SDO_LRS.CONVERT_TO_STD_GEOM(

lrs _geom IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN SDO_GEOMETRY;

Description
Converts an LRS geometric segment to a standard SDO_GEOMETRY line string by
removing measure information.

Parameters

lrs_geom
LRS geometry that contains measure information.

dim_array
Dimensional information array corresponding to lrs_geom, usually selected from one
of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns an SDO_GEOMETRY object in which all measure information is
removed.

The _3D format of this function (SDO_LRS.CONVERT_TO_STD_GEOM_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

For more information about conversion functions, see Section 7.5.10.

Examples
The following example converts the geometric segment representing Route 1 to
standard format. (This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.CONVERT_TO_STD_GEOM(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.CONVERT_TO_STD_GEOM(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO
--
SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 2, 4, 8, 4, 12, 4, 12, 10, 8, 10, 5, 14))

SDO_LRS.CONVERT_TO_STD_LAYER

16-20 Oracle Spatial User’s Guide and Reference

SDO_LRS.CONVERT_TO_STD_LAYER

Format
SDO_LRS.CONVERT_TO_STD_LAYER(

table_name IN VARCHAR2,

column_name IN VARCHAR2

) RETURN VARCHAR2;

Description
Converts all geometry objects in a column of type SDO_GEOMETRY (that is, converts
a layer) from LRS geometric segments with measure information to standard line
string geometries without measure information, and updates the metadata in the
USER_SDO_GEOM_METADATA view.

Parameters

table_name
Table containing the column with the SDO_GEOMETRY objects.

column_name
Column in table_name containing the SDO_GEOMETRY objects.

Usage Notes
This function returns TRUE if the conversion was successful or if the layer already is a
standard layer (that is, contains geometries without measure information), and the
function returns an exception if the conversion was not successful.

If a spatial index already exists on column_name, you must delete (drop) the index
before converting the layer and create a new index after converting the layer. For
information about deleting and creating indexes, see the DROP INDEX and CREATE
INDEX statements in Chapter 10.

The _3D format of this function (SDO_LRS.CONVERT_TO_STD_LAYER_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

For more information about conversion functions, see Section 7.5.10.

Examples
The following example converts the geometric segments in the ROUTE_GEOMETRY
column of the LRS_ROUTES table to standard format. (This example uses the
definitions from the example in Section 7.7.) The SELECT statement shows that
dimensional information has been removed (that is, no SDO_DIM_ELEMENT('M',
NULL, NULL, NULL) is included in the definition).

BEGIN
 IF (SDO_LRS.CONVERT_TO_STD_LAYER('LRS_ROUTES', 'ROUTE_GEOMETRY') = 'TRUE')
 THEN
 DBMS_OUTPUT.PUT_LINE('Conversion from LRS_LAYER to STD_LAYER succeeded.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Conversion from LRS_LAYER to STD_LAYER failed.');
 END IF;
END;

SDO_LRS.CONVERT_TO_STD_LAYER

SDO_LRS Package (Linear Referencing System) 16-21

.
/
Conversion from LRS_LAYER to STD_LAYER succeeded.

PL/SQL procedure successfully completed.

SELECT diminfo FROM user_sdo_geom_metadata
 WHERE table_name = 'LRS_ROUTES' AND column_name = 'ROUTE_GEOMETRY';

DIMINFO(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOLERANCE)
--
SDO_DIM_ARRAY(SDO_DIM_ELEMENT('X', 0, 20, .005), SDO_DIM_ELEMENT('Y', 0, 20, .00
5))

SDO_LRS.DEFINE_GEOM_SEGMENT

16-22 Oracle Spatial User’s Guide and Reference

SDO_LRS.DEFINE_GEOM_SEGMENT

Format
SDO_LRS.DEFINE_GEOM_SEGMENT(

geom_segment IN OUT SDO_GEOMETRY

[, start_measure IN NUMBER,

end_measure IN NUMBER]);

or

SDO_LRS.DEFINE_GEOM_SEGMENT(

geom_segment IN OUT SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY

[, start_measure IN NUMBER,

end_measure IN NUMBER]);

Description
Defines a geometric segment by assigning start and end measures to a geometric
segment, and assigns values to any null measures.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

start_measure
Distance measured from the start point of a geometric segment to the start point of the
linear feature. The default is the existing value (if any) in the measure dimension;
otherwise, the default is 0.

end_measure
Distance measured from the end point of a geometric segment to the start point of the
linear feature. The default is the existing value (if any) in the measure dimension;
otherwise, the default is the cartographic length of the segment.

Usage Notes
An exception is raised if geom_segment has an invalid geometry type or
dimensionality, or if start_measure or end_measure is out of range.

All unassigned measures of the geometric segment will be populated automatically.

To store the resulting geometric segment (geom_segment) in the database, you must
execute an UPDATE or INSERT statement, as appropriate.

The _3D format of this procedure (SDO_LRS.DEFINE_GEOM_SEGMENT_3D) is
available. For information about _3D formats of LRS functions and procedures, see
Section 7.4.

SDO_LRS.DEFINE_GEOM_SEGMENT

SDO_LRS Package (Linear Referencing System) 16-23

For more information about defining a geometric segment, see Section 7.5.1.

Examples
The following example defines the geometric segment, splits it into two segments,
then concatenates those segments. (This example uses the definitions from the
example in Section 7.7. The definitions of result_geom_1, result_geom_2, and
result_geom_3 are displayed in Example 7–3.)

DECLARE
geom_segment SDO_GEOMETRY;
line_string SDO_GEOMETRY;
dim_array SDO_DIM_ARRAY;
result_geom_1 SDO_GEOMETRY;
result_geom_2 SDO_GEOMETRY;
result_geom_3 SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = 'Route1';
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY';

-- Define the LRS segment for Route1. This will populate any null measures.
SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment,
 dim_array,
 0, -- Zero starting measure: LRS segment starts at start of route.
 27); -- End of LRS segment is at measure 27.

SELECT a.route_geometry INTO line_string FROM lrs_routes a
 WHERE a.route_name = 'Route1';

-- Split Route1 into two segments.
SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom_2);

-- Concatenate the segments that were just split.
result_geom_3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array,
result_geom_2, dim_array);

-- Update and insert geometries into table, to display later.
UPDATE lrs_routes a SET a.route_geometry = geom_segment
 WHERE a.route_id = 1;

INSERT INTO lrs_routes VALUES(
 11,
 'result_geom_1',
 result_geom_1
);
INSERT INTO lrs_routes VALUES(
 12,
 'result_geom_2',
 result_geom_2
);
INSERT INTO lrs_routes VALUES(
 13,
 'result_geom_3',
 result_geom_3
);

SDO_LRS.DEFINE_GEOM_SEGMENT

16-24 Oracle Spatial User’s Guide and Reference

END;
/

SDO_LRS.DYNAMIC_SEGMENT

SDO_LRS Package (Linear Referencing System) 16-25

SDO_LRS.DYNAMIC_SEGMENT

Format
SDO_LRS.DYNAMIC_SEGMENT(

geom_segment IN SDO_GEOMETRY,

start_measure IN NUMBER,

end_measure IN NUMBER,

tolerance IN NUMBER DEFAULT 1.0e-8

) RETURN SDO_GEOMETRY;

or

SDO_LRS.DYNAMIC_SEGMENT(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

start_measure IN NUMBER,

end_measure IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns the geometry object resulting from a clip operation on a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

start_measure
Start measure of the geometric segment.

end_measure
End measure of the geometric segment.

tolerance
Tolerance value (see Section 1.5.5 and Section 7.6). The default value is 0.00000001.

Usage Notes
An exception is raised if geom_segment, start_measure, or end_measure is
invalid.

Note: SDO_LRS.CLIP_GEOM_SEGMENT and SDO_
LRS.DYNAMIC_SEGMENT are synonyms: both functions have the
same parameters, behavior, and return value.

SDO_LRS.DYNAMIC_SEGMENT

16-26 Oracle Spatial User’s Guide and Reference

The direction and measures of the resulting geometric segment are preserved.

For more information about clipping a geometric segment, see Section 7.5.3.

Examples
The following example clips the geometric segment representing Route 1, returning
the segment from measures 5 through 10. This segment might represent a construction
zone. (This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.DYNAMIC_SEGMENT(route_geometry, 5, 10)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.DYNAMIC_SEGMENT(ROUTE_GEOMETRY,5,10)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 4, 5, 8, 4, 8, 10, 4, 10))

SDO_LRS.FIND_LRS_DIM_POS

SDO_LRS Package (Linear Referencing System) 16-27

SDO_LRS.FIND_LRS_DIM_POS

Format
SDO_LRS.FIND_LRS_DIM_POS(

table_name IN VARCHAR2,

column_name IN VARCHAR2

) RETURN INTEGER;

Description
Returns the position of the measure dimension within the SDO_DIM_ARRAY
structure for a specified SDO_GEOMETRY column.

Parameters

table_name
Table containing the column with the SDO_GEOMETRY objects.

column_name
Column in table_name containing the SDO_GEOMETRY objects.

Usage Notes
None.

Examples
The following example returns the position of the measure dimension within the
SDO_DIM_ARRAY structure for geometries in the ROUTE_GEOMETRY column of the
LRS_ROUTES table. (This example uses the definitions from the example in
Section 7.7.)

SELECT SDO_LRS.FIND_LRS_DIM_POS('LRS_ROUTES', 'ROUTE_GEOMETRY') FROM DUAL;

SDO_LRS.FIND_LRS_DIM_POS('LRS_ROUTES','ROUTE_GEOMETRY')

 3

SDO_LRS.FIND_MEASURE

16-28 Oracle Spatial User’s Guide and Reference

SDO_LRS.FIND_MEASURE

Format
SDO_LRS.FIND_MEASURE(

geom_segment IN SDO_GEOMETRY,

point IN SDO_GEOMETRY

) RETURN NUMBER;

or

SDO_LRS.FIND_MEASURE(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

point IN SDO_GEOMETRY

) RETURN NUMBER;

Description
Returns the measure of the closest point on a segment to a specified projection point.

Parameters

geom_segment
Cartographic representation of a linear feature. This function returns the measure of
the point on this segment that is closest to the projection point.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

point
Projection point. This function returns the measure of the point on geom_segment
that is closest to the projection point.

Usage Notes
This function returns the measure of the point on geom_segment that is closest to the
projection point. For example, if the projection point represents a shopping mall, the
function could be used to find how far from the start of the highway is the point on the
highway that is closest to the shopping mall.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality, or if geom_segment and point are based on different coordinate
systems.

The _3D format of this function (SDO_LRS.FIND_MEASURE_3D) is available. For
information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example finds the measure for the point on the geometric segment
representing Route 1 that is closest to the point (10, 7). (This example uses the
definitions from the example in Section 7.7.)

SDO_LRS.FIND_MEASURE

SDO_LRS Package (Linear Referencing System) 16-29

-- Find measure for point on segment closest to 10,7.
-- Should return 15 (for point 12,7).
SELECT SDO_LRS.FIND_MEASURE(a.route_geometry, m.diminfo,
 SDO_GEOMETRY(3001, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1, 1),
 SDO_ORDINATE_ARRAY(10, 7, NULL)))
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.FIND_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO,SDO_GEOMETRY(3001,NULL,NUL
--
 15

SDO_LRS.FIND_OFFSET

16-30 Oracle Spatial User’s Guide and Reference

SDO_LRS.FIND_OFFSET

Format
SDO_LRS.FIND_OFFSET(

geom_segment IN SDO_GEOMETRY,

point IN SDO_GEOMETRY,

tolerance IN NUMBER DEFAULT 1.0e-8

) RETURN NUMBER;

or

SDO_LRS.FIND_OFFSET(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

point IN SDO_GEOMETRY

[, point_dim_array IN SDO_GEOMETRY]

) RETURN NUMBER;

Description
Returns the signed offset (shortest distance) from a point to a geometric segment.

Parameters

geom_segment
Geometric segment to be checked for distance from point.

point
Point whose shortest distance from geom_segment is to be returned.

tolerance
Tolerance value (see Section 1.5.5 and Section 7.6). The default value is 0.00000001.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

point_dim_array
Dimensional information array corresponding to point, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function calls the SDO_LRS.PROJECT_PT function format that includes the
offset output parameter: it passes in the geometric segment and point information,
and it returns the SDO_LRS.PROJECT_PT offset parameter value. Thus, to find the
offset of a point from a geometric segment, you can use either this function or the
SDO_LRS.PROJECT_PT function with the offset parameter.

SDO_LRS.FIND_OFFSET

SDO_LRS Package (Linear Referencing System) 16-31

An exception is raised if geom_segment or point has an invalid geometry type or
dimensionality, or if geom_segment and point are based on different coordinate
systems.

For more information about offsets to a geometric segment, see Section 7.1.5.

Examples
The following example returns the offset of point (9,3,NULL) from the geometric
segment representing Route 1. (This example uses the definitions from the example in
Section 7.7.) As you can see from Figure 7–20 in Section 7.7, the point at (9,3,NULL) is
on the right side along the segment, and therefore the offset has a negative value, as
explained in Section 7.1.5. The point at (9,3.NULL) is one distance unit away from the
point at (9,4,NULL), which is on the segment.

-- Find the offset of point (9,3,NULL) from the road; should return -1.
SELECT SDO_LRS.FIND_OFFSET(route_geometry,
 SDO_GEOMETRY(3301, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1, 1),
 SDO_ORDINATE_ARRAY(9, 3, NULL)))
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.FIND_OFFSET(ROUTE_GEOMETRY,SDO_GEOMETRY(3301,NULL,NULL,SDO_ELEM_INFO_ARR
--
 -1

SDO_LRS.GEOM_SEGMENT_END_MEASURE

16-32 Oracle Spatial User’s Guide and Reference

SDO_LRS.GEOM_SEGMENT_END_MEASURE

Format
SDO_LRS.GEOM_SEGMENT_END_MEASURE(

geom_segment IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN NUMBER;

Description
Returns the end measure of a geometric segment.

Parameters

geom_segment
Geometric segment whose end measure is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns the end measure of geom_segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.GEOM_SEGMENT_END_MEASURE_3D)
is available. For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example returns the end measure of the geometric segment representing
Route 1. (This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.GEOM_SEGMENT_END_MEASURE(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_END_MEASURE(ROUTE_GEOMETRY)
--
 27

SDO_LRS.GEOM_SEGMENT_END_PT

SDO_LRS Package (Linear Referencing System) 16-33

SDO_LRS.GEOM_SEGMENT_END_PT

Format
SDO_LRS.GEOM_SEGMENT_END_PT(

geom_segment IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN SDO_GEOMETRY;

Description
Returns the end point of a geometric segment.

Parameters

geom_segment
Geometric segment whose end point is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns the end point of geom_segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.GEOM_SEGMENT_END_PT_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example returns the end point of the geometric segment representing
Route 1. (This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.GEOM_SEGMENT_END_PT(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_END_PT(ROUTE_GEOMETRY)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y,
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
5, 14, 27))

SDO_LRS.GEOM_SEGMENT_LENGTH

16-34 Oracle Spatial User’s Guide and Reference

SDO_LRS.GEOM_SEGMENT_LENGTH

Format
SDO_LRS.GEOM_SEGMENT_LENGTH(

geom_segment IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN NUMBER;

Description
Returns the length of a geometric segment.

Parameters

geom_segment
Geometric segment whose length is to be calculated.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns the length of geom_segment. The length is the geometric length,
which is not the same as the total of the measure unit values. To determine how long a
segment is in terms of measure units, subtract the result of an SDO_LRS.GEOM_
SEGMENT_START_MEASURE operation from the result of an SDO_LRS.GEOM_
SEGMENT_END_MEASURE operation.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.GEOM_SEGMENT_LENGTH_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example returns the length of the geometric segment representing Route
1. (This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.GEOM_SEGMENT_LENGTH(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_LENGTH(ROUTE_GEOMETRY)

 27

SDO_LRS.GEOM_SEGMENT_START_MEASURE

SDO_LRS Package (Linear Referencing System) 16-35

SDO_LRS.GEOM_SEGMENT_START_MEASURE

Format
SDO_LRS.GEOM_SEGMENT_START_MEASURE(

geom_segment IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN NUMBER;

Description
Returns the start measure of a geometric segment.

Parameters

geom_segment
Geometric segment whose start measure is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns the start measure of geom_segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.GEOM_SEGMENT_START_MEASURE_
3D) is available. For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example returns the start measure of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section 7.7.)

SELECT SDO_LRS.GEOM_SEGMENT_START_MEASURE(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_START_MEASURE(ROUTE_GEOMETRY)
--
 0

SDO_LRS.GEOM_SEGMENT_START_PT

16-36 Oracle Spatial User’s Guide and Reference

SDO_LRS.GEOM_SEGMENT_START_PT

Format
SDO_LRS.GEOM_SEGMENT_START_PT(

geom_segment IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN SDO_GEOMETRY;

Description
Returns the start point of a geometric segment.

Parameters

geom_segment
Geometric segment whose start point is to be returned.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns the start point of geom_segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.GEOM_SEGMENT_START_PT_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example returns the start point of the geometric segment representing
Route 1. (This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.GEOM_SEGMENT_START_PT(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.GEOM_SEGMENT_START_PT(ROUTE_GEOMETRY)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
2, 2, 0))

SDO_LRS.GET_MEASURE

SDO_LRS Package (Linear Referencing System) 16-37

SDO_LRS.GET_MEASURE

Format
SDO_LRS.GET_MEASURE(

point IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN NUMBER;

Description
Returns the measure of an LRS point.

Parameters

point
Point whose measure is to be returned.

dim_array
Dimensional information array corresponding to point, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns the measure of an LRS point.

If point is not valid, an "invalid LRS point" exception is raised.

Contrast this function with SDO_LRS.PROJECT_PT, which accepts as input a point
that is not necessarily on the geometric segment, but which returns a point that is on
the geometric segment, as opposed to a measure value. As the following example
shows, the SDO_LRS.GET_MEASURE function can be used to return the measure of
the projected point returned by SDO_LRS.PROJECT_PT.

The _3D format of this function (SDO_LRS.GET_MEASURE_3D) is available. For
information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example returns the measure of a projected point. In this case, the point
resulting from the projection is 9 units from the start of the segment.

SELECT SDO_LRS.GET_MEASURE(
 SDO_LRS.PROJECT_PT(a.route_geometry, m.diminfo,
 SDO_GEOMETRY(3001, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1, 1),
 SDO_ORDINATE_ARRAY(9, 3, NULL))),
 m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.GET_MEASURE(SDO_LRS.PROJECT_PT(A.ROUTE_GEOMETRY,M.DIMINFO,SDO_GEOM
--
 9

SDO_LRS.GET_NEXT_SHAPE_PT

16-38 Oracle Spatial User’s Guide and Reference

SDO_LRS.GET_NEXT_SHAPE_PT

Format
SDO_LRS.GET_NEXT_SHAPE_PT(

geom_segment IN SDO_GEOMETRY,

measure IN NUMBER

) RETURN SDO_GEOMETRY;

or

SDO_LRS.GET_NEXT_SHAPE_PT(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

measure IN NUMBER

) RETURN SDO_GEOMETRY;

or

SDO_LRS.GET_NEXT_SHAPE_PT(

geom_segment IN SDO_GEOMETRY,

point IN SDO_GEOMETRY

) RETURN SDO_GEOMETRY;

or

SDO_LRS.GET_NEXT_SHAPE_PT(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

point IN SDO_GEOMETRY

) RETURN SDO_GEOMETRY;

Description
Returns the next shape point on a geometric segment after a specified measure value
or LRS point.

Parameters

geom_segment
Geometric segment.

measure
Measure value on the geometric segment for which to return the next shape point.

point
Point for which to return the next shape point. If point is not on geom_segment, the
point on the geometric segment closest to the specified point is computed, and the
next shape point after that point is returned.

SDO_LRS.GET_NEXT_SHAPE_PT

SDO_LRS Package (Linear Referencing System) 16-39

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
If measure or point identifies the end point of the geometric segment, a null value is
returned.

An exception is raised if measure is not a valid value for geom_segment or if point
is not a valid LRS point.

Contrast this function with SDO_LRS.GET_PREV_SHAPE_PT, which returns the
previous shape point on a geometric segment before a specified measure value or LRS
point.

The _3D format of this function (SDO_LRS.GET_NEXT_SHAPE_PT_3D) is available.
For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example returns the next shape point after measure 14 on the geometric
segment representing Route 1. (This example uses the definitions from the example in
Section 7.7.)

SELECT SDO_LRS.GET_NEXT_SHAPE_PT(a.route_geometry, 14)
 FROM lrs_routes a WHERE a.route_id = 1;

SDO_LRS.GET_NEXT_SHAPE_PT(A.ROUTE_GEOMETRY,14)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
12, 10, 18))

SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE

16-40 Oracle Spatial User’s Guide and Reference

SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE

Format
SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE(

geom_segment IN SDO_GEOMETRY,

measure IN NUMBER

) RETURN NUMBER;

or

SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

measure IN NUMBER

) RETURN NUMBER;

or

SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE(

geom_segment IN SDO_GEOMETRY,

point IN SDO_GEOMETRY

) RETURN NUMBER;

or

SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

point IN SDO_GEOMETRY

) RETURN NUMBER;

Description
Returns the measure value of the next shape point on a geometric segment after a
specified measure value or LRS point.

Parameters

geom_segment
Geometric segment.

measure
Measure value on the geometric segment for which to return the measure value of the
next shape point.

point
Point for which to return the measure value of the next shape point. If point is not on
geom_segment, the point on the geometric segment closest to the specified point is
computed, and the measure value of the next shape point after that point is returned.

SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE

SDO_LRS Package (Linear Referencing System) 16-41

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
If measure or point identifies the end point of the geometric segment, a null value is
returned.

An exception is raised if measure is not a valid value for geom_segment or if point
is not a valid LRS point.

Contrast this function with SDO_LRS.GET_PREV_SHAPE_PT_MEASURE, which
returns the measure value of the previous shape point on a geometric segment before a
specified measure value or LRS point.

The _3D format of this function (SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example returns the measure value of the next shape point after
measure 14 on the geometric segment representing Route 1. (This example uses the
definitions from the example in Section 7.7.)

SELECT SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE(a.route_geometry, 14)
 FROM lrs_routes a WHERE a.route_id = 1;

SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE(A.ROUTE_GEOMETRY,14)
--
 18

SDO_LRS.GET_PREV_SHAPE_PT

16-42 Oracle Spatial User’s Guide and Reference

SDO_LRS.GET_PREV_SHAPE_PT

Format
SDO_LRS.GET_PREV_SHAPE_PT(

geom_segment IN SDO_GEOMETRY,

measure IN NUMBER

) RETURN SDO_GEOMETRY;

or

SDO_LRS.GET_PREV_SHAPE_PT(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

measure IN NUMBER

) RETURN SDO_GEOMETRY;

or

SDO_LRS.GET_PREV_SHAPE_PT(

geom_segment IN SDO_GEOMETRY,

point IN SDO_GEOMETRY

) RETURN SDO_GEOMETRY;

or

SDO_LRS.GET_PREV_SHAPE_PT(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

point IN SDO_GEOMETRY

) RETURN SDO_GEOMETRY;

Description
Returns the previous shape point on a geometric segment before a specified measure
value or LRS point.

Parameters

geom_segment
Geometric segment.

measure
Measure value on the geometric segment for which to return the previous shape point.

point
Point for which to return the previous shape point. If point is not on geom_segment,
the point on the geometric segment closest to the specified point is computed, and the
closest shape point before that point is returned.

SDO_LRS.GET_PREV_SHAPE_PT

SDO_LRS Package (Linear Referencing System) 16-43

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
If measure or point identifies the start point of the geometric segment, a null value
is returned.

An exception is raised if measure is not a valid value for geom_segment or if point
is not a valid LRS point.

Contrast this function with SDO_LRS.GET_NEXT_SHAPE_PT, which returns the next
shape point on a geometric segment after a specified measure value or LRS point.

The _3D format of this function (SDO_LRS.GET_PREV_SHAPE_PT_3D) is available.
For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example returns the closest shape point to measure 14 and before
measure 14 on the geometric segment representing Route 1. (This example uses the
definitions from the example in Section 7.7.)

SELECT SDO_LRS.GET_PREV_SHAPE_PT(a.route_geometry, 14)
 FROM lrs_routes a WHERE a.route_id = 1;

SDO_LRS.GET_PREV_SHAPE_PT(A.ROUTE_GEOMETRY,14)(SDO_GTYPE, SDO_SRID, SDO_POINT(X,
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
12, 4, 12))

SDO_LRS.GET_PREV_SHAPE_PT_MEASURE

16-44 Oracle Spatial User’s Guide and Reference

SDO_LRS.GET_PREV_SHAPE_PT_MEASURE

Format
SDO_LRS.GET_PREV_SHAPE_PT_MEASURE(

geom_segment IN SDO_GEOMETRY,

measure IN NUMBER

) RETURN NUMBER;

or

SDO_LRS.GET_PREV_SHAPE_PT_MEASURE(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

measure IN NUMBER

) RETURN NUMBER;

or

SDO_LRS.GET_PREV_SHAPE_PT_MEASURE(

geom_segment IN SDO_GEOMETRY,

point IN SDO_GEOMETRY

) RETURN NUMBER;

or

SDO_LRS.GET_PREV_SHAPE_PT_MEASURE(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

point IN SDO_GEOMETRY

) RETURN NUMBER;

Description
Returns the measure value of the previous shape point on a geometric segment before
a specified measure value or LRS point.

Parameters

geom_segment
Geometric segment.

measure
Measure value on the geometric segment for which to return the measure value of the
previous shape point.

point
Point for which to return the measure value of the previous shape point. If point is
not on geom_segment, the point on the geometric segment closest to the specified
point is computed, and the measure value of the closest shape point before that point
is returned.

SDO_LRS.GET_PREV_SHAPE_PT_MEASURE

SDO_LRS Package (Linear Referencing System) 16-45

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
If measure or point identifies the start point of the geometric segment, a null value
is returned.

An exception is raised if measure is not a valid value for geom_segment or if point
is not a valid LRS point.

Contrast this function with SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE, which
returns the measure value of the next shape point on a geometric segment after a
specified measure value or LRS point.

The _3D format of this function (SDO_LRS.GET_PREV_SHAPE_PT_MEASURE_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example returns the measure value of the closest shape point to
measure 14 and before measure 14 on the geometric segment representing Route 1.
(This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.GET_PREV_SHAPE_PT_MEASURE(a.route_geometry, 14)
 FROM lrs_routes a WHERE a.route_id = 1;

SDO_LRS.GET_PREV_SHAPE_PT_MEASURE(A.ROUTE_GEOMETRY,14)
--
 12

SDO_LRS.IS_GEOM_SEGMENT_DEFINED

16-46 Oracle Spatial User’s Guide and Reference

SDO_LRS.IS_GEOM_SEGMENT_DEFINED

Format
SDO_LRS.IS_GEOM_SEGMENT_DEFINED(

geom_segment IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN VARCHAR2;

Description
Checks if an LRS segment is defined correctly.

Parameters

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns TRUE if geom_segment is defined correctly and FALSE if
geom_segment is not defined correctly.

The start and end measures of geom_segment must be defined (cannot be null), and
any measures assigned must be in an ascending or descending order along the
segment direction.

The _3D format of this function (SDO_LRS.IS_GEOM_SEGMENT_DEFINED_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

See also the SDO_LRS.VALID_GEOM_SEGMENT function.

Examples
The following example checks if the geometric segment representing Route 1 is
defined. (This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.IS_GEOM_SEGMENT_DEFINED(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.IS_GEOM_SEGMENT_DEFINED(ROUTE_GEOMETRY)
--
TRUE

SDO_LRS.IS_MEASURE_DECREASING

SDO_LRS Package (Linear Referencing System) 16-47

SDO_LRS.IS_MEASURE_DECREASING

Format
SDO_LRS.IS_MEASURE_DECREASING(

geom_segment IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN VARCHAR2;

Description
Checks if the measure values along an LRS segment are decreasing (that is, descending
in numerical value).

Parameters

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns TRUE if the measure values along an LRS segment are
decreasing and FALSE if the measure values along an LRS segment are not decreasing.

The start and end measures of geom_segment must be defined (cannot be null).

The _3D format of this function (SDO_LRS.IS_MEASURE_DECREASING_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

See also the SDO_LRS.IS_MEASURE_INCREASING function.

Examples
The following example checks if the measure values along the geometric segment
representing Route 1 are decreasing. (This example uses the definitions from the
example in Section 7.7.)

SELECT SDO_LRS.IS_MEASURE_DECREASING(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.IS_MEASURE_DECREASING(A.ROUTE_GEOMETRY,M.DIMINFO)
--
FALSE

SDO_LRS.IS_MEASURE_INCREASING

16-48 Oracle Spatial User’s Guide and Reference

SDO_LRS.IS_MEASURE_INCREASING

Format
SDO_LRS.IS_MEASURE_INCREASING(

geom_segment IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN VARCHAR2;

Description
Checks if the measure values along an LRS segment are increasing (that is, ascending
in numerical value).

Parameters

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns TRUE if the measure values along an LRS segment are increasing
and FALSE if the measure values along an LRS segment are not increasing.

The start and end measures of geom_segment must be defined (cannot be null).

The _3D format of this function (SDO_LRS.IS_MEASURE_INCREASING_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

See also the SDO_LRS.IS_MEASURE_DECREASING function.

Examples
The following example checks if the measure values along the geometric segment
representing Route 1 are increasing. (This example uses the definitions from the
example in Section 7.7.)

SELECT SDO_LRS.IS_MEASURE_INCREASING(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.IS_MEASURE_INCREASING(A.ROUTE_GEOMETRY,M.DIMINFO)
--
TRUE

SDO_LRS.IS_SHAPE_PT_MEASURE

SDO_LRS Package (Linear Referencing System) 16-49

SDO_LRS.IS_SHAPE_PT_MEASURE

Format
SDO_LRS.IS_SHAPE_PT_MEASURE(

geom_segment IN SDO_GEOMETRY,

measure IN NUMBER

) RETURN VARCHAR2;

or

SDO_LRS.IS_SHAPE_PT_MEASURE(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

measure IN NUMBER

) RETURN VARCHAR2;

Description
Checks if a specified measure value is associated with a shape point on a geometric
segment.

Parameters

geom_segment
Geometric segment to be checked.

measure
Measure value on the geometric segment to check if it is a shape point.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns TRUE if the specified measure value is associated with a shape
point and FALSE if the measure value is not associated with a shape point.

An exception is raised if measure is not a valid value for geom_segment.

The _3D format of this function (SDO_LRS.IS_SHAPE_PT_MEASURE_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example checks if measure 14 on the geometric segment representing
Route 1 is a shape point. (This example uses the definitions from the example in
Section 7.7.)

SELECT SDO_LRS.IS_SHAPE_PT_MEASURE(a.route_geometry, 14)
 FROM lrs_routes a WHERE a.route_id = 1;

SDO_LRS.IS_SHAPE_PT_MEASURE(A.ROUTE_GEOMETRY,14)
--

SDO_LRS.IS_SHAPE_PT_MEASURE

16-50 Oracle Spatial User’s Guide and Reference

FALSE

SDO_LRS.LOCATE_PT

SDO_LRS Package (Linear Referencing System) 16-51

SDO_LRS.LOCATE_PT

Format
SDO_LRS.LOCATE_PT(

geom_segment IN SDO_GEOMETRY,

measure IN NUMBER

[, offset IN NUMBER

) RETURN SDO_GEOMETRY;

or

SDO_LRS.LOCATE_PT(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

measure IN NUMBER

[, offset IN NUMBER]

) RETURN SDO_GEOMETRY;

Description
Returns the point located at a specified distance from the start of a geometric segment.

Parameters

geom_segment
Geometric segment to be checked to see if it falls within the measure range of
measure.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

measure
Distance to measure from the start point of geom_segment.

offset
Distance to measure perpendicularly from the point that is located at measure units
from the start point of geom_segment. The default is 0 (that is, the point is on geom_
segment).

Usage Notes
This function returns the referenced point. For example, on a highway, the point might
represent the location of an accident.

The unit of measurement for offset is the same as for the coordinate system
associated with geom_segment. For geodetic data, the default unit of measurement is
meters.

With geodetic data using the WGS 84 coordinate system, this function can be used to
return the longitude and latitude coordinates of any point on or offset from the
segment.

SDO_LRS.LOCATE_PT

16-52 Oracle Spatial User’s Guide and Reference

An exception is raised if geom_segment has an invalid geometry type or
dimensionality, or if the location is out of range.

The _3D format of this function (SDO_LRS.LOCATE_PT_3D) is available; however, the
offset parameter is not available for SDO_LRS.LOCATE_PT_3D. For information
about _3D formats of LRS functions, see Section 7.4.

For more information about locating a point on a geometric segment, see Section 7.5.8.

Examples
The following example creates a table for automobile accident data, inserts a record for
an accident at the point at measure 9 and on (that is, offset 0) the geometric segment
representing Route 1, and displays the data. (The accident table is deliberately
oversimplified. This example also uses the route definition from the example in
Section 7.7.)

-- Create a table for accidents.
CREATE TABLE accidents (
 accident_id NUMBER PRIMARY KEY,
 route_id NUMBER,
 accident_geometry SDO_GEOMETRY);

-- Insert an accident record.
DECLARE
geom_segment SDO_GEOMETRY;

BEGIN

SELECT SDO_LRS.LOCATE_PT(a.route_geometry, 9, 0) into geom_segment
 FROM lrs_routes a WHERE a.route_name = 'Route1';

INSERT INTO accidents VALUES(1, 1, geom_segment);

END;
/

SELECT * from accidents;

ACCIDENT_ID ROUTE_ID
----------- ----------
ACCIDENT_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_OR
--
 1 1
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))

SDO_LRS.LRS_INTERSECTION

SDO_LRS Package (Linear Referencing System) 16-53

SDO_LRS.LRS_INTERSECTION

Format
SDO_LRS.LRS_INTERSECTION(

geom_1 IN SDO_GEOMETRY,

dim_array_1 IN SDO_DIM_ARRAY,

geom_2 IN SDO_GEOMETRY,

dim_array_2 IN SDO_DIM_ARRAY

) RETURN SDO_GEOMETRY;

or

SDO_LRS.LRS_INTERSECTION(

geom_1 IN SDO_GEOMETRY,

geom_2 IN SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns an LRS geometry object that is the topological intersection (AND operation) of
two geometry objects where one or both are LRS geometries.

Parameters

geom_1
Geometry object.

dim_array_1
Dimensional information array corresponding to geom_1, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

geom_2
Geometry object.

dim_array_2
Dimensional information array corresponding to geom_2, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

tolerance
Tolerance value (see Section 1.5.5).

Usage Notes

This function performs essentially the same intersection operation as the SDO_
GEOM.SDO_INTERSECTION function (described in Chapter 15), except that SDO_
LRS.LRS_INTERSECTION is designed to return a valid LRS geometry (point, line

Note: This function is new with Oracle Spatial release 10.2.0.3.

SDO_LRS.LRS_INTERSECTION

16-54 Oracle Spatial User’s Guide and Reference

string, or multiline string) where one or both of the geometry-related input parameters
are LRS geometries. (If neither input geometry is an LRS geometry, this function
operates the same as the SDO_GEOM.SDO_INTERSECTION function.).

The returned geometry is an LRS line string, multiline string, or point geometry that
includes measure dimension information. The measure values reflect those in the first
LRS geometry specified as an input parameter.

The first LRS geometry specified as an input parameter must not be a polygon; it must
be a line string, multiline string, or point.

If an LRS line string (geometric segment) intersects a line string (LRS or standard), the
result is an LRS point; if an LRS line string intersects a polygon, the result is an LRS
line string.

If the function format with tolerance is used, all geometry objects must be defined
using 4-digit SDO_GTYPE values (explained in Section 2.2.1).

An exception is raised if geom_1 and geom_2 are based on different coordinate
systems.

Examples
The following example shows an LRS geometric segment (illustrated in Figure 7–20 in
Section 7.7) intersected by a vertical line from (8,2) to (8,6). The result is an LRS point
geometry, in which the measure value (8) reflects the measure for that point
(designated as Exit 3 in Figure 7–20) in the geom_1 geometry. (This example uses the
definitions from the example in Section 7.7.)

-- Intersection of LRS segment and standard line segment
SELECT SDO_LRS.LRS_INTERSECTION(route_geometry,
 SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,2,1),
 SDO_ORDINATE_ARRAY(8,2, 8,6)), 0.005)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.LRS_INTERSECTION(ROUTE_GEOMETRY,SDO_GEOMETRY(2002,NULL,NULL,SDO_ELEM_INF
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
8, 4, 8))

The following example shows an LRS geometric segment (illustrated in Figure 7–20 in
Section 7.7) intersected by a vertical line from (12,2) to (12,6). The result is an LRS line
string geometry, in which the measure values (12 and 14) reflect measures for points
(the first of which is designated as Exit 4 in Figure 7–20) in the geom_1 geometry. (This
example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.LRS_INTERSECTION(route_geometry,
 SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,2,1),
 SDO_ORDINATE_ARRAY(12,2, 12,6)), 0.005)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.LRS_INTERSECTION(ROUTE_GEOMETRY,SDO_GEOMETRY(2002,NULL,NULL,SDO_ELEM_INF
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
12, 4, 12, 12, 6, 14))

SDO_LRS.MEASURE_RANGE

SDO_LRS Package (Linear Referencing System) 16-55

SDO_LRS.MEASURE_RANGE

Format
SDO_LRS.MEASURE_RANGE(

geom_segment IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN NUMBER;

Description
Returns the measure range of a geometric segment, that is, the difference between the
start measure and end measure.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function subtracts the start measure of geom_segment from the end measure of
geom_segment.

The _3D format of this function (SDO_LRS.MEASURE_RANGE_3D) is available. For
information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example returns the measure range of the geometric segment
representing Route 1. (This example uses the definitions from the example in
Section 7.7.)

SELECT SDO_LRS.MEASURE_RANGE(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.MEASURE_RANGE(ROUTE_GEOMETRY)

 27

SDO_LRS.MEASURE_TO_PERCENTAGE

16-56 Oracle Spatial User’s Guide and Reference

SDO_LRS.MEASURE_TO_PERCENTAGE

Format
SDO_LRS.MEASURE_TO_PERCENTAGE(

geom_segment IN SDO_GEOMETRY,

measure IN NUMBER

) RETURN NUMBER;

or

SDO_LRS.MEASURE_TO_PERCENTAGE(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

measure IN NUMBER

) RETURN NUMBER;

Description
Returns the percentage (0 to 100) that a specified measure is of the measure range of a
geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

measure
Measure value. This function returns the percentage that this measure value is of the
measure range.

Usage Notes
This function returns a number (0 to 100) that is the percentage of the measure range
that the specified measure represents. (The measure range is the end measure minus
the start measure.) For example, if the measure range of geom_segment is 50 and
measure is 20, the function returns 40 (because 20/50 = 40%).

This function performs the reverse of the SDO_LRS.PERCENTAGE_TO_MEASURE
function, which returns the measure that corresponds to a percentage value.

An exception is raised if geom_segment or measure is invalid.

Examples
The following example returns the percentage that 5 is of the measure range of the
geometric segment representing Route 1. (This example uses the definitions from the
example in Section 7.7.) The measure range of this segment is 27, and 5 is
approximately 18.5 percent of 27.

SDO_LRS.MEASURE_TO_PERCENTAGE

SDO_LRS Package (Linear Referencing System) 16-57

SELECT SDO_LRS.MEASURE_TO_PERCENTAGE(a.route_geometry, m.diminfo, 5)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.MEASURE_TO_PERCENTAGE(A.ROUTE_GEOMETRY,M.DIMINFO,5)

 18.5185185

SDO_LRS.OFFSET_GEOM_SEGMENT

16-58 Oracle Spatial User’s Guide and Reference

SDO_LRS.OFFSET_GEOM_SEGMENT

Format
SDO_LRS.OFFSET_GEOM_SEGMENT(

geom_segment IN SDO_GEOMETRY,

start_measure IN NUMBER,

end_measure IN NUMBER,

offset IN NUMBER,

tolerance IN NUMBER DEFAULT 1.0e-8

[, unit IN VARCHAR2]

) RETURN SDO_GEOMETRY;

or

SDO_LRS.OFFSET_GEOM_SEGMENT(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

start_measure IN NUMBER,

end_measure IN NUMBER,

offset IN NUMBER

[, unit IN VARCHAR2]

) RETURN SDO_GEOMETRY;

Description
Returns the geometric segment at a specified offset from a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

start_measure
Start measure of geom_segment at which to start the offset operation.

end_measure
End measure of geom_segment at which to start the offset operation.

offset
Distance to measure perpendicularly from the points along geom_segment. Positive
offset values are to the left of geom_segment; negative offset values are to the right of
geom_segment.

SDO_LRS.OFFSET_GEOM_SEGMENT

SDO_LRS Package (Linear Referencing System) 16-59

tolerance
Tolerance value (see Section 1.5.5 and Section 7.6). The default value is 0.00000001.

unit
Unit of measurement specification: a quoted string with one or both of the following
keywords:

■ unit and an SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table. See
Section 2.8 for more information about unit of measurement specification.

■ arc_tolerance and an arc tolerance value. See the Usage Notes for the SDO_
GEOM.SDO_ARC_DENSIFY function in Chapter 15 for more information about
the arc_tolerance keyword.

For example: 'unit=km arc_tolerance=0.05'

If the input geometry is geodetic data, this parameter is required, and arc_
tolerance must be specified. If the input geometry is Cartesian or projected data,
arc_tolerance has no effect and should not be specified.

If this parameter is not specified for a Cartesian or projected geometry, or if the arc_
tolerance keyword is specified for a geodetic geometry but the unit keyword is not
specified, the unit of measurement associated with the data is assumed.

Usage Notes
start_measure and end_measure can be any points on the geometric segment.
They do not have to be in any specific order. For example, start_measure and end_
measure can be 5 and 10, respectively, or 10 and 5, respectively.

The direction and measures of the resulting geometric segment are preserved (that is,
they reflect the original segment).

The geometry type of geom_segment must be line or multiline. For example, it cannot
be a polygon.

An exception is raised if geom_segment, start_measure, or end_measure is
invalid.

Examples
The following example returns the geometric segment 2 distance units to the left
(positive offset 2) of the segment from measures 5 through 10 of Route 1. Note in SDO_
ORDINATE_ARRAY of the returned segment that the Y values (6) are 2 greater than
the Y values (4) of the relevant part of the original segment. (This example uses the
definitions from the example in Section 7.7.)

-- Create a segment offset 2 to the left from measures 5 through 10.
-- First, display the original segment; then, offset.
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

SELECT SDO_LRS.OFFSET_GEOM_SEGMENT(a.route_geometry, m.diminfo, 5, 10, 2)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.OFFSET_GEOM_SEGMENT(A.ROUTE_GEOMETRY,M.DIMINFO,5,10,2)(SDO_GTYPE, SDO_SR

SDO_LRS.OFFSET_GEOM_SEGMENT

16-60 Oracle Spatial User’s Guide and Reference

--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 6, 5, 10, 6, 10))

SDO_LRS.PERCENTAGE_TO_MEASURE

SDO_LRS Package (Linear Referencing System) 16-61

SDO_LRS.PERCENTAGE_TO_MEASURE

Format
SDO_LRS.PERCENTAGE_TO_MEASURE(

geom_segment IN SDO_GEOMETRY,

percentage IN NUMBER

) RETURN NUMBER;

or

SDO_LRS.PERCENTAGE_TO_MEASURE(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

percentage IN NUMBER

) RETURN NUMBER;

Description
Returns the measure value of a specified percentage (0 to 100) of the measure range of
a geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

percentage
Percentage value. Must be from 0 to 100. This function returns the measure value
corresponding to this percentage of the measure range.

Usage Notes
This function returns the measure value corresponding to the specified percentage of
the measure range. (The measure range is the end measure minus the start measure.)
For example, if the measure range of geom_segment is 50 and percentage is 40, the
function returns 20 (because 40% of 50 = 20).

This function performs the reverse of the SDO_LRS.MEASURE_TO_PERCENTAGE
function, which returns the percentage value that corresponds to a measure.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality, or if percentage is less than 0 or greater than 100.

Examples
The following example returns the measure that is 50 percent of the measure range of
the geometric segment representing Route 1. (This example uses the definitions from
the example in Section 7.7.) The measure range of this segment is 27, and 50 percent of
27 is 13.5.

SDO_LRS.PERCENTAGE_TO_MEASURE

16-62 Oracle Spatial User’s Guide and Reference

SELECT SDO_LRS.PERCENTAGE_TO_MEASURE(a.route_geometry, m.diminfo, 50)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.PERCENTAGE_TO_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO,50)
--
 13.5

SDO_LRS.PROJECT_PT

SDO_LRS Package (Linear Referencing System) 16-63

SDO_LRS.PROJECT_PT

Format
SDO_LRS.PROJECT_PT(

geom_segment IN SDO_GEOMETRY,

point IN SDO_GEOMETRY,

tolerance IN NUMBER DEFAULT 1.0e-8

[, offset OUT NUMBER]

) RETURN SDO_GEOMETRY;

or

SDO_LRS.PROJECT_PT(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

point IN SDO_GEOMETRY

[, point_dim_array IN SDO_DIM_ARRAY]

) RETURN SDO_GEOMETRY;

or

SDO_LRS.PROJECT_PT(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

point IN SDO_GEOMETRY,

point_dim_array IN SDO_DIM_ARRAY

[, offset OUT NUMBER]

) RETURN SDO_GEOMETRY;

Description
Returns the projection point of a specified point. The projection point is on the
geometric segment.

Parameters

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

point
Point to be projected.

tolerance
Tolerance value (see Section 1.5.5 and Section 7.6). The default value is 0.00000001.

SDO_LRS.PROJECT_PT

16-64 Oracle Spatial User’s Guide and Reference

point_dim_array
Dimensional information array corresponding to point, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

offset
Offset (shortest distance) from the point to the geometric segment.

Usage Notes
This function returns the projection point (including its measure) of a specified point
(point). The projection point is on the geometric segment.

If multiple projection points exist, the first projection point encountered from the start
point is returned.

If you specify the output parameter offset, the function stores the signed offset
(shortest distance) from the point to the geometric segment. For more information
about the offset to a geometric segment, see Section 7.1.5.

An exception is raised if geom_segment or point has an invalid geometry type or
dimensionality, or if geom_segment and point are based on different coordinate
systems.

The _3D format of this function (SDO_LRS.PROJECT_PT_3D) is available. For
information about _3D formats of LRS functions, see Section 7.4.

For more information about projecting a point onto a geometric segment, see
Section 7.5.9.

Examples
The following example returns the point (9,4,9) on the geometric segment representing
Route 1 that is closest to the specified point (9,3,NULL). (This example uses the
definitions from the example in Section 7.7.)

-- Point 9,3,NULL is off the road; should return 9,4,9.
SELECT SDO_LRS.PROJECT_PT(route_geometry,
 SDO_GEOMETRY(3301, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1, 1),
 SDO_ORDINATE_ARRAY(9, 3, NULL)))
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.PROJECT_PT(ROUTE_GEOMETRY,SDO_GEOMETRY(3301,NULL,NULL,SDO_EL
--
SDO_GEOMETRY(3301, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
9, 4, 9))

SDO_LRS.REDEFINE_GEOM_SEGMENT

SDO_LRS Package (Linear Referencing System) 16-65

SDO_LRS.REDEFINE_GEOM_SEGMENT

Format
SDO_LRS.REDEFINE_GEOM_SEGMENT(

geom_segment IN OUT SDO_GEOMETRY

[, start_measure IN NUMBER,

end_measure IN NUMBER]);

or

SDO_LRS.REDEFINE_GEOM_SEGMENT(

geom_segment IN OUT SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY

[, start_measure IN NUMBER,

end_measure IN NUMBER]);

Description
Populates the measures of all shape points based on the start and end measures of a
geometric segment, overriding any previously assigned measures between the start
point and end point.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

start_measure
Distance measured from the start point of a geometric segment to the start point of the
linear feature. The default is the existing value (if any) in the measure dimension;
otherwise, the default is 0.

end_measure
Distance measured from the end point of a geometric segment to the start point of the
linear feature. The default is the existing value (if any) in the measure dimension;
otherwise, the default is the cartographic length of the segment.

Usage Notes
An exception is raised if geom_segment has an invalid geometry type or
dimensionality, or if start_measure or end_measure is out of range.

The _3D format of this procedure (SDO_LRS.REDEFINE_GEOM_SEGMENT_3D) is
available. For information about _3D formats of LRS functions and procedures, see
Section 7.4.

For more information about redefining a geometric segment, see Section 7.5.2.

SDO_LRS.REDEFINE_GEOM_SEGMENT

16-66 Oracle Spatial User’s Guide and Reference

Examples
The following example redefines a geometric segment, effectively converting miles to
kilometers in the measure values. (This example uses the definitions from the example
in Section 7.7.)

-- First, display the original segment; then, redefine.
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

-- Redefine geometric segment to "convert" miles to kilometers.
DECLARE
geom_segment SDO_GEOMETRY;
dim_array SDO_DIM_ARRAY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = 'Route1';
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY';

-- "Convert" mile measures to kilometers (27 * 1.609 = 43.443).
SDO_LRS.REDEFINE_GEOM_SEGMENT (geom_segment,
 dim_array,
 0, -- Zero starting measure: LRS segment starts at start of route.
 43.443); -- End of LRS segment. 27 miles = 43.443 kilometers.

-- Update and insert geometries into table, to display later.
UPDATE lrs_routes a SET a.route_geometry = geom_segment
 WHERE a.route_id = 1;

END;
/

PL/SQL procedure successfully completed.

-- Display the redefined segment, with all measures "converted."
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 3.218, 8, 4, 12.872, 12, 4, 19.308, 12, 10, 28.962, 8, 10, 35.398
, 5, 14, 43.443))

SDO_LRS.RESET_MEASURE

SDO_LRS Package (Linear Referencing System) 16-67

SDO_LRS.RESET_MEASURE

Format
SDO_LRS.RESET_MEASURE(

geom_segment IN OUT SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]);

Description
Sets all measures of a geometric segment, including the start and end measures, to null
values, overriding any previously assigned measures.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

Examples
The following example sets all measures of a geometric segment to null values. (This
example uses the definitions from the example in Section 7.7.)

-- First, display the original segment; then, redefine.
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

-- Reset geometric segment measures.
DECLARE
geom_segment SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = 'Route1';

SDO_LRS.RESET_MEASURE (geom_segment);

-- Update and insert geometries into table, to display later.
UPDATE lrs_routes a SET a.route_geometry = geom_segment
 WHERE a.route_id = 1;

END;
/

SDO_LRS.RESET_MEASURE

16-68 Oracle Spatial User’s Guide and Reference

PL/SQL procedure successfully completed.

-- Display the segment, with all measures set to null.
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, NULL, 2, 4, NULL, 8, 4, NULL, 12, 4, NULL, 12, 10, NULL, 8, 10, NULL, 5, 1
4, NULL))

SDO_LRS.REVERSE_GEOMETRY

SDO_LRS Package (Linear Referencing System) 16-69

SDO_LRS.REVERSE_GEOMETRY

Format
SDO_LRS.REVERSE_GEOMETRY(

geom IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN SDO_GEOMETRY;

Description
Returns a new geometric segment by reversing the measure values and the direction of
the original geometric segment.

Parameters

geom
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function:

■ Reverses the measure values of geom

That is, the start measure of geom is the end measure of the returned geometric
segment, the end measure of geom is the start measure of the returned geometric
segment, and all other measures are adjusted accordingly.

■ Reverses the direction of geom

Compare this function with SDO_LRS.REVERSE_MEASURE, which reverses only the
measure values (not the direction) of a geometric segment.

To reverse the vertices of a non-LRS line string geometry, use the SDO_
UTIL.REVERSE_LINESTRING function, which is described in Chapter 20.

An exception is raised if geom has an invalid geometry type or dimensionality. The
geometry type must be a line or multiline, and the dimensionality must be 3 (two
dimensions plus the measure dimension).

The _3D format of this function (SDO_LRS.REVERSE_GEOMETRY_3D) is available.
For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example reverses the measure values and the direction of the geometric
segment representing Route 1. (This example uses the definitions from the example in
Section 7.7.)

-- Reverse direction and measures (for example, to prepare for
-- concatenating with another road).
-- First, display the original segment; then, reverse.
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

SDO_LRS.REVERSE_GEOMETRY

16-70 Oracle Spatial User’s Guide and Reference

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

SELECT SDO_LRS.REVERSE_GEOMETRY(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.REVERSE_GEOMETRY(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_PO
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 14, 27, 8, 10, 22, 12, 10, 18, 12, 4, 12, 8, 4, 8, 2, 4, 2, 2, 2, 0))

Note in the returned segment that the M values (measures) now go in descending
order from 27 to 0, and the segment start and end points have the opposite X and Y
values as in the original segment (5,14 and 2,2 here, as opposed to 2,2 and 5,14 in the
original).

SDO_LRS.REVERSE_MEASURE

SDO_LRS Package (Linear Referencing System) 16-71

SDO_LRS.REVERSE_MEASURE

Format
SDO_LRS.REVERSE_MEASURE(

geom_segment IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN SDO_GEOMETRY;

Description
Returns a new geometric segment by reversing the measure values, but not the
direction, of the original geometric segment.

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function:

■ Reverses the measure values of geom_segment

That is, the start measure of geom_segment is the end measure of the returned
geometric segment, the end measure of geom_segment is the start measure of the
returned geometric segment, and all other measures are adjusted accordingly.

■ Does not affect the direction of geom_segment

Compare this function with SDO_LRS.REVERSE_GEOMETRY, which reverses both
the direction and the measure values of a geometric segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.REVERSE_MEASURE_3D) is available. For
information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example reverses the measure values of the geometric segment
representing Route 1, but does not affect the direction. (This example uses the
definitions from the example in Section 7.7.)

Note: The behavior of the SDO_LRS.REVERSE_MEASURE
function changed after release 8.1.7. In release 8.1.7, REVERSE_
MEASURE reversed both the measures and the segment direction.
However, if you want to have this same behavior with subsequent
releases, you must use the SDO_LRS.REVERSE_GEOMETRY
function.

SDO_LRS.REVERSE_MEASURE

16-72 Oracle Spatial User’s Guide and Reference

-- First, display the original segment; then, reverse.
SELECT a.route_geometry FROM lrs_routes a WHERE a.route_id = 1;

ROUTE_GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDIN
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 2, 4, 2, 8, 4, 8, 12, 4, 12, 12, 10, 18, 8, 10, 22, 5, 14, 27))

SELECT SDO_LRS.REVERSE_MEASURE(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.REVERSE_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO)(SDO_GTYPE, SDO_SRID, SDO_POI
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 27, 2, 4, 25, 8, 4, 19, 12, 4, 15, 12, 10, 9, 8, 10, 5, 5, 14, 0))

Note in the returned segment that the M values (measures) now go in descending
order from 27 to 0, but the segment start and end points have the same X and Y values
as in the original segment (2,2 and 5,14).

SDO_LRS.SET_PT_MEASURE

SDO_LRS Package (Linear Referencing System) 16-73

SDO_LRS.SET_PT_MEASURE

Format
SDO_LRS.SET_PT_MEASURE(

geom_segment IN OUT SDO_GEOMETRY,

point IN SDO_GEOMETRY,

measure IN NUMBER) RETURN VARCHAR2;

or

SDO_LRS.SET_PT_MEASURE(

geom_segment IN OUT SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

point IN SDO_GEOMETRY,

pt_dim_array IN SDO_DIM_ARRAY,

measure IN NUMBER) RETURN VARCHAR2;

or

SDO_LRS.SET_PT_MEASURE(

point IN OUT SDO_GEOMETRY,

measure IN NUMBER) RETURN VARCHAR2;

or

SDO_LRS.SET_PT_MEASURE(

point IN OUT SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

measure IN NUMBER) RETURN VARCHAR2;

Description
Sets the measure value of a specified point.

Parameters

geom_segment
Geometric segment containing the point.

dim_array
Dimensional information array corresponding to geom_segment (in the second
format) or point (in the fourth format), usually selected from one of the xxx_SDO_
GEOM_METADATA views (described in Section 2.6).

point
Point for which the measure value is to be set.

SDO_LRS.SET_PT_MEASURE

16-74 Oracle Spatial User’s Guide and Reference

pt_dim_array
Dimensional information array corresponding to point (in the second format),
usually selected from one of the xxx_SDO_GEOM_METADATA views (described in
Section 2.6).

measure
Measure value to be assigned to the specified point.

Usage Notes
The function returns TRUE if the measure value was successfully set, and FALSE if the
measure value was not set.

If both geom_segment and point are specified, the behavior of the procedure
depends on whether or not point is a shape point on geom_segment:

■ If point is a shape point on geom_segment, the measure value of point is set.

■ If point is not a shape point on geom_segment, the shape point on geom_
segment that is nearest to point is found, and the measure value of that shape
point is set.

The _3D format of this function (SDO_LRS.SET_PT_MEASURE_3D) is available;
however, only the formats that include the geom_segment parameter are available for
SDO_LRS.SET_PT_MEASURE_3D. For information about _3D formats of LRS
functions, see Section 7.4.

An exception is raised if geom_segment or point is invalid.

Examples
The following example sets the measure value of point (8,10) to 20. (This example uses
the definitions from the example in Section 7.7.)

-- Set the measure value of point 8,10 to 20 (originally 22).
DECLARE
geom_segment SDO_GEOMETRY;
dim_array SDO_DIM_ARRAY;
result VARCHAR2(32);

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = 'Route1';
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY';

-- Set the measure value of point 8,10 to 20 (originally 22).
result := SDO_LRS.SET_PT_MEASURE (geom_segment,
 SDO_GEOMETRY(3301, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1, 1),
 SDO_ORDINATE_ARRAY(8, 10, 22)),
 20);

-- Display the result.
DBMS_OUTPUT.PUT_LINE('Returned value = ' || result);

END;
/
Returned value = TRUE

SDO_LRS.SET_PT_MEASURE

SDO_LRS Package (Linear Referencing System) 16-75

PL/SQL procedure successfully completed.

SDO_LRS.SPLIT_GEOM_SEGMENT

16-76 Oracle Spatial User’s Guide and Reference

SDO_LRS.SPLIT_GEOM_SEGMENT

Format
SDO_LRS.SPLIT_GEOM_SEGMENT(

geom_segment IN SDO_GEOMETRY,

split_measure IN NUMBER,

segment_1 OUT SDO_GEOMETRY,

segment_2 OUT SDO_GEOMETRY);

or

SDO_LRS.SPLIT_GEOM_SEGMENT(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

split_measure IN NUMBER,

segment_1 OUT SDO_GEOMETRY,

segment_2 OUT SDO_GEOMETRY);

Description
Splits a geometric segment into two geometric segments.

Parameters

geom_segment
Geometric segment to be split.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

split_measure
Distance measured from the start point of a geometric segment to the split point.

segment_1
First geometric segment: from the start point of geom_segment to the split point.

segment_2
Second geometric segment: from the split point to the end point of geom_segment.

Usage Notes
An exception is raised if geom_segment or split_measure is invalid.

The directions and measures of the resulting geometric segments are preserved.

The _3D format of this procedure (SDO_LRS.SPLIT_GEOM_SEGMENT_3D) is
available. For information about _3D formats of LRS functions and procedures, see
Section 7.4.

For more information about splitting a geometric segment, see Section 7.5.4.

SDO_LRS.SPLIT_GEOM_SEGMENT

SDO_LRS Package (Linear Referencing System) 16-77

Examples
The following example defines the geometric segment, splits it into two segments,
then concatenates those segments. (This example uses the definitions from the
example in Section 7.7. The definitions of result_geom_1, result_geom_2, and
result_geom_3 are displayed in Example 7–3.)

DECLARE
geom_segment SDO_GEOMETRY;
line_string SDO_GEOMETRY;
dim_array SDO_DIM_ARRAY;
result_geom_1 SDO_GEOMETRY;
result_geom_2 SDO_GEOMETRY;
result_geom_3 SDO_GEOMETRY;

BEGIN

SELECT a.route_geometry into geom_segment FROM lrs_routes a
 WHERE a.route_name = 'Route1';
SELECT m.diminfo into dim_array from
 user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY';

-- Define the LRS segment for Route1.
SDO_LRS.DEFINE_GEOM_SEGMENT (geom_segment,
 dim_array,
 0, -- Zero starting measure: LRS segment starts at start of route.
 27); -- End of LRS segment is at measure 27.

SELECT a.route_geometry INTO line_string FROM lrs_routes a
 WHERE a.route_name = 'Route1';

-- Split Route1 into two segments.
SDO_LRS.SPLIT_GEOM_SEGMENT(line_string,dim_array,5,result_geom_1,result_geom_2);

-- Concatenate the segments that were just split.
result_geom_3 := SDO_LRS.CONCATENATE_GEOM_SEGMENTS(result_geom_1, dim_array,
result_geom_2, dim_array);

-- Insert geometries into table, to display later.
INSERT INTO lrs_routes VALUES(
 11,
 'result_geom_1',
 result_geom_1
);
INSERT INTO lrs_routes VALUES(
 12,
 'result_geom_2',
 result_geom_2
);
INSERT INTO lrs_routes VALUES(
 13,
 'result_geom_3',
 result_geom_3
);

END;
/

SDO_LRS.TRANSLATE_MEASURE

16-78 Oracle Spatial User’s Guide and Reference

SDO_LRS.TRANSLATE_MEASURE

Format
SDO_LRS.TRANSLATE_MEASURE(

geom_segment IN SDO_GEOMETRY,

translate_m IN NUMBER

) RETURN SDO_GEOMETRY;

or

SDO_LRS.TRANSLATE_MEASURE(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

translate_m IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns a new geometric segment by translating the original geometric segment (that
is, shifting the start and end measures by a specified value).

Parameters

geom_segment
Cartographic representation of a linear feature.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

translate_m
Distance measured from the start point of a geometric segment to the start point of the
linear feature.

Usage Notes
This function adds translate_m to the start and end measures of geom_segment.
For example, if geom_segment has a start measure of 50 and an end measure of 100,
and if translate_m is 10, the returned geometric segment has a start measure of 60
and an end measure of 110, as shown in Figure 16–1.

Figure 16–1 Translating a Geometric Segment

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

Translate (10)

M = 50 M = 100 M = 60 M = 110

SDO_LRS.TRANSLATE_MEASURE

SDO_LRS Package (Linear Referencing System) 16-79

The _3D format of this function (SDO_LRS.TRANSLATE_MEASURE_3D) is available.
For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example translates (shifts) by 10 the geometric segment representing
Route 1. (This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.TRANSLATE_MEASURE(a.route_geometry, m.diminfo, 10)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.TRANSLATE_MEASURE(A.ROUTE_GEOMETRY,M.DIMINFO,10)(SDO_GTYPE, SDO_SRID, SD
--
SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 10, 2, 4, 12, 8, 4, 18, 12, 4, 22, 12, 10, 28, 8, 10, 32, 5, 14, 37))

SDO_LRS.VALID_GEOM_SEGMENT

16-80 Oracle Spatial User’s Guide and Reference

SDO_LRS.VALID_GEOM_SEGMENT

Format
SDO_LRS.VALID_GEOM_SEGMENT(

geom_segment IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN VARCHAR2;

Description
Checks if a geometry object is a valid geometric segment.

Parameters

geom_segment
Geometric segment to be checked for validity.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns TRUE if geom_segment is valid and FALSE if geom_segment
is not valid.

Measure information is assumed to be stored in the last element of the SDO_DIM_
ARRAY in the Oracle Spatial metadata.

This function only checks for geometry type and number of dimensions of the
geometric segment. To further validate measure information, use the SDO_LRS.IS_
GEOM_SEGMENT_DEFINED function.

The _3D format of this function (SDO_LRS.VALID_GEOM_SEGMENT_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example checks if the geometric segment representing Route 1 is valid.
(This example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.VALID_GEOM_SEGMENT(route_geometry)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.VALID_GEOM_SEGMENT(ROUTE_GEOMETRY)
--
TRUE

SDO_LRS.VALID_LRS_PT

SDO_LRS Package (Linear Referencing System) 16-81

SDO_LRS.VALID_LRS_PT

Format
SDO_LRS.VALID_LRS_PT(

point IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN VARCHAR2;

Description
Checks if an LRS point is valid.

Parameters

point
Point to be checked for validity.

dim_array
Dimensional information array corresponding to point, usually selected from one of
the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns TRUE if point is valid and FALSE if point is not valid.

This function checks if point is a point with measure information, and it checks for
the geometry type and number of dimensions for the point geometry.

All LRS point data must be stored in the SDO_ELEM_INFO_ARRAY and SDO_
ORDINATE_ARRAY, and cannot be stored in the SDO_POINT field in the SDO_
GEOMETRY definition of the point.

The _3D format of this function (SDO_LRS.VALID_LRS_PT_3D) is available. For
information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example checks if point (9,3,NULL) is a valid LRS point. (This example
uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.VALID_LRS_PT(
 SDO_GEOMETRY(3301, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1, 1),
 SDO_ORDINATE_ARRAY(9, 3, NULL)),
 m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.VALID_LRS_PT(SDO_GEOMETRY(3301,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1,1),SDO_
--
TRUE

SDO_LRS.VALID_MEASURE

16-82 Oracle Spatial User’s Guide and Reference

SDO_LRS.VALID_MEASURE

Format
SDO_LRS.VALID_MEASURE(

geom_segment IN SDO_GEOMETRY,

measure IN NUMBER

) RETURN VARCHAR2;

or

SDO_LRS.VALID_MEASURE(

geom_segment IN SDO_GEOMETRY,

dim_array IN SDO_DIM_ARRAY,

measure IN NUMBER

) RETURN VARCHAR2;

Description
Checks if a measure falls within the measure range of a geometric segment.

Parameters

geom_segment
Geometric segment to be checked to see if measure falls within its measure range.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

measure
Measure value to be checked to see if it falls within the measure range of geom_
segment.

Usage Notes
This function returns TRUE if measure falls within the measure range of geom_
segment and FALSE if measure does not fall within the measure range of geom_
segment.

An exception is raised if geom_segment has an invalid geometry type or
dimensionality.

The _3D format of this function (SDO_LRS.VALID_MEASURE_3D) is available. For
information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example checks if 50 is a valid measure on the Route 1 segment. The
function returns FALSE because the measure range for that segment is 0 to 27. For
example, if the route is 27 miles long with mile markers at 1-mile intervals, there is no
50-mile marker because the last marker is the 27-mile marker. (This example uses the
definitions from the example in Section 7.7.)

SDO_LRS.VALID_MEASURE

SDO_LRS Package (Linear Referencing System) 16-83

SELECT SDO_LRS.VALID_MEASURE(route_geometry, 50)
 FROM lrs_routes WHERE route_id = 1;

SDO_LRS.VALID_MEASURE(ROUTE_GEOMETRY,50)
--
FALSE

SDO_LRS.VALIDATE_LRS_GEOMETRY

16-84 Oracle Spatial User’s Guide and Reference

SDO_LRS.VALIDATE_LRS_GEOMETRY

Format
SDO_LRS.VALIDATE_LRS_GEOMETRY(

geom_segment IN SDO_GEOMETRY

[, dim_array IN SDO_DIM_ARRAY]

) RETURN VARCHAR2;

Description
Checks if an LRS geometry is valid.

Parameters

geom_segment
Geometric segment to be checked.

dim_array
Dimensional information array corresponding to geom_segment, usually selected
from one of the xxx_SDO_GEOM_METADATA views (described in Section 2.6).

Usage Notes
This function returns TRUE if geom_segment is valid and one of the following errors
if geom_segment is not valid:

■ ORA-13331 (invalid LRS segment)

■ ORA-13335 (measure information not defined)

The _3D format of this function (SDO_LRS.VALIDATE_LRS_GEOMETRY_3D) is
available. For information about _3D formats of LRS functions, see Section 7.4.

Examples
The following example checks if the Route 1 segment is a valid LRS geometry. (This
example uses the definitions from the example in Section 7.7.)

SELECT SDO_LRS.VALIDATE_LRS_GEOMETRY(a.route_geometry, m.diminfo)
 FROM lrs_routes a, user_sdo_geom_metadata m
 WHERE m.table_name = 'LRS_ROUTES' AND m.column_name = 'ROUTE_GEOMETRY'
 AND a.route_id = 1;

SDO_LRS.VALIDATE_LRS_GEOMETRY(A.ROUTE_GEOMETRY,M.DIMINFO)
--
TRUE

SDO_MIGRATE Package (Upgrading) 17-1

17
SDO_MIGRATE Package (Upgrading)

The SDO_MIGRATE.TO_CURRENT subprogram described in this chapter has both
procedure and function interfaces. As a procedure, it lets you upgrade spatial
geometry tables from previous releases of Spatial; and as a function, it lets you
upgrade a single SDO_GEOMETRY object.

SDO_MIGRATE.TO_CURRENT is the only procedure that you should use for
upgrading tables. Do not use the SDO_MIGRATE.TO_81X, SDO_MIGRATE.FROM_
815_TO_81X, or SDO_MIGRATE.TO_734 procedures, which were documented in
previous Spatial releases but are no longer supported.

SDO_MIGRATE.TO_CURRENT

17-2 Oracle Spatial User’s Guide and Reference

SDO_MIGRATE.TO_CURRENT

Format (Any Object-Relational Model Implementation to Current)
SDO_MIGRATE.TO_CURRENT(

tabname IN VARCHAR2

[, column_name IN VARCHAR2]);

or

SDO_MIGRATE.TO_CURRENT(

tabname IN VARCHAR2,

column_name IN VARCHAR2

[, commit_int IN NUMBER]);

Format (Single Object-Relational Model Geometry to Current)
SDO_MIGRATE.TO_CURRENT(

geom IN SDO_GEOMETRY,

dim IN SDO_DIM_ARRAY

) RETURN SDO_GEOMETRY;

Format (Any Relational Model Implementation to Current)
SDO_MIGRATE.TO_CURRENT(

layer IN VARCHAR2,

newtabname IN VARCHAR2,

gidcolumn IN VARCHAR2,

geocolname IN VARCHAR2,

layer_gtype IN VARCHAR2,

updateflag IN VARCHAR2);

Description
Upgrades data from a previous Spatial release to the current release. As a procedure,
TO_CURRENT upgrades an entire layer (all geometries in a column); as a function,
TO_CURRENT upgrades a single geometry object, which must be of type SDO_
GEOMETRY.

For upgrading a layer, the procedure format depends on whether you are upgrading
from the Spatial relational model (release 8.1.5 or earlier) or object-relational model
(release 8.1.6 or later). See the Usage Notes for the model that applies to you.

You should use this procedure for any spatial layer upgrade. Do not use the SDO_
MIGRATE.TO_81X, SDO_MIGRATE.FROM_815_TO_81X, or SDO_MIGRATE.TO_734
procedures, which were documented in previous Spatial releases but are no longer
supported.

SDO_MIGRATE.TO_CURRENT

SDO_MIGRATE Package (Upgrading) 17-3

Parameters

tabname
Table with geometry objects.

column_name
Column in tabname that contains geometry objects. If column_name is not specified
or is specified as null, the column containing geometry objects is upgraded.

commit_int
Number of geometries to upgrade before Spatial performs an internal commit
operation. If commit_int is not specified, no internal commit operations are
performed during the upgrade.

If you specify a commit_int value, you can use a smaller rollback segment than
would otherwise be needed.

geom
Single geometry object to be upgraded to the current release.

dim
Dimensional information array for the geometry object to be upgraded. The SDO_
DIM_ARRAY type is explained in Section 2.6.3.

layer
Name of the layer to be upgraded.

newtabname
Name of the new table to which you are upgrading the data.

gidcolumn
Name of the column in which to store the GID from the old table.

geocolname
Name of the column in the new table where the geometry objects will be inserted.

layer_gtype
One of the following values: POINT or NOTPOINT (default).

If the layer you are upgrading is composed solely of point data, set this parameter to
POINT for optimal performance; otherwise, set this parameter to NOTPOINT. If you
set the value to POINT and the layer contains any nonpoint geometries, the upgrade
might produce invalid data.

updateflag
One of the following values: UPDATE or INSERT (default).

If you are upgrading the layer into an existing populated attribute table, set this
parameter to UPDATE; otherwise, set this parameter to INSERT.

Usage Notes for Object-Relational Model Layer and Single Geometry Upgrade
The specified geometry or all geometry objects in the specified layer are upgraded so
that their SDO_GTYPE and SDO_ETYPE values are in the format of the current
release:

■ SDO_GTYPE values of 4 digits are created, using the format (dltt) shown in
Table 2–1 in Section 2.2.1.

■ SDO_ETYPE values are as discussed in Section 2.2.4.

SDO_MIGRATE.TO_CURRENT

17-4 Oracle Spatial User’s Guide and Reference

Geometries are ordered so that exterior rings are followed by their interior rings, and
coordinates are saved in the correct rotation (counterclockwise for exterior rings, and
clockwise for interior rings).

Usage Notes for Relational Model Upgrade
Consider the following when using this procedure:

■ The new table must be created before you call this procedure.

■ If the data to be upgraded is geodetic, the tolerance value (SDO_TOLERANCE
column value in the <layername>_SDODIM table or view) must be expressed in
decimal degrees (for example, 0.00000005).

■ The procedure converts geometries from the relational model to the
object-relational model.

■ A commit operation is performed by this procedure.

■ If any of the upgrade steps fails, nothing is upgraded for the layer.

■ layer is the underlying layer name, without the _SDOGEOM suffix.

■ The old SDO_GID is stored in gidcolumn.

■ SDO_GTYPE values of 4 digits are created, using the format (dltt) shown in
Table 2–1 in Section 2.2.1.

■ SDO_ETYPE values are created, using the values discussed in Section 2.2.4.

■ The procedure orders geometries so that exterior rings are followed by their
interior rings, and it saves coordinates in the correct rotation (counterclockwise for
exterior rings, and clockwise for interior rings).

Examples
The following example changes the definitions of geometry objects in the ROADS
table from the release 8.1.5 or later format to the format of the current release.

EXECUTE SDO_MIGRATE.TO_CURRENT('ROADS');

SDO_SAM Package (Spatial Analysis and Mining) 18-1

18
SDO_SAM Package (Spatial Analysis and

Mining)

The MDSYS.SDO_SAM package contains subprograms for spatial analysis and data
mining.

To use the subprograms in this chapter, you must understand the conceptual
information about spatial analysis and data mining in Chapter 8.

Table 18–1 lists the spatial analysis and mining subprograms.

The rest of this chapter provides reference information on the spatial analysis and
mining subprograms, listed in alphabetical order.

Table 18–1 Subprograms for Spatial Analysis and Mining

Function Description

SDO_SAM.AGGREGATES_FOR_
GEOMETRY

Computes the thematic aggregate for a geometry.

SDO_SAM.AGGREGATES_FOR_
LAYER

Computes thematic aggregates for a layer of
geometries.

SDO_SAM.BIN_GEOMETRY Computes the most-intersecting tile for a geometry.

SDO_SAM.BIN_LAYER Assigns each location (and the corresponding row)
in a data mining table to a spatial bin.

SDO_SAM.COLOCATED_
REFERENCE_FEATURES

Performs a partial predicate-based join of tables, and
materializes the join results into a table.

SDO_SAM.SIMPLIFY_GEOMETRY Simplifies a geometry.

SDO_SAM.SIMPLIFY_LAYER Simplifies a geometry layer.

SDO_SAM.SPATIAL_CLUSTERS Computes clusters using the existing R-tree index,
and returns a set of SDO_REGION objects where the
geometry column specifies the boundary of each
cluster and the geometry_key value is set to null.

SDO_SAM.TILED_AGGREGATES Tiles aggregates for a domain. For each tile,
computes the intersecting geometries from the
theme table; the values in the aggr_col_string
column are weighted proportionally to the area of
the intersection, and aggregated according to aggr_
col_string.

SDO_SAM.TILED_BINS Tiles a two-dimensional space and returns
geometries corresponding to those tiles.

SDO_SAM.AGGREGATES_FOR_GEOMETRY

18-2 Oracle Spatial User’s Guide and Reference

SDO_SAM.AGGREGATES_FOR_GEOMETRY

Format
SDO_SAM.AGGREGATES_FOR_GEOMETRY(

theme_name IN VARCHAR2,

theme_colname IN VARCHAR2,

aggr_type_string IN VARCHAR2,

aggr_col_string IN VARCHAR2,

geom IN SDO_GEOMETRY,

dst_spec IN VARCHAR2 DEFAULT NULL

) RETURN NUMBER;

Description
Computes the thematic aggregate for a geometry.

Parameters

theme_name
Name of the theme table.

theme_colname
Name of the geometry column in theme_name.

aggr_type_string
Any Oracle SQL aggregate function that accepts one or more numeric values and
computes a numeric value, such as SUM, MIN, MAX, or AVG.

aggr_col_string
Name of a column in theme_name on which to compute aggregate values, as
explained in the Usage Notes. An example might be a POPULATION column.

geom
Geometry object.

dst_spec
A quoted string specifying either a distance buffer or a number of nearest neighbor
geometries to consider. See the Usage Notes for an explanation of the format and
meaning.

Usage Notes
For a specific geometry, this function identifies the geometries in the theme_name
table, finds their intersection ratio, multiplies the specified aggregate using this
intersection ratio, and aggregates it for the geometry. Specifically, for all rows of the
theme_name table that intersect with the specified geometry, it returns the value from
the following function:

aggr_type_string(aggr_col_string * proportional_area_of_intersection(geometry,
theme_name.theme_colname))

SDO_SAM.AGGREGATES_FOR_GEOMETRY

SDO_SAM Package (Spatial Analysis and Mining) 18-3

The theme_colname column must have a spatial index defined on it. For best
performance, insert simplified geometries into this column.

The dst_spec parameter, if specified, is a quoted string that must contain either of
the following:

■ The distance keyword and optionally the unit keyword (unit of measurement
associated with the distance value), to specify a buffer around the geometry. For
example, 'distance=2 unit=km' specifies a 2-kilometer buffer around the
input geometry. If dst_spec is not specified, no buffer is used.

If the unit keyword is specified, the value must be an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, 'unit=km'). If the unit keyword
is not specified, the unit of measurement associated with the geometry is used. See
Section 2.8 for more information about unit of measurement specification.

■ The sdo_num_res keyword, to specify the number of nearest-neighbor
geometries to consider, without considering proportional coverage. For example,
'sdo_num_res=5' could be used in a query that asks for the populations of the
five cities that are nearest to a specified point.

Examples
The following example computes the thematic aggregate for an area with a 3-mile
radius around a specified point geometry. In this case, the total population of the area
is computed based on the proportion of the circle’s area within different counties,
assuming uniform distribution of population within the counties.

SELECT sdo_sam.aggregates_for_geometry(
 'GEOD_COUNTIES', 'GEOM',
 'sum', 'totpop',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE(-73.943849, 40.6698,NULL),
 NULL, NULL),
 'distance=3 unit=mile')
FROM DUAL a ;

SDO_SAM.AGGREGATES_FOR_LAYER

18-4 Oracle Spatial User’s Guide and Reference

SDO_SAM.AGGREGATES_FOR_LAYER

Format
SDO_SAM.AGGREGATES_FOR_LAYER(

theme_name IN VARCHAR2,

theme_colname IN VARCHAR2,

aggr_type_string IN VARCHAR2,

aggr_col_string IN VARCHAR2,

tablename IN VARCHAR2,

colname IN VARCHAR2,

dst_spec IN VARCHAR2 DEFAULT NULL

) RETURN SDO_REGAGGRSET;

Description
Computes thematic aggregates for a layer of geometries.

Parameters

theme_name
Name of the theme table.

theme_colname
Name of the geometry column in theme_name.

aggr_type_string
Any Oracle SQL aggregate function that accepts one or more numeric values and
computes a numeric value, such as SUM, MIN, MAX, or AVG.

aggr_col_string
Name of a column in theme_name on which to compute aggregate values, as
explained in the Usage Notes. An example might be a POPULATION column.

tablename
Name of the data mining table.

colname
Name of the column in tablename that holds the geometries.

dst_spec
A quoted string specifying either a distance buffer or a number of nearest neighbor
geometries to consider. See the Usage Notes for the SDO_SAM.AGGREGATES_FOR_
GEOMETRY function in this chapter for an explanation of the format and meaning.

Usage Notes
For each geometry in tablename, this function identifies the geometries in the
theme_name table, finds their intersection ratio, multiplies the specified aggregate
using this intersection ratio, and aggregates it for each geometry in tablename.
Specifically, for all rows of the theme_name table, it returns the value from the
following function:

SDO_SAM.AGGREGATES_FOR_LAYER

SDO_SAM Package (Spatial Analysis and Mining) 18-5

aggr_type_string(aggr_col_string * proportional_area_of_intersection(geometry,
theme_name.theme_colname))

This function returns an object of type SDO_REGAGGRSET. The SDO_REGAGGRSET
object type is defined as:

TABLE OF SDO_REGAGGR

The SDO_REGAGGR object type is defined as:

 Name Null? Type
 --- -------- ----------------------------
 REGION_ID VARCHAR2(24)
 GEOMETRY MDSYS.SDO_GEOMETRY
 AGGREGATE_VALUE NUMBER

The theme_colname column must have a spatial index defined on it. For best
performance, insert simplified geometries into this column.

Examples
The following example computes the thematic aggregates for all geometries in a table
named TEST_TAB for an area with a 3-mile radius around a specified point geometry.
In this case, the total population of each area is computed based on the proportion of
the circle’s area within different counties, assuming uniform distribution of population
within the counties.

SELECT a.aggregate_value FROM TABLE(sdo_sam.aggregates_for_layer(
 'GEOD_COUNTIES', 'GEOM', 'SUM', TOTPOP', TEST_TAB', 'GEOM'
 'distance=3 unit=mile')) a;

SDO_SAM.BIN_GEOMETRY

18-6 Oracle Spatial User’s Guide and Reference

SDO_SAM.BIN_GEOMETRY

Format
SDO_SAM.BIN_GEOMETRY(

geom IN SDO_GEOMETRY,

tol IN SDO_DIM_ARRAY,

bin_tablename IN VARCHAR2,

bin_colname IN VARCHAR2

) RETURN NUMBER;

or

SDO_SAM.BIN_GEOMETRY(

geom IN SDO_GEOMETRY,

dim IN SDO_DIM_ARRAY,

bin_tablename IN VARCHAR2,

bin_colname IN VARCHAR2

) RETURN NUMBER;

Description
Computes the most-intersecting tile for a geometry.

Parameters

geom
Geometry for which to compute the bin.

tol
Tolerance value (see Section 1.5.5).

dim
Dimensional array for the table that holds the geometries for the bins.

bin_tablename
Name of the table that holds the geometries for the bins.

bin_colname
Column in bin_tablename that holds the geometries for the bins.

Usage Notes
This function returns the bin that intersects most with the specified geometry. If
multiple bins intersect to the same extent with the specified geometry, the bin with the
smallest area is returned.

To perform this operation on all rows in the data mining table, using the specified
bin_tablename, you can use the SDO_SAM.BIN_LAYER procedure.

SDO_SAM.BIN_GEOMETRY

SDO_SAM Package (Spatial Analysis and Mining) 18-7

Examples
The following example computes the bin for a specified geometry.

SELECT sdo_sam.bin_geometry(a.geometry, 0.0000005, 'BINTBL', 'GEOMETRY')
 FROM poly_4pt a, user_sdo_geom_metadata b
 WHERE b.table_name='POLY_4PT' AND a.gid=1;

SDO_SAM.BIN_GEOMETRY(A.GEOMETRY,0.0000005,'BINTBL','GEOMETRY')
--
 43

1 row selected.

SDO_SAM.BIN_LAYER

18-8 Oracle Spatial User’s Guide and Reference

SDO_SAM.BIN_LAYER

Format
SDO_SAM.BIN_LAYER(

tablename IN VARCHAR2,

colname IN VARCHAR2,

bin_tablename IN VARCHAR2,

bin_colname IN VARCHAR2,

bin_id_colname IN VARCHAR2,

commit_interval IN NUMBER DEFAULT 20);

Description
Assigns each location (and the corresponding row) in a data mining table to a spatial
bin.

Parameters

tablename
Name of the data mining table.

colname
Name of the column in table_name that holds the location coordinates.

bin_tablename
Name of the table that contains information (precomputed for the entire
two-dimensional space) about the spatial bins.

bin_colname
Column in bin_tablename that holds the geometries for the bins.

bin_id_colname
Name of the column in the data mining table that holds the bin ID value of each
geometry added to a bin. (Each affected row in the data mining table is updated with
the ID value of the bin geometry in bin_tablename.)

commit_interval
Number of bin insert operations to perform before Spatial performs an internal
commit operation. If commit_interval is not specified, a commit is performed after
every 20 insert operations.

Usage Notes
This procedure computes the most-intersecting tile for each geometry in a specified
layer using the bins in bin_tablename. The bin ID value for each geometry is added
in bin_id_colname.

Using this procedure achieves the same result as using the SDO_SAM.BIN_
GEOMETRY function on each row in the data mining table, using the specified bin_
tablename.

SDO_SAM.BIN_LAYER

SDO_SAM Package (Spatial Analysis and Mining) 18-9

Examples
The following example assigns each GEOMETRY column location and corresponding
row in the POLY_4PT_TEMP data mining table to a spatial bin, and performs an
internal commit operation after each bin table insertion.

CALL SDO_SAM.BIN_LAYER('POLY_4PT_TEMP', 'GEOMETRY', 'BINTBL', 'GEOMETRY', 'BIN_
ID', 1);

SDO_SAM.COLOCATED_REFERENCE_FEATURES

18-10 Oracle Spatial User’s Guide and Reference

SDO_SAM.COLOCATED_REFERENCE_FEATURES

Format
SDO_SAM.COLOCATED_REFERENCE_FEATURES(

theme_tablename IN VARCHAR2,

theme_colname IN VARCHAR2,

theme_predicate IN VARCHAR2,

tablename IN VARCHAR2,

colname IN VARCHAR2,

ref_predicate IN VARCHAR2,

dst_spec IN VARCHAR2,

result_tablename IN VARCHAR2,

commit_interval IN NUMBER DEFAULT 100);

Description
Performs a partial predicate-based join of tables, and materializes the join results into a
table.

Parameters

theme_tablename
Name of the table with which to join tablename.

theme_colname
Name of the geometry column in theme_tablename.

theme_predicate
Qualifying WHERE clause predicate to be applied to theme_tablename.

tablename
Name of the data mining table.

colname
Name of the column in tablename that holds the location coordinates.

ref_predicate
Qualifying WHERE clause predicate to be applied to tablename. Must be a single
table predicate, such as 'country_code=10'.

dst_spec
A quoted string containing a distance value and optionally a unit value for a buffer
around the geometries. See the Usage Notes for an explanation of the format and
meaning.

result_tablename
The table in which materialized join results are stored. This table must have the
following definition: (tid NUMBER, rid1 VARCHAR2(24), rid2
VARCHAR2(24))

SDO_SAM.COLOCATED_REFERENCE_FEATURES

SDO_SAM Package (Spatial Analysis and Mining) 18-11

commit_interval
Number of internal join operations to perform before Spatial performs an internal
commit operation. If commit_interval is not specified, a commit is performed after
every 100 internal join operations.

Usage Notes
This procedure materializes each pair of rowids returned from a predicate-based join
operation, and stores them in the rid1, rid2 columns of result_tablename. The
tid is a unique generated "interaction" number corresponding to each rid1 value.

The dst_spec parameter, if specified, is a quoted string containing the distance
keyword and optionally the unit keyword (unit of measurement associated with the
distance value), to specify a buffer around the geometry. For example, 'distance=2
unit=km' specifies a 2-kilometer buffer around the input geometry. If dst_spec is
not specified, no buffer is used.

If the unit keyword is specified, the value must be an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, 'unit=KM'). If the unit keyword is
not specified, the unit of measurement associated with the geometry is used. See
Section 2.8 for more information about unit of measurement specification.

Examples
The following example identifies cities with a 1990 population (POP90 column value)
greater than 120,000 that are located within 20 kilometers of interstate highways
(GEOM column in the GEOD_INTERSTATES table). It stores the results in a table
named COLOCATION_TABLE, and performs an internal commit operation after each
20 internal operations.

EXECUTE SDO_SAM.COLOCATED_REFERENCE_FEATURES(
 'geod_cities', 'location', 'pop90 > 120000',
 'geod_interstates', 'geom', null,
 'distance=20 unit=km', 'colocation_table', 20);

SDO_SAM.SIMPLIFY_GEOMETRY

18-12 Oracle Spatial User’s Guide and Reference

SDO_SAM.SIMPLIFY_GEOMETRY

Format
SDO_SAM.SIMPLIFY_GEOMETRY(

geom IN SDO_GEOMETRY,

dim IN SDO_DIM_ARRAY,

pct_area_change_limit IN NUMBER DEFAULT 2

) RETURN SDO_GEOMETRY;

or

SDO_SAM.SIMPLIFY_GEOMETRY(

geom IN SDO_GEOMETRY,

tol IN NUMBER,

pct_area_change_limit IN NUMBER DEFAULT 2

) RETURN SDO_GEOMETRY;

Description
Simplifies a geometry.

Parameters

geom
Geometry to be simplified.

dim
Dimensional array for the geometry to be simplified.

tol
Tolerance value (see Section 1.5.5).

pct_area_change_limit
The percentage of area changed to be used for each simplification iteration, as
explained in the Usage Notes.

Usage Notes
This function reduces the number of vertices in a geometry by internally applying the
SDO_UTIL.SIMPLIFY function (documented in Chapter 20) with an appropriate
threshold value.

Reducing the number of vertices may result in a change in the area of the geometry.
The pct_area_change_limit parameter specifies how much area change can be
tolerated while simplifying the geometry. It is usually a number from 1 to 100. The
default value is 2; that is, the area of the geometry can either increase or decrease by at
most two percent compared to the original geometry as a result of the geometry
simplification.

SDO_SAM.SIMPLIFY_GEOMETRY

SDO_SAM Package (Spatial Analysis and Mining) 18-13

Examples
The following example simplifies the geometries in the GEOMETRY column of the
POLY_4PT_TEMP table.

SELECT sdo_sam.simplify_geometry(a.geometry, 0.00000005)
 FROM poly_4pt_temp a, user_sdo_geom_metadata b
 WHERE b.table_name='POLY_4PT_TEMP' ;

SDO_SAM.SIMPLIFY_GEOMETRY(A.GEOMETRY,0.00000005)(ORIG_AREA, CUR_AREA, ORIG_LEN,
--
SDO_SMPL_GEOMETRY(28108.5905, 28108.5905, 758.440118, 758.440118, SDO_GEOMETRY(2
003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARRAY(-122.4215,
37.7862, -122.422, 37.7869, -122.421, 37.789, -122.42, 37.7866, -122.4215, 37.78
62)))

SDO_SMPL_GEOMETRY(4105.33806, 4105.33806, 394.723053, 394.723053, SDO_GEOMETRY(2
003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARRAY(-122.4019,
37.8052, -122.4027, 37.8055, -122.4031, 37.806, -122.4012, 37.8052, -122.4019, 3
7.8052)))
 .
 .
 .
50 rows selected.

SDO_SAM.SIMPLIFY_LAYER

18-14 Oracle Spatial User’s Guide and Reference

SDO_SAM.SIMPLIFY_LAYER

Format
SDO_SAM.SIMPLIFY_LAYER(

theme_tablename IN VARCHAR2,

theme_colname IN VARCHAR2,

smpl_geom_colname IN VARCHAR2,

commit_interval IN NUMBER DEFAULT 10,

pct_area_change_limit IN NUMBER DEFAULT 2);

Description
Simplifies a geometry layer.

Parameters

theme_tablename
Name of the table containing the geometry layer to be simplified.

theme_colname
Column in theme_tablename of type SDO_GEOMETRY containing the geometries
to be simplified.

smpl_geom_colname
Column in theme_tablename of type SDO_GEOMETRY into which the simplified
geometries are to be placed by this procedure.

commit_interval
Number of geometries to simplify before Spatial performs an internal commit
operation. If commit_interval is not specified, a commit is performed after every 10
simplification operations.

pct_area_change_limit
The percentage of area changed to be used for each simplification iteration, as
explained in the Usage Notes for the SDO_SAM.SIMPLIFY_GEOMETRY function.

Usage Notes
This procedure simplifies all geometries in a layer. It is equivalent to calling the SDO_
SAM.SIMPLIFY_GEOMETRY function for each geometry in the layer, except that each
simplified geometry is put in a separate column in the table instead of being returned
to the caller. See also the Usage Notes for the SDO_SAM.SIMPLIFY_GEOMETRY
function.

Examples
The following example adds a column named SMPL_GEOM to the POLY_4PT_TEMP
table, then simplifies all geometries in the GEOMETRY column of the POLY_4PT_
TEMP table, placing each simplified geometry in the SMPL_GEOM column in the
same row with its associated original geometry.

ALTER TABLE poly_4pt_temp ADD (smpl_geom mdsys.sdo_geometry);

SDO_SAM.SIMPLIFY_LAYER

SDO_SAM Package (Spatial Analysis and Mining) 18-15

Table altered.

EXECUTE sdo_sam.simplify_layer('POLY_4PT_TEMP', 'GEOMETRY', 'SMPL_GEOM');

PL/SQL procedure successfully completed.

SDO_SAM.SPATIAL_CLUSTERS

18-16 Oracle Spatial User’s Guide and Reference

SDO_SAM.SPATIAL_CLUSTERS

Format
SDO_SAM.SPATIAL_CLUSTERS(

tablename IN VARCHAR2,

colname IN VARCHAR2,

max_clusters IN NUMBER,

allow_outliers IN VARCHAR2 DEFAULT 'TRUE',

tablepartition IN VARCHAR2 DEFAULT NULL

) RETURN SDO_REGIONSET;

Description
Computes clusters using the existing R-tree index, and returns a set of SDO_REGION
objects where the geometry column specifies the boundary of each cluster and the
geometry_key value is set to null.

Parameters

tablename
Name of the data mining table.

colname
Name of the column in tablename that holds the location coordinates.

max_clusters
Maximum number of clusters to obtain.

allow_outliers
TRUE (the default) causes outlying values (isolated instances) to be included in the
spatial clusters; FALSE causes outlying values not to be included in the spatial clusters.
(TRUE accommodates all data and may result in larger clusters; FALSE may exclude
some data and may result in smaller clusters.)

tablepartition
Name of the partition in tablename.

Usage Notes
The clusters are computed using the spatial R-tree index on tablename.

Examples
The following example clusters the locations in cities into at most three clusters, and
includes outlying values in the clusters.

SELECT * FROM
 TABLE(sdo_sam.spatial_clusters('PROJ_CITIES', 'LOCATION', 3, 'TRUE'));

SDO_SAM.TILED_AGGREGATES

SDO_SAM Package (Spatial Analysis and Mining) 18-17

SDO_SAM.TILED_AGGREGATES

Format
SDO_SAM.TILED_AGGREGATES(

theme_name IN VARCHAR2,

theme_colname IN VARCHAR2,

aggr_type_string IN VARCHAR2,

aggr_col_string IN VARCHAR2,

tiling_level IN NUMBER DEFAULT NULL,

tiling_domain IN SDO_DIM_ARRAY DEFAULT NULL,

zero_agg_tiles IN NUMBER DEFAULT 0,

xdivs IN NUMBER DEFAULT NULL,

ydivs IN NUMBER DEFAULT NULL

) RETURN SDO_REGAGGRSET;

Description
Tiles aggregates for a domain. For each tile, computes the intersecting geometries from
the theme table; the values in the aggr_col_string column are weighted
proportionally to the area of the intersection, and aggregated according to aggr_col_
string.

Parameters

theme_name
Table containing theme information (for example, demographic information).

theme_colname
Name of the column in the theme_name table that contains geometry objects.

aggr_type_string
Any Oracle SQL aggregate function that accepts one or more numeric values and
computes a numeric value, such as SUM, MIN, MAX, or AVG.

aggr_col_string
Name of a column in the theme_name table on which to compute aggregate values.
An example might be a POPULATION column.

tiling_level
Level to be used to create tiles. If you specify this parameter, the extent of each
dimension is divided into 2^tiling_level parts, resulting in at most 4*tiling_
level tiles. (Specify either this parameter or the combination of the xdivs and
ydivs parameters.)

tiling_domain
Domain for the tiling level. The parameter is not required, and if you do not specify it,
the extent associated with the theme_name table is used.

SDO_SAM.TILED_AGGREGATES

18-18 Oracle Spatial User’s Guide and Reference

zero_agg_tiles
Specify 0 to exclude tiles that have a value of 0 for the computed aggregate, or specify
1 to return all tiles. The default value is 0, which ensures that only tiles with a nonzero
aggregate value are returned.

xdivs
The number of times that the extent in the first dimension is divided, such that the
total number of parts is xdivs + 1. For example, if you specify 10 for xdivs, the
extent of the first dimension is divided into 11 parts.

ydivs
The number of times that the extent in the second dimension is divided, such that the
total number of parts is ydivs + 1. For example, if you specify 10 for ydivs, the
extent of the second dimension is divided into 11 parts.

Usage Notes
This function is similar to SDO_SAM.AGGREGATES_FOR_LAYER, but the results are
dynamically generated using tiling information. Given a theme_name table, the tiling
domain is determined. Based on the tiling_level value or the xdivs and ydivs
values, the necessary tiles are generated. For each tile geometry, thematic aggregates
are computed as described in the Usage Notes for SDO_SAM.AGGREGATES_FOR_
LAYER.

You must specify either the tiling_level parameter or both the xdivs and ydivs
parameters. If you specify all three of these parameters, the tiling_level parameter
is ignored and the xdivs and ydivs parameters are used.

If you specify the xdivs and ydivs parameters, the total number of grids (tiles)
returned is (xdivs+1)*(ydivs+1).

This function returns an object of type SDO_REGAGGRSET. The SDO_REGAGGRSET
object type is defined as:

TABLE OF SDO_REGAGGR

The SDO_REGAGGR object type is defined as:

 Name Null? Type
 --- -------- ----------------------------
 REGION_ID VARCHAR2(24)
 GEOMETRY MDSYS.SDO_GEOMETRY
 AGGREGATE_VALUE NUMBER

Examples
The following example computes the sum of the population rows of POLY_4PT_TEMP
table intersecting with each tile. The extent of the POLY_4PT_TEMP table stored in the
USER_SDO_GEOM_METADATA view is used as the domain, and a tiling level of 2 is
used (that is, the domain is divided into 16 tiles).

SELECT a.geometry, a.aggregate_value
 from TABLE(sdo_sam.tiled_aggregates('POLY_4PT_TEMP',
 'GEOMETRY', 'SUM', 'POPULATION', 2)) a;

GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
AGGREGATE_VALUE

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(-180, -90, -90, -45))

SDO_SAM.TILED_AGGREGATES

SDO_SAM Package (Spatial Analysis and Mining) 18-19

 .007150754

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(-180, -45, -90, 0))
 .034831005

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(-180, 0, -90, 45))
 7.73307783

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(-90, -90, 0, -45))
 .019498368

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(-90, -45, 0, 0))
 .939061456

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(-90, 0, 0, 45))
 1.26691592

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(0, 0, 90, 45))
 40

7 rows selected.

SDO_SAM.TILED_BINS

18-20 Oracle Spatial User’s Guide and Reference

SDO_SAM.TILED_BINS

Format
SDO_SAM.TILED_BINS(

l1 IN NUMBER,

u1 IN NUMBER,

l2 IN NUMBER,

u2 IN NUMBER,

tiling_level IN NUMBER DEFAULT NULL,

srid IN NUMBER DEFAULT NULL,

xdivs IN NUMBER DEFAULT NULL,

ydivs IN NUMBER DEFAULT NULL

) RETURN SDO_REGIONSET;

Description
Tiles a two-dimensional space and returns geometries corresponding to those tiles.

Parameters

l1
Lower bound of the extent in the first dimension.

u1
Upper bound of the extent in the first dimension.

l2
Lower bound of the extent in the second dimension.

u2
Upper bound of the extent in the second dimension.

tiling_level
Level to be used to tile the specified extent. If you specify this parameter, the extent of
each dimension is divided into 2^tiling_level parts, resulting in at most
4*tiling_level tiles. (Specify either this parameter or the combination of the xdivs
and ydivs parameters.)

srid
SRID value to be included for the coordinate system in the returned tile geometries.

xdivs
The number of times that the extent in the first dimension is divided, such that the
total number of parts is xdivs + 1. For example, if you specify 10 for xdivs, the
extent of the first dimension is divided into 11 parts.

ydivs
The number of times that the extent in the second dimension is divided, such that the
total number of parts is ydivs + 1. For example, if you specify 10 for ydivs, the
extent of the second dimension is divided into 11 parts.

SDO_SAM.TILED_BINS

SDO_SAM Package (Spatial Analysis and Mining) 18-21

Usage Notes
You must specify either the tiling_level parameter or both the xdivs and ydivs
parameters. If you specify all three of these parameters, the tiling_level parameter
is ignored and the xdivs and ydivs parameters are used.

If you specify the xdivs and ydivs parameters, the total number of grids (tiles)
returned is (xdivs+1)*(ydivs+1).

This function returns an object of type SDO_REGIONSET. The SDO_REGIONSET
object type is defined as:

TABLE OF SDO_REGION

The SDO_REGION object type is defined as:

Name Null? Type
 --- -------- ----------------------------
 ID NUMBER
 GEOMETRY MDSYS.SDO_GEOMETRY

Examples
The following example tiles the entire Earth’s surface at the first tiling level, using the
standard longitude and latitude coordinate system (SRID 8307). The resulting SDO_
REGIONSET object contains four SDO_REGION objects, one for each tile.

SELECT * FROM TABLE(sdo_sam.tiled_bins(-180, 180, -90, 90, 1, 8307))
 ORDER BY id;

 ID

GEOMETRY(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--
 0
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(-180, -90, 0, 0))

 1
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(-180, 0, 0, 90))

 2
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(0, -90, 180, 0))

 3
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(0, 0, 180, 90))

4 rows selected.

SDO_SAM.TILED_BINS

18-22 Oracle Spatial User’s Guide and Reference

SDO_TUNE Package (Tuning) 19-1

19
SDO_TUNE Package (Tuning)

This chapter contains descriptions of the tuning subprograms shown in Table 19–1.

Table 19–1 Tuning Subprograms

Subprogram Description

SDO_TUNE.AVERAGE_MBR Calculates the average minimum bounding rectangle
for geometries in a layer.

SDO_TUNE.ESTIMATE_RTREE_
INDEX_SIZE

Estimates the maximum number of megabytes needed
for an R-tree spatial index table.

SDO_TUNE.EXTENT_OF Returns the minimum bounding rectangle of the data
in a layer.

SDO_TUNE.MIX_INFO Calculates geometry type information for a spatial
layer, such as the percentage of each geometry type.

SDO_TUNE.QUALITY_
DEGRADATION

Returns the quality degradation for an index or the
average quality degradation for all index tables for an
index, or returns the quality degradation for a specified
index table.

SDO_TUNE.AVERAGE_MBR

19-2 Oracle Spatial User’s Guide and Reference

SDO_TUNE.AVERAGE_MBR

Format
SDO_TUNE.AVERAGE_MBR(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

width OUT NUMBER,

height OUT NUMBER);

Description
Calculates the average minimum bounding rectangle (MBR) for geometries in a layer.

Parameters

table_name
Spatial geometry table.

column_name
Geometry column for which the average minimum bounding rectangle is to be
computed.

width
Width of the average minimum bounding rectangle.

height
Height of the average minimum bounding rectangle.

Usage Notes
This procedure computes and stores the width and height of the average minimum
bounding rectangle for all geometries in a spatial geometry table. It calculates the
average MBR by keeping track of the maximum and minimum X and Y values for all
geometries in a spatial geometry table.

Examples
The following example calculates the minimum bounding rectangle for the SHAPE
column of the COLA_MARKETS table.

DECLARE
 table_name VARCHAR2(32) := 'COLA_MARKETS';
 column_name VARCHAR2(32) := 'SHAPE';
 width NUMBER;
 height NUMBER;
BEGIN
SDO_TUNE.AVERAGE_MBR(
 table_name,
 column_name,
 width,
 height);
DBMS_OUTPUT.PUT_LINE('Width = ' || width);
DBMS_OUTPUT.PUT_LINE('Height = ' || height);
END;

SDO_TUNE.AVERAGE_MBR

SDO_TUNE Package (Tuning) 19-3

/
Width = 3.5
Height = 4.5

Related Topics
SDO_AGGR_MBR spatial aggregate function (in Chapter 12)

SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE

19-4 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE

Format
SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE(

schemaname IN VARCHAR2,

tabname IN VARCHAR2,

colname IN VARCHAR2,

partname IN VARCHAR2 DEFAULT NULL

) RETURN NUMBER;

or

SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE(

number_of_geoms IN INTEGER,

db_block_size IN INTEGER,

sdo_rtr_pctfree IN INTEGER DEFAULT 10,

num_dimensions IN INTEGER DEFAULT 2,

is_geodetic IN INTEGER DEFAULT 0

) RETURN NUMBER;

Description
Estimates the maximum number of megabytes needed for an R-tree spatial index table.

Parameters

schemaname
Schema that owns the spatial geometry table.

tabname
Spatial geometry table name.

colname
Geometry column name.

partname
Name of a partition containing geometries from colname. If you specify this
parameter, the value returned by the function is the estimated size for an R-tree index
table on geometries in that partition. If you do not specify this parameter, the value is
the estimated size for an R-tree index table on all geometries in colname.

number_of_geoms
Approximate number of geometries in the spatial geometry table.

db_block_size
Database block size (in bytes).

sdo_rtr_pctfree
Minimum percentage of slots in each index tree node to be left empty when the index
is created. Slots that are left empty can be filled later when new data is inserted into

SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE

SDO_TUNE Package (Tuning) 19-5

the table. The value can range from 0 to 50. The default value (10) is best for most
applications; however, a value of 0 is recommended if no updates will be performed to
the geometry column.

num_dimensions
Number of dimensions to be indexed. The default value is 2. If you plan to specify the
sdo_indx_dims parameter in the CREATE INDEX statement, the num_dimensions
value should match the sdo_indx_dims value.

is_geodetic
A value indicating whether or not the spatial index will be a geodetic index: 1 for a
geodetic index, or 0 (the default) for a non-geodetic index. (Section 4.1.1 explains
geodetic indexes.)

Usage Notes
The function returns the estimated maximum number of megabytes needed for the
spatial index table (described in Section 2.7.2) for an R-tree spatial index to be created.
The value returned is the maximum number of megabytes needed after index creation.
During index creation, approximately three times this value of megabytes will be
needed in the tablespace, to ensure that there is enough space for temporary tables
while the index is being created.

This function has two formats:

■ Use the format with character string parameters (schemaname, tabname,
colname, and optionally partname) in most cases when the spatial geometry
table already exists, you do not plan to add substantially more geometries to it
before creating the index, and you plan to use the default R-tree indexing
parameters.

■ Use the format with integer parameters (number_of_geoms, db_block_size,
sdo_rtr_pctfree, num_dimensions, is_geodetic) in any of the following
cases: the spatial geometry table does not exist; the spatial geometry table exists
but you plan to add substantially more geometries to it before creating the index;
the num_dimensions value is not 2 for non-geodetic data or 3 for geodetic data,
and a nondefault value will be specified using the sdo_indx_dims parameter in
the CREATE INDEX statement; or the data is geodetic but you plan to specify
'geodetic=false' in the CREATE INDEX statement (see Section 4.1.1).

Examples
The following example estimates the maximum number of megabytes needed for a
spatial index table for an index given the following information: number_of_geoms =
1000000 (one million), db_block_size = 2048, sdo_rtr_pctfree = 10, num_
dimensions = 2, is_geodetic = 0.

SELECT SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE(1000000, 2048, 10, 2, 0) FROM DUAL;

SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE(1000000,2048,10,2,0)

 82

The following example estimates the maximum number of megabytes needed for a
spatial index table for an index on the SHAPE column in the COLA_MARKETS table
in the SCOTT schema. The estimate is based on the geometries that are currently in the
table.

SELECT SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE('SCOTT', 'COLA_MARKETS', 'SHAPE') FROM
DUAL;

SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE

19-6 Oracle Spatial User’s Guide and Reference

SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE('SCOTT','COLA_MARKETS','SHAPE')

 1

SDO_TUNE.EXTENT_OF

SDO_TUNE Package (Tuning) 19-7

SDO_TUNE.EXTENT_OF

Format
SDO_TUNE.EXTENT_OF(

table_name IN VARCHAR2,

column_name IN VARCHAR2

) RETURN SDO_GEOMETRY;

Description
Returns the minimum bounding rectangle (MBR) of all geometries in a layer.

Parameters

table_name
Spatial geometry table.

column_name
Geometry column for which the minimum bounding rectangle is to be returned.

Usage Notes
The SDO_AGGR_MBR function, documented in Chapter 12, also returns the MBR of
geometries. The SDO_TUNE.EXTENT_OF function has better performance than the
SDO_AGGR_MBR function if the data is non-geodetic and if a spatial index is defined
on the geometry column; however, the SDO_TUNE.EXTENT_OF function is limited to
two-dimensional geometries, whereas the SDO_AGGR_MBR function is not. In
addition, the SDO_TUNE.EXTENT_OF function computes the extent for all
geometries in a table; by contrast, the SDO_AGGR_MBR function can operate on
subsets of rows.

The SDO_TUNE.EXTENT_OF function returns NULL if the data is inconsistent.

If a non-geodetic spatial index is used, this function may return an approximate MBR
that encloses the largest extent of data stored in the index, even if data was
subsequently deleted. This can occur because the function extracts MBR information
from a non-geodetic spatial index, if one exists.

Examples
The following example calculates the minimum bounding rectangle for the objects in
the SHAPE column of the COLA_MARKETS table.

SELECT SDO_TUNE.EXTENT_OF('COLA_MARKETS', 'SHAPE')
 FROM DUAL;

SDO_TUNE.EXTENT_OF('COLA_MARKETS','SHAPE')(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y,
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_
ARRAY(1, 1, 10, 11))

Related Topics
SDO_AGGR_MBR aggregate function (in Chapter 12)

SDO_TUNE.AVERAGE_MBR procedure

SDO_TUNE.MIX_INFO

19-8 Oracle Spatial User’s Guide and Reference

SDO_TUNE.MIX_INFO

Format
SDO_TUNE.MIX_INFO(

table_name IN VARCHAR2,

column_name IN VARCHAR2

[, total_geom OUT INTEGER,

point_geom OUT INTEGER,

curve_geom OUT INTEGER,

poly_geom OUT INTEGER,

complex_geom OUT INTEGER]);

Description
Calculates geometry type information for a spatial layer, such as the percentage of
each geometry type.

Parameters

table_name
Spatial geometry table.

column_name
Geometry object column for which the geometry type information is to be calculated.

total_geom
Total number of geometry objects.

point_geom
Number of point geometry objects.

curve_geom
Number of curve string geometry objects.

poly_geom
Number of polygon geometry objects.

complex_geom
Number of complex geometry objects.

Usage Notes
This procedure calculates geometry type information for the table. It calculates the
total number of geometries, as well as the number of point, curve string, polygon, and
complex geometries.

Examples
The following example displays information about the mix of geometry objects in the
SHAPE column of the COLA_MARKETS table.

CALL SDO_TUNE.MIX_INFO('COLA_MARKETS', 'SHAPE');

SDO_TUNE.MIX_INFO

SDO_TUNE Package (Tuning) 19-9

Total number of geometries: 4
Point geometries: 0 (0%)
Curvestring geometries: 0 (0%)
Polygon geometries: 4 (100%)
Complex geometries: 0 (0%)

SDO_TUNE.QUALITY_DEGRADATION

19-10 Oracle Spatial User’s Guide and Reference

SDO_TUNE.QUALITY_DEGRADATION

Format
SDO_TUNE.QUALITY_DEGRADATION(

schemaname IN VARCHAR2,

indexname IN VARCHAR2

) RETURN NUMBER;

or

SDO_TUNE.QUALITY_DEGRADATION(

schemaname IN VARCHAR2,

indexname IN VARCHAR2,

indextable IN VARCHAR2

) RETURN NUMBER;

Description
Returns the quality degradation for an index or the average quality degradation for all
index tables for an index, or returns the quality degradation for a specified index table.

Parameters

schemaname
Name of the schema that contains the index specified in indexname.

indexname
Name of the spatial R-tree index.

indextable
Name of an index table associated with the spatial R-tree index specified in
indexname.

Usage Notes
The quality degradation is a number indicating approximately how much longer it
will take to execute the I/O operations of the index portion of any given query with
the current index, compared to executing the I/O operations of the index portion of
the same query when the index was created or most recently rebuilt. For example, if
the I/O operations of the index portion of a typical query will probably take twice as
much time as when the index was created or rebuilt, the quality degradation is 2. The
exact degradation in overall query time is impossible to predict; however, a substantial
quality degradation (2 or 3 or higher) can affect query performance significantly for
large databases, such as those with millions of rows.

For local partitioned indexes, you must use the format that includes the indextable
parameter. That is, you must compute the quality degradation for each partition in
which you are interested.

Index names are available through the xxx_SDO_INDEX_INFO and xxx_SDO_
INDEX_METADATA views, which are described in Section 2.7.1.

SDO_TUNE.QUALITY_DEGRADATION

SDO_TUNE Package (Tuning) 19-11

For more information and guidelines relating to R-tree quality and its possible effect
on query performance, see Section 1.7.2.

Examples
The following example returns the quality degradation for the COLA_SPATIAL_IDX
index. In this example, the quality has not degraded at all, and therefore the
degradation is 1; that is, the I/O operations of the index portion of queries will
typically take the same time using the current index as using the original or previous
index.

SELECT SDO_TUNE.QUALITY_DEGRADATION('SCOTT', 'COLA_SPATIAL_IDX') FROM DUAL;

SDO_TUNE.QUALITY_DEGRADATION('SCOTT','COLA_SPATIAL_IDX')
--
 1

SDO_TUNE.QUALITY_DEGRADATION

19-12 Oracle Spatial User’s Guide and Reference

SDO_UTIL Package (Utility) 20-1

20
SDO_UTIL Package (Utility)

This chapter contains descriptions of the spatial utility subprograms shown in
Table 20–1.

Table 20–1 Spatial Utility Subprograms

Subprogram Description

SDO_UTIL.APPEND Appends one geometry to another geometry to create a
new geometry.

SDO_UTIL.CIRCLE_POLYGON Returns the polygon geometry that approximates and is
covered by a specified circle.

SDO_UTIL.CONCAT_LINES Concatenates two line or multiline two-dimensional
geometries to create a new geometry.

SDO_UTIL.CONVERT_UNIT Converts values from one angle, area, or distance unit
of measure to another.

SDO_UTIL.ELLIPSE_POLYGON Returns the polygon geometry that approximates and is
covered by a specified ellipse.

SDO_UTIL.EXTRACT Returns the geometry that represents a specified
element (and optionally a ring) of the input geometry.

SDO_UTIL.FROM_
WKBGEOMETRY

Converts a geometry in the well-known binary (WKB)
format to a Spatial geometry object.

SDO_UTIL.FROM_
WKTGEOMETRY

Converts a geometry in the well-known text (WKT)
format to a Spatial geometry object.

SDO_UTIL.GETNUMELEM Returns the number of elements in the input geometry.

SDO_UTIL.GETNUMVERTICES Returns the number of vertices in the input geometry.

SDO_UTIL.GETVERTICES Returns the coordinates of the vertices of the input
geometry.

SDO_UTIL.INITIALIZE_
INDEXES_FOR_TTS

Initializes all spatial indexes in a tablespace that was
transported to another database.

SDO_UTIL.POINT_AT_BEARING Returns a point geometry that is at the specified
distance and bearing from the start point.

SDO_UTIL.POLYGONTOLINE Converts all polygon-type elements in a geometry to
line-type elements, and sets the SDO_GTYPE value
accordingly.

SDO_UTIL.PREPARE_FOR_TTS Prepares a tablespace to be transported to another
database, so that spatial indexes will be preserved
during the transport operation.

SDO_UTIL.RECTIFY_
GEOMETRY

Fixes certain problems with the input geometry, and
returns a valid geometry.

20-2 Oracle Spatial User’s Guide and Reference

SDO_UTIL.REMOVE_
DUPLICATE_VERTICES

Removes duplicate (redundant) vertices from a
geometry.

SDO_UTIL.REVERSE_
LINESTRING

Returns a line string geometry with the vertices of the
input geometry in reverse order.

SDO_UTIL.SIMPLIFY Simplifies the input geometry, based on a threshold
value, using the Douglas-Peucker algorithm.

SDO_UTIL.TO_GMLGEOMETRY Converts a Spatial geometry object to a geography
markup language (GML 2.0) fragment based on the
geometry types defined in the Open GIS
geometry.xsd schema document.

SDO_UTIL.TO_WKBGEOMETRY Converts a Spatial geometry object to the well-known
binary (WKB) format.

SDO_UTIL.TO_WKTGEOMETRY Converts a Spatial geometry object to the well-known
text (WKT) format.

SDO_UTIL.VALIDATE_
WKBGEOMETRY

Validates the input geometry, which is in the standard
well-known binary (WKB) format; returns the string
TRUE if the geometry is valid or FALSE if the geometry
is not valid.

SDO_UTIL.VALIDATE_
WKTGEOMETRY

Validates the input geometry, which is of type CLOB or
VARCHAR2 and in the standard well-known text
(WKT) format; returns the string TRUE if the geometry
is valid or FALSE if the geometry is not valid.

Table 20–1 (Cont.) Spatial Utility Subprograms

Subprogram Description

SDO_UTIL.APPEND

SDO_UTIL Package (Utility) 20-3

SDO_UTIL.APPEND

Format
SDO_UTIL.APPEND(

geom1 IN SDO_GEOMETRY,

geom2 IN SDO_GEOMETRY

) RETURN SDO_GEOMETRY;

Description
Appends one geometry to another geometry to create a new geometry.

Parameters

geom1
Geometry object to which geom2 is to be appended.

geom2
Geometry object to append to geom1.

Usage Notes
This function should be used only on geometries that do not have any spatial
interaction (that is, on disjoint objects). If the input geometries are not disjoint, the
resulting geometry might be invalid.

This function does not perform a union operation or any other computational
geometry operation. To perform a union operation, use the SDO_GEOM.SDO_UNION
function, which is described in Chapter 15. The APPEND function executes faster than
the SDO_GEOM.SDO_UNION function.

The geometry type (SDO_GTYPE value) of the resulting geometry reflects the types of
the input geometries and the append operation. For example, if the input geometries
are two-dimensional polygons (SDO_GTYPE = 2003), the resulting geometry is a
two-dimensional multipolygon (SDO_GTYPE = 2007).

An exception is raised if geom1 and geom2 are based on different coordinate systems.

Examples
The following example appends the cola_a and cola_c geometries. (The example
uses the definitions and data from Section 2.1.)

SELECT SDO_UTIL.APPEND(c_a.shape, c_c.shape)
 FROM cola_markets c_a, cola_markets c_c
 WHERE c_a.name = 'cola_a' AND c_c.name = 'cola_c';

SDO_UTIL.APPEND(C_A.SHAPE,C_C.SHAPE)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SD
--
SDO_GEOMETRY(2007, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3, 5, 1003, 1), SDO_
ORDINATE_ARRAY(1, 1, 5, 7, 3, 3, 6, 3, 6, 5, 4, 5, 3, 3))

Related Topics
■ SDO_GEOM.SDO_UNION (in Chapter 15)

SDO_UTIL.CIRCLE_POLYGON

20-4 Oracle Spatial User’s Guide and Reference

SDO_UTIL.CIRCLE_POLYGON

Format
SDO_UTIL.CIRCLE_POLYGON(

center_longitude IN NUMBER,

center_latitude IN NUMBER,

radius IN NUMBER,

arc_tolerance IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns the polygon geometry that approximates and is covered by a specified circle.

Parameters

center_longitude
Center longitude (in degrees) of the circle to be used to create the returned geometry.

center_latitude
Center latitude (in degrees) of the circle to be used to create the returned geometry.

radius
Length (in meters) of the radius of the circle to be used to create the returned
geometry.

arc_tolerance
A numeric value to be used to construct the polygon geometry. The arc_tolerance
parameter value has the same meaning and usage guidelines as the arc_tolerance
keyword value in the params parameter string for the SDO_GEOM.SDO_ARC_
DENSIFY function. The unit of measurement associated with the geometry is
associated with the arc_tolerance parameter value. (For more information, see the
Usage Notes for the SDO_GEOM.SDO_ARC_DENSIFY function in Chapter 15.)

Usage Notes
This function is useful for creating a circle-like polygon around a specified center point
when a true circle cannot be used (a circle is not valid for geodetic data with Oracle
Spatial). The returned geometry has an SDO_SRID value of 8307 (for Longitude /
Latitude (WGS 84)).

Examples
The following example returns a circle-like polygon around a point near the center of
Concord, Massachusetts. A radius value of 100 meters and an arc_tolerance
value of 5 meters are used in computing the polygon vertices.

SELECT SDO_UTIL.CIRCLE_POLYGON(-71.34937, 42.46101, 100, 5)
 FROM DUAL;

SDO_UTIL.CIRCLE_POLYGON(-71.34937,42.46101,100,5)(SDO_GTYPE, SDO_SRID, SDO_POINT
--
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR

SDO_UTIL.CIRCLE_POLYGON

SDO_UTIL Package (Utility) 20-5

AY(-71.34937, 42.4601107, -71.348653, 42.4602824, -71.348211, 42.4607321, -71.34
8211, 42.4612879, -71.348653, 42.4617376, -71.34937, 42.4619093, -71.350087, 42.
4617376, -71.350529, 42.4612879, -71.350529, 42.4607321, -71.350087, 42.4602824,
 -71.34937, 42.4601107))

Related Topics
■ SDO_UTIL.ELLIPSE_POLYGON

SDO_UTIL.CONCAT_LINES

20-6 Oracle Spatial User’s Guide and Reference

SDO_UTIL.CONCAT_LINES

Format
SDO_UTIL.CONCAT_LINES(

geom1 IN SDO_GEOMETRY,

geom2 IN SDO_GEOMETRY

) RETURN SDO_GEOMETRY;

Description
Concatenates two line or multiline two-dimensional geometries to create a new
geometry.

Parameters

geom1
First geometry object for the concatenation operation.

geom2
Second geometry object for the concatenation operation.

Usage Notes
Each input geometry must be a two-dimensional line or multiline geometry (that is,
the SDO_GTYPE value must be 2002 or 2006). This function is not supported for LRS
geometries. To concatenate LRS geometric segments, use the SDO_
LRS.CONCATENATE_GEOM_SEGMENTS function (described in Chapter 16).

The input geometries must be line strings whose vertices are connected by straight line
segments. Circular arcs and compound line strings are not supported.

If an input geometry is a multiline geometry, the elements of the geometry must be
disjoint. If they are not disjoint, this function may return incorrect results.

The topological relationship between geom1 and geom2 must be DISJOINT or
TOUCH; and if the relationship is TOUCH, the geometries must intersect only at two
end points.

You can use the SDO_AGGR_CONCAT_LINES spatial aggregate function (described
in Chapter 12) to concatenate multiple two-dimensional line or multiline geometries.

An exception is raised if geom1 and geom2 are based on different coordinate systems.

Examples
The following example concatenates two simple line string geometries.

-- Concatenate two touching lines: one from (1,1) to (5,1) and the
-- other from (5,1) to (8,1).
SELECT SDO_UTIL.CONCAT_LINES(
 SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,2,1),
 SDO_ORDINATE_ARRAY(1,1, 5,1)),
 SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1,2,1),
 SDO_ORDINATE_ARRAY(5,1, 8,1))
) FROM DUAL;

SDO_UTIL.CONCAT_LINES(SDO_GEOMETRY(2002,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,2,1),SDO

SDO_UTIL.CONCAT_LINES

SDO_UTIL Package (Utility) 20-7

--
SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
1, 1, 5, 1, 8, 1))

Related Topics
■ SDO_AGGR_CONCAT_LINES (in Chapter 12)

■ SDO_LRS.CONCATENATE_GEOM_SEGMENTS (in Chapter 16)

SDO_UTIL.CONVERT_UNIT

20-8 Oracle Spatial User’s Guide and Reference

SDO_UTIL.CONVERT_UNIT

Format
SDO_UTIL.CONVERT_UNIT(

input_value IN NUMBER,

from_unit IN VARCHAR2,

to_unit IN VARCHAR2

) RETURN NUMBER;

Description
Converts values from one angle, area, or distance unit of measure to another.

Parameters

input_value
Number of units to be converted. For example, to convert 10 decimal degrees to
radians, specify 10.

from_unit
The unit of measure from which to convert the input value. Must be a value from the
SDO_UNIT column of the MDSYS.SDO_ANGLE_UNITS table (described in
Section 6.7.2), the MDSYS.SDO_AREA_UNITS table (described in Section 2.8), or the
MDSYS.SDO_DIST_UNITS table (described in Section 2.8). For example, to convert
decimal degrees to radians, specify Degree.

to_unit
The unit of measure into which to convert the input value. Must be a value from the
SDO_UNIT column of the same table used for from_unit. For example, to convert
decimal degrees to radians, specify Radian.

Usage Notes
The value returned by this function might not be correct at an extremely high degree
of precision because of the way internal mathematical operations are performed,
especially if they involve small numbers or irrational numbers (such as pi). For
example, converting 1 decimal degree into decimal minutes results in the value
60.0000017.

Examples
The following example converts 1 radian into decimal degrees.

SQL> SELECT SDO_UTIL.CONVERT_UNIT(1, 'Radian', 'Degree') FROM DUAL;

SDO_UTIL.CONVERT_UNIT(1,'RADIAN','DEGREE')
--
 57.2957796

Related Topics
None.

SDO_UTIL.ELLIPSE_POLYGON

SDO_UTIL Package (Utility) 20-9

SDO_UTIL.ELLIPSE_POLYGON

Format
SDO_UTIL.ELLIPSE_POLYGON(

center_longitude IN NUMBER,

center_latitude IN NUMBER,

semi_major_axis IN NUMBER,

semi_minor_axis IN NUMBER,

azimuth IN NUMBER,

arc_tolerance IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns the polygon geometry that approximates and is covered by a specified ellipse.

Parameters

center_longitude
Center longitude (in degrees) of the ellipse to be used to create the returned geometry.

center_latitude
Center latitude (in degrees) of the ellipse to be used to create the returned geometry.

semi_major_axis
Length (in meters) of the semi-major axis of the ellipse to be used to create the
returned geometry.

semi_minor_axis
Length (in meters) of the semi-minor axis of the ellipse to be used to create the
returned geometry.

azimuth
Number of degrees of the azimuth (clockwise rotation of the major axis from north) of
the ellipse to be used to create the returned geometry. Must be from 0 to 180. The
returned geometry is rotated by the specified number of degrees.

arc_tolerance
A numeric value to be used to construct the polygon geometry. The arc_tolerance
parameter value has the same meaning and usage guidelines as the arc_tolerance
keyword value in the params parameter string for the SDO_GEOM.SDO_ARC_
DENSIFY function. The unit of measurement associated with the geometry is
associated with the arc_tolerance parameter value. (For more information, see the
Usage Notes for the SDO_GEOM.SDO_ARC_DENSIFY function in Chapter 15.)

Usage Notes
This function is useful for creating an ellipse-like polygon around a specified center
point when a true ellipse cannot be used (an ellipse is not valid for geodetic data with
Oracle Spatial). The returned geometry has an SDO_SRID value of 8307 (for
Longitude / Latitude (WGS 84)).

SDO_UTIL.ELLIPSE_POLYGON

20-10 Oracle Spatial User’s Guide and Reference

Examples
The following example returns an ellipse-like polygon, oriented east-west (azimuth =
90), around a point near the center of Concord, Massachusetts. An arc_tolerance
value of 5 meters is used in computing the polygon vertices.

SELECT SDO_UTIL.ELLIPSE_POLYGON(-71.34937, 42.46101, 100, 50, 90, 5)
 FROM DUAL;

SDO_UTIL.ELLIPSE_POLYGON(-71.34937,42.46101,100,50,90,5)(SDO_GTYPE, SDO_SRID, SD
--
SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(-71.350589, 42.46101, -71.350168, 42.4606701, -71.349708, 42.460578, -71.3493
7, 42.4605603, -71.349032, 42.460578, -71.348572, 42.4606701, -71.348151, 42.461
01, -71.348572, 42.4613499, -71.349032, 42.461442, -71.34937, 42.4614597, -71.34
9708, 42.461442, -71.350168, 42.4613499, -71.350589, 42.46101))

Related Topics
■ SDO_UTIL.CIRCLE_POLYGON

SDO_UTIL.EXTRACT

SDO_UTIL Package (Utility) 20-11

SDO_UTIL.EXTRACT

Format
SDO_UTIL.EXTRACT(

geometry IN SDO_GEOMETRY,

element IN NUMBER

[, ring IN NUMBER]

) RETURN SDO_GEOMETRY;

Description
Returns the geometry that represents a specified element (and optionally a ring) of the
input geometry.

Parameters

geometry
Geometry from which to extract the geometry to be returned.

element
Number of the element in the geometry: 1 for the first element, 2 for the second
element, and so on. Geometries with SDO_GTYPE values (explained in Section 2.2.1)
ending in 1, 2, or 3 have one element; geometries with SDO_GTYPE values ending in
4, 5, 6, or 7 can have more than one element. For example, a multipolygon with an
SDO_GTYPE of 2007 might contain three elements (polygons).

ring
Number of the subelement (ring) within element: 1 for the first subelement, 2 for the
second subelement, and so on. This parameter is valid only for specifying a
subelement of a polygon with one or more holes or of a point cluster:

■ For a polygon with holes, its first subelement is its exterior ring, its second
subelement is its first interior ring, its third subelement is its second interior ring,
and so on. For example, in the polygon with a hole shown in Figure 2–3 in
Section 2.5.2, the exterior ring is subelement 1 and the interior ring (the hole) is
subelement 2.

■ For a point cluster, its first subelement is the first point in the point cluster, its
second subelement is the second point in the point cluster, and so on.

The default is 0, which causes the entire element to be extracted.

Usage Notes
This function is useful for extracting a specific element or subelement from a complex
geometry. For example, if you have identified a geometry as invalid by using the SDO_
GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function or the SDO_
GEOM.VALIDATE_LAYER_WITH_CONTEXT procedure (both of which are
documented in Chapter 15), you can use the EXTRACT function to extract the invalid
geometry in order to examine it.

For a polygon with one or more holes, the returned geometry representing an
extracted interior ring is reoriented so that its vertices are presented in
counterclockwise order (as opposed to the clockwise order within an interior ring).

SDO_UTIL.EXTRACT

20-12 Oracle Spatial User’s Guide and Reference

If geometry is null or has an SDO_GTYPE value ending in 0, this function returns a
null geometry.

geometry cannot contain a type 0 (zero) element. Type 0 elements are described in
Section 2.5.7.

An exception is raised if element or ring is an invalid number for geometry.

Examples
The following example extracts the first (and only) element in the cola_c geometry.
(The example uses the definitions and data from Section 2.1.)

SELECT c.name, SDO_UTIL.EXTRACT(c.shape, 1)
 FROM cola_markets c WHERE c.name = 'cola_c';

NAME

SDO_UTIL.EXTRACT(C.SHAPE,1)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_IN
--
cola_c
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(3, 3, 6, 3, 6, 5, 4, 5, 3, 3))

The following example inserts a polygon with a hole (using the same INSERT
statement as in Example 2–5 in Section 2.5.2), and extracts the geometry representing
the hole (the second subelement). Notice that in the geometry returned by the
EXTRACT function, the vertices are in counterclockwise order, as opposed to the
clockwise order in the hole (second subelement) in the input geometry.

-- Insert polygon with hole.
INSERT INTO cola_markets VALUES(
 10,
 'polygon_with_hole',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,1, 19,2003,1), -- polygon with hole
 SDO_ORDINATE_ARRAY(2,4, 4,3, 10,3, 13,5, 13,9, 11,13, 5,13, 2,11, 2,4,
 7,5, 7,10, 10,10, 10,5, 7,5)
)
);

1 row created.

-- Extract the hole geometry (second subelement).
SELECT SDO_UTIL.EXTRACT(c.shape, 1, 2)
 FROM cola_markets c WHERE c.name = 'polygon_with_hole';

SDO_UTIL.EXTRACT(C.SHAPE,1,2)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(7, 5, 10, 5, 10, 10, 7, 10, 7, 5))

Related Topics
■ SDO_UTIL.GETVERTICES

■ SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

■ SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT

SDO_UTIL.FROM_WKBGEOMETRY

SDO_UTIL Package (Utility) 20-13

SDO_UTIL.FROM_WKBGEOMETRY

Format
SDO_UTIL.FROM_WKBGEOMETRY(

geometry IN BLOB

) RETURN SDO_GEOMETRY;

Description
Converts a geometry in the well-known binary (WKB) format to a Spatial geometry
object.

Parameters

geometry
Geometry in WKB format to be converted to SDO_GEOMETRY format.

Usage Notes
The input geometry must be in the well-known binary (WKB) format, as defined by
the Open Geospatial Consortium and the International Organization for
Standardization (ISO).

This function is patterned after the SQL Multimedia recommendations in ISO 13249-3,
Information technology - Database languages - SQL Multimedia and Application Packages -
Part 3: Spatial.

To convert an SDO_GEOMETRY object to WKB format, use the SDO_UTIL.TO_
WKBGEOMETRY function.

Examples
The following example shows conversion to and from WKB and WKT format, and
validation of WKB and WKT geometries. (The example uses the definitions and data
from Section 2.1, specifically the cola_b geometry from the COLA_MARKETS table.)

DECLARE
 wkbgeom BLOB;
 wktgeom CLOB;
 val_result VARCHAR2(5);
 geom_result SDO_GEOMETRY;
 geom SDO_GEOMETRY;
BEGIN
SELECT c.shape INTO geom FROM cola_markets c WHERE c.name = 'cola_b';

-- To WBT/WKT geometry
wkbgeom := SDO_UTIL.TO_WKBGEOMETRY(geom);
wktgeom := SDO_UTIL.TO_WKTGEOMETRY(geom);
DBMS_OUTPUT.PUT_LINE('To WKT geometry result = ' || TO_CHAR(wktgeom));

-- From WBT/WKT geometry
geom_result := SDO_UTIL.FROM_WKBGEOMETRY(wkbgeom);
geom_result := SDO_UTIL.FROM_WKTGEOMETRY(wktgeom);

-- Validate WBT/WKT geometry
val_result := SDO_UTIL.VALIDATE_WKBGEOMETRY(wkbgeom);

SDO_UTIL.FROM_WKBGEOMETRY

20-14 Oracle Spatial User’s Guide and Reference

DBMS_OUTPUT.PUT_LINE('WKB validation result = ' || val_result);
val_result := SDO_UTIL.VALIDATE_WKTGEOMETRY(wktgeom);
DBMS_OUTPUT.PUT_LINE('WKT validation result = ' || val_result);

END;
/

To WKT geometry result = POLYGON ((5.0 1.0, 8.0 1.0, 8.0 6.0, 5.0 7.0, 5.0 1.0))
WKB validation result = TRUE
WKT validation result = TRUE

Related Topics
■ SDO_UTIL.FROM_WKTGEOMETRY

■ SDO_UTIL.TO_WKBGEOMETRY

■ SDO_UTIL.TO_WKTGEOMETRY

■ SDO_UTIL.VALIDATE_WKBGEOMETRY

■ SDO_UTIL.VALIDATE_WKTGEOMETRY

SDO_UTIL.FROM_WKTGEOMETRY

SDO_UTIL Package (Utility) 20-15

SDO_UTIL.FROM_WKTGEOMETRY

Format
SDO_UTIL.FROM_WKTGEOMETRY(

geometry IN CLOB

) RETURN SDO_GEOMETRY;

or

SDO_UTIL.FROM_WKTGEOMETRY(

geometry IN VARCHAR2

) RETURN SDO_GEOMETRY;

Description
Converts a geometry in the well-known text (WKT) format to a Spatial geometry
object.

Parameters

geometry
Geometry in WKT format to be converted to SDO_GEOMETRY format.

Usage Notes
The input geometry must be in the well-known text (WKT) format, as defined by the
Open Geospatial Consortium and the International Organization for Standardization
(ISO).

This function is patterned after the SQL Multimedia recommendations in ISO 13249-3,
Information technology - Database languages - SQL Multimedia and Application Packages -
Part 3: Spatial.

To convert an SDO_GEOMETRY object to a CLOB in WKT format, use the SDO_
UTIL.TO_WKTGEOMETRY function. (You can use the SQL function TO_CHAR to
convert the resulting CLOB to VARCHAR2 type.)

Examples
The following example shows conversion to and from WKB and WKT format, and
validation of WKB and WKT geometries. (The example uses the definitions and data
from Section 2.1, specifically the cola_b geometry from the COLA_MARKETS table.)

DECLARE
 wkbgeom BLOB;
 wktgeom CLOB;
 val_result VARCHAR2(5);
 geom_result SDO_GEOMETRY;
 geom SDO_GEOMETRY;
BEGIN
SELECT c.shape INTO geom FROM cola_markets c WHERE c.name = 'cola_b';

-- To WBT/WKT geometry
wkbgeom := SDO_UTIL.TO_WKBGEOMETRY(geom);
wktgeom := SDO_UTIL.TO_WKTGEOMETRY(geom);
DBMS_OUTPUT.PUT_LINE('To WKT geometry result = ' || TO_CHAR(wktgeom));

SDO_UTIL.FROM_WKTGEOMETRY

20-16 Oracle Spatial User’s Guide and Reference

-- From WBT/WKT geometry
geom_result := SDO_UTIL.FROM_WKBGEOMETRY(wkbgeom);
geom_result := SDO_UTIL.FROM_WKTGEOMETRY(wktgeom);

-- Validate WBT/WKT geometry
val_result := SDO_UTIL.VALIDATE_WKBGEOMETRY(wkbgeom);
DBMS_OUTPUT.PUT_LINE('WKB validation result = ' || val_result);
val_result := SDO_UTIL.VALIDATE_WKTGEOMETRY(wktgeom);
DBMS_OUTPUT.PUT_LINE('WKT validation result = ' || val_result);

END;
/

To WKT geometry result = POLYGON ((5.0 1.0, 8.0 1.0, 8.0 6.0, 5.0 7.0, 5.0 1.0))
WKB validation result = TRUE
WKT validation result = TRUE

Related Topics
■ SDO_UTIL.FROM_WKBGEOMETRY

■ SDO_UTIL.TO_WKBGEOMETRY

■ SDO_UTIL.TO_WKTGEOMETRY

■ SDO_UTIL.VALIDATE_WKBGEOMETRY

■ SDO_UTIL.VALIDATE_WKTGEOMETRY

SDO_UTIL.GETNUMELEM

SDO_UTIL Package (Utility) 20-17

SDO_UTIL.GETNUMELEM

Format
SDO_UTIL.GETNUMELEM(

geometry IN SDO_GEOMETRY

) RETURN NUMBER;

Description
Returns the number of elements in the input geometry.

Parameters

geometry
Geometry for which to return the number of elements.

Usage Notes
None.

Examples
The following example returns the number of elements for each geometry in the
SHAPE column of the COLA_MARKETS table. (The example uses the definitions and
data from Section 2.1.)

SELECT c.name, SDO_UTIL.GETNUMELEM(c.shape)
 FROM cola_markets c;

NAME SDO_UTIL.GETNUMELEM(C.SHAPE)
-------------------------------- ----------------------------
cola_a 1
cola_b 1
cola_c 1
cola_d 1

Related Topics
■ SDO_UTIL.GETNUMVERTICES

SDO_UTIL.GETNUMVERTICES

20-18 Oracle Spatial User’s Guide and Reference

SDO_UTIL.GETNUMVERTICES

Format
SDO_UTIL.GETNUMVERTICES(

geometry IN SDO_GEOMETRY

) RETURN NUMBER;

Description
Returns the number of vertices in the input geometry.

Parameters

geometry
Geometry for which to return the number of vertices.

Usage Notes
None.

Examples
The following example returns the number of vertices for each geometry in the SHAPE
column of the COLA_MARKETS table. (The example uses the definitions and data
from Section 2.1.)

SELECT c.name, SDO_UTIL.GETNUMVERTICES(c.shape)
 FROM cola_markets c;

NAME SDO_UTIL.GETNUMVERTICES(C.SHAPE)
-------------------------------- --------------------------------
cola_a 2
cola_b 5
cola_c 5
cola_d 3

Related Topics
■ SDO_UTIL.GETVERTICES

■ SDO_UTIL.GETNUMELEM

SDO_UTIL.GETVERTICES

SDO_UTIL Package (Utility) 20-19

SDO_UTIL.GETVERTICES

Format
SDO_UTIL.GETVERTICES(

geometry IN SDO_GEOMETRY

) RETURN VERTEX_SET_TYPE;

Description
Returns the coordinates of the vertices of the input geometry.

Parameters

geometry
Geometry for which to return the coordinates of the vertices.

Usage Notes
This function returns an object of VERTEX_SET_TYPE, which consists of a table of
objects of VERTEX_TYPE. Oracle Spatial defines the type VERTEX_SET_TYPE as:

CREATE TYPE vertex_set_type as TABLE OF vertex_type;

Oracle Spatial defines the object type VERTEX_TYPE as:

CREATE TYPE vertex_type AS OBJECT
 (x NUMBER,
 y NUMBER,
 z NUMBER,
 w NUMBER,
 id NUMBER);

This function can be useful in finding a vertex that is causing a geometry to be invalid.
For example, if you have identified a geometry as invalid by using the SDO_
GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function or the SDO_
GEOM.VALIDATE_LAYER_WITH_CONTEXT procedure (both of which are
documented in Chapter 15), you can use the GETVERTICES function to view the
vertices in tabular format.

Examples
The following example returns the X and Y coordinates and ID values of the vertices
of the geometries in the SHAPE column of the COLA_MARKETS table. (The example
uses the definitions and data from Section 2.1.)

SELECT c.mkt_id, c.name, t.X, t.Y, t.id
 FROM cola_markets c,
 TABLE(SDO_UTIL.GETVERTICES(c.shape)) t
 ORDER BY c.mkt_id, t.id;

 MKT_ID NAME X Y ID
---------- -------------------------------- ---------- ---------- ----------
 1 cola_a 1 1 1
 1 cola_a 5 7 2
 2 cola_b 5 1 1
 2 cola_b 8 1 2

SDO_UTIL.GETVERTICES

20-20 Oracle Spatial User’s Guide and Reference

 2 cola_b 8 6 3
 2 cola_b 5 7 4
 2 cola_b 5 1 5
 3 cola_c 3 3 1
 3 cola_c 6 3 2
 3 cola_c 6 5 3
 3 cola_c 4 5 4
 3 cola_c 3 3 5
 4 cola_d 8 7 1
 4 cola_d 10 9 2
 4 cola_d 8 11 3

15 rows selected.

Related Topics
■ SDO_UTIL.EXTRACT

■ SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

■ SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT

■ SDO_UTIL.GETNUMVERTICES

SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS

SDO_UTIL Package (Utility) 20-21

SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS

Format
SDO_UTIL.INITIALIZE_INDEX_FOR_TTS;

Description
Initializes all spatial indexes in a tablespace that was transported to another database.

Parameters
None.

Usage Notes
This procedure is part of the support for using the Oracle transportable tablespace
feature with tablespaces that contain any spatial indexes. Use this procedure after the
import operation is completed; each user that has a spatial index in the tablespace
must call the procedure. You must also have called the SDO_UTIL.PREPARE_FOR_
TTS procedure just before performing the export operation. See the Usage Notes for
the SDO_UTIL.PREPARE_FOR_TTS procedure for more information about using the
transportable tablespace feature with spatial data.

For detailed information about transportable tablespaces and transporting tablespaces
to other databases, see Oracle Database Administrator's Guide.

Examples
The following example initializes all spatial indexes in a tablespace that was
transported to another database.

CALL SDO_UTIL.INITIALIZE_INDEX_FOR_TTS;

Related Topics
■ SDO_UTIL.PREPARE_FOR_TTS

SDO_UTIL.POINT_AT_BEARING

20-22 Oracle Spatial User’s Guide and Reference

SDO_UTIL.POINT_AT_BEARING

Format
SDO_UTIL.POINT_AT_BEARING(

start_point IN SDO_GEOMETRY,

bearing IN NUMBER,

distance IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Returns a point geometry that is at the specified distance and bearing from the start
point.

Parameters

start_point
Point geometry object from which to compute the distance at the specified bearing, to
locate the desired point. The point geometry must be based on a geodetic coordinate
system.

bearing
Number of radians, measured clockwise from North. Must be in the range of either -pi
to pi or 0 to 2*pi. (Either convention on ranges will work).

distance
Number of meters from start_point and along the initial bearing direction to the
computed destination point. Must be less than one-half the circumference of the Earth.

Usage Notes
The input point geometry must be based on a geodetic coordinate system. If it is based
on a non-geodetic coordinate system, this function returns a null value.

To convert decimal degrees to radians or nonmetric distances to meters, you can use
the SDO_UTIL.CONVERT_UNIT function.

Examples
The following example returns the point 100 kilometers at a bearing of 1 radian from
the point with the longitude and latitude coordinates (-72, 43).

SELECT SDO_UTIL.POINT_AT_BEARING(
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE(-72, 43, NULL), NULL, NULL),
 1, -- 1 radian (57.296 degrees clockwise from North)
 100000 -- 100 kilometers
) FROM DUAL;

SDO_UTIL.POINT_AT_BEARING(SDO_GEOMETRY(2001,8307,SDO_POINT_TYPE(-72,43,NULL),NUL
--
SDO_GEOMETRY(2001, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1, 1), SDO_ORDINATE_ARRAY(
-70.957053, 43.4811935))

SDO_UTIL.POINT_AT_BEARING

SDO_UTIL Package (Utility) 20-23

Related Topics
■ SDO_UTIL.CONVERT_UNIT

SDO_UTIL.POLYGONTOLINE

20-24 Oracle Spatial User’s Guide and Reference

SDO_UTIL.POLYGONTOLINE

Format
SDO_UTIL.POLYGONTOLINE(

geometry IN SDO_GEOMETRY

) RETURN SDO_GEOMETRY;

Description
Converts all polygon-type elements in a geometry to line-type elements, and sets the
SDO_GTYPE value accordingly.

Parameters

geometry
Geometry to convert.

Usage Notes
The order of the vertices of each resulting line-type element is the same as in the
associated polygon-type element, and the start and end points of each line-type
segment are the same point.

If the input geometry is a line, it is returned.

Examples
The following example converts the input polygon geometry, which is the same
geometry as cola_b (see Figure 2–1 and Example 2–1 in Section 2.1), to a line string
geometry. In the returned geometry, the SDO_GTYPE value (2002) indicates a
two-dimensional LINE geometry, and the SDO_ETYPE value (2) and SDO_
INTERPRETATION value (1) in the SDO_ELEM_INFO array indicate a line string
whose vertices are connected by straight line segments.

SELECT SDO_UTIL.POLYGONTOLINE(
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
 SDO_ORDINATE_ARRAY(5,1, 8,1, 8,6, 5,7, 5,1)
)
) FROM DUAL;

SDO_UTIL.POLYGONTOLINE(SDO_GEOMETRY(2003,--TWO-DIMENSIONALPOLYGONNULL,NULL,SDO_E
--
SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
5, 1, 8, 1, 8, 6, 5, 7, 5, 1))

Related Topics
None.

SDO_UTIL.PREPARE_FOR_TTS

SDO_UTIL Package (Utility) 20-25

SDO_UTIL.PREPARE_FOR_TTS

Format
SDO_UTIL.PREPARE_FOR_TTS(

table_space IN VARCHAR2);

Description
Prepares a tablespace to be transported to another database, so that spatial indexes
will be preserved during the transport operation.

Parameters

table_space
Tablespace to be transported.

Usage Notes
Before Oracle Database 10g release 1 (10.1), the Oracle transportable tablespace feature
could not be used with tablespaces that contained any spatial indexes. Effective with
Oracle Database 10g release 1 (10.1), you can transport tablespaces that contain spatial
indexes; however, you must call the PREPARE_FOR_TTS procedure just before you
perform the export operation, and you must call it for each user that has a spatial
index in the specified tablespace.

Transportable tablespaces containing spatial indexes are not supported across endian
format platforms (big-endian to little-endian, or little-endian to big-endian).

After the export operation is complete, you must call the SDO_UTIL.INITIALIZE_
INDEXES_FOR_TTS procedure to initialize all spatial indexes in the transported
tablespace.

For detailed information about transportable tablespaces and transporting tablespaces
to other databases, see Oracle Database Administrator's Guide.

Examples
The following example prepares a tablespace named TS1 to be transported to another
database.

CALL SDO_UTIL.PREPARE_FOR_TTS('TS1');

Related Topics
■ SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS

SDO_UTIL.RECTIFY_GEOMETRY

20-26 Oracle Spatial User’s Guide and Reference

SDO_UTIL.RECTIFY_GEOMETRY

Format
SDO_UTIL.RECTIFY_GEOMETRY(

geometry IN SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Fixes certain problems with the input geometry, and returns a valid geometry.

Parameters

geometry
Geometry to be checked for problems that can be fixed.

tolerance
Tolerance value (see Section 1.5.5).

Usage Notes
This function checks for the following problems that can make a geometry invalid, and
fixes the problems in the returned geometry:

■ Duplicate vertices

■ Polygon boundary intersecting itself

■ Incorrect orientation of exterior or interior rings (or both) of a polygon

If the input geometry has any other problem that makes it invalid, the function raises
an exception.

If the input geometry is valid, the function returns a geometry that is identical to the
input geometry.

This function is used internally by the SDO_UTIL.SIMPLIFY function as part of the
geometry simplification process.

Examples
The following example checks the cola_b geometry to see if it has problems that can
be fixed. (In this case, the geometry is valid, so the input geometry is returned. The
example uses the definitions and data from Section 2.1.)

SELECT SDO_UTIL.RECTIFY_GEOMETRY(shape, 0.005)
 FROM COLA_MARKETS c WHERE c.name = 'cola_b';

SDO_UTIL.RECTIFY_GEOMETRY(SHAPE,0.005)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z),
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5, 1, 8, 1, 8, 6, 5, 7, 5, 1))

Related Topics
SDO_UTIL.RECTIFY_GEOMETRY

SDO_UTIL.REMOVE_DUPLICATE_VERTICES

SDO_UTIL Package (Utility) 20-27

SDO_UTIL.REMOVE_DUPLICATE_VERTICES

Format
SDO_UTIL.REMOVE_DUPLICATE_VERTICES

geometry IN SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN SDO_GEOMETRY;

Description
Removes duplicate (redundant) vertices from a geometry.

Parameters

geometry
Geometry from which to remove duplicate vertices.

tolerance
Tolerance value (see Section 1.5.5).

Usage Notes
When two consecutive vertices in a geometry are the same or within the tolerance
value associated with the geometry, Spatial considers the geometry to be invalid. The
Spatial geometry validation functions return the error ORA-13356 in these cases. You
can use the REMOVE_DUPLICATE_VERTICES function to change such invalid
geometries into valid geometries.

If the input geometry does not contain any duplicate vertices, it is returned.

Examples
The following example removes a duplicate vertex from the input geometry, which is
the same geometry as cola_b (see Figure 2–1 and Example 2–1 in Section 2.1) except
that it has been deliberately made invalid by adding a third vertex that is the same
point as the second vertex (8,1).

SELECT SDO_UTIL.REMOVE_DUPLICATE_VERTICES(
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
 SDO_ORDINATE_ARRAY(5,1, 8,1, 8,1, 8,6, 5,7, 5,1) -- 2nd and 3rd points
 -- are duplicates.
),
 0.005 -- tolerance value
) FROM DUAL;

SDO_UTIL.REMOVE_DUPLICATE_VERTICES(SDO_GEOMETRY(2003,--TWO-DIMENSIONALPOLYGONNUL
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(5, 1, 8, 1, 8, 6, 5, 7, 5, 1))

SDO_UTIL.REMOVE_DUPLICATE_VERTICES

20-28 Oracle Spatial User’s Guide and Reference

Related Topics
None.

SDO_UTIL.REVERSE_LINESTRING

SDO_UTIL Package (Utility) 20-29

SDO_UTIL.REVERSE_LINESTRING

Format
SDO_UTIL.REVERSE_LINESTRING(

geometry IN SDO_GEOMETRY

) RETURN SDO_GEOMETRY;

Description
Returns a line string geometry with the vertices of the input geometry in reverse order.

Parameters

geometry
Line string geometry whose vertices are to be reversed in the output geometry. The
SDO_GTYPE value of the input geometry must be 2002. (Section 2.2.1 explains SDO_
GTYPE values.)

Usage Notes
Because the SDO_GTYPE value of the input geometry must be 2002, this function
cannot be used to reverse LRS geometries. To reverse an LRS geometry, use the SDO_
LRS.REVERSE_GEOMETRY function, which is described in Chapter 16.

Examples
The following example returns a line string geometry that reverses the vertices of the
input geometry.

SELECT SDO_UTIL.REVERSE_LINESTRING(
 SDO_GEOMETRY(2002, 8307, NULL, SDO_ELEM_INFO_ARRAY(1,2,1),
 SDO_ORDINATE_ARRAY(-72,43, -71.5,43.5, -71,42, -70,40))
) FROM DUAL;

SDO_UTIL.REVERSE_LINESTRING(SDO_GEOMETRY(2002,8307,NULL,SDO_ELEM_INFO_ARRAY(1,2,
--
SDO_GEOMETRY(2002, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
-70, 40, -71, 42, -71.5, 43.5, -72, 43))

Related Topics
■ SDO_LRS.REVERSE_GEOMETRY (in Chapter 16)

SDO_UTIL.SIMPLIFY

20-30 Oracle Spatial User’s Guide and Reference

SDO_UTIL.SIMPLIFY

Format
SDO_UTIL.SIMPLIFY(

geometry IN SDO_GEOMETRY,

threshold IN NUMBER

tolerance IN NUMBER DEFAULT 0.0000005

) RETURN SDO_GEOMETRY;

Description
Simplifies the input geometry, based on a threshold value, using the Douglas-Peucker
algorithm.

Parameters

geometry
Geometry to be simplified.

threshold
Threshold value to be used for the geometry simplification. Should be a positive
number. (Zero causes the input geometry to be returned.) If the input geometry is
geodetic, the value is the number of meters; if the input geometry is non-geodetic, the
value is the number of units associated with the data.

As the threshold value is decreased, the returned geometry is likely to be closer to the
input geometry; as the threshold value is increased, fewer points are likely to be in the
returned geometry. See the Usage Notes for more information.

tolerance
Tolerance value (see Section 1.5.5). Must not be greater than threshold; and for
better performance, should not be the same as threshold. If you do not specify a
value, the default value is 0.0000005.

Usage Notes
This function also convert arcs to line stings, eliminates duplicate vertices, and corrects
many overlapping edge polygon problems. The reason this function sometimes fixes
problems is that it internally calls the SDO_UTIL.RECTIFY_GEOMETRY function at
the end of the simplification process to ensure that a valid geometry is returned.

This function is useful when you want a geometry with less fine resolution than the
original geometry. For example, if the display resolution cannot show the hundreds or
thousands of turns in the course of a river or in a political boundary, better
performance might result if the geometry were simplified to show only the major
turns.

If you use this function with geometries that have more than two dimensions, only the
first two dimensions are used in processing the query, and only the first two
dimensions in the returned geometry are to be considered valid and meaningful. For
example, the measure values in a returned LRS geometry will probably not reflect
actual measures in that geometry. In this case, depending on your application needs,

SDO_UTIL.SIMPLIFY

SDO_UTIL Package (Utility) 20-31

you might have several options after the simplification operation, such as ignoring the
new measure values or redefining the new LRS geometry to reset the measure values.

This function uses the Douglas-Peucker algorithm, which is explained in several
cartography textbooks and reference documents. (In some explanations, the term
tolerance is used instead of threshold; however, this is different from the Oracle Spatial
meaning of tolerance.)

The returned geometry can be a polygon, line, or point, depending on the geometry
definition and the threshold value. The following considerations apply:

■ A polygon can simplify to a line or a point and a line can simplify to a point, if the
threshold value associated with the geometry is sufficiently large. For example, a
thin rectangle will simplify to a line if the distance between the two parallel long
sides is less then the threshold value, and a line will simplify to a point if the
distance between the start and end points is less than the threshold value.

■ In a polygon with a hole, if the exterior ring or the interior ring (the hole)
simplifies to a line or a point, the interior ring disappears from (is not included in)
the resulting geometry.

■ Topological characteristics of the input geometry might not be maintained after
simplification. For a collection geometry, the number of elements might increase,
to prevent overlapping of individual elements. In all cases, this function will not
return an invalid geometry.

Examples
The following example simplifies the road shown in Figure 7–20 in Section 7.7.
Because the threshold value (6) is fairly large given the input geometry, the resulting
LRS line string has only three points: the start and end points, and (12, 4,12). The
measure values in the returned geometry are not meaningful, because this function
considers only two dimensions.

SELECT SDO_UTIL.SIMPLIFY(
 SDO_GEOMETRY(
 3302, -- line string, 3 dimensions (X,Y,M), 3rd is linear ref. dimension
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,2,1), -- one line string, straight segments
 SDO_ORDINATE_ARRAY(
 2,2,0, -- Starting point - Exit1; 0 is measure from start.
 2,4,2, -- Exit2; 2 is measure from start.
 8,4,8, -- Exit3; 8 is measure from start.
 12,4,12, -- Exit4; 12 is measure from start.
 12,10,NULL, -- Not an exit; measure automatically calculated and filled.
 8,10,22, -- Exit5; 22 is measure from start.
 5,14,27) -- Ending point (Exit6); 27 is measure from start.
),
 6, -- threshold value for geometry simplification
 0.5 -- tolerance
) FROM DUAL;

SDO_UTIL.SIMPLIFY(SDO_GEOMETRY(3302,--LINESTRING,3DIMENSIONS(X,Y,M),3RDISLINEARR
--
SDO_GEOMETRY(3302, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
2, 2, 0, 12, 4, 12, 5, 14, 27))

Figure 20–1 shows the result of this example. In Figure 20–1, the thick solid black line
is the resulting geometry, the thin solid light line between the start and end points is

SDO_UTIL.SIMPLIFY

20-32 Oracle Spatial User’s Guide and Reference

the input geometry, and the thin dashed line with the arrowhead at the end shows the
direction of the segment.

Figure 20–1 Simplification of a Geometry

Related Topics
SDO_UTIL.RECTIFY_GEOMETRY

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Route1 (start)

Route1 (end)

Exit 4

Exit 6
Segment
Direction

SDO_UTIL.TO_GMLGEOMETRY

SDO_UTIL Package (Utility) 20-33

SDO_UTIL.TO_GMLGEOMETRY

Format
SDO_UTIL.TO_GMLGEOMETRY(

thegeom IN SDO_GEOMETRY

) RETURN CLOB;

Description
Converts a Spatial geometry object to a geography markup language (GML 2.0)
fragment based on the geometry types defined in the Open GIS geometry.xsd
schema document.

Parameters

thegeom
Geometry for which to return the GML fragment.

Usage Notes
This function does not convert circles, geometries containing any circular arcs, LRS
geometries, or geometries with an SDO_ETYPE value of 0 (type 0 elements); it returns
an empty CLOB in these cases.

This function converts the input geometry to a GML fragment based on some GML
geometry types defined in the Open GIS Implementation Specification.

The input geometry must have a 4-digit SDO_GTYPE value.

Polygons must be defined using the conventions for Oracle9i and later releases of
Spatial. That is, the outer boundary is stored first (with ETYPE=1003) followed by zero
or more inner boundary elements (ETYPE=2003). For a polygon with holes, the outer
boundary must be stored first in the SDO_ORDINATES definition, followed by
coordinates of the inner boundaries.

LRS geometries must be converted to standard geometries (using the SDO_
LRS.CONVERT_TO_STD_GEOM or SDO_LRS.CONVERT_TO_STD_LAYER function)
before being passed to the TO_GMLGEOMETRY function. (See the Examples section
for an example that uses CONVERT_TO_STD_GEOM with the TO_GMLGEOMETRY
function.)

Any circular arcs or circles must be densified (using the SDO_GEOM.SDO_ARC_
DENSIFY function) or represented as polygons (using the SDO_GEOM.SDO_BUFFER
function) before being passed to the TO_GMLGEOMETRY function. (See the Examples
section for an example that uses SDO_ARC_DENSIFY with the TO_GMLGEOMETRY
function.)

Label points are discarded. That is, if a geometry has a value for the SDO_POINT field
and values in SDO_ELEM_INFO and SDO_ORDINATES, the SDO_POINT is not
output in the GML fragment.

The SDO_SRID value is output in the form srsName="SDO:<srid>". For example,
"SDO:8307" indicates SDO_SRID 8307, and "SDO:" indicates a null SDO_SRID
value. No checks are made for the validity or consistency of the SDO_SRID value. For
example, the value is not checked to see if it exists in the MDSYS.CS_SRS table or if it

SDO_UTIL.TO_GMLGEOMETRY

20-34 Oracle Spatial User’s Guide and Reference

conflicts with the SRID value for the layer in the USER_SDO_GEOM_METADATA
view.

Coordinates are always output using the <coordinates> tag and decimal='.',
cs=',' (that is, with the comma as the coordinate separator), and ts=' ' (that is,
with a space as the tuple separator), even if the NLS_NUMERIC_CHARACTERS
setting has ',' (comma) as the decimal character.

The GML output is not formatted; there are no line breaks or indentation of tags. To
see the contents of the returned CLOB in SQL*Plus, use the TO_CHAR() function or
set the SQL*Plus parameter LONG to a suitable value (for example, SET LONG
40000). To get formatted GML output or to use the return value of TO_
GMLGEOMETRY in SQLX or Oracle XML DB functions such as XMLELEMENT, use
the XMLTYPE(clobval CLOB) constructor.

Examples
The following example returns the GML fragment for the cola_b geometry in the
COLA_MARKETS table. (The example uses the definitions and data from Section 2.1.)

-- Convert cola_b geometry to GML fragment.
SELECT TO_CHAR(SDO_UTIL.TO_GMLGEOMETRY(shape)) AS GmlGeometry
 FROM COLA_MARKETS c WHERE c.name = 'cola_b';

GMLGEOMETRY
--
<gml:Polygon srsName="SDO:" xmlns:gml="http://www.opengis.net/gml"><gml:outerBou
ndaryIs><gml:LinearRing><gml:coordinates decimal="." cs="," ts=" ">5,1 8,1 8,6 5
,7 5,1 </gml:coordinates></gml:LinearRing></gml:outerBoundaryIs></gml:Polygon>

The following example returns the GML fragment for the arc densification of the
cola_d geometry in the COLA_MARKETS table. (The example uses the definitions
and data from Section 2.1.)

SET LONG 40000
SELECT XMLTYPE(SDO_UTIL.TO_GMLGEOMETRY(
 SDO_GEOM.SDO_ARC_DENSIFY(c.shape, m.diminfo, 'arc_tolerance=0.05')))
 AS GmlGeometry FROM cola_markets c, user_sdo_geom_metadata m
 WHERE m.table_name = 'COLA_MARKETS' AND m.column_name = 'SHAPE'
 AND c.name = 'cola_d';

GMLGEOMETRY
--
<gml:Polygon srsName="SDO:" xmlns:gml="http://www.opengis.net/gml"><gml:outerBou
ndaryIs><gml:LinearRing><gml:coordinates decimal="." cs="," ts=" ">8,7 8.7653668
6473018,7.15224093497743 9.4142135623731,7.58578643762691 9.84775906502257,8.234
63313526982 10,9 9.84775906502257,9.76536686473018 9.4142135623731,10.4142135623
731 8.76536686473018,10.8477590650226 8,11 7.23463313526982,10.8477590650226 6.5
8578643762691,10.4142135623731 6.15224093497743,9.76536686473018 6,9 6.152240934
97743,8.23463313526982 6.58578643762691,7.5857864376269 7.23463313526982,7.15224
093497743 8,7 </gml:coordinates></gml:LinearRing></gml:outerBoundaryIs></gml:Pol
ygon>

The following example converts an LRS geometry to a standard geometry and returns
the GML fragment for the geometry. (The example uses the definitions and data from
Section 7.7.)

SET LONG 40000
-- Convert LRS geometry to standard geometry before using TO_GMLGEOMETRY.
SELECT XMLTYPE(SDO_UTIL.TO_GMLGEOMETRY(
 SDO_LRS.CONVERT_TO_STD_GEOM(route_geometry)))

SDO_UTIL.TO_GMLGEOMETRY

SDO_UTIL Package (Utility) 20-35

 AS GmlGeometry FROM lrs_routes a WHERE a.route_id = 1;

GMLGEOMETRY
--
<gml:LineString srsName="SDO:" xmlns:gml="http://www.opengis.net/gml">
 <gml:coordinates decimal="." cs="," ts=" ">2,2 2,4 8,4 12,4 12,10 8,10 5,14 </
gml:coordinates>
</gml:LineString>

The following examples return GML fragments for a variety of geometry types.

-- Point geometry with coordinates in SDO_ORDINATES. Note the
-- coordinates in the GML are (10,10) and the values in the
-- SDO_POINT field are discarded.
SELECT TO_CHAR(
 SDO_UTIL.TO_GMLGEOMETRY(sdo_geometry(2001, 8307,
 sdo_point_type(-80, 70, null),
 sdo_elem_info_array(1,1,1), sdo_ordinate_array(10, 10)))
)
AS GmlGeometry FROM DUAL;

GMLGEOMETRY
--
<gml:Point srsName="SDO:8307" xmlns:gml="http://www.opengis.net/gml"><gml:coordi
nates decimal="." cs="," ts=" ">10,10 </gml:coordinates></gml:Point>

-- LRS geometry. An Empty CLOB is returned.
SELECT SDO_UTIL.TO_GMLGEOMETRY(
 sdo_geometry(2306, 8307, null,
 sdo_elem_info_array(1,1003,1, 13, 1003, 1, 23, 1003, 3),
 sdo_ordinate_array(10.10,10.20, 20.50, 20.10, 30.30, 30.30, 40.10,
 40.10, 30.50, 30.20, 10.10, 10.20,
 5, 5, 5, 6, 6, 6, 6, 5, 5, 5, 7, 7, 8, 8))
) AS GmlGeometry FROM DUAL;

GMLGEOMETRY
--

-- Rectangle (geodetic)
SELECT TO_CHAR(
 SDO_UTIL.TO_GMLGEOMETRY(sdo_geometry(2003, 8307, null,
 sdo_elem_info_array(1,1003,5),
 sdo_ordinate_array(10.10,10.10, 20.10, 20.10)))
)
AS GmlGeometry FROM DUAL;

GMLGEOMETRY
--
<gml:Box srsName="SDO:8307" xmlns:gml="http://www.opengis.net/gml"><gml:coordina
tes decimal="." cs="," ts=" ">10.1,10.1 20.1,20.1 </gml:coordinates></gml:Box>

-- Polygon with holes
SELECT TO_CHAR(
 SDO_UTIL.TO_GMLGEOMETRY(sdo_geometry(2003, 262152, null,
 sdo_elem_info_array(1,1003,3, 5, 2003, 1, 13, 2003, 1),
 sdo_ordinate_array(10.10,10.20, 40.50, 41.10, 30.30, 30.30, 30.30,
 40.10, 40.10, 40.10, 30.30, 30.30, 5, 5, 5, 6, 6, 6, 6, 5, 5, 5)))
)

SDO_UTIL.TO_GMLGEOMETRY

20-36 Oracle Spatial User’s Guide and Reference

AS GmlGeometry FROM DUAL;

GMLGEOMETRY
--
<gml:Polygon srsName="SDO:262152" xmlns:gml="http://www.opengis.net/gml"><gml:ou
terBoundaryIs><gml:LinearRing><gml:coordinates decimal="." cs="," ts=" ">10.1,10
.2, 40.5,10.2, 40.5,41.1, 10.1,41.1, 10.1,10.2 </gml:coordinates></gml:LinearRin
g></gml:outerBoundaryIs><gml:innerBoundaryIs><gml:LinearRing><gml:coordinates de
cimal="." cs="," ts=" ">30.3,30.3 30.3,40.1 40.1,40.1 30.3,30.3 </gml:coordinate
s></gml:LinearRing></gml:innerBoundaryIs><gml:innerBoundaryIs><gml:LinearRing><g
ml:coordinates decimal="." cs="," ts=" ">5,5 5,6 6,6 6,5 5,5 </gml:coordinates><
/gml:LinearRing></gml:innerBoundaryIs></gml:Polygon>

-- Creating an XMLTYPE from the GML fragment. Also useful for "pretty
-- printing" the GML output.
SET LONG 40000
SELECT XMLTYPE(
 SDO_UTIL.TO_GMLGEOMETRY(sdo_geometry(2003, 262152, null,
 sdo_elem_info_array(1,1003,1, 11, 2003, 1, 21, 2003, 1),
 sdo_ordinate_array(10.10,10.20, 40.50,10.2, 40.5,41.10, 10.1,41.1,
 10.10, 10.20, 30.30,30.30, 30.30, 40.10, 40.10, 40.10, 40.10, 30.30,
 30.30, 30.30, 5, 5, 5, 6, 6, 6, 6, 5, 5, 5)))
)
AS GmlGeometry FROM DUAL;

GMLGEOMETRY
--
<gml:Polygon srsName="SDO:262152" xmlns:gml="http://www.opengis.net/gml"><gml:ou
terBoundaryIs><gml:LinearRing><gml:coordinates decimal="." cs="," ts=" ">10.1,10
.2 40.5,10.2 40.5,41.1 10.1,41.1 10.1,10.2 </gml:coordinates></gml:LinearRing></
gml:outerBoundaryIs><gml:innerBoundaryIs><gml:LinearRing><gml:coordinates decima
l="." cs="," ts=" ">30.3,30.3 30.3,40.1 40.1,40.1 40.1,30.3 30.3,30.3 </gml:coor
dinates></gml:LinearRing></gml:innerBoundaryIs><gml:innerBoundaryIs><gml:LinearR
ing><gml:coordinates decimal="." cs="," ts=" ">5,5 5,6 6,6 6,5 5,5 </gml:coordin
ates></gml:LinearRing></gml:innerBoundaryIs></gml:Polygon>

The following example uses the TO_GMLGEOMETRY function with the Oracle XML
DB XMLTYPE data type and the XMLELEMENT and XMLFOREST functions.

SELECT xmlelement("State", xmlattributes(
 'http://www.opengis.net/gml' as "xmlns:gml"),
 xmlforest(state as "Name", totpop as "Population",
 xmltype(sdo_util.to_gmlgeometry(geom)) as "gml:geometryProperty"))
 AS theXMLElements FROM states WHERE state_abrv in ('DE', 'UT');

THEXMLELEMENTS
--
<State xmlns:gml="http://www.opengis.net/gml">
 <Name>Delaware</Name>
 <Population>666168</Population>
 <gml:geometryProperty>
 <gml:Polygon srsName="SDO:" xmlns:gml="http://www.opengis.net/gml">
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates decimal="." cs="," ts=" ">-75.788704,39.721699 -75.78
8704,39.6479 -75.767014,39.377106 -75.76033,39.296497 -75.756294,39.24585 -75.74
8016,39.143196 -75.722961,38.829895 -75.707695,38.635166 -75.701912,38.560619 -7
5.693871,38.460011 -75.500336,38.454002 -75.341614,38.451855 -75.049339,38.45165
3 -75.053841,38.538429 -75.06015,38.605465 -75.063263,38.611275 -75.065308,38.62
949 -75.065887,38.660919 -75.078697,38.732403 -75.082527,38.772045 -75.091667,38

SDO_UTIL.TO_GMLGEOMETRY

SDO_UTIL Package (Utility) 20-37

.801208 -75.094185,38.803699 -75.097572,38.802986 -75.094116,38.793579 -75.09926
6,38.78756 -75.123619,38.781784 -75.137962,38.782703 -75.18692,38.803772 -75.215
019,38.831547 -75.23735,38.849014 -75.260498,38.875 -75.305908,38.914673 -75.316
399,38.930309 -75.317284,38.93676 -75.312851,38.945576 -75.312859,38.945618 -75.
31205,38.967804 -75.31778,38.986012 -75.341431,39.021233 -75.369606,39.041359 -7
5.389229,39.051422 -75.40181,39.06702 -75.401306,39.097713 -75.411369,39.148029
-75.407845,39.175201 -75.396271,39.187778 -75.39225,39.203377 -75.40181,39.23104
9 -75.402817,39.253189 -75.409355,39.264759 -75.434006,39.290424 -75.439041,39.3
13065 -75.453125,39.317093 -75.457657,39.326653 -75.469231,39.330677 -75.486336,
39.341743 -75.494888,39.354324 -75.504448,39.357346 -75.51284,39.366291 -75.5129
24,39.366482 -75.523773,39.392052 -75.538651,39.415707 -75.56749,39.436436 -75.5
9137,39.463696 -75.592941,39.471806 -75.590019,39.488026 -75.587311,39.496136 -7
5.5774,39.508076 -75.554192,39.506947 -75.528442,39.498005 -75.530373,39.510303
-75.527145,39.531326 -75.52803,39.535168 -75.53437,39.540592 -75.519386,39.55528
6 -75.512291,39.567505 -75.515587,39.580639 -75.528046,39.584 -75.538269,39.5935
67 -75.554016,39.601727 -75.560143,39.622578 -75.556602,39.6348 -75.549599,39.63
7699 -75.542397,39.645901 -75.535507,39.647099 -75.514999,39.668499 -75.507523,3
9.69685 -75.496597,39.701302 -75.488914,39.714722 -75.477997,39.714901 -75.47550
2,39.733501 -75.467972,39.746975 -75.463707,39.761101 -75.448494,39.773857 -75.4
38301,39.783298 -75.405701,39.796101 -75.415405,39.801678 -75.454102,39.820202 -
75.499199,39.833199 -75.539703,39.8381 -75.5802,39.838417 -75.594017,39.837345 -
75.596107,39.837044 -75.639488,39.82893 -75.680145,39.813839 -75.71096,39.796352
 -75.739716,39.772881 -75.760689,39.74712 -75.774101,39.721699 -75.788704,39.721
699 </gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 </gml:Polygon>
 </gml:geometryProperty>
</State>

<State xmlns:gml="http://www.opengis.net/gml">
 <Name>Utah</Name>
 <Population>1722850</Population>
 <gml:geometryProperty>
 <gml:Polygon srsName="SDO:" xmlns:gml="http://www.opengis.net/gml">
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates decimal="." cs="," ts=" ">-114.040871,41.993805 -114.
038803,41.884899 -114.041306,41 -114.04586,40.116997 -114.046295,39.906101 -114.
046898,39.542801 -114.049026,38.67741 -114.049339,38.572968 -114.049095,38.14864
 -114.0476,37.80946 -114.05098,37.746284 -114.051666,37.604805 -114.052025,37.10
3989 -114.049797,37.000423 -113.484375,37 -112.898598,37.000401 -112.539604,37.0
00683 -112,37.000977 -111.412048,37.001514 -111.133018,37.00079 -110.75,37.00320
1 -110.5,37.004265 -110.469505,36.998001 -110,36.997967 -109.044571,36.999088 -1
09.045143,37.375 -109.042824,37.484692 -109.040848,37.881176 -109.041405,38.1530
27 -109.041107,38.1647 -109.059402,38.275501 -109.059296,38.5 -109.058868,38.719
906 -109.051765,39 -109.050095,39.366699 -109.050697,39.4977 -109.050499,39.6605
 -109.050156,40.222694 -109.047577,40.653641 -109.0494,41.000702 -109.2313,41.00
2102 -109.534233,40.998184 -110,40.997398 -110.047768,40.997696 -110.5,40.994801
 -111.045982,40.998013 -111.045815,41.251774 -111.045097,41.579899 -111.045944,4
2.001633 -111.506493,41.999588 -112.108742,41.997677 -112.16317,41.996784 -112.1
72562,41.996643 -112.192184,42.001244 -113,41.998314 -113.875,41.988091 -114.040
871,41.993805 </gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 </gml:Polygon>
 </gml:geometryProperty>
</State>

SDO_UTIL.TO_GMLGEOMETRY

20-38 Oracle Spatial User’s Guide and Reference

Related Topics
None.

SDO_UTIL.TO_WKBGEOMETRY

SDO_UTIL Package (Utility) 20-39

SDO_UTIL.TO_WKBGEOMETRY

Format
SDO_UTIL.TO_WKBGEOMETRY(

geometry IN SDO_GEOMETRY

) RETURN BLOB;

Description
Converts a Spatial geometry object to the well-known binary (WKB) format.

Parameters

geometry
SDO_GEOMETRY object to be converted to WKB format.

Usage Notes
The input geometry is converted to the well-known binary (WKB) format, as defined
by the Open Geospatial Consortium and the International Organization for
Standardization (ISO).

This function is patterned after the SQL Multimedia recommendations in ISO 13249-3,
Information technology - Database languages - SQL Multimedia and Application Packages -
Part 3: Spatial.

To convert a geometry in WKB format to an SDO_GEOMETRY object, use the SDO_
UTIL.FROM_WKBGEOMETRY function.

Examples
The following example shows conversion to and from WKB and WKT format, and
validation of WKB and WKT geometries. (The example uses the definitions and data
from Section 2.1, specifically the cola_b geometry from the COLA_MARKETS table.)

DECLARE
 wkbgeom BLOB;
 wktgeom CLOB;
 val_result VARCHAR2(5);
 geom_result SDO_GEOMETRY;
 geom SDO_GEOMETRY;
BEGIN
SELECT c.shape INTO geom FROM cola_markets c WHERE c.name = 'cola_b';

-- To WBT/WKT geometry
wkbgeom := SDO_UTIL.TO_WKBGEOMETRY(geom);
wktgeom := SDO_UTIL.TO_WKTGEOMETRY(geom);
DBMS_OUTPUT.PUT_LINE('To WKT geometry result = ' || TO_CHAR(wktgeom));

-- From WBT/WKT geometry
geom_result := SDO_UTIL.FROM_WKBGEOMETRY(wkbgeom);
geom_result := SDO_UTIL.FROM_WKTGEOMETRY(wktgeom);

-- Validate WBT/WKT geometry
val_result := SDO_UTIL.VALIDATE_WKBGEOMETRY(wkbgeom);
DBMS_OUTPUT.PUT_LINE('WKB validation result = ' || val_result);

SDO_UTIL.TO_WKBGEOMETRY

20-40 Oracle Spatial User’s Guide and Reference

val_result := SDO_UTIL.VALIDATE_WKTGEOMETRY(wktgeom);
DBMS_OUTPUT.PUT_LINE('WKT validation result = ' || val_result);

END;
/

To WKT geometry result = POLYGON ((5.0 1.0, 8.0 1.0, 8.0 6.0, 5.0 7.0, 5.0 1.0))
WKB validation result = TRUE
WKT validation result = TRUE

Related Topics
■ SDO_UTIL.FROM_WKBGEOMETRY

■ SDO_UTIL.FROM_WKTGEOMETRY

■ SDO_UTIL.TO_WKTGEOMETRY

■ SDO_UTIL.VALIDATE_WKBGEOMETRY

■ SDO_UTIL.VALIDATE_WKTGEOMETRY

SDO_UTIL.TO_WKTGEOMETRY

SDO_UTIL Package (Utility) 20-41

SDO_UTIL.TO_WKTGEOMETRY

Format
SDO_UTIL.TO_WKTGEOMETRY(

geometry IN SDO_GEOMETRY

) RETURN CLOB;

Description
Converts a Spatial geometry object to the well-known text (WKT) format.

Parameters

geometry
SDO_GEOMETRY object to be converted to WKT format.

Usage Notes
The input geometry is converted to the well-known text (WKT) format, as defined by
the Open Geospatial Consortium and the International Organization for
Standardization (ISO).

This function is patterned after the SQL Multimedia recommendations in ISO 13249-3,
Information technology - Database languages - SQL Multimedia and Application Packages -
Part 3: Spatial.

To convert a geometry in WKT format to an SDO_GEOMETRY object, use the SDO_
UTIL.FROM_WKTGEOMETRY function.

Examples
The following example shows conversion to and from WKB and WKT format, and
validation of WKB and WKT geometries. (The example uses the definitions and data
from Section 2.1, specifically the cola_b geometry from the COLA_MARKETS table.)

DECLARE
 wkbgeom BLOB;
 wktgeom CLOB;
 val_result VARCHAR2(5);
 geom_result SDO_GEOMETRY;
 geom SDO_GEOMETRY;
BEGIN
SELECT c.shape INTO geom FROM cola_markets c WHERE c.name = 'cola_b';

-- To WBT/WKT geometry
wkbgeom := SDO_UTIL.TO_WKBGEOMETRY(geom);
wktgeom := SDO_UTIL.TO_WKTGEOMETRY(geom);
DBMS_OUTPUT.PUT_LINE('To WKT geometry result = ' || TO_CHAR(wktgeom));

-- From WBT/WKT geometry
geom_result := SDO_UTIL.FROM_WKBGEOMETRY(wkbgeom);
geom_result := SDO_UTIL.FROM_WKTGEOMETRY(wktgeom);

-- Validate WBT/WKT geometry
val_result := SDO_UTIL.VALIDATE_WKBGEOMETRY(wkbgeom);
DBMS_OUTPUT.PUT_LINE('WKB validation result = ' || val_result);

SDO_UTIL.TO_WKTGEOMETRY

20-42 Oracle Spatial User’s Guide and Reference

val_result := SDO_UTIL.VALIDATE_WKTGEOMETRY(wktgeom);
DBMS_OUTPUT.PUT_LINE('WKT validation result = ' || val_result);

END;
/

To WKT geometry result = POLYGON ((5.0 1.0, 8.0 1.0, 8.0 6.0, 5.0 7.0, 5.0 1.0))
WKB validation result = TRUE
WKT validation result = TRUE

Related Topics
■ SDO_UTIL.FROM_WKBGEOMETRY

■ SDO_UTIL.FROM_WKTGEOMETRY

■ SDO_UTIL.TO_WKBGEOMETRY

■ SDO_UTIL.VALIDATE_WKBGEOMETRY

■ SDO_UTIL.VALIDATE_WKTGEOMETRY

SDO_UTIL.VALIDATE_WKBGEOMETRY

SDO_UTIL Package (Utility) 20-43

SDO_UTIL.VALIDATE_WKBGEOMETRY

Format
SDO_UTIL.VALIDATE_WKBGEOMETRY(

geometry IN BLOB

) RETURN VARCHAR2;

Description
Validates the input geometry, which is in the standard well-known binary (WKB)
format; returns the string TRUE if the geometry is valid or FALSE if the geometry is not
valid.

Parameters

geometry
Geometry in WKB format to be checked for validity.

Usage Notes
To be valid, the input geometry must be in the well-known binary (WKB) format, as
defined by the Open Geospatial Consortium and the International Organization for
Standardization (ISO).

This function is patterned after the SQL Multimedia recommendations in ISO 13249-3,
Information technology - Database languages - SQL Multimedia and Application Packages -
Part 3: Spatial.

To validate a geometry in the well-known text (WKT) format, use the SDO_
UTIL.VALIDATE_WKTGEOMETRY function.

Examples
The following example shows conversion to and from WKB and WKT format, and
validation of WKB and WKT geometries. (The example uses the definitions and data
from Section 2.1, specifically the cola_b geometry from the COLA_MARKETS table.)

DECLARE
 wkbgeom BLOB;
 wktgeom CLOB;
 val_result VARCHAR2(5);
 geom_result SDO_GEOMETRY;
 geom SDO_GEOMETRY;
BEGIN
SELECT c.shape INTO geom FROM cola_markets c WHERE c.name = 'cola_b';

-- To WBT/WKT geometry
wkbgeom := SDO_UTIL.TO_WKBGEOMETRY(geom);
wktgeom := SDO_UTIL.TO_WKTGEOMETRY(geom);
DBMS_OUTPUT.PUT_LINE('To WKT geometry result = ' || TO_CHAR(wktgeom));

-- From WBT/WKT geometry
geom_result := SDO_UTIL.FROM_WKBGEOMETRY(wkbgeom);
geom_result := SDO_UTIL.FROM_WKTGEOMETRY(wktgeom);

-- Validate WBT/WKT geometry

SDO_UTIL.VALIDATE_WKBGEOMETRY

20-44 Oracle Spatial User’s Guide and Reference

val_result := SDO_UTIL.VALIDATE_WKBGEOMETRY(wkbgeom);
DBMS_OUTPUT.PUT_LINE('WKB validation result = ' || val_result);
val_result := SDO_UTIL.VALIDATE_WKTGEOMETRY(wktgeom);
DBMS_OUTPUT.PUT_LINE('WKT validation result = ' || val_result);

END;
/

To WKT geometry result = POLYGON ((5.0 1.0, 8.0 1.0, 8.0 6.0, 5.0 7.0, 5.0 1.0))
WKB validation result = TRUE
WKT validation result = TRUE

Related Topics
■ SDO_UTIL.FROM_WKBGEOMETRY

■ SDO_UTIL.FROM_WKTGEOMETRY

■ SDO_UTIL.TO_WKBGEOMETRY

■ SDO_UTIL.TO_WKTGEOMETRY

■ SDO_UTIL.VALIDATE_WKTGEOMETRY

SDO_UTIL.VALIDATE_WKTGEOMETRY

SDO_UTIL Package (Utility) 20-45

SDO_UTIL.VALIDATE_WKTGEOMETRY

Format
SDO_UTIL.VALIDATE_WKTGEOMETRY(

geometry IN CLOB

) RETURN VARCHAR2;

or

SDO_UTIL.VALIDATE_WKTGEOMETRY(

geometry IN VARCHAR2

) RETURN VARCHAR2;

Description
Validates the input geometry, which is of type CLOB or VARCHAR2 and in the
standard well-known text (WKT) format; returns the string TRUE if the geometry is
valid or FALSE if the geometry is not valid.

Parameters

geometry
Geometry in WKT format to be checked for validity.

Usage Notes
To be valid, the input geometry must be in the well-known text (WKT) format, as
defined by the Open Geospatial Consortium and the International Organization for
Standardization (ISO).

This function is patterned after the SQL Multimedia recommendations in ISO 13249-3,
Information technology - Database languages - SQL Multimedia and Application Packages -
Part 3: Spatial.

To validate a geometry in the well-known binary (WKB) format, use the SDO_
UTIL.VALIDATE_WKBGEOMETRY function.

Examples
The following example shows conversion to and from WKB and WKT format, and
validation of WKB and WKT geometries. (The example uses the definitions and data
from Section 2.1, specifically the cola_b geometry from the COLA_MARKETS table.)

DECLARE
 wkbgeom BLOB;
 wktgeom CLOB;
 val_result VARCHAR2(5);
 geom_result SDO_GEOMETRY;
 geom SDO_GEOMETRY;
BEGIN
SELECT c.shape INTO geom FROM cola_markets c WHERE c.name = 'cola_b';

-- To WBT/WKT geometry
wkbgeom := SDO_UTIL.TO_WKBGEOMETRY(geom);
wktgeom := SDO_UTIL.TO_WKTGEOMETRY(geom);
DBMS_OUTPUT.PUT_LINE('To WKT geometry result = ' || TO_CHAR(wktgeom));

SDO_UTIL.VALIDATE_WKTGEOMETRY

20-46 Oracle Spatial User’s Guide and Reference

-- From WBT/WKT geometry
geom_result := SDO_UTIL.FROM_WKBGEOMETRY(wkbgeom);
geom_result := SDO_UTIL.FROM_WKTGEOMETRY(wktgeom);

-- Validate WBT/WKT geometry
val_result := SDO_UTIL.VALIDATE_WKBGEOMETRY(wkbgeom);
DBMS_OUTPUT.PUT_LINE('WKB validation result = ' || val_result);
val_result := SDO_UTIL.VALIDATE_WKTGEOMETRY(wktgeom);
DBMS_OUTPUT.PUT_LINE('WKT validation result = ' || val_result);

END;
/

To WKT geometry result = POLYGON ((5.0 1.0, 8.0 1.0, 8.0 6.0, 5.0 7.0, 5.0 1.0))
WKB validation result = TRUE
WKT validation result = TRUE

Related Topics
■ SDO_UTIL.FROM_WKBGEOMETRY

■ SDO_UTIL.FROM_WKTGEOMETRY

■ SDO_UTIL.TO_WKBGEOMETRY

■ SDO_UTIL.TO_WKTGEOMETRY

■ SDO_UTIL.VALIDATE_WKBGEOMETRY

Part III
Supplementary Information

This document has three parts:

■ Part I provides conceptual and usage information about Oracle Spatial.

■ Part II provides reference information about Oracle Spatial operators, functions,
and procedures.

■ Part III provides supplementary information (appendixes and a glossary).

Part III contains the following:

■ Appendix A, "Installation, Compatibility, and Upgrade"

■ Appendix B, "Oracle Locator"

■ Appendix C, "Routing Engine"

■ Appendix D, "Complex Spatial Queries: Examples"

■ Glossary

Installation, Compatibility, and Upgrade A-1

A
Installation, Compatibility, and Upgrade

If you are upgrading to Oracle Database 10g, Oracle Spatial is automatically upgraded
as part of the operation. For information about the upgrade procedure, see Oracle
Database Upgrade Guide.

If you need to downgrade Spatial to the previous Oracle Database release, follow the
instructions for downgrading a database back to the previous Oracle Database release
in Oracle Database Upgrade Guide.

If you have LRS data in release 8.1.5, 8.1.6, or 8.1.7 format, see Section A.1.

If you use Oracle Spatial GeoRaster, see Section A.2.

A.1 Upgrading LRS Data
If you have linear referencing data (that is, geometries with measure information) in
release 8.1.5, 8.1.6, or 8.1.7 format, you must upgrade that data to the format for Spatial
releases 9.0.1 and later, as follows:

1. Drop any spatial indexes on the table with the linear referencing data.

2. Find out which dimension of the object has the linear referencing information.

This could be the third or the fourth dimension, depending on the dimensionality
of the data. For example, if the data has three dimensions (such as X, Y, and
height), the LRS geometry object is 4D, and the LRS dimension in this case is
usually 4.

3. Make sure that the data is in the format for release 8.1.6 or later (that is, it has
4-digit SDO_GTYPE values).

4. Update the LRS geometry objects by setting the LRS dimension in the SDO_
GTYPE field, as in the following examples.

Example 1: The LRS dimension is 3 for the geometries in the GEOMETRY column
of table LRS_DATA. Update the SDO_GTYPE as follows:

UPDATE LRS_DATA a SET a.geometry.sdo_gtype = a.geometry.sdo_gtype + 300;

Example 2: The LRS dimension is 4 for the geometries in the GEOMETRY column
of table LRS_DATA. Update the SDO_GTYPE as follows:

UPDATE LRS_DATA a SET a.geometry.sdo_gtype = a.geometry.sdo_gtype + 400;

A.2 Ensuring That GeoRaster Works Properly After an Upgrade
If you are upgrading to Oracle Database 10g and if you use the GeoRaster feature of
Oracle Spatial, Oracle XML DB Repository must be installed, and the value of the

Ensuring That GeoRaster Works Properly After an Upgrade

A-2 Oracle Spatial User’s Guide and Reference

COMPATIBILITY database initialization parameter must be 10.0 or greater. Before
you use GeoRaster in the upgraded instance, ensure that both of these requirements
are met, and if necessary reload the GeoRaster PL/SQL packages. Follow these steps:

1. Check to see if Oracle XML DB Repository is installed by checking if a schema
exists in the database for a user named XDB. If the schema for user XDB exists,
Oracle XML DB Repository is installed.

2. If Oracle XML DB Repository is not installed, install it with DBCA or by running
the script catqm.sql, which is located in the $ORACLE_HOME/rdbms/admin
directory.

For more information about installing and uninstalling Oracle XML DB
Repository, see Oracle XML DB Developer's Guide.

3. Check the value of the Oracle initialization parameter COMPATIBLE.

4. If the value of the COMPATIBLE initialization parameter is less than 10.0, change
the value to 10.0.

For more information about the COMPATIBLE initialization parameter, see Oracle
Database Reference.

5. If you did not install Oracle XML DB Repository or change the value of the
COMPATIBLE initialization parameter, stop; do not perform the remaining steps.

If you installed Oracle XML DB Repository or changed the value of the
COMPATIBLE initialization parameter, or did both, go to the next step.

6. Go to the $ORACLE_HOME/md/admin directory.

7. Connect to the database as SYS AS SYSDBA.

8. Enter the following SQL statements:

ALTER SESSION SET CURRENT_SCHEMA=MDSYS;
@prvtgrs.plb
@sdogrxml.sql

Oracle Locator B-1

B
Oracle Locator

Oracle Locator (also referred to as Locator) is a feature of Oracle Database 10g
Standard Edition. Locator provides core features and services available in Oracle
Spatial. It provides significant capabilities typically required to support Internet and
wireless service-based applications and partner-based GIS solutions. Locator is not
designed to be a solution for geographic information system (GIS) applications
requiring complex spatial data management. If you need capabilities such as linear
referencing, spatial functions, or coordinate system transformations, use Oracle Spatial
instead of Locator.

Like Spatial, Locator is not designed to be an end-user application, but is a set of
spatial capabilities for application developers.

Locator is available with both the Standard and Enterprise Editions of Oracle Database
10g. Spatial is a priced option available only with Oracle Database 10g Enterprise
Edition. Spatial includes all Locator features as well as other features that are not
available with Locator.

The installation of Locator depends on the successful and proper installation of Oracle
interMedia. interMedia is installed and configured with Oracle Database 10g, although
you can install interMedia manually if necessary, as documented in Oracle interMedia
User's Guide. During the installation of interMedia, Locator is installed.

In general, Locator includes the data types, operators, and indexing capabilities of
Oracle Spatial, along with a limited set of the functions and procedures of Spatial. The
Locator features include the following:

■ An object type (SDO_GEOMETRY) that describes and supports any type of
geometry

■ A spatial indexing capability that lets you create spatial indexes on geometry data

■ Spatial operators (described in Chapter 11) that use the spatial index for
performing spatial queries

■ Some geometry functions and the SDO_AGGR_MBR spatial aggregate function

■ Coordinate system support for explicit geometry and layer transformations (SDO_
CS.TRANSFORM function and SDO_CS.TRANSFORM_LAYER procedure,
described in Chapter 13)

■ Tuning functions and procedures (SDO_TUNE package, described in Chapter 19)

■ Spatial utility functions (SDO_UTIL package, described in Chapter 20)

■ Integration with Oracle Application Server 10g

For information about spatial concepts, the SDO_GEOMETRY object type, and
indexing and loading spatial data, see Chapters 1 through 4 in this guide. For reference

B-2 Oracle Spatial User’s Guide and Reference

and usage information about features supported by Locator, see the chapter or section
listed in Table B–1.

Table B–2 lists Spatial features that are not supported for Locator, with the chapter in
this guide or the separate manual that describes the feature.

Table B–1 Spatial Features Supported for Locator

Spatial Feature Described in

Function-based spatial indexing Section 9.2

Table partitioning support for spatial indexes (including
splitting, merging, and exchanging partitions and their
indexes)

Section 4.1.4 and
Section 4.1.5

Geodetic data support Section 6.2 and Section 6.7

SQL statements for creating, altering, and deleting indexes Chapter 10

Parallel spatial index builds (PARALLEL keyword with ALTER
INDEX REBUILD and CREATE INDEX statements) (new with
release 9.2)

Chapter 10

SDO_GEOMETRY object type methods Section 2.3

Spatial operators (including SDO_JOIN, which is technically a
table function but is documented with the operators)

Chapter 11

Implicit coordinate system transformations for operator calls
where a window needs to be converted to the coordinate
system of the queried layer.

Chapter 11

SDO_AGGR_MBR spatial aggregate function Chapter 12

Coordinate system support for explicit geometry and layer
transformations (SDO_CS.TRANSFORM function and SDO_
CS.TRANSFORM_LAYER procedure)

Chapter 13

The following SDO_GEOM package functions and procedures:
SDO_GEOM.SDO_DISTANCE , SDO_GEOM.VALIDATE_
GEOMETRY_WITH_CONTEXT, SDO_GEOM.VALIDATE_
LAYER_WITH_CONTEXT

Chapter 15

Package (SDO_MIGRATE) to upgrade data from previous
Spatial releases to the current release

Chapter 17

Tuning functions and procedures (SDO_TUNE package) Chapter 19

Spatial utility functions (SDO_UTIL package) Chapter 20

Object replication Oracle Database Advanced
Replication

Graphical tool for tuning spatial quadtree indexes (Spatial
Index Advisor integrated application in Oracle Enterprise
Manager)

Online help for Oracle
Enterprise Manager

Table B–2 Spatial Features Not Supported for Locator

Spatial Feature Described in

SDO_GEOM package functions and procedures, except for
those listed in Table B–1

Chapter 15

Spatial aggregate functions, except for any listed in
Table B–1

Chapter 12

Linear referencing system (LRS) support Chapter 7 (concepts and usage)
and Chapter 16 (reference)

Oracle Locator B-3

Although Locator is available on both the Standard and Enterprise Editions of Oracle
Database 10g, some Locator features requires database features that are not available
or are limited on the Standard Edition. Some of those Locator features and their
availability are listed in Table B–3.

Spatial analysis and mining functions and procedures
(SDO_SAM package)

Chapter 18

Geocoding support (SDO_GCDR package) Chapter 5 (concepts and usage)
and Chapter 14 (reference)

GeoRaster support Oracle Spatial GeoRaster

Topology data model Oracle Spatial Topology and
Network Data Models

Network data model Oracle Spatial Topology and
Network Data Models

Table B–3 Feature Availability with Standard and Enterprise Editions

Feature Standard/Enterprise Edition Availability

Parallel spatial index
builds

Supported with Enterprise Edition only.

Multimaster replication of
SDO_GEOMETRY objects

Supported with Enterprise Edition only. (Single
master/materialized view replication for SDO_GEOMETRY
objects is supported with both Standard Edition and Enterprise
Edition. See Oracle Database Advanced Replication for more
information.)

Partitioned spatial indexes Requires the Partitioning Option with Enterprise Edition. Not
supported with Standard Edition.

Table B–2 (Cont.) Spatial Features Not Supported for Locator

Spatial Feature Described in

B-4 Oracle Spatial User’s Guide and Reference

Routing Engine C-1

C
Routing Engine

The Spatial routing engine enables you to host an XML-based Web service that
provides the following features:

■ For an individual route request (a start location and an end location): route
information (driving distances, estimated driving times, and directions) between
the two locations

■ For a batch route request (multiple routes, with the same start location but
different end locations): route information (driving distance and estimated driving
time) for each route

For any request, the start and end locations are identified by addresses, geocoded
results, or longitude/latitude coordinates.

The routing engine is implemented as a Java 2 Enterprise Edition (J2EE) Web
application that you can deploy in either an Oracle Application Server or standalone
Oracle Application Server Containers for J2EE (OC4J) environment.

Figure C–1 shows the basic flow of action with the routing engine: a client locates a
remote routing engine instance, sends a route request, and processes the route
response returned by the routing engine instance.

Figure C–1 Basic Flow of Action with the Spatial Routing Engine

This chapter contains the following major sections:

Oracle Spatial

Routing Engine

Routing Client
Route Request:
 - Preferences
 - Start Location
 - End Location
 or
Batch Route Request:
 - Preferences
 - Start Location
 - End Locations

Route Response:
 - Route Information
 - Segment Information
 (for each route segment)
 or
Batch Route Response:
 - Route Information
 (for each route)

(running in Oracle
Application Server or OC4J)

Deploying and Configuring the Routing Engine

C-2 Oracle Spatial User’s Guide and Reference

■ Section C.1, "Deploying and Configuring the Routing Engine"

■ Section C.2, "Routing Engine XML API"

■ Section C.3, "Data Structures Used by the Routing Engine"

C.1 Deploying and Configuring the Routing Engine
To enable the routine engine to process routing requests and to generate responses,
you must deploy the routeserver.ear file using OC4J or the Oracle Application
Server. This section describes the basic steps.

1. Add the following element inside the <web-site> element in your
http-web-site.xml or default-web-site.xml file of OC4J:

<web-app application="routeserver"
 name="web"
 load-on-startup="true"
 root="/routeserver"
 max-inactivity-time="no shutdown"
 shared="false" />

2. Use the Oracle Application Server console to deploy the routeserver.ear file,
or add the following element inside the <application-server> element in the
server.xml file of OC4J (replace <ROUTE_SERVER_HOME> accordingly):

<application name="routeserver"
 path="<ROUTE_SERVER_HOME>/routeserver.ear"
 auto-start="true" />

3. Add the following element inside the <application-server> element in the
server.xml file of OC4J:

<max-http-connections value="10" />

It is important to limit the number of concurrent requests that the Oracle Route
Server can process at any given time to prevent
java.lang.OutOfMemoryError errors.

4. Start OC4J using the following command options:

-server
-Xms<HEAP_SIZE>
-Xmx<HEAP_SIZE>
-XX:NewSize=<YOUNG_GENERATION_SIZE>
-XX:MaxNewSize=<YOUNG_GENERATION_SIZE>
-Dsun.rmi.dgc.server.gcInterval=3600000
-Dsun.rmi.dgc.client.gcInterval=3600000
-verbose:gc (optional)

<HEAP_SIZE> must be at least 512 MB, and has a recommended size of at least
1024 MB (1 GB). Make sure that this memory is physical memory and not virtual
memory.

<YOUNG_GENERATION_SIZE> should be one-fourth (25%) of the <HEAP_SIZE>
value.

-verbose:gc will print all minor and major Java garbage collections. Monitoring
these statistics could be useful for memory resource planning. If you find that
garbage collections are occurring frequently or are lasting several seconds, you
probably need to allocate more physical memory to the Java VM.

Routing Engine XML API

Routing Engine C-3

The following command is an example that starts OC4J. Note that the -config flag
is an OC4J command line parameter, not a VM option.

c:\jdk1.4.2\bin\java -server
 -Xms1024m
 -Xmx1024m
 -XX:NewSize=256m
 -XX:MaxNewSize=256m
 -Dsun.rmi.dgc.server.gcInterval=3600000
 -Dsun.rmi.dgc.client.gcInterval=3600000
 -verbose:gc
 -jar c:\oc4j\j2ee\home\oc4j.jar
 -config c:\oc4j\j2ee\home\config\server.xml

5. Verify your deployment by visiting the URL in the following format:

http://<hostname>:<port>/routeserver

You should see a welcome page. You should also see a message in the console
window in which you started OC4J indicating that the Oracle Route Server was
successfully initialized.

If you do not see a welcome message, the route server is probably not configured
properly to run in your environment. In this case, edit the <ROUTE_SERVER_
HOME>/routeserver/web/WEB-INF/web.xml file to reflect your environment
and your preferences. (The web.xml file is inside the routeserver.ear file, and
it will not be visible until OC4J expands it into the route server directory structure
under <ROUTE_SERVER_HOME>.) When you are finished editing, restart OC4J and
verify your deployment.

6. Consult the supplied examples. The page
http://<hostname>:<port>/routeserver/ has links at the bottom in a
section named Test Samples. These examples demonstrate various capabilities of
the Oracle Route Server. This is the best way to learn the XML API, which is
described in Section C.2.

C.2 Routing Engine XML API
This section explains how to submit route requests in XML format to the routing
engine, and it describes the XML document type definitions (DTDs) for the route
requests (input) and responses (output). XML is widely used for transmitting
structured documents using the HTTP protocol. If an HTTP request (GET or POST
method) is used, it is assumed the request has a parameter named xml_request
whose value is a string containing the XML document for the request.

A request to the routing engine servlet has the following format:

http://hostname:port/route-server-servlet-path?xml_request=xml-request

In this format:

■ hostname is the network path of the server on which the routing engine is running.

Note: The amount of memory the Java VM will need depends
mostly on two parameters: the <max-http-connections
value="..." /> element in the <application-server> element
in server.xml, and the partition_cache_size_limit
parameter in web.xml.

Routing Engine XML API

C-4 Oracle Spatial User’s Guide and Reference

■ port is the port on which the application server listens.

■ route-server-servlet-path is the routing engine servlet path (for example,
routeserver/servlet/RouteServerServlet).

■ xml-request is the URL-encoded XML request submitted using the HTML GET or
POST method.

The input XML is required for all requests. The output will be an XML document.

In an input route (as opposed to batch route) request, you must specify a route ID, and
you can specify one or more of the following attributes:

■ route_preference: fastest or shortest (default). (Note that for batch route
requests, the default is fastest.)

■ road_preference: highway (default) or local

■ return_hierarchical_directions (whether to return hierarchical
directions): true or false (default)

■ return_driving_directions (whether to return driving directions): true
(default) or false

■ return_route_geometry (whether to return the line string coordinates for the
route): true or false (default)

■ return_detailed_geometry: true (default; returns detailed geometries) or
false (returns generalized geometries)

■ distance_unit: kilometer, mile (default), or meter

■ time_unit: hour, minute (default), or second

■ pre_geocoded_locations (whether the start and end locations are input
locations (address specifications or points) or previously geocoded locations):
true (previously geocoded locations) or false (default; input locations)

In an input batch route request, you must specify a request ID, a start location, and one
or more end locations. Each location must have an ID attribute. You can also specify
one or more of the following attributes for the batch route request:

■ route_preference: fastest (default) or shortest. (Note that for individual
route requests, the default is shortest.)

■ road_preference: highway (default) or local

■ distance_unit: kilometer, mile (default), or meter

■ time_unit: hour, minute (default), or second

■ sort_by_distance (whether to sort the returned routes in ascending order by
distance of the end location from the start location: true or false (default)

■ cutoff_distance (returning only routes where the end location is less than or
equal to a specified number of distance units from the start location): (number;
default = no limit)

■ pre_geocoded_locations (whether the start and end locations are input
locations (address specifications or points) or previously geocoded locations):
true (previously geocoded locations) or false (default; input locations)

This section contains the following subsections:

■ Section C.2.1, "Route Request and Response Examples"

■ Section C.2.2, "Route Request DTD"

Routing Engine XML API

Routing Engine C-5

■ Section C.2.3, "Route Response DTD"

■ Section C.2.4, "Batch Route Request and Response Examples"

■ Section C.2.5, "Batch Route Request DTD"

■ Section C.2.6, "Batch Route Response DTD"

■ Section C.2.7, "Geocoding Request and Response DTDs"

C.2.1 Route Request and Response Examples
This section contains XML examples of route requests and the responses generated by
those requests. One request uses specified addresses, another uses points specified by
longitude and latitude coordinates, and another uses previously geocoded locations.
For reference information about the available elements and attributes, see Section C.2.2
for requests and Section C.2.3 for responses.

Example C–1 shows a request for the fastest route, preferably using highways,
between two offices at specified addresses (in Waltham, Massachusetts and Nashua,
New Hampshire), with driving directions for each segment, and using miles for
distances and minutes for times.

Example C–1 Route Request with Specified Addresses

<?xml version="1.0" standalone="yes"?>
<route_request
 id="8"
 route_preference="fastest"
 road_preference="highway"
 return_driving_directions="true"
 distance_unit="mile"
 time_unit="minute">
 <start_location>
 <input_location id="1">
 <input_address>
 <us_form1
 street="1000 Winter St"
 lastline="Waltham, MA" />
 </input_address>
 </input_location></start_location>
 <end_location>
 <input_location id="2">
 <input_address>
 <us_form1
 street="1 Oracle Dr"
 lastline="Nashua, NH" />
 </input_address>
 </input_location>
 </end_location>
</route_request>

Example C–2 shows the response generated by the request in Example C–1. (The
output is reformatted for readability.)

Example C–2 Route Response with Specified Addresses

<?xml version="1.0" ?>
<route_response>
 <route
 id="8"

Routing Engine XML API

C-6 Oracle Spatial User’s Guide and Reference

 step_count="14"
 distance="30.28667355371901"
 distance_unit="mile"
 time="35.02037760416667"
 time_unit="minute">
 <segment
 sequence="1"
 instruction="Start out on WINTER ST (Going South)"
 distance="1.2041612436793172"/>
 <segment
 sequence="2"
 instruction="Stay STRAIGHT to go onto TOTTEN POND RD (Going East)"
 distance="0.08879983757738225"/>
 <segment
 sequence="3"
 instruction="Turn LEFT onto WYMAN ST (Going North)"
 distance="0.24681569656886923"/>
 <segment
 sequence="4"
 instruction="Take I-95 N RAMP toward PEABODY"
 distance="0.23440010735937208"/>
 <segment
 sequence="5"
 instruction="Merge onto I-95/RT-128 (Going North)"
 distance="6.002288440990454"/>
 <segment
 sequence="6"
 instruction="Continue on I-95/RT-128"
 distance="0.0"/>
 <segment
 sequence="7"
 instruction="Stay STRAIGHT to go onto 32B/32A (Going East)"
 distance="0.15052764594854906"/>
 <segment
 sequence="8"
 instruction="Take EXIT 32A toward LOWELL"
 distance="0.032767910543403965"/>
 <segment
 sequence="9"
 instruction="Stay STRAIGHT to go onto RAMP (Going East)"
 distance="0.27877937515534706"/>
 <segment
 sequence="10"
 instruction="Turn LEFT onto US-3 (Going Northwest)"
 distance="20.66104112133381"/>
 <segment
 sequence="11"
 instruction="Stay STRAIGHT to go onto FREDERICK E EVERETT
 TPKE/US-3 (Going Northwest)"
 distance="0.00588619663828994"/>
 <segment
 sequence="12"
 instruction="Take EXIT 1 toward SO NASHUA"
 distance="0.5504892461007892"/>
 <segment
 sequence="13"
 instruction="Turn LEFT onto SPIT BROOK RD (Going West)"
 distance="0.5032054891878457"/>
 <segment
 sequence="14"

Routing Engine XML API

Routing Engine C-7

 instruction="Turn RIGHT onto ORACLE DR (Going North)"
 distance="0.3275097635011146"/>
 </route>
</route_response>

Example C–3 shows a request for the fastest route, preferably using highways,
between two locations specified as longitude/latitude points, with driving directions
for each segment, and using meters for distances and seconds for times. (The points
are associated with two locations in San Francisco, California: the World Trade Center
and 100 Flower Street.)

Example C–3 Route Request with Specified Longitude/Latitude Points

<?xml version="1.0" standalone="yes"?>
<route_request id="8"
 route_preference="shortest"
 road_preference="highway"
 return_driving_directions="true"
 distance_unit="meter"
 time_unit="second"
 return_route_geometry="true"
 >
 <start_location>
 <input_location id="1" longitude="-122.39382" latitude="37.79518" />
 </start_location>
 <end_location>
 <input_location id="2" longitude="-122.4054826" latitude="37.7423566" />
 </end_location>
</route_request>

Example C–4 shows the response generated by the request in Example C–3. (The
output is reformatted for readability.)

Example C–4 Route Response with Specified Longitude/Latitude Points

<route_response>
 <route id="8" step_count="13" distance="7261.4423828125" distance_unit="meter"
 time="441.9170837402344" time_unit="second">
 <route_geometry>
 <LineString>
 <coordinates>
-122.39381999996483,37.79517999996185 -122.39382,37.79518 -122.39458,37.79598 -122.39469,37.796
-122.39474,37.796 -122.39479,37.79599 -122.39483,37.79591 -122.39483,37.79579 -122.39462,37.79539
-122.39424,37.79488 -122.39338,37.79434 -122.39311,37.79413 -122.39275,37.79384 -122.39258,37.79368
-122.39171,37.79297 -122.39145,37.79273 -122.39127,37.79248 -122.3912,37.79235 -122.39107,37.79208
-122.39098,37.79185 -122.39088,37.79161 -122.39075,37.79138 -122.39048,37.79105 -122.3901,37.79079
-122.38918,37.79001 -122.38877,37.78968 -122.38857,37.78948 -122.38939,37.78882 -122.39024,37.78815
-122.39113,37.78745 -122.39192,37.7868 -122.39284,37.78606 -122.39372,37.78535 -122.39406,37.78507
-122.39511,37.78426 -122.39565,37.78383 -122.39621,37.78337 -122.39728,37.78252 -122.39824,37.78177
-122.39955,37.78075 -122.39963,37.78032 -122.3997,37.78011 -122.39984,37.77991 -122.40071,37.77899
-122.40085,37.77888 -122.40129,37.77855 -122.40182,37.77815 -122.40245,37.77776 -122.40302,37.77737
-122.40375,37.77695 -122.40433,37.77657 -122.40529,37.77592 -122.40581,37.7755 -122.40605,37.77524
-122.4063,37.77493 -122.40656,37.7744 -122.40671,37.7739 -122.40683,37.77312 -122.40671,37.77264
-122.4066,37.77216 -122.40634,37.77151 -122.40594,37.77074 -122.40573,37.77022 -122.4055,37.76958
-122.40547,37.76913 -122.40541,37.76843 -122.40542,37.76791 -122.40547,37.76743 -122.40541,37.76715
-122.40526,37.76579 -122.4051,37.7645 -122.40513,37.76404 -122.40519,37.76356 -122.40544,37.7629
-122.40561,37.76257 -122.40586,37.76218 -122.40619,37.76161 -122.40636,37.7612 -122.40648,37.76063
-122.40642,37.75996 -122.40633,37.75965 -122.4061,37.75918 -122.40574,37.75875 -122.40543,37.75846
-122.4045,37.75778 -122.40402,37.75735 -122.4038,37.75712 -122.40365,37.75688 -122.40344,37.75645
-122.4033,37.75588 -122.40326,37.75537 -122.40316,37.75437 -122.40304,37.75256 -122.40376,37.7502

Routing Engine XML API

C-8 Oracle Spatial User’s Guide and Reference

-122.40384,37.74976 -122.40396,37.74969 -122.40454,37.74947 -122.40468,37.74933 -122.40474,37.74921
-122.40471,37.74902 -122.4045,37.74873 -122.40417,37.74839 -122.404,37.7482 -122.40378,37.74799
-122.40376,37.74781 -122.40428,37.74623 -122.40428,37.74598 -122.40417,37.74557 -122.40419,37.74483
-122.40431,37.74423 -122.40443,37.74396 -122.40468,37.74353 -122.40509,37.74294 -122.40472,37.74274
-122.40512,37.7422 -122.40548260000706,37.74235680000305
 </coordinates>
 </LineString>
 </route_geometry>
 <segment sequence="1" instruction="Start out on THE EMBARCADERO (Going
 Northwest)" distance="5.246016371529549E-6"/>
 <segment sequence="2" instruction="Stay STRAIGHT to go onto THE
 EMBARCADERO/WORLD TRADE CTR/FERRY PLZ/FERRY
 BLDG (Going Northwest)" distance="111.19815063476562"/>
 <segment sequence="3" instruction="Turn LEFT onto RAMP (Going Southwest)"
 distance="41.756561279296875"/>
 <segment sequence="4" instruction="Turn LEFT onto THE EMBARCADERO (Going
 Southeast)" distance="905.924072265625"/>
 <segment sequence="5" instruction="Turn RIGHT onto HARRISON ST (Going
 Southwest)" distance="1369.1490478515625"/>
 <segment sequence="6" instruction="Take I-80 W RAMP toward SAN JOSE"
 distance="225.425048828125"/>
 <segment sequence="7" instruction="Turn SLIGHT RIGHT onto I-80/JAMES LICK
 SKWY (Going Southwest)" distance="1528.181396484375"/>
 <segment sequence="8" instruction="Stay STRAIGHT to go onto
 US-101/JAMES LICK FWY (Going South)" distance="1765.10498046875"/>
 <segment sequence="9" instruction="Turn SLIGHT RIGHT onto RAMP (Going
 South)" distance="481.18505859375"/>
 <segment sequence="10" instruction="Turn LEFT onto BAY SHORE BLVD (Going
 Southeast)" distance="688.142578125"/>
 <segment sequence="11" instruction="Turn LEFT onto OAKDALE AVE (Going
 Southeast)" distance="39.44921875"/>
 <segment sequence="12" instruction="Turn RIGHT onto PATTERSON ST (Going
 Southwest)" distance="69.53564453125"/>
 <segment sequence="13" instruction="Turn RIGHT onto FLOWER ST (Going
 Northwest)" distance="36.39051818847656"/>
 </route>
</route_response>

Example C–5 shows a request for the route, with driving directions, where the start
and end locations are previously geocoded locations that are about one-half mile apart
in Boston, Massachusetts.

Example C–5 Route Request with Previously Geocoded Locations

<?xml version="1.0" standalone="yes"?>
<route_request id="8"
 route_preference="shortest"
 road_preference="highway"
 return_driving_directions="true"
 distance_unit="mile"
 time_unit="minute"
 pre_geocoded_locations="true">
 <start_location>
 <pre_geocoded_location id="1">
 <edge_id>22161661</edge_id>
 <percent>.5</percent>
 <side>L</side>
 </pre_geocoded_location>
 </start_location>
 <end_location>

Routing Engine XML API

Routing Engine C-9

 <pre_geocoded_location id="2">
 <edge_id>22104391</edge_id>
 <percent>.5</percent>
 <side>R</side>
 </pre_geocoded_location>
 </end_location>
</route_request>

Example C–6 shows the response to the request in Example C–5. (The output is
reformatted for readability.)

Example C–6 Route Response with Previously Geocoded Locations

<?xml version="1.0" ?>
<route_response>
 <route
 id="8"
 step_count="5"
 distance="0.5848966065287509"
 distance_unit="mile"
 time="1.1866167704264323"
 time_unit="minute">
 <segment
 sequence="1"
 instruction="Start out on HUNTINGTON AVE (Going Southeast)"
 distance="0.005477076104790563" />
 <segment
 sequence="2"
 instruction="Turn LEFT onto AVENUE OF THE ARTS/HUNTINGTON
 AVE/RT-9 (Going Northeast)"
 distance="0.006677015642704102" />
 <segment
 sequence="3"
 instruction="Turn RIGHT onto PUBLIC ALLEY 405 (Going Southeast)"
 distance="0.05267257088346108" />
 <segment
 sequence="4"
 instruction="Turn RIGHT onto ST BOTOLPH ST (Going Southwest)"
 distance="0.010097520017923165" />
 <segment
 sequence="5"
 instruction="Turn RIGHT onto MASSACHUSETTS AVE (Going Northwest)"
 distance="0.5099724250650759" />
 </route>
</route_response>

C.2.2 Route Request DTD
The following is the complete DTD for a route request. The main elements and
attributes of the DTD are explained in sections that follow.

<?xml version="1.0" encoding="UTF-8"?>
<!-- geocoder.dtd includes gmlfeature.dtd. These define the
 ELEMENTS input_address and those in Feature, FeatureMember,
 and FeatureCollection that are used in geoFeature,
 geoFeatureCollection, and geoFeatureMember.
-->
<!ENTITY % GEOCODERDTD SYSTEM "geocoder.dtd">
%GEOCODERDTD;

Routing Engine XML API

C-10 Oracle Spatial User’s Guide and Reference

<!--
 input_location element is defined in geocoder.dtd.
 GeometryClasses is defined in gmlgeometry.dtd.
-->
<!ELEMENT route_request (start_location, end_location)>
<!ATTLIST route_request
 vendor CDATA "Oracle"
 id CDATA #REQUIRED
 route_preference (FASTEST|SHORTEST) #IMPLIED
 road_preference (HIGHWAY|LOCAL) #IMPLIED
 return_driving_directions (TRUE|FALSE) #IMPLIED
 return_hierarchival_driving_directions (TRUE|FALSE) #IMPLIED
 return_route_geometry (TRUE|FALSE) #IMPLIED
 return_detailed_geometries (TRUE|FALSE) #IMPLIED
 return_segment_geometry (TRUE|FALSE) #IMPLIED
 language CDATA #IMPLIED
 distance_unit (KM|MILE|METER) #IMPLIED
 time_unit (HOUR|MINUTE|SECOND) #IMPLIED>

<!-- Following are alternatives for specifying the location. Use
 input_location when you want to represent a location with a
 street address. Use longitude_latitude_location when you want to
 specify a location by longitude and latitude coordinates.
 If you have already geocoded the location,
 you can use information from the geocoder response to
 construct a pre_geocoded_location element.
 The geocoder returns:
 - An edge_id (integer that is the road segment identifier)
 - A side ('L' or 'R' – left or right side)
 - A percent (floating-point number 0.0 to 1.0 representing
 the fraction of the length from the start of the road
 segment to this location.
 -->
<!ELEMENT pre_geocoded_location (edge_id, percent, side)>
<!ATTLIST pre_geocoded_location id CDATA #REQUIRED>
<!ELEMENT longitude_latitude_location (longitude, latitude)>

<!ELEMENT start_location (input_location|pre_geocoded_location|longitude_latitude_
location)>
<!ELEMENT end_location (input_location|pre_geocoded_location|longitude_latitude_
location)>

C.2.2.1 route_request Element
The <route_request> element has the following definition:

<!ELEMENT route_request (start_location, end_location)>

The root element of a route request is always named route_request.

The <start_location> child element specifies the start location for the route, as an
address specification, a geocoded address, or longitude/latitude coordinates.

The <end_location> child element specifies the end location for the route, as an
address specification, a geocoded address, or longitude/latitude coordinates.

C.2.2.2 route_request Attributes
The root element <route_request> has a number of attributes, most of them
optional. The attributes are defined as follows:

<!ATTLIST route_request

Routing Engine XML API

Routing Engine C-11

 vendor CDATA "Oracle"
 id CDATA #REQUIRED
 route_preference (FASTEST|SHORTEST) #IMPLIED
 road_preference (HIGHWAY|LOCAL) #IMPLIED
 return_driving_directions (TRUE|FALSE) #IMPLIED
 return_route_geometry (TRUE|FALSE) #IMPLIED
 return_segment_geometry (TRUE|FALSE) #IMPLIED
 language CDATA #IMPLIED
 distance_unit (KM|MILE|METER) #IMPLIED
 time_unit (HOUR|MINUTE|SECOND) #IMPLIED
 pre_geocoded_locations (TRUE|FALSE) #IMPLIED
 return_hierarchical_driving_directions (TRUE|FALSE) #IMPLIED
 return_detailed_geometries (TRUE|FALSE) #IMPLIED>

vendor is an optional attribute whose default value identifies the routing provider as
Oracle.

id is a required attribute that specifies an identification number to be associated with
the request.

route_preference is an optional attribute that specifies whether you want the
route with the lowest estimated driving time (FASTEST) or the route with the shortest
driving distance (SHORTEST, the default).

road_preference is an optional attribute that specifies whether you want the route
to use highways (HIGHWAY, the default) or local roads (LOCAL) when a choice is
available.

return_driving_directions is an optional attribute that specifies whether you
want driving directions for the route. TRUE (the default) returns driving directions;
FALSE does not return driving directions.

return_route_geometry is an optional attribute that specifies whether you want
the coordinates of the line string that represents the route. TRUE returns the
coordinates; FALSE (the default) does not return the coordinates.

return_segment_geometry is currently ignored.

language is currently ignored.

distance_unit is an optional attribute that specifies the unit of measure for distance
values that are returned: KM for kilometer, MILE (the default) for mile, or METER for
meter.

time_unit is an optional attribute that specifies the unit for time values that are
returned: HOUR for hour, MINUTE (the default) for minute, or SECOND for second.

pre_geocoded_locations is an optional attribute that indicates how the start and
end locations are specified. TRUE means that both are previously geocoded locations
specified using the <pre_geocoded_location> element; FALSE (the default)
means that both are addresses specified using the <input_address> or
<longitude_latitude_location> element.

return_hierarchical_driving_directions is an optional attribute that
whether to return the driving directions as an expandable and collapsible hierarchy or
as a list with no hierarchy. TRUE means to return a hierarchy; FALSE (the default)
means to return a list with no hierarchy.

return_detailed_geometries is an optional attribute that indicates the level of
detail to be included in returned geometries. TRUE (the default) returns detailed
geometries; FALSE returns generalized geometries (and usually smaller).

Routing Engine XML API

C-12 Oracle Spatial User’s Guide and Reference

C.2.2.3 input_location Element
The <input_location> element specifies an address in a format that satisfies the
Oracle Spatial geocoding request DTD, which is described in Section C.2.7.1. You can
specify the input location using either the <Point> element or the <input_
address> element. Example C–1 in Section C.2.1 shows the start and end addresses
specified using the <input_location> element and its child element <input_
address>.

To use the <input_location> element, you must ensure that the value of the pre_
geocoded_locations attribute is FALSE (the default) in the <route_request>
element. To specify the start location and the end location, you can use the <input_
location> element for both, the <longitude_latitude_location> element
(described in Section C.2.2.5) for both, or the <input_location> element for one
and the <longitude_latitude_location> element for the other.

C.2.2.4 pre_geocoded_location Element
The <pre_geocoded_location> element specifies a geocoded location in terms of
how far along a street (an edge) the address is and on which side of the street.
Example C–5 in Section C.2.1 shows the start and end addresses specified using the
<pre_geocoded_location> element.

To use the <pre_geocoded_location> element, you must specify pre_geocoded_
locations="TRUE" in the <route_request> element, and you must use the
<pre_geocoded_location> element to specify both the start and end locations.

C.2.2.5 longitude_latitude_location Element
The <longitude_latitude_location> element specifies longitude and latitude
coordinates for the location.

To use the <longitude_latitude_location> element, you must ensure that the
value of the pre_geocoded_locations attribute is FALSE (the default) in the
<route_request> element. To specify the start location and the end location, you
can use the <input_location> element (described in Section C.2.2.3) for both, the
<longitude_latitude_location> element for both, or the <input_location>
element for one and the <longitude_latitude_location> element for the other.

C.2.3 Route Response DTD
The following is the complete DTD for a route response:

<?xml version="1.0" encoding="UTF-8"?>
<!-- route_response DTD includes the gmlgeometry DTD
 as an external entity reference.
 -->
<!ENTITY % GMLGEOMETRYDTD SYSTEM "gmlgeometry.dtd">
 %GMLGEOMETRYDTD;

<!ELEMENT route_response (route | router_error)>

<!ELEMENT route (route_geometry?, segment+)>
<!ATTLIST route id CDATA #REQUIRED
 step_count CDATA #IMPLIED
 time CDATA #IMPLIED
 distance CDATA #IMPLIED>

<!ELEMENT router_error EMPTY>
<!ATTLIST router_error

Routing Engine XML API

Routing Engine C-13

 id CDATA #REQUIRED
 error_code CDATA #IMPLIED
 error_msg CDATA #IMPLIED>

<!ELEMENT route_geometry (LineString | MultiLineString)?>

<!ELEMENT segment segment*, (LineString | MultiLineString)?>
<!ATTLIST segment sequence CDATA #REQUIRED
 instruction CDATA #IMPLIED
 distance CDATA #IMPLIED>

C.2.4 Batch Route Request and Response Examples
This section contains XML examples of batch route requests and the responses
generated by those requests. One request uses specified addresses, and the other
request uses previously geocoded locations. For reference information about the
available elements and attributes, see Section C.2.5 for requests and Section C.2.6 for
responses.

Example C–7 shows a batch route request using specified addresses. The request is for
the fastest routes, preferably using highways, between an office in Waltham,
Massachusetts and three end locations (an Oracle office in Nashua, New Hampshire;
the town offices in Concord, Massachusetts; and Boston City Hall), using miles for
distances and minutes for times. The request calls for the returned routes to be sorted
by distance between the start and end location, and for no routes over 35 miles to be
returned.

Example C–7 Batch Route Request with Specified Addresses

<?xml version="1.0" standalone="yes"?>
<batch_route_request
 id="8"
 route_preference="fastest"
 road_preference="highway"
 return_driving_directions="false"
 sort_by_distance = "true"
 cutoff_distance="35"
 distance_unit="mile"
 time_unit="minute">
 <start_location>
 <input_location
 id="1">
 <input_address>
 <us_form1
 street="1000 Winter St"
 lastline="Waltham, MA" />
 </input_address>
 </input_location>
 </start_location>
 <end_location>
 <input_location id="10">
 <input_address>
 <us_form1
 street="1 Oracle Dr"
 lastline="Nashua, NH" />
 </input_address>
 </input_location>
 </end_location>
 <end_location>
 <input_location

Routing Engine XML API

C-14 Oracle Spatial User’s Guide and Reference

 id="11">
 <input_address>
 <us_form1
 street="22 Monument Sq"
 lastline="Concord, MA" />
 </input_address>
 </input_location>
 </end_location>
 <end_location>
 <input_location
 id="12">
 <input_address>
 <us_form1
 street="1 City Hall Plaza"
 lastline="Boston, MA" />
 </input_address>
 </input_location>
 </end_location>
</batch_route_request>

Example C–8 shows the response generated by the request in Example C–7. (The
output is reformatted for readability.)

Example C–8 Batch Route Response with Specified Addresses

<?xml version="1.0" standalone="yes" ?>
<batch_route_response
 id="8">
 <route
 id="11"
 step_count="0"
 distance="9.132561517429938"
 distance_unit="mile"
 time="12.4705078125"
 time_unit="minute" />
 <route
 id="12"
 step_count="0"
 distance="17.74747391140558"
 distance_unit="mile"
 time="20.413236490885417"
 time_unit="minute" />
 <route
 id="10"
 step_count="0"
 distance="30.28667355371901"
 distance_unit="mile"
 time="35.02037760416667"
 time_unit="minute" />
</batch_route_response>

Example C–9 shows a batch route request using previously geocoded locations. The
request is for the shortest routes, preferably using highways, between one location and
three other locations, using miles for distances and minutes for times. The request calls
for the returned routes to be sorted by distance between the start and end location, and
for no routes over 50 miles to be returned.

Example C–9 Batch Route Request with Previously Geocoded Locations

<?xml version="1.0" standalone="yes"?>

Routing Engine XML API

Routing Engine C-15

<batch_route_request id="8"
 route_preference="shortest"
 road_preference="highway"
 return_driving_directions="false"
 distance_unit="mile"
 time_unit="minute"
 pre_geocoded_locations="true"
 cutoff_distance="50"
 sort_by_distance="true">
 <start_location>
 <pre_geocoded_location id="1">
 <edge_id>22161661</edge_id>
 <percent>.5</percent>
 <side>L</side>
 </pre_geocoded_location>
 </start_location>
 <end_location>
 <pre_geocoded_location id="2">
 <edge_id>22104391</edge_id>
 <percent>.5</percent>
 <side>R</side>
 </pre_geocoded_location>
 </end_location>
 <end_location>
 <pre_geocoded_location id="3">
 <edge_id>22160808</edge_id>
 <percent>.5</percent>
 <side>L</side>
 </pre_geocoded_location>
 </end_location>
 <end_location>
 <pre_geocoded_location id="4">
 <edge_id>22325991</edge_id>
 <percent>.5</percent>
 <side>R</side>
 </pre_geocoded_location>
 </end_location>
</batch_route_request>

Example C–10 shows the response to the request in Example C–9. Only two routes are
returned, because the third route is longer than the specified cutoff distance of 50
miles. (The output is reformatted for readability.)

Example C–10 Batch Route Response with Previously Geocoded Locations

<?xml version="1.0" standalone="yes" ?>
<batch_route_response id="8">
 <route
 id="2"
 step_count="0"
 distance="0.5848966065287509"
 distance_unit="mile"
 time="1.1866167704264323"
 time_unit="minute" />
 <route
 id="4"
 step_count="0"
 distance="41.09054596719071"
 distance_unit="mile"
 time="45.4477294921875"

Routing Engine XML API

C-16 Oracle Spatial User’s Guide and Reference

 time_unit="minute" />
</batch_route_response>

C.2.5 Batch Route Request DTD
The following is the complete DTD for a batch route request. The main elements and
attributes of the DTD are explained in sections that follow.

<!ENTITY % GEOCODERDTD SYSTEM "geocoder.dtd">
%GEOCODERDTD;
<!-- input_location element is defined in geocoder.dtd -->

<!ELEMENT batch_route_request (start_location, end_location+)>
 <!ATTLIST batch_route_request
 vendor CDATA "Oracle"
 id CDATA #REQUIRED
 route_preference (FASTEST | SHORTEST) #IMPLIED
 road_preference (HIGHWAY | LOCAL) #IMPLIED
 distance_unit (KM | MILE | METER) #IMPLIED
 time_unit (HOUR | MINUTE | SECOND) #IMPLIED
 sort_by_distance (TRUE | FALSE) #IMPLIED
 cutoff_distance CDATA #IMPLIED>

<!-- Following are alternatives for specifying the location. Use
 input_location when you want to represent a location with a
 street address. Use longitude_latitude_location when you want to
 specify a location by longitude and latitude coordinates.
 If you have already geocoded the location,
 you can use information from the geocoder response to
 construct a pre_geocoded_location element.
 The geocoder returns:
 - an edge_id (integer that is the road segment identifier)
 - a side ('L' or 'R' – left or right side)
 - a percent (floating-point number 0.0 to 1.0 representing
 the fraction of the length from the start of the road
 segment to this location.
-->
<!ELEMENT pre_geocoded_location (edge_id, percent, side)>
<!ATTLIST pre_geocoded_location id CDATA #REQUIRED>
<!ELEMENT longitude_latitude_location (longitude, latitude)>

<!ELEMENT start_location (input_location|pre_geocoded_location|longitude_latitude_
location)>
<!ELEMENT end_location (input_location|pre_geocoded_location|longitude_latitude_
location)>
<!-- IMPORTANT VALIDITY CONSTRAINT: each of the input_location
 elements that are children of end_location MUST contain
 the id attribute. Normally, the id attribute is optional.
 If an id is not present, an exception will result.
 Also, each id must be unique within a batch_route_request.
 Otherwise, the request will yield unpredictable results.
-->

C.2.5.1 batch_route_request Element
The <batch_route_request> element has the following definition:

<!ELEMENT batch_route_request (start_location, end_location+)>

The root element of a route request is always named batch_route_request.

Routing Engine XML API

Routing Engine C-17

The <start_location> child element specifies the start location for the route, as an
address specification, a geocoded address, or longitude/latitude coordinates.

Each of the one or more <end_location> child elements specifies the end location
for the route, as an address specification, a geocoded address, or longitude/latitude
coordinates.

C.2.5.2 batch_route_request Attributes
The root element <batch_route_request> has a number of attributes, most of
them optional. The attributes are defined as follows:

<!ATTLIST batch_route_request
 vendor CDATA "Oracle"
 id CDATA #REQUIRED
 route_preference (FASTEST|SHORTEST) #IMPLIED
 road_preference (HIGHWAY|LOCAL) #IMPLIED
 distance_unit (KM|MILE|METER) #IMPLIED
 time_unit (HOUR|MINUTE|SECOND) #IMPLIED
 sort_by_distance (TRUE | FALSE) #IMPLIED
 cutoff_distance CDATA #IMPLIED>
 pre_geocoded_locations (TRUE|FALSE) #IMPLIED>

Most <batch_route_request> attributes have the same meaning as their
counterpart <route_request> attributes, which are explained in Section C.2.5.2. In
addition, the sort_by_distance and cutoff_distance attributes do not apply to
single route requests.

sort_by_distance is an optional attribute that specifies whether you want the
routes returned in ascending order by distance of the end location from the start
location. TRUE sorts the returned routes by distance; FALSE (the default) does not sort
the returned routes by distance.

cutoff_distance is an optional attribute that causes routes to be returned only
where the end location is less than or equal to a specified distance from the start
location. By default, all routes are returned.

C.2.6 Batch Route Response DTD
The following is the complete DTD for a batch route response:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT batch_route_response (route | route_error)+ >
<!ATTLIST batch_route_response id CDATA #REQUIRED>
<!ELEMENT route EMPTY>
<!ATTLIST route
 id CDATA #REQUIRED
 step_count CDATA #IMPLIED
 distance CDATA #IMPLIED
 distance_unit CDATA #IMPLIED
 time CDATA #IMPLIED
 time_unit CDATA #IMPLIED>
<!ELEMENT router_error EMPTY>
<!ATTLIST router_error
 id CDATA #REQUIRED
 error_code CDATA #IMPLIED

Note: If a route is within the specified cutoff_distance value but
would generate a <router_error> element in the response (see
Section C.2.6), the route is removed from the response and not shown.

Routing Engine XML API

C-18 Oracle Spatial User’s Guide and Reference

 error_msg CDATA #IMPLIED>

C.2.7 Geocoding Request and Response DTDs
This section presents the DTDs for requests to geocode an address and for responses to
these requests. These DTDs are supported only for use with route requests, and they
are not explained in detail.

C.2.7.1 Geocoding Request DTD
The DTD for a request to geocode an address is as follows:

<!-- geocode_request DTD includes the GML Feature
DTD as an external entity reference. The complete
URL for the DTD is:
http://www.opengis.org/techno/specs/00-029/gmlfeature.dtd
 -->
<!ENTITY % GMLFEATUREDTD SYSTEM "gmlfeature.dtd">
%GMLFEATUREDTD;
<!ELEMENT geocode_request (address_list)>
<!ATTLIST geocode_request >
<!ELEMENT address_list (input_location+)>
<!ELEMENT input_location (Point | input_address)>
<!ATTLIST input_location
 id CDATA #IMPLIED
 multimatch_number CDATA "4"
>

<!ELEMENT Point EMPTY>
<!ATTLIST Point
 longitude CDATA #IMPLIED
 latitude CDATA #IMPLIED
>

<!ELEMENT input_address (us_form1 | us_form2 | gdf_form | gen_form | unformatted)>
<!ATTLIST input_address match_mode CDATA #IMPLIED >
<!ELEMENT gdf_form EMPTY>
<!ATTLIST gdf_form
 name CDATA #IMPLIED
 street CDATA #IMPLIED
 intersecting_street CDATA #IMPLIED
 builtup_area CDATA #IMPLIED
 order8_area CDATA #IMPLIED
 order2_area CDATA #IMPLIED
 order1_area CDATA #IMPLIED
 country CDATA #IMPLIED
 postal_code CDATA #IMPLIED
 postal_addon_code CDATA #IMPLIED
>

<!ELEMENT gen_form EMPTY>
<!ATTLIST gen_form
 name CDATA #IMPLIED
 street CDATA #IMPLIED
 intersecting_street CDATA #IMPLIED
 sub_area CDATA #IMPLIED
 city CDATA #IMPLIED
 region CDATA #IMPLIED
 country CDATA #IMPLIED
 postal_code CDATA #IMPLIED

Routing Engine XML API

Routing Engine C-19

 postal_addon_code CDATA #IMPLIED
>

<!ELEMENT us_form1 EMPTY>
<!ATTLIST us_form1
 name CDATA #IMPLIED
 street CDATA #IMPLIED
 intersecting_street CDATA #IMPLIED
 lastline CDATA #IMPLIED
>

<!ELEMENT us_form2 EMPTY>
<!ATTLIST us_form2
 name CDATA #IMPLIED
 street CDATA #IMPLIED
 intersecting_street CDATA #IMPLIED
 city CDATA #IMPLIED
 state CDATA #IMPLIED
 zip_code CDATA #IMPLIED
>

<!ELEMENT unformatted (address_line) >
<!ATTLIST unformatted country CDATA #IMPLIED >
<!ELEMENT address_line EMPTY >
<!ATTLIST value #REQUIRED >

C.2.7.2 Geocoding Response DTD
The DTD for a response generated by a request to geocode an address is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT geocode_response (geocode+)>

<!ELEMENT geocode (match*)>
<!ATTLIST geocode id CDATA #REQUIRED
 match_count CDATA #IMPLIED
 >

<!ELEMENT match (output_address)>
<!ATTLIST match sequence CDATA #REQUIRED
 longitude CDATA #REQUIRED
 latitude CDATA #REQUIRED
 match_code CDATA #REQUIRED
 error_message CDATA #IMPLIED >

<!ELEMENT output_address EMPTY>
<!ATTLIST output_address
 name CDATA #IMPLIED
 house_number CDATA #IMPLIED
 street CDATA #IMPLIED
 builtup_area CDATA #IMPLIED
 order1_area CDATA #IMPLIED
 order8_area CDATA #IMPLIED
 country CDATA #IMPLIED
 postal_code CDATA #IMPLIED
 postal_addon_code CDATA #IMPLIED
 side CDATA #IMPLIED
 percent CDATA #IMPLIED
 edge_id CDATA #IMPLIED>

Data Structures Used by the Routing Engine

C-20 Oracle Spatial User’s Guide and Reference

C.3 Data Structures Used by the Routing Engine
Each database user of the routing engine must have the following tables is its schema:

■ EDGE

■ NODE

■ PARTITION

■ SIGN_POST

The EDGE and NODE tables store edge and node information about the street
network used by the routing engine. To understand how edges and nodes are used to
represent street segments, intersections, and other entities in a street network, you
must be familiar with the Oracle Spatial network data model, which is described in
Oracle Spatial Topology and Network Data Models.

The following sections describe the tables used by the routing engine, in alphabetical
order by table name.

C.3.1 EDGE Table
The EDGE table contains one row for each directed edge in a street network. Each
street segment (a part of a road between two nodes) is an undirected edge that
corresponds to one or more directed edges in the EDGE table. The EDGE table
contains the columns shown in Table C–1.

Table C–1 EDGE Table

Column Name Data Type Description

EDGE_ID NUMBER Edge ID number.

START_NODE_ID NUMBER Node ID number of the start node of this edge.

END_NODE_ID NUMBER Node ID number of the end node of this edge.

PARTITION_ID NUMBER Partition ID number of the network partition that
contains this edge .

FUNC_CLASS NUMBER Functional road class: a number from 1 through 5, with
1 indicating a large, high-speed, high-volume road, and
each successive class generally smaller in size, speed,
and volume. Class 2 roads have consistent speeds and
are used to get traffic to and from class 1 roads. Class 3
roads have high volume and are used to connect class 2
roads. Class 4 roads move volumes of traffic between
neighborhoods (for example, a busy main road in a
city). Class 5 roads are all other roads (for example, a
small, low-volume street in a neighborhood).

LENGTH NUMBER Length of this edge, in meters.

SPEED_LIMIT NUMBER Assigned speed limit for this edge, in meters per
second.

GEOMETRY SDO_
GEOMETRY

Line string geometry representing this edge, with the
coordinates ordered from the start node to the end
node.

NAME VARCHAR2(128) Name of this edge.

DIVIDER VARCHAR2(1) A value of N indicates that the edge is not divided;
other values indicate whether, where, and how turns
are allowed on the divided edge. (The routing engine
currently considers only whether the edge is divided or
not.)

Data Structures Used by the Routing Engine

Routing Engine C-21

C.3.2 NODE Table
The NODE table contains one row for each node that is the start node or end node of
one or more edges in the street network. A node often corresponds to an intersection
(the intersection of two edges); however, a node can be independent of any
intersection (for example, the end of a "dead end" or "no outlet" street). The NODE
table contains the columns shown in Table C–2.

C.3.3 PARTITION Table
The PARTITION table is generated by Oracle based on the contents of the EDGE and
NODE tables. (If the contents of the EDGE or NODE table, or both tables, change, you
can call the SDO_ROUTER_PARTITION.PARTITION_ROUTER PL/SQL procedure to
partition the data, and then swap the new partition table for the existing partition
table.) The PARTITION table contains the columns shown in Table C–3.

C.3.4 SIGN_POST Table
The SIGN_POST table stores sign information that is used to generate driving
directions. For example, a sign might indicate that Exit 33A on US Route 3 South goes
toward Winchester. A SIGN_POST row might correspond to a physical sign at an exit
ramp on a highway, but it does not need to correspond to a physical sign. The SIGN_
POST table contains the columns shown in Table C–4.

Table C–2 NODE Table

Column Name Data Type Description

NODE_ID NUMBER Node ID number.

GEOMETRY SDO_
GEOMETRY

Point geometry representing this node.

PARTITION_ID NUMBER Partition ID number of the network partition that
contains this node .

Table C–3 PARTITION Table

Column Name Data Type Description

PARTITION_ID NUMBER Partition ID number.

SUBNETWORK BLOB Part of the network included in this partition.

NUM_NODES NUMBER Number of nodes in this partition.

NUM_NON_
BOUNDARY_EDGES

NUMBER Number of edges in this partition that are edges that are
completely contained within the partition.

NUM_OUTGOING_
BOUNDARY_EDGES

NUMBER Number of edges in this partition that start in this
partition and terminate in another partition. (An edge
cannot be in more that two partitions; for example, an
edge cannot start in one partition, go through a second
partition, and end in a third partition.)

NUM_INCOMING_
BOUNDARY_EDGES

NUMBER Number of edges in this partition that start in another
partition and terminate in this partition. (An edge
cannot be in more that two partitions; for example, an
edge cannot start in one partition, go through a second
partition, and end in a third partition.)

Data Structures Used by the Routing Engine

C-22 Oracle Spatial User’s Guide and Reference

Table C–4 SIGN_POST Table

Column Name Data Type Description

FROM_EDGE_ID NUMBER Edge ID number of the edge to which this sign applies
(for example, the street segment containing the exit
ramp).

TO_EDGE_ID NUMBER Edge ID number of the edge to which this sign points
(for example, the street segment to which the exit ramp
leads).

RAMP VARCHAR2(64) Ramp text (for example, US-3 SOUTH).

EXIT VARCHAR2(8) Exit number (for example, 33A).

TOWARD VARCHAR2(64) Text indicating where the exit is heading (for example,
WINCHESTER).

Complex Spatial Queries: Examples D-1

D
Complex Spatial Queries: Examples

This appendix provides examples, with explanations, of queries that are more complex
than the examples in the reference chapters in Part II, "Reference Information". This
appendix focuses on operators that are frequently used in Spatial applications, such as
SDO_WITHIN_DISTANCE and SDO_NN.

This appendix is based on input from Oracle personnel who provide support and
training to Spatial users. The Oracle Spatial training course covers many of these
examples, and provides additional examples and explanations.

Before you use any of the examples in this appendix, be sure you understand the
usage and reference information for the relevant operator or function in Part I,
"Conceptual and Usage Information" and Part II, "Reference Information".

This appendix contains the following major sections:

■ Section D.1, "Tables Used in the Examples"

■ Section D.2, "SDO_WITHIN_DISTANCE Examples"

■ Section D.3, "SDO_NN Examples"

■ Section D.4, "SDO_AGGR_UNION Example"

D.1 Tables Used in the Examples
The examples in this appendix refer to tables named GEOD_CITIES, GEOD_
COUNTIES, and GEOD_INTERSTATES, which are defined as follows:

CREATE TABLE GEOD_CITIES(
 LOCATION SDO_GEOMETRY,
 CITY VARCHAR2(42),
 STATE_ABRV VARCHAR2(2),
 POP90 NUMBER,
 RANK90 NUMBER);

CREATE TABLE GEOD_COUNTIES(
 COUNTY_NAME VARCHAR2(40),
 STATE_ABRV VARCHAR2(2),
 GEOM SDO_GEOMETRY);

CREATE TABLE GEOD_INTERSTATES(
 HIGHWAY VARCHAR2(35),
 GEOM SDO_GEOMETRY);

SDO_WITHIN_DISTANCE Examples

D-2 Oracle Spatial User’s Guide and Reference

D.2 SDO_WITHIN_DISTANCE Examples
The SDO_WITHIN_DISTANCE operator identifies the set of spatial objects that are
within some specified distance of a given object. You can indicate that the distance is
approximate or exact. If you specify querytype=FILTER, the distance is approximate
because only a primary filter operation is performed; otherwise, the distance is exact
because both primary and secondary filtering operations are performed.

Example D–1 finds all cities within 15 miles of the interstate highway I170.

Example D–1 Finding All Cities Within a Distance of a Highway

SELECT /*+ ORDERED */ c.city
FROM geod_interstates i, geod_cities c
WHERE i.highway = 'I170'
 AND sdo_within_distance (
 c.location, i.geom,
 'distance=15 unit=mile') = 'TRUE';

Example D–1 finds all cities within 15 miles ('distance=15 unit=mile') of the
specified highway (i.highway = 'I170'), and by default the result is exact
(because the querytype parameter was not used to limit the query to a primary filter
operation). In the WHERE clause of this example:

■ i.highway refers to the HIGHWAY column of the INTERSTATES table, and I170
is a value from the HIGHWAY column.

■ c.location specifies the search column (geometry1). This is the LOCATION
column of the GEOD_CITIES table.

■ i.geom specifies the query window (aGeom). This is the spatial geometry in the
GEOM column of the GEOD_INTERSTATES table, in the row whose HIGHWAY
column contains the value I170.

Example D–2 finds all interstate highways within 15 miles of the city of Tampa.

Example D–2 Finding All Highways Within a Distance of a City

SELECT /*+ ORDERED */ i.highway
FROM geod_cities c, geod_interstates i
WHERE c.city = 'Tampa'
 AND sdo_within_distance (
 i.geom, c.location,
 'distance=15 unit=mile') = 'TRUE';

Example D–2 finds all highways within 15 miles ('distance=15 unit=mile') of
the specified city (c.city = 'Tampa'), and by default the result is exact (because
the querytype parameter was not used to limit the query to a primary filter
operation). In the WHERE clause of this example:

■ c.city refers to the CITY column of the GEOD_CITIES table, and Tampa is a
value from the CITY column.

■ i.geom specifies the search column (geometry1). This is the GEOM column of
the GEOD_INTERSTATES table.

■ c.location specifies the query window (aGeom). This is the spatial geometry in
the LOCATION column of the GEOD_CITIES table, in the row whose CITY
column contains the value Tampa.

SDO_NN Examples

Complex Spatial Queries: Examples D-3

D.3 SDO_NN Examples
The SDO_NN operator determines the nearest neighbor geometries to a geometry. No
assumptions should be made about the order of the returned results. If you specify no
optional parameters, one nearest neighbor geometry is returned.

If you specify the optional sdo_num_res keyword, you can request how many
nearest neighbors you want, but no other conditions in the WHERE clause are
evaluated, and any sdo_batch_size specification is ignored. For example, assume
that you want the five closest banks from an intersection, but only where the bank
name is CHASE. If the five closest banks are not named CHASE, SDO_NN with any
sdo_num_res value and with sdo_batch_size=5 will return no rows because the
sdo_num_res keyword only takes proximity into account, and not any sdo_batch_
size specification or conditions in the WHERE clause.

If you specify the optional sdo_batch_size keyword instead of the sdo_num_res
keyword, SDO_NN keeps returning neighbor geometries in distance order to the
WHERE clause. If the WHERE clause specifies bank_name = 'CHASE' AND
rownum < 6, you can return the five closest banks with bank_name = 'CHASE'.

SDO_NN_DISTANCE is an ancillary operator to the SDO_NN operator. It returns the
distance of an object returned by the SDO_NN operator and is valid only within a call
to the SDO_NN operator.

Example D–3 finds the five cities nearest to the interstate highway I170 and the
distance in miles from the highway for each city, ordered by distance in miles.

Example D–3 Finding the Cities Nearest to a Highway

SELECT /*+ ORDERED */
 c.city,
 sdo_nn_distance (1) distance_in_miles
FROM geod_interstates i,
 geod_cities c
WHERE i.highway = 'I170'
 AND sdo_nn(c.location, i.geom,
 'sdo_num_res=5 unit=mile', 1) = 'TRUE'
ORDER BY distance_in_miles;

In Example D–3, because the /*+ ORDERED*/ optimizer hint is used, it is important
to have an index on the GEOD_INTERSTATES.HIGHWAY column. In this example,
the hint forces the query to locate highway I170 before it tries to find nearest neighbor
geometries. In the WHERE clause of this example:

■ i.highway refers to the HIGHWAY column of the GEOD_INTERSTATES table,
and I170 is a value from the HIGHWAY column.

■ c.location specifies the search column (geometry1). This is the LOCATION
column of the GEOD_CITIES table.

■ i.geom specifies the query window (geometry2). This is the spatial geometry in
the GEOM column of the GEOD_INTERSTATES table, in the row whose
HIGHWAY column contains the value I170.

■ sdo_num_res=5 specifies how many nearest neighbor geometries to find.

■ unit=mile specifies the unit of measurement to associate with distances returned
by the SDO_NN_DISTANCE ancillary operator.

■ 1 (in sdo_nn_distance (1) and 'sdo_num_res=5 unit=mile', 1) is the
number parameter value that associates the call to SDO_NN with the call to SDO_
NN_DISTANCE.

SDO_NN Examples

D-4 Oracle Spatial User’s Guide and Reference

In Example D–3, ORDER BY distance_in_miles orders the results from the
WHERE clause by distance in miles.

The statement in Example D–3 produces the following output (slightly reformatted for
readability):

CITY DISTANCE_IN_MILES
---------------------- ------------------------------
St Louis 5.36297295
Springfield 78.7997464
Peoria 141.478022
Evansville 158.22422
Springfield 188.508631

Example D–4 extends Example D–3 by limiting the results to cities with a 1990
population over a certain number. It finds the five cities nearest to the interstate
highway I170 that have a population greater than 300,000, the 1990 population for each
city, and the distance in miles from the highway for each city, ordered by distance in
miles.

Example D–4 Finding the Cities Above a Specified Population Nearest to a Highway

SELECT /*+ ORDERED NO_INDEX(c pop90_idx) */
 c.city, pop90,
 sdo_nn_distance (1) distance_in_miles
FROM geod_interstates i,
 geod_cities c
WHERE i.highway = 'I170'
 AND sdo_nn(c.location, i.geom,
 'sdo_batch_size=10 unit=mile', 1) = 'TRUE'
 AND c.pop90 > 300000
 AND rownum < 6
ORDER BY distance_in_miles;

In Example D–4, because the ORDERED optimizer hint is used, it is important to have
an index on the GEOD_INTERSTATES.HIGHWAY column. In this example, the hint
forces the query to locate highway I170 before it tries to find nearest neighbor
geometries.

To ensure correct results, disable all nonspatial indexes on columns that come from the
same table as the SDO_NN search column (geometry1). In this example, the NO_
INDEX(c pop90_idx) optimizer hint disables the nonspatial index on the POP90
column.

In the WHERE clause of this example:

■ sdo_batch_size=10 causes geometries to be returned continually (in distance
order, in batches of 10 geometries), to be checked to see if they satisfy the other
conditions in the WHERE clause.

■ c.pop90 > 300000 restricts the results to rows where the POP90 column value
is greater than 300000.

■ rownum < 6 limits the number of results returned to five.

In Example D–4, ORDER BY distance_in_miles orders the results from the
WHERE clause by distance in miles.

The statement in Example D–4 produces the following output (slightly reformatted for
readability):

CITY POP90 DISTANCE_IN_MILES

SDO_AGGR_UNION Example

Complex Spatial Queries: Examples D-5

----------------- ------- ---------------------
St Louis 396685 5.36297295
Kansas City 435146 227.404883
Indianapolis 741952 234.708666
Memphis 610337 244.202072
Chicago 2783726 253.547961

D.4 SDO_AGGR_UNION Example
When you use the SDO_AGGR_UNION aggregate function, very large geometries can
result. When geometries have many coordinates, spatial operations (such as union) can
be time-consuming. It may be better to divide a single spatial aggregate union
operation function into multiple nested aggregate functions in the same SQL
statement.

Example D–5 aggregates all the counties in Texas, producing the boundary for the
state of Texas.

Example D–5 Performing Aggregate Union of All Counties in Texas

SELECT sdo_aggr_union(mdsys.sdoaggrtype(aggr_geom,0.5)) aggr_geom
FROM (SELECT sdo_aggr_union(mdsys.sdoaggrtype(aggr_geom,0.5)) aggr_geom
 FROM (SELECT sdo_aggr_union(mdsys.sdoaggrtype(aggr_geom,0.5)) aggr_geom
 FROM (SELECT sdo_aggr_union(mdsys.sdoaggrtype(aggr_geom,0.5)) aggr_geom
 FROM (SELECT sdo_aggr_union(mdsys.sdoaggrtype(geom,0.5)) aggr_geom
 FROM geod_counties WHERE state_abrv='TX'
 GROUP BY mod(rownum,16)
)
 GROUP BY mod (rownum, 8)
)
 GROUP BY mod (rownum, 4)
)
 GROUP BY mod (rownum, 2)
);

SDO_AGGR_UNION Example

D-6 Oracle Spatial User’s Guide and Reference

Glossary-1

Glossary

area

An extent or region of dimensional space.

attribute

Descriptive information characterizing a geographical feature such as a point, line, or
area.

attribute data

Nondimensional data that provides additional descriptive information about
multidimensional data, for example, a class or feature such as a bridge or a road.

batch geocoding

An operation that simultaneously geocodes many records from one table. See also
geocoding.

boundary

1. The lower or upper extent of the range of a dimension, expressed by a numeric
value.

2. The line representing the outline of a polygon.

Cartesian coordinate system

A coordinate system in which the location of a point in n-dimensional space is defined
by distances from the point to the reference plane. Distances are measured parallel to
the planes intersecting a given reference plane. See also coordinate system.

colocation

The presence of two or more spatial objects at the same location or at significantly
close distances from each other.

contain

A geometric relationship where one object encompasses another and the inner object
does not touch any boundaries of the outer. The outer object contains the inner object.
See also inside.

convex hull

A simple convex polygon that completely encloses the associated geometry object.

coordinate

A set of values uniquely defining a point in an n-dimensional coordinate system.

Glossary-2

coordinate reference system

Synonymous with coordinate system in Oracle Spatial documentation. The term
coordinate reference system is used extensively by the European Petroleum Survey
Group (EPSG).

coordinate system

A reference system for the unique definition for the location of a point in
n-dimensional space. Also called a spatial reference system. See also Cartesian
coordinate system, geodetic coordinates, projected coordinates, and local coordinates.

cover

A geometric relationship in which one object encompasses another and the inner
object touches the boundary of the outer object in one or more places.

data dictionary

A repository of information about data. A data dictionary stores relational information
on all objects in a database.

datum transformation

See transformation.

dimensional data

Data that has one or more dimensional components and is described by multiple
values.

direction

The direction of an LRS geometric segment is indicated from the start point of the
geometric segment to the end point. Measures of points on a geometric segment
always increase along the direction of the geometric segment.

disjoint

A geometric relationship where two objects do not interact in any way. Two disjoint
objects do not share any element or piece of their geometry.

element

A basic building block (point, line string, or polygon) of a geometry.

equal

A geometric relationship in which two objects are considered to represent the same
geometric figure. The two objects must be composed of the same number of points;
however, the ordering of the points defining geometries of the two objects may differ
(clockwise or counterclockwise).

extent

A rectangle bounding a map, the size of which is determined by the minimum and
maximum map coordinates.

feature

An object with a distinct set of characteristics in a spatial database.

geocoding

The process of converting tables of address data into standardized address, location,
and possibly other data. See also batch geocoding.

Glossary-3

geodetic coordinates

Angular coordinates (longitude and latitude) closely related to spherical polar
coordinates and defined relative to a particular Earth geodetic datum. Also referred to
as geographic coordinates.

geodetic datum

A means of representing the figure of the Earth, usually as an oblate ellipsoid of
revolution, that approximates the surface of the Earth locally or globally, and is the
reference for the system of geodetic coordinates.

geographic coordinates

See geodetic coordinates.

geographic information system (GIS)

A computerized database management system used for the capture, conversion,
storage, retrieval, analysis, and display of spatial data.

geographically referenced data

See spatiotemporal data.

geometric segment (LRS segment)

An LRS element that contains start and end measures for its start and end points, and
that can contain measures for other points on the segment.

geometry

The geometric representation of the shape of a spatial feature in some coordinate
space. A geometry is an ordered sequence of vertices that are connected by straight
line segments or circular arcs.

georeferenced data

See spatiotemporal data.

GIS

See geographic information system (GIS).

grid

A data structure composed of points located at the nodes of an imaginary grid. The
spacing of the nodes is constant in both the horizontal and vertical directions.

hole

A subelement of a polygon that negates a section of its interior. For example, consider
a polygon representing a map of buildable land with an inner polygon (a hole)
representing where a lake is located.

homogeneous

Spatial data of one feature type such as points, lines, or regions.

hyperspatial data

In mathematics, any space having more than the three standard X, Y, and Z
dimensions. Sometimes referred to as multidimensional data.

index

A database object that is used for fast and efficient access to stored information.

Glossary-4

inside

A geometric relationship where one object is surrounded by a larger object and the
inner object does not touch the boundary of the outer. The smaller object is inside the
larger. See also contain.

key

A field in a database used to obtain access to stored information.

latitude

North/south position of a point on the Earth defined as the angle between the normal
to the Earth’s surface at that point and the plane of the equator.

layer

A collection of geometries having the same attribute set and stored in a geometry
column.

line

A geometric object represented by a series of points, or inferred as existing between
two coordinate points.

line string

One or more pairs of points that define a line segment. See also multiline string.

linear feature

Any spatial object that can be treated as a logical set of linear segments.

local coordinates

Cartesian coordinates in a non-Earth (non-georeferenced) coordinate system.

longitude

East/west position of a point on the Earth defined as the angle between the plane of a
reference meridian and the plane of a meridian passing through an arbitrary point.

LRS point

A point with linear measure information along a geometric segment. See also geometric
segment (LRS segment).

measure

The linear distance (in the LRS measure dimension) to a point measured from the start
point (for increasing values) or end point (for decreasing values) of the geometric
segment.

measure range

The measure values at the start and end of a geometric segment.

minimum bounding rectangle (MBR)

A single rectangle that minimally encloses a geometry or a collection of geometries.

multidimensional data

See hyperspatial data.

Glossary-5

multiline string

A geometry object made up of nonconnected line string elements (for example, a street
with a gap caused by a city park, such as Sixth Avenue in New York City with Central
Park as the gap). See also line string.

multipolygon

A polygon collection geometry in which rings must be grouped by polygon, and the
first ring of each polygon must be the exterior ring.

neighborhood influence

See spatial correlation.

offset

The perpendicular distance between a point along a geometric segment and the
geometric segment. Offsets are positive if the points are on the left side along the
segment direction and are negative if they are on the right side. Points are on a
geometric segment if their offsets to the segment are zero.

oriented point

A special type of point geometry that includes coordinates representing the locations
of the point and a virtual end point, to indicate an orientation vector that can be used
for rotating a symbol at the point or extending a label from the point

polygon

A class of spatial objects having a nonzero area and perimeter, and representing a
closed boundary region of uniform characteristics.

primary filter

The operation that permits fast selection of candidate records to pass along to the
secondary filter. The primary filter compares geometry approximations to reduce
computation complexity and is considered a lower-cost filter. Because the primary
filter compares geometric approximations, it returns a superset of the exact result set.
See also secondary filter and two-tier query model.

projected coordinates

Planar Cartesian coordinates that result from performing a mathematical mapping
from a point on the Earth’s surface to a plane. There are many such mathematical
mappings, each used for a particular purpose.

projection

The point on the LRS geometric segment with the minimum distance to the specified
point.

proximity

A measure of distance between objects.

query

A set of conditions or questions that form the basis for the retrieval of information
from a database.

query window

Area within which the retrieval of spatial information and related attributes is
performed.

Glossary-6

RDBMS

See Relational Database Management System (RDBMS).

recursion

A process, function, or routine that executes continuously until a specified condition is
met.

region

An extent or area of multidimensional space.

Relational Database Management System (RDBMS)

A computer program designed to store and retrieve shared data. In a relational system,
data is stored in tables consisting of one or more rows, each containing the same set of
columns. Oracle Database is an object-relational database management system. Other
types of database systems are called hierarchical or network database systems.

resolution

The number of subdivision levels of data.

scale

The ratio of the distance on a map, photograph, or image to the corresponding image
on the ground, all expressed in the same units.

secondary filter

The operation that applies exact computations to geometries that result from the
primary filter. The secondary filter yields an accurate answer to a spatial query. The
secondary filter operation is computationally expensive, but it is only applied to the
primary filter results, not the entire data set. See also primary filter and two-tier query
model.

shape points

Points that are specified when an LRS segment is constructed, and that are assigned
measure information.

sort

The operation of arranging a set of items according to a key that determines the
sequence and precedence of items.

spatial

A generic term used to reference the mathematical concept of n-dimensional data.

spatial binning

The process of discretizing the location values into a small number of groups
associated with geographical areas. Also referred to as spatial discretization.

spatial correlation

The phenomenon of the location of a specific object in an area affecting some
nonspatial attribute of the object. Also referred to as neighborhood influence.

spatial data

Data that is referenced by its location in n-dimensional space. The position of spatial
data is described by multiple values. See also hyperspatial data.

Glossary-7

spatial data model

A model of how objects are located on a spatial context.

spatial data structures

A class of data structures designed to store spatial information and facilitate its
manipulation.

spatial database

A database containing information indexed by location.

spatial discretization

See spatial binning.

spatial join

A query in which each of the geometries in one layer is compared with each of the
geometries in the other layer. Comparable to a spatial cross product.

spatial query

A query that includes criteria for which selected features must meet location
conditions.

spatial reference system

See coordinate system.

spatiotemporal data

Data that contains time or location (or both) components as one of its dimensions, also
referred to as geographically referenced data or georeferenced data.

SQL*Loader

A utility to load formatted data into spatial tables.

tolerance

The distance that two points can be apart and still be considered the same (for
example, to accommodate rounding errors). The tolerance value must be a positive
number greater than zero. The significance of the value depends on whether or not the
spatial data is associated with a geodetic coordinate system.

touch

A geometric relationship where two objects share a common point on their
boundaries, but their interiors do not intersect.

transformation

The conversion of coordinates from one coordinate system to another coordinate
system. If the coordinate system is georeferenced, transformation can involve datum
transformation: the conversion of geodetic coordinates from one geodetic datum to
another geodetic datum, usually involving changes in the shape, orientation, and
center position of the reference ellipsoid.

two-tier query model

The query model used by Spatial to resolve spatial queries and spatial joins. Two
distinct filtering operations (primary and secondary) are performed to resolve queries.
The output of both operations yields the exact result set. See also primary filter and
secondary filter.

Glossary-8

Index-1

Index

Symbols
, 6-32, 6-33

Numerics
0

SRID value used with SDO_CS.VIEWPORT_
TRANSFORM function, 13-48

type 0 (zero) element, 2-23
10g

upgrading spatial data to Oracle Database
10g, 17-2

3D
formats of LRS functions, 7-7

not supported with geodetic data, 6-40

A
ADD_PREFERENCE_FOR_OP procedure, 13-4
addresses

representing for geocoding, 5-1
aggregate functions

description, 1-14
reference information, 12-1
SDO_AGGR_CENTROID, 12-2
SDO_AGGR_CONCAT_LINES, 12-3
SDO_AGGR_CONVEXHULL, 12-5
SDO_AGGR_LRS_CONCAT, 12-6
SDO_AGGR_MBR, 12-8
SDO_AGGR_UNION, 12-9
SDOAGGRTYPE object type, 1-14

AGGREGATES_FOR_GEOMETRY function, 18-2
AGGREGATES_FOR_LAYER function, 18-4
aliases, 6-9
ALL_SDO_GEOM_METADATA view, 2-29
ALL_SDO_INDEX_INFO view, 2-32
ALL_SDO_INDEX_METADATA view, 2-32
ALTER INDEX statement, 10-2

REBUILD clause, 10-4
RENAME TO clause, 10-7

angle units, 6-29
ANYINTERACT

SDO_ANYINTERACT operator, 11-3
topological relationship, 1-12

APPEND function, 20-3

application size (hardware) requirements, 1-17
arc

densifying, 15-6
not supported with geodetic data, 6-5

area, 15-8
area units, 6-29
average minimum bounding rectangle, 19-2
AVERAGE_MBR procedure, 19-2

B
batch route requests, C-16

DTD, C-16
example, C-13

batch route responses
DTD, C-17
example, C-13

batch_route_request element, C-16
bearing

point at, 20-22
BIN_GEOMETRY function, 18-6
BIN_LAYER procedure, 18-8
binning

spatial, 8-3
See also bins

bins
assigning, 18-8
computing, 18-6
tiled, 18-20

boundary
of area, 1-11
of line string, 1-11
of multiline string, 1-11
of polygon, 1-11

bounding rectangle
minimum, 19-7

buffer area, 15-10
bulk loading of spatial data, 3-1

C
C language

examples (using OCI), 1-17
Cartesian coordinates, 1-5, 6-2
center of gravity (centroid), 15-13
centroid

Index-2

SDO_AGGR_CENTROID aggregate
function, 12-2

SDO_CENTROID function, 15-13
circle

creating polygon approximating, 20-4
not supported with geodetic data, 6-5
type, 2-10

CIRCLE_POLYGON function, 20-4
CLIP_GEOM_SEGMENT function, 16-5
clipping

geometric segment, 7-9
COLOCATED_REFERENCE_FEATURES

procedure, 18-10
colocation mining, 8-4
column name

restrictions on spatial column names, 2-30
COLUMN_NAME (in USER_SDO_GEOM_

METADATA), 2-30
compatibility, A-1
complex examples

queries, D-1
compound element, 2-8
compound line string, 2-10, 2-17
compound polygon, 2-10
CONCAT_LINES function, 20-6
CONCATENATE_GEOM_SEGMENTS

function, 16-7
concatenating

geometric segments, 7-10
line or multiline geometries, 12-3
LRS geometries, 7-11, 12-6

CONNECTED_GEOM_SEGMENTS function, 16-10
consistency

checking for valid geometry types, 15-37
constraining data to a geometry type, 4-2
constructors

SDO_GEOMETRY object type, 2-13
CONTAINS

SDO_CONTAINS operator, 11-5
topological relationship, 1-12

CONVERSION_FACTOR column
in SDO_ANGLE_UNITS table, 6-29
in SDO_AREA_UNITS table, 6-30
in SDO_DIST_UNITS table, 6-32

CONVERT_NADCON_TO_XML procedure, 13-6
CONVERT_NTV2_TO_XML procedure, 13-8
CONVERT_TO_LRS_DIM_ARRAY function, 16-12
CONVERT_TO_LRS_GEOM function, 16-14
CONVERT_TO_LRS_LAYER function, 16-16
CONVERT_TO_STD_DIM_ARRAY function, 16-18
CONVERT_TO_STD_GEOM function, 16-19
CONVERT_TO_STD_LAYER function, 16-20
CONVERT_UNIT function, 20-8
CONVERT_XML_TO_NADCON procedure, 13-10
CONVERT_XML_TO_NTV2 procedure, 13-12
converting

geometric segments
overview, 7-14
subprograms for, 16-3

convex hull

SDO_AGGR_CONVEXHULL aggregate
function, 12-5

SDO_CONVEXHULL function, 15-15
coordinate dimension

ST_CoordDim method, 2-12
coordinate reference systems

See coordinate systems
coordinate systems, 1-5

conceptual and usage information, 6-1
data structures supplied by Oracle, 6-8
example, 6-41
local, 6-6
subprogram reference information, 13-1
unit of measurement support, 2-35
user-defined, 6-34

coordinates
Cartesian, 1-5, 6-2
geodetic, 1-6, 6-2
geographic, 1-6, 6-2
local, 1-6, 6-2
projected, 1-6, 6-2

COVEREDBY
SDO_COVEREDBY operator, 11-6
topological relationship, 1-12

COVERS
SDO_COVERS operator, 11-7
topological relationship, 1-12

CPU requirements for applications using
Spatial, 1-17

CREATE INDEX statement, 10-8
CREATE_CONCATENATED_OP procedure, 13-14
CREATE_OBVIOUS_EPSG_RULES

procedure, 13-15
CREATE_PREF_CONCATENATED_OP

procedure, 13-16
creating

geometric segments
subprograms for, 16-1

cross-schema index creation, 4-3
CS_SRS table, 6-26
current release

upgrading spatial data to, 17-2
cutoff_distance attribute

of batch route request, C-17

D
data mining

spatial
colocation mining, 8-4
conceptual and usage information, 8-1
function reference information, 18-1

data model, 1-4
LRS, 7-6

data types
geocoding, 5-4
spatial, 2-1

database links
not supported if spatial index is defined on the

table, 4-6

Index-3

datum
geodetic, 1-6, 6-2
MDSYS.SDO_DATUMS_OLD_FORMAT

table, 6-30
MDSYS.SDO_DATUMS_OLD_SNAPSHOT

table, 6-30
transformation, 6-2

dblink
not supported if spatial index is defined on the

table, 4-6
DEFINE_GEOM_SEGMENT procedure, 16-22
defining

geometric segment, 7-8
DELETE_ALL_EPSG_RULES procedure, 13-18
DELETE_OP procedure, 13-19
densification of arcs, 15-6
DETERMINE_CHAIN function, 13-20
DETERMINE_DEFAULT_CHAIN function, 13-22
difference

SDO_GEOM.SDO_DIFFERENCE function, 15-17
dimension (in SDO_GTYPE), 2-5, 2-6

Get_Dims method, 2-11
Get_LRS_Dim method, 2-11

DIMINFO (in USER_SDO_GEOM_
METADATA), 2-30

direction of geometric segment, 7-3
concatenation result, 7-11

discretization (binning)
spatial, 8-3
See also bins

DISJOINT
topological relationship, 1-12

disk storage requirements for applications using
Spatial, 1-17

distance
SDO_NN_DISTANCE ancillary operator, 11-20
WITHIN_DISTANCE function, 15-43

distance units, 6-32
distance_unit attribute

of route request, C-11
distributed transactions

requirements to ensure spatial index
consistency, 4-6

Douglas-Peucker algorithm for geometry
simplification, 20-30

downgrading
Oracle Spatial to the previous Oracle Database

release, A-1
driving directions

in route request, C-11
DROP INDEX statement, 10-12
duplicate vertices

removing, 20-27
dynamic query window, 4-7
DYNAMIC_SEGMENT function, 16-25

E
EDGE table

routing engine use of, C-20

editing
geometric segments

subprograms for, 16-1
ELEM_INFO (SDO_ELEM_INFO attribute), 2-7
elements, 1-4

extracting from a geometry, 20-11
returning number of elements in a

geometry, 20-17
returning number of vertices in a geometry, 20-18

ellipse
creating polygon approximating, 20-9

ELLIPSE_POLYGON function, 20-9
ellipsoids

MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT
table, 6-32

MDSYS.SDO_ELLIPSOIDS_OLD_SNAPSHOT
table, 6-32

embedded SDO_GEOMETRY object in user-defined
type, 9-1

end location for route, C-10
EPSG, 6-8
EPSG SRID

mapping Oracle SRID to, 13-30
mapping to Oracle SRID, 13-29

EQUAL
SDO_EQUAL operator, 11-8
topological relationship, 1-12

error messages
geocoding, 5-4
Spatial, 1-17

ESTIMATE_RTREE_INDEX_SIZE function, 19-4
ETYPE (SDO_ETYPE value), 2-8, 2-9
European Petroleum Survey Group

See EPSG
examples

batch route request and response, C-13
C, 1-17
complex queries, D-1
coordinate systems, 6-41
creating, indexing, and querying spatial data, 2-1
directory for Spatial examples, 1-17
linear referencing system (LRS), 7-15
many geometry types (creating), 2-14
OCI (Oracle Call Interface), 1-17
PL/SQL, 1-17
route request and response, C-5
route request with previously geocoded

locations, C-8
route response with previously geocoded

locations, C-9
SQL, 1-17

exchanging partitions including indexes, 4-5
Export utility

with spatial indexes and data, 4-5
EXTENT_OF function, 19-7
exterior polygon rings, 2-8, 2-15, 2-17
EXTRACT function, 20-11

Index-4

F
features

linear, 7-5
FILTER

SDO_FILTER operator, 11-9
FILTER mask value for SDO_JOIN, 11-14
FIND_GEOG_CRS function, 13-23
FIND_LRS_DIM_POS function, 16-27
FIND_MEASURE function, 16-28
FIND_OFFSET function, 16-30
FIND_PROJ_CRS function, 13-25
formatted addresses, 5-1
FROM_815_TO_81X procedure

use TO_CURRENT instead, 17-1
FROM_OGC_SIMPLEFEATURE_SRS

function, 13-27
FROM_USNG function, 13-28
FROM_WKBGEOMETRY function, 20-13
FROM_WKTGEOMETRY function, 20-15
function-based indexes

with SDO_GEOMETRY objects, 9-3
functions

spatial aggregate, 12-1
supported by approximations with geodetic

data, 6-40

G
GC_AREA_<suffix> table, 5-10
GC_COUNTRY_PROFILE table, 5-11
GC_INTERSECTION_<suffix> table, 5-13
GC_POI_<suffix> table, 5-14
GC_POSTAL_CODE_<suffix> table, 5-15
GC_ROAD_<suffix> table, 5-16
GC_ROAD_SEGMENT_<suffix> table, 5-18
GEOCODE function, 14-2
GEOCODE_ADDR function, 14-3
GEOCODE_ADDR_ALL function, 14-5
GEOCODE_ALL function, 14-7
GEOCODE_AS_GEOMETRY function, 14-9
geocoding, 1-15

concepts, 5-1
data requirements, 5-7
data types for, 5-4
error messages, 5-4
from a place name, 5-8
match codes, 5-3
match modes, 5-2
reverse, 14-10
subprogram reference information, 14-1
usage information, 5-1

geocoding requests
DTD, C-18

geocoding responses
DTD, C-19

geodetic coordinates, 1-6, 6-2
arcs and circles not supported, 6-5
functions supported by approximations, 6-40
support for, 6-2

geodetic datum, 1-6, 6-2

geodetic indexes, 4-2
geodetic MBRs, 6-3
geographic coordinates

See geodetic coordinates
geography markup language (GML)

converting geometry to, 20-33
GEOM_SEGMENT_END_MEASURE

function, 16-32
GEOM_SEGMENT_END_PT function, 16-33
GEOM_SEGMENT_LENGTH function, 16-34
GEOM_SEGMENT_START_MEASURE

function, 16-35
GEOM_SEGMENT_START_PT function, 16-36
geometric segment

clipping, 7-9
concatenating, 7-10

aggregate, 7-11, 12-6
converting (overview), 7-14
converting (subprograms for), 16-3
creating (subprograms for), 16-1
defining, 7-8
definition of, 7-2
direction, 7-3
direction with concatenation, 7-11
editing (subprograms for), 16-1
locating point on, 7-12
offsetting, 7-12
projecting point onto, 7-13
querying (subprograms for), 16-2
redefining, 7-9
scaling, 7-11
splitting, 7-10

geometry subprograms
reference information, 15-1

geometry types, 1-3
constraining data to, 4-2
Get_GType method, 2-11
SDO_GTYPE, 2-5

GeoRaster
checks and actions after upgrade, A-1

Get_Dims method, 2-11
Get_GType method, 2-11
Get_LRS_Dim method, 2-11
GET_MEASURE function, 16-37
GET_NEXT_SHAPE_PT function, 16-38
GET_NEXT_SHAPE_PT_MEASURE function, 16-40
GET_PREV_SHAPE_PT function, 16-42
GET_PREV_SHAPE_PT_MEASURE function, 16-44
Get_WKB method, 2-11
Get_WKT method, 2-12
GETNUMELEM function, 20-17
GETNUMVERTICES function, 20-18
GETVERTICES function, 20-19
GML (geography markup language)

converting geometry to, 20-33
GTYPE (SDO_GTYPE attribute), 2-5

constraining data to a geometry type, 4-2
Get_Dims method, 2-11
Get_GType method, 2-11
GET_LRS_Dim method, 2-11

Index-5

H
hardware requirements for applications using

Spatial, 1-17

I
id attribute

of route request, C-11
Import utility

with spatial indexes and data, 4-5
index

distributed transactions and spatial index
consistency, 4-6

indexes
creating, 4-1

cross-schema, 4-3
parallel execution, 10-9

description of Spatial indexing, 1-9
extending spatial indexing capabilities, 9-1
function-based with SDO_GEOMETRY

objects, 9-3
geodetic and non-geodetic, 4-2
partitioned, 4-3

exchanging partitions including indexes, 4-5
quadtree

deprecated feature of Spatial, 1-9
rebuilding, 10-4

parallel execution, 10-3, 10-5
R-tree

description, 1-9
requirements before creating, 4-1

size (R-tree), 19-4
index-organized table

cannot create spatial index on, 2-30, 10-10
INITIALIZE_INDEXES_FOR_TTS procedure, 20-21
input_location element, C-12
inserting spatial data

PL/SQL, 3-3
INSIDE

SDO_INSIDE operator, 11-12
topological relationship, 1-12

installation, A-1
interMedia requirement for Locator, B-1

INTEPRETATION (SDO_INTERPRETATION
value), 2-8

interaction
ANYINTERACT, 1-12

interior
of an area, 1-11

interior polygon rings, 2-8, 2-15, 2-17
interMedia

proper installation required for Locator, B-1
intersection, 15-21, 16-53
intersections

GC_INTERSECTION_<suffix> table, 5-13
inverse flattening, 6-22, 6-33
IS_GEOM_SEGMENT_DEFINED function, 16-46
IS_MEASURE_DECREASING function, 16-47
IS_MEASURE_INCREASING function, 16-48
IS_SHAPE_PT_MEASURE function, 16-49

J
Java application programming interface (API) for

Spatial, 1-15
join

SDO_JOIN operator, 11-13

L
language attribute

of route request, C-11
layer, 1-5

transforming, 13-38
validating with context, 15-41

layer_gtype
constraining data to a geometry type, 4-2

length
SDO_LENGTH function, 15-23

line
converting polygon to, 20-24
data, 1-5
length, 15-23

line string
boundary of, 1-11
compound, 2-10, 2-17
reversing, 20-29
self-crossing, 1-4

linear features, 7-5
linear measure, 7-3
linear referencing system (LRS)

3D formats of functions, 7-7
not supported with geodetic data, 6-40

conceptual and usage information, 7-1
data model, 7-6
example, 7-15
Get_LRS_Dim method, 2-11
limiting indexing to X and Y dimensions, 7-7
LRS points, 7-5
segments, 7-2
subprogram reference information, 16-1
tolerance values with LRS functions, 7-15
upgrading data to current release, A-1

loading spatial data, 3-1
local coordinate systems, 6-6
local coordinates, 1-6, 6-2
LOCAL partitioning

spatial indexes, 4-3
LOCATE_PT function, 16-51
location prospecting, 8-5
Locator, B-1
LRS

See linear referencing system (LRS)
LRS points, 7-5
LRS_INTERSECTION function, 16-53

M
map projections

MDSYS.SDO_PROJECTIONS_OLD_SNAPSHOT
table, 6-33

MAP_EPSG_SRID_TO_ORACLE function, 13-29

Index-6

MAP_ORACLE_SRID_TO_EPSG function, 13-30
match codes, 5-3
match modes, 5-2
MBR

See minimum bounding rectangle (MBR)
MDDATA schema, 1-16
MDSYS schema, 1-2
MDSYS.CS_SRS table, 6-26
MDSYS.SDO_ANGLE_UNITS table, 6-29
MDSYS.SDO_AREA_UNITS view, 6-29
MDSYS.SDO_CS package, 13-1
MDSYS.SDO_DATUMS_OLD_FORMAT table, 6-30
MDSYS.SDO_DATUMS_OLD_SNAPSHOT

table, 6-30
MDSYS.SDO_DIST_UNITS view, 6-32
MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT

table, 6-32
MDSYS.SDO_ELLIPSOIDS_OLD_SNAPSHOT

table, 6-32
MDSYS.SDO_GCDR package, 14-1
MDSYS.SDO_PROJECTIONS_OLD_FORMAT

table, 6-33
MDSYS.SDO_PROJECTIONS_OLD_SNAPSHOT

table, 6-33
MDSYS.SDO_SAM package, 18-1
measure, 7-3

populating, 7-3
resetting, 16-67
reversing, 16-71
with multiline strings and polygons with

holes, 7-5
measure range, 7-5
MEASURE_RANGE function, 16-55
MEASURE_TO_PERCENTAGE function, 16-56
messages

Spatial error messages, 1-17
methods

SDO_GEOMETRY object type, 2-11
migration

See upgrading
minimum bounding rectangle (MBR)

AVERAGE_MBR procedure, 19-2
EXTENT_OF function, 19-7
geodetic, 6-3
SDO_AGGR_MBR aggregate function, 12-8
SDO_MAX_MBR_ORDINATE function, 15-25
SDO_MBR function, 15-27
SDO_MIN_MBR_ORDINATE function, 15-29

mining
See data mining

MIX_INFO procedure, 19-8
multiline string

boundary of, 1-11
LRS measure values, 7-5

multimaster replication
SDO_GEOMETRY objects, B-3

multipolygon, 2-17

N
NaC coordinate reference system, 6-40
NADCON grids

converting Spatial XML format to NADCON
format, 13-10

converting to Spatial XML format, 13-6
naming considerations

Spatial table and column names, 2-30
nearest neighbor

SDO_NN operator, 11-16
SDO_NN_DISTANCE operator, 11-20

neighborhood influence, 8-3
NLS_LENGTH_SEMANTICS parameter

spatial queries on UTF8 data, 4-6
NODE table

routing engine use of, C-21
non-geodetic indexes, 4-2
NTv2 grids

converting Spatial XML format to NTv2
format, 13-12

converting to Spatial XML format, 13-8

O
object types

embedding SDO_GEOMETRY objects in, 9-1, 9-4
OCG (Open Geospatial Consortium) simple features

conformance, 1-16
OCI (Oracle Call Interface) examples, 1-17
ODM

See Oracle Data Mining (ODM)
offset, 7-3

FIND_OFFSET function, 16-30
OFFSET_GEOM_SEGMENT function, 16-58
offsetting

geometric segment, 7-12
ON

SDO_ON operator, 11-22
topological relationship, 1-12

Open Geospatial Consortium (OCG) simple features
conformance, 1-16

operators
cross-schema invocation, 4-12
ORDERED optimizer hint with, 1-14

SDO_FILTER, 11-10
SDO_JOIN, 11-14

overview, 1-13
performance-related guidelines, 1-13
SDO_ANYINTERACT, 11-3
SDO_CONTAINS, 11-5
SDO_COVEREDBY, 11-6
SDO_COVERS, 11-7
SDO_EQUAL, 11-8
SDO_FILTER, 11-9
SDO_INSIDE, 11-12
SDO_JOIN, 11-13
SDO_NN, 11-16
SDO_NN_DISTANCE, 11-20
SDO_ON, 11-22
SDO_OVERLAPBDYDISJOINT, 11-23

Index-7

SDO_OVERLAPBDYINTERSECT, 11-25
SDO_OVERLAPS, 11-27
SDO_RELATE, 11-29
SDO_TOUCH, 11-33
SDO_WITHIN_DISTANCE, 11-35

optimized rectangle, 2-10
optimizer hint (ORDERED) with spatial

operators, 1-14
SDO_FILTER, 11-10
SDO_JOIN, 11-14

Oracle Call Interface (OCI) examples, 1-17
Oracle Data Mining (ODM)

spatial analysis and mining information, 8-1
Oracle Database 10g

upgrading Spatial to, A-1
Oracle Locator

See Locator
ORDERED optimizer hint with spatial

operators, 1-14
SDO_FILTER, 11-10
SDO_JOIN, 11-14

oriented point
illustration and example, 2-21

OVERLAPBDYDISJOINT
SDO_OVERLAPBDYDISJOINT operator, 11-23
topological relationship, 1-12

OVERLAPBDYINTERSECT
SDO_OVERLAPBDYINTERSECT operator, 11-25
topological relationship, 1-12

OVERLAPS
SDO_OVERLAPS operator, 11-27

P
parallel execution for index creation and

rebuilding, 10-3, 10-5, 10-9
PARTITION table

routing engine use of, C-21
partitioned spatial indexes, 4-3

exchanging partitions, 4-5
PERCENTAGE_TO_MEASURE function, 16-61
performance and tuning information, 1-16

for Spatial operators, 1-13
PL/SQL and SQL examples, 1-17
point

data, 1-5
illustration and examples of point-only

geometry, 2-20
locating on geometric segment, 7-12
LRS, 7-5
on surface of polygon, 15-31
oriented point, 2-21
projection of onto geometric segment, 7-5, 7-13
shape, 7-2

point of interest (POI)
GC_POI_<suffix> table, 5-14

POINT_AT_BEARING function, 20-22
polygon

area of, 15-8
boundary of, 1-11

buffer, 15-10
centroid, 15-13
compound, 2-10
exterior and interior rings, 2-8, 2-15, 2-17
point on surface, 15-31
self-crossing not supported, 1-4
self-intersecting polygons, 15-39
with hole (LRS measure values), 7-5

polygon collection, 2-17
polygon data, 1-5
POLYGONTOLINE function, 20-24
populating

measure, 7-3
pre_geocoded_location element, C-12
pre_geocoded_locations attribute

of route request, C-11
PREPARE_FOR_TTS procedure, 20-25
primary filter, 1-8, 4-8, 4-9
primitive types, 1-3
problems in current release, 6-40

geodetic data, 6-5
PROJECT_PT function, 16-63
projected coordinates, 1-6, 6-2
projections, 7-5, 7-13

MDSYS.SDO_PROJECTIONS_OLD_FORMAT
table, 6-33

MDSYS.SDO_PROJECTIONS_OLD_SNAPSHOT
table, 6-33

PROJECT_PT function, 16-63

Q
quadtree indexes

deprecated feature of Spatial, 1-9
quality

degradation of R-tree index, 19-10
R-tree, 1-10

QUALITY_DEGRADATION function, 19-10
query, 4-7
query model for Spatial, 1-8
query window, 4-7
querying geometric segments

subprograms for, 16-2

R
range

measure, 7-5
README file

for Spatial, GeoRaster, and topology and network
data models, 1-18

rebuilding
spatial indexes, 10-4

rectangle
minimum bounding, 19-7
type, 2-10

rectification of geometries, 20-26
RECTIFY_GEOMETRY function, 20-26
REDEFINE_GEOM_SEGMENT procedure, 16-65
redefining

Index-8

geometric segment, 7-9
RELATE function, 15-3

See also SDO_RELATE operator
release number (Spatial)

retrieving, 1-16
REMOVE_DUPLICATE_VERTICES function, 20-27
replication

multimaster, B-3
object, B-2

RESET_MEASURE procedure, 16-67
restrictions in current release, 6-40

geodetic data, 6-5
return_detailed_geometries attribute

of route request, C-11
return_driving_directions attribute

of route request, C-11
return_hierarchical_driving_directions attribute

of route request, C-11
return_route_geometry attribute

of batch route request, C-17
of route request, C-11

return_segment_geometry attribute
of batch route request, C-17
of route request, C-11

reverse geocoding, 14-10
REVERSE_GEOCODE function, 14-10
REVERSE_GEOMETRY function, 16-69
REVERSE_LINESTRING function, 20-29
REVERSE_MEASURE function, 16-71
REVOKE_PREFERENCE_FOR_OP procedure, 13-31
ring

exterior and interior polygon, 2-8
extracting from a geometry, 20-11

road segments
GC_ROAD_SEGMENT_<suffix> table, 5-18

road_preference attribute
of batch route request, C-17
of route request, C-11

roads
GC_ROAD_<suffix> table, 5-16

rollback segment
R-tree index creation, 4-1

route geometry
in route request, C-11

route requests, C-10
DTD, C-9
example, C-5

previously geocoded locations, C-8
input_location element, C-12
pre_geocoded_location element, C-12

route responses
DTD, C-12
example, C-5

previously geocoded locations, C-9
route_preference attribute

of route request, C-11
route_request element, C-10
routing engine

configuring, C-2
data structures used by, C-20

deploying, C-2
overview, C-1
XML API, C-3

R-tree indexes
description of indexing process, 1-9
quality degradation, 19-10
rebuilding, 10-4
requirements before creating, 4-1
sequence object, 2-35
when to use, 1-9

R-tree quality, 1-10

S
scaling

geometric segment, 7-11
schemas

creating index on table in another schema, 4-3
invoking operators on table in another

schema, 4-12
SDO_ADDR_ARRAY data type, 5-7
SDO_AGGR_CENTROID aggregate function, 12-2
SDO_AGGR_CONCAT_LINES aggregate

function, 12-3
SDO_AGGR_CONVEXHULL aggregate

function, 12-5
SDO_AGGR_LRS_CONCAT aggregate

function, 12-6
SDO_AGGR_MBR aggregate function, 12-8
SDO_AGGR_UNION aggregate function, 12-9

complex examples, D-5
SDO_ANGLE_UNITS table, 6-29
SDO_ANYINTERACT operator, 11-3
SDO_ARC_DENSIFY function, 15-6
SDO_AREA function, 15-8
SDO_AREA_UNITS view, 6-29
SDO_BUFFER function, 15-10
SDO_CENTROID function, 15-13
SDO_CONTAINS operator, 11-5
SDO_CONVEXHULL function, 15-15
SDO_COORD_AXES table, 6-8
SDO_COORD_AXIS_NAMES table, 6-9
SDO_COORD_OP_METHODS table, 6-9
SDO_COORD_OP_PARAM_USE table, 6-10
SDO_COORD_OP_PARAM_VALS table, 6-10
SDO_COORD_OP_PARAMS table, 6-11
SDO_COORD_OP_PATHS table, 6-11
SDO_COORD_OPS table, 6-12
SDO_COORD_REF_SYS table, 6-13
SDO_COORD_REF_SYSTEM view, 6-15
SDO_COORD_SYS table, 6-15
SDO_COVEREDBY operator, 11-6
SDO_COVERS operator, 11-7
SDO_CRS_COMPOUND view, 6-15
SDO_CRS_ENGINEERING view, 6-16
SDO_CRS_GEOCENTRIC view, 6-16
SDO_CRS_GEOGRAPHIC2D view, 6-17
SDO_CRS_GEOGRAPHIC3D view, 6-17
SDO_CRS_PROJECTED view, 6-18
SDO_CRS_VERTICAL view, 6-18

Index-9

SDO_CS package, 13-1
ADD_PREFERENCE_FOR_OP, 13-4
CONVERT_NADCON_TO_XML, 13-6
CONVERT_NTV2_TO_XML, 13-8
CONVERT_XML_TO_NADCON, 13-10
CONVERT_XML_TO_NTV2, 13-12
CREATE_CONCATENATED_OP, 13-14
CREATE_OBVIOUS_EPSG_RULES, 13-15
CREATE_PREF_CONCATENATED_OP, 13-16
DELETE_ALL_EPSG_RULES, 13-18
DELETE_OP, 13-19
DETERMINE_CHAIN, 13-20
DETERMINE_DEFAULT_CHAIN, 13-22
FIND_GEOG_CRS, 13-23
FIND_PROJ_CRS, 13-25
FROM_OGC_SIMPLEFEATURE_SRS, 13-27
FROM_USNG, 13-28
MAP_EPSG_SRID_TO_ORACLE, 13-29
MAP_ORACLE_SRID_TO_EPSG, 13-30
REVOKE_PREFERENCE_FOR_OP, 13-31
TO_OGC_SIMPLEFEATURE_SRS, 13-32
TO_USNG, 13-33
TRANSFORM, 13-35
TRANSFORM_LAYER, 13-38
UPDATE_WKTS_FOR_ALL_EPSG_CRS, 13-40
UPDATE_WKTS_FOR_EPSG_CRS, 13-41
UPDATE_WKTS_FOR_EPSG_DATUM, 13-42
UPDATE_WKTS_FOR_EPSG_ELLIPS, 13-43
UPDATE_WKTS_FOR_EPSG_OP, 13-44
UPDATE_WKTS_FOR_EPSG_PARAM, 13-45
UPDATE_WKTS_FOR_EPSG_PM, 13-46
VALIDATE_WKT, 13-47
VIEWPORT_TRANSFORM, 13-48

SDO_DATUM_ENGINEERING view, 6-19
SDO_DATUM_GEODETIC view, 6-20
SDO_DATUM_VERTICAL view, 6-20
SDO_DATUMS table, 6-21
SDO_DATUMS_OLD_FORMAT table, 6-30
SDO_DATUMS_OLD_SNAPSHOT table, 6-30
SDO_DIFFERENCE function, 15-17
SDO_DIST_UNITS view, 6-32
SDO_DISTANCE function, 15-19
SDO_ELEM_INFO attribute, 2-7
SDO_ELEM_INFO_ARRAY type, 2-5
SDO_ELLIPSOIDS table, 6-22
SDO_ELLIPSOIDS_OLD_FORMAT table, 6-32
SDO_ELLIPSOIDS_OLD_SNAPSHOT table, 6-32
SDO_EQUAL operator, 11-8
SDO_ETYPE value, 2-8, 2-9
SDO_FILTER operator, 11-9
SDO_GCDR package, 14-1

GEOCODE, 14-2
GEOCODE_ADDR, 14-3
GEOCODE_ADDR_ALL, 14-5
GEOCODE_ALL, 14-7
GEOCODE_AS_GEOMETRY, 14-9
REVERSE_GEOCODE, 14-10

SDO_GEO_ADDR data type and constructors, 5-4
SDO_GEOM package

RELATE, 15-3

SDO_ARC_DENSIFY, 15-6
SDO_AREA, 15-8
SDO_BUFFER, 15-10
SDO_CENTROID, 15-13
SDO_CONVEXHULL, 15-15
SDO_DIFFERENCE, 15-17
SDO_DISTANCE, 15-19
SDO_INTERSECTION, 15-21
SDO_LENGTH, 15-23
SDO_MAX_MBR_ORDINATE, 15-25
SDO_MBR, 15-27
SDO_MIN_MBR_ORDINATE, 15-29
SDO_POINTONSURFACE, 15-31
SDO_UNION, 15-33
SDO_XOR, 15-35
VALIDATE_GEOMETRY_WITH_

CONTEXT, 15-37
VALIDATE_LAYER_WITH_CONTEXT, 15-41
WITHIN_DISTANCE, 15-43

SDO_GEOMETRY object type, 2-5
constructors, 2-13
embedding in user-defined type, 9-1, 9-4
in function-based indexes, 9-3
methods (member functions), 2-11

SDO_GTYPE attribute, 2-5
constraining data to a geometry type, 4-2
Get_Dims method, 2-11
Get_GType method, 2-11
Get_LRS_Dim method, 2-11

SDO_INDEX_TABLE entry in index metadata
views, 2-34

SDO_INDX_DIMS keyword, 7-7, 10-2
SDO_INSIDE operator, 11-12
SDO_INTERPRETATION value, 2-8
SDO_INTERSECTION function, 15-21
SDO_JOIN operator, 11-13
SDO_KEYWORDARRAY data type, 5-7
SDO_LENGTH function, 15-23
SDO_LRS package

CLIP_GEOM_SEGMENT, 16-5
CONCATENATE_GEOM_SEGMENTS, 16-7
CONNECTED_GEOM_SEGMENTS, 16-10
CONVERT_TO_LRS_DIM_ARRAY, 16-12
CONVERT_TO_LRS_GEOM, 16-14
CONVERT_TO_LRS_LAYER, 16-16
CONVERT_TO_STD_DIM_ARRAY, 16-18
CONVERT_TO_STD_GEOM, 16-19
CONVERT_TO_STD_LAYER, 16-20
DEFINE_GEOM_SEGMENT, 16-22
DYNAMIC_SEGMENT, 16-25
FIND_LRS_DIM_POS, 16-27
FIND_MEASURE, 16-28
FIND_OFFSET, 16-30
GEOM_SEGMENT_END_MEASURE, 16-32
GEOM_SEGMENT_END_PT, 16-33
GEOM_SEGMENT_LENGTH, 16-34
GEOM_SEGMENT_START_MEASURE, 16-35
GEOM_SEGMENT_START_PT, 16-36
GET_MEASURE, 16-37
GET_NEXT_SHAPE_PT, 16-38

Index-10

GET_NEXT_SHAPE_PT_MEASURE, 16-40
GET_PREV_SHAPE_PT, 16-42
GET_PREV_SHAPE_PT_MEASURE, 16-44
IS_GEOM_SEGMENT_DEFINED, 16-46
IS_MEASURE_DECREASING, 16-47
IS_MEASURE_INCREASING, 16-48
IS_SHAPE_PT_MEASURE, 16-49
LOCATE_PT, 16-51
LRS_INTERSECTION, 16-53
MEASURE_RANGE, 16-55
MEASURE_TO_PERCENTAGE, 16-56
OFFSET_GEOM_SEGMENT, 16-58
PERCENTAGE_TO_MEASURE, 16-61
PROJECT_PT, 16-63
REDEFINE_GEOM_SEGMENT, 16-65
RESET_MEASURE, 16-67
REVERSE_GEOMETRY, 16-69
REVERSE_MEASURE, 16-71
SET_PT_MEASURE, 16-73
SPLIT_GEOM_SEGMENT, 16-76
TRANSLATE_MEASURE, 16-78
VALID_GEOM_SEGMENT, 16-80
VALID_LRS_PT, 16-81
VALID_MEASURE, 16-82
VALIDATE_LRS_GEOMETRY, 16-84

SDO_MAX_MBR_ORDINATE function, 15-25
SDO_MBR function, 15-27
SDO_MIGRATE package

TO_CURRENT, 17-2
SDO_MIN_MBR_ORDINATE function, 15-29
SDO_NN operator, 11-16

complex examples, D-3
optimizer hints, 11-18

SDO_NN_DISTANCE ancillary operator, 11-20
SDO_NN_DISTANCE operator

complex examples, D-3
SDO_ON operator, 11-22
SDO_ORDINATE_ARRAY type, 2-5
SDO_ORDINATES attribute, 2-10
SDO_OVERLAPBDYDISJOINT operator, 11-23
SDO_OVERLAPBDYINTERSECT operator, 11-25
SDO_OVERLAPS operator, 11-27
SDO_POINT attribute, 2-7
SDO_POINT_TYPE object type, 2-5
SDO_POINTONSURFACE function, 15-31
SDO_PREFERRED_OPS_SYSTEM table, 6-23
SDO_PREFERRED_OPS_USER table, 6-23
SDO_PRIME_MERIDIANS table, 6-24
SDO_PROJECTIONS_OLD_FORMAT table, 6-33
SDO_PROJECTIONS_OLD_SNAPSHOT table, 6-33
SDO_REGAGGR object type, 18-5, 18-18
SDO_REGAGGRSET object type, 18-5, 18-18
SDO_REGION object type, 18-21
SDO_REGIONSET object type, 18-21
SDO_RELATE operator, 11-29
SDO_ROWIDPAIR object type, 11-13
SDO_ROWIDSET data type, 11-13
SDO_RTREE_SEQ_NAME sequence object, 2-35
SDO_SAM package, 18-1

AGGREGATES_FOR_GEOMETRY, 18-2

AGGREGATES_FOR_LAYER, 18-4
BIN_GEOMETRY, 18-6
BIN_LAYER, 18-8
COLOCATED_REFERENCE_FEATURES, 18-10
SIMPLIFY_GEOMETRY, 18-12
SIMPLIFY_LAYER, 18-14
SPATIAL_CLUSTERS, 18-16
TILED_AGGREGATES, 18-17
TILED_BINS, 18-20

SDO_SRID attribute, 2-7
SDO_STARTING_OFFSET value, 2-7
SDO_TFM_CHAIN type, 6-7
SDO_TOUCH operator, 11-33
SDO_TUNE package

AVERAGE_MBR, 19-2
ESTIMATE_RTREE_INDEX_SIZE, 19-4
EXTENT_OF, 19-7
MIX_INFO, 19-8
QUALITY_DEGRADATION, 19-10

SDO_UNION function, 15-33
SDO_UNIT column

in SDO_AREA_UNITS table, 6-30
in SDO_DIST_UNITS table, 6-32

SDO_UNITS_OF_MEASURE table, 6-24
SDO_UTIL package

APPEND, 20-3
CIRCLE_POLYGON, 20-4
CONCAT_LINES, 20-6
CONVERT_UNIT, 20-8
ELLIPSE_POLYGON, 20-9
EXTRACT, 20-11
FROM_WKBGEOMETRY, 20-13
FROM_WKTGEOMETRY, 20-15
GETNUMELEM, 20-17
GETNUMVERTICES, 20-18
GETVERTICES, 20-19
INITIALIZE_INDEXES_FOR_TTS, 20-21
POINT_AT_BEARING, 20-22
POLYGONTOLINE, 20-24
PREPARE_FOR_TTS, 20-25
RECTIFY_GEOMETRY, 20-26
REMOVE_DUPLICATE_VERTICES, 20-27
REVERSE_LINESTRING, 20-29
SIMPLIFY, 20-30
TO_GMLGEOMETRY, 20-33
TO_WKBGEOMETRY, 20-39
TO_WKTGEOMETRY, 20-41
VALIDATE_WKBGEOMETRY, 20-43
VALIDATE_WKTGEOMETRY, 20-45

SDO_VERSION function, 1-16
SDO_WITHIN_DISTANCE operator, 11-35

complex examples, D-2
SDO_XOR function, 15-35
SDOAGGRTYPE object type, 1-14
secondary filter, 1-8, 4-9
segment geometry

in route request, C-11
segments

geometric, 7-2
self-crossing line strings and polygons, 1-4

Index-11

self-intersecting polygons, 15-39
semi-major axis, 6-22, 6-33
semi-minor axis, 6-22
sequence object for R-tree index, 2-35
SET_PT_MEASURE procedure, 16-73
shape point, 7-2

determining if measure value is a shape
point, 16-49

getting measure of next, 16-40
getting measure of previous, 16-44
getting next, 16-38
getting previous, 16-42

SIGN_POST table
routing engine use of, C-21

simple element, 2-8
simple features (OGC)

Oracle Spatial conformance, 1-16
simplification of geometries, 20-30
SIMPLIFY function, 20-30
SIMPLIFY_GEOMETRY function, 18-12
SIMPLIFY_LAYER procedure, 18-14
size requirements (hardware) for spatial

applications, 1-17
SORT_AREA_SIZE parameter

R-tree index creation, 4-2
sort_by_distance attribute

of batch route request, C-17
spatial aggregate functions

See aggregate functions
spatial analysis and mining

conceptual and usage information, 8-1
function reference information, 18-1

spatial binning, 8-3
See also bins

spatial clustering, 8-4
spatial correlation, 8-3
spatial data mining

conceptual and usage information, 8-1
function reference information, 18-1

spatial data structures, 2-1
spatial data types, 2-1
spatial index

See index
spatial join, 4-11

SDO_JOIN operator, 11-13
spatial operators

See operators
spatial query, 4-7
spatial reference systems

conceptual and usage information, 6-1
example, 6-41
subprogram reference information, 13-1

spatial routing engine
See routing engine

SPATIAL_CLUSTERS function, 18-16
spheroids

MDSYS.SDO_ELLIPSOIDS_OLD_SNAPSHOT
table, 6-32

SPLIT_GEOM_SEGMENT procedure, 16-76
splitting

geometric segment, 7-10
SQL and PL/SQL examples, 1-17
SQL Multimedia

FROM_WKBGEOMETRY function, 20-13
FROM_WKTGEOMETRY function, 20-15
TO_WKBGEOMETRY function, 20-39
TO_WKTGEOMETRY function, 20-41
VALIDATE_WKBGEOMETRY function, 20-43
VALIDATE_WKTGEOMETRY function, 20-45

SQL Multimedia standard
ST_CoordDim method, 2-12
ST_IsValid method, 2-12

SQL statements
for indexing spatial data, 10-1

SQL*Loader, 3-1
SRID

0 (zero) special case with SDO_CS.VIEWPORT_
TRANSFORM function, 13-48

in USER_SDO_GEOM_METADATA, 2-31
mapping Oracle to EPSG, 13-30
SDO_SRID attribute in SDO_GEOMETRY, 2-7

ST_CoordDim method, 2-12
ST_IsValid method, 2-12
start location for route, C-10
subprograms

coordinate system transformation, 13-1
data mining, 18-1
geocoding, 14-1
geometry, 15-1
linear referencing, 16-1
SDO_MIGRATE, 17-1
spatial analysis, 18-1
tuning, 19-1
utility, 20-1

T
table names

restrictions on spatial table names, 2-30
TABLE_NAME (in USER_SDO_GEOM_

METADATA), 2-30
TFM_PLAN object type, 6-7
three-dimensional (3D)

formats of LRS functions, 7-7
not supported with geodetic data, 6-40

TILED_AGGREGATES function, 18-17
TILED_BINS function, 18-20
time_unit attribute

of route request, C-11
TO_81X procedure

use TO_CURRENT instead, 17-1
TO_CURRENT procedure and function, 17-2
TO_GMLGEOMETRY function, 20-33
TO_OGC_SIMPLEFEATURE_SRS function, 13-32
TO_USNG function, 13-33
TO_WKBGEOMETRY function, 20-39
TO_WKTGEOMETRY function, 20-41
tolerance, 1-6

with LRS functions, 7-15
TOUCH

Index-12

SDO_TOUCH operator, 11-33
topological relationship, 1-12

transactional insertion of spatial data, 3-3
TRANSFORM function, 13-35
TRANSFORM_LAYER procedure, 13-38

table for transformed layer, 13-39
transformation, 6-2
TRANSLATE_MEASURE function, 16-78
transportable tablespaces

initializing spatial indexes, 20-21
preparing for when using spatial indexes, 20-25

tuning and performance information, 1-16
for spatial operators, 1-13

tuning subprograms, 19-1
two-tier query model, 1-8
type zero (0) element, 2-23

U
unformatted addresses, 5-2
union, 15-33
unit of measurement

MDSYS tables, 2-35
UNIT_NAME column

in SDO_ANGLE_UNITS table, 6-29
in SDO_AREA_UNITS table, 6-30
in SDO_DIST_UNITS table, 6-32

unknown CRS coordinate reference system, 6-40
UPDATE_WKTS_FOR_ALL_EPSG_CRS

procedure, 13-40
UPDATE_WKTS_FOR_EPSG_CRS procedure, 13-41
UPDATE_WKTS_FOR_EPSG_DATUM

procedure, 13-42
UPDATE_WKTS_FOR_EPSG_ELLIPS

procedure, 13-43
UPDATE_WKTS_FOR_EPSG_OP procedure, 13-44
UPDATE_WKTS_FOR_EPSG_PARAM

procedure, 13-45
UPDATE_WKTS_FOR_EPSG_PM procedure, 13-46
upgrading

data to current Spatial release, 17-2
GeoRaster, A-1
LRS data, A-1
Spatial to current Oracle Database release, A-1

U.S. National Grid
SDO_CS.FROM_USNG function, 13-28
SDO_CS.TO_USNG function, 13-33
support in Oracle Spatial, 6-41

use cases
for coordinate system transformation, 6-7

USER_SDO_GEOM_METADATA view, 2-29
USER_SDO_INDEX_INFO view, 2-31
USER_SDO_INDEX_METADATA view, 2-32
user-defined coordinate reference system, 6-34
user-defined data types

embedding SDO_GEOMETRY objects in, 9-1, 9-4
UTF8 character set

NLS_LENGTH_SEMANTICS setting for spatial
queries, 4-6

utility subprograms, 20-1

V
VALID_GEOM_SEGMENT function, 16-80
VALID_LRS_PT function, 16-81
VALID_MEASURE function, 16-82
VALIDATE_GEOMETRY_WITH_CONTEXT

function, 15-37
VALIDATE_LAYER_WITH_CONTEXT

procedure, 15-41
VALIDATE_LRS_GEOMETRY function, 16-84
VALIDATE_WKBGEOMETRY function, 20-43
VALIDATE_WKT function, 13-47
VALIDATE_WKTGEOMETRY function, 20-45
vendor attribute

of route request, C-11
version number (Spatial)

retrieving, 1-16
VERTEX_SET_TYPE data type, 20-19
VERTEX_TYPE object type, 20-19
vertices

maximum number in SDO_GEOMETRY
object, 2-5

removing duplicate, 20-27
returning geometry coordinates as, 20-19

VIEWPORT_TRANSFORM function, 13-48
views

ALL_SDO_GEOM_METADATA, 2-29
ALL_SDO_INDEX_INFO, 2-32
ALL_SDO_INDEX_METADATA, 2-32
USER_SDO_GEOM_METADATA, 2-29
USER_SDO_INDEX_INFO, 2-31
USER_SDO_INDEX_METADATA, 2-32

W
well-known binary (WKB)

See WKB
well-known text (WKT)

See WKT
WITHIN_DISTANCE function, 15-43

See also SDO_WITHIN_DISTANCE operator
WKB

FROM_WKBGEOMETRY function, 20-13
Get_WKB method, 2-11
TO_WKBGEOMETRY function, 20-39
VALIDATE_WKBGEOMETRY function, 20-43

WKT, 6-26
FROM_WKTGEOMETRY function, 20-15
Get_WKT method, 2-12
procedures for updating, 6-28
TO_WKTGEOMETRY function, 20-41
UPDATE_WKTS_FOR_ALL_EPSG_CRS

procedure, 13-40
UPDATE_WKTS_FOR_EPSG_CRS

procedure, 13-41
UPDATE_WKTS_FOR_EPSG_DATUM

procedure, 13-42
UPDATE_WKTS_FOR_EPSG_ELLIPS

procedure, 13-43
UPDATE_WKTS_FOR_EPSG_OP

procedure, 13-44

Index-13

UPDATE_WKTS_FOR_EPSG_PARAM
procedure, 13-45

UPDATE_WKTS_FOR_EPSG_PM
procedure, 13-46

VALIDATE_WKTGEOMETRY function, 20-45
validating (given SRID), 13-47

WKTEXT column of MDSYS.CS_SRS table, 6-26
procedures for updating value, 6-28

X
XML API

routing engine, C-3
XOR

SDO_XOR function, 15-35

Z
zero

SRID value used with SDO_CS.VIEWPORT_
TRANSFORM function, 13-48

type 0 element, 2-23

Index-14

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	What’s New in Oracle Spatial?
	Coordinate System Support Based on EPSG Model
	New SDO_GEOMETRY Methods and Constructors
	New min_resolution and max_resolution Keywords
	New sdo_dml_batch_size Parameter
	New Geocoding Subprograms
	New Utility Subprograms
	U.S. National Grid Support
	Unknown and NaC Coordinate Reference Systems
	Spatial Routing Engine
	LRS_INTERSECTION Function

	Part I Conceptual and Usage Information
	1 Spatial Concepts
	1.1 What Is Oracle Spatial?
	1.2 Object-Relational Model
	1.3 Introduction to Spatial Data
	1.4 Geometry Types
	1.5 Data Model
	1.5.1 Element
	1.5.2 Geometry
	1.5.3 Layer
	1.5.4 Coordinate System
	1.5.5 Tolerance
	1.5.5.1 Tolerance in the Geometry Metadata for a Layer
	1.5.5.2 Tolerance as an Input Parameter

	1.6 Query Model
	1.7 Indexing of Spatial Data
	1.7.1 R-Tree Indexing
	1.7.2 R-Tree Quality

	1.8 Spatial Relationships and Filtering
	1.9 Spatial Operators, Procedures, and Functions
	1.10 Spatial Aggregate Functions
	1.10.1 SDOAGGRTYPE Object Type

	1.11 Geocoding
	1.12 Spatial Java Application Programming Interface
	1.13 MDDATA Schema
	1.14 Performance and Tuning Information
	1.15 Open Geospatial Consortium (OGC) Conformance
	1.16 Spatial Release (Version) Number
	1.17 Spatial Application Hardware Requirement Considerations
	1.18 Spatial Error Messages
	1.19 Spatial Examples
	1.20 README File for Spatial and Related Features

	2 Spatial Data Types and Metadata
	2.1 Simple Example: Inserting, Indexing, and Querying Spatial Data
	2.2 SDO_GEOMETRY Object Type
	2.2.1 SDO_GTYPE
	2.2.2 SDO_SRID
	2.2.3 SDO_POINT
	2.2.4 SDO_ELEM_INFO
	2.2.5 SDO_ORDINATES
	2.2.6 Usage Considerations

	2.3 SDO_GEOMETRY Methods
	2.4 SDO_GEOMETRY Constructors
	2.5 Geometry Examples
	2.5.1 Rectangle
	2.5.2 Polygon with a Hole
	2.5.3 Compound Line String
	2.5.4 Compound Polygon
	2.5.5 Point
	2.5.6 Oriented Point
	2.5.7 Type 0 (Zero) Element
	2.5.8 Several Geometry Types

	2.6 Geometry Metadata Views
	2.6.1 TABLE_NAME
	2.6.2 COLUMN_NAME
	2.6.3 DIMINFO
	2.6.4 SRID

	2.7 Spatial Index-Related Structures
	2.7.1 Spatial Index Views
	2.7.1.1 xxx_SDO_INDEX_INFO Views
	2.7.1.2 xxx_SDO_INDEX_METADATA Views

	2.7.2 Spatial Index Table Definition
	2.7.3 R-Tree Index Sequence Object

	2.8 Unit of Measurement Support

	3 Loading Spatial Data
	3.1 Bulk Loading
	3.1.1 Bulk Loading SDO_GEOMETRY Objects
	3.1.2 Bulk Loading Point-Only Data in SDO_GEOMETRY Objects

	3.2 Transactional Insert Operations Using SQL

	4 Indexing and Querying Spatial Data
	4.1 Creating a Spatial Index
	4.1.1 Indexing Geodetic Data
	4.1.2 Constraining Data to a Geometry Type
	4.1.3 Creating a Cross-Schema Index
	4.1.4 Using Partitioned Spatial Indexes
	4.1.5 Exchanging Partitions Including Indexes
	4.1.6 Export and Import Considerations with Spatial Indexes and Data
	4.1.7 Distributed Transactions and Spatial Index Consistency

	4.2 Querying Spatial Data
	4.2.1 Spatial Query
	4.2.1.1 Primary Filter Operator
	4.2.1.2 Primary and Secondary Filter Operator
	4.2.1.3 Within-Distance Operator
	4.2.1.4 Nearest Neighbor Operator
	4.2.1.5 Spatial Functions

	4.2.2 Spatial Join
	4.2.3 Cross-Schema Operator Invocation

	5 Geocoding Address Data
	5.1 Concepts for Geocoding
	5.1.1 Address Representation
	5.1.2 Match Modes
	5.1.3 Match Codes
	5.1.4 Error Messages for Output Geocoded Addresses

	5.2 Data Types for Geocoding
	5.2.1 SDO_GEO_ADDR Type
	5.2.2 SDO_ADDR_ARRAY Type
	5.2.3 SDO_KEYWORDARRAY Type

	5.3 Using the Geocoding Capabilities
	5.4 Geocoding from a Place Name
	5.5 Data Structures for Geocoding
	5.5.1 GC_AREA_<suffix> Table
	5.5.2 GC_COUNTRY_PROFILE Table
	5.5.3 GC_INTERSECTION_<suffix> Table
	5.5.4 GC_POI_<suffix> Table
	5.5.5 GC_POSTAL_CODE_<suffix> Table
	5.5.6 GC_ROAD_<suffix> Table
	5.5.7 GC_ROAD_SEGMENT_<suffix> Table

	6 Coordinate Systems (Spatial Reference Systems)
	6.1 Terms and Concepts
	6.1.1 Coordinate System (Spatial Reference System)
	6.1.2 Cartesian Coordinates
	6.1.3 Geodetic Coordinates (Geographic Coordinates)
	6.1.4 Projected Coordinates
	6.1.5 Local Coordinates
	6.1.6 Geodetic Datum
	6.1.7 Transformation

	6.2 Geodetic Coordinate Support
	6.2.1 Geodesy and Two-Dimensional Geometry
	6.2.2 Choosing a Geodetic or Projected Coordinate System
	6.2.3 Geodetic MBRs
	6.2.4 Other Considerations and Requirements with Geodetic Data

	6.3 Local Coordinate Support
	6.4 EPSG Model and Spatial
	6.5 TFM_PLAN Object Type
	6.6 Coordinate Systems Data Structures
	6.6.1 SDO_COORD_AXES Table
	6.6.2 SDO_COORD_AXIS_NAMES Table
	6.6.3 SDO_COORD_OP_METHODS Table
	6.6.4 SDO_COORD_OP_PARAM_USE Table
	6.6.5 SDO_COORD_OP_PARAM_VALS Table
	6.6.6 SDO_COORD_OP_PARAMS Table
	6.6.7 SDO_COORD_OP_PATHS Table
	6.6.8 SDO_COORD_OPS Table
	6.6.9 SDO_COORD_REF_SYS Table
	6.6.10 SDO_COORD_REF_SYSTEM View
	6.6.11 SDO_COORD_SYS Table
	6.6.12 SDO_CRS_COMPOUND View
	6.6.13 SDO_CRS_ENGINEERING View
	6.6.14 SDO_CRS_GEOCENTRIC View
	6.6.15 SDO_CRS_GEOGRAPHIC2D View
	6.6.16 SDO_CRS_GEOGRAPHIC3D View
	6.6.17 SDO_CRS_PROJECTED View
	6.6.18 SDO_CRS_VERTICAL View
	6.6.19 SDO_DATUM_ENGINEERING View
	6.6.20 SDO_DATUM_GEODETIC View
	6.6.21 SDO_DATUM_VERTICAL View
	6.6.22 SDO_DATUMS Table
	6.6.23 SDO_ELLIPSOIDS Table
	6.6.24 SDO_PREFERRED_OPS_SYSTEM Table
	6.6.25 SDO_PREFERRED_OPS_USER Table
	6.6.26 SDO_PRIME_MERIDIANS Table
	6.6.27 SDO_UNITS_OF_MEASURE Table

	6.7 Legacy Tables and Views
	6.7.1 MDSYS.CS_SRS Table
	6.7.1.1 Well-Known Text (WKT)
	6.7.1.2 Procedures for Updating the Well-Known Text

	6.7.2 MDSYS.SDO_ANGLE_UNITS View
	6.7.3 MDSYS.SDO_AREA_UNITS View
	6.7.4 MDSYS.SDO_DATUMS_OLD_FORMAT and SDO_DATUMS_OLD_SNAPSHOT Tables
	6.7.5 MDSYS.SDO_DIST_UNITS View
	6.7.6 MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and SDO_ELLIPSOIDS_OLD_ SNAPSHOT Tables
	6.7.7 MDSYS.SDO_PROJECTIONS_OLD_FORMAT and SDO_PROJECTIONS_OLD_ SNAPSHOT Tables

	6.8 Creating a User-Defined Coordinate Reference System
	6.8.1 Creating a Geodetic CRS
	6.8.2 Creating a Projected CRS

	6.9 Notes and Restrictions with Coordinate Systems Support
	6.9.1 Different Coordinate Systems for Geometries with Operators and Functions
	6.9.2 3D LRS Functions Not Supported with Geodetic Data
	6.9.3 Functions Supported by Approximations with Geodetic Data
	6.9.4 Unknown CRS and NaC Coordinate Reference Systems

	6.10 U.S. National Grid Support
	6.11 Example of Coordinate System Transformation

	7 Linear Referencing System
	7.1 Terms and Concepts
	7.1.1 Geometric Segments (LRS Segments)
	7.1.2 Shape Points
	7.1.3 Direction of a Geometric Segment
	7.1.4 Measure (Linear Measure)
	7.1.5 Offset
	7.1.6 Measure Populating
	7.1.7 Measure Range of a Geometric Segment
	7.1.8 Projection
	7.1.9 LRS Point
	7.1.10 Linear Features
	7.1.11 Measures with Multiline Strings and Polygons with Holes

	7.2 LRS Data Model
	7.3 Indexing of LRS Data
	7.4 3D Formats of LRS Functions
	7.5 LRS Operations
	7.5.1 Defining a Geometric Segment
	7.5.2 Redefining a Geometric Segment
	7.5.3 Clipping a Geometric Segment
	7.5.4 Splitting a Geometric Segment
	7.5.5 Concatenating Geometric Segments
	7.5.6 Scaling a Geometric Segment
	7.5.7 Offsetting a Geometric Segment
	7.5.8 Locating a Point on a Geometric Segment
	7.5.9 Projecting a Point onto a Geometric Segment
	7.5.10 Converting LRS Geometries

	7.6 Tolerance Values with LRS Functions
	7.7 Example of LRS Functions

	8 Spatial Analysis and Mining
	8.1 Spatial Information and Data Mining Applications
	8.2 Spatial Binning for Detection of Regional Patterns
	8.3 Materializing Spatial Correlation
	8.4 Colocation Mining
	8.5 Spatial Clustering
	8.6 Location Prospecting

	9 Extending Spatial Indexing Capabilities
	9.1 SDO_GEOMETRY Objects in User-Defined Type Definitions
	9.2 SDO_GEOMETRY Objects in Function-Based Indexes
	9.2.1 Example: Function with Standard Types
	9.2.2 Example: Function with a User-Defined Object Type

	Part II Reference Information
	10 SQL Statements for Indexing Spatial Data
	ALTER INDEX
	ALTER INDEX REBUILD
	ALTER INDEX RENAME TO
	CREATE INDEX
	DROP INDEX

	11 Spatial Operators
	SDO_ANYINTERACT
	SDO_CONTAINS
	SDO_COVEREDBY
	SDO_COVERS
	SDO_EQUAL
	SDO_FILTER
	SDO_INSIDE
	SDO_JOIN
	SDO_NN
	SDO_NN_DISTANCE
	SDO_ON
	SDO_OVERLAPBDYDISJOINT
	SDO_OVERLAPBDYINTERSECT
	SDO_OVERLAPS
	SDO_RELATE
	SDO_TOUCH
	SDO_WITHIN_DISTANCE

	12 Spatial Aggregate Functions
	SDO_AGGR_CENTROID
	SDO_AGGR_CONCAT_LINES
	SDO_AGGR_CONVEXHULL
	SDO_AGGR_LRS_CONCAT
	SDO_AGGR_MBR
	SDO_AGGR_UNION

	13 SDO_CS Package (Coordinate System Transformation)
	SDO_CS.ADD_PREFERENCE_FOR_OP
	SDO_CS.CONVERT_NADCON_TO_XML
	SDO_CS.CONVERT_NTV2_TO_XML
	SDO_CS.CONVERT_XML_TO_NADCON
	SDO_CS.CONVERT_XML_TO_NTV2
	SDO_CS.CREATE_CONCATENATED_OP
	SDO_CS.CREATE_OBVIOUS_EPSG_RULES
	SDO_CS.CREATE_PREF_CONCATENATED_OP
	SDO_CS.DELETE_ALL_EPSG_RULES
	SDO_CS.DELETE_OP
	SDO_CS.DETERMINE_CHAIN
	SDO_CS.DETERMINE_DEFAULT_CHAIN
	SDO_CS.FIND_GEOG_CRS
	SDO_CS.FIND_PROJ_CRS
	SDO_CS.FROM_OGC_SIMPLEFEATURE_SRS
	SDO_CS.FROM_USNG
	SDO_CS.MAP_EPSG_SRID_TO_ORACLE
	SDO_CS.MAP_ORACLE_SRID_TO_EPSG
	SDO_CS.REVOKE_PREFERENCE_FOR_OP
	SDO_CS.TO_OGC_SIMPLEFEATURE_SRS
	SDO_CS.TO_USNG
	SDO_CS.TRANSFORM
	SDO_CS.TRANSFORM_LAYER
	SDO_CS.UPDATE_WKTS_FOR_ALL_EPSG_CRS
	SDO_CS.UPDATE_WKTS_FOR_EPSG_CRS
	SDO_CS.UPDATE_WKTS_FOR_EPSG_DATUM
	SDO_CS.UPDATE_WKTS_FOR_EPSG_ELLIPS
	SDO_CS.UPDATE_WKTS_FOR_EPSG_OP
	SDO_CS.UPDATE_WKTS_FOR_EPSG_PARAM
	SDO_CS.UPDATE_WKTS_FOR_EPSG_PM
	SDO_CS.VALIDATE_WKT
	SDO_CS.VIEWPORT_TRANSFORM

	14 SDO_GCDR Package (Geocoding)
	SDO_GCDR.GEOCODE
	SDO_GCDR.GEOCODE_ADDR
	SDO_GCDR.GEOCODE_ADDR_ALL
	SDO_GCDR.GEOCODE_ALL
	SDO_GCDR.GEOCODE_AS_GEOMETRY
	SDO_GCDR.REVERSE_GEOCODE

	15 SDO_GEOM Package (Geometry)
	SDO_GEOM.RELATE
	SDO_GEOM.SDO_ARC_DENSIFY
	SDO_GEOM.SDO_AREA
	SDO_GEOM.SDO_BUFFER
	SDO_GEOM.SDO_CENTROID
	SDO_GEOM.SDO_CONVEXHULL
	SDO_GEOM.SDO_DIFFERENCE
	SDO_GEOM.SDO_DISTANCE
	SDO_GEOM.SDO_INTERSECTION
	SDO_GEOM.SDO_LENGTH
	SDO_GEOM.SDO_MAX_MBR_ORDINATE
	SDO_GEOM.SDO_MBR
	SDO_GEOM.SDO_MIN_MBR_ORDINATE
	SDO_GEOM.SDO_POINTONSURFACE
	SDO_GEOM.SDO_UNION
	SDO_GEOM.SDO_XOR
	SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
	SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT
	SDO_GEOM.WITHIN_DISTANCE

	16 SDO_LRS Package (Linear Referencing System)
	SDO_LRS.CLIP_GEOM_SEGMENT
	SDO_LRS.CONCATENATE_GEOM_SEGMENTS
	SDO_LRS.CONNECTED_GEOM_SEGMENTS
	SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY
	SDO_LRS.CONVERT_TO_LRS_GEOM
	SDO_LRS.CONVERT_TO_LRS_LAYER
	SDO_LRS.CONVERT_TO_STD_DIM_ARRAY
	SDO_LRS.CONVERT_TO_STD_GEOM
	SDO_LRS.CONVERT_TO_STD_LAYER
	SDO_LRS.DEFINE_GEOM_SEGMENT
	SDO_LRS.DYNAMIC_SEGMENT
	SDO_LRS.FIND_LRS_DIM_POS
	SDO_LRS.FIND_MEASURE
	SDO_LRS.FIND_OFFSET
	SDO_LRS.GEOM_SEGMENT_END_MEASURE
	SDO_LRS.GEOM_SEGMENT_END_PT
	SDO_LRS.GEOM_SEGMENT_LENGTH
	SDO_LRS.GEOM_SEGMENT_START_MEASURE
	SDO_LRS.GEOM_SEGMENT_START_PT
	SDO_LRS.GET_MEASURE
	SDO_LRS.GET_NEXT_SHAPE_PT
	SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE
	SDO_LRS.GET_PREV_SHAPE_PT
	SDO_LRS.GET_PREV_SHAPE_PT_MEASURE
	SDO_LRS.IS_GEOM_SEGMENT_DEFINED
	SDO_LRS.IS_MEASURE_DECREASING
	SDO_LRS.IS_MEASURE_INCREASING
	SDO_LRS.IS_SHAPE_PT_MEASURE
	SDO_LRS.LOCATE_PT
	SDO_LRS.LRS_INTERSECTION
	SDO_LRS.MEASURE_RANGE
	SDO_LRS.MEASURE_TO_PERCENTAGE
	SDO_LRS.OFFSET_GEOM_SEGMENT
	SDO_LRS.PERCENTAGE_TO_MEASURE
	SDO_LRS.PROJECT_PT
	SDO_LRS.REDEFINE_GEOM_SEGMENT
	SDO_LRS.RESET_MEASURE
	SDO_LRS.REVERSE_GEOMETRY
	SDO_LRS.REVERSE_MEASURE
	SDO_LRS.SET_PT_MEASURE
	SDO_LRS.SPLIT_GEOM_SEGMENT
	SDO_LRS.TRANSLATE_MEASURE
	SDO_LRS.VALID_GEOM_SEGMENT
	SDO_LRS.VALID_LRS_PT
	SDO_LRS.VALID_MEASURE
	SDO_LRS.VALIDATE_LRS_GEOMETRY

	17 SDO_MIGRATE Package (Upgrading)
	SDO_MIGRATE.TO_CURRENT

	18 SDO_SAM Package (Spatial Analysis and Mining)
	SDO_SAM.AGGREGATES_FOR_GEOMETRY
	SDO_SAM.AGGREGATES_FOR_LAYER
	SDO_SAM.BIN_GEOMETRY
	SDO_SAM.BIN_LAYER
	SDO_SAM.COLOCATED_REFERENCE_FEATURES
	SDO_SAM.SIMPLIFY_GEOMETRY
	SDO_SAM.SIMPLIFY_LAYER
	SDO_SAM.SPATIAL_CLUSTERS
	SDO_SAM.TILED_AGGREGATES
	SDO_SAM.TILED_BINS

	19 SDO_TUNE Package (Tuning)
	SDO_TUNE.AVERAGE_MBR
	SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE
	SDO_TUNE.EXTENT_OF
	SDO_TUNE.MIX_INFO
	SDO_TUNE.QUALITY_DEGRADATION

	20 SDO_UTIL Package (Utility)
	SDO_UTIL.APPEND
	SDO_UTIL.CIRCLE_POLYGON
	SDO_UTIL.CONCAT_LINES
	SDO_UTIL.CONVERT_UNIT
	SDO_UTIL.ELLIPSE_POLYGON
	SDO_UTIL.EXTRACT
	SDO_UTIL.FROM_WKBGEOMETRY
	SDO_UTIL.FROM_WKTGEOMETRY
	SDO_UTIL.GETNUMELEM
	SDO_UTIL.GETNUMVERTICES
	SDO_UTIL.GETVERTICES
	SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS
	SDO_UTIL.POINT_AT_BEARING
	SDO_UTIL.POLYGONTOLINE
	SDO_UTIL.PREPARE_FOR_TTS
	SDO_UTIL.RECTIFY_GEOMETRY
	SDO_UTIL.REMOVE_DUPLICATE_VERTICES
	SDO_UTIL.REVERSE_LINESTRING
	SDO_UTIL.SIMPLIFY
	SDO_UTIL.TO_GMLGEOMETRY
	SDO_UTIL.TO_WKBGEOMETRY
	SDO_UTIL.TO_WKTGEOMETRY
	SDO_UTIL.VALIDATE_WKBGEOMETRY
	SDO_UTIL.VALIDATE_WKTGEOMETRY

	Part III Supplementary Information
	A Installation, Compatibility, and Upgrade
	A.1 Upgrading LRS Data
	A.2 Ensuring That GeoRaster Works Properly After an Upgrade

	B Oracle Locator
	C Routing Engine
	C.1 Deploying and Configuring the Routing Engine
	C.2 Routing Engine XML API
	C.2.1 Route Request and Response Examples
	C.2.2 Route Request DTD
	C.2.2.1 route_request Element
	C.2.2.2 route_request Attributes
	C.2.2.3 input_location Element
	C.2.2.4 pre_geocoded_location Element
	C.2.2.5 longitude_latitude_location Element

	C.2.3 Route Response DTD
	C.2.4 Batch Route Request and Response Examples
	C.2.5 Batch Route Request DTD
	C.2.5.1 batch_route_request Element
	C.2.5.2 batch_route_request Attributes

	C.2.6 Batch Route Response DTD
	C.2.7 Geocoding Request and Response DTDs
	C.2.7.1 Geocoding Request DTD
	C.2.7.2 Geocoding Response DTD

	C.3 Data Structures Used by the Routing Engine
	C.3.1 EDGE Table
	C.3.2 NODE Table
	C.3.3 PARTITION Table
	C.3.4 SIGN_POST Table

	D Complex Spatial Queries: Examples
	D.1 Tables Used in the Examples
	D.2 SDO_WITHIN_DISTANCE Examples
	D.3 SDO_NN Examples
	D.4 SDO_AGGR_UNION Example

	Glossary

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

